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ABSTRACT

Orbit equivalence is an equivalence relation on measurable actions of groups that’s been studied

since the 1950’s. It has connections to many areas of mathematics including descriptive set theory,

percolation theory, ergodic theory, representation theory, von neumann algebras, and geometric

group theory. In joint work with Robin Tucker-Drob, we show inner amenable groupoids have

fixed price 1. This simultaneously generalizes and unifies two well known results on cost from the

literature, namely, (1) a theorem of Kechris stating that every ergodic p.m.p. equivalence relation

admitting a nontrivial asymptotically central sequence in its full group has cost 1, and (2) a theorem

of Tucker-Drob stating that inner amenable groups have fixed price 1. We later study coamenable

inclusions of inner amenable groupoids to generalize a result from the setting of groups. We also

prove several equivalent conditions to amenability of an action of a groupoid. In additional joint

work with Robin Tucker-Drob, we study wreath products up to orbit equivalence and show that

C2 ≀F2 is orbit equivalent to Cn ≀F2. In order to accomplish this, we introduce and study the notion

of cofinitely equivariant maps. We also prove some examples of rigidity in this setting.
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1. INTRODUCTION AND BACKGROUND

1.1 Groups

Unless otherwise mentioned, Γ is always assumed to be a discrete countable group.

1.1.1 Amenable groups

Amenable groups were first introduced by von Neumann[38] in relation to the Banach-Tarski

paradox. Since then, they’ve naturally turned up in many areas of mathematics and analysis.

Definition 1.1.1. A group Γ is said to be amenable if there exists a finitely additive probability

measure(mean) m : P(Γ) → [0, 1] such that m(gA) = m(A) for every g ∈ Γ and A ⊆ Γ. We call

such a measure an invariant mean.

There are many equivalent characterizations of amenability, and I will list several in the next

section.

Example 1.1.2. Some examples of amenable groups include

• finite groups

• abelian groups

• solvable groups

• groups of subexponential growth.

Amenability is closed under passing to subgroups, quotients, direct limits, and group exten-

sions as von Neumann showed in his original paper.

Example 1.1.3. The canonical example of a nonamenable group is the free group on 2 generators

F2 = ⟨a, b⟩. This can be seen due to the fact that F2 admits a paradoxical decomposition F2 =

{e} ⊔
⊔

i∈{a,b,a−1,b−1} Ti = Ta ⊔ aTa−1 = Tb ⊔ bTb−1 where

Ti = {g ∈ F2|g = iw where iw is a reduced word}.
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It is immediate to check that this decomposition prevents the existence of invariant mean.

1.1.2 Amenable actions of groups

Strictly speaking, von Neumann’s paper on amenability actually introduced amenable actions

of groups on discrete spaces.

Definition 1.1.4. An action Γ ↷ X on a discrete space is called amenable if there exists a finitely

additive probability measure m : P(X) → [0, 1] such that m(gA) = m(A) for every g ∈ Γ and

A ⊆ X . Again, we call m in this case an Γ-invariant mean.

Remark 1.1.5. Γ is amenable if and only if the action Γ ↷ Γ by left translation is amenable.

We now list several of the most well-known characterizations of amenability.

Proposition 1.1.6. Let Γ ↷ X . TFAE

1. X admits a Γ-invariant mean

2. there exists a norm-1 positive sequence fn ∈ ℓ1(X) such that for every g ∈ Γ

∥fn − g · fn∥ → 0

3. there exists a sequence of finite subsets Fn ⊆ X such that for every g ∈ Γ

|Fn△gFn|
|Fn|

→ 0

A sequence satisfying condition 2 or 3 is known as a Reiter sequence or Følner sequence, respec-

tively.

The following is a folklore lemma whose origins go back to von Neumann’s original paper.

It has appeared in many iterations over the years, strengthened slightly each time. We present a

relatively simple version.

2



Lemma 1.1.7. Assume there are two actions Γ ↷ X and Γ ↷ Y of a countable group Γ. Suppose

the action Γ ↷ X is amenable. If the action of the stabilizer Γx ↷ Y is an amenable action for

every x ∈ X , then Γ ↷ Y is amenable.

Proof. Let µ be a Γ-invariant mean on X . Take X0 ⊆ X containing exactly one point in each

Γ-orbit. Let mx be a Γx-invariant mean on Y for every x ∈ X0. Now, extend this assignment by

mg·x = g ·mx. This assignment is well-defined since mx is Γx-invariant. We define a mean m on

Y by m(A) =
∫
X
mx(A)dµ(x) and for g ∈ Γ, we calculate

m(g · A) =
∫
X

mx(g · A)dµ(x)

=

∫
X

mg−1·x(A)dµ(x) =

∫
X

mx(A)dµ(g · x)

=

∫
X

mx(A)dµ(x) = m(A)

to get that m is Γ-invariant.

Proposition 1.1.8. Every action Γ ↷ X of an amenable group is amenable.

Proof. Push forward the measure from the group Γ to each orbit by choosing a transversal X0 ⊆

X .

We also take the opportunity to define here coamenability of subgroups.

Definition 1.1.9. An inclusion Λ ≤ Γ is called coamenable if the action on the set of left cosets

Γ ↷ Γ/Λ by multiplying on the left is amenable.

1.1.3 Inner amenable groups

The story of inner amenability dates back to the introduction of property Gamma in the setting

of von Neumann algebras[37]. Property Gamma was used by them to distinguish between the

group von Neumann algebras of S∞ and F2. Eventually, in association with property Gamma,

Effros introduced the notion of inner amenability of a group and showed that if the group von

3



Neumann algebra L(Γ) has property Gamma, then the group Γ is inner amenable[12]. Vaes was

able to show very recently that the converse does not hold[48].

Definition 1.1.10. A group is said to be inner amenable if there exists a mean m : P(Γ) → [0, 1]

that satisfies

• (conjugation-invariant) m(gAg−1) = m(A) for every g ∈ Γ and A ⊆ Γ

• (diffuse) m(D) = 0 if D ⊆ Γ is finite.

Clearly diffuseness prohibits any finite group from being inner amenable.

Example 1.1.11. Every infinite amenable group Γ is inner amenable. In fact, such a group admits

a mean that is both left- and right- invariant by considering the group Γ × Γ which is amenable.

Therefore, the action Γ× Γ ↷ Γ where the first coordinate acts by left translation and the second

coordinate acts by right translation is amenable and admits an invariant mean.

Example 1.1.12. Other examples include

• groups with infinite center

• infinite direct sums

• groups whose von Neumann algebra has property Gamma

• products with an inner amenable group

• dynamical alternating groups of top. free actions of amenable groups on the Cantor set[31]

Proposition 1.1.13. Let Λ ≤ Γ be a coamenable inclusion of groups. If Λ is inner amenable, then

Γ is inner amenable.

Proof. Take a mean mΛ witnessing inner amenability of Λ as well as a mean mΓ/Λ witnessing

coamenability of the inclusion. We treat mΛ as defined on the entirety of Γ letting mΛ(Γ \Λ) = 0.

4



Define a different mean on Γ by m(A) :=
∫
Γ/Λ

mΛ(g
−1Ag)mΓ/Λ(gΛ). This is well-defined since

it is not dependent on the choice of cosets by conjugation-invariance. Now, let h ∈ Γ and check

m(h−1Ah) =

∫
Γ/Λ

mΛ(g
−1h−1Ahg)mΓ/Λ(gΛ) =

∫
Γ/Λ

mΛ(g
−1h−1Ahg)mΓ/Λ(hgΛ) = m(A)

to get conjugation-invariance of m. Diffuseness of m follows immediately since we’re integrating

the diffuse mean mΛ.

A detailed study of the structure of inner amenable groups can be found in [47].

1.2 Orbit equivalence

Orbit equivalence has been studied under several names since the 1950’s. Some of the earlier

results included work of Singer that described the connection between orbit equivalence of actions

and isomorphism of the associated group measure space constructions. The setting when dis-

cussing orbit equivalence is that of a group Γ acting in a measure-preserving manner on a standard

probability space.

Definition 1.2.1. We say two probability measure preserving(pmp) actions Γ ↷ (X,µ) and Λ ↷

(Y, ν) are orbit equivalent if there exists a measure isomorphism f : X0 → Y0 between conull

subsets X0 ⊆ X and Y0 ⊆ Y that sends orbits to orbits, i.e. f(Γ · x) = Λ · f(x) for almost every

x ∈ X0.

This is a much weaker equivalence relation on actions of countable groups than conjugacy. In

particular, different groups may admit orbit equivalent actions. Various invariants of orbit equiva-

lence have been found since it was introduced, including ergodicity, strong ergodicity, hyperfinite-

ness, ℓ2-Betti numbers and cost among others.

Definition 1.2.2. We say that two groups Γ,Λ are orbit equivalent if they admit free measure

preserving actions that are orbit equivalent.

Further information about orbit equivalence and all the topics in this section can be found in

the following excellent books and surveys[17][28][29][8].

5



1.2.1 Antirigidity results

There are several well-understood orbit equivalence classes of groups. Firstly, it’s elementary

to see all finite groups of a given cardinality form an orbit equivalence class. However, Dye

contributed the first major result in this direction.

Theorem 1.2.3 (Dye’s Theorem[11]). Every pair of ergodic free pmp actions of Z is orbit equiva-

lent.

Several years later, Ornstein and Weiss proved a major flexibility result.

Theorem 1.2.4 (Ornstein-Weiss[39]). Let Γ be amenable. Every free ergodic pmp action of Γ is

orbit equivalent to an action of Z.

In particular, all amenable groups are in the same orbit equivalence class. A little bit of work

shows that amenability is an invariant of orbit equivalence and hence, amenable groups form their

own class.

1.2.2 Cost

Cost is a [0,∞]-valued invariant of probability measure preserving(pmp) orbit equivalence rela-

tions that was first introduced by Levitt[35] and significantly developed by Gaboriau[18][19][21].

We think of these equivalence relations as being measurable subsets of (X,µ) × (X,µ) where

(X,µ) is a standard probability space. They now have two projection maps p1, p2 onto the first and

second coordinates respectively. By work of Feldman-Moore, every countable pmp equivalence

relation arises as the orbit equivalence relation of a pmp action of some countable group[15]. We

call a subset G of X ×X symmetric if (x, y) ∈ G =⇒ (y, x) ∈ G.

Definition 1.2.5. A symmetric subset G ⊆ R of an equivalence relation R is called a graphing of

R if the equivalence relation EG = {(x, y)| there exists a finite sequence x0 = x, . . . , xn = y such

that (xi, xi+1) ∈ G} generated by G is equal to R.

Definition 1.2.6. Let G be a graphing. The cost of a graphing is denoted and defined as Cµ(G) :=
1
2

∫
X
|p−1

1 (x)|dµ(x).

6



Definition 1.2.7. Let R be a countable pmp equivalence relation. The cost of the equivalence

relation is Cµ(R) := inf{Cµ(G)|G is a graphing of R}.

This also defines cost of a pmp action as the cost of the associated orbit equivalence relation.

It is clear to see that two actions that are orbit equivalent must have the same cost. It can be shown

that free pmp actions of infinite groups must have cost at least 1.

Example 1.2.8. We give an example of calculation of cost. Let θ1, θ2 be mutually irrational. Con-

sider the free action Z2 ↷ (S1, µ) acting on the circle with the Haar measure by (n,m) · x =

nθ1 +mθ2 + x mod 1. Fix ε > 0 and take X ⊆ S1 to be a set of measure less than ε. Now define

Gε := {(y, x)|y = (1, 0) · x or (x ∈ X and y = (0, 1) · x)}. The set Gε is a graphing of the orbit

equivalence relation of the action, since the actions of (0, 1) and (1, 0) commute and the action of

(0, 1) is ergodic. It is easy to calculate that Cµ(Gε) < 1 + ε. This along with the fact that free pmp

actions of infinite groups must have cost ≥ 1 tells us that Cµ(Z2 ↷ (S1, µ)) = 1.

This particular example and Ornstein-Weiss tells us that every free pmp action of an infinite

amenable group has cost 1. However, the first case where cost was calculated and distinguished

groups up to orbit equivalence is the following.

Theorem 1.2.9 (Gaboriau[19]). Let Fn be the free group on n generators. The cost of every free

pmp action of Fn is n.

In particular, this implies that F2 and F3 do not admit orbit equivalent actions, and hence,

are not orbit equivalent which was previously unknown. Cost also has some relationship with

previously studied quantities such as the first ℓ2-Betti number β(2)
1 .

Theorem 1.2.10 (Gaboriau[20]). Let Γ ↷ (X,µ) be a free pmp action. Then β
(2)
1 (Γ) + 1 ≤

Cµ(Γ ↷ (X,µ)).

It is an open question whether the inequality can be replaced by equality, although it is known

in many cases.

7



1.2.3 Bernoulli superrigidity

We first define the notion of a cocycle.

Definition 1.2.11. Let Γ ↷ (X,µ) be an action of a countable group and let Λ be a discrete

countable group. A cocycle of the action into Λ is a function α : Γ × X → Λ that satisfies

α(gh, h · x)α(h, x) = α(gh, x).

In 2007, Popa proved his remarkable cocycle superrigidity theorem using the techniques of

deformation rigidity.

Theorem 1.2.12 (Popa[44]). Let Γ be discrete countable group with property (T). For every p.m.p.

action Γ ↷ Y of Γ, the associated Bernoulli extension Y ⊗AΓ → Y satisfies that every measurable

cocycle ω : Γ× Y ⊗AΓ → L taking values in a discrete countable group L is cohomologous to a

cocycle which descends to Y .

This implies several very useful corollaries.

Corollary 1.2.13 (Cocycle Superrigidity). Let Γ ↷ AΓ be a Bernoulli shift of a property (T)

group. Then for every cocycle ω : Γ × AΓ → L taking values in a discrete countable group L,

there exists a homomorphism ρ : Γ → L and measurable map θ : AΓ → L such that c(γ, x) =

θ(γx)ρ(γ)θ(x)−1.

Corollary 1.2.14 (OE Rigidity). Let α : Γ ↷ AΓ be a Bernoulli shift of a property (T) group that

has no nontrivial finite normal subgroups. Then the orbit equivalence class of α consists of actions

that are conjugate to α.

Bowen and Tucker-Drob give the name Bernoulli superrigid to groups that satisfy the conclu-

sion of Popa’s theorem and showed that Bernoulli superrigidity is an invariant of measure equiva-

lence of groups[5].

We give some simple examples of Bernoulli superrigid groups and more can be found in the

literature.
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Example 1.2.15 (Popa[44][45]). Γ is Bernoulli superrigid if there is an infinite normal subgroup

N ◁ Γ such that one of the following holds

• (Γ, N) has relative property (T)

• N = H ×K where H is infinite and K is nonamenable.
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2. COST OF INNER AMENABLE GROUPOIDS∗

2.1 Introduction

Cost is an [0,∞]-valued invariant of p.m.p. orbit equivalence relations that was first introduced

by Levitt[35] and significantly developed by Gaboriau[18][19][21]. By work of Connes-Feldman-

Weiss[7], every aperiodic amenable equivalence relation has cost 1. Kechris showed in ([28],

Theorem 8.1) that the existence of a nontrival asymptotically central sequence in the full group of

an ergodic p.m.p. equivalence relation implies the equivalence relation has cost 1. More exposition

on the many results of cost theory can be found in the surveys of Kechris and Miller[29] and

Furman[17].

A discrete p.m.p. groupoid G is said to have fixed price if every principal extension of G has the

same cost. Gaboriau proved that free groups have fixed price and asked whether every group has

fixed price. Since then, fixed price has been shown for several large classes of groups, including

finite, infinite amenable[39], strongly treeable[19], and inner amenable groups[47] amongst many

others. Recently, Hutchcroft and Pete showed that Kazhdan groups have a principal extension with

cost 1[25], but it is an open question whether these groups have fixed price.

Inner amenable groups were first introduced by Effros[12] in relation with property Gamma

of a von Neumann algebra. Examples of inner amenable groups include infinite amenable groups,

groups with infinite center, and groups admitting a ergodic p.m.p. action which is stable in the

sense of Jones and Schmidt [26]. Kerr and Tucker-Drob have shown that dynamical alternating

groups associated to topologically free actions of amenable groups on the Cantor set are inner

amenable, and they use this to exhibit uncountably many pairwise nonisomorphic, finitely gen-

erated simple nonamenable inner amenable groups[31]. Recently, Kida and Tucker-Drob defined

inner amenability for discrete p.m.p. groupoids[32] and showed that the action groupoid associated

to a compact p.m.p. action of an inner amenable group is inner amenable. They also note that not

∗Reprinted with permission from "Cost of inner amenable groupoids" by Robin Tucker-Drob and Konrad Wróbel,
to appear. Proceedings of the AMS.

10



every free p.m.p. action of an inner amenable group gives an inner amenable action groupoid. In

particular, the action groupoid associated to the Bernoulli shift of any nonamenable group is not

inner amenable[32, Corollary 6.3].

Theorem 2.1.1. Assume φ : R → G is a principal groupoid extension of an inner amenable

groupoid G. Then Cµ0
R
(R) = 1.

Specializing this to the case of countable groups recovers Tucker-Drob’s result that inner

amenable groups have fixed price 1, and specializing to the case of equivalence relations recovers

Kechris’s theorem that equivalence relations with a nontrivial asymptotically central sequence in

their full group have cost 1 (since these equivalence relations are shown to be inner amenable in

[32]).

In order to prove Theorem 2.1.1, we make heavy use of a generalization of von Neumann’s

notion of amenable actions, from the setting of groups to the setting of groupoids. We obtain the

following key structural result along the way, generalizing a result from [47] which only applied

to groups.

Theorem 2.1.2. If G is an inner amenable groupoid, and H ≤ G is a nowhere amenable sub-

groupoid, then there is a groupoid K such that H is q-normal in K and K is q-normal in G.

Acknowledgements: RTD was partially supported by NSF DMS grant 1855825.

2.2 Preliminaries

2.2.1 Groupoids

Definition 2.2.1. A groupoid G is a small category in which every morphism is an isomorphism.

We refer to the set of objects as the unit space, written as G0. There are source sG : G → G0 and

range rG : G → G0 maps that send an element of the groupoid to its source and range, respectively,

and an inclusion map iG : G0 → G, that sends a unit to the identity morphism at that unit. When

there is no confusion, we will drop the subscripts on s, r, and i, and we will identify G0 with its

image in G under i.

We say a groupoid G is principal if the map g 7→ (r(g), s(g)) is injective.

11



An equivalence relation R on a set X is naturally a principal groupoid, with unit space X ,

source and range maps the right and left projections respectively, and composition given by the

rule (z, y)(y, x) = (z, x). Moreover, each principal groupoid is naturally isomorphic as a groupoid

to an equivalence relation via the map g 7→ (r(g), s(g)). Given this transparent equivalence of cate-

gories, we will freely and frequently identify principal groupoids with their associated equivalence

relation.

Definition 2.2.2. A discrete Borel groupoid is a groupoid where both G and G0 are standard Borel

spaces, the source, range, and inclusion maps s, r, and i are all Borel, s and r are countable-to-one,

and the multiplication and inverse maps are Borel.

Definition 2.2.3. A discrete p.m.p. groupoid is a pair (G, µ0
G) where G is a discrete Borel groupoid

and µ0
G is a Borel probability measure on G0 satisfying

∫
G0 c

r
xdµ

0
G =

∫
G0 c

s
xdµ

0
G where crx and csx

refer to the counting measure on r−1(x) and s−1(x) respectively. Set µ1
G :=

∫
G0 c

r
xdµ

0
G =

∫
G0 c

s
xdµ

0
G

to be this σ-finite measure on G.

Again, we will drop the subscript on the measures when there is no cause for confusion.

Definition 2.2.4. A subset A ⊆ G0 is said to be G-invariant if µ0(G · A△A) = 0 where G · A =

{x ∈ G0 | ∃g ∈ G with s(g) ∈ A and r(g) = x}.

Definition 2.2.5. A discrete p.m.p. groupoid G is called ergodic if every G-invariant subsetA ⊆ G0

is µ0-null or conull.

Example 2.2.6. Let G↷ (X,µ) be a p.m.p. action of a countable group on a standard probability

space (X,µ). We define the discrete p.m.p. groupoid G = G⋉X with underlying set G×X and

unit space G0 = X , with the groupoid operation (g, h · x)(h, x) := (gh, x). A groupoid that arises

through such a process is called an action groupoid. If this action is ergodic, so is the groupoid it

generates.

Definition 2.2.7. An extension of a discrete p.m.p. groupoid G is a discrete p.m.p. groupoid H

together with a measure preserving groupoid homomorphism ϕ : (H, µ1
H) → (G, µ1

G). We call this

a principal extension of G if the groupoid H is principal.

12



As explained in [5], the category of extensions of G is equivalent to the category of p.m.p.

actions of G.

Example 2.2.8. Let G ↷ (X,µ) be a free p.m.p. action. Then the map ϕ : G ⋉ (X,µ) → G

defined by (g, x) 7→ g is a principal groupoid extension.

More detail about groupoid extensions can be found in [5] and [32].

Definition 2.2.9. A measurable bisection of a discrete p.m.p. groupoid G is a Borel subset σ of

G such that the restrictions r|σ and s|σ are each bijections of σ with a conull subset of G0. A subset

σ of G is called a partial measurable bisection if r|σ, s|σ are only assumed to be injections.

Definition 2.2.10. The full group of a discrete p.m.p. groupoid G is the set, denoted by [G], of all

measurable bisections. The pseudogroup of G is the set, denoted by [[G]], of all partial bisections.

We identify two partial bisections σ1 and σ2 if their symmetric difference σ1△σ2 is µ1-null. The

full group admits a complete separable metric, namely d(σ1, σ2) := µ1(σ1△σ2).

For subsetsA,B ⊆ G defineA−1 := {g−1|g ∈ A} andAB := {gh|g ∈ A, h ∈ B, and s(g) =

r(h)}. The full group and the full pseudogroup of G are then a group and inverse semigroup

respectively, under these operations. For g ∈ G and A ⊂ G we also define gA := {g}A.

For a groupoid G, and subset A ⊆ G0, we let GA := {g ∈ G | r(g), s(g) ∈ A}. Fix a partial

measurable bisection σ ∈ [[G]]. For g ∈ Gr(σ), define the conjugate of g by σ, denoted gσ, to be

the unique element of σ−1gσ. Likewise, for D ⊆ G, define Dσ = {gσ | g ∈ D}. For a function

f : G → C, define fσ : G → C by

fσ(g) =


f(gσ

−1
) if g ∈ Gs(σ)

0 otherwise

2.2.2 Actions of groupoids and amenability

Definition 2.2.11. A locally countable fibered space over a standard measure space (X,µ) con-

sists of a standard Borel space W along with a countable-to-one Borel map p : W → X . For

A ⊆ X we define WA := p−1(A) and set W x := W {x}. We also define ν(A) :=
∫
X
|W x ∩ A|dµ.

13



If G is a discrete p.m.p. groupoid and W is a locally countable fibered space over G0, then we

define G ∗W := {(g, w) ∈ G ×W | s(g) = p(w)}.

Note that a discrete p.m.p. groupoid, together with either its source or range map, is a locally

countable fibered space over G0, with νr = νs = µ1.

Definition 2.2.12. A (left) Borel action of a p.m.p. groupoid G on a locally countable fibered

space p : W → G0 is a Borel map α : G ∗W → W , such that

(1) α(g, w) ∈ W r(g) for each g ∈ G and w ∈ W s(g),

(2) for each g ∈ G the map αg : w 7→ α(g, w), is a bijection from W s(g) to W r(g), and

(3) αgαh = αgh whenever s(g) = r(h)

where we denote G ∗W = {(g, w)|s(g) = p(w)}.

We will also simply write gw for α(g, w). For subsets A ⊆ G and V ⊆ W , denote AV :=

{gw | g ∈ A and w ∈ V }. For g ∈ G and V ⊆ W , we define gV := {g}V .

Example 2.2.13. The left translation action λ, of a groupoid G on itself is defined, for g, h ∈

G ∗ G = {(g, h)|s(g) = r(h)}, by λ(g, h) := gh.

Definition 2.2.14. A measurable section of a locally countable fibered space p : W → (X,µ)

is a Borel subset σ of W such that the restriction p|σ, of p to σ, is a bijection of σ with a conull

subset of X . A subset σ of W is called a partial measurable section if p|σ is only assumed to be

injective.

Suppose we have an action of a discrete p.m.p. groupoid G on a locally countable fibered space

p : W → G0. Let g ∈ G and let σ ⊆ W be a partial measurable section. We say that g fixes σ if

∅ ̸= gσ ⊆ σ. Notice that, in this case, the set gσ contains a single point, so we will abuse notation

and use gσ to also denote this point.

Definition 2.2.15. The stabilizer of a partial section σ is defined to be the set

Gσ := {g ∈ G | g fixes σ} = {g |∅ ̸= gσ ⊆ σ}.
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Definition 2.2.16. Let G ↷ W be a Borel action of a discrete p.m.p. groupoid G on a locally

countable fibered space W over G0. The action is called amenable if there exists a sequence of

Borel functions (fn)n∈N : W → [0, 1] such that

1.
∑

w∈Wx

fn(w) = 1 for µ0-almost every x ∈ G0 and all n ∈ N

2.
∑

w∈W r(g)

|fn(w)− fn(g
−1w)| → 0 as n→ ∞ for µ1-almost every g ∈ G.

Notice that this generalizes von Neumann’s notion of amenable action when G is actually a

group.

Remark 2.2.17. If a sequence fn is G-asymptotically invariant as in item (2), then, by the bounded

convergence theorem, it is asymptotically invariant under the full group, i.e. ∥fn − σfn∥1 → 0

for σ ∈ [G]. Conversely, if a sequence is asymptotically invariant under the full group, then a

subsequence is G-asymptotically invariant as in item (2).

Definition 2.2.18. A mean on (W, ν) is a norm one positive linear functional on L∞(W, ν).

We’ll often treat means as finitely additive probability measures by letting m(A) := m(1A) for

A ⊆ W a ν-measurable subset.

Definition 2.2.19. Let m ∈ (L∞(W, ν))∗ be a mean on a fibered space p : W → G0. We say that

m is equidistributed if for every measurable set A ⊆ G0,

m(WA) = µ0(A).

Proposition 2.2.20. Let G be a discrete p.m.p. groupoid that acts on the fibered space p : W → G0.

Assume the action admits an equidistributed mean m ∈ (L∞(W, ν))∗ such that m(σA) = m(A)

for every measurable set A and σ ∈ [G]. Then the action G ↷ W is amenable.

Proof. Associate to every non-negative unit vector f ∈ L1(W, ν) a function pf ∈ L1(G0, µ0)

defined by

pf (x) :=
∑

w∈Wx

f(w).
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Since m is equidistributed, given a net (fi) converging to m, the net (pfi) weak-* converges to the

function 1.

The proof of the following claim follows the proof given in [32, Claim 3.19].

Claim 2.2.21. Let f ∈ L1(W, ν) be a non-negative function with ∥f∥1 = 1. Then there exists a

non-negative g ∈ L1(W, ν) which satisfies pg = 1G0 and ∥f − g∥1 = ∥pf − 1G0∥1.

Proof of Claim. Let f0 := f . We proceed by transfinite induction on countable ordinals α to define

a non-negative function fα ∈ L1(W, ν) satisfying, for all β < α:

1. ∥fβ − fα∥1 = ∥pfα − pfβ∥1

2. For almost every x ∈ G0, if pfβ(x) ≤ 1, then pfβ(x) ≤ pfα(x) ≤ 1

3. For almost every x ∈ G0, if pfβ(x) ≥ 1, then pfβ(x) ≥ pfα(x) ≥ 1

4. If ∥pfβ − 1G0∥1 > 0, then ∥pfα − 1G0∥1 < ∥pfβ − 1G0∥1, and if pfβ = 1G0 , then fα = fβ .

If α is a limit ordinal, take an increasing sequence β1 < β2 < . . . such that α = supi βi. The

sequence (pfβi )i ⊆ L1(G0, µ0) is Cauchy by properties (2) and (3). By property (1), the sequence

(fβi
)i ⊆ L1(W, ν) is Cauchy. Let fα be the limit point of this sequence.

If α is a successor ordinal and pfα−1 = 1G0 , then let fα := fα−1.

If α is a successor ordinal and pfα−1 ̸= 1G0 , then there exists ε > 0 such that the sets A0 :=

{x|pfα−1(x) < 1− ε} and A1 := {x|pfα−1(x) > 1+ ε} both have positive measure. For i ∈ {0, 1},

find partial measurable sections Ci ⊆ WAi with ν(C0) = ν(C1) > 0 and ε′ := inf{fα−1|C1} > 0.

By letting δ := min{ε, ε′} and fα := fα−1 + δ(1C0 − 1C1), we get a function with the required

properties.

By property (4), there exists a countable ordinal κ such that pfκ = 1G0 , and setting g := fκ

finishes the proof of the claim.

Now, for a fixed finite collection ∆ ⊆ [G] and ε > 0, we consider the convex set {(f−δf)δ∈∆×

(pf − 1G0) | ∥f∥1 = 1, f ≥ 0} ⊂ L1(W, ν)∆ × L1(G0, µ0). By the Hahn-Banach theorem, this set

contains 0 in its weak closure. So, by Mazur’s Theorem, 0 is in the norm closure of our set.
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By the claim, for every finite collection of sections ∆ ⊆ [G] and ε > 0, there exists a positive

norm one function f such that pf = 1G0 and maxδ∈∆ ∥f − δf∥1 ≤ ε. Fix a countable dense subset

(δk) ⊆ [G]. Take fn as above satisfying max1≤k≤n ∥fn−δkfn∥1 ≤ 1
n

and pfn = 1G0 . The functions

fn satisfy item (1) in the definition of amenability because pfn = 1G0 .

Let δ ∈ [G] and ε > 0. There exists I such that µ1(δ△δI) < ε
4

since (δk) is dense. Let

N > max(2
ε
, I). For n > N ,

∥fn − δfn∥1 ≤ ∥fn − δIfn∥1 + 2µ1(δ△δI) <
ε

2
+ 2

ε

4
< ε.

By remark 2.2.17, a subsequence of (fn) satisfies item (2) in the definition of amenability and

hence the action G ↷ W is amenable.

Definition 2.2.22. A discrete p.m.p. groupoid G is called amenable if the left translation action of

G on itself is amenable.

In the case when G is an equivalence relation, this corresponds with the notion of amenability

in the category of equivalence relations[29]. A study of amenable groupoids can be found in [1].

Definition 2.2.23. A groupoid G is called nowhere amenable if for every positive measure subset

A ⊆ G0, the groupoid GA = {g ∈ G | s(g), r(g) ∈ A} is nonamenable.

In [32], Kida and Tucker-Drob introduced the following generalization of inner amenable

groups.

Definition 2.2.24. A discrete p.m.p. groupoid G is called inner amenable if there exists a mean

m ∈ (L∞(G, µ1))∗ such that

(i) m(GA) = µ0(A) for every µ0-measurable A ⊆ G0

(ii) m(Aσ) = m(A) for every µ0-measurable A ⊆ G0 for every σ ∈ [G]

(iii) m(D) = 0 for every µ1-measurable D ⊆ G with µ1(D) <∞

(iv) m(A) = m(A−1) for every µ0-measurable A ⊆ G0
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2.2.3 Q-normality and cost

Definition 2.2.25. Fix a discrete p.m.p. groupoid G. A subset A ⊆ G is said to generate G if the

union ⟨A⟩ :=
∪

n∈ N(A ∪ A−1)n is a µ1-conull subset of G.

Definition 2.2.26. A subset of a discrete p.m.p. groupoid A ⊆ G is called aperiodic if for almost

every x ∈ G0, the set s−1(x) ∩ A is infinite.

Sorin Popa introduced the notion of q-normality in [43].

Definition 2.2.27. A subgroupoid H ≤ G is q-normal in G if there exists a countable collection

of partial sections Σ ⊂ [[G]] generating G such that for every σ ∈ Σ, the set Hσ ∩ H is aperiodic

on s(σ).

Proposition 2.2.28. If the groupoid H is q-normal in G and φ : K → G is a groupoid extension of

G, then φ−1(H) is q-normal in K.

Proof. Let Σ be a countable collection of partial sections of G witnessing the q-normality of H in

G. Let Σ′ := {φ−1(σ) | σ ∈ Σ}. Notice Σ′ is a collection of sections of K that generate K. Now

φ−1(σ)φ−1(H)φ−1(σ)−1 ∩ φ−1(H) ⊇ φ−1(σHσ−1 ∩ H). This along with the fact that groupoid

extensions are surjective lets us check q-normality of φ−1(H) in K.

Proposition 2.2.29. Let φ : H → G be an extension of an amenable groupoid G. Then H is

amenable.

Proof. If (fn) is a sequence witnessing the amenability of G, then the sequence (fn ◦φ) witnesses

the amenability of H.

Definition 2.2.30. The cost of a principal discrete p.m.p. groupoid R is defined

Cµ0(R) = inf
A generating R

µ1(A).

Proposition 2.2.31. Let S ≤ R be principal discrete p.m.p. groupoids. If S is q-normal in R then

Cµ0
R
(R) ≤ Cµ0

R
(S).

This is proved in Proposition A.2 in [47] and was first observed by Furman in [19].
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2.3 A folklore lemma in the groupoid setting

Definition 2.3.1. An action of a discrete countable group G on a space X is called amenable if

there exists a finitely additive probability measure m : X → [0, 1] that is invariant under the group

action.

The following folklore lemma’s origins go back to von Neumann’s original paper which intro-

duced the notion of amenability [38]. A proof can be found in chapter 1.

Lemma 2.3.2. Let a discrete countable group G act on X and Y . Suppose the action G ↷ X is

amenable. If the action of the stabilizer Gx ↷ Y is an amenable action for every x ∈ X , then

G↷ Y is amenable.

We generalize this lemma in the following manner.

Lemma 2.3.3. Let G be a discrete p.m.p. groupoid. Fix actions of G on the locally countable Borel

fibered spaces p : W → G0 and q : V → G0. Suppose G ↷ W is an amenable action. Suppose we

have a countable collection of nontrivial partial measurable sections Σ = {σi}i∈N of W with the

following properties

• (Gσi) ∩ (Gσj) = ∅ if i ̸= j

•
⊔

i∈N(Gσi) = W

• the restricted action Gσi
↷ q−1(p(σi)) is amenable for all i ∈ N.

Then the action G ↷ V is amenable.

Proof. Fix (fn) an amenability sequence for the action G ↷ W and denote fn|Wx by fx
n .

Pick a sequence of Borel subsets (Wn)n∈N ⊆ W such that for every n ∈ N and for every

x ∈ G0

• |Wn ∩W x| is finite

• fx
n (Wn ∩W x) > 1− 2−n.
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We define

f̂n(w) =


fn(w)

fn(Wn∩W p(w))
w ∈ Wn

0 otherwise

by restricting supports and renormalizing. The sequence (f̂n) also witnesses the amenability of

the action G ↷ W and has finite support on each fiber. By replacing fn by f̂n, we may therefore

assume that each of the functions fn is supported on Wn.

For w ∈ W , we denote by σw the unique element σ of Σ such that w ∈ Gσ. Now, we would

like to find a measurable function ϕ : W → G such that r(ϕ(w)) = p(w) and {w} = ϕ(w)σw.

Consider the map ϕ′ : G × Σ → W defined by (g, σ) 7→ gσ. This is surjective by the hypothesis

on Σ and countable-to-one since G has countable fibers. By the Lusin-Novikov Uniformization

Theorem[27], there is an injective Borel map ϕ∗ : W → G×Σ with ϕ′(ϕ∗(w)) = w. By composing

with a projection to G, this is measurable and we get the map ϕ we were looking for. By abuse of

notation we identify ϕ(w)σw with the point w it contains.

For g ∈ G and w ∈ W s(g), we let hg,w := ϕ(gw)−1gϕ(w). Notice that hg,w ∈ Gσw since

hg,wσw = ϕ(gw)−1gϕ(w)σw = ϕ(gw)−1(gw) = ϕ(gw)−1(ϕ(gw)σgw)

= ids(ϕ(gw))σgw ∈ σgw = σw

Let (Dn)n∈N be an increasing sequence of finite µ1-measure subsets of G which exhaust the space.

For each σ ∈ Σ, we pick a sequence aσ,n witnessing the amenability of the action Gσ ↷ q−1(p(σ)).

We may choose these sequences in such a way that there exists a sequence (D′
n)n∈N satisfying the

following

• µ1(D′
n ∩Di)

µ1(Di)
> 1− 2−n for all i ≤ n

• for every g in D′
n and for every w in W s(g) ∩Wn

∥∥ar(hg,w)
σw,n − hg,wa

s(hg,w)
σw,n

∥∥
ℓ1(V r(hg,w))

< 2−n (2.1)
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This is accomplished as follows. First take an amenability sequence âσ,n for the action Gσ ↷

q−1(p(σ)). Here, for a given g ∈ G and n ∈ N, the set W s(g) ∩Wn is finite.

Fix an element g ∈ G. Let N(n, g) be the least integer such that for all N ≥ N(n, g),

∥∥∥âr(hg,w)
σw,N − hg,wâ

s(hg,w)
σw,N

∥∥∥
ℓ1(V r(hg,w))

≤ 2−n for every w ∈ W s(g) ∩Wn.

Such an N(n, g) exists because hg,w ∈ Gσw and by definition of âσ,n being an amenability se-

quence. For each c ∈ N, define D̂n(c) := {g ∈ Dn |N(n, g) < c}. The sets D̂n(c) increase to Dn

as c → ∞. Fix cn such that µ1(D̂n(cn)∩Di)
µ1(Di)

> 1 − 2−n for every i ≤ n. Define aσ,n := âσ,cn and

D′
n := D̂n(cn).

Now, for each n ∈ N, define ξn(v) :=
∑

w∈W q(v) aσw,n(ϕ(w)
−1v)f

q(v)
n (w). This is defined

since ϕ(w)−1v ∈ q−1(p(σw)). We show the sequence (ξn)n∈N witnesses the amenability of the

action G ↷ V . We first check it satisfies item (2) in the definition of amenability. Let g ∈ G and

let x = s(g) and y = r(g).

∥ξyn − gξxn∥ℓ1(V y) =
∑
v∈V y

∣∣∣∣∣ ∑
w∈W y

aσw,n(ϕ(w)
−1v)f y

n(w)−
∑

w∈Wx

aσw,n(ϕ(w)
−1(g−1v))fx

n (w)

∣∣∣∣∣

≤
∑
v∈V y

∣∣∣∣∣ ∑
w∈W y

aσw,n(ϕ(w)
−1v)f y

n(w)−
∑

w∈Wx

aσw,n(ϕ(gw)
−1v)fx

n (w)

∣∣∣∣∣ (2.2)

+
∑
v∈V y

∣∣∣∣∣ ∑
w∈Wx

aσw,n(ϕ(gw)
−1v)fx

n (w)−
∑

w∈Wx

aσw,n(ϕ(w)
−1g−1v)fx

n (w)

∣∣∣∣∣ (2.3)
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Let’s first look at eq. 2.2 now and bound it by rewriting it as follows.

∑
v∈V y

∣∣∣∣∣ ∑
w∈W y

aσw,n(ϕ(w)
−1v)f y

n(w)−
∑

w∈Wx

aσw,n(ϕ(gw)
−1v)fx

n (w)

∣∣∣∣∣
=

∑
v∈V y

∣∣∣∣∣ ∑
w∈W y

aσw,n(ϕ(w)
−1v)f y

n(w)−
∑

w∈W y

aσw,n(ϕ(w)
−1v)fx

n (g
−1w)

∣∣∣∣∣
≤

∑
v∈V y

∑
w∈W y

∣∣aσw,n(ϕ(w)
−1v)

∣∣ ∣∣f y
n(w)− fx

n (g
−1w)

∣∣
=

∑
w∈W y

|f y
n(w)− gfx

n (w)| = ∥f y
n − gfx

n∥ℓ1(W y) −→ 0 as n→ ∞

Now, we find a bound for eq. 2.3.

∑
v∈V y

∣∣∣∣∣ ∑
w∈Wx

[
aσw,n(ϕ(gw)

−1v)− aσw,n(h
−1
g,wϕ(gw)

−1v)
]
fx
n (w)

∣∣∣∣∣
≤

∑
v∈V y

∑
w∈Wx

|aσw,n(ϕ(gw)
−1v)− hg,waσw,n(ϕ(gw)

−1v)|fx
n (w)

=
∑

w∈Wx∩Wn

fx
n (w)

∥∥ar(hg,w)
σw,n − hg,wa

s(hg,w)
σw,n

∥∥
ℓ1(V r(hg,w))

≤ 2−n

We show for µ1-almost every g, this last inequality holds when n is large enough. Let Ei,k :=

Di \ D′
k. Notice that µ1(Ei,k) ≤ 2−kµ1(Di) for k ≥ i and so

∑
k µ

1(Ei,k) < ∞. Thus,

µ1(lim supk Ei,k) = 0 and, in fact, µ1(
∪

i lim supk Ei,k) = 0. By assumption 2.1, the set
∪

i lim supk Ei,k

contains exactly the g ∈ G where the inequality fails to hold for infinitely many n. Thus, we get

that item (2) in the definition of amenability is satisfied for the sequence (ξn).

It remains to check item (1). By the definition of ξn, we have

ξxn(v) =
∑

w∈Wx

fx
n (w)[ϕ(w)a

s(ϕ(w))
σw,n (v)].

The measure ϕ(w)as(ϕ(w))
σw,n is a probability measure since it is a pushforward of a probability mea-

sure. The function ξxn is a convex combination of probability measures, and therefore, is a proba-

bility measure.
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2.4 Cost of inner amenable groupoids

We generalize the following structural result about inner amenable groupoids from the setting

of groups[47, Theorem 8].

Theorem 2.4.1. If G is an inner amenable groupoid, and H ≤ G is a nowhere amenable sub-

groupoid, then there is a groupoid K such that H is q-normal in K and K is q-normal in G.

Moreover, K can be chosen so that, for every n ∈ N, the groupoid K∩Kσ1 ∩ . . .∩Kσn is aperiodic

for all bisections σ1, . . . , σn ∈ [G].

Proof. By Lusin-Novikov[27], there is a countable subgroup H ≤ [H] of the full group that

generates H. We can then define the action groupoid H̃ := H ⋉ G0 which comes with a natural

surjective groupoid homomorphism φ : H̃ → H that satisfies s(φ(h, x)) = x and r(φ(h, x)) = hx.

We define two different actions of H̃ on G. The first being the action by conjugation α : H̃ ↷ G

where (h, r(g))·g = φ(h, r(g))gφ(h, s(g))−1. For clarity in the rest of this proof, we use · to denote

the conjugation action α. Fix a countable collection of measurable partial sections Σ of the range

map r for the conjugation action such that H̃ ·σ′ ∩H̃ ·σ′′ = ∅ for σ′ ̸= σ′′ and G =
⊔

Σ H̃ ·σ. The

second action will be by left translation λ : H̃ ↷ G where (h, r(g))g = φ(h, r(g))g.

Let Aσ ⊆ dom(σ) be the unique maximal (mod null) set such that (H ∩Hσ)Aσ
is nowhere

amenable. Define ΣA = {σ ∩ s−1(Aσ) | σ ∈ Σ} and define K to be the groupoid generated by

H ∪ ΣA. Also, define ΣB = {σ \ K|σ ∈ Σ} and note that G \ K = H̃ · ΣB by the assumptions on

Σ and since K is invariant under the action of H̃. If τ ∈ ΣA then H ∩Hτ is nowhere amenable on

s(τ) and, in particular, aperiodic on s(τ). And if h ∈ H , then it’s immediate that H ∩Hh = H is

aperiodic. So we get that H is q-normal in K.

Since G is inner amenable, there is a mean m on G as in definition 2.2.24. In particular, this

mean is equidistributed with respect to the map r. We proceed by contradiction to showm(K) = 1.

Assume not. So m(G \ K) > 0. The mean m is no longer necessarily equidistributed with

respect to r : G \ K → G0. However, we can define a finite Borel measure µG\K on G0 by

µG\K(A) := m(r−1(A) \ K) which is absolutely continuous with respect to µ0.
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Claim 2.4.2. µG\K is countably additive.

Proof of claim. The mean m is assume to be equidistributed, so for any measurable partition P =

(A1, . . . , Ak, . . . ) of G0

1 =
∑
k

µ0(Ak) =
∑
k

m(r−1(Ak))

which implies that for measurable Dk ⊆ r−1(Ak)

m(
⊔
k

Dk) =
∑
k

m(Dk).

Letting Dk = r−1(Ak) \ K, we see that µG\K is countably additive.

This µG\K and µ0 are both H-conjugation invariant, so the Radon-Nikodym derivative f :=

dµG\K
dµ0 is also H-conjugation invariant. Additionally, f is bounded above by 1 and not almost ev-

erywhere equal to 0 by our assumption that m(G \ K) > 0. Therefore, we may find a small

enough ε > 0 such that the H-conjugation invariant set W 0 := {x|f(x) > ε} has µ0-positive

measure. Let W := r−1(W 0) \ K. We define a conjugation-invariant positive linear functional

mW ∈ (L∞(r−1(W 0), µ1))∗ by mW (D) :=
∫
W

1D
f
dm. This is still in (L∞)∗ since f is bounded

above and below. Let (fk =
∑
cki 1Ak

i
) be a non-decreasing sequence of simple functions con-

verging to 1
f

in L∞. The mean mW is now equidistributed with respect to the restricted map

rW : W → G0, since for A ⊆ W 0,

µ0(A) =

∫
A

1

f
dµG\K = lim

k

∫
A

fkdµG\K

= lim
k

∑
i

cki µG\K(A
k
i ∩ A) = lim

k

∑
i

ckim(r−1
W (Ak

i ∩ A))

= lim
k

∑
i

cki

∫
W

1r−1
W (Ak

i )∩r
−1
W (A)dm = lim

k

∫
W

fk1r−1
W (A)dm

=

∫
W

1r−1
W (A)

f
dm = mW (r−1

W (A))

By H-invariance of K and W 0, we have a restricted conjugation action of H̃ ↷ W which we refer
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to by α̃. Now, define a new mean m̃W := mW

mW (W 0)
by renormalizing mW . The mean m̃W satisfies

the assumptions of proposition 2.2.20 for the action α̃ and, therefore, there exists a sequence hn

witnessing amenability of α̃ : H̃W 0 ↷ W .

The left translation action λ : H̃W 0 ↷ W ⊆ G is nonamenable since H is nowhere amenable.

Define ΣW := {τ ∩W |τ ∈ ΣB}. For τ ∈ ΣW , denote by H̃τ ⊆ H̃W 0 the stabilizer of the section

τ with respect to the action α. Let λτ : H̃τ ↷ r−1(r(τ)) be the action λ restricted to H̃τ . If this

action is nonamenable, then the action φ(H̃τ ) ↷ r−1(r(τ)) by left translation is nonamenable. But

then, the action φ(H̃τ ) ↷ φ(H̃τ ) by left translation is nonamenable. Indeed, otherwise we can use

the amenability sequence from φ(H̃τ ) to show the action φ(H̃τ ) ↷ r−1(r(τ)) is amenable. So the

groupoid φ(H̃τ ) is nonamenable if the action λτ is nonamenable.

By lemma 2.3.3, we know there exists a τ ∈ ΣW such that φ(H̃τ ) is nonamenable. Since H̃τ

stabilizes τ under conjugation, φ(H̃τ ) ⊆ Hτ . So, H∩Hτ ⊇ φ(H̃τ ) is nonamenable. We may find a

positive measure setAτ such that (H∩Hτ )Aτ is nowhere amenable. Recall, τ = (σ\s−1(Aσ))∩W

for some σ ∈ Σ. The sets Aσ and Aτ are disjoint. However, the groupoid (H ∩Hσ)Aσ∪Aτ
is

nowhere amenable which contradicts maximality of Aσ. Hence, m(K) = 1.

The conjugated groupoid Kσ := {kσ | k ∈ K} will still have mean 1 since m is conjugation

invariant. So, K∩Kσ1 ∩ . . .∩Kσn will have mean 1 in G for all bisections σ1, . . . , σn ∈ [G]. Since

m is diffuse and equidistributed, this means that K ∩ Kσ1 ∩ . . . ∩ Kσn is aperiodic and hence K is

q-normal in G.

Now we prove the main theorem.

Theorem 2.4.3. Assume φ : R → G is a principal groupoid extension of an inner amenable

groupoid G. Then Cµ0
R
(R) = 1.

Proof. By looking at the ergodic decomposition of G, it suffices to deal with the groupoid G being

ergodic. We prove this in two cases.

Assume first that the associated equivalence relation RG := {(r(g), s(g)) | g ∈ G} is finite.

By ergodicity, G0 = {x1, . . . , xn}. This means that by [32], the isotropy group G{xi} := {g ∈
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G | s(g = r(g) = xi)} is an inner amenable group. By [47], this has fixed price 1. Consider now

the groupoid G ′ :=
⊔

1≤i≤n G{xi}. Any principal extension of G ′ is a union of exactly n ergodic

components each of which is a principal extension of some copy of G{xi} and so generated by a set

of measure 1/n + ε. So, G ′ has fixed price 1 and Cµ0
R
(φ−1(G ′)) = 1. By propositions 2.2.28 and

proposition 2.2.31, we get Cµ0
R
(R) = 1.

If the underlying equivalence relation RG is instead aperiodic, fix ε > 0 and define H′ ≤ G as

the maximal(mod null) ergodic amenable subgroupoid using Zorn’s Lemma. The set of amenable

ergodic subgroupoids is nonempty sinceRG is aperiodic. Now, letA ⊆ G\H′ with 0 < µ1(A) < ε.

Define H := ⟨H′ ∪ A⟩ so H is nonamenable. In particular, since H is ergodic nonamenable, it

is nowhere amenable. Now, by theorem 2.4.1 and proposition 2.2.28, there exists K such that

φ−1(H) is q-normal in φ−1(K) and φ−1(K) is q-normal in R.

Notice thatCµ0
R
(φ−1(H′)) = 1 since φ|φ−1(H′) is a principal groupoid extension of an amenable

groupoid. Therefore, Cµ0
R
(φ−1(H)) < 1 + ε. Last, proposition 2.2.31 gives us

Cµ0
R
(R) ≤ Cµ0

R
(φ−1(H)) < 1 + ε

proving the theorem.
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3. COAMENABILITY

3.1 Introduction

Von Neumann introduced the notion of an amenable action in his seminal paper on paradoxi-

cality[38]. In the setting of groups, an action of a countable discrete group Γ ↷ X is said to be

amenable if the set X admits a finitely additive probability measure that is invariant under the ac-

tion of the group. It is elementary to see that every action of an amenable group is amenable in this

sense. However, the last 20 or so years have seen a prominent surge of progress when discussing

amenable actions of nonamenable groups.

One particular example of amenable action comes up in the definition of coamenability. An

inclusion of groups H ⊆ G is coamenable if the action G ↷ G/H by left multiplication is

amenable. Coamenability has been extensively studied in the setting of groups and even in the

setting of von Neumann algebras[23][13][36][40][24]. It is well-known that if a group contains

a coamenable inner amenable subgroup, then the group must be inner amenable. A similar the-

orem dealing with property Gamma was recently shown in the setting of von Neumann algebras

by Bannon-Marrakchi-Ozawa[2]. Inner amenability was recently introduced to the setting of mea-

sured groupoids in the work of Kida and Tucker-Drob[32]. In this vein, we define the notion of

coamenability in the setting of measured groupoids and show how it interacts with inner amenabil-

ity.

Theorem 3.1.1. Let H ⊆ G be a coamenable inclusion of measured groupoids. If H is inner

amenable, then G is inner amenable.

We also give several equivalent characterizations of amenability of actions of groupoids, sev-

eral of whose origins are drawn from the study of amenability of measured groupoids which can

be found in Anantharaman-Renault[1].
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3.2 Amenable actions

For this chapter, recall the preliminaries about groupoids from Chapter 1. The ambient setting

will be an ergodic discrete pmp groupoid G acting with a Borel action on a locally countable Borel

fibered space p : W → G0. Recall the following definition from the previous chapter.

Definition 3.2.1. The action G ↷ W is amenable if there exists a sequence of Borel functions

fn : W → [0, 1] that satisfies the following properties

• ∥fx
n∥ℓ1 = 1 for almost every x

• ∥f r(g)
n − g · f s(g)

n ∥ℓ1 → 0 for almost every g

where fx
n : W x → R is the function fn restricted to the fiber over x.

We require the following definitions before continuing.

Definition 3.2.2. A Reiter sequence for G ↷ W is a sequence of Borel functions fn : W → [0, 1]

such that

• ∥fn∥L1(W,ν) = 1

• ∥fn − σ · fn∥L1(W,ν) → 0 for each σ ∈ [G]

Definition 3.2.3. A [G]-invariant mean for G ↷ W is a norm one positive linear functional

m ∈ (L∞(W, ν))∗ such that m(σ · A) = m(A) for every ν−measurable set A and σ ∈ [G].

We now give several equivalent conditions to amenability of an action.

Proposition 3.2.4. Let G be an ergodic discrete pmp groupoid and let G ↷ W . TFAE

1. G ↷ W is amenable

2. W admits a Reiter sequence

3. W admits a [G]-invariant mean
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4. there exists P : L∞(W, ν) → L∞(G0, µ) such that P (ϕ · F ) = ϕ · P (F ) for ϕ ∈ [G] and

P (1W ) = 1G0

Proof. (1 =⇒ 2) Take the functions (fn) witnessing amenability. These satisfy ∥fn∥1 =∫
X
∥fx

n∥dµ =
∫
1dµ = 1. Since fn − σ · fn is a uniformly bounded sequence converging to

0, the norm converges to 0 by bounded convergence theorem.

(2 =⇒ 3) Let fn be the Reiter sequence. Fix a free ultrafilter ω. Define m(A) :=

limω

∫ ∑
ξ∈p−1(x) fn(ξ)χAdµ(x). It is immediate that m is a mean.

m(σ · A) = lim
ω

∫
x∈X

∑
ξ∈p−1(x)

fn(ξ)χσ·A(ξ)dµ(x)

= lim
ω

∫
x∈X

∑
ξ∈p−1(x)

fn(ξ)χA(σ
−1ξ)dµ(x)

= lim
ω

∫
x∈X

∑
ξ∈p−1(σ−1x)

fn(σξ)χA(ξ)dµ(x)

= lim
ω

∫
σx∈X

∑
ξ∈p−1(x)

σ−1 · fn(ξ)χA(ξ)dµ(σx)

= lim
ω

∫
x∈X

∑
ξ∈p−1(x)

σ−1 · fn(ξ)χA(ξ)dµ(x)

So m(σ ·A)−m(A) = limω

∫
x∈X

∑
ξ∈p−1(x)(σ

−1 · fn− fn)(ξ)χA(ξ)dµ(x). Here σ−1 · fn− fn

converges to 0 in norm by assumption and so, in fact, it converges weakly in L1(W, ν). Therefore,

m(σ · A)−m(A) = 0.

(3 =⇒ 4) For F ∈ L∞(W, ν) define µF (A) :=
∫
WA

F dm.

Claim 3.2.5. µF is countably additive.

Proof of Claim. Since G is ergodic, for any measurable sets A,B ⊂ G0 such that µ(A) = µ(B),

there exists σ ∈ [G] such that σA = B. The measure m is [G]-invariant, so m(WA) = m(WB) =

µ(A). So, m(W⊔An) =
∑
m(WAn) if An are disjoint and

µF (⊔An) =

∫
W⊔An

F dm =

∫
⊔WAn

F dm =
∑
n

∫
WAn

F dm =
∑
n

µF (An).
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giving countable additivity.

Note that µF << µ, so there exists a Radon-Nikodym derivative dµF

dµ
. We define P (F ) := dµF

dµ

such that µF (A) =
∫
A
P (F )dµ. Here, P (1) = 1 since µ1(A) =

∫
1WA

dm = µ(A) as noted in

the proof of the above claim. For ϕ ∈ [G] and for every measurable A ⊆ G0, we see that

∫
A

P (ϕ · F )dµ = µϕ·F (A)

=

∫
WA

ϕ · F (ξ)dm(ξ)

=

∫
WA

F (ϕ−1 · ξ)dm(ξ)

=

∫
ϕ−1·WA

F (ξ)dm(ϕ · ξ)

=

∫
Wϕ−1·A

F (ξ)dm(ξ)

= µF (ϕ
−1 · A)

=

∫
ϕ−1·A

P (F )(x)dµ(x)

=

∫
A

P (F )(ϕ−1 · x)dµ(ϕ−1 · x)

=

∫
A

ϕ · P (F )dµ

So, P (ϕ · F ) = ϕ · P (F ).

(4 =⇒ 3) Given [G]-equivariant P : L∞(W,ν) → L∞(G0, µ). Define m(A) :=
∫
P (1A)dµ

for A ⊆ W . Here, m(W ) =
∫
P (1)dµ =

∫
1∥dµ = 1. For ϕ ∈ [G] and ν-measurable A ⊆ W

m(ϕ · A) =
∫
P (1ϕ·A)dµ

=

∫
P (ϕ · 1A)dµ

=

∫
ϕ · P (1A)(x)dµ(x)

=

∫
P (1A)(ϕ

−1 · x)dµ(x)
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=

∫
P (1A)dµ

= m(A)

(3 =⇒ 1) Fix a [G]-invariant mean m ∈ (L∞(W, ν))∗. By ergodicity, this is equidistributed.

Now, this implication is the content of proposition 2.2.20.

3.3 Coamenability

Throughout this section, H and G will be ergodic discrete pmp groupoids. We define the fibered

space p : H \ G → G0 where set of elements in H \ G is {Hg | g ∈ G} and p(Hg) := s(g). There

is no particular reason we use right cosets and you get an equivalent definition by considering left

cosets.

Definition 3.3.1. Let H be a subgroupoid of G. We say this inclusion is coamenable if the action

G ↷ H \ G by right multiplication is amenable.

Definition 3.3.2. A discrete p.m.p. groupoid G is called inner amenable if there exists a sequence

of measurable functions hn : G → [0, 1] such that

(i) ∥1GA
hn∥L1(G,µ1) → µ0(A) as n→ ∞ for every µ0-measurable A ⊆ G0

(ii) ∥hσn − hn∥L1(G,µ1) → 0 as n→ ∞ for every σ ∈ [G]

(iii) ∥1Dhn∥L1(G,µ1) → 0 as n→ ∞ for every µ1-measurable D ⊆ G with µ1(D) <∞

(iv)
∑

γ∈s−1(x) hn(γ) = 1 =
∑

γ∈r−1(x) hn(γ) for µ0-a.e. x ∈ G0 and every n

Such a sequence of functions is referred to as an inner amenability sequence.

Condition (i) is referred to as the balanced condition and ends up surprisingly important in

many proofs about these groupoids.

Definition 3.3.3. Given a discrete p.m.p. groupoid G. A net of measurable functions ξi : G → [0, 1]

is said to be
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• conjugation invariant if ∥ξσi − ξi∥L1(G,µ1) → 0 for every σ ∈ [G]

• diffuse if ∥1Dξi∥L1(G,µ1) → 0 for every µ1-measurable D ⊆ G with µ1(D) <∞

• nontrivial if
∑

γ∈s−1(x) ξi(γ) = 1 for µ0-a.e. x ∈ G0 for every i

Remark 3.3.4. In order to check inner amenability for an ergodic groupoid, it is enough to check

there exists a conjugation invariant, diffuse, and nontrivial net[32].

Definition 3.3.5. For a subgroupoid H ≤ G, we say a collection of elements (σi)i∈N ⊂ [G] is a

system of coset representatives if

• Hσi ∩Hσj = ∅ if i ≠ j

•
⊔

Hσi = G

i.e. if it partitions H \ G.

Lemma 3.3.6. Let H be an ergodic subgroupoid of a discrete pmp groupoid G. Then there exists

a system (σi) of coset representatives.

Proof. We will construct σκ by induction.

Starting with m = 0, consider Rm = Rm
κ := (G \ ∪0≤i<κHσi) |X\∪0≤j<ms(δj)×X\∪0≤j<mr(δj).

The range and source maps r, s are countable to one Borel maps when restricted to Rm. By Lusin-

Novikov uniformization, there exists a partition Rm = ⊔jRj into countably many disjoint sets

such that r is injective on Rj .

If µ(s(R)) > 0, there exists J such that µ(s(RJ)) > 0 since s(R) = ∪js(Rj). Use Lusin-

Novikov to get a complete section δm of s|Rj
. Note that both r and s are injective on ∪k<mδk.

If µ(s(R)) = 0, then set σκ = ⊔k<mδk. By measure exhaustion, this step will occur at some

countable ordinal m and so σκ is a countable union of Borel sets mod null. This is bijective onto

s(R0
κ) and r(R0

κ) under the maps s and r, respectively. Note that Hσi ∩ Hσj = ∅ for i < j by

construction.
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All that’s left is to show that r(R0
n) and s(R0

n) either both have full or both have null measure.

In the first case, the argument runs as is and we get a new element σn in our system. In the second

case, G = ∪Hσi and so we are done. In order to proceed, we show r(R0
n) is invariant and, hence,

either full or null measure by ergodicity of H.

Let A := r−1(r(R0
κ)

C). Note that A ⊆ ⊔i<κHσi, and so H · A ⊆ ⊔i<κHσi. By definition,

R0
κ ∩ ⊔i<κHσi = ∅ =⇒ R0

κ ∩H · A = ∅ =⇒ A ∩H ·R0
κ = ∅. This means that

∀h ∈ H ∀ξ ∈ R0
κ (hξ ̸∈ A)

and hence

∀h ∈ H ∀ξ ∈ R0
κ (h · r(ξ) = r(hξ) ̸∈ r(R0

κ)
C).

Therefore, r(R0
κ) is invariant. Similarly, s(R0

κ) is invariant. Since G is pmp, 0 <
∫
G0 c

r
x(R

0
κ)dµ =∫

G0 c
s
x(R

0
κ)dµ and so µ(s(R0

κ)) = 0 if and only if µ(r(R0
κ)) = 0.

It is worth noting that this lemma is quite false without the assumption of ergodicity.

3.4 Proof of main theorem

We now prove the main theorem. Much of the technical difficulties in the proof arise due

to the fact that we define our ultimate inner amenability sequence in terms of a system of coset

representatives and this sytem of representatives changes when we conjugate by an element of the

full group.

Theorem 3.4.1. Let H be an ergodic inner amenable coamenable subgroupoid of G. Then G is

inner amenable.

Proof. Let hn witness the inner amenability of H. We treat hn as defined on all of G by defining it

to be zero on the complement of H. By assumption, the action G ↷ H \ G is amenable so take a

sequence fn witnessing the amenability.

Fix a set of coset representatives Σ = (σi) for H ≤ G. Define a map n : G → N by g ∈ Hσn(g).

This map is well-defined by the definition of coset representative.
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Let ε > 0. Choose a finite collection of bisections T = {τi} ∈ [G] and a set µ1(D) < ∞. We

will find a function ξ ∈ L1(G) such that

1. ∥ξτ − ξ∥1 ≤ ε for every τ ∈ T

2. ∥1Dξ∥1 ≤ ε

3.
∑

s(g)=x ξ(g) = 1 for almost every x ∈ G0

Take f = fn ∈ L1(H \ G) with n large enough such that

•
∑

p(Hγ)=x f(Hγ) = 1 for every x ∈ G0

• ∥τ · f − f∥ ≤ ε
3

for every τ ∈ T

Fix a finite subset of the coset representatives ∆ ⊆ Σ such that
∫
(H\G)\(∪∆Hδ)

f ≤ ε
100

. Take

h = hn ∈ L1(H) with n large enough such that for every τ ∈ T for every δ ∈ ∆

•
∑

s(γ)=x h(γ) = 1 for every x ∈ G0

• ∥1Dδh∥1 ≤ ε
100|∆|

•
∫
x

∑
s(g)=x

∣∣∣h(ηk(δx)gη−1
k(δx))−

∑
j h(ηk(δx)B

j
k(δx)g(B

j
k(δx))

−1η−1
k(δx))

∣∣∣ ≤ ε
100|∆|

•
∫
x

∑
s(g)=x

∣∣∣h(σn(δx)gσ−1
n(δx))−

∑
i h(σn(δx)B

n(δx)
i g(B

n(δx)
i )−1σ−1

n(δx))
∣∣∣ ≤ ε

100|∆|

•
∫
x

∑
s(g)=x

∣∣∣h(ρjk(δx)σjBj
k(δx)g(B

j
k(δx))

−1σ−1
j (ρjk(δx))

−1)− h(σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j )

∣∣∣
≤ ε

100|∆||Jτ
δ |

for every j ∈ Jτ
δ

•
∫
x

∑
s(g)=x

∣∣∣h((ρn(δx)i )−1ηiB
n(δx)
i g(B

n(δx)
i )−1η−1

i ρ
n(δx)
i )− h(ηiB

n(δx)
i g(B

n(δx)
i )−1η−1

i )
∣∣∣

≤ ε
100|∆||Iτδ |

for every i ∈ Iτδ

where ηi = σiτ and k is defined by γ ∈ Hηk(γ). Here G0 = ⊔Bj
k(δx) whereBj

i := {x ∈ G0|Hσjx =

Hηix}. We also let ρji ∈ [H] such that ρjiσjB
j
i = ηiB

j
i . We choose Jτ

δ ⊆ N beforehand to be a

finite set such that

∑
j∈N\Jτ

δ

∫
x

∑
s(g)=x

h(ρjk(δx)σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j (ρjk(δx))

−1) ≤ ε

100|∆|
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and ∑
j∈N\Jτ

δ

∫
x

∑
s(g)=x

h(σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j ) ≤ ε

100|∆|

with Iτδ chosen mutatis mutandi.

It may not be immediately obvious that such an h exists. Looking carefully, there are only

finitely many conditions to satisfy as we vary all the parameters so we just need to check that

each condition is satisfied eventually. The first and second conditions follow immediately from

conditions (iv) and (iii) in the definition of inner amenability. Similarly, the fifth and sixth points

are directly satisfied due to condition (ii). The third and fourth points are less obviously satisfied

due to condition (i). Indeed, note that if we have an inner amenability sequence hi and G0 = ⊔An,

then limi ∥hi1G∥ = µ(G0) =
∑

n µ(An) =
∑

n limi ∥hi1GAn
∥ = limi

∑
n ∥hi1GAn

∥. Here the

last interchange is by dominated convergence theorem. So

∀ε ∀ partition ⊔ An = G0 ∃ hi such that ∥hi∥ =ε

∑
n

∥hi1GAn
∥

In particular, since hi are positive,
∫
x

∑
s(g)=x 1G\(⊔GAn )

hi(g) ≤ ε which is exactly what the last

condition is requesting.

We define ξ by

ξ(g) :=
∑

Hγ∈H\G
s(γ)=s(g)

h(σn(γ)gσ
−1
n(γ))f(Hγ)

This is immediately well-defined since n(g) = n(hg) for s(h) = r(g) and h ∈ H. Why? Since

g ∈ Hσn(g), so hg ∈ hHσn(g) ⊂ Hσn(g).

We first check ξ satisfies 3. Fix x ∈ G0

∑
s(g)=x

ξ(g) =
∑

s(g)=x

∑
Hγ∈H\G
s(γ)=x

h(σn(γ)gσ
−1
n(γ))f(Hγ)

=
∑

Hγ∈H\G
s(γ)=x

∑
s(g)=x

h(σn(γ)gσ
−1
n(γ))f(Hγ)
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=
∑

Hγ∈H\G
s(γ)=x

∑
s(u)=σn(γ)x

h(u)f(Hγ)

=
∑

Hγ∈H\G
s(γ)=x

f(Hγ) = 1

Now, we check that ξ satisfies 2. We have D, ∆ and ε from before.

∥1Dξ∥1 =
∫
x∈G0

∑
s(g)=x
g∈D

ξ(g)dµ0

=

∫
x∈G0

∑
s(g)=x
g∈D

∑
Hγ∈H\G
s(γ)=x

h(σn(γ)gσ
−1
n(γ))f(Hγ)dµ

0

=

∫
x∈G0

∑
Hγ∈H\G
s(γ)=x

∑
s(g)=s(γ)

g∈D

h(σn(γ)gσ
−1
n(γ))f(Hγ)dµ

0

=

∫
Hγ∈H\G

∑
s(g)=s(γ)

g∈D

h(σn(γ)gσ
−1
n(γ))f(Hγ)dνH\G

=
∑
δ∈Σ

∫
x∈G0

∑
s(g)=s(δx)

g∈D

h(σn(δx)gσ
−1
n(δx))f(Hδx)dµ

0

=
∑
δ∈∆

∫
x∈G0

∑
s(g)=x
g∈D

h(δgδ−1)f(Hδx)dµ0 +
∑

δ∈Σ\∆

∫
x∈G0

∑
s(g)=x
g∈D

h(δgδ−1)f(Hδx)dµ0

≤
∑
δ∈∆

∫
x∈G0

∑
s(u)=δx

u∈Dδ

h(u)f(Hδx)dµ0 +
∑

δ∈Σ\∆

∫
x∈G0

∑
s(g)=x

h(δgδ−1)f(Hδx)dµ0

≤
∑
δ∈∆

∫
x∈G0

∑
s(u)=δx

u∈Dδ

h(u)dµ0 +
∑

δ∈Σ\∆

∫
x∈G0

f(Hδx)dµ0

≤ |∆|max
δ∈∆

∥1Dδh∥+ ε

100
< ε

Last, we check that ξ satisfies 1. Unfortunately, this ends up being rather involved. We have
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T = {τi} and ε from before. Fix τ ∈ T and let ηi := σiτ and k : G → N be defined by g ∈ Hηk(g).

∥ξτ − ξ∥1 =
∫
x

∑
s(g)=x

∣∣ξ(τgτ−1)− ξ(g)
∣∣ dµ0

=

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑

Hγ∈H\G
s(γ)=s(τgτ−1)

h(σn(γ)τgτ
−1σ−1

n(γ))f(Hγ)−
∑

Hγ∈H\G
s(γ)=s(g)

h(σn(γ)gσ
−1
n(γ))f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0

≤
∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑

Hγ∈H\G
s(γτ)=x

h(ηk(γτ)gη
−1
k(γτ))f(Hγ)−

∑
Hγ∈H\G
s(γ)=x

h(ηk(γ)gη
−1
k(γ))f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0

+

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑

Hγ∈H\G
s(γ)=x

h(ηk(γ)gη
−1
k(γ))f(Hγ)−

∑
Hγ∈H\G
s(γ)=x

h(σn(γ)gσ
−1
n(γ))f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0

=

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑

Hγ∈H\G
s(γ)=x

h(ηk(γ)gη
−1
k(γ))

(
f(Hγτ−1)− f(Hγ)

)∣∣∣∣∣∣∣∣ dµ
0

+

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑

Hγ∈H\G
s(γ)=x

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0

≤
∫
x

∑
Hγ∈H\G
s(γ)=x

∑
s(g)=x

h(ηk(γ)gη
−1
k(γ))

∣∣f(Hγτ−1)− f(Hγ)
∣∣ dµ0

+

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑
δ∈∆

γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0

+

∫
x

∑
δ∈Σ\∆
γ:=δ(x)

∑
s(g)=x

∣∣∣h(ηk(γ)gη−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

∣∣∣ f(Hγ)dµ0

≤
∫
Hγ

∣∣f(Hγτ−1)− f(Hγ)
∣∣ dνH\G

+

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑
δ∈∆

γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0
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+

∫
x

∑
δ∈Σ\∆
γ:=δ(x)

2f(Hγ)dµ0

≤ ε

3
+

∫
x

∑
s(g)=x

∣∣∣∣∣∣∣∣
∑
δ∈∆

γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣∣∣∣∣ dµ
0 + 2

ε

100

Claim 3.4.2.
∫
x

∑
s(g)=x

∣∣∣∣∑ δ∈∆
γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣ dµ0 ≤ ε
3

Proof of Claim. Let Bj
i := {x ∈ G0 | Hσjx = Hηix}. Define ρji ∈ [H] by

ρjiσjB
j
i = ηiB

j
i

Now we consider the inside of our integral for a fixed g and x = s(g)

F (g, x) :=

∣∣∣∣∣∣∣∣
∑
δ∈∆

γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))− h(σn(γ)gσ

−1
n(γ))

)
f(Hγ)

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣ ∑
δ∈∆

γ:=δ(x)

(
h(ηk(γ)gη

−1
k(γ))−

∑
j

h(ηk(γ)B
j
k(γ)g(B

j
k(γ))

−1η−1
k(γ))

)
f(Hγ)

∣∣∣∣∣ (3.1)

+

∣∣∣∣∣ ∑
δ∈∆

γ:=δ(x)

(∑
j

h(ρjk(γ)σjB
j
k(γ)g(B

j
k(γ))

−1σ−1
j (ρjk(γ))

−1)−
∑
j

h(σjB
j
k(γ)g(B

j
k(γ))

−1σ−1
j )

)
f(Hγ)

∣∣∣∣∣
(3.2)

+

∣∣∣∣∣∑
j

∑
δ∈∆

γ:=δ(x)

h(σjB
j
k(γ)g(B

j
k(γ))

−1σ−1
j )f(Hγ) (3.3)

−
∑
j

∑
i

∑
δ∈∆

γ:=δ(x)

1p−1(Bj
i )
(γ)h(σjB

j
k(γ)g(B

j
k(γ))

−1σ−1
j )f(Hγ)

∣∣∣∣∣
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+

∣∣∣∣∣∑
j

∑
i

∑
δ∈Σ\∆
γ:=δ(x)

1p−1(Bj
i )
(γ)h(σjB

j
k(γ)g(B

j
k(γ))

−1σ−1
j )f(Hγ)

∣∣∣∣∣ (3.4)

+

∣∣∣∣∣∑
j

∑
i

∑
Hγ∈H\G
s(γ)=x

1p−1(Bj
i )
(γ)h(σjB

j
k(γ)g(B

j
k(γ))

−1σ−1
j )f(Hγ)

(3.5)

−
∑
i

∑
j

h(σjB
j
i g(B

j
i )

−1σ−1
j )

∑
Hγ∈H\G
s(γ)=x
k(γ)=i

f(Hγ)

∣∣∣∣∣

+

∣∣∣∣∣∑
i

∑
j

h(σjB
j
i g(B

j
i )

−1σ−1
j )

∑
Hγ∈H\G
s(γ)=x
k(γ)=i

f(Hγ)−
∑
i

∑
j

h(σjB
j
i g(B

j
i )

−1σ−1
j )

∑
Hγ∈H\G
s(γ)=x
n(γ)=j

f(Hγ)

∣∣∣∣∣
(3.6)

+

∣∣∣∣∣∑
i

∑
j

(
h((ρji )

−1ηiB
j
i g(B

j
i )

−1η−1
i ρji )− h(ηiB

j
i g(B

j
i )

−1η−1
i )

) ∑
Hγ∈H\G
s(γ)=x
n(γ)=j

f(Hγ)

∣∣∣∣∣ (3.7)

+

∣∣∣∣∣∑
i

∑
j

h(ηiB
j
i g(B

j
i )

−1η−1
i )

∑
Hγ∈H\G
s(γ)=x
n(γ)=j

f(Hγ)−
∑

Hγ∈H\G
s(γ)=x

h(σn(γ)gσ
−1
n(γ))f(Hγ)

∣∣∣∣∣ (3.8)

We consider each line separately to get an upper bound. Not every line is bounded univer-

sally with respect to g and x = s(g) but, by integrating each line we get an upper bound for∫
x

∑
s(g)=x F (g, x).

We start with the first line and integrate to get

∫
x

∑
s(g)=x

(eq.3.1) ≤
∑
δ∈∆

∫
x

∑
s(g)=x

∣∣∣∣∣h(ηk(δx)gη−1
k(δx))−

∑
j

h(ηk(δx)B
j
k(δx)g(B

j
k(δx))

−1η−1
k(δx))

∣∣∣∣∣
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≤
∑
δ∈∆

ε

100|∆|
≤ ε

100

Now we once more integrate to see
∫
x

∑
s(g)=x(eq.3.2)

≤
∑
δ∈∆

∑
j

∫
x

∑
s(g)=x

∣∣∣h(ρjk(δx)σjBj
k(δx)g(B

j
k(δx))

−1σ−1
j (ρjk(δx))

−1)− h(σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j )

∣∣∣
≤

∑
δ∈∆

∑
j∈Jτ

δ

∫
x

∑
s(g)=x

∣∣∣h(ρjk(δx)σjBj
k(δx)g(B

j
k(δx))

−1σ−1
j (ρjk(δx))

−1)− h(σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j )

∣∣∣
+
∑
δ∈∆

∑
j∈N\Jτ

δ

∫
x

∑
s(g)=x

∣∣∣h(ρjk(δx)σjBj
k(δx)g(B

j
k(δx))

−1σ−1
j (ρjk(δx))

−1)− h(σjB
j
k(δx)g(B

j
k(δx))

−1σ−1
j )

∣∣∣
≤

∑
δ∈∆

∑
j∈Jτ

δ

ε

100|∆||Jτ
δ |

+
∑
δ∈∆

2ε

100|∆|
≤ 3ε

100

For a fixed γ, there is a unique i such that the characteristic function 1p−1(Bj
i )
(γ) is nonzero

which means (eq. 3.3)= 0. We get
∫
x

∑
s(g)=x (eq. 3.4) ≤ ε

100
by our choice of ∆ and that∑

s(g)=x h(g) = 1. The multiplication g(Bj
k(γ))

−1 doesn’t exist if k(γ) ̸= i, so (eq. 3.5)= 0.

For (eq. 3.6), notice that since s(g) = x, then h(σjB
j
i g(B

j
i )

−1σ−1
j ) = 0 if x ̸ inBj

i . So we can

restrict our considerations so that s(γ) ∈ Bj
i . Now k(γ) = i means γ ∈ HηiBj

i = HσjBj
i . This

gives us that k(γ) = i if and only if n(γ) = j and so (eq.3.6)= 0.

We first simplify (eq. 3.7) a little bit
∫
x

∑
s(g)=x (eq. 3.7)

≤
∑
δ∈Σ

∫
x

∑
s(g)=x

∣∣∣∣∣∑
i

∑
j

1p−1(Bj
i )
(δx)

(
h((ρ

n(γ)
i )−1ηiB

n(γ)
i g(B

n(γ)
i )−1η−1

i ρ
n(γ)
i )

− h(ηiB
n(γ)
i g(B

n(γ)
i )−1η−1

i )

)∣∣∣∣∣f(Hδx)
≤

∑
δ∈∆

∫
x

∑
s(g)=x

∣∣∣∣∣∑
i

(
h((ρ

n(γ)
i )−1ηiB

n(γ)
i g(B

n(γ)
i )−1η−1

i ρ
n(γ)
i )− h(ηiB

n(γ)
i g(B

n(γ)
i )−1η−1

i )
)∣∣∣∣∣

+
∑

δ∈∆\Σ

2∥h∥1f(Hδx)

≤
∑
δ∈∆

∑
i∈Iτδ

∫
x

∑
s(g)=x

∣∣∣h((ρn(γ)i )−1ηiB
n(γ)
i g(B

n(γ)
i )−1η−1

i ρ
n(γ)
i )− h(ηiB

n(γ)
i g(B

n(γ)
i )−1η−1

i )
∣∣∣
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+
∑
δ∈∆

∑
i∈N\Iτδ

∫
x

∑
s(g)=x

∣∣∣∣h((ρn(γ)i )−1ηiB
n(γ)
i g(B

n(γ)
i )−1η−1

i ρ
n(γ)
i )

− h(ηiB
n(γ)
i g(B

n(γ)
i )−1η−1

i )

∣∣∣∣+ 2ε

100

≤
∑
δ∈∆

∑
i∈Iτδ

ε

100|∆||Iτδ |
+
∑
δ∈∆

ε

100|∆|
+

2ε

100
≤ 4ε

100

The last step works mutatis mutandi like 3.1 through 3.6, to get

∫
x

∑
s(g)=x

(eq.3.8) ≤ 5ε

100

giving us ∫
x

∑
s(g)=x

F (g, x) ≤ 14ε

100

and we have proven the claim.

Using the claim, we found a measurable function ξ : G → [0, 1] that satisfies conditions 1,2,

and 3. These conditions correspond to finding a nontrivial diffuse conjugation-invariant net of

measurable functions. Hence, G is inner amenable by remark 3.3.4.
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4. ORBIT EQUIVALENCE OF WREATH PRODUCTS

4.1 Introduction

Two groups are said to be orbit equivalent if and only if they admit free probability measure

preserving (p.m.p.) ergodic actions on a standard probability space that generate the same orbit

equivalence relation. It is easy to observe that finite groups of a given order form an orbit equiva-

lence class. A much more remarkable result due to Ornstein and Weiss is that all infinite amenable

groups are orbit equivalent[39]. Some additional work shows that these too form their own orbit

equivalence class. In the last 20 years, there’s been significant progress in the development of

various rigidity results, one of the most celebrated of which is Popa’s cocycle superrigidity the-

orem which implies that any action that is orbit equivalent to a Bernoulli shift of a wide variety

of groups(including icc groups either with property(T) or which are nonamenable direct products

of infinite groups) must, in fact, be isomorphic to the aforementioned Bernoulli shift[44][45]. At

the other end of the spectrum, results showing algebraically dissimilar groups are orbit equivalent

appear to be less common with the prominent exception of Ornstein and Weiss. We prove some

antirigidity results in the nonamenable setting.

Theorem 4.1.1. Let Γ be a countable group that contains an infinite amenable group as a free

factor. The groups A ≀ Γ and B ≀ Γ are orbit equivalent for all finite groups A,B.

In particular, this implies C2 ≀ F2 is orbit equivalent to C3 ≀ F2. This was previously unknown

although a consequence of work of Lewis Bowen implies that the group von Neumann algebras

L(C2 ≀ F2) ∼= L(Ci ≀ F2) are isomorphic[4]. We do this by showing the canonical wreath product

actions are orbit equivalent. By contrast, we also show the following rigidity. This rigidity should

be viewed as complimentary to the rigidity found in the compact setting by Chifan, Popa, and

Sizemore[6].

Theorem 4.1.2. If Γ is a sofic Bernoulli superrigid group with no nontrivial finite normal sub-

groups and |A| ̸= |B|, then the wreath product actions of A ≀ Γ and B ≀ Γ are not stably orbit
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equivalent.

To study these things, we introduce the notion of cofinitely equivariant maps between shift

spaces. Cofinitely equivariant maps have appeared implicitly in the study of finitary isomorphisms

between shifts[34]. For x, y ∈ SΓ, we use x ∼ y to denote that x and y differ in only finitely

many coordinates. A map between shift spaces ϕ : (AΓ, µΓ) → (BΓ, νΓ) is said to be cofinitely

equivariant if it is a measure isomorphism such that for every x ∼ y ∈ AΓ and for every γ ∈ Γ,

equivariance holds modulo finite errors γ ·ϕ(x) ∼ ϕ(γ ·y). In fact, for certain groups we are able to

give a complete classification of when two shift spaces admit a cofinitely equivariant map between

them.

4.2 Cofinitely equivariant maps

In the sequel, let Γ be a discrete countable group. Given an ergodic quasi-probability measure

preserving (quasi-pmp) action Λ ↷ (X,µ), define an associated quasi-pmp action of the wreath

product Λ ≀ Γ ↷ (XΓ, µΓ) where (λ, γ) · f(ω) 7→ λ(γ−1ω) · f(γ−1ω).

Proposition 4.2.1. Let Λ1 ↷ (X,µ) and Λ2 ↷ (Y, ν) be orbit equivalent free ergodic actions.

The associated actions of the wreath products, Λ1 ≀Γ ↷ (XΓ, µΓ) and Λ2 ≀Γ ↷ (Y Γ, νΓ) are orbit

equivalent.

Proof. Let ϕ : (X,µ) → (Y, ν) be a measure isomorphism that witnesses the orbit equivalence

between Λ1 ↷ (X,µ) and Λ2 ↷ (Y, ν). The map ϕΓ : (XΓ, µΓ) → (Y Γ, νΓ) witnesses the orbit

equivalence between the wreath product actions.

Type is an invariant of orbit equivalence of actions first defined by Krieger[33] for Z-actions

although the definition works perfectly well for actions of countable discrete groups. Krieger

showed that type completely classifies orbit equivalence of free ergodic actions of Z.

Theorem 4.2.2 (Dye, Krieger, Ornstein-Weiss). Let Γ ↷ (X,µ) and Λ ↷ (Y, ν) be free ergodic

actions of amenable groups. Then these actions are orbit equivalent if and only if they have the

same type and |Γ| = |Λ|.
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When A is an amenable group, this means we have a canonical (up to orbit equivalence) action

of the wreath product A ≀ Γ ↷ (XΓ, µΓ) that only depends on the cardinality of A and the type of

the wreath product action.

For x, y ∈ SΓ and a fixed action Λ ↷ S, we use x ∼ y to denote that x and y differ in only

finitely many coordinates and for each coordinate i in which they differ, there exists λ ∈ Λ such

that λxi = yi.

Definition 4.2.3. A map between shift spaces ϕ : (XΓ, µΓ) → (Y Γ, νΓ) is said to be cofinitely

equivariant if it is a measure isomorphism such that for every x ∼ y ∈ XΓ and for every γ ∈ Γ

we have γ · ϕ(x) ∼ ϕ(γ · y).

It should be noted that an equivariant map is, in general, not necessarily cofinitely equivariant in

our sense. We say two shift spaces are cofinitely equivariant if there exists a cofinitely equivariant

map between them.

Proposition 4.2.4. Let A,B be amenable groups with actions A ↷ X and B ↷ Y . If (XΓ, µΓ)

and (Y Γ, νΓ) are cofinitely equivariant then the wreath product actions A ≀ Γ ↷ (XΓ, µΓ) and

B ≀ Γ ↷ (Y Γ, µΓ) are orbit equivalent.

Proof. Let ϕ : (XΓ, µΓ) → (Y Γ, νΓ) be a cofinitely equivariant map. We claim this is an orbit

equivalence. All that needs to be checked is that orbits are bijectively mapped to orbits. This

follows from the fact that the ∼ equivalence relation is the orbit equivalence relation for the action

of
⊕

ΓA and for
⊕

ΓB.

Associate to each shift space over a finite alphabet a quantity called the type of that shift space.

As was mentioned earlier, each shift space has an associated quasi-pmp action. We define the type

of the shift space as the type of the associated wreath product action. The fact that this is invariant

for cofinite equivariance follows from type of an action being an invariant of orbit equivalence.

For shift spaces, by a minor calculation, there is the following characterization of type. For a
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probability measure µ supported on finitely many points X , define

tp(µ) := {r ∈ R | there exist x, y ∈ A with
µ(x)

µ(y)
= r}

In general, if A ↷ (X,µ) is a free ergodic action of a countable group, we let ρ : A ×

X → R+ be the unique cocycle such that for every a ∈ A and Borel C ⊆ X , we have µ(a ·

C) =
∫
C
ρ(a, x)dµ(x). Now, for convenience we denote the statement Pr := (for every ε >

0 there exists a positive measure set C ⊆ X and a ∈ A with |ρ(a, x) − r| < ε for x ∈ C) and

define

tp(µ) := {r ∈ R | Pr}.

We now close this in the standard topology to get the type

TY PE(µ) := < tp(µ) >
R
.

There are three possible outcomes when calculating the type of a shift space. We list them

• II1 where TY PE(µ) = {1}

• III1 where TY PE(µ) = (0,∞)

• IIIλ where TY PE(µ) = {λn | n ∈ Z}

with the names corresponding to the classical setting.

In particular, type II1 corresponds to the associated action being measure preserving and to

case of the measure on the shift space being uniform.

Type turns out to be a complete invariant for cofinite equivariance of shift spaces of Γ where

Γ is amenable. The proof of this reduces to the results of Golodets-Sinel’shchikov and Feldman-

Sutherland-Zimmer which we list here. However, we first need a couple of definitions to under-

stand the statements of these theorems.
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Definition 4.2.5. The full group of an equivalence relation R is defined

[R] := {T ∈ Aut(X,µ)|(x, Ty) ∈ R for µ− almost every (x, y)}/µ.

Definition 4.2.6. The automorphism group of the equivalence relation is

N [R] := {T ∈ Aut(X,µ)|(Tx, Ty) ∈ R for µ− almost every (x, y)}/µ.

The group N [R] is also referred to as the normalizer of the full group since it consists exactly

of the elements of Aut(X,µ) that conjugate the full group to itself. In particular, [R] is a normal

subgroup of N [R].

Definition 4.2.7. Let R be an equivalence relation and Γ a countable discrete. A cocycle of R into

Γ is a function α : R → Γ such that α(x, y)α(y, z) = α(x, z).

Definition 4.2.8. Let R be an equivalence relation on (X,µ). Two cocycles α, β : R → Γ are said

to be weakly conjugate if there exists θ ∈ N [R] and f : X → Γ such that

f(y)α(y, x)f(x)−1 = β(θy, θx).

For the rest of the section, the equivalence relation R is assumed to be hyperfinite and not

necessarily pmp.

Theorem 4.2.9 (Golodets-Sinel’shchikov[22]). Let R be an ergodic hyperfinite equivalence rela-

tion and let α, β : R → Γ be two surjective cocycles into a countable discrete group G. Then α

and β are weakly conjugate.

Definition 4.2.10. Let R ⊆ S be an inclusion of equivalence relations. Assume R is ergodic

and let ϵ : N [R] → N [R]/[R] be the quotient map. We say R is normal in S if there exists

a countable group Q and map ϕ : Q → N [R] such that ϵ ◦ ϕ is a faithful homomorphism and

S = {(x, y) ∈ X ×X|(x, ϕ(q)(y)) ∈ R for some q ∈ Q}.

The group Q is actually uniquely determined (up to isomorphism) by R ⊆ S and we say

S/R ∼= Q.
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Theorem 4.2.11 (Feldman-Sutherland-Zimmer[14]). Let S be a hyperfinite equivalence relation.

Let R,R′ be normal ergodic subrelations of S such that S/R ∼= S/R′ ∼= Q for some countable

group Q. If S is type II1 or R is type III , then R = θ(R′) where θ is some automorphism of S.

The proof of this theorem relies on Golodets-Sinel’shchikov.

Now, we apply these theorems to get a complete classification of shift spaces of amenable

groups.

Theorem 4.2.12. Let Γ be amenable and A,B be two amenable groups acting on X,Y respec-

tively. Let (XΓ, µΓ) and (Y Γ, νΓ) be two shift spaces. There exists a cofinitely equivariant map

between them if and only if type(µ) = type(ν).

Proof. Assume type(µ) = type(ν). Consider the amenable groups G := A ≀ Γ =
⊕

ΓA ⋊ Γ and

H :=
⊕

ΓB ⋊ Γ along with the normal subgroups
⊕

ΓA and
⊕

ΓB. The wreath products are

amenable and the shift spaces have the same type so the wreath product actions generate hyperfinite

equivalence relations of the same type. By Ornstein-Weiss, we may assume they both generate the

hyperfinite equivalence relation S. Now, consider the orbit equivalence relations RA and RB

generated by the actions of
⊕

ΓCA and
⊕

ΓCB. These are normal ergodic equivalence relations

such that S/RA
∼= S/RB

∼= Γ. In this situation, type(RA) = type(S) = type(RB).

Now, applying Feldman-Sutherland-Zimmer gives us an automorphism of S sending RA to

RB. But RA and RB are just the ∼ equivalence relations. By letting Γ act on the quotient in the

natural way, we get that this automorphism is a cofinitely equivariant map.

For the other direction, a cofinite equivariance of shift spaces gives an orbit equivalence of the

associated actions, but type is an OE invariant by Krieger[33].

Theorem 4.2.13. Let ϕ : (XΛ, µΛ) → (Y Λ, νΛ) be an cofinitely equivariant map. If Λ is a free

factor of the group Γ, then there is an cofinitely equivariant map ϕ′ : (XΓ, µΓ) → (Y Γ, νΓ).

Proof. First, Γ = Λ ∗ ∆ for some group ∆, so every element γ ∈ Γ can be written uniquely as

a reduced product of elements from Λ and ∆, i.e. γ = δ1λ2 · · · δk−1λk where δi ̸= e ̸= λi if
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1 < i < k. We will often abuse notation and refer to the identity coset of Λ,∆ ⊆ Γ as Λ,∆

respectively.

Consider the action of Γ on itself by left translation. Define π : Γ → Λ by π(γ) = λk. Observe

that π|gΛ is a bijection for every coset gΛ.

Throughout the rest of the proof a will be an element of Λ and b will be an element of ∆.

For γ ̸∈ Λ, the following occurs because δk−1 ̸= e,

π(aγ) = π(aδ1λ2 · · · δk−1λk) = λk = π(aδ1λ2 · · · δk−1λk) = π(γ) (4.1)

and, for every γ ∈ Γ,

π(bγ) = π((bδ1)λ2 · · · δk−1λk) = λk = π(δ1λ2 · · · δk−1λk) = π(γ) (4.2)

We will also define an auxiliary map ψ : XΓ × Γ → XΛ in the following manner. Fix x ∈ XΓ

and an element γ ∈ Γ. Since π is a bijection on each coset, we will write π−1
γ for the inverse of

π|γΛ. Define ψ(x, γ) ∈ XΛ by ψ(x, γ)(λ) := x(π−1
γ (λ)).

By definition of π, we get the equality g−1[π−1
gγ (λ)] = π−1

γ (λ). Following from (4.1) and (4.2),

we get b−1π−1
bγ (bγ) = π−1

γ (γ) and for γ ̸∈ eΛ = ⟨a⟩, that a−1π−1
aγ (aγ) = π−1

γ (γ). And hence we

get the following equalities

ψ(b · x, bγ) = (b · x)(π−1
bγ (bγ)) = x(π−1

γ (γ)) = ψ(x, γ)

for every γ ∈ Γ and similarly

ψ(a · x, aγ) = ψ(x, γ)

when γ ̸∈ eΛ.

For γ ∈ Λ, however, a · ψ(x, γ) = ψ(a · x, γ).

We now define ϕ′(x) by ϕ′(x)(γ) := ϕ(ψ(x, γ))(π(γ)). In essence, we just apply ϕ to x on

each coset independently. First, we check this ϕ′ is cofinitely equivariant; it is enough to check for
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g ∈ Λ ∪∆. Let x ∼ y ∈ XΓ. We want to show that g · ϕ′(x) and ϕ′(g · y) for g ∈ Λ ∪∆ differ in

only finitely many coordinates. Again, a will be an element of Λ and b and element of ∆.

Since x and y differ in at most finitely many coordinates, they only differ on at most finitely

many cosets of Λ. Call the collection of cosets on which they differ S.

Note that for every coset γ′Λ ̸∈ aS ∪ {eZ} and element γ ∈ γ′Λ

a·ϕ′(x)(γ) = ϕ(ψ(x, a−1γ))(π(a−1γ)) = ϕ(ψ(y, a−1γ))(π(γ)) = ϕ(ψ(a·y, γ))(π(γ)) = ϕ′(a·y)(γ).

Similarly, for every coset γ′Λ ̸∈ bS and γ ∈ γ′Λ,

b · ϕ′(x)(γ) = ϕ′(b · y)(γ).

As for one of the finitely many cosets γΛ ∈ aS \ {eΛ}, we have ψ(a · x, γ) ∼ ψ(a · y, γ). So,

by assumption ϕ(ψ(a · x, γ)) ∼ ϕ(ψ(a · y, γ)). Following the outline above,

a · ϕ′(x)(γ) = ϕ(ψ(x, a−1γ))(π(γ)) ∼ ϕ(ψ(y, a−1γ))(π(γ)) = ϕ′(a · y)(γ)

and similarly for γΛ ∈ bS, giving b · ϕ′(x)(γ) ∼ ϕ′(b · x)(γ)

The last situation is γΛ = Λ and comparing a · ϕ′(x)(γ) and ϕ′(a · y)(γ). We have that

ψ(x, γ) ∼ ψ(y, γ). So calculating

a · ϕ′(x)(γ) = a · ϕ(ψ(x, γ))(π(γ)) ∼ ϕ(a · ψ(y, γ))(π(γ)) = ϕ(ψ(a · y, γ))(π(γ)) = ϕ′(a · y)(γ)

gives us g · ϕ′(x) ∼ ϕ′(g · y) for g ∈ Γ.

All that’s left is to show that ϕ′ is a measure isomorphism. It is clearly a bijection, so we only

need to show it pushes forward µΓ to νΓ. Pick a cylinder set C ⊂ XΓ. This set is characterized by

a finite set FC ⊆ Γ and a function FC → X . Decompose FC =
⊔

S F
s
C where F s

C ⊆ sΛ. Now, we

have cylinder sets Cs ⊆ XΓ characterized by the finite sets F s
C and the restriction of FC → A and
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C =
∩

S Cs. The sets Cs are all independent and so we only need to show ϕS
Γ is sends µΓ to νΓ on

cylinder sets C where FC ⊆ sΛ.

Consider the σ-algebra Σ generated by cylinder setsC whereFC ⊆ sΛ. The algebra (XΓ,Σ, µΓ)

is measure isomorphic to (XΛ, µΛ) in the natural way and ϕ′ acts as ϕ on Σ. Hence, it pushes for-

ward µΛ to νΛ. But, µΓ|Σ = µΛ|Σ and νΓ|Σ = νΛ|Σ. Thus, ϕ′ is a measure isomorphism.

Theorem 4.2.14. Assume Λ ≤ Γ is a finite index subgroup. If there is a cofinitely equivariant

ϕΛ : (XΛ, µΛ) → (Y Λ, νΛ), then there is a cofinitely equivariant map ϕΓ : (XΓ, µΓ) → (Y Γ, νΓ).

Proof. We proceed similarly to the previous theorem. For a set of coset representatives S so that

Γ =
⊔

s∈S sΛ, we can define maps s : Γ → S, πS : Γ → Λ by γ = s(γ)πS(γ). Since πS is a

bijection on each coset, write π−1
S,γ := (πS|γΛ)−1. Now we can define ψS : XΓ × Γ → XΛ by

ψS(x, γ)(λ) := x(π−1
S,γ(λ)).

Before continuing, we make a couple of observations. For a fixed δ, we can define a new set of

coset representatives T := δ−1S. Now, δt(γ) = s(δγ) and πS(δγ) = πT (γ). Calculating, we get

π−1
S,δγ(λ) = s(δγ)λ = δt(γ)λ = δ(π−1

T,γ(λ))

and hence, ψS(δx, δγ) = ψT (x, γ).

We can define ϕS
Γ(x)(γ) := ϕΛ (ψS(x, γ)) (πS(γ)). Note that if T = δ−1S, then a simple

calculation gives ϕT
Γ(x)(γ) = ϕS

Γ(δx)(δγ). Let x ∼ y. We now observe that ϕT
Γ(y) ∼ ϕS

Γ(x).

Indeed, there are only finitely many cosets, so we only need to check ϕT
Γ(y)|γΛ ∼ ϕS

Γ(x)|γΛ for

a fixed γ. Before calculating, note that s(γλ) and t(γλ) are constant as λ varies and so is κ :=

s(γλ)−1t(γλ) ∈ Λ. Hence, πT (γλ) = κπS(γλ) and π−1
T,γλ = π−1

S,γλ ◦ κ−1 giving κ · ψS(y, γλ) =

ψT (y, γλ). Calculating we get

ϕT
Γ(y)(γλ) = ϕΛ(ψT (y, γλ))(πT (γλ)) = ϕΛ(κ · ψS(y, γλ))(πT (γλ))
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and

ϕS
Γ(x)(γλ) = ϕΛ(ψS(x, γλ))(πS(γλ)) = κ · ϕΛ(ψS(x, γλ))(πT (γλ)).

Since ψS(x, γλ) ∼ ψS(y, γλ) and by assumption on ϕΛ, we get ϕT
Γ(y) ∼ ϕS

Γ(x). One last calcula-

tion

δ−1 · ϕS
Γ(x)(γ) = ϕS

Γ(x)(δγ) = ϕT
Γ(δ

−1x)(γ) ∼ ϕS
Γ(δ

−1y)(γ)

tells us that δ · ϕS
Γ(x) ∼ ϕS

Γ(δ · y).

The proof that ϕS
Γ is a measure isomorphism is identical to the one given in the proof of theorem

4.2.13.

Let C be the collection of groups that contains amenable groups and is closed under finite index

inclusions and taking free products with countable groups.

Corollary 4.2.15. Let Γ ∈ C. Type completely classifies cofinite equivariance of Γ shift spaces.

Corollary 4.2.16. Let Γ ∈ C and A,B be amenable groups. Then the natural pmp wreath product

actions A ≀ Γ ↷ XΓ and B ≀ Γ ↷ Y Γ are orbit equivalent.

Corollary 4.2.17. Let Γ be orbit equivalent to a group in C and A,B be amenable groups. Then

A ≀ Γ is orbit equivalent to B ≀ Γ.

Proof. This is a consequence of corollary 4.2.16 and [9, Corollary 7.4].

4.3 Rigidity

As opposed to when Γ ∈ C, there exist Γ where the groups Ck ≀ Γ and Cl ≀ Γ are not orbit

equivalent via the primitive wreath product action.

Bowen and Tucker-Drob give the name Bernoulli superrigid to groups that satisfy the conclu-

sion of Popa’s cocycle superrigidity theorem and showed that Bernoulli superrigidity is an invariant

of measure equivalence of groups[5].

Corollary 4.3.1 (Popa). Let Γ ↷ AΓ be a Bernoulli shift of a Bernoulli superrigid group. Then

for every cocycle ω : Γ×AΓ → L taking values in a discrete countable group L, there exists a ho-

momorphism ρ : Γ → L and measurable map θ : AΓ → L such that c(γ, x) = θ(γx)ρ(γ)θ(x)−1.
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We give some simple examples of Bernoulli superrigid groups and more can be found in the

literature.

Example 4.3.2 (Popa[44][45]). Γ is Bernoulli superrigid if there is an infinite normal subgroup

N ◁ Γ such that one of the following holds

• (Γ, N) has relative property (T)

• N = H ×K where H is infinite and K is nonamenable.

We now prove some lemmas that relate Bernoulli superrigidity and cocycles into a group ring.

Lemma 4.3.3. Bernoulli superrigid groups have 1 end.

Proof of Claim. This is because Bernoulli superrigid groups have vanishing first ℓ2-Betti number

as can be seen in [41, Corollary 3.3]. Bernoulli superrigid groups are necessarily nonamenable and

hence, not 2-ended.

Assume for contradiction that G is Bernoulli superrigid and not 1-ended. By Stallings theo-

rem[46] in the finitely generated case and Dicks-Dunwoody[10, Theorem IV.6.10] in general, if G

is not 1-ended, then it must be infinitely ended and therefore satisfy one of the following

1. G = C ∗D E where [C : D] > 2 and D ̸= E and |E| ≤ C and |D| <∞

2. G = C∗D where C ̸= D and |D| <∞

3. G is locally finite

For case 1, β(2)
1 (D) = 0 since D is finite,

β
(2)
1 (C ∗D E) ≥ β

(2)
1 (C) + β

(2)
1 (E)− 1

|C|
− 1

|E|
+

1

|D|
> 0

since 2
|E| ≤

1
|D| and 3

|C| ≤
1
|D| .

For case 2, β(2)
1 (D) = 0 since D is finite,

β
(2)
1 (C∗D) ≥ β

(2)
1 (C)− 1

|C|
+

1

|D|
> 0
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since 2
|C| ≤

1
|D| . Proofs of these well-known inequalities can be found in [42].

Case 3 can’t occur since G is nonamenable. Hence, we arrive at a contradiction and Bernoulli

superrigid groups must be 1-ended.

Lemma 4.3.4. Let Γ be 1-ended and B abelian. Every additive cocycle of Γ into the group ring⊕
ΓB is a coboundary.

Proof. This is the content of Dicks-Dunwoody[10, Theorem IV.6.10].

Several parts of the following proof come directly from the previous work of Furman about

SOE-superrigidity[16].

Theorem 4.3.5. Let Γ be a sofic Bernoulli superrigid group with no nontrivial finite normal sub-

groups and let A,B be amenable groups with |A| ̸= |B|. The pmp wreath product actions of A ≀ Γ

and B ≀ Γ are not stably orbit equivalent.

Proof. We prove the contrapositive. Assume without loss of generality that A,B are abelian and

the actionsA↷ X andB ↷ Y are compact since the cardinality of the groups determines the orbit

equivalence class of the pmp wreath product action. The existence of a stable orbit equivalence

gives us two sets X ′ ⊆ XΓ, Y ′ ⊆ Y Γ and a map ϕ′ : (X ′, µ′) → (Y ′, ν ′) between the restricted

measure spaces that sends the restricted orbits to restricted orbits. Enumerate Γ and by ergodicity

we can define π : XΓ → X ′ by π(x) = γx where γ is the least such that γx ∈ X ′. Now we get

a map ϕ = ϕ′ ◦ π : XΓ → Y ′ with ϕ∗µ
Γ ∼ ν ′ which defines a cocycle c : Γ × XΓ → B ≀ Γ by

c(γ, x)ϕ(x) = ϕ(γx). By Bernoulli superrigidity, there exist a group homomorphism ρ : Γ → B ≀Γ

and measurable map θ : XΓ → B ≀ Γ such that c(γ, x) = θ(γx)−1ρ(γ)θ(x).

Defining ψ : XΓ → Y Γ by ψ(x) = θ(x)ϕ(x), we get

ψ(γx) = θ(γx)ϕ(γx) = ρ(γ)θ(x)ϕ(x)

= ρ(γ)θ(x)ϕ(x) = ρ(γ)ψ(x)
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and ψ∗µ
Γ is absolutely continuous with respect to νΓ. Let

f(y) =
dψ∗µ

Γ

dνΓ
(y), Y1 = {y ∈ Y |f(y > 0)}, F = f ◦ ψ.

The function F : XΓ → R is now a Γ-equivariant measurable function and, by ergodicity, F (x) =

νΓ(Y1) almost everywhere. So we can assume ψ lands in Y1 and ψ(γx) = ρ(γ)ψ(x). Hence, Y1 is

invariant under the action of ρ(Γ). We will later show that ρ(Γ) acts on Y Γ ergodically and so Y1

will end up being the whole space.

We will now show ρ is injective. By countability, there exists λ ∈ B ≀ Γ such that W :=

θ−1(λ) ∩X ′ has positive measure. Take e ̸= γ ∈ ker ρ. For x ∈ W ∩ γ−1W ,

λϕ(γx) = ψ(γx) = ψ(x) = λϕ(x).

By freeness and since x, γx ∈ X ′, the measure µΓ(W ∩ γ−1W ) = 0 is null. Now, the collection

of equal measure sets {γ−1W}γ∈ker ρ is pairwise disjoint. Hence, ker ρ ⊆ Γ is a finite normal

subgroup and, by our assumption, trivial.

We show the map ψ is a measure isomorphism between invariant conull subsets of XΓ and

Y1. Take a conull set X̂ of x ∈ XΓ on which ψ(γx) = ρ(γ)ψ(x) holds for all γ ∈ Γ and let

X1 =
∩

γ γX̂ be a Γ-invariant conull set. Since ρ is injective and ψ(γx) = ρ(γ)ψ(x), the map ψ

is injective on individual orbits in X1. Therefore ψ is injective on X1. The map ψ|θ−1({λ}) is equal

to the map x 7→ λϕ(x)|θ−1({λ}), which a Borel isomorphism and pushes µΓ forward to ν(Y1)ν.

Therefore, we see that ψ is a measure isomorphism from X1 to ψ(Y1).

The homomorphism ρ decomposes as ρ = (ρ1, ρ2) where ρ2 : Γ → Γ is a homomorphism

and ρ1 : Γ →
⊕

ΓB is an additive 1-cocycle with respect to the Γ-action on
⊕

ΓB given by

γ · f(λ) 7→ f(ρ2(γ)
−1λ).

We now show the homomorphism ρ2 is injective. Assume for contradiction ρ2 is not injective.

Hence, Γ′ := ker ρ2 = {γ|ρ2(γ) = e} is nontrivial and therefore, infinite. The action Γ′ ↷

(AΓ, µΓ) is a Bernoulli action, but ρ(Γ′) ≤
⊕

ΓB so the action of Γ′ on (BΓ, νΓ) implemented
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through ρ is compact. Here, ψ defines an isomorphism from a Bernoulli action to a compact action

of the infinite group Γ′, which is a contradiction.

Now consider the cocycle ρ1. We aim to show that ρ1 is a 1-coboundary. The Γ-module
⊕

ΓB

is isomorphic to
⊕

[Γ:ρ2(Γ)]

⊕
ρ2(Γ)

B as Γ-modules. The cocycle decomposes as ρ1 =
⊕

[Γ:ρ2(Γ)]
ργ

where ργ : ρ2(Γ) →
⊕

ρ2(Γ)
B. By lemma 4.3.3 and injectivity of ρ2, the group ρ2(Γ) is 1-ended.

Hence, lemma 4.3.4 tells us that the 1-cocycles ργ : ρ2(Γ) →
⊕

ρ2(Γ)
B are all 1-coboundaries, i.e.

there exist ξγ ∈
⊕

ρ2(Γ)
B such that ργ(δ) = δξγ − ξγ . Define ξ :=

⊕
[Γ:ρ2(Γ)]

ξγ .

In order to show ρ1 is a 1-coboundary it remains to show that ξ is finitely supported. Since our

group is Bernoulli superrigid, it is not amenable and, in particular, it is not locally finite. Hence,

there is a finitely generated infinite subgroup ∆ = ⟨S⟩ ≤ ρ2(Γ). For each of the finitely many

generators s ∈ S, for only finitely many γ the quantity ργ(s) is nontrivial. Call this set of Ts ⊆

[Γ : ρ2(Γ)]. Hence, by the cocycle identity, there exists a finite subset T =
∪

S Ts ⊆ [Γ : ρ2(Γ)]

such that for every δ ∈ ∆, the function ργ(δ) is nontrivial only if γ ∈ T . Now take γ ̸∈ T . For

every δ ∈ ∆,

e = ργ(δ) = δξγ − ξγ,

i.e. ξγ = δξγ for every δ ∈ ∆. But ξγ are finitely supported, hence must be trivial. Therefore, ξγ

is nontrivial only if γ ∈ T and the function ξ is actually finitely supported on
∪

γ∈T supp(ξγ). We

conclude that ξ ∈
⊕

ΓB and ρ1(γ) = γξ − ξ showing that ρ1 is a 1-coboundary.

We conjugate by (ξ, e) to get

(ξ, e)ρ(γ)(ξ, e)−1 = (ξ, e)(ρ2(γ) · ξ − ξ, ρ2(γ))(−ξ, e)

= (ξ, e)(−ξ, ρ2(γ)) = (e, ρ2(γ)).

Hence, without loss of generality, we can replace θ(x) by (ξ, e)θ(x) to assume that ρ is an embed-

ding sending Γ to a subgroup of {e} × Γ. Now, we notice that ρ(Γ) acts on Y Γ by the Bernoulli

shift. This means that the positive measure invariant set Y1 must be the entirety of Y Γ.

But, we calculated earlier that ψ(γx) = ρ(γ)ψ(x) so ψ is a measure preserving equivariant
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map between the original Γ ↷ (XΓ, µΓ) and the action Γ ↷ (Y Γ, νΓ) by γ · f(λ) 7→ f(ρ(γ)−1λ).

This second action is isomorphic to a Bernoulli shift with base space Y [Γ:ρ2(Γ)]. Note that for finite

groups |A| = |X| and |B| = |X| and for infinite A, the space XΓ is infinite. By [3] and [30] and

soficity, we get that |A| ≥ |B|. This argument is symmetric in A and B, so we can repeat it to get

|A| = |B|.
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5. SUMMARY

Orbit equivalence gives us a rich environment in which to study various measure-theoretic and

representation-theoretic properties of groups. The orbit equivalence relation explores connections

between many areas of mathematics, most notably connecting the study of algebraic and measur-

able properties of groups. We study various invariants and examples in this context.

In the setting of groupoids, we primarily study the inner amenable objects. We show these

objects have cost 1 and are closed under passing to a coamenable supergroupoid. In relation to

this, we prove the equivalence of several definitions of amenable actions of discrete measured

groupoids. Much of the work here involves finding alternate proofs of well-known lemmas in the

setting of groups and then generalizing these arguments to groupoids.

In the setting of groups, we primarily focused on wreath product groups. Here, we provide

new examples of both orbit equivalence antirigidity and rigidity results. In doing so, we introduce

the notion of cofinite equivariance which naturally relates to orbit equivalence of wreath products.
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