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 ABSTRACT 

 

This research is focused on building statistical solutions to identify chemical-

genomic interactions. We have used a linear mixed model to study the trend in the 

abundances of the genes in a population when exposed to varying concentrations of drugs. 

In this model, each influence of the drug on each individual gene is treated as random 

effects. For every gene, our model yields a gene-specific slope for the abundance vs the 

concentration of the drugs. These slopes are then subjected to 1-sided test to determine the 

genes with the most significantly outlying slopes, i.e., giving us an insight on the potential 

target of the drug under consideration. To gain further insights, we have used the GSEA 

analysis on the ranks of the slopes to understand the impact of the drugs on a pathway of 

genes. The developed model is validated on the publicly available chemical-genomics 

dataset published by the Broad Institute and multiple hypomorph libraries created by our 

collaborators. 
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CHAPTER I  

INTRODUCTION  

 

Recently, a new group of experimental methodologies has been developed for 

detecting interactions between modulatory compounds (that elicit a phenotype) and genes 

in a bacterial genome, also known as chemical-genomic (C-G) interactions. The most 

common application of C-G analysis is for drug discovery, in which the goal is to discover 

the protein target of an inhibitor, which can yield insight about its mechanism of action.  

A general approach to C-G experiments is to construct a knock-down (or 

depletion) library of essential genes in the organism (or “hypomorphs”).  This consists of 

a pool (mixture) of mutant bacteria where the level of individual genes can be controlled.  

For example, expression of target genes can be decreased using a tetracycline-inducible 

(Tet) promoter (cloned onto a plasmid, with the native gene knocked out) (Schnappinger 

and Ehrt 2014, Evans and Mizrahi 2015).  More sophisticated systems employing the 

ClpXP protease have been used to target genes (cloned with a C-terminal DAS tag) for 

proteolytic degradation, again under tetracycline control (Kim, O'Brien et al. 2013).  

Finally, CRISPRi can be used to express short RNA sequence guides (sgRNAs) 

complimentary to the target genes to inhibit their transcription (Rock, Hopkins et al. 2017).  

If the genes in the library are barcoded with unique nucleotide tags, then the 

relative abundance of clones in the library can be efficiently profiled using deep 

sequencing.  Furthermore, the results of an experiment (e.g., treatment with drug) can be 
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quantified as changes in abundance (estimated via barcode counts) of different clones in 

the library.  

Regardless of the methodology, the expression levels of the library members are 

knocked-down in parallel (each in a separate clone), resulting in overall growth-

impairment of the culture (since these are essential genes).  Then the culture is treated with 

an inhibitor, typically at concentrations just below the MIC.  In theory, this will provide 

some challenge (or stress) to the population, and most clones in the library are expected 

to respond similarly (e.g., they all experience a similar degree of inhibition due to the drug 

treatment).  However, for the member of the library with depletion of the specific target 

of the inhibitor, excess growth impairment is expected.  C-G analysis relies on synergy 

between the stress of drug pressure combined with the stress caused by depletion of the 

target gene.  In contrast, although absolute abundance of other members of the library 

would be expected to decrease due to presence of drug, because of normalization (e.g. 

dividing individual barcode counts by the total number of reads collected for the sample), 

the relative abundances of most genes should stay (approximately) the same.  Thus, the 

gene(s) interacting with the compound (CGIs) can be identified as those genes that exhibit 

excessive (or even complete) depletion (compared to the other members of the library) at 

higher concentrations of the inhibitor. (Johnson, LaVerriere et al. 2019).  

The objective of this research is to formulate the statistical analysis of a C-G 

experiment to identify the gene(s) in the library that interact with a drug by looking for 

those with excess depletion of barcode counts compared to the rest of the population. 

Quantifying statistical significance is important, because the genes can always be ranked 
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by their apparent level of depletion, and there will always be a "most-depleted" gene, but 

this does not necessarily mean it is the true target; the target gene might not even be in the 

knock-down library.  The challenge of analyzing C-G data is that there are many sources 

of noise in the data (barcode counts).  The original abundances in the library are only 

approximately known, and the growth under treatments and DNA extraction/preparation 

for sequencing are stochastic, resulting in variance between both biological and technical 

replicates.  More importantly, there are natural (but unpredictable, though possibly 

biological) reasons that the abundance of a particular library member might increase or 

decrease between different drug concentrations, as the population experiences different 

levels of stress.  Although each depletion mutant might experience a distinct level of 

impairment, and the drug treatment should theoretically affect them all equally (except for 

the target gene with which it interacts), there is inevitably going to be some variance in 

the apparent responses to depletion of genes resulting from variance in levels of gene 

abundance between drug concentrations.  Finally, not all genes might be represented in 

the library at equivalent levels, and genes that are low-abundance to begin with (or as 

growth-impairment increases) become more difficult to reliably estimate, as counts 

approach 0.  Collecting sufficient sequencing data (reads) and sequencing multiple 

replicates greatly facilitates the statistical analysis.  

In previous work, Johnson et al (Johnson, LaVerriere et al. 2019) described an 

approach to statistical analysis of C-G data based on a generalized linear model (GLM), 

called ConCensusGLM (or PROSPECT).  Specifically, they fit gene abundances 

(normalized barcode counts) to a linear model (using the Negative Binomial distribution 
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with a log-link function as a likelihood), with drugs (at different concentrations) as 

covariates.  The GLM approach captures the dependence of gene abundances on drug 

treatments through coefficients in the linear model.  Additional offsets for other covariates 

such as batch, plate, lane, and instrument were also estimated and subtracted out.  As 

validation, they demonstrated that known drug targets like DNA gyrase A and RNA 

polymerase B exhibited among the most extreme depletion in the presence of known anti-

mycobacterial drugs like moxifloxacin and rifampicin, respectively.  They then ran the 

experiment on a large library of 50,000 compounds generated through combinatorial 

chemistry.  To determine which interactions are statistically significant, the authors 

proposed using a Wald test, employing strain-wise dispersion estimates (from growth in 

DMSO controls).  A Wald test tests whether a coefficient is significantly different from 

zero (Draper & Smith, 1998).  However, the linear model in the ConCensusGLM pipeline 

treats each drug concentration independently.  The only dependence on drug concentration 

is between individual concentrations and the DMSO control (effectively, log-fold-changes 

relative to no drug), and thus is more susceptible to random fluctuations.  Indeed, in their 

experiments on the combi-chem library, they observed 95,685 "significant" interactions 

between a chemical library of 50,000 compounds and a knock-down library of 152 genes 

(1.3% of 7.2M combinations tested), using a criterion of p-value<10-10.  This is probably 

an overestimate of the number of true chemical-genetic interactions (since this implies ~2 

hits for every compound, but it is highly unlikely that the true target for every compound 

will be represented in the library). The fact that they had to lower the p-value threshold to 

such an extreme level (10-10) and still wound up with so many hits (2 interacting genes per 
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compound) suggest their test is too loose and probably admits many false positives; our 

objective is to develop a more conservative statistical model where only true positives 

meet a rigorous statistical criterion.  

In this thesis, we propose a new approach in which drug concentration is treated 

as a quantitative variable in the linear model, and the effect of concentration on gene 

abundance is captured by a single coefficient (a slope) for each gene that incorporates 

information across multiple concentrations.  Interesting genes should be those where the 

depletion shows a consistent concentration-dependent effect.  Genes that are targets of 

drugs are expected to show a synergistic effect, such that, at low drug concentrations, they 

are not more depleted than the rest of the population, but the abundance should 

systematically decrease as drug concentration increases (approximately around the MIC).  

Our approach to assessing significance is to calculate a slope of the log of gene abundance 

with respect to drug concentration, integrating information across a range of 

concentrations and capturing the trend of the counts.  This is more robust because it 

depends on trends exhibited over multiple conditions (and hence is less sensitive to 

random fluctuations of gene abundance in a single condition).  Not all genes follow a 

perfect S-curve as is typical of an ideal dose-response effect.  Furthermore, it is hard to 

predict what concentration the drop-off will occur, since knock-down of different genes 

might cause different degrees of impairment (Wei, Krishnamoorthy et al. 2011), which 

affects the degree of synergy with the drug.  But if the abundance drops off at some point 

within the concentration range evaluated, the overall decrease in abundance would be 

characterized by a negative slope.  
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Our approach is implemented as a linear mixed model (LMM), where the slope of 

each gene is represented as a random effect (conditional on drug concentration), so each 

gene can have its unique slope parameter.  The aim of the approach is to identify the genes 

that exhibit the most negative slopes, that is, genes exhibiting the greatest degree of 

depletion as concentration increases.  To determine whether the effect (slope) is 

statistically significant for a given gene, we compare it to the rest of the population, 

essentially looking for outliers.  This is another fundamental difference from 

ConCensusGLM.  In ConCensusGLM, the significance of individual gene-drug-

concentration combinations is assessed using a Wald test, which aims to test only whether 

the coefficient is significantly different from zero.  But due to the multiple unaccounted-

for sources of noise in C-G experiments, there are various reasons why the slopes of some 

genes might be different from zero, resulting in dispersion in the distribution of slopes.  

Failing to account for these sources of dispersion is likely to produce many false positives.  

We take an empirical view that, whatever the reasons, the average gene (which is assumed 

not to interact with the drug), might have a slightly positive or negative slope, and we 

determine this variance post-hoc.  True interactors (CGIs) must stand out from the spread 

of the population as outliers.  Thus, our test for statistical significance takes advantage of 

the distribution of random effects to evaluate which genes have (negative) slopes that are 

outliers.  Our implementation also incorporates an adjustment of the slopes to account for 

uncertainty in the slope estimates themselves.  Thus, unlike a Wald test, which evaluates 

coefficients in isolation, our method identifies genes as significant only in the context of 

all the other genes.  It is generally a more conservative approach that will detect fewer 
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CGIs, but hopefully a greater proportion of them will be genuine, by eliminating false 

positives.  

Below is a summary of our technical contributions in this research:  

● Developing a novel linear mixed model-based approach to study the influence 

of the abundances of the library of genes treated at various drug concentrations.  

● Identifying the most significantly depleted genes in a population of genes using 

statistical tests for various anti-tubercular drugs such as levofloxacin, rifampin, 

copper etc.  

The following chapters describe the details of the proposed model and the results from the 

experiments on the various datasets.  
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CHAPTER II  

STATISTICAL ANALYSIS OF CHEMICAL GENOMICS DATA 

 

Overview 

The classic way of analyzing chemical genomics data is to select resistance 

mutants and identify its location by sequencing. However, a new approach (C-G) is to 

knock-out or knock-down genes one at a time and test whether the sensitivity to the 

inhibitor is affected. Recent technology developments (ClpXP proteolysis, Illumina 

sequencing) (Schnappinger & Ehrt, 2013, Wei et. al, 2011) have made it possible to scale 

this up to do it in parallel for many mutants (each with depletion of a different gene) at the 

same time in a pool (bacterial culture, “hypomorph library”). The experiment produces 

counts of genes (through counts of nucleotide barcodes through sequencing), and the goal 

of this thesis is to develop a statistical analysis method for analyzing these read counts and 

determining, with statistical confidence, which genes interact with which drugs, based on 

synergy between depletion effects of knock-down and drug treatment. 

The challenges are: 1) there is a lot of noise in these experiments (stochastic 

variation of counts), and 2) many genes show relative changes in abundance but not always 

in a consistent and drug-depending way.  We will show how linear mixed-models can be 

used to address these problems and identify the strongest candidates for C-G interactions. 

The typical experimental setup for our analysis is designed as follows.  There is a 

hypomorph library consisting of 𝐺 genes whose expression can be controlled (depleted).  

Each clone has a knock-down of a different gene, and they are tagged with unique 
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nucleotide barcodes that can be amplified by PCR.  The library is grown in standard 

culture conditions (e.g., 7H9 medium), typically on 96- or 384-well plates, for a fixed 

number of days calibrated so that there is visible growth without inhibitors.  In parallel 

wells, drugs are added at concentrations that span a range around the MIC (typically 2-

fold dilutions), keeping in mind that growth might be severely depleted or eliminated 

above the MIC.  After incubation of the plates, DNA is extracted from each of the wells 

(possibly facilitated by robotics), the barcodes are amplified using PCR, and the samples 

are prepared for high-throughput sequences (e.g., adapters with unique barcodes for 

multiplexing samples on an Illumina sequencer).  It is recommended to collect multiple 

replicates of each culture condition (drug treatment).    

After the sequencing data is obtained, the reads are de-multiplexed and formatted 

into a matrix containing counts 𝐶!,# for each gene of the hypomorph library in each sample 

(where 𝑆 is the total number of samples).  The metadata for each sample includes drug, 

concentration, and possibly other data that could be used as covariates such as number of 

days of incubation, carbon source in medium, strength of knock-down (sspB, tet).  Finally, 

the counts are normalized to produce relative abundances by dividing each individual 

count by the total counts for that sample.  This step is done to adjust for the different 

numbers of reads sequenced for each sample, represented as another matrix 𝐴!,#, where 

the values range between 0 and 1 representing the percentages of the population.  An 

alternative representation useful for modeling is to melt the data into a column matrix of 

all individual abundances 𝑌 of dimensions 𝑛 × 1, where 𝑛 = 𝐺 × 𝑆. 
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Linear Model Selection to Analyze Chemical-Genomics Data 

We tried multiple mathematical models based on simple linear regression with 

interaction and linear mixed models. A comparative study of these models (Zewotir et. al, 

2007, Wright, 2017) helped us identify the best suited model for our data, which was then 

used for further analysis. We try to fit these models to capture the relationship between 

the (log-transformed) gene abundances and the log-transformed drug concentration. We 

begin our experimentation with fitting this data to a linear regression model with 

interaction effects between the gene and the concentration. 

 

Linear Regression with Interactions 

We start with OLS based linear regression between the log-abundances and log-

concentration of the drugs and consider interactions between the genes and the 

concentrations of the drug. This interaction-effects generates unique slopes and intercepts 

corresponding to each of the genes in the population. Our model in R looks like:  

log-abundances ~ 0 + (gene)+ (log-concentration) + (gene)*(log-concentration)  

The second term in this equation corresponds to gene-specific intercepts. The third 

term corresponds to overall slope for log-concentration of the drug. The last term 

corresponds to gene-specific slopes for the increasing concentrations of the drug. We fit 

this model to the chemical-genomics analysis data published by Broad Institute 

(downloaded from www.chemicalgenomicsoftb.com) and compare its outcome with the 

alternative linear mixed model-based approach.  The outcome of the model is captured in 

the following sections. 
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A fundamental problem in this approach is that for fitting a linear model, we 

assume that the data corresponding to every gene is independent from one other. However, 

as our model works on the relative abundances of the genes for every experimental 

condition, the relative counts of the genes are not exactly independent of each other which 

violates a basic assumption in fitting linear models (Winter, 2013). To overcome this 

problem, we use linear mixed models such that the gene-specific effects are captured as 

the “random effects” in the model. The following section describes further on the linear 

mixed model. 

 

Linear Mixed Model 

A linear mixed model (LMM) captures the relationship between (log-transformed) 

gene abundances and (log-transformed) drug concentrations.  We fit the model separately 

for each drug (subscript d is implicit).  The model is expressed as:  

𝑦 = 	 𝑙𝑜𝑔$%𝑌	~	𝑁(𝑋𝐵 + 𝑍𝑈, 𝜎&') 

where, 𝑌 is the log-abundance matrix. 𝑋 is a 𝑛 × 2 design matrix, with a column encoding 

the log10 of the concentration and a constant (1) for the intercept. In controls or no-drug 

treatments, the value used is minimum of the non-zero concentrations divided by 10, so 

that, on a log scale, it is one less than the lowest concentration evaluated.  The coefficients 

𝐵 are the fixed effects which will be fit in the model, representing an average slope and 

intercept for each drug (independent of gene).  The 𝑍𝑈 term represents random effects, 

for capturing the gene-specific effects.  𝑍 is a 𝑛 × 2𝑔	matrix of covariates with 𝑔 binary 

columns that encodes the information about which gene each observation represents, and 



 

12 

 

the associated drug concentrations.  𝑈 is a 2𝑔 × 1 matrix of random effects, which 

includes a slope and intercept for each of the gene. 

The variance of observations 𝜎&' can be decomposed over the fixed and random 

effects by introducing the variable 𝛾( which represents the gene-specific errors (Zewotir 

& Galpin, 2007). Thus, each individual random effect 𝑈( is assumed to be sampled from 

a normal distribution with 0 mean and independent variance of 𝜎(' such that,  

𝛾( 	= 	
𝜎('

𝜎&'
 

The null hypothesis is that the random effects	𝑈 are drawn from a multivariate-Normal 

(MVN) distribution with 0 mean and unknown covariance matrix ∑:  

𝑈 ∼ 𝑀𝑉𝑁(0, Σ) 

where Σ = 𝜎&'𝐷	, and D is a block diagonal matrix with each block corresponding to the 

independent variance of each of the covariates of the random effects, i.e., intercept and 

slope corresponding to each gene. 

𝐷(	 =	𝛾(𝐼'! 

𝛾( represents the gene-specific component of the errors. 𝛾( is assumed to be sampled from 

a Normal distribution with 0 mean and independent variance of 𝜎('. 

Our model can thus be decomposed with respect to the fixed and random effects 

by considering that 𝐸(𝑌) = 𝑋𝐵 and the 𝑣𝑎𝑟(𝑌) 	= 	𝜎&'𝐻 where 𝐻 = 𝐼* + 𝑍𝐷𝑍+. For this 

model, the maximum likelihood estimates of 𝐵 and 𝑈, referred to as 𝐵H	𝑎𝑛𝑑	𝑈J respectively, 

can be computed as: 

𝐵H = (𝑋′𝐻,$𝑋),$(𝑋′𝐻,$𝑦) 
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and 𝑈	J = 𝐷𝑍′𝐻,$(𝑦	 − 	𝑋𝐵)M  

However, since 𝛾(, and thus 𝐷 and 𝐻, are unknown, we use restricted maximum likelihood 

(REML) to solve the system by an iterative procedure (Lindstrom & Bates, 1990), as 

implemented in the lmer function in the lme4 package in R.  The resulting model then has 

estimates of the covariance matrix of the random effects, and the variance of the slopes as 

a population can be recovered from the diagonal elements in Σ.  

We have explored two formulas for the implementation purpose.  

F1: logY ~ 1+conc + (1+conc|gene)  

F2: logY ~ 1 + conc + (1|gene) + (0 + conc|gene))  

The primary difference between F1 and F2 is that F1 accounts for a random slope and 

intercept for each of the genes, whereas F2 decouples the random intercept and random 

slope for each of the genes. Both models consider a fixed slope and intercept for the overall 

population. The subsequent portion of this section compares the two linear mixed models 

and the linear regression with interaction effects on the chemical-genomics data published 

by the Broad Institute.    

 

Comparing Linear Models 

We evaluated the three models on data for trimethoprim published by the Broad 

Institute (Johnson, LaVerriere et al. 2019). Trimethoprim is a widely used anti-

tuberculosis drug which targets a gene (dihydrofolate reductase, dfrA) in the folate 

pathway.  This data comprises abundances of 155 genes profiled at various concentrations 

of trimethoprim. As evident from the plots below (Fig. (1)), trpG stands out as a 
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significantly depleted gene in the linear regression model with interactions and the linear 

mixed model with F2. This is an expected outcome for trimethoprim because, although 

dfrA itself was not in the hypomorph library, trpG is also in the folate pathway. TrpG 

converts chorismate into PABA as the first step in the pathway.  This is consistent with 

the analysis of this data with ConCensusGLM, which also detected trpG as a C-G 

interaction with trimethoprim.  Additionally, these two models generate highly correlated 

slopes for all the genes in the library (Fig. (2)). Moving ahead, we use the linear mixed 

model (F2) for further analysis.  

 

         

 

 

Figure 1 Histogram of the slopes from (a) OLS model (b) Linear Mixed Model (F1) 
(c) Linear Mixed Model (F2) 

(a) (b) 

(c) 
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Figure 2 Scatter plots of the slopes from models (a) F1 vs F2 (b) OLS vs F1 (c) OLS 
vs F2. We observe that the slopes from OLS and F2 are highly correlated. 
 

 

 

Statistical Significance 

To determine which genes, have significantly negative slopes representing excess 

depletion, we compute Z-scores and look for outliers with respect to the overall population 

of genes. Our null hypothesis is that slopes, as random effects, are normally distributed 

(a) (b

) 

(c) 
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with zero mean and a variance of Σ. Thus, the Z-scores of the slopes for each gene g can 

be computed as: 

𝑧! =	
𝑠! − 	𝜇
𝜎#

 

where 𝑠! is the slope (concentration-dependent random effect) for the gene estimated in 

the model, 𝜇 is the mean of these slopes and 𝜎# is the standard deviation of the population 

of slopes. For each gene, we can compute a p-value from the Z-score using a 1-sided test, 

𝑝( = 	𝜙(𝑍(), which is the cumulative of the standard-Normal distribution.  

This approach, however, does not account for certainty in the slope estimates 

themselves.  For example, two genes might have very similar slopes, but the individual 

data points (log-abundances at log-concentrations) for one might be much more variable 

than the other. One such example is captured in Fig. 9.  Slopes from data with high noise 

should be less confident.  To quantify this, we compute the variance of the residuals 

(differences between predicted log-abundances and observations) with respect to the fitted 

model.   

  𝑅 = 𝑋𝐵 + 𝑍𝑈 − 	𝑙𝑜𝑔𝑌 

 𝑅	corresponds to a 𝑛 × 1 vector of residuals for all observations. To compute the 

residual for a given gene, we project the residual vector in the gene space by multiplying 

with 𝐺 which is a 𝑛 × 𝑔 binary matrix indicating which gene corresponds to a given 

observation. We then compute the covariance matrix as: Σ- 	= 	𝑁,$(𝐺.𝑅)(𝐺.𝑅)., such 

that, 𝑁 = 𝐺.𝐺 is a 𝑔 × 𝑔 diagonal matrix, which gives the number of observations 
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corresponding to each gene.  Thus, the diagonal elements of Σ- give the variance of the 

residuals for each gene 𝜎-'(𝑔) (relative to the regression fit).  

Finally, we compute an adjusted slope as a mixture of the estimated slope for the 

gene, 𝑠!, and the mean over the whole population, 𝜇, weighted inversely by the variances:  

            𝑠!+ =
!"

#$
%(")

/ (
#!
%

)
#$%(")

/	 )#!%
 

         Effectively, this reduces the magnitude of the slope for each gene estimated by the 

model (BLUPs) toward the mean slope in cases where the noise is high (among 

observations for the gene) but maintains the slope if the regression is well-supported by 

the observations, reflecting a consistent trend in abundance as concentration increases.  It 

is over the population of adjusted slopes that we re-calculate the mean and standard 

deviation and use them to compute the Z-score and p-value for each gene. 
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CHAPTER III  

MODEL EVALUATION 

Experimental Setup 

To evaluate our statistical method, we generated a hypomorph library of 162 

essential genes in M. tuberculosis H37Rv. Degradation of target proteins was facilitated 

by appending a C-terminal DAS tag (a 15-amino-acid sequence recognized by SspB and 

ClpX) (Kim et al., 2011). 

The sspB gene needed for initiation of the proteolytic degradation through ClpX 

was introduced into the M. tuberculosis cells on a plasmid controlled by an 

anhydrotetracycline (Atc) repressor. Removal of Atc, allowed expression of sspB, which 

led to the degradation of target protein through the native caseinolytic protease ClpX. To 

achieve non-lethal doses of protein degradation, the levels of sspB expression were 

regulated through promoter variations (Johnson et al., 2019; Kim et al., 2013; Kim et al., 

2011; Lin et al., 2016).  While constructing the mutant for each gene by add the DAS tag, 

a 10bp nucleotide barcode was inserted that was unique to each strain.  For each drug, the 

library was grown in the presence of varying concentrations of inhibitor, the DNA was 

extracted from the culture, and the barcodes were amplified by PCR (polymerase chain 

reaction) and sequenced by next-generation sequencing (using an Illumina NovaSeq), 

producing millions of short (~50bp) reads for each sample.  These were demultiplexed, 

and the barcodes for each strain were counted. 

We also evaluated our model for the chemical-genomics analysis data published 

online by the Broad Institute (https://www.broadinstitute.org/chemical-biology/initiative-
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chemical-genetics) (Johnson et al., 2019). This dataset comprises the raw read counts of 

~155 mutants knocked down by inhibitors – rifampicin, trimethoprim, methotrexate and 

BRD-4592. Johnson et.al builds a generalized linear model based statistical analysis on 

this dataset (Johnson et al., 2019). We tried our approach on this dataset and found that 

results are similar, yet our solution is more conservative and selective in terms of 

identifying the top hits of a drug.   

 

Preliminary Analysis 

We begin our analyses by normalizing the data which involves dividing the raw read 

counts of each gene with the total abundance in the sample.  The relative abundances of 

the genes in the library varied from 0.0001% to 4.9%, with a median of 0.4%.  The 

variances in the abundances among biological replicates represents the noise in the data 

which, in turn, greatly aids our statistical modeling. To bound the variances, we apply a 

log-transform. For convenient modeling, if a gene has an abundance of ‘0’, we map to 1e-

6, such that the lower limit of our log-transform is –6. Fig (3) shows the distribution of the 

log-transformed abundances when the library of genes is treated with no drug.   



 

20 

 

 

Figure 3 Distribution of the log-abundances of the genes when treated with no-drug 
concentration in glycerol 
 

The following step involves a preliminary cleanup such that we discard genes with 

relative abundance greater than 20% of the overall population of genes. These genes are 

removed from our analysis because the high raw abundance of such genes is responsible 

for a significant reduction in the relative abundances of all the other genes in the library, 

which in turn, induces deleterious effects in the statistical modeling. For a robust 

modeling of the data, we clean our data of such outliers and then proceed to fitting the 

model.   

Fig. (4) represents the scatter plot of the same two replicates when normalized after 

removing the outlying mutants if any. Here, the normalized abundances of the data look 

almost correlated to each other. However, there is still some variances in the abundances 

in the genes between the biological replicates. To stabilize the variances, we take a log10 

transform on the same. Thus, the abundances and their variances are stabilized (more or 
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less constant over the dependent variable) and hence fit for statistical modeling. Fig (5) 

represents the scatter plot of the log-abundances of the two replicates.   

 

Figure 4 Scatter plot of normalized abundances of replicate 1 vs replicate 2 of the 
libraries of genes in no drug after removing outliers. 
 

 

Figure 5 Scatter plot of log abundances of replicate 1 vs replicate 2 of the libraries 
of genes in glycerol as carbon source (no drug) after removing outliers. 
 

Fig. (6) represents the trend of the log abundances of the genes with respect to the 

log-folded concentrations when the library of mutants in grown levofloxacin. The X-axis 



 

22 

 

of the plot represents the samples with increasing drug concentrations. In the figure, we 

observe a significant gradient in the log-abundances of Rv0006.gyrA which is denoted by 

the red line in the graph.  

Fig. (7) represents the boxplots of the log abundances of 2 of the mutants selected 

randomly from the population of genes treated with levofloxacin.  LeuS does not play a 

role in levofloxacin activity, and hence its slope is flat.  In contrast, GyrA, the target, 

exhibits a clear negative slope (excess depletion, indicating synergy with increasing drug 

concentrations.   

 

Figure 6 (a) Represents the trend of the log-abundances when a library of genes is 
treated with levofloxacin. (b) Represents trend of the log-abundances normalized 
with respect to the counts at 0xMIC. The red highlighted line refers to gyrA. 
 

 

 

 

 

(a) (b) 
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Figure 7 Boxplots of (a) leuS and (b) gyrA treated in various concentrations of 
levofloxacin 
 

 

Identifying Targets using Linear Models 

Linear mixed models are used to capture the relationship between the log-

abundances and the log-concentrations of the drugs for all the genes in the library. Each 

gene contributes a random effect in terms of a gene-specific slope and intercept. We also 

have the fixed effect corresponding to the overall slope and intercept of the entire 

population. We fit the models separately for each of the drugs. Our data includes treating 

the pool strains with 7 drugs -- levofloxacin, moxifloxacin, bedaquiline, isoniazid, 

fidaxomicin, sulfamethoxazole, fusidic acid. We fit a separate linear mixed model for 

every drug, which yields us 7 different models, each with independent slope estimates for 

each gene. We conclude on the target hits of the conditions based on the genes that have 

a significantly negative slope as compared to the rest of the population.  

 

(a) (b) 
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Linear Mixed Model Output Summary 

We fit the linear mixed model on the pre-processed data and extract the slopes 

corresponding to the random effects introduced by the genes. The target hits are the ones 

having outlier negative slopes. Fig. (8) represents a histogram of the distribution of the 

slopes when the cultures are treated with various concentrations of levofloxacin. The 

genes corresponding to the left ends of the histogram are the top hits for this inhibitor. In 

this case, the expected target is Rv0006.gyrA, which also comes up as the one with the 

most negative slope of –0.44 in our analysis and is effectively an outlier with respect to 

the rest of the population, thus, consistent with our expectations.  

 

Figure 8 Distribution of (unadjusted) slopes of genes treated with various 
concentrations of Moxifloxacin in glycerol 
 

Table 1 summarizes the top hits of levofloxacin. The first column represents the 

raw slopes of the genes as random effects in the linear mixed model. As expected, 

Rv0006.gyrA comes up as the most significantly depleted gene with the lowest slope and 
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a very low p-value which is calculated by performing a one-sided test on the Z-scores of 

the slopes.  

Table 1 Summary of top hits for levofloxacin before and after slope adjustment 
gene  Slope(random)  Slope adj.  p-val(adj.)  q-value(adj.)  

gyrA/Rv0006  -0.44  -0.36  0  2.99E-11  

thyA/Rv2764c  -0.16  -0.16  0  0.13 

dapB/Rv2773c  -0.17  -0.15  0  0.15  

dnaE1/Rv1547  -0.14  -0.13  0  0.47  

asnB/Rv2201  -0.16  -0.1  0.02  0.96  

murD/Rv2155c  -0.1  -0.1  0.02  0.99  

proB/Rv2439c  -0.1  -0.09  0.03  0.99  

 

Linear Mixed Model with Slope Adjustment 

Abundances of the genes across replicates often vary significantly which 

introduces uncertainty in the slope estimates itself. One such example is represented in 

Fig. (9). Thus, instead of relying on the random slopes extracted from the linear mixed 

model, we do a variance-based slope adjustment in such a way that, magnitude of the 

slopes of the genes having higher variances among replicates is reduced towards the mean 

slope of the overall population. Fig. (10). represents a scatter plot of the adjusted vs the 

unadjusted slopes of the genes present in the library. As evident from this figure, the 
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adjusted and unadjusted slopes are closely correlated and rpoB stands as an outlier when 

the library of genes is treated with fidaxomicin.  

To gain further insights on the slope adjustment approach, we plotted scatter plots 

of the slopes of the genes before and after adjustment. This is shown in Fig. (11) and Fig. 

(12). We can see that after slope adjustment rpoB comes out as the one with a significantly 

negative slope. As this adjustment accounts for the uncertainty in the slope estimates itself, 

it is more reliable to base our analysis on the adjusted slopes to identify the most 

significantly depleted gene.  

The overall summary of the results after slope adjustment is summarized in Table 

1. 

 

 

Figure 9 Boxplot of the log-abundances vs log-concentrations for (a) embC and (b) 
gltB when treated with levofloxacin. The slope of the green line are the unadjusted 
slopes for these genes which are nearly equal to –0.1 for embC and 0.03 for gltB. 
Slope adjustment has a higher influence on the slopes of embC because of the 
higher variance in the data itself. 

 

(a) (b) 
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Figure 10 Scatter plot of adjusted vs unadjusted slopes of genes treated with 
various concentrations of fidaxomicin. RpoB comes out as an outlier with a negative 
slope. 
 

 

Figure 11 Scatter plot of slopes of genes treated with various concentrations of 
fidaxomicin. The red Line represents the mean slope of the population of genes. 
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Figure 12 Scatter plot of the adjusted slopes of genes treated with various 
concentrations of fidaxomicin. The red line represents the mean slope of the 
population of genes. RpoB is the expected target of this drug, and it comes out as an 
outlier. 
 

Fig. (13) represents the histogram of the distribution of the adjusted slopes of the 

genes when treated with levofloxacin. As evident from the graph, after variance-based 

slope adjustment, Rv0006.gyrA clearly comes out even more as an outlier with the most 

negative slope in the whole population (slope = -0.44), with an adjusted p-value of 3E-11 

(based on a Normal distribution and FDR correction by the Benjamini-Hochberg 

procedure).  Note that no other genes have adjusted p-value<0.05; our method rejects all 

other genes as potential false positives.  This is represented by the leftmost bar in the plot. 

Table 2 gives an overall summary of the top hits after the slope adjustment.  
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Figure 13 Distribution of adjusted slopes of genes treated with various 
concentrations of levofloxacin. 
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CHAPTER IV  

RESULTS 

Table (2) summarizes the targets of the various drugs used to treat our hypomorph 

library. 

Table 2 Summary of top-ranked hit for various drugs. 
Hit 
type 

Drug Expected Target Relevant hits 
(rank) 

Adjusted 
p-value 

 
 

Protein 
Hits 

Levofloxacin DNA Gyrase 
(gyrA) 

gyrA* (1) 3E-11 

Moxifloxacin DNA Gyrase 
(gyrA) 

gyrA (2) 0.55 

Fidaxomicin Translation (rpoB) rpoB*(2) 0.01 

 
 
 
 
 

Pathway 
Hits 

Isoniazid Lipid biosynthesis Lipid pathway --- 
KasB(8), 

desA1(15), 
desA2 (21), 
fabD(48), 
kasA(144) 

0.32 

Bedaquiline ATP synthase ATP proton 
motive force 
pathway --- 

atpF(2), atpH(4), 
atpG(9), 
atpB(48) 

0.13 

Sulfamethaxa
zole 

Folate synthesis 
(folP1) 

Folate pathway --
-- 

trpG(7), 
folB(29), 

folP1(52), dfrA 
(64) 

0.30 

Asterisks mark those that are significant (adjusted p-value < 0.05).  
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Levofloxacin 

For levofloxacin, GyrA (the expected target of fluoroquinolones) was the top hit 

and only significant gene.   The depletion effect with increasing inhibitor concentration is 

shown in Fig (6b) above, reflecting the chemical-genetic interaction between levofloxacin 

and GyrA.   We also observed that gyrA has the lowest Z-score for levofloxacin as 

compared to the other drugs as evident in Fig. (14). This further confirms the strong 

interaction between gyrase genes with levofloxacin. 

 

Figure 14 Barplot of the slopes of gyrA in various drugs. 
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Moxifloxacin 

Moxifloxacin is also a drug of the fluoroquinolone family and the target of this 

drug is also gyrA. However, with the current data, thyA comes up as the most significant 

hit. GyrA comes up as the second most depleted gene. The boxplots for the log-abundances 

vs the log-concentrations of these two genes when treated with moxifloxacin is shown in 

Fig. (16). But an intriguing observation is that thyA comes up as the top hit for many of 

the drugs and thus can be ignored as a non-specific artifact. This is evident from the bar 

plot shown in Fig. (15). 

 

 

Figure 15 Barplot of the slopes of thyA in various drugs. 
 

 

 

 

 

 



 

33 

 

 

 

Figure 16 Boxplots of the slopes of (a) gyrA and (b) thyA when treated with 
moxifloxacin. 

 

 

Bedaquiline 

Bedaquiline targets genes of the ATP synthase pathway (atpBDGH are in the 

library), specifically subunit C of the membrane complex (Andries et. al, 2005).  Though 

our analysis ranks atpF as the second lowest slope, in this case, there are no statistically 

significant hits. However, pathway analysis gives us more insight on how the organisms 

respond to bedaquiline.   

It is possible that, even if none of the genes in each pathway has a significantly 

negative slope, the genes as a group might exhibit a systematic bias, showing depletion as 

a group with increasing drug concentration (Table 3).  We applied GSEA analysis 

(Subramaniam, 2005), which ranks the genes by slope, calculates an enrichment score 

(ES) reflecting whether the mean rank of a subset (e.g., genes in a pathway) is above or 

below average, and then determines the statistical significance of the ES using Monte 

(a) (b) 
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Carlo sampling.  We ran GSEA on the 24 COG categories (clusters of orthologous genes; 

(Galperin, Makarova, Wolf, & Koonin, 2015) on all the drugs. For both COG and Sanger 

pathways (Ashburner et al., 2000; Cole et al., 1998), we observed that ATP 

synthase/energy production pathway comes up as the most significant pathway when 

treated with bedaquiline (Table 4). The 4 atp genes present in this library show a 

systematic depletion when considered as a group (Fig (17)).  

 

Figure 17 (a) This figure represents the trend of the log-abundances relative to the 
abundance at 0xMIC with respect to log-concentrations of bedaquiline. The 
highlighted lines represent atpH, atpG, atpF and atpB.  (b) This plot represents the 
histogram of the distribution of the slopes of all the genes treated with bedaquiline.  
 

Table 3 Summary of top hits of Bedaquiline 
gene  Rank  Slope(random)  Slope adj.  p-value (adj.)  q-value(adj.)  

atpF/Rv1306  2  -0.039  -0.0362  0.0096  0.844  

atpH/Rv1307  4  -0.037  -0.0269  0.04  0.999  

atpG/Rv1309  9  -0.029  -0.0240  0.0587  0.999  

atpB/Rv1304  49  -0.019  -0.009  0.2621  1  

 

(a) (b) 
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Table 4 Summary of analysis of top Sanger pathways for bedaquiline (out of 152 
pathways). 
Pathway  Mean 

rank  

ES  P-value  q-value  Description  genes  

I.B.8  15  0.76  0.003  0.147  ATP-proton  

motive force  

atpF/Rv1306(1) 
atpH/Rv1307(3) 
atpG/Rv1309(8) 
atpB/Rv1304(48)  

I.A.1  29  0.74  0.088  0.527  Carbon  

compounds  

manA/Rv3255c(9) 
adoK/Rv2202c(49)  

I.B.7  33.5  0.71  0.09  0.527  Miscellaneous 
oxidoreductases and 

oxygenases  

ndhA/Rv0392c(11) 
ccsX/Rv3673c(56)  

I.J.1  34  0.76  0.034  0.367  Repressors 

 

Rv2017/Rv2017(23) 
moxR1/Rv1479(45)  
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Isoniazid 

The target for Isoniazid (INH) is inhA (enoyl-ACP reductase), which is in the FAS 

II pathway for synthesis of long-chain fatty acid, and ultimately mycolic acid.  INH is a 

pro-drug that must be activated first to a radical by the KatG catalase.  Thus, one might 

expect that depletion of inhA would be synergistic with INH treatment (causing barcode 

counts to decrease), and depletion of KatG would be antagonistic (causing barcode counts 

to increase due to enhanced survival).  However, neither inhA nor katG is in the 

hypomorph library.  Using our analysis, we observed ino1 as the topmost significant hit. 

This is evident from the plots in Fig (18). The depletion of this gene can be attributed to 

the fact that inositol-1-phosphate synthase is used in mycothiol, which has been connected 

to INH MOA via redox homeostasis (Vilcheze & Jacobs, 2019). The boxplot for this gene 

is shown in the figure below.  

 

 

Figure 18 (a) Boxplot of the slopes of ino1 (top hit) (b) Distribution of slopes of all 
genes when treated with Isoniazid. 

(a) (b) 
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Pathway analysis yields some interesting results for isoniazid. We observe that of 

the various sanger pathways, fatty acid synthesis related pathways such as lipid 

biosynthesis, synthesis of fatty and mycolic acid come up as significant pathways. 

Isoniazid impacts the fatty acid related pathways, which agrees with our observation. 

These results are summarized in the Table (5) below.  

Table 5 Summary of analysis of top Sanger pathways for isoniazid (out of 152 
pathways). 

Pathway  Mean rank  ES  P-value  q-value  Description  genes  

V  59.2  0.502  0  0  Conserved 
hypotheticals  

Rv1836c/Rv1836c(11) 
Rv0289/Rv0289(12) 

Rv3194c/Rv3194c(20)   

I.H  46.4  0.597  0.001  0.0663  Lipid  
Biosynthesis  

desA1/Rv0824c(5) 
desA2/Rv1094(10) 

Rv0904c/Rv0904c(15)   

I.H.2  7.5  0.952  0.003  0.110  Modification of 
fatty and mycolic 

acids  

desA1/Rv0824c(5) 
desA2/Rv1094(10)  

I.B.8  40.8  0.675  0.01  0.237  ATP-proton  
motive force  

atpH/Rv1307(24) 
atpB/Rv1304(32) 
atpF/Rv1306(43) 
atpG/Rv1309(64)  

I.H.1  57.6  0.525  0.011  0.256  Synthesis of fatty 
and mycolic acids  

Rv0904c/Rv0904c(15) 
fabD/Rv2243(21) 

Rv2247/Rv2247(27)   

I.A.3  36.5  0.702  0.013  0.276  Fatty acids  fadD30/Rv0404(1) 
fadD32/Rv3801c(36) 
accD2/Rv0974c(50) 
accA2/Rv0973c(59)  
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Fidaxomicin 

Fidaxomicin targets rpoB and inhibits transcription initiation (Boyaci et. al, 2018). 

Using our analysis, we see rpoB (slope = -0.13, adjusted p-value = 0.01) as the second 

most significantly depleted gene. ThyA comes up as the topmost hit but that is likely to be 

a false positive as it comes up as a top hit for a lot of other drugs as well. Fig. (19) indicates 

the boxplot of rpoB and the distribution of the slopes of all the other genes when treated 

with fidaxomicin.  

 

 

Figure 19 (a) Boxplot of the slopes of rpoB (top hit) (b) Distribution of slopes of all 
genes when treated with fidaxomicin 
 

 

 

 

 

 

 

(a) (b) 
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Sulfamethaxazole 

The target of sulfamethoxazole is DHPS/folP (dihydropteroate synthase) in the 

folate pathway. However, DHPS was not present in the hypomorph library. Our analysis 

identifies fas (fatty acid synthase) as the most significantly depleted gene. However, it has 

been observed previously that trpG (anthranilate synthase) also interacts with folate 

synthesis by consuming chorismate as an intermediate (shared with the shikimate and 

tryptophan pathways) to make PABA, constituting a known chemical-genetic interaction 

(Johnson et. al, 2019).  trpG comes up as the 8th ranked gene in terms of depletion (slope 

= -0.05; q-value = 0.97). Fig (20) shows the boxplot of fas, trpG and the distribution of 

the slopes of all the other genes when treated with sulfamethoxazole. 

GSEA analysis based on Sanger categories indicate that the folic acid pathway 

comes up as the most significant pathway for the library of genes treated in 

sulfamethoxazole. This is a positive hit because sulfamethoxazole impacts the activity of 

folic acid pathway, including other genes such as folB, folP1, and dfrA, thus, validating 

our analysis. While individually, they did not have significantly negative slopes, they all 

exhibit a negative trend, which is statistically unlikely by chance. The pathway analysis 

results are summarized in Table (6).  
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Figure 20 Boxplot of the slopes of (a) fas and (b) trpG and (c) Distribution of slopes 
of all genes when treated with sulfamethoxazole 
 

 

 

 

(a) (b) 

(c) 
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Table 6 Summary of analysis of Sanger pathways for sulfamethoxazole 
Pathway  Mean rank  ES  P-value  q-value  Description  genes  

I.G.2  34.8  0.679  0.002  0.120  Folic acid  trpG/Rv0013(7) 
Rv0812/Rv0812(22) 
folB/Rv3607c(29) 
folP1/Rv3608c(52) 
dfrA/Rv2763c(64) 

 

 

 

 

Fusidic Acid 

The target of fusidic acid is fusA. FusA is elongation factor G, a component of the 

ribosome; hence fusidic acid is a translation inhibitor.  But our current library does not 

include a hypomorphic strain for fusA. Our analysis for this drug indicates no significant 

hits. ThyA comes up as the topmost depleted gene, but it is likely to be false positive 

because it comes up for a lot of other drugs as well. Fig. (21) indicates the distribution of 

slopes for all the genes when treated with fusidic acid. As evident from the figure, there is 

no significant outlier when the library of genes is profiled for various concentrations of 

fusidic acid.  
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Figure 21 Distribution of slopes of all genes when treated with fusidic acid 
 

 

 

Analysis of Published Hypomorph Data Created by Broad Institute 

The chemical-genomics data created by the Broad institute 

(https://www.broadinstitute.org/chemical-biology/initiative-chemical-genetics) is used to 

validate our model. This data consists of the raw abundances of 155 mutants profiled at 

various concentrations of 4 drugs – rifampin, trimethoprim, methotrexate and BRD-4592.  

 

Rifampin 

The target of rifampin is rpoB, the RNA polymerase. Our analysis indicates that 

rpoB is indeed one amongst the top 10 depleted genes. Johnson et al., 2019 also has a 

similar observation in terms of the target of rifampin. Fig. (22) shows that rpoB, though 

not the most significantly depleted, has a steady decrease in the read abundances with 
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increased concentration of the drug. The outliers in this case are thyA which is seen to 

have low slopes with other drugs as well. This is probably a non-specific artifact.  

 

 

Figure 22 (a) Plot from our analysis, the red line indicates rpoB. Our observation is 
consistent with the one reported in the paper. (b) Histogram of the distribution of 
slopes of all the genes in this library. 
 

 

Trimethoprim 

Trimethoprim (TMP) is a widely used anti-tuberculosis drug which targets a gene 

dihydrofolate reductase, dfrA in the folate pathway.  However, in this dataset, dfrA has a 

medium-to-positive slope, and hence does not appear as an interaction with TMP. In 

contrast, trpG has the 2nd most negative slope (slope = -0.005, adjusted p-value = 0.02), 

consistent with its role in the folate pathway. TrpG converts chorismate into PABA as the 

first step in the pathway.  This interaction of trpG with TMP is also reported by Johnson 

et. al using ConCensusGLM. This is further evident from our plot in Fig (23).  

(a) (b) 
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Figure 23 (a) This plot represents the trends of the log-abundances when the 
library is treated with trimethoprim. (b) Distribution of the slopes of all the genes 
treated with trimethoprim. 
 

 

 

Methotrexate 

Like trimethoprim, methotrexate also targets genes related to the folate pathway. 

Our analysis yields trpG as the one with the most negative slope. This is expected as trpG 

indeed belongs to the folate pathway. However, this slope is not significant as evident 

from Fig (24). There is no significant outlier in this case (Table 7).  

(a) (b) 
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Figure 24 Distribution of slopes of all genes when treated with methotrexate. 
 

Table 7 Summary of the slopes of genes when treated with methotrexate 
gene  Slope(random)  Slope adj.  p-val(adj.)  q-value(adj.)  

trpG  -0.0707 -0.037 0.0231  0.9736 

Rv2190c  -0.0581  -0.0264 0.0787 1 

pcnA  -0.0567  -0.026  0.0818 1 

aceE  -0.05415  -0.0257  0.0843 1 

pstP  -0.0621  -0.0252  0.0887 1 

 

 

BRD-4592 

The target of BRD-4592 is trpA, a gene in the pathway for synthesizing tryptophan 

(which is essential in these growth conditions). However, this gene is not present in the 

hypomorph library.  On evaluating our analysis for this drug, we observe no significant 
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hits. This is expected because the target gene is not a part of the library we are working 

with. Fig. (25) indicates that the distribution of slopes has no outliers. In this case, the 

results of our model are inconclusive.  

 

Figure 25 Distribution of slopes of all genes when treated with BRD-4592 
 

 

Copper 

Copper is known to be bactericidal at high concentrations, but at lower 

concentrations, it induces a tolerance mechanism involving genes such as ricR and csoR 

as sensor-regulators, cation transporter ctpV, metallothionein mymT, multi-copper oxidase 

mmcO, socAB, and lpqS (Darwin, 2015).  None of these genes is essential in-vitro under 

regular growth conditions.  We constructed a new hypomorph library with 465 essential 

genes and selected it for growth on 3 different carbon sources – glycerol, acetate, and 

cholesterol – in the presence of varying concentrations of copper sulfate (1 to 8 µM) with 

3 different sspB expression strengths for different degrees of expression based on the Tet 
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promoter (denoted sspB-1, sspB-2, and sspB-6), resulting in different degrees of 

proteolytic depletion of hypomorph targets.  Analysis of the chemical-genomics data 

showed only two genes that had statistically significant depletion (gyrA in sspB-2/glycerol, 

and thyA in sspB-6/glycerol).  While interactions with thyA were observed with several 

other drugs, it is unclear what the relevance of gyrA (the DNA gyrase that is the target of 

fluoroquinolones) is to copper exposure.  However, GSEA analysis using the Sanger 

functional categories (Cole et al., 1998) yields an intriguing insight.  Genes in the Murein 

Sacculus pathway (murA, murD, murE, murF) are enriched, in that they have negative 

slopes as a group (slopes ranging from -0.02 to -0.06). This effect appears to be 

independent of carbon source, as the murein pathway is ranked at the top in glycerol, 

acetate, and cholesterol, though occurring at different sspB strengths (different levels of 

proteolytic degradation) (Table 8).  Fig. (26) shows the plot of the log-abundances of the 

library of genes when treated with copper in cholesterol (sspB-1). The genes in this 

pathway all have a weak but consistent negative trend when treated with copper.  mur 

genes play an essential role in synthesizing the peptidoglycan (PG) layer in the cell wall 

(i.e., muramic acid as a component of lipid II, used to transport pentapeptides to the cell-

wall for PG assembly and cross-linking), thereby maintain cell wall integrity.  Our results 

are consistent with previous reports of a connection between peptidoglycan synthesis and 

copper sensitivity.  Copper has been shown to specifically inhibit L, D-transpeptidases in 

E. coli (Peters et al., 2018).  A similar mechanism in M. tuberculosis could explain the 

chemical-genetic interaction with the mur genes. Inhibition of LDTs by copper could be 

sensitized by depletion of mur genes, which are in the same PG pathway, producing excess 
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growth impairment through reduction of cell-wall integrity.  This is a novel observation 

for M. tuberculosis. 

Table 8 Summary of ranks and adjusted p-value of the Murein Sacculus pathway 
(based on murADEF) when treated with copper, in 3 different carbon sources, with 
3 different sspB strengths. The ranks are out of 122 total Sanger pathways. 
Carbon 
source 

Rank in sspB-1 
(Adjusted p-val) 

Rank in sspB-2 
(Adjusted p-val) 

Rank in sspB-6 
(Adjusted p-val) 

Cholesterol 1 (0)* 1 (0.04)* 1 (0.09) 

Glycerol 8 (0.58) 4 (0.11) 1 (0.04)* 

Acetate 1(0)* 3 (0.14) 7 (0.42) 

Asterisks indicate significance (adjusted p-value < 0.05). 

 

Figure 26 This figure represents the trend of the log-abundances relative to the 
abundance at 0xMIC with respect to log-concentrations of copper. The highlighted 
lines representing murA, murF, murD, murE shows a systematic depletion for 
increasing copper concentration. 
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CHAPTER V  

DISCUSSION 

The CGA-LMM approach uses linear mixed models to identify genes in a 

hypomorph library that interact with drugs (or growth inhibitors), thus potentially yielding 

insights into targets, pathways, or mechanisms for action.  Conceptually, this approach to 

analyzing chemical-genomics data is based on the synergy between drug pressure and 

protein-depletion of drug targets in the library.  In general, presence of an inhibitor (at 

sub-MIC concentrations) would be expected to partially inhibit the growth of all the 

members of a hypomorph library.  Independently, when essential genes are depleted, such 

as by targeting them for degradation by the ClpXP protease, growth will be inhibited, 

though the degree of growth impairment between different mutants might vary.  Chemical-

genomics experiments are designed to look for synergies between these two effects.  The 

depletion specifically of the target of a given drug should be hypersensitive to that mutant 

to the drug, resulting in more depletion than the rest of the population.  Recall that, 

although the presence of an antibiotic might reduce the population density of the culture 

overall, this reduction is effectively factored out in the normalization process, where 

barcode counts from deep sequencing are converted into relative abundances of genes. 

The total number of reads for any given sample is arbitrary, depending on loading of 

sample on the instrument.  So, based on relative abundances, each gene will potentially 

exhibit some degree of reduction in abundance due to the fitness deficit caused by protein 

degradation.  But for the target of a drug, these effects combine, producing additional 

depletion, analogous to super-additive effects between two synergistic drugs (Chou, 
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2010).   Furthermore, ideally, we are looking for genes where the hypersensitization is 

concentration-dependent, that is, depletion in abundance increases with increasing 

concentrations of drug.  Genes which exhibit the same depletion across all concentrations 

would be ruled out as effects due to depletion of an essential protein; genes which exhibit 

depletion at just a single concentration, but not higher concentrations, would be ruled out 

as false positives.  

In the approach we have described for analyzing chemical-genomic data, a key 

aspect is assessing the depletion of knock-down mutants across multiple concentrations, 

which is expressed through regression coefficients (representing "slopes"). This approach 

captures genes that exhibit a robust trend, or concentration-dependent effect, where 

increasing concentration of drug causes increasing (or equal) depletion.  This contrasts 

with other approaches, which assess the depletion of a gene at each concentration 

independently, in comparison to a no-drug control (typically as a log-fold-change) 

(Johnson et al., 2019; Li et al., 2014)  The advantage of a regression-based approach is 

that it takes more data into account, by integrating information across multiple 

concentrations, and thus is less susceptible to spurious fluctuations in observed counts that 

might drop to a low abundance at one concentration but not others, generating a false 

positive.  Our approach filters out such false positives by requiring the depletion of a gene 

observed at one concentration is reinforced by similar depletion at higher concentrations.  

It is important to acknowledge that not every CG-interacting gene responds in a uniform 

way to increasing drug concentration.  The concentration-dependence is not always linear 

(graded decrease), but sometimes decreases precipitously at a critical concentration (like 



 

51 

 

a cliff, similar to classic enzyme inhibition curves, and the steepness of the slope can be 

influenced by cooperativity.) Nonetheless, the regression model will still detect such cases 

as a decreasing trend overall with a negative slope.  

 Importantly, we observed that sometimes, genes implicated in response to, or 

tolerance of, treatment with an antibiotic are only weakly depleted individually.  However, 

if multiple genes in the target pathway are represented in the library, it might be possible 

to detect the interaction through pathway analysis.  We observed this effect for both 

exposure to bedaquiline (ATP synthase genes) and copper (mur genes).  Even though none 

of the pathway members might be statistically significant on their own, if there is a 

systematic effect, where each of the pathway genes exhibits partial depletion (negative 

slopes), it could be detected as statistically significant, indicating synergy between the 

drug and the pathway. This shows that sensitivity of detection drug targets that are 

members of a complex can be enhanced because other members of the complex (and hence 

pathway) can collectively show depletion effects. A similar phenomenon is observed when 

the hypomorph library is treated with various concentrations of isoniazid. This drug is 

known to increase sensitivity to knockdown the genes related to the fatty acid synthesis 

pathways.  CGA-LMM followed by the GSEA analysis indicates that the genes belonging 

to the synthesis of fatty and mycolic acid and lipid biosynthesis show a systematic 

significant depletion as compared to the other genes in the library.  Sulfamethoxazole 

depletes genes in the folic acid pathway such as folP1, folB and dfrA. Though none of 

these genes individually are significantly depleted, the pathway has a downward trend in 

the log-abundances (mean rank: 34.6, adjusted p-value: 0.007) when exposed to higher 
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concentration of the drug.  To study the influence of the drugs on the pathways, we have 

used the GSEA analysis on the ranks based on predicted slopes of the genes from the 

CGA-LMM approach on the Sanger and COG categories and GO terms. However, a 

shortcoming of the current analysis is that even if a few of the genes of a pathway are 

significantly depleted, then the entire pathway is identified as being impacted. Thus, 

pathway-based analysis based on the GSEA approach is sensitive to the top hits identified 

by the CGA-LMM model. The pathway analysis is meaningful only if multiple genes of 

the pathways are in the library under consideration. If the hypomorph library is such that 

it just comprises 1-2 genes of each pathway in the library, then the results on such a library 

can be inaccurate/misleading.  

Computationally, our approach utilizes a linear mixed model (LMM) to assess 

these concentration-dependent depletion effects for each gene.  While, theoretically, the 

observations for each gene could be used to fit a regression model for each gene 

independently, we chose the LMM framework because it enables the fitting of all the data 

simultaneously, with separate slopes and intercept coefficients for each gene.  Importantly, 

the gene-specific parameters are treated as random effects in the LMM.  This means the 

parameters for concentration-dependence are assumed to be unique for each gene, though 

they are assumed to be drawn from some multivariate normal background distribution.  

Although the variance of the parameters such as slope are unknown a priori, the variance 

is estimated empirically for the data, representing an inferred population over all the 

slopes.  The population of slopes inferred by the LMM is exploited in determining the 

significance of drug-gene interactions.  Our approach extracts the slope for each gene and 
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compares it to the population using a p-value based on the Z-score, based on the mean and 

variance over the slopes for all the genes (extracted from the covariance matrix estimated 

in the LMM).  This approach effectively identifies "outliers", or genes whose slopes are 

significantly more negative than the rest of the population.  This approach is different from 

the conventional Wald test approach used to test if the coefficients are significant in a 

generalized linear model.  A Wald test identifies any coefficients that are significantly 

different than 0.  This can lead to an excessive number of hits, as observed with similar 

methods like ConCensusGLM (91 out of 152 reported as hits for trimethoprim), which 

often found many or all genes to have p-values < 10-10 and had to rely on other criteria 

such as an LFC threshold to prioritize likely candidate interactions.  The perspective 

behind our more conservative approach is that the abundance of genes in a chemical-

genomics experiment often exhibits variability due to unknown (or uncontrolled) factors, 

which are difficult to anticipate.  This can produce multiple genes whose abundance 

slightly increases or decreases with concentration.  It must be remembered that the 

hypomorph library is being subjected as a culture to two stresses simultaneously, possibly 

inducing a variety of intracellular adaptation mechanisms.  Furthermore, there are 

potentially multiple sources of noise in the DNA sample preparation and sequencing steps.  

Acknowledging that we do not know all such factors affecting the experiment, we use the 

variability of the slopes over the whole library as a surrogate to estimate the net effect of 

these factors on the variability of slopes, and we focus on genes which exhibit a depletion 

beyond what is seen for the rest of the population.  As seen in our experiments, this more 

conservative approach produces many fewer significant interactions, though hopefully 
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enriching for true positives while filtering out false positives.  In some cases, no genes 

might be detected as significant outliers, such as was the case for fusidic acid, the target 

of which, fusA, was not in our hypomorph library. We view this as an acceptable (though 

less informative) outcome; while one can always rank all the genes in a library by slope, 

the gene with the most negative slope does not necessarily mean it is a genuine interaction, 

especially if it is or near the range of the rest of the population.  

The LMM methodology can also be applied, in principle, to analyzing data from 

CRISPRi libraries (Rock et. al, 2017).  CRISPRi technology is rapidly supplanting 

methods such as ClpXP-mediated depletion as a way of generating hypomorph libraries.  

CRISPRi enables many more mutants to be profiled in parallel, through expression of 

sgRNAs, which knock-down transcription of target genes though binding of a catalytically 

dead Cas9 gene, blocking the RNA polymerase.  The abundance of individual sgRNAs 

can again be assessed efficiently through counting nucleotide barcodes using next-

generation sequencing.  Nonetheless, the objective of the experiment is the same: to detect 

proteins whose depletion synergizes with exposure to an inhibitor.  However, the LMM 

model would probably have to be adapted to take into account the relative strengths of 

different sgRNAs.  There can be multiple candidate sgRNAs per gene (tens to hundreds), 

and the strength of binding (DNA: RNA hybridization) and hence dCas9 recruitment 

depends on a combination of similarity to the consensus PAM sequence, as well as GC-

content of the complementary sequence.  Since different sgRNAs are expected to confer 

different degrees of depletion, which affects the degree of synergy with the drug at each 

concentration, sgRNA strength would have to be incorporated in the model as a covariate, 
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with the same goal of detecting genes that exhibit concentration-dependent depletion.  

Note that a regression-based approach that accounts for dependence on both drug 

concentration as well as sgRNA strength could be an improvement over other published 

methods for CRISPRi analysis, such as MAGeCK (Li et al., 2014), which only compared 

one concentration at a time to the no-drug control (i.e., log-fold-changes, instead of 

slopes), and which averaged the depletion effect over all sgRNAs for a given gene, 

regardless of sgRNA strength.  

With regard to copper exposure, the most interesting result we observed was the 

interaction with mur genes (murA, murD, murE, and murF).  While a low intracellular 

level of copper is required, e.g., as a co-factor for some metal-dependent enzymes like 

cytochrome C oxidase (Neyrolles, Wolschendorf, Mitra, & Niederweis, 2015), high 

concentrations of copper have long been known to have antibacterial properties.  In 

mycobacteria, several genes have been identified to be involved in copper tolerance at 

moderate levels, including those in the csoR (ctpV) and ricR operons (mmcO, mymT, etc.) 

(Darwin, 2015), which are up regulated as concentrations of Cu2+ reach above 0.5 mM.  

However, these copper-tolerance genes are generally non-essential, and were not 

represented in the hypomorph library.  Interestingly, pathway analysis revealed the several 

genes in the mur pathway display consistent depletion effects, including murA, murD, 

murE, and murF.  These genes produce enzymes needed for assembly of precursors of 

peptidoglycan in the cell wall, specifically UDP-N-acetylmuramyl pentapeptide.  It is 

possible that cell wall integrity affects the intracellular penetration by copper ions by 

acting as a passive barrier.  This is supported by separate work showing that deletion of 
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L, D-transpeptidases in E. coli, which crosslink peptidoglycan, affect the sensitivity of 

cultures to copper (Peters et al., 2018).  Additional experiments are needed to validate this 

chemical-genetic interaction, but it suggests that co-administration with copper could 

sensitize cells to cell-wall inhibitors or could be used to facilitate screening for novel 

inhibitors, e.g., of murA, potentially leading to novel combination therapeutics.  

Future extension of this research involves exploring hierarchical Bayesian models 

to solve these problems. It would allow use to estimate posterior distributions over the 

regression parameters (slopes for each gene) thus resulting in a more integrated way of 

handling noise and testing significance than slope adjustment and Z-scores in our model.  

Furthermore, we could assert better control over the model by specifying reasonable 

hyperparameters for prior distributions over model parameters. 
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CHAPTER VI  

CONCLUSION 

This research is focused on developing statistical models to analyze chemical-

genomic interactions. We have shown how mixed linear models can be used to quantify 

the behavior of genes in a library of hypomorph strains treated with various inhibitors to 

identify chemical-genomic interactions. These results are subjected to evaluating the 

statistical significance to identify the protein or the pathway exhibiting significant 

depletion when treated with increasing concentrations of the drug. The model was 

validated on a publicly available chemical-genomics dataset published by the Broad 

Institute. Additionally, the model was evaluated in multiple hypomorph libraries in M. 

tuberculosis developed by our collaborators that were treated with several anti-

tuberculosis drugs such as levofloxacin, moxifloxacin, bedaquiline, fusidic acid, 

fidaxomicin, sulfamethoxazole. The proposed CGA-LMM method was used to identify 

the known targets of these drugs.  The approach was then applied to evaluating genes 

implicated in tolerance of exposure to copper as an anti-bacterial.  
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