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ABSTRACT

In this dissertation I focus on my work in the development of nucleon-nucleus optical poten-

tials calculated in the framework of many-body perturbation theory with nuclear forces from chiral

effective field theory. Building upon previous calculations of the nucleon optical potential in nu-

clear matter my goal was to construct a global nucleon-nucleus optical potential, suitable for nuclei

across the nuclear chart. In the first two works, neutron- and proton-calcium optical potentials are

calculated and analyzed. Comparisons are made to experimental data, phenomenology, and other

microscopic approaches. The next step was constructing the first microscopic global optical poten-

tial. Comparisons are again made, and we find key departures from phenomenology that support

the idea that microscopic calculations are better suited for exotic nuclei for which there are no

experimental data. Fermi liquid theory, a related many-body topic, is discussed. I end with brief

outlines of applications of the optical potential including nucleon spectral functions and effective

masses.
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1. INTRODUCTION

1.1 Motivation

Exotic nuclei are at the frontier of research in nuclear physics due to their crucial role in the

production of heavy elements at astrophysical sites such as neutron star mergers and core collapse

supernovae. The experimental study of exotic isotopes across large regions of the nuclear chart

will soon be possible for the first time at rare isotope beam facilities around the world. In an effort

to facilitate scientific discovery in these experimental studies, the present proposal will develop

next-generation optical potentials from chiral effective field theory (EFT) with robust uncertainty

quantification. In my latest work, I demonstrate a proof-of-principle derivation of the first mi-

croscopic global optical potential. Whereas existing global optical potentials are fit exclusively

to experimental data of stable isotopes and extrapolate to reactions involving exotic isotopes with

an unknown degree of uncertainty, my approach is purely microscopic and with the addition of

uncertainty quantification will be well suited to studying reactions with exotic isotopes. These

microscopic optical potentials for exotic isotopes will improve our understanding of how elements

are produced in astrophysical environments, contribute to a more consistent theoretical description

of nuclear structure and reactions, and assist in scientific discovery in upcoming rare isotope beam

experiments.

1.1.1 Astrophysical r-Process

Approximately half of the elements heavier than iron are produced in the rapid neutron capture

process (r-process). The r-process occurs in environments with a high flux of neutrons that are cap-

tured by seed nuclei on a time scale faster than that of the β decay, allowing the nucleus to grow in

mass through neutron-rich regions of the nuclear chart before decaying back to stability. Simula-

tions of the r-process require knowledge of nuclear masses, decay rates, and neutron capture rates

for a wide range of nuclei. Current calculations of r-process isotopic abundances have uncertain-

ties of several orders of magnitude due to loosely constrained inputs, particularly neutron capture
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rates. Implementation of improved neutron-nucleus optical potentials for these exotic isotopes will

reduce neutron capture rate uncertainties, enabling r-process simulations to more accurately model

element production and ultimately establish which astrophysical environments host the r-process.

1.1.2 Supernovae and Neutron Stars

The equation of state is an important input for models of core collapse supernovae and neutron

star mergers. In both of these processes there is a low-density inhomogeneous mixed phase of

dripped nucleons and nuclei. Current calculations of the equation of state for this phase typically

do not consider nucleon-nucleus interactions; this can be addressed by the implementation of a

global optical potential suitable for exotic nuclei.

1.1.3 Rare Isotope Beam Experiments

There is currently great interest in studying nuclear reactions with rare isotopes, however, these

reactions are difficult to perform by conventional experimental methods due to the short half-lives

of exotic isotopes. Rare isotope beam facilities capable of measuring reactions involving these

exotic isotopes are soon to begin producing unprecedented amounts of reaction data. The analysis

of these data from unexplored regions of the nuclear chart will require robust reaction models with

quantified uncertainties.

1.1.4 Advances in Nuclear Theory

Chiral EFT provides a perturbative framework for calculating realistic nuclear interactions con-

sistent with QCD. Recent advances have seen chiral EFT successfully applied in ab initio calcula-

tions of nuclear structure properties including binding energies, excited states, and estimations of

the neutron drip line. My recent work utilizes the same chiral interactions in the context of nuclear

reaction theory and is an initial step at tying together nuclear structure and nuclear reactions in

a consistent framework for nuclei across the chart. The future development of nuclear reaction

theory to incorporate theoretical uncertainty estimates is vital in the description of rare isotopes in

regions of the nuclear chart where no experimental benchmarks exist.
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1.2 Chiral Effective Field Theory

Quantum chromodynamics (QCD) is the theory of the strong nuclear force at the fundamental

level of interactions with quarks and gluons. At the level of the nuclear many-body problem,

the appropriate degrees of freedom are nucleons and pions. Chiral effective field theory (EFT)

establishes a link between these two pictures by constructing a framework of nuclear forces that is

consistent with the symmetries of QCD. This is done by determining the most general Lagrangian

from these degrees of freedom that obeys the underlying symmetries

LEFT = Lππ + LπN + LNN + . . . , (1.1)

where the ellipsis refers to contributions with larger numbers of pions and nucleons.

In chiral EFT, the nuclear force is expressed as a perturbation expansion in powers of the

nucleon momenta over the chiral symmetry breaking scale (Q/Λχ)ν in which diagrammatic con-

tributions from the above Lagrangian are organized using a power counting scheme. This power

counting scheme determines the order of a specific contribution according to the following expres-

sions

ν = −2 + 2N + 2(L− C) +
∑
i

∆i, (1.2)

and

∆i = di +
ni
2
− 2, (1.3)

where L is the number of loops, C is the number of connected pieces. In the sum, i goes over the

vertices and di is the number of derivatives and ni is the number of nucleon fields.

Diagrams from the first four orders of the chiral perturbation expansion are shown in Fig. 1.1.

The most important contributions are at leading-order (LO) and next most important contributions

are at next-to-leading-order (NLO) and so forth. This organizational scheme allows one to calculate
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Figure 1.1: Contributions to nuclear forces in the chiral perturbation theory expansion. Solid lines
are nucleons, dashed lines are pions, and symbols represent contact interactions.

nuclear forces to a desired accuracy by neglecting less significant high-order contributions. It turns

out that no diagrams at the (Q/Λχ) order are consistent with the symmetries of the nuclear force

and therefore do not contribute. It also clearly shows the empirically established fact that four-

nucleon forces are smaller than three-nucleon forces (4NF < 3NF) and three-nucleon forces are

smaller than two-nucleon forces (3NF < 2NF). The contact interactions represent non-perturbative

nuclear dynamics that take place beyond the cutoff scale of the theory; each one introduces a so-

called low energy constant (LEC) that is not predicted by chiral EFT. These LECs give scale to the

theory and must be either derived from the underlying physics (QCD) or empirically measured.

Currently they are determined from measurements of nucleon-nucleon scattering and in the case
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of three-body interactions, the triton binding energy and lifetime. In the future these LECs may be

calculated in lattice QCD, but currently major challenges stand in the way of these calculations.

Since nuclear forces from chiral effective field theory used in the current text are fit only to two-

and three-body empirical measurements, calculations made at the nuclear many-body level are

predictions. In addition to the uncertainty due to the LECs, uncertainties also arise in chiral EFT

from the chosen cutoff scale and order at which the chiral expansion is truncated. By varying

the cutoff scale and truncation order of the potential, one may estimate the theoretical uncertainty

in the prediction of a given measurable quantity. Obtaining theoretical uncertainty estimates of

scattering observables calculated from chiral EFT is a promising way of addressing the current

lack of uncertainty quantification in nuclear reaction theory. For more details on chiral EFT see

Ref. [2].

1.3 Many Body Perturbation Theory

Many body perturbation theory is utilized in nuclear matter to study bulk properties. Nuclear

matter is an infinite system of interacting nucleons at a given density and isospin asymmetry (rel-

ative composition of neutrons and protons). The energy per nucleon as a function of density is

called the nuclear equation of state (EOS) and is the fundamental quantity of nuclear matter. Many

properties of nuclear matter can be extracted from the EOS such as binding energy, saturation den-

sity, slope of the symmetry energy, and incompressibility. Much work has recently gone into the

improvement of EOS calculations and specifically quantifying their uncertainties. Starting from

the energy of nuclear matter, additional many-body quantities may be derived. These include the

self-energy and the quasiparticle interaction. At second order in many-body perturbation theory

all three of these quantities have single-particle energies in their denominators. Since the single-

particle energy depends on the self-energy

ε(q) =
q2

2M
+ ReΣ(q, ε(q)), (1.4)
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Figure 1.2: Diagrammatic representations of the first and second order contributions to the energy
per nucleon. The solid lines represent nucleon propagators and the wavy lines represent the in-
medium two-nucleon interaction.

the equation of state and the quasiparticle both depend on the self-energy, while the self-energy

requires a self-consistent calculation at second order. Therefore the development in calculations

of the nucleon self-energy may have broad impacts on the field of nuclear physics through these

related many-body quantities.

1.3.1 Equation of State

The first and second order contributions of the equation of state calculated in many-body per-

turbation theory are given by

E(1) =
1

2

∑
12

〈12|V |12〉n1n2, (1.5)

and

E(2) = −1

4

∑
1234

|〈12|V |34〉|2 n1n2n3n4

ε3 + ε4 − ε1 − ε2
, (1.6)

with the single-particle energies ε given by Eq. 1.4. The occupation probability is given by ni =

θ(kf−ki) for states below the Fermi surface and n̄i = θ(ki−kf ) for states above the Fermi surface.

The diagrammatic representations of the first and second order contributions to the energy per

particle are shown in Fig. 1.2. The equation of state calculated to first, second, and third order

shown in Fig. 1.3 indicates that second order in many-body perturbation theory is well converged.
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Figure 1.3: The equation of state at first, second and third order calculated in symmetric nuclear
matter from many-body perturbation theory with nuclear forces from chiral effective field theory.

The nuclear equation of state has far reaching applicability and is a key quantity in the study of

neutron star properties, supernova evolution, and heavy ion collisions.

1.3.2 Self-Energy

The nucleon single-particle energy may be related to the self-energy Σ by the on-shell en-

ergy relation εp = p2

2M
+ Σ(p, εp; kf ). The first and second order contributions of the self-energy

calculated in many-body perturbation theory are given by

Σ
(1)
2N =

∑
1

〈~q~h1ss1tt1|V 2N |~q~h1ss1tt1〉n1, (1.7)

and

Σ
(2)
2N =

1

2

∑
123

|〈~p1~p3s1s3t1t3|V 2N |~q~h2ss2tt2〉|2

ω + ε2 − ε1 − ε3 + iη
n̄1n2n̄3. (1.8)
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Figure 1.4: Diagrammatic representations of the first and second order contributions to the self-
energy. The solid lines represent nucleon propagators and the wavy lines represent the in-medium
two-nucleon interaction.

The diagrammatic representations of the first and second order contributions to the self-energy

are shown in Fig. 1.4. For positive energies, the self-energy is equivalent to the optical potential.

The nuclear matter optical potential may then be used in the local density approximation to derive

optical potentials for finite nuclei, this will be the focus of this dissertation.

1.3.3 Quasiparticle Interaction

The quasiparticle interaction is the key quantity in Fermi liquid theory which describes low

lying excited states of systems of strongly interacting particles. The first and second order con-

tributions of the quasiparticle interaction calculated in many-body perturbation theory are given

by

F (1)
2N = 〈12|V 2N |12〉, (1.9)

and

F (2pp)
2N =

1

2

∑
mn

|〈12|V 2N |mn〉|2n̄mn̄n
ε1 + ε2 − εm − εn

. (1.10)

The diagrammatic representations of the first and second order contributions to the quasiparti-

cle interaction are shown in Fig. 1.5. Through Fermi liquid theory the quasiparticle interaction may

be utilized to calculate many properties of nuclear systems including the effective mass, symmetry
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Figure 1.5: Diagrammatic representations of the first and second order contributions to the quasi-
particle interaction. The solid lines represent nucleon propagators and the wavy lines represent the
in-medium two-nucleon interaction.

energy, and incompressibility.
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2. PROTON ELASTIC SCATTERING ON CALCIUM ISOTOPES FROM CHIRAL

NUCLEAR OPTICAL POTENTIALS*

We formulate microscopic optical potentials for nucleon-nucleus scattering from chiral two-

and three-nucleon forces. The real and imaginary central terms of the optical potentials are ob-

tained from the nucleon self-energy in infinite nuclear matter at a given density and isospin asym-

metry, calculated self-consistently to second order in many-body perturbation theory. The real

spin-orbit term is extracted from the same chiral potential using an improved density matrix ex-

pansion. The density-dependent optical potential is then folded with the nuclear density distribu-

tions of 40,42,44,48Ca from which we study proton-nucleus elastic scattering and total reaction cross

sections using the reaction code TALYS. We compare the results of the microscopic calculations

to those of phenomenological models and experimental data up to projectile energies of E = 180

MeV. While overall satisfactory agreement with the available experimental data is obtained, we

find that the elastic scattering and total reaction cross sections can be significantly improved with

a weaker imaginary optical potential, particularly for larger projectile energies since the density of

available states in nuclear matter is larger than in a nucleus. This leads to an imaginary term that

is overestimated when utilizing nuclear matter calculations.

2.1 Introduction

Nucleon-nucleus optical potentials are a valuable tool for predicting a wide range of scattering

and reaction processes by replacing the complicated many-body dynamics of nucleons interacting

through two- and three-body forces with an average complex, energy-dependent single-particle

potential. Global phenomenological optical potentials [3, 4] have been constructed by fitting to

experimental data spanning a large range of projectile energies across many nuclei. Although phe-

nomenological optical potentials are very successful at describing scattering processes involving

*Reprinted with permission from “Proton elastic scattering on calcium isotopes from chiral nuclear optical poten-
tials” by T.R. Whitehead, Y. Lim, J.W. Holt, 2019. Phys.Rev.C, 100, 014601 , Copyright [2019] American Physical
Society.
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nuclei near stability, microscopic optical potentials are not tuned to experimental data and therefore

may have greater predictive power for reactions involving exotic isotopes.

Semi-microscopic global optical potentials [5, 6] derived in the 1970’s from high-precision

one-boson-exchange nucleon-nucleon interactions are still widely used today [7, 8, 9]. Whereas the

density and isospin-asymmetry dependence is computed microscopically, the overall strengths of

the real and imaginary volume terms are often adjusted with energy-dependent empirical strength

factors. The effects of three-body forces were generally neglected in these early works, and within

the original nuclear matter approach no spin-orbit optical potential could be derived. More re-

cently, three-body forces have been implemented [10, 11, 12] in calculations of the real and

imaginary central terms, while phenomenological spin-orbit optical potentials have been added

[13, 9, 14] in order to better describe analyzing powers and differential cross sections at large

scattering angles. The spin-orbit term makes up a larger contribution at higher scattering an-

gles since they are associated with higher values of angular momentum. An alternative approach

[15, 16, 17, 18, 19, 20, 21, 22] to constructing microscopic optical potentials is based on multi-

ple scattering theory involving the nucleon-nucleon T -matrix. Such an approach naturally gener-

ates a spin-orbit contribution, but the implementation of medium effects [23, 24] and three-body

forces remains challenging, which in practice often limits the theory to large scattering energies

E > 200 MeV. Other current approaches to deriving predictive optical potentials include the self-

consistent Green’s function method [25] and the dispersive optical model [26].

Recently there has been much interest in the development of microscopic optical potentials

[10, 27, 12, 28, 29, 22, 30, 31] based on chiral effective field theory (EFT) [32, 33, 2]. The main

motivation is to implement more realistic microphysics involving multi-pion exchange contribu-

tions to the nuclear force, three-body interactions, and theoretical uncertainty estimates. Chiral

optical potentials are well suited to describe low-energy scattering processes but are expected to

break down for energies approaching the relevant momentum-space cutoff employed. In practice,

the presence of the cutoff constrains nucleon projectile energies to lie below E < 200 MeV.

In the present study, we aim to lay the groundwork for a revised nuclear matter description of
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the global nucleon-nucleus optical potential based on chiral EFT. Ultimately the goal will be to

develop a theory for nucleon-nucleus scattering across a large range of isotopes, including those

off stability, at energies up to 200 MeV. As a starting point we consider differential elastic and total

reaction cross sections for proton-nucleus scattering along a chain of calcium isotopes, 40,42,44,48Ca,

at energies ranging from 2-160 MeV where experimental data are available. We also compare

to the global phenomenological optical potential of Koning and Delaroche [4] and investigate to

what extent modern phenomenological parametrizations of the optical potential are consistent with

microscopic analyses. Our calculations are performed within the TALYS [34] reaction code for

which we have developed an implementation of our microscopic optical potential.

We take as a starting point for the calculation a particular high-precision 2N + 3N chiral nuclear

potential with momentum-space cutoff Λ = 450 MeV. The low-energy constants of the potential

are fitted to nucleon-nucleon scattering phase shifts, deuteron properties, and in the case of three-

body contact terms also the triton binding energy and lifetime. The nucleon-nucleon interaction is

taken at next-to-next-to-next-to-leading order (N3LO), while only the N2LO three-nucleon force

is included. The inconsistent treatment of two- and three-body forces at the level of the chiral ex-

pansion is undesirable, but work toward fully consistent two- and many-body forces is in progress

[35, 36, 37]. We note that the chiral nuclear potential employed in the present work exhibits good

nuclear matter properties (saturation energy and density [38], thermodynamics [39, 40], and Fermi

liquid parameters [41]) when calculated at least to second order in many-body perturbation theory.

In quantum many-body theory, the optical potential for scattering states is identified with the

energy- and momentum-dependent single-particle self-energy [42]. We first compute the nucleon

self-energy in homogeneous nuclear matter at arbitrary density and composition (proton fraction)

from chiral two- and three-body forces to second order in many-body perturbation theory. We next

compute nuclear density distributions for selected calcium isotopes (40Ca, 42Ca, 44Ca, 48Ca) from

mean field theory employing recently derived [43] Skyrme effective interactions constrained by

chiral effective field theory. In the local density approximation (LDA) the nucleon-nucleus opti-

cal potential is computed [44] by folding the nucleon self-energy in homogeneous matter with the
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derived density distributions. Since the LDA is known [44] to underestimate the surface diffuse-

ness of the optical potential in finite nuclei, we employ the improved local density approximation

(ILDA) described in Refs. [44, 9] to account for the non-zero range of the nuclear force.

The method outlined thus far is versatile since it can be used to produce optical potentials for a

very wide range of nuclei. However, the LDA nuclear matter approach cannot capture the physics

of collective surface modes, shell effects [45], and surface-peaked spin-orbit optical potentials. The

latter are particularly important for spin observables and elastic scattering cross sections at large

angles. In the present work we therefore construct a spin-orbit optical potential from the improved

density matrix expansion [46, 47, 48], which improves the description of the spin-dependent part

of the energy density functional compared to the standard density matrix expansion of Negele and

Vautherin [49]. We then benchmark our approach to experimental data for proton elastic scattering

and total reaction cross sections on the calcium isotopes 40Ca, 42Ca, 44Ca, 48Ca.

2.2 Optical potential from chiral effective field theory

2.2.1 Real and imaginary central terms

In recent work [10, 12] the nucleon self-energy in homogeneous nuclear matter has been com-

puted employing a set of nuclear potentials derived from chiral effective field theory. The first- and

second-order perturbative contributions to the nucleon self-energy are shown graphically in Fig.

1.4 and given quantitatively by

Σ
(1)
2N(q; kf ) =

∑
1

〈~q ~h1ss1tt1|V̄ eff
2N |~q ~h1ss1tt1〉n1, (2.1)

Σ
(2a)
2N (q, ω; kf ) (2.2)

=
1

2

∑
123

|〈~p1~p3s1s3t1t3|V̄ eff
2N |~q~h2ss2tt2〉|2

ω + ε2 − ε1 − ε3 + iη
n̄1n2n̄3,
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Σ
(2b)
2N (q, ω; kf ) (2.3)

=
1

2

∑
123

|〈~h1
~h3s1s3t1t3|V̄ eff

2N |~q~p2ss2tt2〉|2

ω + ε2 − ε1 − ε3 − iη
n1n̄2n3,

where ni is the occupation probability θ(kf − ki) for a filled state with momentum ~ki below the

Fermi surface, the occupation probability for particle states is n̄i = θ(ki − kf ), the summation is

over intermediate-state momenta for particles ~pi and holes ~hi, their spins si, and isospins ti. The

nuclear potential V̄ eff
2N represents the antisymmetrized two-body interaction consisting of the bare

nucleon-nucleon (NN) potential VNN together with an effective, medium-dependent NN interac-

tion V med
NN derived from the N2LO chiral three-nucleon force by averaging one particle over the

filled Fermi sea of noninteracting nucleons [50, 51, 52]. In the first-order Hartree-Fock contribu-

tion, Eq. (2.1), the effective interaction is given by V̄ eff
2N = VNN + 1

2
V med
NN , while for the higher-

order contributions, Eqs. (2.2) and (2.3), the effective interaction is given by V̄ eff
2N = VNN + V med

NN .

The factor of 1/2 at first order prevents double counting of contributions to V med
NN . The Hartree-

Fock contribution is nonlocal, energy-independent, and purely real, while the second-order con-

tributions are in general nonlocal, energy-dependent, and complex. The single-particle energies

in the denominators of Eqs. (2.2) and (2.3) are computed self-consistently according to ε(q) =

q2

2M
+ ReΣ(q, ε(q))where M is the free-space nucleon mass.

In the present work the self-energy is computed for arbitrary isospin-asymmetry, δnp = (ρn −

ρp)/(ρn + ρp), which is essential for an accurate description of nuclei for which N 6= Z. The

resulting optical potentials for nucleons propagating in homogeneous matter characterized by its

proton and neutron Fermi momenta kpf and knf are given by

Up(E; kpf , k
n
f ) = Vp(E; kpf , k

n
f ) + iWp(E; kpf , k

n
f ),

Un(E; kpf , k
n
f ) = Vn(E; kpf , k

n
f ) + iWn(E; kpf , k

n
f ) (2.4)

with

Vi(E; kpf , k
n
f ) = ReΣi(q, E(q); kpf , k

n
f ), (2.5)
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Wi(E; kpf , k
n
f ) =

Mk∗
i

M
ImΣi(q, E(q); kpf , k

n
f ), (2.6)

where the subscript i denotes a propagating proton or neutron. In relating the physical imaginary

part of the optical potential to the imaginary part of the nucleon self-energy we have multiplied

[53, 54] by the effective k-mass Mk∗
i defined by

Mk∗
i

M
=

(
1 +

M

k

∂

∂k
Vi(k,E(k))

)−1

, (2.7)

in order to account for the non-locality of the optical potential.

2.2.2 Spin-orbit optical potential

The effective one-body spin-orbit interaction vanishes in homogeneous nuclear matter and

therefore cannot be computed within the framework described above. Instead we employ an im-

proved density matrix expansion [47, 55, 48] to construct the one-body spin-orbit interaction from

chiral two- and three-body forces. The improved density matrix expansion takes advantage of

phase space averaging to derive a more accurate spin-dependent energy density functional com-

pared to the standard density matrix expansion of Negele-Vautherin [49].

From the definition of the density matrix

ρ(~r1σ1τ1;~r2σ2τ2) =
∑
α

Ψ∗α(~r2σ2τ2)Ψα(~r1σ1τ1), (2.8)

where Ψα are energy eigenfunctions associated with occupied orbitals of the non-relativistic many-

body system, the energy density functional for N = Z even-even nuclei in the Hartree-Fock

approximation can be expanded up to second order in spatial gradients as

E [ρ, τ, ~J ] = ρ Ē(ρ) +

[
τ − 3

5
ρk2

f

][
1

2MN

+ Fτ (ρ)

]
(2.9)

+(~∇ρ)2 F∇(ρ) + ~∇ρ · ~J FSO(ρ) + ~J 2 FJ(ρ) ,

where ρ(~r ) = 2k3
f (~r )/3π2 =

∑
α Ψ†α(~r )Ψα(~r ) defines the local density with kf (~r ) the local
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Figure 2.1: The nucleon density distributions for 40,42,44,48Ca calculated in mean field theory from
the Skyrme Skχ450 effective interaction constrained by chiral effective field theory. Reprinted
from [77].

Fermi momentum, τ(~r ) =
∑

α
~∇Ψ†α(~r ) · ~∇Ψα(~r ) is the kinetic energy density, and ~J(~r ) =

i
∑

α
~Ψ†α(~r )~σ × ~∇Ψα(~r ) is the spin-orbit density. These terms are multiplied by the density-

dependent strength functions Ē(ρ), Fτ (ρ), F∇(ρ), FSO(ρ), FJ(ρ), of which we are presently only

interested in the spin-orbit term FSO(ρ). In effect, the spin-orbit optical potential is therefore

calculated for N = Z nuclei to first order in many-body perturbation theory. In the future, higher-

order perturbative contributions [56] to the microscopic nuclear energy density functional may be

investigated. We note that we do not include the isovector part [57] of the spin-orbit interaction for

N 6= Z nuclei in this study since it is known to be small compared to the isoscalar part [48].

2.2.3 Improved local density approximation

We employ the improved local density approximation (ILDA) to construct the nucleon-nucleus

optical potential for finite nuclei. The density dependent optical potential (both central and spin-

orbit parts) is folded with the radial density distribution of a target nucleus. The nuclear density

distributions are calculated within mean field theory from the Skχ450 Skyrme interaction [43],

which fits both finite nuclei properties as well as theoretical calculations of the asymmetric nuclear

matter equation of state from the N3LO Λ = 450 MeV chiral potential used in the calculation of

the self-energy. In Fig. 2.1 we show the resulting nucleon density distributions for each of the
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Figure 2.2: Left (right): The real, imaginary, and spin-orbit terms of the microscopic optical poten-
tial for proton-40Ca scattering at E = 2.35 MeV before (after) applying the improved local density
approximation. In the left panel the dots represent raw results from chiral EFT, while the solid
black lines represent fits to the Koning-Delaroche (KD) form. We also compare to the global KD
phenomenological optical potential, shown as the dashed green line, at the same energy. Reprinted
from [77].

calcium isotopes 40Ca, 42Ca, 44Ca, 48Ca.

In the standard local density approximation, the strength of the nucleon-nucleus optical poten-

tial at a given radial distance r is evaluated as

V (E; r) + iW (E; r) = V (E; kpf (r), k
n
f (r)) (2.10)

+iW (E; kpf (r), k
n
f (r)),

where kpf (r) and knf (r) are the local proton and neutron Fermi momenta. This approximation
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is strictly valid only for zero-range nuclear forces, and when applied to nucleon-nucleus optical

potentials it is known to underestimate the surface diffuseness [58, 44]. Consequently, such an ap-

proach is inadequate for an accurate description of nuclear elastic scattering and reaction processes.

The improved local density approximation applies a Gaussian smearing

V (E; r)ILDA =
1

(t
√
π)3

∫
V (E; r′)e

−|~r−~r′|2

t2 d3r′ (2.11)

characterized by an adjustable length scale t associated with the non-zero range of the nuclear

force. In the limiting case of t→ 0, a factor of δ(|~r−~r′|) replaces the Gaussian, giving VILDA(E; r)→

V (E; r). In Ref. [9] it is found that for the central part of the interaction tC = 1.2 fm gives the best

fit to experimental reaction cross sections for 10 MeV < E < 200 MeV and targets ranging from

40Ca to 208Pb. In the present work we vary the range parameter 1.15 fm < tC < 1.25 fm. This vari-

ation is used to estimate the theoretical uncertainty associated with our choice of the length scale

tC . For the spin-orbit part of the optical potential, we estimate the range parameter tSO from the

root mean square radius of the Argonne v18 spin-orbit nucleon-nucleon potential [59]. We found

tSO = 1.07 fm and took two values, tSO = 1.0, 1.1 fm to estimate the uncertainty.

In Figs. 2.2 and 2.3 we show the comparison between the central and spin-orbit optical po-

tentials in the LDA (left panels) and ILDA (right panels) for the proton-40Ca optical potential at

projectile energies E = 2.35 MeV and E = 35 MeV respectively. In the left panels, the dots

indicate the results from chiral effective field theory, and for comparison we show as the green

dashed lines the phenomenological optical potentials from Koning and Delaroche [4]. In particu-

lar, the real central part of the microscopic optical potential has a much smaller surface diffuseness

compared to phenomenology. When the improved local density approximation is employed in the

right panels (solid blue bands), the comparison to phenomenology is much improved. In addition,

the overall strength of the real central part of the optical potential is in very good agreement with

the Koning-Delaroche phenomenological optical potential. Varying the ILDA range parameter tC

between 1.15 fm and 1.25 fm yields only a small change in the overall shape of the real central
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Figure 2.3: Same as Fig. 2.2, except that the projectile energy is E = 35 MeV. Reprinted from
[77].

part, which suggests that the theoretical predictions for scattering cross sections computed in the

next section will not be especially sensitive to the precise choice of tC .

In the middle panels of Figs. 2.2 and 2.3 we plot the imaginary part of the microscopic optical

potential for proton-40Ca scattering at E = 2.35 MeV and E = 35 MeV. This is again compared

to the phenomenological optical potential of Koning and Delaroche, which is written as the sum

of a volume imaginary part WV and a surface imaginary part WD. In the microscopic description

of the imaginary part, there is no distinction between these two components. We observe that in

contrast to the real central part of the optical potential, the microscopic imaginary part exhibits

large qualitative differences compared to phenomenology. The most striking difference is a much

smaller surface peak, which only appears at low projectile energies in the microscopic calculation
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but persists to much higher energies (E ' 100 MeV) in the phenomenological optical potential.

For instance, at the scattering energy E = 35 MeV, the surface peak has essentially vanished

in the microscopic calculation, and the remaining “volume” imaginary part is large compared to

phenomenology. In fact, this is a common feature [6, 60, 61, 8] in microscopic optical potentials

computed in the nuclear matter approach. Modern semi-microscopic optical potentials therefore

include empirical energy-dependent strength factors multiplying the real and imaginary central

parts [9, 62].

In the bottom panels of Figs. 2.2 and 2.3 we show the real spin-orbit part of the microscopic op-

tical potential compared to the Koning-Delaroche phenomenological optical potential for proton-

40Ca scattering at E = 2.35 MeV and E = 35 MeV. The radial shape of the microscopic spin-orbit

optical potential is found to be very similar to that of the Koning-Delaroche optical potential,

however, the strength of the microscopic potential is larger. Indeed, the density matrix expansion

carried out at the Hartree-Fock level is known [48, 63] to produce a stronger spin-orbit interac-

tion, by about 20-50%, than is required from traditional mean field theory studies of finite nuclei.

Higher-order perturbative contributions are expected to remedy this feature. In particular, multi-

pion-exchange processes have been shown [64] to reduce the strength of the one-body spin-orbit

interaction in finite nuclei. This provides additional motivation for includingG-matrix correlations

in the density matrix expansion as outlined in [56]. As in the case of the central components of the

optical potential, we find relatively small differences between spin-orbit potentials produced with

two choices of the ILDA length scale tSO = 1.0, 1.1 fm.

2.2.4 Parameterization of the chiral optical potential

In order to facilitate the implementation of our microscopic optical potential into standard

nuclear reaction codes, such as TALYS, we fit our optical potential to the phenomenological form

of Koning and Delaroche. Eventually our aim is to construct a global microscopic optical potential

and make it available in a convenient form for nuclear reaction practitioners. This exercise may

also help to reveal any deficiencies in the assumed form of phenomenological optical potentials.
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Table 2.1: Shape parameters for the proton-40Ca microscopic optical potential at the three ener-
gies E = 2.35, 35, 100 MeV. Also shown are the corresponding shape parameters for the Koning-
Delaroche (KD) optical potential that are independent of energy. Reprinted from [77].

E = 2.35 MeV VV WV VSO

r (fm) 1.213 1.344 1.015

a (fm) 0.723 0.583 0.706

E = 35 MeV VV WV VSO

r (fm) 1.183 1.204 1.015

a (fm) 0.730 0.751 0.706

E = 100 MeV VV WV VSO

r (fm) 1.173 0.846 1.015

a (fm) 0.713 0.702 0.706

KD VV WV VSO

r (fm) 1.185 1.185 0.996

a (fm) 0.672 0.672 0.590

We recall that in the phenomenological description, the optical potential takes the form

U(r, E) = VV (r, E) + iWV (r, E) + iWD(r, E) (2.12)

+VSO(r, E)~̀ · ~s+ iWSO(r, E)~̀ · ~s+ VC(r),

consisting of a real volume term, an imaginary volume and surface term, a real and imaginary spin-

orbit term, and finally the central Coulomb interaction. In Eq. (2.12), ~̀ and ~s are the single-particle

orbital angular momentum and spin angular momentum operators, respectively. Since the phe-

nomenological imaginary spin-orbit term is very small and cannot be extracted within the present

microscopic approach, we neglect it in the rest of the discussion. The energy and radial dependence

of the different terms in the phenomenological optical potential are assumed to factorize according

to

VV (r, E) = VV (E)f(r; rV , aV ), (2.13)

WV (r, E) =WV (E)f(r; rW , aW ), (2.14)
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WD(r, E) = −4aDWD(E)
d

dr
f(r; rD, aD), (2.15)

VSO(r, E) = VSO(E)
1

m2
π

1

r

d

dr
f(r; rSO, aSO), (2.16)

where

f(r; ri, ai) =
1

1 + e(r−A1/3ri)/ai
(2.17)

is of the Woods-Saxon form with A the mass number and {ri,ai} the energy-independent geom-

etry parameters that encode the size and diffuseness of a given target nucleus, respectively. In

phenomenological optical potentials, these shape parameters vary weakly with the target nucleus.

The energy-dependent strength functions in the KD parametrization have the form

VV (E) = v1(1− v2Ẽ + v3Ẽ
2 − v4Ẽ

3), (2.18)

WV (E) = w1
Ẽ2

Ẽ2 + w2
2

, (2.19)

WD(E) = d1
Ẽ2 e−d2Ẽ

Ẽ2 + d2
3

, (2.20)

VSO(E) = vSO1e
−vSO2Ẽ, (2.21)

where Ẽ = E − EF is the projectile energy relative to the Fermi energy EF .

In the left panels of Figs. 2.2 and 2.3 we show as the solid black lines the best fit functions of the

form Eqs. (2.13)-(2.21) to the microscopic calculations. We see that overall the phenomenological

form can reproduce well the radial dependence of the microscopic optical potential. In the present

study we have isolated the optical potential at low energy, where there is a defined surface imagi-

nary peak, and fitted to the phenomenological form separately. At larger energies E > 50 MeV, we

have also fitted to the phenomenological form separately. To show that no crucial features of the

chiral potential are lost in this parameterization, we also display the accompanying coefficient of

determinationR2 for the fits in Figs. 2.2, 2.3. WhereR2 = 1− SSres

SST
, with SSres =

∑
i(yi−f(xi))

2

and SST =
∑

i(yi − ȳ)2. In the right panels of Figs. 2.2, 2.3, the ILDA results are obtained from
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the parametrized form of the corresponding parts of the optical potentials.

For the global KD phenomenological optical potentials we note that the real and imaginary

volume terms have identical Woods-Saxon shape functions. From the microscopic perspective

there is little justification for this assumption. In fact, we find that the shape parameters of the

real and imaginary central optical potentials have to be fitted separately in order to achieve a good

fit to the microscopic results. In Table 2.1 we show the values of all shape parameters for the

three energy windows over which we fit to the phenomenological form together with those of the

phenomenological Koning-Delaroche optical potential, whose shape parameters are independent

of energy. For these results we have chosen the values tC = 1.15 fm and tSO = 1.0 fm in the

ILDA. We see that there is not a very large energy dependence in the shape parameters of the real

volume part of the microscopic optical potential, but there is a significant difference among the real

volume, imaginary volume, and real spin-orbit terms. This suggests that there is no microscopic

justification for assumptions made in phenomenological studies that equate geometry parameters

of different terms in the optical potential.

Finally, we note that the microscopic real spin-orbit optical potential calculated from the den-

sity matrix expansion has no energy dependence. The phenomenological energy dependence used

in TALYS (vSO2 = 0.004) is constant across all nuclei, and in fact since vSO2 is small, the real

spin-orbit term does not strongly depend on the energy. We have therefore incorporated this phe-

nomenological energy dependence into our parametrization of the spin-orbit optical potential. As

mentioned above, the imaginary spin-orbit part of the optical potential is neglected since its mag-

nitude for the relevant energy range is ∼ 0.1 MeV and has been shown to have a negligible effect

on elastic scattering cross sections at relatively low energies [65].

2.2.5 Volume integrals of the real and imaginary parts of the optical potential

We end this section by comparing the volume integrals of the various components of the micro-

scopic optical potential to those from phenomenology. It has been demonstrated [5] that physical

scattering observables can remain unchanged even if the various parameters of an optical potential
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Table 2.2: Volume integrals for the real central VC , imaginary central WC , and real spin-orbit VSO
parts of the proton-40Ca optical potential. Results are shown for the microscopic chiral optical
potential and for the phenomenological Koning-Delaroche (KD) optical potential. Reprinted from
[77].

E = 2.35 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 524 480

WC 64 80

VSO 19 13

E = 35 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 413 374

WC 120 113

VSO 17 11

E = 100 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 236 220

WC 163 109

VSO 13 9

are allowed to vary, provided that the volume integrals, defined by

J

A
=

1

A

∫
U(r)d3r, (2.22)

remain roughly constant. In Table 2.2 we show the volume integrals for each term of the micro-

scopic and phenomenological optical potentials for the proton-40Ca system at the three energies

E = 2.35, 35, 100 MeV. We see that the microscopic real volume and spin-orbit terms are both

slightly larger than their phenomenological counterparts for all three energies considered. The

central imaginary term features a volume part that grows with energy and a surface peak that di-

minishes with energy. The imaginary term of the chiral optical potential overestimates the volume

component and underestimates the surface component. For E = 35 MeV these competing effects

nearly cancel out and the chiral volume integral is close to the phenomenological volume integral.

At E = 2.35 MeV, the volume integral for the chiral imaginary term is smaller than the KD model

since its surface peak is at a smaller r value. For higher energies, the microscopic imaginary term
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Figure 2.4: Differential elastic scattering cross sections for proton-40Ca at projectile energy E =
2.35 MeV. The microscopic cross section is given by the blue band. The KD phenomenological
cross section is given by the green dashed curve, and experimental data are represented by red
circles. Reprinted from [77].

becomes larger than the phenomenological imaginary term.

2.3 Results

As a first test of the microscopic optical potentials constructed in the present work, we con-

sider proton scattering on calcium isotopes. Both the differential elastic scattering cross sections

and total reaction cross sections are calculated for selected calcium isotopes at energies for which

there are available experimental data. In particular, we compute differential elastic scattering cross

sections for 40,42,44,48Ca targets at E = 25, 35, 45 MeV projectile energies. For 40Ca, differential

elastic scattering cross sections are also calculated at E = 2.35, 55, 65, 80, 135, 160 MeV. Exper-

imental data are taken from Refs. [66, 67, 68, 69, 70]. The total reaction cross sections for proton

scattering on 40,42,44,48Ca are calculated and compared to experimental data [71, 72, 73, 74]. Ener-
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Figure 2.5: Differential elastic scattering cross sections for proton projectiles on calcium targets at
the energies E = 25, 35, 45 MeV. The microscopic cross sections are shown as the blue band. The
KD phenomenological cross sections are given by the green dashed curves and experimental data
are represented by red circles. Reprinted from [77].

gies exceeding 200 MeV are not considered, since the chiral expansion is expected to breakdown

around that energy scale.

The TALYS reaction code is used to calculate the cross sections in the different reaction chan-

nels. In all cases we employ the microscopic optical potential parametrized to the KD form imple-

mented in the ILDA. In the present work, the only theoretical uncertainties considered are those

for the ILDA length scales tC and tSO. We also benchmark against results from the KD global

phenomenological optical potential [4].

2.3.1 Microscopic optical potential at low energy

Low-energy nuclear reactions are important for a wide range of astrophysical applications. One

of the primary motivations for the construction of new global microscopic optical potentials is to

reduce the uncertainty in calculated radiative neutron capture reaction rates on exotic, neutron-rich

isotopes. These reactions play an important role in r-process nucleosynthesis [75, 76], especially

in cold r-process environments such as neutron star mergers where freeze-out is achieved rapidly

and neutron capture plays an enhanced role. Neutron-capture rates are included in most modern
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Figure 2.6: Differential elastic scattering cross sections for proton projectiles on calcium targets
at the energies E = 25, 35, 45 MeV. In comparison to Fig. 2.5, the black bands show the cross
sections that result from replacing the microscopic imaginary part in the chiral optical potential by
the Koning-Delaroche phenomenological imaginary part. Reprinted from [77].

r-process reaction network codes, and the neutron-nucleus optical potential (together with level

densities and γ transition strength functions) is one of the key ingredients for the theoretical calcu-

lations. Most relevant is the imaginary part of the optical potential at low energies [62].

In Fig. 2.4 we show the differential elastic scattering cross sections for proton projectiles on a

40Ca target at E = 2.35 MeV. The red circles indicate experimental data [66, 67, 68, 69, 70], the

green dashed curve is the result of the global phenomenological optical potential from Koning and

Delaroche, while the blue band is the prediction from the microscopic optical potential constructed

in the present work. Interestingly, there is very little difference between the phenomenological

optical potential predictions and those from chiral effective field theory. Both calculations agree

well with experimental data at scattering angles up to θ ' 120◦, but overpredict the cross section

at large angles.

2.3.2 Microscopic optical potential at medium energy

In Fig. 2.5 we plot the differential elastic scattering cross sections for protons on 40,42,44,48Ca

targets at E = 24, 35, 45 MeV. For scattering angles in the range 0◦ < θ < 80◦, the microscopic
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optical potential yields cross sections that are consistent with experiment and often more accurate

than predictions based on the phenomenological KD optical potential. However, at larger scattering

angles the microscopic calculations of the cross sections exhibit a weaker interference pattern,

which persists as the energy increases. Overall, the microscopic elastic scattering cross sections

are larger than experiment at high scattering angles.

From Fig. 2.3, we suspect that the underlying cause of these discrepancies may be due to

the imaginary part of the microscopic optical potential. At these intermediate projectile energies,

the imaginary volume integral is close to phenomenology according to Table 2.2. However, the

microscopic surface imaginary peak is too small, as can be seen in Fig. 2.3, which leads to larger

elastic scattering cross sections. In contrast the imaginary volume part, probed at higher projectile

energies, is much larger than phenomenology.

In order to investigate this conjecture, we substitute the phenomenological imaginary term into

the microscopic optical potential. This replacement is meant to be a simple way of showing the

possible improvements in the chiral optical potential and should not be interpreted as a substitute

for proper microscopic modeling. In Fig. 2.6 we show the differential elastic scattering cross

sections for protons on 40,42,44,48Ca targets at E = 24, 35, 45 MeV with this phenomenological

replacement. Indeed we find that the calculated cross sections are much improved at large angles

across all isotopes. The enhanced surface imaginary part leads to stronger interferences and an

overall decrease in the elastic scattering cross section. Hence, there is a strong motivation for

future work aimed at improving the microscopic description of the imaginary part of the optical

potential.

2.3.3 Microscopic optical potential at high energy

To test the chiral optical potential at higher energies, we calculate proton-40Ca differential

elastic scattering cross sections at E = 55, 65, 80, 135, 160 MeV. In Fig. 2.7 we plot the results

from the chiral optical potential and the KD phenomenological optical potential together with

experimental data from Refs. [66, 67, 68, 69, 70]. The cross sections from the chiral optical

potential stay close to phenomenological and experimental results forE = 55, 65 MeV but begin to
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deviate strongly forE > 80 MeV. The microscopic imaginary term becomes much more absorptive

for E > 80 MeV, as the large volume contribution from the chiral optical potential becomes more

relevant. The effect of this can be seen especially in the lower three plots of Fig. 2.7, where the

cross sections exhibit large interference oscillations. Since there are more open inelastic channels

at higher energy, a stronger imaginary part in general corresponds to a lower elastic scattering cross

section.

In order to assess the quality of the microscopic imaginary part of the optical potential, we again

substitute the KD phenomenological imaginary part into the chiral optical potential. The results

for proton-40Ca elastic scattering cross sections at E = 55, 65, 80, 135, 160 MeV are shown in Fig.

2.7. Again, we find that the replacement of the large microscopic imaginary optical potential by the

KD phenomenological imaginary part leads to significant improvements in the elastic scattering

cross sections across all energies. For E = 135 and 160 MeV, the purely phenomenological

cross sections are still more accurate, but the microscopic optical potential with phenomenological

imaginary part gives a high quality description of the data.

2.3.4 Total reaction cross section

In Figs. 2.8 and 2.9 we plot the total reaction cross sections, which is the sum of elastic and

non-elastic cross sections σtot = σel + σnon−el, for proton scattering on 40,42,44,48Ca from our

microscopic optical potential and the KD phenomenological optical potential. The chiral EFT

results are shown as the blue band, while the KD predictions are shown as dashed green lines.

Experimental data [71, 72, 73, 74] are shown with red circles. We see that for all energies the

purely microscopic optical potential predicts a total reaction cross section that is too large, while

the phenomenological potential gives an overall good description for most isotopes and energies.

However, for proton-48Ca, the KD phenomenological potential also gives a larger total reaction

cross section compared to experiment. This suggests that there might be room for improvement in

the phenomenological description of the global isovector optical potential probed in this neutron-

rich nucleus.

We also show in Figs. 2.8 and 2.9 the results for the total reaction cross sections (black solid
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bands) when the microscopic imaginary part is replaced by the KD phenomenological imaginary

potential. For intermediate energies (20 MeV < E < 50 MeV), there is not a substantial im-

provement in the comparison to experimental data. However, beyond energies of E = 50 MeV

that are shown in Fig. 2.8, the replacement of the phenomenological imaginary part again leads

to a significant improvement in the description of the total reaction cross section. Nevertheless,

the modified microscopic optical potential still overestimates the total reaction cross section for all

energies due to the real volume and real spin-orbit terms having slightly larger depths than their

phenomenological counterparts.

2.4 Conclusions

We have calculated a microscopic optical potential from chiral two- and three-body forces for

proton scattering on calcium isotopes. We started from a self-consistent second-order calcula-

tion of the proton and neutron self energies in isospin-asymmetric nuclear matter from which we

derived the central real and imaginary parts of the optical potential in finite nuclei within the frame-

work of the improved local density approximation. The real spin-orbit potential was constructed

from the improved density matrix expansion using the same chiral two- and three-body forces.

We found that chiral nucleon-nucleus optical potentials describe low-energy (E < 5 MeV)

scattering processes rather well, due in part to a well-defined surface peak in the imaginary part

of the optical potential. At all energies, the real central term is consistent with phenomenologi-

cal modeling, while the microscopic spin-orbit strength is larger by ∼ 20%. At moderate ener-

gies (E > 35 MeV), the imaginary part of the chiral optical potential develops a large volume

term without a significant surface peak. This leads to discrepancies between our theoretical cal-

culations and experimental data, especially at large scattering angles. At the highest energies

(E ' 100− 160 MeV) considered in the present work, the large imaginary term leads to over sup-

pression of the elastic scattering cross section. We have shown that substituting the microscopic

imaginary part with the KD phenomenological optical potential leads to excellent agreement with

elastic scattering and total reaction cross sections for nearly all isotopes and projectile energies

investigated.
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Figure 2.7: Differential elastic scattering cross sections for proton projectiles on a 40Ca target at
the energies E = 55, 65, 80, 135, 160 MeV. Full microscopic cross sections are shown as the blue
bands, microscopic real optical potential plus phenomenological imaginary optical potential are
shown by the black bands, the KD phenomenological cross sections are given by the green dashed
curves, and experimental data are represented by red circles. Reprinted from [77].
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3. NEUTRON ELASTIC SCATTERING ON CALCIUM ISOTOPES FROM CHIRAL

NUCLEAR OPTICAL POTENTIALS*

We formulate microscopic neutron-nucleus optical potentials from many-body perturbation

theory based on chiral two- and three-body forces. The neutron self-energy is first calculated

in homogeneous matter to second order in perturbation theory, which gives the central real and

imaginary terms of the optical potential. The real spin-orbit term is calculated separately from

the density matrix expansion using the same chiral interaction as in the self-energy. Finally, the

full neutron-nucleus optical potential is derived within the improved local density approximation

utilizing mean field models consistent with the chiral nuclear force employed. We compare the

results of the microscopic calculations to phenomenological models and experimental data up to

projectile energies of E = 200 MeV. Experimental elastic differential scattering cross sections and

vector analyzing powers are generally well reproduced by the chiral optical potential, but we find

that total cross sections are overestimated at high energies.

3.1 Introduction

Nucleon-nucleus optical potentials describe the interaction of a projectile nucleon with a target

nucleus by reducing the complicated many-body interactions to an average single particle poten-

tial that is complex and energy-dependent. Global phenomenological optical potentials [3, 4] are

able to describe scattering processes for a large range of nuclei and projectile energies. These

global potentials are developed by optimizing their parameters to best reproduce experimental

data. Phenomenological potentials yield remarkably good results when interpolating within these

ranges, but may not reliably extrapolate to regions where there are no experimental data. Since

microscopic optical potentials are built up from fundamental nuclear interactions without tuning

to data, they may have greater predictive power in regions of the nuclear chart that are unexplored

*Reprinted with permission from “Neutron elastic scattering on calcium isotopes from chiral nuclear optical
potentials” by T.R. Whitehead, Y. Lim, J.W. Holt, 2020. Phys.Rev.C, 101, 064613 , Copyright [2020] American
Physical Society.
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experimentally.

There has been much interest recently in the development of microscopic optical potentials

[10, 12, 27, 28, 29, 22, 30, 31, 77] based on chiral effective field theory (EFT) [32, 33, 2], which

implements realistic microphysics including multi-pion exchange processes and three-body inter-

actions all within a framework that allows for the assessment of theoretical uncertainties. Optical

potentials based on chiral forces are well suited to describe low-energy nuclear reactions but are

expected to break down for energies approaching the cutoff scale of the theory. In practice, the

presence of the cutoff constrains nucleon projectile energies to E < 200 MeV.

In the present study, we compute neutron-nucleus optical potentials along the lines of our pre-

vious work in [77] that focused exclusively on the description of proton elastic and total reaction

cross sections. Since proton elastic scattering at forward angles approaches the well-known Ruther-

ford cross section, the microscopic description of neutron scattering presents a novel challenge that

has not yet been addressed in our work. Ultimately our goal is to develop a new microscopic global

optical potential for nucleon-nucleus scattering across a large range of isotopes, including those

off stability, up to projectile energies of 200 MeV in support of current and future experiments at

radioactive ion beam facilities. Presently we consider differential elastic and total cross sections

for n-40,48Ca scattering at energies ranging from 3-200 MeV. Additionally, in the first direct test of

our microscopic spin-orbit term, the vector analyzing power is calculated at selected energies for

n-40Ca scattering. The choice of isotopes and energies is limited by the availability of experimental

data for comparison. We also compare the microscopically calculated scattering observables to the

results of the global phenomenological optical potential of Koning and Delaroche [4]. Scattering

observables are calculated using the TALYS [34] reaction code. While the vector analyzing power

is not output directly by TALYS, it can be extracted from the output files of ECIS-06, a program

that runs in the background of TALYS.

We take as the foundation of our calculations a high-precision 2N + 3N chiral nuclear interac-

tion with a momentum-space cutoff of Λ = 450 MeV. The low-energy constants of the potential are

fitted to empirical data. For two-body interactions, the empirical inputs include nucleon-nucleon

34



scattering phase shifts and deuteron properties. Three-body contact terms are fit to the triton bind-

ing energy and lifetime [38]. The nucleon-nucleon interaction is calculated to next-to-next-to-next-

to-leading order (N3LO), while the three-nucleon force is only calculated at N2LO. Work towards

the inclusion of three-nucleon N3LO interactions is in progress [35, 36, 37, 78, 79, 80] and we plan

to implement them in future works. The chiral nuclear potential employed in the present work re-

produces known values for nuclear matter properties, such as saturation energy and density [38],

thermodynamics [39, 40], and Fermi liquid parameters [41] when calculated to at least second

order in many-body perturbation theory.

In quantum many-body theory, the energy- and momentum-dependent single-particle self-

energy is equivalent to the optical potential for scattering states [42]. We first compute the nucleon

self-energy in homogeneous nuclear matter of arbitrary density and proton fraction to second order

in many-body perturbation theory including chiral two- and three-body forces. We next compute

nuclear density distributions for 40,48Ca from mean field theory employing the Skχ450 Skyrme

effective interaction [43] constrained by chiral EFT. In the local density approximation (LDA) the

nucleon-nucleus optical potential is computed [44] by folding the nuclear matter optical potential

with a nuclear density distribution. The LDA is known to underestimate the surface diffuseness of

the optical potential in finite nuclei and requires a modification known as the improved local den-

sity approximation (ILDA) [44, 9] that accounts for the nonzero range of the nuclear interaction.

The main advantage of the nuclear matter approach to deriving optical potentials is its adapt-

ability to many nuclei. Once the nuclear matter optical potential is calculated, only the nuclear

density distribution is needed to produce a nucleon-nucleus optical potential, making the nuclear

matter approach well suited to constructing a microscopic global optical potential. However, the

drawback is that some physical processes present in scattering with finite nuclei are not captured by

nuclear matter calculations. Among these are collective surface modes, shell structure effects, and

the fact that the spin-orbit term is not present in homogeneous nuclear matter. We therefore include

a microscopic spin-orbit term from the improved density matrix expansion [46, 47, 48] based on

chiral interactions. Compared to the standard density matrix expansion of Negele and Vautherin
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[49], the improved density matrix expansion provides a better description of the spin-dependent

part of the energy density functional.

In Section 3.2 we calculate the microscopic optical potential in nuclear matter with nucleon

interactions from chiral EFT. We then calculate nuclear density distributions from mean field the-

ory with a Skyrme interaction fit to the chiral EFT potential used in the self-energy. The ILDA is

then employed to construct nucleon-nucleus optical potentials for 40,48Ca. Finally, the microscopic

optical potentials are parameterized to the Koning-Delaroche (KD) phenomenological form in or-

der to implement them in the reaction code TALYS. In Section 3.3 we compute neutron-nucleus

elastic differential scattering cross sections up to a projectile energy E = 185 MeV and total cross

sections up to E = 200 MeV. We also calculate the vector analyzing power for elastic n-40Ca scat-

tering as a test of our spin-orbit term. These results are compared to experiment and predictions of

the KD phenomenological model.

3.2 Optical potential from chiral effective field theory

3.2.1 Real and imaginary central terms

The nucleon self-energy is calculated as a function of density and momentum in homogeneous

nuclear matter of arbitrary isospin asymmetry using a nuclear potential derived from chiral EFT.

The expressions for the first- and second-order perturbative contributions to the nucleon self-energy

are given by Eq. (2.1) and Eqs. (2.2) , (2.3) and shown diagrammatically in Fig. 1.4. In the

above expressions ni = θ(kf − ki) is the occupation probability for a filled state with momentum

ki < kf below the Fermi momentum, and particle state occupation probabilities are given by

n̄i = θ(ki − kf ), with the summation going over intermediate-state momenta for particles ~pi and

holes ~hi, their spins si, and isospins ti. The overbar on the potential indicates that it is properly

antisymmetrized. The in-medium effective nuclear potential V eff
2N is the two-body interaction which

consists of the bare nucleon-nucleon (NN) potential VNN plus an effective, density-dependent

(and isospin-asymmetry-dependent) NN interaction V med
NN derived from the N2LO chiral three-

nucleon force by averaging one particle over the filled Fermi sea of noninteracting nucleons [50,
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51, 52, 80]. In the first-order Hartree-Fock contribution, Eq. (2.1), the effective interaction is

given by V eff
2N = VNN + 1

2
V med
NN , while for the higher-order contributions, Eqs. (2.2) and (2.3), the

effective interaction is given by V eff
2N = VNN + V med

NN . The Hartree-Fock contribution is nonlocal,

energy independent, and real, while the second-order contributions are in general nonlocal, energy

dependent, and complex. The single-particle energies in the denominators of Eqs. (2.2) and (2.3)

are computed self-consistently according to ε(q) = q2

2M
+ ReΣ(q, ε(q)) where M is the free-space

nucleon mass.

To derive optical potentials of neutron- or proton-rich nuclei, it is necessary to calculate the self-

energy for arbitrary isospin-asymmetry, δnp = (ρn−ρp)/(ρn+ρp). The resulting optical potentials

for nucleons propagating in homogeneous matter with proton and neutron Fermi momenta kpf and

knf are given by

Up(E; kpf , k
n
f ) = Vp(E; kpf , k

n
f ) + iWp(E; kpf , k

n
f ),

Un(E; kpf , k
n
f ) = Vn(E; kpf , k

n
f ) + iWn(E; kpf , k

n
f ) (3.1)

with

Vi(E; kpf , k
n
f ) = ReΣi(q, E(q); kpf , k

n
f ), (3.2)

Wi(E; kpf , k
n
f ) =

Mk∗
i

M
ImΣi(q, E(q); kpf , k

n
f ), (3.3)

where the subscript i denotes a propagating proton or neutron. To relate the microscopically de-

rived imaginary part of the nucleon self-energy to the imaginary term of the optical potential used

in phenomenology, the non-locality must be accounted for [53, 54]. This is achieved by multiply-

ing the imaginary term of the self-energy by the effective k-mass Mk∗
i defined by

Mk∗
i

M
=

(
1 +

M

k

∂

∂k
Vi(k,E(k)

)−1

. (3.4)
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3.2.2 Spin-orbit optical potential

The effective one-body spin-orbit interaction vanishes in homogeneous nuclear matter due to

translational invariance and thus cannot be computed within the framework described above. Alter-

natively, we employ an improved density matrix expansion [47, 55, 48] to construct the one-body

spin-orbit interaction from chiral two- and three-body forces. By utilizing the improved density

matrix expansion that takes advantage of phase space averaging, a more accurate spin-dependent

energy density functional can be derived compared to the standard density matrix expansion of

Negele-Vautherin [49].

The density matrix is defined by

ρ(~r1σ1τ1;~r2σ2τ2) =
∑
α

Ψ∗α(~r2σ2τ2)Ψα(~r1σ1τ1), (3.5)

where Ψα are the energy eigenfunctions of the occupied orbitals in the non-relativistic many-

body system. The energy density functional for a N = Z even-even nucleus in the Hartree-Fock

approximation expanded to second order in spatial gradients is given by

E [ρ, τ, ~J ] = ρ Ē(ρ) +

[
τ − 3

5
ρk2

f

][
1

2MN

+ Fτ (ρ)

]
(3.6)

+(~∇ρ)2 F∇(ρ) + ~∇ρ · ~J FSO(ρ) + ~J 2 FJ(ρ) ,

where ρ(~r ) = 2k3
f (~r )/3π2 =

∑
α Ψ†α(~r )Ψα(~r ) is the local density and kf (~r ) is the local Fermi

momentum. The kinetic energy density is given by τ(~r ) =
∑

α
~∇Ψ†α(~r ) · ~∇Ψα(~r ) and the spin-

orbit density is given by ~J(~r ) = i
∑

α
~Ψ†α(~r )~σ × ~∇Ψα(~r ). This calculation yields the spin-orbit

term FSO(ρ) of the optical potential forN = Z nuclei to first order in many-body perturbation the-

ory. The isovector part [57] of the spin-orbit interaction for 48Ca is not included in this study since

it is small compared to the isoscalar part [48]. In the context of nucleon-nucleus scattering, the

spin-orbit term of the optical potential determines the polarization of scattered nucleons. One such

polarization observable is the vector analyzing power, which we will calculate microscopically and
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compare to experimental data and phenomenological results.

3.2.3 Improved local density approximation

The improved local density approximation (ILDA) is used to construct the nucleon-nucleus

optical potential from the nucleon self-energy in nuclear matter. The nucleon-nucleus optical po-

tential is derived by folding the density-dependent self-energy with the radial density distribution

of a target nucleus and then smeared by integrating over the radial dimension with a Gaussian

factor to account for the nonzero range of the nuclear force. We calculate the nuclear density

distributions within mean field theory from the Skχ450 Skyrme interaction [43]. The Skχ450 in-

teraction is fit to properties of finite nuclei in addition to theoretical calculations of the asymmetric

nuclear matter equation of state from the N3LO chiral potential with cutoff scale Λ = 450 MeV

used to calculate the self-energy. In Fig. 3.1 we show the calculated nucleon density distributions

for 40,48Ca. In order to benchmark these density distributions with experiment we also show the

charge density distribution for 48Ca calculated from mean field theory compared to an empirical

charge density [81] obtained from electron scattering data. The theoretical charge density for 48Ca

slightly underestimates experimental results from 1 fm < r < 3 fm and slightly overestimates in

the surface region. We have verified as well that the charge density of 40Ca from mean field theory

has a qualitatively similar comparison to experiment.

In the local density approximation, the nucleon-nucleus optical potential is evaluated as

V (E; r) + iW (E; r) = V (E; kpf (r), k
n
f (r)) (3.7)

+iW (E; kpf (r), k
n
f (r)),

where kpf (r) and knf (r) are the local proton and neutron Fermi momenta. This approximation does

not account for the nonzero range of nuclear forces, and is known to underestimate the surface

diffuseness of nucleon-nucleus optical potentials [58, 44]. For this reason, the standard LDA

provides an inadequate description of nuclear scattering processes. To account for the range of

the nuclear force and obtain a more realistic nuclear optical potential, the improved local density
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Figure 3.1: The matter density distributions for 40,48Ca, represented by a black curve and a dashed
black curve respectively, are calculated in mean field theory from the Skyrme Skχ450 effective
interaction constrained by chiral effective field theory. The empirical charge density distribution for
48Ca along with the mean field calculation are represented by red dots and a red curve respectively.
Reprinted from [103].

approximation is employed. The ILDA applies a Gaussian smearing

V (E; r)ILDA =
1

(t
√
π)3

∫
V (E; r′)e

−|~r−~r′|2

t2 d3r′ (3.8)

that is characterized by a variable length scale t associated with the range of the nuclear force. In

Ref. [9] it is found that for the central part of the optical potential tC = 1.3 fm gives the best fit to

experimental neutron total cross sections for 10 MeV < E < 200 MeV and targets ranging from

40Ca to 208Pb. Presently we vary the range parameter over 1.25 fm < tC < 1.35 fm to estimate

the theoretical uncertainty associated with the choice of length scale tC . As in [77], we find the

spin-orbit range parameter to be tSO = 1.07 fm and vary it across the range 1.0 fm < tSO < 1.1 fm

to estimate the uncertainty.

In Fig. 3.2 we show the real central, imaginary central, and real spin-orbit terms of the ILDA

chiral optical potential compared to the analogous terms of the KD phenomenological optical po-

tential for n-40Ca at projectile energies E = 3.2, 30, 85 MeV. The width of the blue band represent-

ing the chiral terms shows the relatively small effect of varying the distance parameter in the ILDA.
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Figure 3.2: The real, imaginary, and spin-orbit terms of the n-40Ca optical potential at projec-
tile energies E = 3.20, 30, 85 MeV. The blue bands represent the microscopic chiral optical po-
tential after applying the improved local density approximation with a varied length scale. The
green dashed lines represent the analogous terms of the Koning-Delaroche global optical potential.
Reprinted from [103].

In the left column of plots, the optical potential terms are shown at E = 3.2 MeV. The microscopic

real volume term has a very similar depth and a slightly larger diffuseness compared to the KD

term. At this low energy, the microscopic imaginary term has a surface peak and a nonzero central

depth, whereas the KD imaginary term has virtually no central depth and a relatively large surface

peak. The microscopic spin-orbit term has a very similar radial profile compared to KD, but with

a larger depth across all energies.

At E = 30 MeV the middle column of plots in Fig. 3.2 shows a microscopic real volume

term that has a slightly larger central depth and similar diffuseness compared to phenomenology.

The microscopic imaginary term has a large central depth with almost no surface peak, while its

phenomenological counterpart has a small central depth and moderate surface peak. This feature

has been observed in other microscopic optical potentials calculated from nuclear matter [6, 60,
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Figure 3.3: Differential elastic scattering cross sections for n-40Ca at projectile energies E =
3.2, 5.3, 6.52 MeV and n-48Ca at E = 7.97 MeV. The cross sections calculated from the chiral
optical potential are given by the blue bands. The dot dashed black curve represents ab initio
calculations found in Ref. [1]. The cross sections calculated from the Koning-Delaroche phe-
nomenological optical potential are given by the green dashed curves, and experimental data are
represented by red circles with error bars. Reprinted from [103].

61, 8]. To mitigate this discrepancy, some semi-microscopic optical potentials apply an energy-

dependent scaling factor to the imaginary term [9, 62], but in the present work we employ no such

factors. As the energy increases to E = 85 MeV, the real volume term becomes more shallow

for both the microscopic and phenomenological potentials while qualitatively remaining the same

relative to each other. At such high energy, the imaginary surface peak is no longer present in
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Figure 3.4: Differential elastic scattering cross sections for n-40,48Ca at projectile energies E =
11.9, 16.9 MeV. The cross sections calculated from the chiral optical potential are given by the
blue bands. The cross section calculated from the Koning-Delaroche phenomenological optical
potential is given by the green dashed curve, and experimental data are represented by red circles
with error bars. Reprinted from [103].

either the microscopic or phenomenological potentials. However, at this energy the central depth

of the microscopic imaginary term is very large compared to phenomenology. This results in a

chiral optical potential that is overly absorptive at high energy.

3.3 Results

In a continuation of Ref. [77], we calculate cross sections and vector analyzing powers of neu-

trons scattering on calcium isotopes from a microscopic optical potential based on chiral forces

and compare to experiment and phenomenology. Both the differential elastic scattering cross

sections and total cross sections are calculated for n-40,48Ca at energies where experimental data

are available. Specifically, we compute differential elastic scattering cross sections for n+40Ca

at projectile energies E = 3.2, 5.3, 6.52, 11.9, 16.9, 21.7, 25.5, 30, 40, 65, 85, 107.5, 155,

185 MeV. In order to test the spin-orbit term, vector analyzing powers are also calculated at

E = 11.9, 16.9 MeV for n-40Ca. Differential elastic scattering cross sections are calculated for

n-48Ca at E = 7.97, 11.9, 16.9 MeV. The total cross sections for n-40,48Ca scattering are also
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Figure 3.5: The vector analyzing powers for elastic n-40Ca scattering at projectile energies
E = 11.9, 16.9 MeV. The vector analyzing powers calculated from the chiral optical potential
are given by the blue bands. The vector analyzing powers calculated from the Koning-Delaroche
phenomenological optical potential are given by the green dashed curves, and experimental data
are represented by red circles with error bars. Reprinted from [103].

calculated. Energies greater than 200 MeV are not considered since the chiral expansion is

expected to break down near that energy scale [80]. Experimental data are taken from Refs.

[82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92].

The TALYS reaction code is used to calculate all scattering observables. In all cases we employ

the microscopic optical potential calculated using the ILDA and parameterized to the Koning-

Delaroche phenomenological form at a specific energy. Presently the only theoretical uncertainties

considered are the variations in the ILDA length scales tC and tSO. We also include results from

the KD global phenomenological optical potential [4].

3.3.1 Microscopic optical potential at low energy

Low-energy nuclear reactions are important for describing a wide range of astrophysical pro-

cesses. These reactions play an essential role in cold r-process environments [75, 93] such as

neutron star mergers where freeze-out is achieved rapidly and neutron capture plays an enhanced
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Figure 3.6: Differential elastic scattering cross sections for n-40Ca at projectile energies E =
21.7, 25.5, 30, 40 MeV. The cross sections calculated from the chiral optical potential are given
by the blue bands. The cross sections calculated from the Koning-Delaroche phenomenological
optical potential are given by the green dashed curves, and experimental data are represented by
red circles with error bars. Reprinted from [103].

role. Neutron capture rates on exotic, neutron-rich isotopes have large theoretical uncertainties

[75]. These neutron-capture rates are included as inputs for most modern r-process reaction net-

work codes. The neutron-nucleus optical potential, and especially the imaginary part of the optical

potential at low energies [62], is a key ingredient in calculating neutron capture rates. One of the

primary motivations for the construction of a new global microscopic optical potential is to better

understand (and potentially reduce) these theoretical uncertainties.
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Figure 3.7: Differential elastic scattering cross sections for n-40Ca at projectile energies E =
65 MeV. The cross section calculated from the chiral optical potential is given by the blue band.
The cross section calculated from the Koning-Delaroche phenomenological optical potential is
given by the green dashed curve, and experimental data are represented by red circles with error
bars. Reprinted from [103].

In Fig. 3.3 we show microscopic and phenomenological elastic scattering cross sections for

neutron projectiles on a 40Ca target at energies of E = 3.2, 5.3, 6.52 MeV as well as 48Ca at

E = 7.97 MeV and compare to experimental data [82, 87, 91]. Interestingly, there is very little

difference between the chiral optical potential predictions and those of phenomenology. We find

that the Koning-Delaroche global optical potential is in very good agreement with experimental

data in this energy regime when the direct and compound contributions to the elastic scattering

cross section are accounted for (cf. Ref. [28]). The compound contribution to the elastic scattering

cross section is experimentally indistinguishable to the shape elastic contribution and must be

included when comparing to experimental data. In the top plot of Fig. 3.3, we provide a comparison

to the results found in Ref. [1] for elastic n-40Ca scattering at E = 3.2 MeV. The results by Idini

et al. are obtained through an ab initio calculation of the optical potential using a self consistent

Green function approach. We see that the nuclear matter approach in the improved local density

approximation gives better agreement with data than the fully ab initio approach of Idini et al.,

which might be due to different theoretical nuclear density distributions or the density of states in

the two approaches.
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3.3.2 Microscopic optical potential at medium-low energy

In Fig. 3.4 we plot microscopic and phenomenological differential elastic scattering cross sec-

tions for neutrons on 40,48Ca targets at E = 11.9, 16.9 MeV and compare to experimental data

[83, 90, 89]. At the neutron projectile energy of 11.9 MeV, we find a significant discrepancy be-

tween the microscopic results and experimental data at certain scattering angles. In particular,

for E = 11.9 MeV the n-40,48Ca cross sections from the chiral optical potential have a sharp dip

around θ = 45◦ which is not present in the experimental data. For larger scattering angles, the chi-

ral optical potential results have better agreement with experiment than the KD potential, whose

predictions are uncharacteristically departed from experimental data. At E = 16.9 MeV the phe-

nomenological and microscopic optical potentials both predict a dip just below θ = 40◦ that is

partly confirmed by experiment. At larger scattering angles, results from the chiral optical po-

tential tend to overestimate the elastic scattering cross sections, while phenomenological optical

potentials moderately underestimate them. The large disagreement between microscopic calcula-

tions and experimental results in this narrow energy range may be due to resonances and surface

effects that are not accounted for in the nuclear matter approach. One such resonance present in the

relevant energy range is the giant dipole resonance (GDR). The cross section for 40Ca(n,γ)41Ca is

shown in Ref. [94] to be enhanced aroundE = 12−20 MeV due to the GDR. This resonance could

be in part responsible for the large discrepancies between experimental data and our microscopic

nuclear matter calculations.

We also plot the vector analyzing power for 40Ca atE = 11.9, 16.9 MeV in Fig. 3.5. The vector

analyzing power is a spin observable defined by

Ay(θ) =
1

py

σ(θ)− σ0(θ)

σ0(θ)
, (3.9)

where σ and σ0 correspond to the scattering cross sections for a polarized and unpolarized beam

respectively and py is the beam polarization in the direction normal to the scattering plane. This

quantity is largely determined by the spin-orbit term of the optical potential. In this first direct
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test of our chiral spin-orbit potential we find that overall it reproduces experimental data well. In

particular, the angles at which the polarized cross section σ is equal to the unpolarized cross section

σ0 are reproduced very well.

3.3.3 Microscopic optical potential at medium-high energy

In Fig. 3.6 we plot microscopic and phenomenological differential elastic scattering cross sec-

tions for neutrons on 40Ca targets at E = 21.7, 25.5, 30, 40 MeV and compare to experimental data

[85, 86]. For relatively low scattering angles in the range of 0◦ < θ < 80◦, the microscopic optical

potential produces cross sections that are consistent with experiment and the phenomenological

KD optical potential. For larger scattering angles the microscopic calculations of the cross sec-

tions overestimate experimental data and exhibit a weaker interference pattern that persists as the

energy increases.

From Fig. 3.2, we expect the cause of these discrepancies is the imaginary part of the mi-

croscopic optical potential. The microscopic surface imaginary peak is very small in this energy

range, as can be seen in Fig. 3.2. This leads to larger elastic scattering cross sections. In contrast

the imaginary volume part is much larger than phenomenology at higher projectile energies. We

have verified that replacing only the microscopic imaginary part with the Koning-Delaroche phe-

nomenological imaginary part leads to significantly improved angular distributions for θ > 80◦.

3.3.4 Microscopic optical potential at high energy

In Figs. 3.7, 3.8 we plot microscopic and phenomenological differential elastic scattering cross

sections for neutrons on 40Ca targets at E = 65, 85, 107.5, 155, 185 MeV and compare to exper-

imental data [84, 88]. In Fig. 3.7, we see that the cross section from chiral effective field theory

exhibits the same angular dependence as the experimental data, but microscopic many-body the-

ory systematically underestimates the cross section across all scattering angles. In contrast, the

KD phenomenological optical potential reproduces the experimental cross section up to θ = 25◦

well. For larger scattering angles, however, the phenomenological cross section is smaller than

experiment but very similar to the cross section from chiral effective field theory.
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In Fig. 3.8 we compare experimental, phenomenological, and microscopic differential elastic

scattering cross sections for n-40Ca at 85 MeV < E < 185 MeV. For these projectile energies, the

experimental data span only a small range of scattering angles θ ≤ 25◦. The data also have large

uncertainties which are as large as a factor of 2 − 5 in the cross section. The results from chiral

effective field theory are consistent with data up to experimental error bars in most cases, but the

tendency is again for the microscopic optical potential to underestimate the cross sections. In all

cases the KD results are within or very close to experimental data.

3.3.5 Total cross section

The total cross section is written as the sum of the elastic scattering and reaction cross section:

σT = σel + σre. (3.10)

The reaction cross section in particular is expected to be very sensitive to the strength of the imag-

inary part of the optical potential. Consequently, we expect chiral optical potentials, with their

large imaginary volume parts, to produce a large reaction cross section and hence a large total

cross section at high energies. At low and moderate energies, the picture is more complicated as

demonstrated in Ref. [77]. At low energies the microscopic surface imaginary part is small and

the imaginary volume part is large compared to phenomenological optical potentials. Depending

on the energy, the volume integral of the microscopic imaginary part is therefore either larger or

smaller than phenomenology and the reaction cross section behaves analogously.

In Fig. 3.9 we show the total cross sections for neutron scattering on 40,48Ca from the chiral

optical potential and the KD phenomenological optical potential. In both plots of Fig. 3.9 the

microscopic optical potential overestimates the total cross section for low energy then underesti-

mates the cross section for medium energy. Past E = 100 MeV the total cross section from chiral

nuclear optical potentials is systematically too large. As mentioned above, this can be traced to

the overly absorptive imaginary term. Overall, the phenomenological optical potential of Koning

and Delaroche gives a good description for both isotopes at most energies. The only exception is
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the n-40Ca total cross section for projectile energies in the range 10 MeV < E < 50 MeV, where

the KD total cross sections are small compared to experiment. The experimental data in Ref. [92]

were not included in the parameterization of the KD potential since the experiment was performed

more recently. Additionally, for the previously mentioned energy range, these experimental data

are in slight disagreement with previous experimental results [95] that the KD potential is fit to.

We choose to plot only the more recent data set since total cross section measurements of both

40,48Ca are made in the same work. In Fig. 3.9 the solid black curve is obtained by substituting

the KD imaginary part into the chiral microscopic optical potential. We see that indeed there is a

significant improvement in the description of the total cross section, which motivates the need to

improve the imaginary part of the microscopic optical potential.

3.4 Conclusions

This work represents a continuation of an effort to construct a microscopic global optical po-

tential based on nucleon interactions from chiral effective field theory. By calculating the nucleon

optical potential in nuclear matter for arbitrary density and isospin-asymmetry, one can derive an

optical potential for many isotopes across the nuclear chart by utilizing the improved local density

approximation. In previous works the optical potential was calculated in nuclear matter [10, 12]

and more recently proton optical potentials were calculated for a chain of calcium isotopes [77].

New to this work are calculations of the neutron optical potential for 40,48Ca and a direct test of the

microscopic spin-orbit term by calculating spin observables.

Overall, we find good agreement with experimental differential elastic scattering data, except in

energy regions where unresolved resonances are expected to be important. At the highest energies

(E ' 80− 200 MeV) we also find that the large imaginary volume contribution from microscopic

optical potentials tends to suppress elastic scattering compared to experimental data. This feature is

enhanced in microscopic calculations of the total cross section, which are too large at high energies

due to the large reaction cross section induced by the strongly absorptive imaginary part. We have

also computed for the first time in our improved local density approximation the vector analyzing

power. We find that the analyzing power for n-40Ca at medium energies is well described by our
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microscopic optical potentials, validating in particular its spin-orbit part.

We emphasize that no parameters in the model were tuned to experimental reaction data, and

therefore the present work demonstrates the viability of using microscopic optical potentials in

regions of the nuclear chart that are unexplored experimentally.
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Figure 3.8: Differential elastic scattering cross sections for n-40Ca at projectile energies E =
85, 107.5, 155, 185 MeV. The cross sections calculated from the chiral optical potential are given
by the blue band. The cross sections calculated from the Koning-Delaroche phenomenological
optical potential are given by the green dashed curve, and experimental data are represented by red
circles with error bars. Reprinted from [103].
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4. MICROSCOPIC GLOBAL OPTICAL POTENTIALS FOR RARE ISOTOPE REACTIONS

We construct from chiral effective field theory two- and three-body forces a microscopic global

nucleon-nucleus optical potential suitable for reactions involving radioactive isotopes. Within

the improved local density approximation and without any adjustable parameters, we begin by

computing local proton and neutron optical potentials for 1800 target nuclei in the mass range

12 < A < 242 and for energies between 0 MeV < E < 200 MeV. We then construct a global

optical potential parametrization that depends smoothly on the projectile energy as well as the tar-

get nucleus mass number and isospin asymmetry. Elastic scattering observables calculated from

the global optical potential are found to be in good agreement with available experimental data for

a wide range of projectile energies and target nuclei. Compared to traditional phenomenological

optical potentials, we find a strong energy dependence and shell structure features in the Woods-

Saxon geometry parameters. For target nuclei with small proton-neutron asymmetry, we find that

the real and imaginary optical potential depths exhibit a clear linear dependence on the isospin-

asymmetry and preserve the well-known Lane form up to high projectile energies. For nuclei with

larger isospin asymmetries, we find evidence for a novel isoscalar term in the low-energy optical

potential proportional to the square of the isospin asymmetry. These insights from microscopic

many-body theory may be used to inform next-generation phenomenological optical potentials for

proton- and neutron-rich isotopes.

4.1 Introduction

Nuclear physics is approaching an exciting new era in which rare isotope beam facilities, such

as FRIB, RIBF, FAIR, and Spiral2, will explore previously inaccessible regions of the nuclear chart

that are important for understanding the origin of the elements [96, 93, 97, 98] and the properties of

neutron stars [76, 99]. Rare isotope beam experiments will produce a flood of new data whose inter-

pretation and connection to nuclear structure will be guided by theoretical modeling. Of particular

importance in the context of nuclear reaction studies is the nuclear optical model [42, 100, 44, 5],
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where the complicated (and in most cases intractable) problem of solving theN -body Schroedinger

equation for nucleon-nucleus scattering in terms of fundamental two- and three-body forces is

simplified by assuming the projectile nucleon interacts with an average single-particle potential

generated by the target nucleus. Global phenomenological optical potentials [4, 14, 3] are the

workhorse for theoretical modeling of nuclear reactions but are currently tuned to limited exper-

imental data near nuclear stability. The worldwide radioactive ion beam program requires next-

generation global optical potentials that can reach into unexplored regions of the nuclear chart,

provide quantified uncertainty estimates for reaction observables [101, 102], and that are informed

by microscopic nuclear theory based on high-precision nuclear forces [33, 2, 103, 1, 28, 22].

In the late 1960s the first phenomenological nucleon-nucleus optical potentials were limited

to heavy isotopes with mass numbers A > 40 and low scattering energies of E < 50 MeV. Phe-

nomenological and semi-microscopic optical potentials [3, 4, 104, 105, 106, 107, 108, 109, 110,

111, 5, 9, 14] have improved dramatically since then, and today the most widely used optical po-

tential of Koning and Delaroche [4] is suitable to describe scattering phenomena for stable nuclei

with 24 < A < 209 up to projectile energies of E ' 200 MeV. However, it remains an open

question how reliable such phenomenological optical potentials behave for reactions involving ex-

otic isotopes. This is particularly crucial for simulating the late-time freeze-out phase of r-process

nucleosynthesis, where photodissociation and radiative capture processes are out of equilibrium

and neutron-capture rates play an enhanced role in determining the final abundance pattern of

r-process elements [112]. Neutron capture cross sections on neutron-rich isotopes cannot be di-

rectly measured with today’s experimental techniques, but considerable efforts [113, 114] are being

made toward measuring gamma strength functions and nuclear level densities that enter into the

Hauser-Feshbach theory for radiative neutron capture in stellar plasmas [115]. Such calculations

also require as input the neutron-nucleus optical potential, and especially its imaginary part at low

scattering energies [116].

In the present work we construct the first microscopic global nucleon-nucleus optical poten-

tial based on an analysis of 1800 isotopes in the framework of many-body perturbation theory
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with state-of-the-art nuclear interactions from chiral effective field theory. Compared to phe-

nomenological [3, 4, 106, 108] or semi-microscopic optical potentials [14, 110, 111] that are

directly fitted to nuclear reaction data, purely microscopic calculations may have greater pre-

dictive power for reactions involving exotic isotopes. Constructing optical potentials via the

nucleon self-energy in finite nuclei or nuclear matter from chiral effective field theory (EFT)

[10, 12, 27, 28, 29, 22, 30, 31, 1, 77, 103] is a promising route of inquiry since chiral EFT features

realistic nuclear interactions based on the symmetries of QCD and a systematic expansion of the

nuclear force [32, 33, 2, 117] that provides a method of quantifying theoretical uncertainties. In

the present work we use a specific chiral nuclear interaction [38] with momentum-space cutoff

Λ = 450 MeV in the calculation of the nucleon self-energy that is known to reproduce well the

saturation energy and density of symmetric nuclear matter [38]. The low-energy constants of the

potential are fitted to nucleon-nucleon scattering phase shifts, deuteron properties, and the triton

binding energy and lifetime [38].

4.2 Formalism

We begin by calculating up to second order in many-body perturbation theory the nucleon self-

energy Σ(k,E(k)) for E > 0, which is equivalent [42] to the optical potential for scattering states.

The background medium is taken to be homogeneous nuclear matter with fixed density and isospin

asymmetry in the thermodynamic limit. The calculation of the second-order diagrams involves

intermediate-state propagators whose energies E(k) = k2/(2M) + Σ(k,E(k)) are computed self

consistently with the on-shell self-energy. In general the resulting self-energy is complex and en-

ergy dependent. In order to construct a nucleon-nucleus optical potential, we compute the nucleon

self-energy over the range of densities and isospin asymmetries found in finite nuclei. Since the

spin-orbit interaction vanishes in homogeneous nuclear matter, we employ the improved density

matrix expansion [46, 47, 55, 48] at the Hartree-Fock level to calculate the spin-orbit contribution

to the nuclear energy density functional. In this formulation the spin-orbit interaction is calculated

at the Fermi energy and consequently does not have an explicit energy dependence. Density distri-

butions for the target nuclei are calculated in mean field theory with the Skχ450 Skyrme effective
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Figure 4.1: Isotopes used in constructing the Whitehead-Lim-Holt (WLH) global microscopic
optical potential are shown in blue, and those used for parameterizing the Koning-Delaroche phe-
nomenological optical potential are shown in red.

interaction [43] constrained by the chiral interaction used to calculate the optical potential.

The improved local density approximation (ILDA) is utilized to transition from a nuclear mat-

ter optical potential to that of a finite nucleus by folding the density- and isospin-asymmetry-

dependent self-energy with the target nucleus density distribution

ULDA(E; r) = UNM(E; ρ(r), δ(r)), (4.1)

where ρ = ρn + ρp and δ = (ρn − ρp)/ρ . The ILDA is applied by integrating over the radial

direction with a Gaussian form factor to account for the nonzero range of the nuclear force [44, 9]:

UILDA(E; r) =
1

(t
√
π)3

∫
ULDA(E; r′)e

−|~r−~r′|2

t2 d3r′, (4.2)

where the range parameter t represents the characteristic length scale of the interaction. The range

parameter is derived in this work by calculating the root mean square radii of the local chiral NN

interactions presented in Ref. [118]. We use the average value of tC = 1.22 fm for the central terms
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of the optical potential and tSO = 0.98 fm for the spin-orbit term. In Refs. [77, 103] the effect of

varying these range parameters was shown to be small. Within the framework just outlined, we

have developed in previous works [10, 12, 77, 103] proton and neutron optical potentials for stable

calcium isotopes. In the present work we develop the first microscopic global optical potential,

referred to as Whitehead-Lim-Holt (WLH), that is built upon local optical potentials for 1800

target nuclei with mass numbers 12 < A < 242 and projectile energies 0 MeV < E < 200 MeV.

This set includes all stable and long lived isotopes, light and medium-mass bound isotopes out

to the predicted neutron drip line of iron [119], and heavier neutron-rich isotopes relevant to the

r-process [75]. The isotopes for which we have constructed local optical potentials are shown

as blue dots in Fig. 4.1 in comparison with the stable isotopes that were used in calibrating the

Koning-Delaroche phenomenological optical potential (shown as red squares).

We then fit the position- and energy-dependent optical potentials

U(r, E) = UV (r, E) + iUW (r, E) + iUS(r, E) (4.3)

+USO(r, E)~̀ · ~σ,

to the commonly used Woods-Saxon form f(r; ri, ai) = 1

1+e(r−A1/3ri)/ai
(for UV and UW ) and its

derivative (for US and USO). Functional forms for theA, E, and δ dependence of the Woods-Saxon

geometry parameters and overall strengths were chosen in order to minimize the least squares fit

while using as few parameters as possible. We used the following functional forms to define the

global optical potential parametrization:

UV = uV 0 + uV 1E + uV 2E
2 + uV 3E

3 + uV 4E
4 (4.4)

+(uV 5 + uV 6E + uV 7E
2 + uV 8E

3)δ + uV 9e
uV 10Eδ2

rV = rV 0 + rV 1E + rV 2E
2 + rV 3A

−1/3

aV = aV 0 + aV 1E + aV 2E
2 + aV 3E

3 + aV 4E
4

+(aV 5 + aV 6δ)δ
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Figure 4.2: The left and right top plots show the depth of the real volume term at E = 0 MeV and
E = 180 MeV, respectively, for neutron and proton potentials in red and blue as functions of the
isospin asymmetry. The left and right bottom plots show the imaginary volume and surface depths
respectively at E = 0 MeV for neutron and proton potentials in magenta and cyan as functions of
the isospin asymmetry. The points represent values for local potentials and the solid lines are values
for the WLH global potential, analogous Koning-Delaroche (KD) values are given by orange and
green squares.
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Figure 4.3: The top (bottom) plots show the microscopic real and imaginary radius (diffuseness)
parameters for proton and neutron projectiles. The points represent values for local optical poten-
tials and the solid lines are values for the WLH global potential, Koning-Delaroche (KD) values
are given by a dashed line. The left panels are for a 120Sn target plotted as a function of energy.
The middle and right panels, at E = 100 MeV, are plotted as a function of mass number and
isospin-asymmetry respectively.
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UW = uW0 + uW1E + uW2E
2 + (uW3 + uW4E)δ (4.5)

rW = rW0 +
rW1 + rW2A

rW3 + A+ rW4E
+ rW5E

2

apW = apW0 +
apW1E

apW2 − E
+ (apW3 + apW4E)δ

anW = anW0 +
anW1E

anW2 − E
+

(
anW3 +

anW4

1 + E

)
δ

UpS = upS0 + upS1E + (upS2 + upS3E)δ (4.6)

UnS = unS0 + unS1E + unS2E
2 + (unS3 + unS4E

+unS5E
2)δ

rS = rS0 + rS1E + rS2E
2 + rS3A

−1/3

aS = aS0 + aS1E + aS2E
2 + aS3A+ aS4A

2

USO = uSO0 + uSO1A+ uSO2A
2 + uSO3A

3 (4.7)

rSO = rSO0 + rSO1A
−1/3

aSO = aSO0 + aSO1A+ aSO2A
2 + aSO3A

3.

Values for the ∼ 70 fit parameters in Eqs. 4.5 - 4.8 can be found in Table 4.1 of Sec. 4.5.

4.3 Results

The microscopic global optical potential constructed in this work is found to have several dif-

ferent features compared to widely used phenomenological optical potentials [3, 4]. The most

prominent difference is found in the isovector terms, which are crucial for an accurate description

of neutron-rich isotopes. In Fig. 4.2 we show the isospin asymmetry dependence of the real volume

UV , imaginary volume UW , and imaginary surface US depths at E = 0 MeV. In the top left panel

we show the isospin asymmetry dependence of the WLH real volume term which is similar to the

results of the KD optical potential for low energy. However, as seen in the top right panel of Fig.
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4.2 the two models differ at higher energies as the WLH real volume term preserves the isovector

Lane form, U = U0 + τzUIδ, even after undergoing an isospin inversion at E = 115 MeV where

the strength of the isovector term changes sign. As seen in the upper left plot of Fig. 4.2 the WLH

real depth exhibits an isoscalar δ2 dependence for low energies that is consistent with the nuclear

matter calculations in Ref. [12]. This extension of the standard Lane form is not accounted for

in current phenomenological optical potentials, and is important for accurately modeling reactions

with neutron-rich isotopes. In further contrast to the KD optical potential, the WLH potential has

a clear isospin asymmetry dependence in both the imaginary volume and surface terms shown in

the bottom left panel of Fig. 4.2. The imaginary term must vanish at the Fermi energy, which is

EF = 0 for nucleons at their respective drip line. As shown in the bottom right panel, the micro-

scopic WLH imaginary surface term vanishes as δ increases toward values corresponding to the

drip line, while the KD model does not. The isovector terms of the optical potential are crucial

for describing isotopes off stability and in particular the imaginary isovector term is of significant

importance to the neutron capture rates on exotic isotopes involved in the astrophysical r-process

[116].

An additional distinction of the WLH optical potential is energy dependent geometry parame-

ters. In the left two panels of Fig. 4.3 we show the energy dependence of the real and imaginary

radius and diffuseness parameters for 120Sn, which are indicative of all isotopes considered in

this work. By comparison, the assumed form of the Koning-Delaroche optical potential geometry

parameters is not only energy independent but also identical for the real and imaginary volume con-

tributions. In general the energy dependence of geometry parameters is as significant as the mass

number dependence and more easily described in a closed form. One point of similarity, shown

in the top middle panel, is that the WLH radius parameters exhibit the well-known [4, 107, 3]

r ∝ A−1/3 dependence. In the bottom middle panel we find that the mass number dependence of

the diffuseness parameters have complicated shell structure effects that would require too many

parameters to accurately describe. Instead we include an explicit dependence on the isospin asym-

metry, shown in the bottom right plot to have a positive correlation and roughly quadratic behavior.
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Figure 4.4: Proton elastic scattering cross sections at E = 65 MeV for 40Ca -60Ca. Results of
the microscopic global optical potential constructed in this work are shown in blue and labeled
by WLH Global. Results of the Koning-Delaroche phenomenological global optical potential are
given by the green dashed line and labeled as KD Global, experimental data are shown as red dots.
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Finally, in the top right plot we show the isospin asymmetry dependence of the radius parameters

to be very diffuse with bands at constant values of ri that result from an interplay of shell effects

with the increasing r ∝ A−1/3 dependence.

In anticipation of future experiments involving radioactive nuclei, we show in Fig. 4.4 the pro-

ton differential elastic scattering cross sections on calcium isotopes from A = 40 to A = 60.

The results of the WLH global optical potential (blue lines) are close to those of the KD global

optical potential (dashed green lines) and in good agreement with experimental data (red dots),

except for the 42Ca data that are also in disagreement with other optical potentials [110]. The

microscopic predictions of the WLH potential become systematically smaller than the results of

Koning-Delaroche as mass number increases. This is due to the different behavior of the isovec-

tor terms in the two optical potentials. In Sec. 4.5 we show plots of neutron and proton elastic

scattering cross sections and analyzing powers for a selection of target nuclei to give a more com-

prehensive demonstration of the effectiveness of the WLH global optical potential. Experimental

scattering cross sections are generally well reproduced while analyzing powers stand to benefit

from the inclusion of higher-order calculations of the spin-orbit term.

4.4 Summary

We have constructed a microscopic global optical potential based on the many-body pertur-

bation theory calculation of the nucleon self-energy in nuclear matter from chiral two- and three-

nucleon interactions. The global optical potential is expressed as a function composed of Woods-

Saxon terms with parameters that vary smoothly in E, A, and δ, which can be easily implemented

into modern reaction theory codes. A Python script for generating input files needed to run TALYS

with the WLH global optical potential may be found at [120]. These dependences are represented

by functional forms parametrized to local proton and neutron optical potentials that span projectile

energies 0 < E < 200 MeV and 1800 isotopes with mass numbers 12 < A < 242. No parameters

of the global optical potential are tuned to experimental data. We show that the WLH microscopic

optical potential provides a satisfactory description of elastic scattering across the nuclear chart for

a wide range of energies. The WLH global optical potential may provide a realistic guide to further
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refine next-generation phenomenological optical potentials suitable for nuclear reactions involving

radioactive ions.

4.5 Supplementary Material

The WLH global optical potential is expressed in the following form

U(r, E) = UV (r, E) + iUW (r, E) + iUS(r, E) (4.8)

+USO(r, E)~̀ · ~σ,

where

UV (r, E) = −UV f(r; rV , aV ) (4.9)

UW (r, E) = −UWf(r; rW , aW )

US(r, E) = 4aSUS
d

dr
f(r; rS, aS)

USO(r, E) = USO
1

m2
π

1

r

d

dr
f(r; rSO, aSO),

and

f(r; ri, ai) =
1

1 + e(r−A1/3ri)/ai
. (4.10)

The depth, radial size and diffuseness of each term are given by Ui, ri,ai and A is the mass number.

The fit parameters in the above equations are listed in Table 4.1 for neutron and proton pro-

jectiles. The parametrization of the imaginary surface term is only valid for neutron projectile

energies of E < 40 MeV and proton projectile energies of E < 30 MeV. We find no microscopic

evidence of an imaginary surface peak beyond these energies.

We calculate scattering observables from the WLH microscopic global optical potential and

compare to results of the Koning-Delaroche phenomenological optical potential and experiment.

In Figs. 4.5 and 4.6 we show neutron and proton elastic scattering for a wide range of isotopes and
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p
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p
V 1 = −0.252 u

p
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p
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p
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−8 u
p
V 5 = 20.87 u

p
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p
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p
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p
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p
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rV r

p
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p
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−4 r
p
V 2 = 1.98 · 10−6 r

p
V 3 = −0.391

rnV 0 = 1.298 rnV 1 = −5.41 · 10
−4 rnV 2 = 1.98 · 10−6 rnV 3 = −0.397

aV a
p
V 0 = 0.773 a

p
V 1 = −1.28 · 10

−4 a
p
V 2 = −6.1 · 10

−6 a
p
V 3 = 5.39 · 10−8 a

p
V 4 = −1.67 · 10

−10 a
p
V 5 = −0.746 a

p
V 6 = 0.522

anV 0 = 0.699 anV 1 = 0.0023 anV 2 = −3.77 · 10
−5 anV 3 = 2.38 · 10−7 anV 4 = −5.14 · 10

−10 anV 5 = −0.171 anV 6 = 0.625
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p
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p
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p
W2 = −4.67 · 10

−4 u
p
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p
W4 = −0.077

unW0 = 2.23 unW1 = 0.262 unW2 = −5.85 · 10
−4 unW3 = −7.84 unW4 = −0.046

rW r
p
W0 = 0.543 r

p
W1 = 48.78 r

p
W2 = 0.708 r

p
W3 = 54.23 r

p
W4 = 0.499 r

p
W5 = 9.93 · 10−7

rnW0 = 0.450 rnW1 = 86.82 rnW2 = 0.830 rnW3 = 84.17 rnW4 = 0.755 rnW5 = 2.34 · 10−6
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p
W0 = 0.546 a

p
W1 = −0.287 a

p
W2 = −17.1 a

p
W3 = 0.376 a

p
W4 = −0.00187

anW0 = 0.407 anW1 = −0.394 anW2 = −9.39 anW3 = 0.0599 anW4 = −0.853
US u

p
S0 = 0.774 u

p
S1 = −0.0216 u

p
S2 = −1.281 u

p
S3 = 0.0316

unS0 = 1.866 unS1 = −0.0546 unS2 = 1.41 · 10−4 unS3 = −3.70 unS4 = 0.4218 unS5 = −0.00842
rS r

p
S0 = 1.134 r

p
S1 = −0.0120 r

p
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p
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USO uSO0 = 8.852 uSO1 = 0.0127 uSO2 = −2.02 · 10−4 uSO3 = 5.57 · 10−7
rSO rSO0 = 1.260 rSO1 = −0.827
aSO aSO0 = 0.663 aSO1 = 0.0032 aSO2 = −2.83 · 10−5 aSO3 = 6.58 · 10−8

Table 4.1: WLH global optical potential fit parameters.

a variety of scattering energies to demonstrate the performance of the WLH optical potential com-

pared to phenomenology and experiment. Additionally we plot the analyzing power for neutron

and proton projectiles and a variety of target nuclei in Fig. 4.7. Neutron elastic scattering cross

sections are on par with phenomenology for energies E < 20 MeV past which the WLH results

slightly overestimate for larger scattering angles. The top left panel of Fig. 4.5 shows neutron

scattering with 14N which is outside the mass range for the Koning-Delaroche potential and may

indicate the extrapolative power of phenomenological models. In Fig. 4.6 proton elastic scattering

data are also well reproduced by the WLH calculations with tendency to slightly underestimate

cross sections. In Fig. 4.7 analyzing powers calculated by the WLH potential generally reproduce

the angular pattern of experimental data, while often overestimating or underestimating the mag-

nitude of peaks and troughs. This may be improved by inclusion of higher order perturbative terms

and isovector contributions to the spin-orbit interaction.
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Figure 4.5: Neutron elastic scattering cross sections for a selection of target isotopes at varied
energies. Results of the microscopic global optical potential constructed in this work are shown
in blue and labeled by WLH Global. Results of the Koning-Delaroche phenomenological global
optical potential are given by the green dashed line and labeled as KD global, experimental data
are shown as red dots.
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Figure 4.6: Proton elastic scattering cross sections for a selection of target isotopes at varied ener-
gies. Results of the microscopic global optical potential constructed in this work are shown in blue
and labeled by WLH Global. Results of the Koning-Delaroche phenomenological global optical
potential are given by the green dashed line and labeled as KD global, experimental data are shown
as red dots.
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Figure 4.7: Proton and neutron analyzing powers for a selection of target isotopes at varied en-
ergies. Results of the microscopic global optical potential constructed in this work are shown in
blue and labeled by WLH Global. Results of the Koning-Delaroche phenomenological global op-
tical potential are given by the green dashed line and labeled as KD Global, experimental data are
shown as red dots.
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5. FERMI LIQUID THEORY*

Fermi liquid theory [121, 122, 123, 124] is widely used to describe the transport, response and

dynamical properties of nuclear many-body systems [125, 126, 127, 128, 129, 130, 131, 132, 133].

The key quantity in this theory is the quasiparticle interaction, defined as the second functional

derivative of the energy with respect to the quasiparticle distribution function. For many years

the primary focus of investigation has been the central part of the quasiparticle interaction and its

associated Fermi liquid parameters, which are directly related to static properties of the interacting

ground state such as the incompressibility, isospin-asymmetry energy and magnetic susceptibility.

The central terms include scalar operators in spin and isospin space, but more recently noncentral

contributions [134, 135] that couple spin and momenta have been studied together with their impact

on the density and spin-density response functions of neutron matter [136, 137, 138, 139]. Extend-

ing these results to nuclear matter with equal numbers of protons and neutrons and to systems

with arbitrary isospin asymmetry will be needed to better understand neutrino transport and emis-

sivity in neutron stars, proto-neutron star cooling [140], electron transport in neutron stars [141],

the evolution of shell structure and single-particle states in nuclei far from stability [142, 143],

and nuclear collective excitations (spin and spin-isospin modes together with rotational modes of

deformed nuclei) [144, 145, 146]. An important motivation of the present work is to provide mi-

croscopic guidance for the tensor forces employed in modern mean field effective interactions and

nuclear energy density functionals. Including as well new estimates and uncertainties on the cen-

tral Fermi liquid parameters, which are more directly related to nuclear observables, the present

study will complement other recent efforts [147, 148, 149, 150, 151, 56] to constrain energy den-

sity functionals from microscopic many-body theory. The importance of tensor forces in mean

field modeling is a question of ongoing debate. While there is skepticism [152, 153] that ten-

sor forces can lead to a meaningful improvement in fits to nuclear ground state energies, there is

*Reprinted with permission from “Tensor Fermi liquid parameters in nuclear matter from chiral effective field
theory” by J. W. Holt, N. Kaiser, and T. R. Whitehead, 2018. Phys.Rev.C, 97, 054325 , Copyright [2018] American
Physical Society.

70



strong evidence that the description of single-particle energies [142, 143, 154, 155], beta-decay

half-lives [156], and spin-dependent collective excitations [145, 146] are systematically improved

with the inclusion of tensor forces (for a recent review, see Ref. [157]). One of the main driving

questions is the extent to which the effective medium-dependent tensor force in mean field models

resembles the fundamental tensor component of the free-space nucleon-nucleon interaction arising

from π + ρ meson exchange. A main conclusion of the present work is that the proton-neutron

effective tensor force is enhanced over the free-space tensor interaction due to three-body forces

and second-order perturbative contributions. On the other hand, the proton-proton and neutron-

neutron tensor forces are considerably smaller in magnitude. In addition, we find evidence for a

large isovector cross-vector interaction that to our knowledge has not been previously studied in

phenomenological mean field modeling of nuclei.

The quasiparticle interaction can be computed microscopically from realistic two- and three-

body forces starting from the perturbative expansion of the energy density and taking appropriate

functional derivatives with respect to the Fermi distribution functions. For nuclear or astrophysical

systems with densities near or above that of saturated nuclear matter, it is essential to consider the

effects of three-body forces. To date three-nucleon forces have been included in calculations of the

central and exchange-tensor quasiparticle interaction in nuclear matter [158, 159, 160, 161, 162]

and the full quasiparticle interaction in neutron matter [163]. In the present work our aim is to

extend the calculations in Ref. [163] to the case of symmetric nuclear matter. This is a natural step

before considering the more general case of isospin-asymmetric nuclear matter.

We take as a starting point a class [164, 165, 166, 167, 38, 168] of realistic two and three-

body nuclear forces derived within the framework of chiral effective field theory [32, 169, 2]. The

two-body force is treated at both next-to-next-to-leading order (N2LO) and N3LO in the chiral

power counting, while the three-body force is only considered at N2LO. Although the inclusion of

consistent three-body forces at N3LO [170, 171] in the chiral power counting will be needed for

improved theoretical uncertainty estimates [35, 36, 172], the present set of nuclear force models

has been shown to give a good description of nuclear matter saturation [38, 173], the nuclear
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liquid-gas phase transition [39], and the volume components of nucleon-nucleus optical potentials

[174, 175] when used at second order in many-body perturbation theory. In addition to the order

in the chiral expansion, the resolution scale (related to the momentum-space cutoff in the nuclear

potential) is varied in order to assess the theoretical uncertainties.

5.1 Quasiparticle interaction in symmetric nuclear matter

The quasiparticle interaction in symmetric nuclear matter has the general form [135]

F(~p1, ~p2 ) = A(~p1, ~p2 ) +A′(~p1, ~p2 )~τ1 · ~τ2, (5.1)

where

A(~p1, ~p2 ) = f(~p1, ~p2 ) + g(~p1, ~p2 )~σ1 · ~σ2

+h(~p1, ~p2 )S12(q̂) + k(~p1, ~p2 )S12(P̂ )

+`(~p1, ~p2 )(~σ1 × ~σ2) · (q̂ × P̂ ), (5.2)

and analogously for A′ except with the replacement {f, g, h, k, `} −→ {f ′, g′, h′, k′, `′}. The

relative momentum is defined by ~q = ~p1 − ~p2 and the center of mass momentum is given by

~P = ~p1 +~p2. The tensor operator has the usual form S12(v̂) = 3~σ1 · v̂ ~σ2 · v̂−~σ1 ·~σ2. The interaction

in Eq. (5.2) is invariant under rotations, time-reversal, parity, and the exchange of particle labels.

The presence of the medium breaks Galilean invariance, and two new structures (the “center-of-

mass tensor” S12(P̂ ) and “cross-vector” (~σ1 × ~σ2) · (q̂ × P̂ ) operators) arise [135] that depend

explicitly on the center-of-mass momentum ~P . Neither of these terms are found in the free-space

nucleon-nucleon potential.

By assumption the two quasiparticle momenta ~p1 and ~p2 lie on the Fermi surface (|~p1| = |~p2| =

kf ) and therefore the scalar functions {f, g, h, k, `, f ′, g′, h′, k′, `′} admit a decomposition in Leg-
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endre polynomials:

f(~p1, ~p2) =
∞∑
L=0

fL(kf )PL(cos θ),

f ′(~p1, ~p2) =
∞∑
L=0

f ′L(kf )PL(cos θ), . . . (5.3)

where cos θ = p̂1 · p̂2. The expansion coefficients fL, f ′L, . . . are referred to as the Fermi liquid

parameters. In relating the Fermi liquid parameters to nuclear observables, it is often convenient

to multiply by the density of states

N0 = 2M∗kf/π
2 (5.4)

with M∗ the effective nucleon mass, to obtain dimensionless parameters FL = N0fL, . . . .

The ten scalar functions in Eq. (5.2) can be extracted from linear combinations of the spin-

space and isospin-space matrix elements, but the decomposition will depend on the orientation of

the orthogonal vectors ~q and ~P . For instance, if ~P = P ẑ and ~q = qx̂, then
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f = (6F1
1,1;1,1 + 3F1

1,0;1,0 + 3F1
0,0;0,0

+2F0
1,1;1,1 + F0

1,0;1,0 + F0
0,0;0,0)/16 ,

f ′ = (2F1
1,1;1,1 + F1

1,0;1,0 + F1
0,0;0,0

−2F0
1,1;1,1 −F0

1,0;1,0 −F0
0,0;0,0)/16 ,

g = (6F1
1,1;1,1 + 3F1

1,0;1,0 − 9F1
0,0;0,0

+2F0
1,1;1,1 + F0

1,0;1,0 − 3F0
0,0;0,0)/48 ,

g′ = (2F1
1,1;1,1 + F1

1,0;1,0 − 3F1
0,0;0,0

−2F0
1,1;1,1 −F0

1,0;1,0 + 3F0
0,0;0,0)/48 ,

h = (3F1
1,1;1,−1 + F0

1,1;1,−1)/12 ,

h′ = (F1
1,1;1,−1 −F0

1,1;1,−1)/12 ,

k = (3F1
1,1;1,1 − 3F1

1,0;1,0 + 3F1
1,1;1,−1

+F0
1,1;1,1 −F0

1,0;1,0 + F0
1,1;1,−1)/24

k′ = (F1
1,1;1,1 −F1

1,0;1,0 + F1
1,1;1,−1

−F0
1,1;1,1 + F0

1,0;1,0 −F0
1,1;1,−1)/24

` = (3F1
1,1;0,0 + F0

1,1;0,0)/4
√

2 ,

`′ = (F1
1,1;0,0 −F0

1,1;0,0)/4
√

2 , (5.5)

with the notation FTS,ms;S′,m′s
= 〈SmsT |F|S ′m′sT 〉. The quasiparticle interaction is defined as the

second functional derivative of the energy E with respect to the occupation probabilities n~pst:

δE =
∑
~p1s1t1

ε~p1 δn~p1s1t1

+
1

2Ω

∑
~p1s1t1
~p2s2t2

F(~p1s1t1; ~p2s2t2)δn~p1s1t1δn~p2s2t2 , (5.6)
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Figure 5.1: Total L = 0, 1 Fermi liquid parameters of the relative tensor interaction from two- and
three-body forces as a function of the density. Error bars are obtained from the standard deviation
of the five chiral potentials considered in the present work. Reprinted from [41].

where Ω is a normalization volume. The quasiparticle interaction F in momentum space has units

fm2, si labels the spin quantum number of quasiparticle i, and ti labels the isospin quantum number.

In the present work we consider contributions to the quasiparticle interaction up to second order in

many-body perturbation theory.

5.2 Results

In the present section we focus on the noncentral components of the quasiparticle interaction

from the five different chiral nuclear forces (n2lo450, n2lo500, n3lo414, n3lo450, n3lo500) [164,

165, 166, 167, 38, 168]. We focus primarily on the role of three-body forces and second-order

perturbative contributions. The quality of the nuclear force models and perturbative many-body

method is benchmarked by comparing the nuclear incompressibility, isospin asymmetry energy,

and effective mass (which are related to specific central Fermi liquid parameters) with empirical

values. We also study the convergence of the Legendre polynomial decomposition for both central

and noncentral forces.
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Figure 5.2: Total L = 0, 1 Fermi liquid parameters of the spin-independent central parts of the
quasiparticle interaction from two- and three-body forces as a function of the density. Error bars
are obtained from the standard deviation of the five chiral potentials considered in the present work.
Reprinted from [41].

5.2.1 Central components of the quasiparticle interaction

In previous work [162] we have computed the central Fermi liquid parameters in symmetric

nuclear matter including the effects of three-body forces. We update those results to include theo-

retical uncertainties obtained by varying the chiral order and momentum-space cutoff of the nuclear

potential. In comparison to Ref. [162] we also consider a larger range of densities in the present

calculation. We then use standard relations to study various nuclear observables that are directly

related to the low-harmonic central Fermi liquid parameters. Since the tensor Fermi liquid param-

eters for symmetric nuclear matter are largely unconstrained by empirical data, benchmarking the

central terms to empirical data is an important check on the nuclear force models and many-body

methods.

In Figs. 5.2 and 5.5 we show the L = 0, 1 Fermi liquid parameters associated with the

F, F ′, G,G′ components of the quasiparticle interaction. The isotropic spin- and isospin-independent

Fermi liquid parameter F0 is related to the nuclear incompressibility K = 9∂P/∂ρ, where P =

ρ2 ∂(E/A)
∂ρ

, through

K =
3k2

F

M∗ (1 + F0) . (5.7)
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Figure 5.3: Total L = 0, 1 Fermi liquid parameters of the center-of-mass tensor interaction from
two- and three-body forces as a function of the density. Error bars are obtained from the standard
deviation of the five chiral potentials considered in the present work. Reprinted from [41].

From Fig. 5.2 we see that F0 < −1 for ρ < 0.10 fm−3, which corresponds to the well known

instability of nuclear matter to density fluctuations associated with spinodal decomposition and

cluster formation. However, the nearly linear dependence of F0 on the nuclear density results

in a strongly increasing nuclear incompressibility, which we show in Fig. 5.6. At ρ = ρ0 the

incompressibility lies in the range 190 MeV < K < 380 MeV. While this is consistent with the

empirical estimate of 220 MeV < K < 260 MeV [176], the large theoretical range is due to

the fact the n2lo450, n2lo500, and n3lo500 nuclear forces saturate at too low of a density ρ '

0.14 − 0.15 fm−3. In this case the contribution ∼ 18ρ∂(E/A)
∂ρ

that is linear in the density strongly

enhances the nuclear incompressibility.

The quasiparticle effective mass M∗ is related to the Landau parameter F1 through

M∗

M
= 1 +

F1

3
, (5.8)

with M = 938.9182 MeV the average nucleon mass. From Fig. 5.2 we find that F1 > 0 for

ρ < ρ0 and consequently the effective mass is larger than the free-space mass. For ρ > ρ0 the

effective mass is typically less than that of a free nucleon, but the decrease in the effective mass
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Figure 5.4: Total L = 0, 1 Fermi liquid parameters of the cross-vector interaction from two- and
three-body forces as a function of the density. Error bars are obtained from the standard deviation
of the five chiral potentials considered in the present work. Reprinted from [41].

with increasing density is not nearly as large as in most mean field models and other approaches to

scaling masses [130] at first order. The large effective mass is due almost solely to the second-order

particle-hole diagram, which gives a contribution F (2ph)
1 ' 1 for all densities up to ρ = 2ρ0. From

the study of nuclear level densities in the vicinity of the Fermi surface, the effective mass has been

estimated to lie close to that of a free nucleon M∗ ' M . In Fig. 5.7 we show the effective mass

as a function of density together with the theoretical uncertainty estimates. At saturation density

we find the range 0.9 < M∗/M < 1.1. Since M∗/M → 1 as ρ → 0, the effective mass must rise

rather quickly at low densities.

We define the density-dependent isospin-asymmetry energy S2(ρ) as the coefficient of the

quadratic term in an expansion of the energy per particle of isospin-asymmetric nuclear matter

in powers of the parameter δnp = ρn−ρp
ρn+ρp

:

E

A
(ρ, δnp) =

E

A
(ρ, 0) + S2(ρ)δ2

np + · · · (5.9)

Generically [177, 40] the energy per particle contains non-analytic contributions in δnp beyond the

quadratic term in Eq. (5.9) when second-order perturbative corrections are included in the equation
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Figure 5.5: Total L = 0, 1 Fermi liquid parameters of the spin-dependent central parts of the
quasiparticle interaction from two- and three-body forces as a function of the density. Error bars
are obtained from the standard deviation of the five chiral potentials considered in the present work.
Reprinted from [41].

of state, but at low temperatures it is nevertheless a good approximation to retain only the quadratic

term in the expansion in Eq. (5.9). The isospin-asymmetry energy is related to the isotropic part of

the F ′ contribution to the quasiparticle interaction:

S2 =
k2
F

6M∗ (1 + F ′0) . (5.10)

In Fig. 5.8 we plot S2(ρ) and associated uncertainties up to twice nuclear matter saturation density.

We find the peculiar feature that the variations in the Landau parameter F1 (which enters into the

definition of the effective mass M∗) and in the Landau parameter F ′0 are correlated in such a way

as to produce a very small error band for the isospin-asymmetry energy up to nuclear saturation

density. For instance, at nuclear matter saturation density, we obtain 30 MeV < S2(ρ0) < 32 MeV,

which is consistent with other recent microscopic uncertainty estimates [173, 172] but with a much

smaller error band. It is not clear what could lead to the correlation between F1 and F ′0, and

therefore we tentatively attribute the very small errors in S2(ρ) to a chance cancellation.

From Fig. 5.5 we see that G′0 remains large and positive for all densities considered. At nuclear

saturation density, we find 1.2 < G′0 < 1.8, which is consistent with extractions [178] from fitting
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Figure 5.6: Incompressibility of symmetric nuclear matter as a function of the density for the two-
and three-body chiral nuclear force models considered in the present work. Reprinted from [41].

the peak energy of giant Gamow-Teller resonances in heavy nuclei. Such fits give a range 1.4 <

G′0 < 1.6 [179] but rely on certain model assumptions related to the shape of the parametrized

single-particle potential and the form of the effective interaction. In addition the authors of Ref.

[179] find correlations between the value of G′1 and the position of the energy peak of the Gamow-

Teller resonance whenG′0 is kept fixed, leading to further uncertainties in the extraction ofG′0 from

resonance data.

Finally, we investigate the convergence of the Legendre polynomial decomposition, Eq. (5.3),

for the noncentral components of the quasiparticle interaction. From Figs. 5.1–5.4 we see that

in some cases the L = 1 Fermi liquid parameters are comparable in magnitude to the L = 0

parameters at nuclear matter saturation density. Using the tensor parametrizations in Eq. (5.2), it

is expected [136] that the convergence is much improved compared to alternative choices, such as

H(~p1, ~p2)S12(q̂) =
q2

k2
f

H̃(~p1, ~p2)S12(q̂) (5.11)

employed in Refs. [134, 158, 127]. In Fig. 5.9 we plot the ten lowest dimensionless Fermi liquid

parameters from the n3lo450 potential at nuclear matter saturation density. It is clear that the

slowest convergence is in the spin- and isospin-independent part of the quasiparticle interaction F ,
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Figure 5.7: Nucleon effective mass in symmetric nuclear matter as a function of the density for the
two- and three-body chiral nuclear force models considered in the present work. Reprinted from
[41].

which even up to L = 9 has contributions greater than 0.1. The Legendre polynomial expansion

in all other channels is nearly converged by L = 5

5.3 Conclusions and outlook

In the present work we have computed for the first time the full set of central and noncentral

contributions to the quasiparticle interaction in symmetric nuclear matter up to twice nuclear sat-

uration density. We have derived general formulas that allow one to extract the associated scalar

functions from appropriate linear combinations of spin- and isospin-space matrix elements. Both

two- and three-body forces are included at first- and second-order in perturbation theory, with the

involved numerical calculations of the second-order diagrams benchmarked against model inter-

actions. Three-body forces at the Hartree-Fock level are shown to give important contributions to

the relative tensor and cross-vector interactions. Indeed, the isovector cross-vector interaction is

dominated by three-body forces, in particular the two-pion exchange term proportional to the low-

energy constant c4, and only the second-order particle-hole diagram leads to a modest reduction of

the strength in this channel. While the relative tensor force from the free-space nucleon-nucleon

interaction is enhanced in the medium by three-body forces and second-order perturbative correc-

tions, the center-of-mass tensor force remains relatively weak.
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Figure 5.8: Isospin-asymmetry energy as a function of the density for the two- and three-body
chiral nuclear force models considered in the present work. Reprinted from [41].

We have considered five different nuclear force models in order to estimate theoretical un-

certainties. Up to nuclear saturation density, the relative tensor force in both the isoscalar and

isovector channels is well constrained by microscopic many-body theory, which should be valu-

able for efforts to include effective tensor forces in mean-field modeling and density functional

theory. In addition we find robust evidence for a strong isovector cross-vector interaction which is

not normally included in mean-field models and may be important for spin-dependent phenomena.

We benchmark the quality of our results against bulk nuclear matter properties, such as the incom-

pressibility, isospin-asymmetry energy, and nucleon effective mass, which are directly related to

selected central Fermi liquid parameters. While the theory uncertainties are sometimes large, in all

cases the results are consistent with empirical constraints.

The present calculations are a step toward the microscopic description of response functions in

nuclear matter consistent with equations of state exhibiting realistic nuclear saturation properties.

In the future this work will be extended to isospin-asymmetric nuclear systems with applications

to neutrino processes in neutron stars and supernovae.
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6. NUCLEON EFFECTIVE MASS

6.1 Introduction

The nucleon effective mass was first used to describe the dynamics of nucleons interacting

with a momentum dependent potential by treating them as quasi-nucleons with an effective mass,

M∗, interacting with a potential independent of momentum. The effective mass can be thought of

more generally as encoding the momentum and energy dependence of a single-particle potential.

The nucleon effective mass is an important organizing concept in the theoretical description of dy-

namical and thermodynamical properties of nuclear many-body systems. In the context of nuclear

astrophysics, the effective mass influences entropy generation in core-collapse supernovae [180]

and the composition of the evolving matter [181], the strength of nuclear pairing in the neutron

star inner crust and core [182, 183], superfluid entrainment [184] and its effect on pulsar glitches.

In quantum many-body theory the effective mass is related to the momentum dependence of the

nucleon single-particle energy and consequently to the density of states. Therefore, by examining

nuclear level densities in the vicinity of the Fermi surface, the effective mass is inferred [185, 186]

to lie close to that of a free nucleon M∗ ' M . Below the Fermi surface, the distribution of

deeply bound states implies a lower value of the effective mass on the order of M∗ ' 0.7M [187].

The effective mass above the Fermi surface can be deduced from the energy dependence of phe-

nomenological nucleon-nucleus optical potentials, and again a value of M∗ ' 0.7M is needed for

a consistent description of experimental data [4]. It is well known [5] that these general features

are reproduced in microscopic calculations of the effective mass when second-order perturbative

contributions to the nucleon self-energy are included.

In isospin-asymmetric nuclear matter, protons and neutrons will experience different single-

particle potentials with different strengths and momentum dependences, the latter resulting in a

splitting of the proton and neutron effective masses. In mean field theories [188, 189] this split-

ting is traditionally encoded through the isoscalar M∗
s and isovector M∗

v effective masses defined
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according to
1

M∗
n,p

= (1± δnp)
1

M∗
s

∓ δnp
1

M∗
v

, (6.1)

where (-) is for neutron and (+) is for proton.

This parametrization is particularly convenient since the isoscalar and isovector effective masses

depend only on the nucleon density. In addition, certain experimental observables, such as the nu-

clear electric dipole polarizability, are directly controlled by the isovector effective mass M∗
v . It is

also common in the literature to consider the difference in neutron and proton effective masses as

a function of density and isospin-asymmetry:

M∗
n−p =

M∗
n −M∗

p

M
(6.2)

A global analysis [190] of experimental and theoretical predictions for the isospin-asymmetry en-

ergy Esym(ρ) and its slope L(ρ) was used to extract the difference between the neutron and proton

single-particle potentials with the conclusion that M∗
n−p(ρ0, δnp) ' 0.27 δnp. More recently, an

investigation [191] of the isovector giant dipole resonance and isoscalar giant quadrupole reso-

nance data for 208Pb was used to deduce values for the isoscalar and isovector effective masses of

M∗
s (ρ0) = (0.91±0.05)M andM∗

v (ρ0) = (0.80±0.03)M , which implies a valueM∗
n−p(ρ0, δnp) '

(0.27± 0.15)δnp, consistent with Ref. [190].

The above results, as well as microscopic many-body calculations [192, 193] with realistic

nuclear force models, indicate that in isospin-asymmetric nuclear matter at saturation density, the

neutron effective mass is larger than the proton effective mass. This is naturally explained by the

properties of the nucleon-nucleon interaction, which at low momenta is more strongly attractive in

the isospin-singlet T = 0 channel. In neutron-rich matter it is therefore expected that the proton

single-particle potential will be deeper than the neutron single-particle potential. For momenta

larger than the characteristic mass scale mσ ∼ 550 MeV associated with the intermediate-range

attraction in the nucleon-nucleon potential, isovector interactions grow more strongly repulsive

and eventually lead to an isospin inversion in the nuclear single-particle potential whereby a proton
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experiences a more repulsive mean field potential than a neutron [192, 175]. This results in a

stronger momentum dependence of the proton single-particle energy and consequently a smaller

effective mass.

Recent heavy-ion collision data [194] for the relative yields of high-momentum protons and

neutrons, however, appear to show a preference for M∗
n−p(ρ0) < 0. Fast particle emission in the

pre-equilibrium phase has been suggested [195, 196, 197] to be a particularly sensitive probe of

the neutron-proton effective mass splitting, as lighter particles will experience greater acceleration

and larger final momenta. The double ratio of neutron-to-proton yields from 124Sn−124Sn and

112Sn−112Sn reactions at beam energies of E/A = 50, 120 MeV were shown to be more consis-

tent with transport simulations [197] employing the SLy4 Skyrme interaction (with M∗
n−p(ρ0) =

−0.15δnp) compared to the SkM* Skyrme interaction (with M∗
n−p(ρ0) = 0.30δnp). This is a puzzle

in light of the general theoretical arguments for M∗
n−p(ρ0) > 0 described above, but additional

experiments together with a broader range of mean field models and transport codes may shed

further light on the issue.

In the present work we perform a systematic study of the neutron-proton effective mass splitting

in neutron-rich matter from the perspective of chiral effective field theory. A central aim is to

identify a range of energies for which the proton-neutron effective mass splitting is large, which

may help guide future experimental investigations of this quantity in medium-energy heavy-ion

collisions. We employ as a starting point realistic chiral two- and three-body forces from which we

compute the proton and neutron self-energies in isospin-asymmetric nuclear matter and extract the

associated effective masses. To assess theoretical uncertainties we consider chiral nucleon-nucleon

potentials at next-to-next-to-leading order (N2LO) and N3LO, varying also the resolution scale.

6.2 Results

The effective mass is usually written as a product of terms that represent these dependences.

M∗

M
=
M∗

E

M

M∗
k

M
(6.3)
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where

M∗
k

M
=

(
1 +

M

k

∂U

∂k

)−1

(6.4)

and

M∗
E

M
= 1− ∂U

∂E
(6.5)

with U being the optical potential.

The nucleon effective mass calculated in nuclear matter from a set of five chiral interactions

is shown in Fig. 6.1. The effective mass peaks at the Fermi momentum before flattening off to a

value of 1 at high momentum.

The neutron-proton effective mass splitting is given by Eq. (6.2) and expressed in terms of the

optical potential is given by

m∗n−p =

M

(
1
kpf

dUp

dk

∣∣∣∣
kpf

− 1
knf

dUn

dk

∣∣∣∣
knf

)
[
1 + M

kpf

dUp

dk

∣∣∣∣
kpf

][
1 + M

knf

dUn

dk

∣∣∣∣
knf

] . (6.6)

The effective mass splitting is shown in Fig. 6.2. The dashed lines represent current phe-

nomenological estimates of the effective mass splitting and the colored lines represent microscopic

calculations of the effective mass splitting from a set of chiral interactions. The results from chi-

ral EFT are not only within current phenomenological estimates [198], but predict a more narrow

range of values.

6.3 Conclusions

In this ongoing work we aim to identify a range of energies for which the proton-neutron

effective mass splitting is large by performing microscopic calculations of the nucleon effective

mass in nuclear matter.
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Figure 6.1: Nucleon effective mass at saturation density calculated from different chiral interac-
tions plotted as a function of momentum. The neutron effective masses are shown on the top row
and the proton effective masses are shown on the bottom row. The left column has an isospin
asymmetry of 0.2 and the right column has an isospin asymmetry of 0.4. The Fermi momentum is
shown by the red line.
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Figure 6.2: Neutron-proton effective mass splitting calculated from different chiral interactions
(blue) plotted as a function of momentum. Current phenomenological estimates (dashed black).
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7. SPECTRAL FUNCTION

The spectral function gives the probability of removing a nucleon with momentum in the single-

particle state nlj from a nucleus A and the residual nucleus A− 1 having an excitation energy E.

The spectral function is given by

Snlj(E) =
1

π

Wnlj(E)

(E − Enlj)2 +Wnlj(E)2
, (7.1)

where

Wnlj(E) =

∫ ∞
0

Ψ̄2
nlj(r)

W (r, E)

m∗(r, E)/m
dr, (7.2)

and W (r, E) is the imaginary term of the optical potential and Ψnlj(r) is the wave function of the

state.

7.1 Spectral Function from Dispersive Optical Potential

Dispersive optical potentials are constrained by the dispersion relation that links the imaginary

and real terms, in addition to enforcing causality, to construct more realistic phenomenological

optical potentials. In the dispersive approach, the optical potential has both real and imaginary

terms U(r, E) = V (r, E) + iW (r, E), however, the real term is written as a sum of Hartree-Fock

and dispersive contributions:

V (r, E) = VHF (r, E) + ∆V (r, E). (7.3)

The dispersive contribution is related to the imaginary term according to the dispersion relation

which is given by

∆V (r, E) =
P

π

∫ ∞
−∞

W (r, E)

E ′ − E
dE ′, (7.4)

90



Figure 7.1: Shown in the top plot are the volume and surface imaginary terms from a dispersive
optical potential, with their real counterparts shown in the bottom plot.

where one can see that knowledge of the imaginary part is needed along the entire energy

domain. In practice [199, 200] the imaginary term is assumed to be symmetric about the Fermi

energy, leading to the dispersive contributions to the real term to be skew-symmetric as seen in Fig.

7.1. The imaginary term is typically determined from a traditional phenomenological approach

that involves an optimization of the model parameters to best reproduce scattering data. Once

the imaginary term is determined, the dispersive contribution to the real term follows from the

dispersion relation, leaving only the Hartree-Fock contribution to the real term. The Hartree-Fock
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Figure 7.2: Energy dependence of the imaginary depth of the microscopic opitcal potential shown
to be symmetric about the Fermi energy, which is ≈ −17 MeV for symmetric nuclear matter.

term is then fit to both scattering data and bound-state energies with the assumption of linear energy

dependence for negative energies. This consistent treatment of positive and negative energy states

is a clear advantage of the dispersive approach compared to traditional methods.

7.2 Spectral Function from Microscopic Optical Potential

As a first step we aim to test the assumptions of the dispersive optical potential analysis in

our microscopic framework. One of the key assumptions needed to compute the integral in the

dispersion relation is the symmetry in the energy dependence of the imaginary strength, since

there are few empirical constraints of the imaginary term in the negative energy regime. In Fig.

7.2 we show the depth of the imaginary term plotted as a function of energy, and an approximate

symmetry about the Fermi energy is exhibited.

The next key assumption of the dispersive optical potential approach is the linear energy de-

pendence of the Hartree-Fock contribution for negative energies. In Fig. 7.3 , we show that this is
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Figure 7.3: The Hartree-Fock contribution to the microscopic optical potential from chiral EFT.

an excellent approximation of our microscopic calculations of the Hartree-Fock contributions.

An additional approximation employed by many dispersive optical potential analyses is the en-

ergy independence of geometry parameters, in addition to assuming that real and imaginary volume

parameters are equivalent. In [201], it is shown in great detail that neither of these assumptions

hold in general.

In Fig. 7.4 spectral functions for 40Ca calculated from microscopic optical potentials are plotted

as a function of energy. Compared to phenomenological studies, the energies for states near the

Fermi energy are in reasonable agreement.
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8. CONCLUSIONS AND OUTLOOK

I have developed microscopic nucleon-nucleus optical potentials based on chiral nuclear forces,

calculated through many-body perturbation theory. My work extended results for the nucleon op-

tical potential in nuclear matter to optical potentials for nucleons interacting with nuclei and ulti-

mately to a global nucleon-nucleus optical potential suitable for exotic isotopes. This global optical

potential yields good results in preliminary benchmarks to elastic scattering data. In addition to

satisfactorily reproducing scattering data, comparisons to state-of-the-art phenomenological global

optical potentials revealed inadequacies in their isovector terms. As rare isotope beam facilities

begin to perform experiments on increasingly neutron-rich isotopes, knowledge of the isovector

terms of the optical potential will be crucial for making realistic theoretical predictions of these

reactions.

There are many avenues for continuing this line of research. Among those are several ways

of improving the microscopic calculations. For example, the density matrix expansion calculated

at the Hartree-Fock level is known [48, 63] to produce a stronger spin-orbit interaction than is

required from traditional mean field theory studies of finite nuclei by about 20-50%. The inclu-

sion of multi-pion-exchange processes has been shown [64] to reduce the strength of the one-body

spin-orbit interaction in finite nuclei. In future works we intend to account for these processes by

including G-matrix correlations in the density matrix expansion as outlined in Ref. [56]. Addition-

ally in future work we plan to implement next-to-next-to-next-to-leading order (N3LO) three-body

forces [35, 36, 37, 78, 79, 80] as well as a wider class of chiral potentials [117, 202] to better assess

the theoretical uncertainties.

Separate from improvements to the calculations, there are several topics that are very natural

applications for these microscopic optical potentials. In the future we plan to compute neutron-

capture cross sections on exotic isotopes and more thoroughly explore theoretical uncertainties

[117, 202] associated with the isovector part of the nuclear optical potential. This microscopic

global optical potential may also be used as a base in the construction of a new phenomenological
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global optical in a Bayesian framework. New phenomenological optical potentials based on micro-

scopic physics with incorporated uncertainty estimates will surely be a very important contribution

to the future study of nuclear reactions.
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