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 ABSTRACT 

 

Microstructure of a material determines the transport, chemical and mechanical properties. 

Geological materials and geomaterials are imaged using microscopy tools. The 

microscopy images are analyzed to better understand the microstructural topology and 

morphology. Image segmentation is an essential step prior to the microstructural analysis. 

In this study, we trained a Random Forest classifier to relate certain features corresponding 

to each pixel and its neighboring pixels in a scanning electron microscopy (SEM) image 

of shale to a specific component type; thereby developing a methodology to segment SEM 

images of shale samples into 4 component types, namely, pore/crack, organic/kerogen, 

matrix and pyrite. We evaluate the generalization capability of the Machine Learning-

assisted image-segmentation (MLIS) method by using SEM maps from Wolfcamp and 

Barnett shale formations. The two formations differ in topology, morphology and 

distribution of the four components. 

The MLIS method is also implemented to classify rock and different fluid phases 

in micro-CT scans of carbonate core sample undergoing water alternating gas injection 

with a goal to quantify the three-dimensional fluid connectivity. The three-dimensional 

connectivity of the fluid phases in porous media plays a crucial role in governing the fluid 

transport, displacement, and recovery. Accurate three-dimensional quantification of the 

fluid phase connectivity following each fluid injection stage will lead to better 

understanding of the efficacy and efficiency of the fluid injection strategies. Two metrics 

for measuring the connectivity in 3D show robust performance; one uses fast marching 



 

iii 

 

method to quantify average time required for a monotonically advancing wave to travel 

between any two pixels and the other uses two-point probability function to approximate 

the average distance between any two connected pixels belonging to the same fluid phase. 

The two connectivity metrics are applied on the three-dimensional (3D) CT scans of one 

water-wet Ketton whole-core sample subjected to WAG injection to quantify the evolution 

of the three-dimensional connectivity of the three fluid phases (oil, water, and gas). 
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NOMENCLATURE 

 

SEM Scanning Electron Microscopy 

CT Computed Tomograghy 

MLIS Machine Learning-assisted Image Segmentation 

MDA Mean decrease Accuarcy 

TOC Total Organic Carbon 

WAG Water Alternating Gas 

EOR Enhanced Oil Recovery 

CF Connectivity Function 

FMTT Fast Marching-based Travel Time 

PI Pre-injection 

WF1 Water-flooding #1 
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WF2 Water-flooding #2 
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CHAPTER I  

INTRODUCTION  

 

Data-driven methods can help conduct time-consuming and complex tasks faster, while 

delivering more accurate results compared to manual efforts. This thesis demonstrates the 

application of such data-driven methods in two different problems pertinent to the oil and 

gas industry.  

In chapter two, we discuss a machine learning approach to accurately segment the 

boundary pixels belonging to pore/crack and organic/kerogen components in SEM image 

of organic-rich shale. Machine learning refers to the technology that uses statistics to find 

trends in massive amount of data in an autonomous way without being explicitly 

programmed. This data can be in the form of text, images, numbers, videos, or anything 

that can be digitally stored. Machine learning is focused on providing systems the ability 

to learn from experience and improve the decision-making or predictive accuracy over 

time. Examples of machine learning implemented in everyday activities include internet 

search engines, spam detector for emails, personalized recommendations on websites and 

streaming platforms, virtual assistants with voice recognition ability and so on.  

On a broader scale, machine learning can be divided into 3 categories: supervised 

learning, unsupervised learning, and semi-supervised learning. Supervised learning 

encompasses algorithms that require dataset labelled with the information that the model 

is built to predict. The model learns the labels from the data (called training) and can 

further classify or predict new, unlabeled data. Unsupervised learning requires large 
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amount of unlabeled data and uses algorithms to extract meaningful features needed to 

group or sort the data in real-time without human intervention. Semi-supervised learning 

provides a middle ground between these two approaches. It can train on a small labeled 

dataset to help extract features from a larger unlabeled dataset.  

In chapter three, different statistical methods are presented that are capable of 

capturing the evolution of fluid phase connectivity in a core sample during water 

alternating gas (WAG) injection. The parameter ‘connectivity’ is utilized in differently in 

various disciplines. It is a critical estimator in characterizing other physical attributes of a 

system. Several physics-based and statistical methods have been adopted to quantify 

connectivity at different levels. This study focuses on measuring the pixel connectivity of 

a fluid of interest from a binarized core image during multistage injection.  

In chapter four, we discuss the limitations of the current methods presented in 

chapters two and three and recommend ways in which the workflows can be used further 

for other scenarios.  
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CHAPTER II  

PORE AND KEROGEN DETECTION FROM MICROSCOPIC IMAGES OF SHALES 

USING MACHINE LEARNING 

 

Introduction 

Literature review  

Machine learning have been implemented in different computer vision applications, such 

as, image segmentation, image classification and object detection. U-net, a deep learning 

architecture for image segmentation, is used for lung CT image analysis that aids in the 

detection of malignant lung tumor causing the lethal lung cancer [1]. Algorithms like 

Random Forest, Support Vector Machines, Neural Networks have been widely used for 

image classification applications in remote sensing, medical imaging, facial recognition 

and so on [2,3,4]. Machine learning techniques have been widely implemented in the 

recent years for interpretation of images in the domain of petroleum engineering and 

geosciences. These methods can help improve the characterization of subsurface images 

by identifying underlying patterns that may be obscured through traditional means of 

visualizing and image processing [5]. Al-Farisi et al. (2019) performed machine learning 

assisted image recognition using random forest algorithm on 3D μCT and MRI images to 

determine the lithologies and porosity of a carbonate rock. The porosity was validated 

with three sets of experimental results and was found to be very close to the experimental 

porosity value [6]. The time-consuming task of interpreting rock types from petrographic 

features can be performed in an efficient and accurate way by leveraging machine learning 
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methods to identify geologic patterns from thin section images [7]. High resolution 

microscopy images can effectively capture the complex microlevel variations in the rock 

structure. Analysis of these microstructural components can aid better understanding of 

the fluid pathways and rock-fluid interaction. Image segmentation is the preliminary step 

of image processing. Segmentation refers to the process of assigning a label to each pixel 

present in the image, thereby creating a representation of the image that is more 

meaningful and easier to analyze.    

In this study, the SEM images of shale are classified into four components, namely, 

pores/cracks, kerogen/organic, matrix and pyrite using machine learning assisted image 

segmentation (MLIS). Random Forest, an ensemble classification technique, is 

implemented to accomplish the segmentation. A crucial expectation from machine 

learning models is the generalization capability, or in other words, the ability to be 

applicable on data that has not been used to train the model. This project focuses on 

building a generalizable, robust classification model on limited amount of training data 

(images) capable of accurately segmenting new, unseen SEM images of shale formations. 

The study makes use of two SEM maps, which are continuous sequence of SEM images 

of organic-rich shale samples from Wolfcamp and Barnett formations.  

Scientific questions 

This chapter aims at answering the following scientific questions: 

• How to improve the method of identification of different important components 

like pores and kerogen from SEM images of shales? 
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• How can we obtain the pore and kerogen size distribution in shales without 

conducting petrophysical experiments? 

• What are some ways in which a classification model can be optimized in terms of 

generalization capability? 

• How can the effect of imbalanced dataset on the performance of a classifier be 

reduced? 

• How can we identify the features/variables having the highest contribution on the 

performance of a model on a test data? 

 

 

Method 

The machine learning assisted image segmentation (MLIS) is developed on two 

continuous: sequence of SEM images (called maps) of shale from two different 

formations, namely, the Wolfcamp map and the Barnett map. These two formations highly 

vary in the distribution of their pore network, organic and inorganic components. The goal 

of this study is to train a robust Random Forest classifier capable of accurately identifying 

the different components from SEM images of both the formations. Fig. 1 shows the MLIS 

workflow built on the two shale maps. 
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Figure 1. Workflow of the Machine Learning assisted Image Segmentation (MLIS) 

method 

 

Dataset 

The two SEM maps were captured using the FEI Helios Nanolab™ 650 

DualBeam™ FIB/SEM machine and FEI SEM MAPS™ software in the Integrated Core 

Characterization (IC3) lab at the University of Oklahoma. The Wolfcamp map covers an 

area of 260.6 µm by 2058 µm consisting of 26060×205800 pixels and The Barnett map 

covers an area of 164.64 µm by 182.42 µm containing 16464×18242 pixels. Wolfcamp 

and Barnett maps were sliced into 1000 and 56 smaller images respectively with consistent 

dimensions compatible with the proposed segmentation workflow. All smaller image 

slices were of dimension 2058×2606 pixels. Image slices are numbered 1 to 1000 in 

Wolfcamp map and 1 to 56 in The Barnett map. The slices do not contain overlapping 

pixels. 
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Training and features 

In data-driven methods, training data is chosen such that the distribution of the different 

classes (in this case, components) in the train data is representative of the distribution of 

the classes in the entire dataset. It is also important to select adequate number of samples 

belonging to each class for a robust training of a classification model. In this study, we 

select 705, 2074, 17373 and 15000 pixels corresponding to the pore/crack, 

organic/kerogen, matrix and pyrite components, respectively from image slice 90 of The 

Wolfcamp map, whereas, 912, 8435, 5806 and 5387 pixels of the four components from 

image slice 35 of The Barnett map for purposes of training (Fig. 2). 

 

Figure 2. Training image from the Wolfcamp (slice 90: left) and Barnett (slice 35: 

right) formations (Reprinted from Ganguly et al. 2020) 

 

Feature extraction is then performed on each pixel and the neighboring pixels in 

the training dataset. Feature extraction is a useful step in case of a large dataset. It helps 

reduce the amount of redundant data and increases the speed of learning and generalization 

of the machine learning model. In this case, pixel intensity serves as the primary feature. 
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Fifteen more features have been calculated to ensure a robust learning process for the 

MLIS model. These features are explained in detail by Misra and Wu (2020) and Wu et 

al. (2019) and consist of the following [8, 9]: 

• Gaussian blur (1 feature): A non-uniform low-pass filter that preserves low spatial 

frequency and reduces image noise and negligible details in an image that results 

in a blurred version of the image. 

• Difference of Gaussian (1 feature): Acts as a band-pass filter that delineates local 

structures (e.g. blobs) in image. 

• Local statistical information (3 features): Maximum, minimum and mean of 

intensities of all pixels inside a 3 × 3 grid centered at the target pixel to be 

classified. 

• Wavelet decomposition (6 features): Wavelet transform enables multiresolution 

space-scale (time–frequency) analysis of signals. Unlike Fourier transform, 

wavelet transform preserves local features and are suitable for non-stationary 

signals. 

• Hessian affine region detector (3 features): Hessian affine region detector 

describes the second-order partial derivatives of the local intensity around a pixel. 

It is suited for detecting even edges and differentiating between tubular, sheet-like 

and blob-like structures present in an image.  

• Sobel edge detector (1 feature): Sobel operator performs a 2-D spatial-gradient 

operation on an image to enhance the edges. This helps segmentation of the 

boundary pixels. 
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Model development 

The sixteen features extracted from each pixel is fed into a Random Forest model for 

robust classification. Random Forest is an ensemble tree-based supervised learning 

algorithm. It consists of a set of decision trees and aggregates the votes from the trees to 

decide the final output. This helps the model outperform the decision from any single tree 

and makes the algorithm more robust. The Random Forest model used in the MLIS 

workflow uses the different features as input and classifies each pixel into one of the four 

classes, namely, pore/crack, organic/kerogen, matrix and pyrite.    

Hyper-parameter optimization 

Hyper-parameter of a machine learning model is a parameter that is user set prior to the 

start of the learning process. The set of hyper-parameters define the model architecture 

and vary from one algorithm to another. Few important hyper-parameters of the Random 

Forest model are: 

n_estimators: The number of individual decision trees that will be constructed in the 

Random Forest. 

max_depth: The maximum depth at which the tree will expand. 

min_samples_split: The minimum number of samples required to split an internal leaf 

node. 

min_samples_leaf: The minimum number of samples required to be at a leaf node. 

Different combinations of hyper-parameters can be explored to find the optimal 

model architecture that results in low memorization error and lowest generalization error. 

This method is called hyper-parameter optimization. In this study, a total of 1512 
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combinations of hyper-parameters were tried using a grid search method, followed by a 

3-fold stratified cross-validation. The optimal set of hyper-parameters were used in the 

final model. 

Performance evaluation 

The performance of the classifier was evaluated using precision, recall and weighted F1 

score. Precision answers the question, “what proportion of the positive identification was 

actually correct?” and measures the reliability of the label assigned by a classifier, 

whereas, recall answers the question, “what proportion of actual positives was identified 

correctly?” and measures the ability of a classifier to correctly assign a label. F1 score is 

the harmonic mean of precision and recall. All the three metrics range from 0 to 1, 0 

denoting poor classification and 1 denoting robust performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
                                        (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
                                          (2) 

 

The terms True Positive, False Positive and False Negative can be explained with 

the help of an example where the class of interest in pore/crack. If a pixel belonging to the 

pore/crack component type is predicted to be pore/crack by the classifier, it is a case of 

true positive, while, if a pixel belonging to a different component is predicted to be 

pore/crack by the classifier, it is a case of false positive. Alternatively, true negative is a 

case where a pixel belonging to a component type other than pore/crack is correctly 
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categorized by the classifier, whereas, false negative is a case where a pixel belonging to 

the pore/crack component type is incorrectly classified to be a different component. In this 

study, the dataset is imbalanced, with more pixels belonging to matrix and pyrite 

components, therefore, F1 score weighted by the support pixel for each component is used 

to obtain the accuracy. 

Result and discussions 

In this section, we conduct a detailed comparison of the machine learning assisted image 

segmentation (MLIS) workflow developed on images from the two shale formations, 

Wolfcamp and Barnett. We analyze the performances of the two models and present an 

approach to improve the classification accuracy. The two SEM maps vary in their topology 

and exhibit slightly different range of pixel intensities as a result of difference in the 

microscope settings. In order to study the reliability and generalizability of the machine 

learning models, the model learning is divided into two approaches: 

• Approach 1: learning from images of individual formations (includes training on 

one formation and testing on another) 

• Approach 2: learning from images of both the formations combined (includes 

training on combined dataset from the two formations and testing on each of the 

formations) 

In this document, the model trained on Wolfcamp SEM image is called Model-1, 

that trained on the Barnett SEM map is called Model-2 and the model trained on the 

combined dataset is termed Model-3. 
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Approach 1: learning from images of individual formations (includes training on one 

formation and testing on another) 

Model-1 is trained on image slice 90 of SEM map from the Wolfcamp formation. It is 

deployed on the SEM map from the Barnett formation to identify the inner and boundary 

region pixels belonging to pore/crack, organic/kerogen, matrix and pyrite components. To 

evaluate the robustness of the proposed workflow, we train the model on one formation 

and deploy it on a different formation. The model performance is measured in terms of 

precision, recall and F1 score. A low precision for a certain component indicates that one 

or more of the other components present in the image is being misclassified as that 

particular component. 

 Is it evident from Fig. 3 that Wolfcamp and Barnett shale formations significantly 

vary in the distribution of pore/crack component. While the Wolfcamp formation is 

characterized by the presence of cracks in the form of thin, elongated strips, the Barnett 

formation sees a dominance of pores embedded in organic matter. Fig 3. compares the 

segmentation performance on one image from the Barnett map using Model-1 described 

in approach 1 versus using a model trained on the Barnett map, which in this case, would 

generate the ideal performance as the train and test maps are same. The model trained and 

tested on Barnett map have been elaborated by Misra et al. (2020) [10].  
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Figure 3. Comparison of segmentation of slice 15 of the Barnett map (left) using 

model trained of Wolfcamp map (mid) and model trained on Barnett map 

(right). 

When MLIS Model-1 is deployed on Barnett map, a low precision of 0.41 for the 

inner region pixels of pore/crack components is obtained, coupled with a low recall of 

0.49 for inner region pixels of the organic/kerogen component. This indicates that a 

significant number of pixels belonging to organic/kerogen component in the Barnett shale 

map is being misclassified as pore/crack. The model is trained on strips of black pixels 

labeled as pore/cracks and fails when organic/kerogen pixels are arranged in the form of 

thin, elongated structures. The matrix and pyrites show a relatively higher precision and 

recall, since the variation in pixel intensities between these constituents and pore/cracks 

and organic/kerogen are more detectable than that between pore/cracks and 

organic/kerogen. In the Barnett map, the pores also share considerable boundary area with 

organic/kerogen, thereby resulting in a lower accuracy for the outer region pixels of these 

two components (Fig. 4). 

 
Figure 4. Performance of Model-1 trained on the Wolfcamp map on inner and outer 

region pixels of the Barnett map. 
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 In the next step, we trained the MLIS model (Model-2) on the images from the 

Barnett formation and deployed it on the images from the Wolcamp. To determine the 

robustness of the model, we test it both inner and outer region pixels of the four 

components in the Wolfcamp SEM map. Model-2 achieves an F1 score of 0.89 when 

deployed on the inner region pixels and 0.91 when deployed on the outer region pixels of 

Wolfcamp map. This is a very encouraging performance. These scores are found to be 

higher than the F1 scores obtained when Model-1 was deployed on Barnett map inner 

region pixels (F1 score of 0.82) and outer region pixels (F1 score of 0.81). This suggests 

that The Barnett map has more generalizable statistical features that can serve to better 

train the segmentation model and The Wolfcamp map has simpler microstructural features 

that are easier to identify. 

 Model-2 learns from assorted clusters of pixels labeled as pores and therefore, fails 

to accurately identify cracks that are present in the Wolfcamp map as elongated strips of 

pixels. This results in a low recall for pore/crack component along with a low precision 

for organic/kerogen components (Fig. 6). This observation can also be verified from Fig. 

5 which shows the original (far left) and segmented (far right) image slice of Wolfcamp 

SEM map. We see pixels belonging to cracks being identified as organic/kerogen in the 

right image. Fig. 5 (mid) shows the ideal segmentation when the model is trained as well 

as tested on the Wolfacmp formation map (Ganguly et al., 2020) [11].  
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Figure 5. Comparison of segmentation of slice 60 of the Wolfcamp formation (left) 

using model trained of Wolfcamp map (mid) and model trained on Barnett 

map (right). 

 

  

 

Figure 6. Performance of Model-2 trained on the Barnett map on inner and outer 

region pixels of the Wolfcamp map. 

Approach 2: learning from images of both the formations combined (includes training 

on combined dataset from the two formations and testing on each of the formations) 

In the previous approach, we notice that the models fail to perform well, especially for the 

pore/crack and organic/kerogen components, when deployed on a formation other than the 
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one used for training. In this approach, we train a Random Forest classifier on a combined 

dataset of pixels selected from SEM images of both the formations. Sixteen features are 

extracted from training pixel as before. The developed MLIS model is tested on inner and 

boundary region pixels selected from multiple images from both the formations.  

We observe a significant improvement in the performance of the classifier trained 

on the combined dataset on the inner and boundary region pixels of both pore/crack and 

organic/kerogen components of the Wolfcamp map (Fig. 7) as well as Barnett map (Fig. 

8). For inner region pixels, the average F1 score reaches a perfect score of 1.00 for the 

Wolfcamp formation and of 0.99 for the Barnett formation. For outer/boundary region 

pixels, the model obtains an average F1 score greater than 0.8 for both the formations, 

thereby making Model-3 the best performing classifier with respect to generalizability. 
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Figure 7. Performance of Model-3 trained on the combined dataset on inner and 

outer region pixels of the Wolfcamp map. 

Figure 8. Performance of Model-3 trained on the combined dataset on inner and 

outer region pixels of the Barnett map. 

 

 Fig. 9 compares the generalization capability of the three aforementioned image 

segmentation models. It is evident that Model-3 trained on the combined dataset exhibits 

a considerably higher average F1 score for all four scenarios in Fig. 9 and Fig. 10 

compared to the two models trained on individual SEM maps. It can also be noticed that, 

Model-3 improves the generalization performance on the inner region pixels without 

compromising on the segmentation of outer region pixels. Therefore, Model-3 can be 

established as the most robust classifier for the machine learning assisted image 

segmentation (MLIS) method. 
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Figure 9. Comparison of the average F1 scores for the pore/crack and 

organic/kerogen components when Barnett map is segmented using 

Model-1 (approach 1) and Model-3 (approach 2) 

 

 
Figure 10. Comparison of the average F1 scores for the pore/crack and 

organic/kerogen components when Wolfcamp map is segmented using 

Model-2 (approach 1) and Model-3 (approach 2) 

 



 

19 

 

 Fig. 11 and Fig 12 shows a visual comparison of the Barnett map and Wolfcamp 

map respectively when segmented using approach 1 (left) versus when segmented using 

approach 2 (right).  

 
Figure 11. Optimized segmentation performance of the Barnett map from Model-1 

(left) to Model-3 (right) 

 

 
Figure 12. Optimized segmentation performance of the Wolfcamp map from Model-

2 (left) to Model-3 (right) 

Feature selection 

In supervised learning, feature selection helps improve the performance of a model and 

reduces the curse of dimensionality. It involves feature ranking followed by feature 
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elimination. Feature ranking employs different methods to quantify the contribution of 

each feature in the overall prediction of the model. Most popular feature ranking methods 

are mean decrease accuracy (MDA) and mean decrease impurity (MDI). In this study, we 

use 16 different features to train the each of the three classifier models. We deployed the 

MDA method to investigate the effect of the features on the prediction of the classifiers. 

Scikit-Learn compatible black-box estimator called Permutation Importance have been 

used for the purpose. This estimator ranks a feature based on the decrease in the specified 

scoring metric when a particular feature is not available (permuted) while testing a trained 

model. All features are used while training the model and each feature is excluded during 

deployment of the model on the test set. The more the test accuracy suffers, the higher the 

importance of that feature in the prediction capability of the model. The estimator outputs 

a weight associated with each feature to quantify the importance.  

In this study, we measure the feature importance for two different cases: 

⮚ Case I: Testing the performance of Model-3 on pixels from the Wolfcamp shale sample 

⮚ Case II: Testing the performance of Model-3 on pixels from the Barnett shale sample. 

Fig. 13 shows the five most important features for each of the two cases. We 

observe that in both cases pixel intensity, Gaussian blur and local statistical information 

like min, max and mean show a high contribution to the prediction performance of the 

model. Notably, even though Cases I and II are trained on the same training dataset (Model 

3), the dominant features change depending on the testing dataset processed by Model 3. 
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Figure 13: Five most important features ranked by the mean decrease accuracy 

(MDA) method in case of segmentation of the Wolfcamp map (Case I: 

left) and Barnett map (Case II: right) using Model-3.   

Estimation of Petrophysical Parameters Based on the Identification of Pores, Cracks 

and Kerogen 

Above sections, describe the development and evaluation of a robust method to identify 

hydrocarbon storage and transport pathways along with the kerogen distribution in the 

SEM maps from shale formations. After the identification of pores, kerogen, and cracks, 

one can quantify various petrophysical and petrological characteristics. On those lines, we 

quantify porosity distribution, pore size distribution, and kerogen size distribution in the 

SEM map from the Barnett shale formation. It covers an area of 164.64 µm by 182.42 µm 

containing 16464×18242 pixels. The map was sliced into 56 image slices, each consisting 

2058×2606 pixels and covering an area of 20.58 µm by 26.06 µm. The total porosity from 

the Barnett map was found to be 0.45%.  

Fig. 14 shows a grayscale heatmap with cells representing the 56 (8 rows by 7 

columns) slices of the Barnett map. The plot is annotated with the porosity values 

associated with each image slice. The porosity ranges from 0.1 % to 0.8% in the entire 

sample representing an area of 164.64 µm by 182.42 µm. The right side of the map is 
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dominated by low-porosity regions. Both high porosity and low porosity regions are 

localized and predominantly surrounded by regions having 0.4% porosity. Extremely low 

and high porosity regions are isolated, whereas 0.5% porosity regions are the most well 

connected. 

 

 
Figure 14. Slice-wise porosity distribution in the Barnett shale map representing 

variations over an area of 164.64 µm by 182.42 µm. 

The pore-size and kerogen-size distributions are quantified with the help of a 

cluster function that calculates the number of pixels present in each cluster of a specified 

component. Each pixel covers an area of 100 nm2. A multiscale pore size distribution was 

observed with 17% of the pore volume consisting of pore sizes less than 20 pixels (50 nm 

diameter), 68% of the pore volume made of pixel size between 20 and 500 pixels (50-250 

nm diameter) and the remaining 15% pore volume consisting of pore sizes greater than 
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200 pixels. The micro-scale (500 pixels) pore sizes contribute equally to the total pore 

volume of the Barnett sample. The porosity reported here is primarily embedded in the 

organic matter.  

Fig. 15 shows the Barnett map (a) and the distribution of the three different pore 

size scales (b: micro-scale pore size < 20 pixels, c: meso-scale pore size between 20 and 

500 pixels, d: macro-scale pore size > 500 pixels). Number of macroscale pores is two 

order of magnitude lower than the number of microscale pores, while the number of 

mesoscale pores is half of the number of microscale pores.  

Fig. 16 plots the distribution of the kerogen cluster sizes present in The Barnett 

map. Only the large clusters consisting of more than 10,000 pixels are considered for this 

plot. We observe presence of very large kerogen clusters with sizes more than 100,000 

pixels. The map predominantly contains kerogen clusters of size ranging from 10,000 

pixels to 20,000 pixels. In the cluster-size range from 100,000 to 200,000 pixels, there are 

on an average 1 to 2 clusters in the map. These clusters host the organic pores and are 

important in the calculation of TOC of the shale sample. 
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Figure 15. Multiscale pore size distribution of the Barnett shale sample.  

 

 
Figure 16. Organic/kerogen size distribution of Barnett shale sample. 
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Comparison of MLIS method with threshold-based segmentation and Fiji-based 

segmentation methods 

Here we compare the performance of the proposed machine learning workflow against 

traditional image segmentation methods, namely threshold-based segmentation and ML-

assisted segmentation using the Fiji software. Threshold-based segmentation is a simple 

but popular method that classifies various components present in an image on the basis of 

pixel intensity ranging from 0 to 255 (Fig. 17). We consider the inner and outer region 

pixels of Slice 35 of the Barnett map to draw a comparison between the threshold-based 

method and the proposed MLIS model trained on sixteen different features. We observe a 

small difference in the F1 scores between the two cases (Table 1 left). However, this 

difference is much higher in case of outer region pixels (Table 1 right). With exposure to 

more features in the image, the classification of the interfaces, especially between 

pore/crack and organic/kerogen constituents, is considerably improved when using the 

proposed machine learning workflow. 
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Figure 17. Intensity histogram of Slice 35 of the Barnett map showing the intensity 

thresholds for each component. 
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Table 1. Comparison of segmentation performance using threshold-based approach 

(case I) and machine learning assisted approach (case II) on the inner and 

outer region pixels of the Barnett map.  

 

 
Table 2. Comparison of performance using Fiji-based segmentation (case I) and 

proposed MLIS model (case II) on the inner and outer region pixels of the 

Barnett map.  

We also compared the performance of the proposed MLIS workflow with the 

automated segmentation results from the plugin WEKA (Waikato Environment for 

Knowledge Analysis) of the open source image processing software Fiji (Table 2). Both 

the methods have been trained on the same training pixels from the Wolfcamp and Barnett 

map. Random Forest classifier have been used in both cases keeping the hyper-parameters 

same. The classifier is trained on the same sixteen set of features. Both models have been 

tested on the inner and outer region pixels of Slice 10 of The Barnett map. From the inner 

region, around 1900, 10000, 19000 and 1700 support pixels were chosen for pore/crack, 

organic/kerogen, matrix and pyrite components, respectively. For those compoenents, 

support of around 650, 1100, 450 and 400 pixels were selected from the outer region. It 
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was found that both the methods result in a perfect F1 score of 1.00 with almost zero rate 

of misclassification for the inner and outer region pixels for the test image. This establishes 

the robustness of the machine-learning-assisted segmentation methods for accurate 

classification of the various components in the shale maps. 

Effect of test data size on ML-based segmentation 

The selection of optimal number of support (or samples) for testing a machine learning 

model is always associated with a trade-off between selecting large number of support to 

ensure model robustness and the selecting less support due to imbalance in the dataset. 

Large number of support from different components for testing enhances the similarity 

between the probability distribution of features in both training and testing datasets and 

improves the performance evaluation metrics. However, in imbalanced datasets such as 

the shale SEM maps, pore/crack and organic/kerogen components that have a lower 

volume fraction compared to matrix and pyrites, are hard to select resulting in an 

ununiform distribution of components in the test dataset. Imbalanced testing dataset 

penalizes the component having an order of magnitude lower number of samples as 

compared to other components. This is why, it is important to use F1 score weighted by 

the number of support samples to effectively evaluate the test performance of a classifier. 

We present a comparison of the performance of Model 2 when tested on small vs. larger 

number of support pixels (Table 3) of the Barnett map. 

In our dataset, we have limited number of pixels for pore/crack. As we increase 

the support of pore/crack component from 1447 (Table 3: Case I) to 4656 pixels (Table 3: 

Case II), we observe an decrease in the recall of the pore/crack constituent from 1.00 to 
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0.88. Recall measures the number of times a constituent is being correctly identified by 

the model. A drop in the recall suggests that Case I support pixels were selected from 

easily identifiable regions of pore/crack constituent whereas the newly introduced support 

pixels were selected from regions where the model failed to correctly identify the 

pore/crack component. 

 
Table 3. Comparison of segmentation performance of the proposed MLIS method 

when applied on limited number of support pixels (Case I) against when 

tested on large number of support pixels (Case II) from slices 15, 26 and 28 

of the Barnett map. 

In the case of organic/kerogen component, we increase the support from 5263 

(Table 3: Case I) to 23584 (Table 3: Case II) pixels. This causes the recall of this 

component to increase from 0.65 to 1.00 coupled with an increase in the precision of 

pore/crack component from 0.44 to 1.00. This proves a considerable improvement in the 

segmentation accuracy of the organic/kerogen component. In Case I, a significant part of 

the pixels chosen for the test set were being wrongly identified as pore/crack by the model. 

An increase in the recall of organic/kerogen as well precision of pore/crack proves that the 

newly introduced support pixels of the organic/kerogen component are being correctly 
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identified by the classifier. Taking into account the above inferences, it can be said that 

the Random Forest classifier performs slightly better on the organic/kerogen constituent 

than on pore/crack. Therefore, increasing the number of support pixels is advantageous to 

understand the performance of a model on a category (in this case, component), but it is 

also subjected to the availability and distribution of that category in the data. 

Conclusion 

Machine learning (ML) can identify pores and cracks representing the hydrocarbon 

storage and transport pathways as well as kerogen in the scanning electron microscopy 

(SEM) images of organic-rich shale samples from two shale formations, namely 

Wolfcamp and Barnett shales. The two shale formations and the corresponding SEM maps 

differ in topology and distribution of pores, cracks, and kerogen. In our study, pixel 

intensity, Gaussian Blur and local pixel information (minimum, maximum and mean) are 

the most important feature out of the 16 features for identifying pores, cracks and kerogen.  

Machine learning assisted image segmentation (MLIS) workflow when trained and 

tested on the same formation exhibits 99% accuracy on inner region pixels and more than 

80% accuracy on outer regions. The proposed machine learning workflow do not 

accurately and reliably identify pores, cracks and kerogen when it is trained on SEM 

images from one formation and then applied on images from different formation. Model 

trained on Wolfcamp shale can robustly detect matrix and pyrite in Barnett shale, but 

performs poorly when identifying the pores, cracks and kerogen. This is primarily due to 

identification of kerogen in the boundary regions as pores. Moreover, outer region matrix 

pixels generally get identified as pores, cracks or kerogen. In contrast, the model trained 
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on Barnett shale can robustly detect pyrite in Wolfcamp shale but exhibits poor 

performance for the remaining constituents; for example, fails to detect cracks in Barnett 

shale. This is due to pores and cracks getting wrongly identified as kerogen or matrix; in 

addition, kerogen is wrongly identified as matrix. Machine learning workflow trained on 

both the shale formations exhibits the best performance with an average F1 score of 0.99 

and 0.91 on the inner-region and outer-region pixels, respectively. 

The machine learning assisted identification of pores shows that the porosity 

ranges from 0.1 % to 0.8% in the 164.64 µm by 182.42 µm region of the Barnett sample. 

Extremely high porosity and extremely low porosity regions in the Barnett sample are 

localized. Further, the machine learning assisted identification of kerogen shows that the 

micro-scale (500 pixels) pore sizes contribute equally to the total pore volume of the 

Barnett shale sample. The macro-scale porosity of the system is primarily made of the 

organic pores surrounded by kerogen. Barnett shale sample predominantly contains 

kerogen clusters of size ranging from 10,000 pixels to 20,000 pixels.  

Following scenarios improve the robustness or generalization capability of 

machine learning assisted identification of pores, cracks and kerogen: (1) large sizes of 

training and testing datasets sampled from different formations, (2) hyperparameter 

tuning, (3) use of random forest classifier and unscaled features, (4) simple feature 

extraction by considering the variations in intensities of neighboring pixels, (5) feature 

ranking and selection to reduce the dimensionality, and (6) creating a balanced testing 

dataset and use of weighted F1 score to better evaluate the performance. 

References 



 

32 

 

1. Brahim Ait Skourt, Abdelhamid El Hassani, Aicha Majda, Lung CT Image 

Segmentation Using Deep Neural Networks, Procedia Computer Science, Volume 

127, 2018, Pages 109-113, ISSN 1877-0509, 

https://doi.org/10.1016/j.procs.2018.01.104. 

2. Peña, José M., P. Gutiérrez, C. Hervás-Martínez, J. Six, R. Plant and F. López-

Granados. Object-Based Image Classification of Summer Crops with Machine 

Learning Methods. Remote. Sens. 6 (2014): 5019-5041. 

https://doi.org/10.3390/rs6065019 

3. Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. 2006. Batch mode 

active learning and its application to medical image classification. In Proceedings 

of the 23rd international conference on Machine learning (ICML '06). Association 

for Computing Machinery, New York, NY, USA, 417–424. DOI: 

https://doi.org/10.1145/1143844.1143897 

4. S. Khan, M. H. Javed, E. Ahmed, S. A. A. Shah and S. U. Ali, Facial Recognition 

using Convolutional Neural Networks and Implementation on Smart 

Glasses, 2019 International Conference on Information Science and 

Communication Technology (ICISCT), Karachi, Pakistan, 2019, pp. 1-6, doi: 

10.1109/CISCT.2019.8777442. 

5. Laura Bandura, Adam D. Halpert, and Zhao Zhang, (2018), "Machine learning in 

the interpreter’s toolbox: Unsupervised, supervised, and deep-learning 

applications," SEG Technical Program Expanded Abstracts: 4633-4637. 

https://doi.org/10.1190/segam2018-2997015.1 

https://doi.org/10.1016/j.procs.2018.01.104
https://doi.org/10.3390/rs6065019
https://doi.org/10.1145/1143844.1143897
file:///C:/Users/Misra/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/XM3YJMUH/10.1109/CISCT.2019.8777442
https://doi.org/10.1190/segam2018-2997015.1


 

33 

 

6. Al-Farisi, Omar , Zhang, Hongtao , Raza, Aikifa , Ozzane, Djamel , Sassi, 

Mohamed , and TieJun Zhang. "Machine Learning for 3D Image Recognition to 

Determine Porosity and Lithology of Heterogeneous Carbonate Rock." Paper 

presented at the SPE Reservoir Characterisation and Simulation Conference and 

Exhibition, Abu Dhabi, UAE, September 2019. 

doi: https://doi.org/10.2118/196657-MS 

7. Jobe, T.D., Vital-Brazil, E., and M. Khait. "Geological Feature Prediction Using 

Image-Based Machine Learning." Petrophysics 59 (2018): 750–760. 

doi: https://doi.org/10.30632/PJV59N6-2018a1   

8. Siddharth Misra, Yaokun Wu, Chapter 10 - Machine learning assisted 

segmentation of scanning electron microscopy images of organic-rich shales with 

feature extraction and feature ranking, Editor(s): Siddharth Misra, Hao Li, Jiabo 

He, Machine Learning for Subsurface Characterization, Gulf Professional 

Publishing, 2020, Pages 289-314, ISBN 9780128177365, 

https://doi.org/10.1016/B978-0-12-817736-5.00010-7.  

9. Yaokun Wu, Siddharth Misra, Carl Sondergeld, Mark Curtis, Jeremy Jernigen, 

Machine learning for locating organic matter and pores in scanning electron 

microscopy images of organic-rich shales, Fuel, Volume 253, 2019, Pages 662-

676, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2019.05.017. 

10. Siddharth Misra, Eliza Ganguly, Yaokun Wu, Chapter 11 - Generalization of 

machine learning assisted segmentation of scanning electron microscopy images 

of organic-rich shales, Editor(s): Siddharth Misra, Hao Li, Jiabo He, Machine 

https://doi.org/10.2118/196657-MS
https://doi.org/10.30632/PJV59N6-2018a1
https://doi.org/10.1016/B978-0-12-817736-5.00010-7
https://doi.org/10.1016/j.fuel.2019.05.017


 

34 

 

Learning for Subsurface Characterization, Gulf Professional Publishing, 2020, 

Pages 315-338, ISBN 9780128177365, https://doi.org/10.1016/B978-0-12-

817736-5.00011-9. 

11. Ganguly, Eliza, Misra, Siddharth, and Yaokun Wu. "Generalizable Data-Driven 

Techniques for Microstructural Analysis of Shales." Paper presented at the SPE 

Annual Technical Conference and Exhibition, Virtual, October 2020. doi: 

https://doi.org/10.2118/201554-MS 

 

 

 

 

 

 

https://doi.org/10.1016/B978-0-12-817736-5.00011-9
https://doi.org/10.1016/B978-0-12-817736-5.00011-9
https://doi.org/10.2118/201554-MS


 

35 

 

CHAPTER III  

STATISTICAL APPROACH TO QUANTIFY THREE-DIMENSIONAL FLUID 

CONNECTIVITY FROM MICRO-CT IMAGES OF CORE UNDERGOING WATER 

ALTERNATING GAS (WAG) INJECTION 

 

Introduction 

Literature review  

The three-dimensional connectivity of the fluid phases in porous media plays a crucial 

role in governing the fluid transport, displacement, and recovery. Water Alternating Gas 

(WAG) is a well-established technique that leverages the benefits of Gas Injection and 

Waterflooding processes to improve the ultimate oil recovery. Accurate three-dimensional 

quantification of the fluid phase connectivity at each stage of Water Alternating Gas 

(WAG) injection will lead to better understanding of the efficacy and efficiency of the 

fluid injection strategies/procedures.  

The term ‘connectivity’ is studied differently in multiple domains of study. In 

neuroscience, the connection between different regions in the brain is termed as 

connectivity. The structural connectivity of the brain is measured from diffusion MRI, a 

non-invasive technique that can characterize the brain tissue [1], On the other hand, in 

geoscience, connectivity is closely related to permeability of a reservoir [2]. Transport in 

porous materials in the multiphase regime are governed by the three-dimensional 

connectivity of the different fluid phases present. Quantification of this parameter and its 

spatiotemporal variation in the porous material can be used to gain an improved 
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understanding of the bulk displacement, trapping and recovery mechanisms of the fluid 

phases.  

Efforts have been made to develop metrics for calculating the particle connectivity 

in multibody systems. General n-point probability functions have been developed to 

characterize microstructural connectivity in multiphase random media [3]. For a system 

of suspension of spheres in a uniform matrix, n-point probability function is denoted by 

Sn. Further study has been conducted to obtain an analytical expression for 2-point 

probability function to quantify the distribution of equi-sized rods and discs of multiple 

densities present in a matrix phase [4]. Various morphological descriptors and their 

limitations have been reviewed, for example, indicator function, cluster function, surface 

correlation function, nearest neighbor function and pore size distribution function [5].  

Conventional soil science typically uses pore size and pore size distribution to characterize 

soil microstructure. But these metrics can only provide limited information in case of 

complex structures. Statistical functions like two-point probability function, two-point 

cluster function and linear function are used as alternate approaches to evaluate 

connectivity from complex systems [6]. We also come across other applications of local 

and global static descriptors like investigating the distribution of permeability and 

connectivity in reservoir models [7]. Flow dynamics are interpreted from several static 

measures like characteristic path lengths connecting locations in a reservoir to the closest 

well, distance properties like minimum and differential path lengths and continuity path 

lines extracted from these distance properties. An alternative to standard geostatistical 

methods is presented by Western et al. (2001) to evaluate connected features in soil 
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moisture patterns. The work shows application of probabilistic and computational 

functions capable of differentiating between connected and disconnected patterns [8]. 

In this study, we aim at developing higher-order statistical functions to study the 

spatio-temporal variation in the three-dimensional connectivity of fluid phases during a 

Water-Alternating-Gas (WAG) process in a porous material. In literature, efforts have 

been made towards studying the relative permeability for WAG injection in oil reservoirs 

[9]. Mathematical models have been developed and implemented to examine capillary 

pressure and hysteresis effects during WAG [10]. However, very limited research have 

been conducted to quantitatively investigate the connectivity evolution in a three-

dimensional system undergoing multi-stage injection. We develop and apply several 

connectivity metrics on the µCT scans of a water-wet Ketton rock sample. We first present 

the details of the WAG experiment conducted by scanziani et al. (2018) and describe the 

different metrics that were tested, their advantages and limitations. We then explain the 

working of the metrics that proved to the most efficient in capturing the change in three-

dimensional fluid phase connectivity after each injection stage. The results obtained from 

the applied statistical metrics are reported and the observed pore-scale phenomena are 

explained in terms of the connectivity values and the wettability of the system.  

Scientific questions 

This study presents a novel method of quantifying three-dimensional connectivity of fluids 

in a sample undergoing WAG injection. Some of the crucial scientific questions that will 

be answered in this chapter are as follows: 
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• How are the distribution and connectivity of the wetting and non-wetting fluid 

phases changing from one injection stage to another in a water alternating gas 

operation? 

• Which injection sequence is contributing the most to recover the oil phase from 

the sample? 

• In which sections of the sample does maximum recovery and maximum trapping 

of oil phase occurs? 

• How is the connectivity of a certain phase related to the saturation of the phase? 

• How can two-point statistics and fast marching algorithm be used to compute pixel 

connectivity from images? 

 

Method 

Description of sample 

In this study, the Water-Alternating-Gas experiment is conducted by Scaniziani et al. 

(2018) [11] on water-wet Ketton carbonate rock sample of diameter 4.9 mm and length 

19.5 mm. Porosity of the sample is reported to be 29.8%. The dataset consists of 3050 

µCT scans for each of the injection stages, each scan containing 1030×1033 pixels and 

representing a dimension of 5µm×5µm. the scans are numbered from 0 to 3049. The scans 

of each stage are divided into 3 parts: bottom (index 0—999), middle (1000—1999) and 

top (index 2000—3049).  

Water-Alternating-Gas (WAG) experiment 
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Scanziani et al. (2018) performed a 3-stage WAG experiment on the Ketton rock sample. 

WAG is an enhanced oil recovery (EOR) technique in which water and gas injections are 

carried out alternately to improve the sweep efficiency. The three stages in this work are 

referred to as Water Injection #1 (WF1), Gas Injection (GI) and Water Injection #2 (WF2). 

The pre-injection water and oil saturation in the sample was reported to 37.6% and 62.4% 

respectively. The injection fluid volume and flow rate are presented in Table 4. Water is 

injected from the bottom of the sample (index 0) while gas is injected from the top (index 

3049). 

 
Table 4. Pore volume and flow rate of injected fluid at each stage of WAG process. 

Image pre-processing 

The spatio-temporal evolution of three-dimensional connectivity of oil, water and gas 

phase is captured with the help of two novel quantification metrics. The image pre-

processing can be divided into the following stages: 

➢ The dataset of 3050 µCT scans, each with 1030×1033 pixels is converted to 305 

image slices, each with 103×103 pixels using the SciPy Zoom functionality to 

reduce the time complexity associated with estimation of the three-dimensional 

fluid connectivity. 
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➢ Each downscaled scan is segmented into oil, water, rock and gas components using 

Machine Learning assisted Image Segmentation (MLIS) workflow explained in 

chapter 2. 

➢ The segmented images are converted to binary images with the fluid phase of 

interest as white pixels. 

➢ The developed and tested connectivity metrics are applied on the pre-processes 

images.  

In Fig. 18, the pre-injection (PI) stage is dominated by presence of non-wetting 

phase (oil) in the larger pores and wetting phase (water) in the smaller pores. The 

saturation of oil drops at each stage of the WAG process. Significant displacement 

of oil from the large pores is observed after Gas Injection (GI) resulting in 

maximum recovery.   
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Figure 18. A segmented image slice of the µCT scan dataset showing the distribution 

of the different fluid phases after each injection stage (Reprinted from 

Ganguly and Misra 2021) 

 

Connectivity metrics 

Three approaches have been established to determine the pixel connectivity from a three-

dimensional image, namely, face connectivity, edge connectivity and node connectivity. 

However, attempts to apply these approaches to quantify the pore-scale connectivity in 

materials, at a local and global scale, especially during the WAG injections are limited. 

We develop several mathematical and probabilistic metrics to capture the evolving fluid 
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phase connectivity in the pore space during multi-stage injection. Each metric was 

scrupulously tested and analyzed and the best performing metrics are applied to accurately 

capture the change in the three-dimensional connectivity of the fluid phases from one 

injection stage to another.  

The probabilistic functions that are capable to quantifying connectivity, but with 

limitations, and didn’t prove reliable for the current study are as follows: 

1. Two-point probability function (S2): This is defined as the probability that two 

pixels at a certain distance in an image belongs to the same phase (white or black) 

in the binary medium. It provides no information regarding the path between the 

two pixels or the possibility of the two pixels belonging to the same cluster.  

2. Two-point cluster function (C2): This function calculates the probability that two 

pixels of a particular phase (white or black) at a specific distance belong to the 

same pixel cluster. The quantity is measured as the ratio of number of pixel pairs 

belonging to the phase of interest (white) at a certain distance and the total possible 

pixel pairs (in white and black phase) in the image at the same distance from each 

other. For each image, this metric gives a distribution of the probability values 

against the separation distance between pixel pairs. 

 

3. Euler number: Euler number have been implemented in attempt to capture 

connectivity of a porous medium [12]. It is calculated as the number of discrete 

objects forming the phase plus the number of enclosed cavities less the number of 

tunnels through those objects, per unit volume. A higher pixel connectivity of a 
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certain phase would correspond to higher number of tunnels through the phase, 

resulting in a lower Euler number. However, this correlation is valid when the 

volume fraction of the phase of interest does not change. In this study, the volume 

fraction of each of the oil, water and gas phases are subject to change from one 

image to another as injection and recovery takes place. Therefore, Euler number 

does not prove to be a reliable connectivity metric to quantify the changing 3-D 

connectivity of the fluid phases during the WAG process.  

The statistical metrics that could be successfully applied to calculate the fluid phase 

connectivity from three-dimensional volumes of segmented images are as follows [13]: 

➢ Connectivity Function (CF): This metric is a slightly modified form of the two-

point cluster function (C2). CF is defined as the probability of a pixel pair of a 

phase of interest (white) at a separation distance h belonging to the same 

cluster. Unlike C2, CF(h) is measured as the ratio of pixel pairs of a certain 

phase (white) at separation distance h belonging to the same cluster and the 

total number of pixel pairs of the same phase (white) at the same separation 

distance. The metric identifies the position of the clusters of pixels of the phase 

of interest present in an image and determines the Euclidean distance 

(separation distance) between all possible pixel pairs of the phase of interest. 

True pairs are the pixel pairs with the same cluster index while false pairs are 

the ones that have different cluster index. The probability at each separation 

distance, h, is computed as, 

𝑃(ℎ) =  
𝑡𝑟𝑢𝑒 𝑝𝑎𝑖𝑟𝑠

𝑡𝑟𝑢𝑒 𝑝𝑎𝑖𝑟𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑎𝑖𝑟𝑠
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The connectivity function CF(h) is obtained from the area under the probability 

distribution curve over all possible separation distance (Fig 19). This converts 

the spectral parameter to a single-values scalar parameter denoting the average 

displacement between two pixels in an image. A higher connectivity 

corresponds to a higher value of CF. 

 

 
Figure 19. Probability distribution of the pixels belonging to the same cluster at 

different separation distance (h) 

 

➢ Fast Marching based Travel Time (FMTT): The fast marching method models 

the evolution of a closed surface outward as a function of time at a constant 

speed. In this study, the algorithm is used to initiate several contours from 
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random pixels of the phase of interest in the image and the time taken by each 

contour to cover all the pixels of that phase belonging to the same cluster is 

recorded. The algorithm is designed such that the contour only propagates 

through pixels of the phase of interest. The travel speed is pre-set to a high 

value for the phase of interest and zero for the background pixels. The travel 

time distribution for each contour is compiled into a single travel time 

histogram by weighing each histogram using the size of the cluster. The mean 

of this travel time distribution is termed as fast marching based travel time 

(FMTT) and can be used as a direct indicator of pixel connectivity.  

A small value of average connection distance indicates small isotropic, globular 

clusters without any tortuosity between connected pixels. A large value of average 

connection distance indicates large anisotropic, elongated pathways with high tortuosity 

between connected pixels. We select mean instead of median of the travel time histogram 

to have higher sensitivity to large clusters because large clusters predominantly contribute 

to the overall connectivity. When the mean is very different from the median, it indicates 

presence of few large tortuous clusters.   

 

Result and discussions 

Two-dimensional connectivity for wetting and non-wetting phases  

Studies have been conducted to understand the effect of wettability, relative permeability 

and hysteresis during WAG operations [14]. However, limited effort has been given to 

describe the wetting and non-wetting phase connectivity in a porous material during such 
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injection stages. The metrics explained in the previous sections are rigorously tested on 

synthetic images and applied on each segmented 2-dimensional image slice of the µCt 

scan dataset. Several pore-scale phenomena such as displacement, trapping and recovery 

are then studied based on the change in these metric values across the length of the sample.  

Multiphase fluid flow in a porous system is affected by different factors like 

porosity, pore size distribution, connectivity of the pores and fluid phases, capillary 

pressure and wettability of the system. We deploy the connectivity function and the fast 

marching based travel time to capture the spatial and temporal variation of fluid phase 

connectivity from one injection stage to another. The metrics are averaged over every 9 

image slices (for a total of 3050 slices) starting from the bottom of the core to reduce the 

number of samples from 3050 to 339 to aid an easier visualization. 

Fig. 20 plots the fast marching based travel time values of every 9 images against 

a distance marker denoting the distance of each set of image slices from the bottom of the 

core. It is evident that the oil phase connectivity drops at each injection stage. This is 

consistent with the saturations reported by Scanziani et al. (2018). Oil saturation drops 

from 52% to 30.5% after gas injection and to 18% after water-flooding #2. Similar to the 

saturation, oil phase connectivity also sees a significant drop after gas injection, thereby 

indicating highest oil recovery at that stage. The two-dimensional connectivity gives us a 

better resolution for purposes of visualization. Detailed analysis of the two-dimansional 

connectivity variation in the different stages can be found in Ganguly et al. (2021) [15].   

 



 

47 

 

 
Figure 20. Stage-wise variation in the FMTT values of the oil phase along the length 

of the core sample. 

Fig. 21 compares the fast marching based travel time of the water phase for the 

different WAG sequences. In a WAG operation, water and gas is injected alternately into 

the core. As expected, the connectivity of the water phase alternately increases and 

decreases at each stage. Similar to oil phase, maximum water is also displaced after the 

gas injection. The pore-scale variation of fluid connectivity along the different zones of 

the sample are discussed in details later in this document. 
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Figure 21. Stage-wise variation in the FMTT values of the water phase along the 

length of the core sample. 

Relation between connectivity and saturation of fluid phases 

Saturation of as fluid phase indicates the fraction of pore space pixels in an image 

belonging to that particular phase. These pixels may be present in small, medium or large 

clusters which may or may or be connected to each other. The saturation and connectivity 

of fluid pixels are found to be positively correlated only in the case of presence of large 

connected clusters. Low connectivity coupled with high saturation of a certain fluid phase 

indicates presence of multiple disconnected clusters. On the other hand, a fluid phase 

exhibiting high pixel connectivity and low saturation can be characterized by presence of 

small clusters connected by highly tortuous path.  

Fig. 22 shows the oil phase connectivity and saturation for the three WAG 

sequences. Both the quantities are scaled using min-max scaler for purposes of 

visualization. As discussed earlier, oil is recovered at each stage of the WAG process, 
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thereby causing reduction in the saturation. We observe that, as saturation drops from 

water-flooding #1 to water-flooding#2, the correlation between the two quantities, 

indicated by the Spearman correlation coefficient, also drops from 0.701 to 0.637. A closer 

look also reveals that a clear positive correlation exists in sections of the sample with high 

saturation and connectivity values (large connected clusters) while the correlation is 

blurred when the value of either of the quantity decreases. 

 

 
Figure 22. Relation between the oil phase saturation and connectivity for the three 

stages of the WAG process (Reprinted from Ganguly and Misra 2021) 
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Correlation between the two metrics: connectivity function (CF) and fast marching 

based travel time (FMTT) 

In this study, two metrics are developed to accurately quantify the evolution of wetting 

and non-wetting phase connectivity: Connectivity Function based on the separation 

distance (CF(h)) and Fast Marching based travel time (FMTT). The two metrics take 

different approaches to calculate the pixel connectedness of the fluid phase of interest in 

the segmented image. At a specific separation distance (h), the connectivity function 

computes the probability that two randomly selected pixels belong to the same cluster of 

the same phase. On the other hand, Fast Marching method generates the frequency of the 

travel time taken by a wavefront to travel between two pixels in the same cluster of the 

same phase. FMTT can be described as the mean of the travel time histogram of all clusters 

present in an image. 

Compared to CF(h), FMTT exhibits higher sensitivity towards tortuosity of the 

path connecting the two pixels. In Fig. 23, the image (a) shows the pixels at position (0,0) 

and (7,7) connected by a straight path. This image has a CF value of 8.89 and an FMTT 

value of 1.72. In image (b), the same pixels are connected by a relatively more tortuous 

path. While the CF value of image (b) remains the same, the FMTT value is found to be 

3.34, i.e, an almost two-fold increase from the previous value. For images with highly 

tortuous connection paths, connectivity function (CF(h)) proves to be a more robust 

metric. Also, due to random selection of source points, the value of FMTT is prone to 

change from one iteration to other. Therefore, two images having FMTT values in the 

range of +/- 0.5 can be approximated to have similar connectivity.  
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Figure 23. 8×8 binary image showing pixels at positions (0,0) and (7,7) connected by 

a low tortuosity path (a) and a high tortuosity path (b) (Reprinted from 

Ganguly and Misra 2021) 

 

 

Fig. 24 plots the two connectivity metrics for the oil phase in the pre-injection 

stage. The metric values have been scaled using Min-Max scaling method. It is evident 

that the two metrics follow the same trend and shows a strong positive correlation. 
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Figure 24. Comparison of the FMTT and Connectivity Function (both scaled using 

min-max scaling method) for pre-injection oil phase. Correlation between 

the metrics > 0.8 establishing the reliability of the methods used 

(Reprinted from Ganguly and Misra 2021) 

 

 The correlation between the two proposed connectivity metrics is quantified using 

the Spearman correlation coefficient for the pre-injection and all other stages of the WAG 

operation for the oil and water phase data. The Spearman rank-order coefficient is a 

statistical measure of the monotonic relationship between two datasets. The coefficient 

values range between -1 and +1 with 0 implying no correlation. For each injection stage, 

we find a correlation coefficient greater than 0.8 (Table 5) for the two metric values for 

both phases, indicating that the metrics do not encounter highly tortuous connected 

pathways in this dataset. This also establishes the reliability of the two proposed metrics 

in capturing the change in fluid phase connectivity in the various WAG cycles.  
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Table 5. Spearman Correlation Coefficient of the two metrics for oil and water 

phases for each injection sequence of the WAG process. 

Evolution of three-dimensional connectivity at each injection stage 

In this section, we divide the dataset into three-dimensional volumes and study the change 

in 3-D fluid phase connectivity across the length of the sample. We tested six different 

resolutions for the z-axis to create the 3-D volume as follows: 1, 5, 15, 25, 35 and 45 image 

slices. A resolution of 1 image slice at a time corresponds to the 2-D connectivity while 

the connectivity values converge at a higher resolution (Fig. 25). Same can be observed 

for the volume fraction of the fluid phases (Fig. 26). An optimum resolution of 35 slices 

is used for the three-dimensional connectivity quantification. 

We use the SciPy zoom functionality to convert the dataset of 3050 images to 305 

images. The connectivity is measured considering 35 slices at a time and moving one slice 

at a time across the length of the sample (305 slices). Therefore, we obtain (305-35+1=) 

271 datapoints for connectivity of the whole-core sample.  
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Figure 25. Three-dimensional oil phase connectivity for six different resolutions 

along the length of the whole-core sample.  

 

 
Figure 26. Three-dimensional volume fraction for six different resolutions along the 

length of the whole-core sample.  
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Pre-injection stage (PI) 

In this study, we aim to characterize the spatial changes in pore-scale connectivity, 

saturation and displacement of oil, water and gas during the various WAG cycles in terms 

of pore size and wettability of the rock. We draw a comparison of the fast marching based 

travel time (FMTT) values of the three different fluid phases at each injection stage with 

the preceding stage to build a clear picture of how the different fluid clusters evolve at 

each stage, the sections of the sample that undergo significant displacement and the stages 

that aid maximum recovery. The sample is this study is a water-wet carbonate core. In the 

pre-injection stage, the sample consists of wetting (water) and non-wetting (oil) phases 

with a reported saturation of 37.6% and 62.4% respectively (Scanziani et al., 2018). This 

is because oil (non-wetting phase) preferably occupies the larger pores while water 

occupies the medium and smaller sized pores in a water-wet system.  

Water-flooding #1 

Figs. 27 and 10 shows the evolution of the three-dimensional connectivity (in terms of 

FMT) of oil and water phase respectively from the pre-injection to the first water-flooding 

stage. Water is injected from the bottom of the sample in the WF1 stage. The initial 

distribution of oil and water phases is disrupted as water, being the wetting phase takes up 

the smaller and medium sized pores. We observe three sections of the sample exhibiting 

considerable increase in the water phase connectivity due to water-flooding #1: section 

around distance marker 75, 125 and 200 (Fig. 28). An investigation of the oil phase 

connectivity in the same sections (Fig. 27) reveals that the injected water phase displaces 

the oil clusters residing in the zone 75 and 125 thereby causing the oil connectivity to 
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drop. The oil phase connectivity around marker 200 remains low, indicating that the 

injected water coalesces the previously disconnected water clusters, resulting in an 

increase in the connectivity.  

 

 
 

Figure 27. Change in the pre-injection stage 3-D connectivity of oil phase due to the 

first water-flooding. 
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Figure 28. Change in the pre-injection stage 3-D connectivity of water phase due to 

the first water-flooding. 

 

Another interesting observation is that the oil phase travel time does not 

significantly change in the section of the sample around distance marker 220—275 (Fig. 

27), thereby suggesting trapping of the large oil clusters in the pre space. This can be 

explained as a result if blockage of the pore throats by the injected wetting phase fluid. 

Therefore, in this stage the recovery of oil occurs only in parts of the core sample, aligning 

with a drop in oil saturation from 62.4% to 52% as reported by Scaniziani et al. (2018). 

This low recovery indicates a need for further fluid injection.  

Gas Injection (GI) 

Imbibition and drainage mechanisms are observed in the successive cycles of a water 

alternating gas (WAG) operation. Gas is injected into the porous system from the top of 

the sample in this stage. Figs. 29 and 30 shows the change in the oil phase and water phase 



 

58 

 

connectivity respectively due to gas injection. The significant decrease in the connectivity 

of both the water and oil phases is consistent with the drop in saturations. Oil phase 

saturation dropped from 52% to 30.5% while water phase saturation dropped from 48% 

to 4% (Scanziani et al. 2018) due to gas injection. A drop in both connectivity and 

saturation suggests maximum recovery of water and oil from the sample after the GI stage.  

 
 

Figure 29. Change in the 3-D connectivity of oil phase from first water-flooding 

(WF1) to gas injection (GI) stage.  
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Figure 30. Change in the 3-D connectivity of water phase from first water-flooding 

(WF1) to gas injection (GI) stage.  

Gas is the most non-wetting phase. Therefore, when introduced, gas occupies the 

center of largest pores and facilitates displacement of the water and oil phases present. Oil 

phase initially occupying the largest clusters are displaced by the injected gas. This oil, in 

turn, displaces the water present in the small and medium sized pores, resulting in a 

negligible residual water saturation. Since both gas and oil are non-wetting phases, the 

observed behavior can be termed as double drainage (Scanziani, 2018). A high percentage 

change in the three-dimensional connectivity from WF1 to GI stage proves that the gas 

injection cycle of the WAG process has the maximum contribution to the ultimate 

recovery of oil from the carbonate core.  

Water-flooding #2 

Figs. 31, 32 and 33 shows the change in the oil, water and gas phase respectively from the 

gas injection stage to the final stage of the WAG sequence. The double drainage 
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phenomena occurring during gas injection is evident in section of the sample around 

distance marker 150 in the GI plot in Figs. 31 and 33. We notice a low connectivity of the 

oil phase coupled with a very high connectivity in the gas phase, denoting that injected 

gas displaced oil clusters from the larger pores, which in turn displaced water from smaller 

pore spaces.  

 

 
Figure 31. Change in the 3-D connectivity of oil phase from gas injection (GI) stage 

to second water-flooding (WF2).  

In the final stage, water is injected from the bottom of the sample. The oil 

connectivity increases in most regions of the sample and decreases in others (Fig. 31), 

indicating that the injected water mostly contributes to rearrangement of the oil clusters 

rather than the recovery. Oil phase saturation drops from 30.5% to 18% ensuring partial 

recovery from small and medium sized pores. Water-flooding #2 failed to recover the few 

clusters that were trapped after the gas injection.  
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The re-injected water reconnects and mobilizes the water present in parts of the 

sample (Fig. 32, distance marker 30—100) and also aids the recovery of the gas phase 

from the sample. Water being the wetting phase, displaces oil from the smaller pores, 

which in turn, invades the larger pores and displaces the gas phase present (distance 

marker 150 and 225—275). Since oil and water phase are more wetting than gas, this 

mechanism is called double imbibition (Scanziani et al. 2018). In other parts of the sample 

(Figs. 31 & 33, distance marker 15—30), the displaced oil surrounds the gas phase, 

thereby trapping the latter and keeping the connectivity intact. The residual gas saturation 

is 52%.  

 

 
Figure 32. Change in the 3-D connectivity of water phase from gas injection (GI) 

stage to second water-flooding (WF2).  
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Figure 33. Change in the 3-D connectivity of gas phase from gas injection (GI) stage 

to second water-flooding (WF2).  

At each cycle of the WAG sequence, the connectivity metrics successfully capture 

the evolution of connectivity of the displaced fluids due to injection of the displacing 

fluids.  

Fig. 34 demonstrates the three-dimensional evolution of an oil phase cluster (red) 

at each stage of the WAG process [16]. As supported by the two-dimensional (Fig. 20) 

and three-dimensional (Fig. 27, Fig. 29 and Fig. 31) connectivity evolution plots, the 

connectedness of the oil cluster decreases at each stage, suggesting oil recovery from each 

cycle of WAG injection.  
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 Figure 34. 3D visualization of the displacement and recovery of a large connected oil 

phase cluster (red) at each injection stage of the water alternating gas 

(WAG) process (Reprinted from Ganguly and Misra 2021) 

 

Conclusion 

In a porous material undergoing water alternating gas (WAG) injection, the change in the 

two-dimensional and three-dimensional connectivity of the wetting and non-wetting fluid 

phases can be efficiently captured using the proposed connectivity metrics: connectivity 

function, CF(h) and fast marching based travel time (FMTT). Each metric takes a different 

approach to compute the pixel connectivity of a phase of interest, but exhibits a strong 

positive correlation when the images do not contain highly tortuous connected paths, 

thereby establishing the reliability of these statistical functions for evaluating the 
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connectivity of the core sample dataset. In petroleum engineering, high tortuosity 

contributes to the reservoir heterogeneity. A major difference in the connectivity profile 

of a phase from the two proposed metrics will shed light on the tortuosity of the connected 

pathway in the three-dimensional core.  

This direct quantification of the connectivity of the fluid phases across the length 

of the sample help identify the sections of the sample undergoing maximum oil recovery 

as well as oil trapping. The gas injection stage is found to contribute most to the recovery 

of oil from the water-wet core. The computed connectivity values at each stage are also 

found to be consistent with the fluid saturations obtained from the experimental results. 

Future work would focus on reducing the time complexity of the algorithms to process 

heavy image datasets.  
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CHAPTER IV  

LIMITATIONS AND RECOMMENDATIONS 

 

In this section, the challenges and limitations of the workflows described in chapters two 

and three are listed. Following that, some recommendations are presented for using this 

work in the future.  

 Certain limitations of the Machine Learning-assisted Image Segmentation (MLIS) 

method introduced in chapter two are as follows: 

• In this work, training and test dataset have been created by selecting the pixels 

from the images with the help of the ImageJ application. It is a manual process and 

especially challenging for the boundary region pixels.  

• The Random Forest model takes approximately 3 seconds to segment one SEM 

image slice of shale formation. This may be a challenge for batch operations. Time 

complexity of the method can be reduced by eliminating the low ranked features 

from training based on the MDA feature ranks.  

• The performance of the MLIS model in identifying the boundary region pixels of 

components with similar pixel intensity has scope for improvement.  

• The model does not differentiate organic pores from inorganic pore/crack.  

Limitations of the connectivity quantification workflow presented in chapter three 

can be listed as the following: 

• Micro-CT scan images in a dataset may vary in exposure, thereby exhibiting 

different range of pixel intensities in different image slices. The images need to be 
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preprocessed to normalize the intensities before performing image segmentation. 

An approach to preprocess such images is to perform histogram equalization. 

• If the connectivity metrics encounter a fluid phase encircling the boundary of the 

core, as in case of this CT-scan data, that fluid boundary is captured as one large 

cluster, few orders higher than the connectivity of other clusters present in the 

image. Therefore, in such case, the image needs to be cropped before applying the 

metrics. 

• The images need to be downscaled to reduce time complexity in case of batch 

operations. 

• The metrics cannot capture connectivity of multiple fluid phases simultaneously 

and requires the images to be binarized.  

• Fast Marching based Travel time (FMTT) depends on the tortuosity of the 

connected path and overestimates the connectivity of clusters where tortuosity is 

high.  

A few recommendations for using the methods and models presented in this thesis for 

future works: 

• The machine learning assisted image segmentation (MLIS) method for classifying 

different components in the SEM maps of organic-rich shale, as elaborated in 

chapter two, can be used to segment images where boundary region pixels play an 

important role, for example whole-core images. It is important to identify the 

pixels at the interface of two phases to compute quantities like contact angles and 
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curvature. The MLIS model outperforms traditional segmentation models in the 

identification of boundaries or transition zone pixels. 

• New features can be extracted to optimize the MLIS model to detect the organic 

pores embedded in the kerogen components and the inorganic pore/cracks sharing 

majority of the boundary with matrix in the SEM images of organic-rich shales.   

• The connectivity function and fast marching based travel time calculation 

formulated in chapter three is a generalized approach and can be used to compute 

the pixel connectivity from binary images. The computational time will vary with 

the size of the image and the number of clusters of the phase of interest present.  

 


