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ABSTRACT

We consider two problems related to uncoordinated multiple access. The first is the design

of schemes that can identify the set of active users. The second is the design of low complexity

multiuser detection schemes. We consider a multiple access scheme where each user encodes its

information by an error correcting code and spreads the coded bits using a spreading sequence that

is chosen from a master set of spreading sequences based on part of each user’s message. On the

receiver side, the set of active spreading sequences need to identify first and then the bits of the

user have to be detected and decoded.

We consider four strategies for evaluating the set of active spreading sequences. The first

scheme is a correlation-based energy detector. The second scheme is based on machine learning,

which uses the histogram of the output of a matched-filter(MF) as input to a neural network(NN)

model. The third scheme is based on using a hypothesis test on the outputs of the matched filter.

The fourth scheme is a 2-bit combined energy detector, which is the same way for the original

energy detector but combining two bits to consider more about the variable case that can happen

in synchronizing spreading sequences.

In the second part of the thesis, assuming the set of active sequences is known, an MMSE

estimator is implemented to perform log-likelihood ratios(LLRs) for the active sequences. But

inverting the whole active sequences matrix in MMSE has large time complexity. We propose using

a clustering method to reduce matrix size. After this active sequences are passed to a list decoder

of polar code proceeding iteratively by subtracting the interference due to the successfully decoded

sequence from the received signal and repeat the MMSE estimator process on the residual received

signal. The cluster size and a decoding schedule are optimized using Monte Carlo simulations.
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1. INTRODUCTION

Unsourced multiple access provides a model for a novel communication paradigm attuned to

machine-type communication. In this new scheme, there are Ktot users in a wireless communi-

cation system whithin which a smaller group of Ka users are active at any time. These Ka users

each have a length B-bit message that is to be transmitted using a multiple access channel. In [1],

the authors capture scenarios where a large number of devices transmit short packets of informa-

tion in an intermittent manner to a central unit. Ever since the introduction of unsourced multiple

access communication(MAC), there have been numerous attempt in designing algorithm schemes

to operate close to the finite-blocklength boundary while maintaining computational complexity

like [1–3].

In this thesis, we compare four techniques for determining the set of active sequences. First

using the correlation-based energy detector to determine which sequences are most likely to be

active. Similarly combining the next bit for users to shorten the length of B to make a 2-bit

combined energy detector to figure out the active sequences. The third method is we use the

histogram from the matched filter(MF) to stack the data into the input to a neural network. In this

neural network model, the structure is a fully-connected layer with two inputs. Another input is the

value of the energy detector. The last method is that from MF we concentrate on the distribution of

each user to compare likelihood function for active and inactive sequence. Using all the schemes

above to detect active sequence, the MMSE estimator is implemented to recover the original signal.

But inverting the whole size of the MMSE matrix is complex. Thereby we use the clustering

method to shrink down the size of the matrix to get lower time complexity.

The rest of this thesis is organized as follows. In Chatper 2, we introduce the system model

for unsourced multiple access that we will consider in the rest of this thesis. In Chapter 3, we

introduce two algorithms for detecting the set of active users. In Chatper 4, we propose a clustering

based algorithm for reducing the complexity of minimum mean-squared error estimation of the

transmitted bits.
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From the received signal y, identify the active users with 4 schemes, which is in chapter 3.

After knowing the expected active user’s list, we estimate the transmitted bits using the MMSE

equation and try to reduce the complexity in chapter 4. In the decoder block, we implemented

polar code introduced in [2] to find out which user can be successfully decoded and removed from

the received signal y.

2



2. SYSTEM MODEL

In the random access model, let Ktot be the total number of users in the network and let Ka

denote the subset of active users(each active user wishes to communicate B bits of a message to an

n uses of the base station). This data must be transmitted using an unsourced uplink transmission

scheme. That is, the data of each user are not correlated and active users must act independently

of one another. Let si denote as indicator random variable which is 1 if the user i is active, and 0

otherwise. The received signal, ~y, at the base station is given by

~y =
Ktot∑
i=1

si~xi(wi) + ~z (1)

where wi ∈ {0, 1}B equivalent to the B bit message that user i try to transfer to the base station, ~xi

denotes the N -dimensional vector transmitted by user i, ~z ∼ N(0, σ2I) is additive white Gaussian

noise (AWGN), and
∑Ktot

i=1 si = Ka. It is assumed that when si = 1, user i selects its message Wi

uniformly from the set [M ]
∆
= [1 : M ](M − 2B). Each active users are independent to one another,

which mean that the messages chosen by the active users has no correlation to one and other for

Ka. The signal sent by a device is power constrained, ‖ ~xi ‖2
2≤ nP for i ∈ Ka, a case similar to

[1]. The energy-per-bit of system is defined as Eb
No

= nP
2B

. From the received signal, the decoder

produces an estimate θ̂(~y) for the transmitted binary vectors θ with size at most Ka. From original

equation of [1], the per-user error probability is given by

Pe = max∑
si=Ka

1

Ka

Ktot∑
i=1

siPr(wi /∈ θ̂(~y)) (2)

for fixed values of n, B, Ka, ε. Our goal is to design a low complexity scheme that achieves

Pe ≤ ε, where ε is our goal error probability at required Eb
No

.
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2.1 Encoder

For a specific user, the user wishes to transmit B bits and Ms = 2Bs . We denote the message

corresponding to user i by ws that is, w = ws. The spreading sequence used by the active users

are determined by following. Let A = [~a1, ~a2, ..., ~aMs ] ∈ Rns×Ms denote all the possible spreading

sequence. The elements of A are generated with zero mean Gaussian random variables with unit

variance and chosen by drawing independent. We assumed A also satisfy the power constraint.

Every active user inside the set of Ka is assigned one column inside of matrix A as the spreading

sequence. That is to say, each active user use function f : {0, 1}Bs → {~aj : j ∈ [1 : Ms]}. We

denote the spreading sequence chosen by the active user i as ~aji . At the end, each codeword is

encrypted by a spreading sequence to generate the transmitted signal. The signal transmitted by

the active user i is given by

~xi = vi ⊗ ~aji (3)

where vi is the codeword and ⊗ denotes tensor product symbol. We assumed that ~xi satisfies the

power constraint ‖ ~xi ‖2
2≤ P for any messages.

2.2 Decoder

Figure 1: Block diagram for the system

4



Figure 1 shows the outline for the system and this thesis is going to focus on how to identify

the active users and estimate what was messages were transmitted. The decoding process has two

distinct stages. During the first stage, we have to identify the set of spreading sequences employed

by the active users. In the second stage, a minimum mean squared error (MMSE) estimator is

employed to produce estimates of the coded symbols. In this step, the decoder employs a reduced

complexity MMSE estimator which clusters the most correlated sequences to reduce the dimension

of the matrix need to be inverted. These estimated sequences then passed on to the decoder of

polar code like in [2–4]. The signal codeword corresponding to the successfully decoded users are

removed from the received signal. Then the remaining signal redirected to the sequence detector.

5



3. ACTIVITY DETECTION

In this chpater, we design two algorithms to identify active sequences. They are - 1) Neural

Network model, and 2) Hypothesis testing. We compare the performance of these algorithms with

the matched filter and bit-combined matched filter from earlier papers in [2,3]. To compare each of

these algorithms, we compare the probability of false alarm and miss detection of these schemes.

3.1 Energy Detector and 2 bit combined Energy Detector

The purpose of the energy detector scheme is to detect which sequence is active based on

statistics that incorporates energy. In the encoder part where ~xi = vi⊗ ~aji , and try to decode ~xi but

vi is unknown. One way to approach this would be the matched filter(MF) in [2]. MF is a basic

tool for extracting known transmitted bits from a signal that has been contaminated by noise. The

output of the MF can be obtained by correlating ~y with all the given spreading sequences.

r = AT × ~y (4)

For example, if we look at the 1st row and 1st column of the matrix r, which is assigned with a

first spreading sequence is given by

r1,1 = a1 ~y1

= a2
1,1v1,1 + a1,1(a2,1v2,1 + a3,1u3,1 . . . aKtot,1vKtot,1)

. . .

+

a2
1,Bv1,1 + a1,B(a2,Bv2,1 + a3,Bu3,1 . . . aKtot,BvKtot,1)

= ~v1,1 +
B∑
k=1

a1,k(a2,kv2,1 + a3,ku3,1 . . . aktot,Buktot,1)

6



Figure 2: An example of sorted user base on energy detector.

where, ~y1 is the first column of matrix y and ~v is assigned with -1,1 if active users or 0 if inactive.

From this MF equation, the energy is given by

Ei,j =
B∑
j=1

r2
i,j (5)

where i and j represent the ith user and location of jth bit. From equation (5), it is possible to

make the certain gap between active users and inactive users because ~vi,j can be extracted from the

equation. As seen from an example in Figure 2, in this figure Ka = 100. we can visualize there

is a certain gap in 100th user. Most active users are at the left side of the gap with few inactive

users. Based on these statistics, The energy detector gives us the first K sequences in the sorted list,

where K = Ka +Kδ for fixed integer Kδ. With the higher value of the energy detector, it will have

more chances to be an active sequence. 2 bit combined energy detector is similar to the previous

scheme. As shown in Figure 3, reshaping the received signal to the length of B
2

we can consider

four cases. [aiai, ai − ai,−aiai,−ai − ai]. For each case correlate with ~y and repeat the step as

done in the original energy detector.

Figure 3: 2bit combined MF for the u1
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Figure 4: Neural Network structure

3.2 Deep Learning based active user detector

Deep learning has two separate operating phases. A training part followed by a testing phase.

The goal of the training is to optimize and prepare the NN for the test samples. After training,

it is in the test phase that the NN’s functionality as a detector is realized. In both phases, the

energy detector and histogram of MF are fed as an input to the NN. Because the NN model has

multiple inputs, the structure we used is parallelism as in Figure 4. As mentioned in [5], the NN has

multiple layers with parameters, called weights and biases, these parameters are optimized at the

training phase. The layers used in Figure 4 is called the fully-connected layer and activation layer.

The activation layer introduces non-linearity and it has no trainable parameters. Mostly activation

function for the hidden layers is the Rectified Linear Unit(ReLU). ReLU activation is sequentially

repeated before getting to the output. For the output layer of a classifier, sigmoid activation is

selected because at the end we only have one output to label it. In other words, the number of

output nodes is going to determine the activation for the output layer. In the training phase, the

dataset is sent to NN multiple times. Epoch is used to indicate how many times that the dataset

8



was sent through NN. Let say the number of the epoch is Nepoch and let Nbatch denote that to avoid

overflow in the training phase, the dataset is divided into several smaller subsets. Nbatch called the

batch-size. The number of epochs, the batch-size, and the learning rate α are called the hyper-

parameters. In the test phase, the performance is determined by the training phase convergence,

which depends on these hyper-parameters. In our NN, a loss function, called binary cross entropy

is used and is given by

L(θ̃) = − 1

N

N∑
i=1

θ log2(θ̃) + (1− θ)log2(1− θ̃) (6)

where θ is the label and the NN’s output layer activation is the sigmoid function. Let say an input

d from the previous layer, the sigmoid function is given by

θ̃ =
1

1 + e−dm
, ∀m (7)

and the hard decision is perform as round integer, which is given by

θ̂ =


0 if θ̃ ≤ 0.5,

1 otherwise.
(8)

3.2.1 Training data and Test data

In a dataset, usually divided into a training set, a validation set, and a test set in each iteration.

A training set is implemented to build up a model. In a neural network, we try to create a model to

predict the test data. In order to do that we use the training data to fit the model and testing data to

test it. The models generated are to predict the results unknown which is a test set. The proportion

between train data and test data is up to the designer.

In this thesis, we used a multi-input system for the training sample. The first input is the

histogram for the square value of output of the MF and the other one is the energy detector of each

user. The histogram is an approximate representation of the distribution of numerical data. To

9



Figure 5: Histogram with bin = 0.1

construct a histogram, the first step is to bin the range of values and then count how many values

fall into each interval. In this case, the square value of output of the MF with B bits for each user

is observed data. Like above in Figure 5, each row represents a specific user histogram with the

corresponding label and value. The second column will be used to classify the user’s status and

the rest of the columns will be trained in the model. In this process collecting large training data is

one of the tasks. For each iteration, accumulate the fixed number of the histogram and feed these

data into a neural network model. At the next iteration, reload the previous model and retrain with

the current fixed number of histograms and repeat this step until the training data is sufficient. But

every iteration we have to train the model and reload it, which is an inefficient way to approach

it. Instead of reloading the previous model, at each iteration, save the fixed number of histograms

in csv file, and at the next iteration reload the last csv file and stack with the new histogram.

Approaching this way, we can reduce the processing time and train the model only once. For

collecting another input, which is the value of the energy detector for each user is implemented in

the same way as a histogram and combined with all the input for the model.

Accumulating the training data with different ratios between classes is another variable that has

to be considered. Like Figure 6, there are several ways to collect the data. The best way to collect

data is to set the equal ratio with each class for this particular model. In this paper, we collect all

10



Figure 6: Collecting training data with different ratio

Figure 7: example of miss detection and false alarm

the active users and randomly pick the inactive users with the same ratio. Figure 7 is an example

of the same ratio between active users and inactive users. It shows the miss detection for active

sequences and false alarms for inactive sequences. After the Ka, it is difficult for action sequences

to be detected. On the contrary, it is hard to identify inactive sequences before the Ka.

11



3.3 Hypothesis Testing

In this approach, we compute the likelihood of the square of the correlation of the observed

signal with each spreading sequence under two hypotheses - the user is active and the user is

inactive. Depending on whichever likelihood is higher, we decide the user is active or not. From

the square value for the output of the MF, the formula for PDF of normal distribution is given by

fX(xi : u, σ2) =
1√

2πσ2
e−

(xi−u)
2

2σ2 (9)

where u and σ2 are the parameters mean and variance of the normal distribution and xi is observed

value. In order to stress the fact that the probability density depends on the two parameters, we

write the joint probability density of the sample ζ is

f(ζ; θ) =
n∏
i=1

fX(xi : u, σ2) (10)

Because the joint density of independent variables is same as the product of the marginal densities,

the likelihood function is

L(θ; ζ) = f(ζ; θ) =
n∏
i=1

fX(xi : u, σ2) =
n∏
i=1

1√
2πσ2

e−
(xi−u)

2

2σ2 (11)

The log-likelihood function is

l(θ; ζ) = ln [L(θ; ζ)]

= ln

[
n∏
i=1

1√
2πσ2

e−
(xi−u)

2

2σ2

]
(12)

=
n∑
i=1

ln

[
1√

2πσ2
e−

(xi−u)
2

2σ2

]

12



3.3.1 Inactive user

To compute the PDF of the square value of the output of the MF, we have to calculate the value

u and σ2 for observed value. The observed value R is given by

Ri,k = (aTi yk)
2

= (aTi aiui,k +
Ktot∑
j 6=i

aTi ajuj,k + aTi ni,k)
2

= (ci,k + wi,k)
2 (13)

let assume that l1 is length of the spreading sequence, ui,k is user message, ni,k is noise with ith

user and kth location bit. In the equation, ci,krepresent the first term and wi,k represent second and

third term.

E[wi,k] = 0, E[w2
i,k] =

Ka

l1
+ σ2 (14)

From the above equation, we can see that wi,k has a normal distribution with zero mean, Ka
l1

+ σ2

variance and ci,k is zero. In order to find the PDF of a random variable, it starts with the cumulative

distribution function(CDF), which is integral of the PDF.

FR(x) = P (R ≤ x) = P (W 2 ≤ x)

= P (−
√
x ≤ W ≤

√
x)

= FW (
√
x)− FW (−

√
x), now take differential

fR(x) = fw(
√
x)

d

dx
(
√
x)− fw(−

√
x)

d

dx
(−
√
x)

=
1

2
√
x

[
fW (
√
x) + fW (−

√
x)
]

=
1

2
√
x

1√
2π(Ka

l1
+ σ2)

e
− x

2(Ka
l1

+σ2) (15)

13



3.3.2 Active user

For active user PDF, Ri,k is same as inactive user case in equation (13). But variance value

for wi,k is different from previous. Because from (13) we extract one user out from the equation,

which make

ci,k = 1, E[wi,k] = 0E[w2
i,k] =

Ka − 1

l1
+ σ2 (16)

Likewise, to compute the PDF of the square value of the output of the MF, start with CDF.

Q = U +W

fQ(x) = fU(x) ∗ fW (x)

=
1

2
N(−1,

Ka − 1

l1
+ σ2) +

1

2
N(1,

Ka − 1

l1
+ σ2)

R = Q2

FR(x) = P (R ≤ x) = P (Q2 ≤ x)

= P (−
√
x ≤ Q ≤

√
x)

= FQ(
√
x)− FQ(−

√
x), now take differential

fR(x) = fQ(
√
x)

d

dx
(
√
x)− fQ(−

√
x)

d

dx
(−
√
x)

=
1

4
√
x

1√
2π(Ka−1

l1
+ σ2)

[
e

(
√
x−1)2

2(Ka−1
l1

+σ2)
+ e

(−
√
x−1)2

2(Ka−1
l1

+σ2)
+ e

(
√
x+1)2

2(Ka−1
l1

+σ2)
+ e

(−
√
x+1)2

2(Ka−1
l1

+σ2)

]
(17)

where operation ∗ is convolution. Comparing two different distribution for each user, we can

find out which distribution is more suitable. The log-likelihood function is an efficient way to

identify active users. The messages are made up of independent observations. Then, the logarithm

transforms a product of densities into a summation. The asymptotic properties of sums are easier

to analyze.
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3.3.3 Neyman-Pearson

The Neyman-Pearson lemma is part of the Neyman-Pearson theory of statistical testing, which

introduced concepts like errors of the second kind, power function, and inductive behavior in [6–8].

The Neyman-Pearson lemma is a way to find out if the hypothesis test we are using is the one with

the greatest statistical power. The power of a hypothesis test is the probability that the test correctly

rejects the null hypothesis when the alternate hypothesis is true. The goal would be to maximize

this power so that the null hypothesis is rejected as much as possible when the alternative is true.

The lemma basically tells us that good hypothesis tests are likelihood ratio tests.

Figure 8: Different value of thershold for Neyman Pearson

Consider a test with hypotheses H0 : θ = θ0(inactive) and H1 : θ = θ1(active), where the PDF

is f(x | θi) for i = 0, 1. Denoting the rejection region by R, the Neyman-Pearson lemma states
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that a most powerful test statisfies the following: for some η(threshold) ≥ 0,


x ∈ R if f(x | θ1) > ηf(x | θ0),

x ∈ Rc if f(x | θ0) < ηf(x | θ1),

Pθ0(X ∈ R) = α for a prefixed significance level α

Define the rejection region of the null hypothesis for the Neyman-Pearson test as

RNP =

{
x :
L(θ0 | x)

L(θ1 | x)
≤ η

}

Where η is chosen by designer so that P (RNP | θ0) = α satisfy. From Figure 8, setting the

difference value for the threshold we can modify miss detection and false alarm for hypothesis

testing. If we set the threshold to 1.003 then we can set up as much as an energy detector. It is our

choice for the device that how much willing to sacrifice false alarm to reduce miss detection.

3.4 Simulation

To be a fair comparison between schemes that introduced to the unsourced MAC and the pro-

posed approach, we used the following parameters for numerical simulations. The number of

active users Ka = 100 for active user detection. Each user transmits a payload B = 250 bits. These

messages are encoded into n = 500 channel uses and transmitted into the channel. In active user

detection, each scheme presented in this article will calculate the miss detection and false alarm

like in Figure 9 and table 1. The target per-user error probability is Pe = 0.08.
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Figure 9: Miss detection and False alarm for active user detection

Type Noise:1 Noise:2 Noise:3 Noise:4 Noise:5 Noise:6 Noise:7

Energy Detector Miss Detection 0 0.042 0.128 0.206 0.296 0.366 0.432
False Alarm 0 0.0105 0.032 0.0515 0.074 0.0915 0.108

2bit Combined ED Miss Detection 0 0.042 0.135 0.237 0.31 0.364 0.446
False Alarm 0 0.0107 0.03375 0.05925 0.0775 0.091 0.1115

Neural Network Miss Detection 0 0.02 0.09 0.165 0.232 0.294 0.371
False Alarm 0 0.0217 0.049 0.092 0.1147 0.1425 0.1545

Hypothesis Testing Miss Detection 0 0.023 0.06 0.13 0.167 0.219 0.244
False Alarm 0 0.0175 0.067 0.1095 0.1605 0.19 0.2382

Table 1: Miss Detection and False Alarm for active user detection schemes.
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4. A LOW COMPLEXITY MMSE RECEIVER

4.1 MMSE estimator

MMSE is a model that minimizes the Mean Square Error(MSE) of the received data. MMSE

as an equalizer is a kind of post-processing algorithm that helps us to Figure out the received data

that is close to the original signal as possible. In short, the most important step in MMSE is to

find an inverse matrix for the MMSE. If we assume that there is no noise and interference, the

inverse matrix can be simply an inverse of the spreading sequence matrix. But when there is noise,

we need to use some model that can reflect the noise value. MMSE is one of the algorithms. In

this chapter, we present the demodulation and channel decoding scheme. We denote the set of

spreading sequence indices that returned by detection of an active user as D. The modulated polar

codewords corresponding to all the active users are stacked into a matrix form, given by

V :=



v1

v2

...

vk


We define a matrix Y , which is reshaped of the received vector ~y, by

Y :=

[
~y1 ~y2 · · · ~ync

]

It is clear to prove that matrix Y can be denote as

Y = ADV + Z (18)

where AD is a matrix A restricted to the columns by list D that came from active user detection.

As we know, to make a simplifying approximation and matrix Z to be an independent zero-mean
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Figure 10: Block diagram of MMSE

Gaussian random variable with unit variance.

From Figure 10, we could demonstrate that the received signal and error vector has a specific

condition where there is no correlation between each other. In MMSE, the matrix M shall be such

a matrix that minimizes the MSE by using the statistical characteristics of the received signal. If

there remains some correlation between the received vector and the error vector. the correlation

should be able to utilize for decreasing the norm of the error vector. This is the reason why we

are able to derive the MMSE-optimal matrix M by using the condition that claims the correlation

between the received signal and the error is zero. Deriving the equation for MMSE is given by

E[e · yH ] = 0

E[(v −My)yH ] = 0

E[vyH ]−ME[yyH ] = 0

M = E[vyH ]E[yyH ]−1 (19)

Now, we have the matrix M expressed in two blocks of expectation function. Expanding each of
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these blocks further to derive function for MMSE is given by

E[vyH ] = E[ v(ADv + z)H ]

= E[ v(vHAHD + zH) ]

= E[ vvHAHD + vzH ], where E[vzH ] = 0

= E[ vvH ]AHD , where E[vvH ] = 1

= AHD (20)

E[yyH ]−1 = E[ (ADv + z)(ADv + z)H ]

= E[ (ADv + z)(vHAHD + zH) ]

= ADE[ vHv]AHD + E[zzH ]

= ADA
H
D + σ2I (21)

From (21), covariance matrix of vector y is denote as

R = (ADA
T
D + σ2I) (22)

We show the MMSE estimator of Y to get a linear estimate of V by equation (20) and (21)

M = AHDR
−1 , V̂ :=



v̂1

v̂2

...

v̂k


= MY = AHD(ADA

H
D + σ2I)Y (23)

The estimated vectors corresponding to each codeword are passed into the single user decoder of

the polar code. The list of decoding for polar code is successful if the codewords returned by the

decoder satisfying cyclic redundancy check bits. We denote D̃ , the list of ~vi for each i ∈ D̃

that decoded successfully. In the end, we remove the contributions of all the successfully decoded

codewords VD̃ from the received signal Y to make the residual.

Y − AD̃VD̃

The remaining signal is repeated to do the active user detection for the second iteration. This

process continues until all the transmitted signals to be successfully decoded or there is no more
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Figure 11: Histogram for MSE

that can be decoded.

4.1.1 Mean Square Error

In statistics, the MSE is an estimator that measures the average of the squares of the errors that

is, the average squared difference between the estimated values and the actual value. MSE is a

risk function, corresponding to the expected value of the squared error loss. The fact that MSE is

almost always strictly positive (and not zero) is because of randomness or because the estimator

does not account for information that could produce a more accurate estimate. The MSE equation

is given by

MSE =

∑B
i=1(xi − x̂i)

2

number of bits
(24)

where xi is the actual transmitted bits and x̂i is the estimated MMSE bits. Like Figure 11, after the

active user detection for each scheme, it shows two distinct distributions. The reason why it shows

two distributions is each scheme can not detect exact active users. Each scheme has a different

value of miss detection and false alarm. The left side distribution represents the inactive users

because inactive users transmit with 0 value, which makes much less difference with the estimated

MMSE value. On the other side, the right side of distribution is active users distribution. This has

a higher difference than the inactive one. It is up to the designer to design algorithms to reduce

miss detection and false alarm to get better MSE.
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Figure 12: Histogram of MSE with different percentage of cluster size

4.2 Highly Correlated Sequences based Detector

In order to reduce dimension for the inverse matrix of MMSE, (23) can be rewritten as equiva-

lent as following equation.

MY = AHD(ADA
H
D + σ2I)Y = (AHDAD + σ2I)AHDY

Each user chooses fixed α highly correlated spreading sequences to reduce the matrix size for R

and the remaining sequences treated as interference. Original matrix R size is K × K because

ATDAD size is K × K. But when we do clustering with α high correlated sequence, matrix size

is α × α and the algorithms takes Θ(α3). For the clustering, we also have to calculate the inter-

ference of remained spreading sequences. we chose only α high correlated spreading sequences

and K − α sequence are treated as interference. The sum of diagonal term for AT
D̈
AD̈ will be
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Figure 13: Block diagram for the system

add to the σ2I inside of R matrix, where D̈ ∈ [1 : α]. After reducing the matrix size to α × α,

the interference value for each spreading sequence is the length of the spreading sequence. After

clustering, we have K − α sequence to be treated as interference, which the value of interference

is (K −α)×(length of spreading sequence). Figure 12 shows the distribution for different sizes of

clustering α value for the histogram of MSE. It can be observed that we get a more different value

between the original transmitted signal and the MMSE expected signal by setting the α value to

lower. This is because setting the α value to a lower value then it will reduce the number of high

correlated sequences and add more interference sequences to the inverse matrix in R.

From Figure 13, after the active user detection filter, we have the expected active user list for

4 schemes and each user inside the 4 schemes passes the individual cluster-MMSE filter to reduce

the time complexity. Once again, after the cluster-MMSE filter, each user is assigned with decoder

block to find out whether it is possible to decoded successfully by using the polar code. If there

are users who can be decoded then using the feedback loop we remove that user from the received

signal y until all the users can be decoded. reducing the matrix size is not the only way to reduced

complexity. The upcoming section will demonstrate another way to reduce complexity by selecting

higher chance users who can be decoded more.
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Figure 14: Example of sorted list in energy detector

4.2.1 Low complexity detector

Applications of matrix multiplication in computational problems are found in many fields in-

cluding scientific computing and pattern recognition and in seemingly unrelated problems such as

counting the paths through a graph in [9]. Efficient matrix multiplication would yield efficient al-

gorithms for many other problems such as solving systems of linear equations. The author in [10]

mentioned that the matrix multiplication algorithms take Θ(n3) time to multiply two n× n matri-

ces.

From the sorted list of the energy detector in Figure 14, We can also reduce the time complexity

by selecting top-L users from the sorted list and not trying the decode all the users, because most

active users are in the high rank of the sorted list. From the sorted list of active user detection, we

select top-L users and try to decode them. If there are no users who can be decoded then simply

move on to the next top-L users and try to decode again. This step could take more iteration to

decode all the users in the set but it is possible to reduce the complexity than the original MMSE.

Another method to reduce the complexity is changing the cluster size for each user. From

the sorted list of energy, we select top-L users and try to decode the first user in the list for each

iteration. If that user can not be decoded then move on to the next user inside the top-L list and

repeated until reaching out to the end of the list. If there are no users that can be decoded then

we increase the cluster size and repeat the system. For this operation, each user will not always

have the same cluster size. It is important to monitor the cluster size for each user to calculate the

complexity.
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Ka = 50 Ka = 75 Ka = 100 Ka = 125
SNR require / Complexity

- FD 0.8 / 1 1.2 / 1 1.4 / 1 1.9 / 1
Top:100% Cluster: 90% 0.8 / 43.7 1.2 / 75.82 1.5 / 80 1.9 / 98.41
Top:60% Cluster: 90% 0.8 / 26.2 1.2 / 53.05 1.5 / 64 1.9 / 75.15
Top:30% Cluster: 90% 0.9 / 23.6 1.2 / 34.10 1.5 / 56 1.9 / 102.8
Top:10% Cluster: 90% 0.9 / 25.3 1.2 / 40.41 1.5 / 57 1.9 / 102.8
Top:100% Cluster: 60% 0.9 / 15.5 1.2 / 29.37 1.9 / 36 3.7 / 31.81
Top:60% Cluster: 60% 0.9 / 10.8 1.2 / 33.04 2.0 / 29 3.7 / 19.08
Top:30% Cluster: 60% 0.9 / 7.7 1.2 / 20.93 2.0 / 27 3.7 / 19.08
Top:10% Cluster: 60% 0.9 / 7.7 1.2 / 22.76 2.0 / 30 3.7 / 22.79
Top:100% Cluster: 30% 0.9 / 2.59 1.8 / 4.13 2.3 / 4 4.4 / 3.97
Top:60% Cluster: 30% 0.9 / 1.74 2.0 / 2.47 2.4 / 5.0 4.4 / 3.37
Top:30% Cluster: 30% 0.9 / 1.55 2.0 / 2.61 2.4 / 5.0 4.4 / 2.88
Top:10% Cluster: 30% 0.9 / 1.75 2.0 / 2.84 2.4 / 6.1 4.5 / 3.84
Top:100% Cluster: 10% 1.1 / 0.096 2.4 / 0.153 2.9 / 0.165 4.5 / 0.184
Top:60% Cluster: 10% 1.1 / 0.064 2.4 / 0.091 2.9 / 0.143 5.0 / 0.125
Top:30% Cluster: 10% 1.1 / 0.072 2.4 / 0.076 2.9 / 0.165 5.0 / 0.114
Top:10% Cluster: 10% 1.1 / 0.075 2.4 / 0.086 2.9 / 0.188 5.0 / 0.137

Table 2: First scheme, SNR require and time complexity for each Ka value

4.3 Simulation

Table. 2 demonstrates the performance of SNR requirements and time complexity for different

cluster sizes and top-L values after the MMSE estimator. For Ka=50, Pe = 0.08 and SNR of 0.8

dB is required but if we choose top-30% and cluster size 10% then we can reduce time complexity

to 0.072% with 1.1 dB SNR required. For example, Ka=100, SNR of 1.4 dB is required and if

we choose top-60% and cluster size 10% then time complexity is 0.143% with 2.9 dB SNR. For

less Ka size, even we select a lower cluster size we can decode successfully with little difference

of SNR require. But if we increase Ka size then SNR requires the same cluster size to increase

dramatically. In this part, the goal is how much willingness to sacrifice SNR requires to reduce the

time complexity.

Table. 3 shows the second scheme for reducing the time complexity. In this table, there are

some cases that have the same complexity for different top-L values. For example, with cluster size
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Ka = 50 Ka = 75 Ka = 100 Ka = 125
SNR require / Complexity

- FD 0.8 / 1 1.2 / 1 1.4 / 1 1.9 / 1
Top:100% Cluster: 90% 0.9 / 24.8125 1.2 / 60.9268 1.5 / 90.2840 1.9 / 132.12
Top:60% Cluster: 90% 0.9 / 24.8125 1.2 / 60.9268 1.5 / 90.2840 1.9 / 117.27
Top:30% Cluster: 90% 0.9 / 24.8125 1.2 / 60.9268 1.5 / 96.471 1.9 / -
Top:10% Cluster: 90% 0.9 / - 1.2 / - 1.5 / - 1.9 / -
Top:100% Cluster: 60% 0.9 / 9.4781 1.2 / 28.6470 2.0 / 41.3007 3.7 / 31.212
Top:60% Cluster: 60% 0.9 / 9.4781 1.2 / 29.4645 2.0 / 40.9006 3.7 / 28.805
Top:30% Cluster: 60% 0.9 / 9.4781 1.2 / 46.1948 2.0 / 60.1950 3.7 / 34.518
Top:10% Cluster: 60% 0.9 / - 1.2 / - 2.0 / - 3.7 / -
Top:100% Cluster: 30% 0.9 / 2.2923 2.0 / 4.1793 2.4 / 8.3288 4.4 / 4.9235
Top:60% Cluster: 30% 0.9 / 2.1980 2.0 / 4.1793 2.4 / 16.308 4.4 / 9.5926
Top:30% Cluster: 30% 0.9 / 5.3754 2.0 / 11.0871 2.4 / 36.026 4.4 / 21.1746
Top:10% Cluster: 30% 0.9 / - 2.0 / - 2.4 / - 4.5 / -
Top:100% Cluster: 10% 1.1 / 0.0947 2.4 / 0.1525 2.9 / 0.2342 5.0 / 0.1904
Top:60% Cluster: 10% 1.1 / 0.0947 2.4 / 0.1525 2.9 / 5.0259 5.0 / 0.6783
Top:30% Cluster: 10% 1.1 / 3.2980 2.4 / 3.6570 2.9 / 20.4549 5.0 / 15.291
Top:10% Cluster: 10% 1.1 / - 2.4 / - 2.9 / - 5.0 / -

Table 3: Second scheme, SNR require and time complexity for each Ka value

10% and top 100% and 60% have the same complexity. Because every time when we go down the

top list, there are always users who can be decoded inside the top 60% for all users. This is why if

we increase the top-L value higher than 60%, it will always get the same complexity as a top-60%

case. Also with top-10%, it is unable to measure the complexity because for top-10%, there are no

users who can be decoded and then we increased the cluster size 10% and repeated. But even we

increase the cluster size to the original MMSE matrix size, it is still not possible to decode anyone

in the top-10%. Another thing to analyze in table 3, for the same cluster size, top-100% is less or

equal complexity than other cases. when we choose the top 100% then there will always be some

users who can be decoded and removed from the received signal. But if we choose top-30%, there

are no users who can be decoded and increase the cluster size 10% more and repeated from the

first user in top-30%. This process to find the next decodable user takes more iteration to do than

finding the next decodable user in top-100%.
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5. CONCLUSION

We presented four activity detection schemes in chapter3 based on random spreading, sin-

gle user decoding, and interference cancellation for the unsourced multiple access channel. Each

scheme shows its own miss detection and false alarms. Comparison between MF and 2-bit com-

bined MF with NN and hypothesis testing, our suggested algorithms could perform as much as the

MF and 2-bit combined MF introduced in [2]. In chapter 4, we showed how to reduce the com-

plexity based on choosing the highly correlated sequences for each user and also selecting top-L

users in the expected active user list to decode in each iteration. we presented 2 methods for this

process to reduce the complexity with a different approach. The spreading sequences employed in

this work are random Gaussian variables. Also, the error performance of this scheme is heavily

dependent on the lengths of the spreading sequence and channel code used. A goal question in this

context is how could possible to identify which sequences are active with higher probability and

how to reduce the complexity with a small trade-off.
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