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ABSTRACT 

The aim of this thesis is to assess the efficiency of a new data-based method of Non-Intrusive 

Reduced Order Modeling (NIROM) which can be applied on commercial reservoir simulators and 

discuss the performance of the NIROM method on reducing the computational running time within 

an acceptable compromise in accuracy.  

NIROM methods are usually constructed by a combination of machine learning techniques and 

projection-based ROM methods. As opposed to projection-based ROM, such as the proper 

orthogonal decomposition (POD), NIROM methods treats the non-linear equation as a black box 

and its approximation is performed by the Reduced-based Function (RBF). In this case, NIROM 

manifests as a data-driven methodology, whereby the only information the users need is the 

snapshots of states, e.g., pressures, saturations, temperature, which are output by the high-fidelity 

model. This means NIROM can be applied to any commercial reservoir simulator. 

In this work, two cases are used to investigate the abilities and limitations of the NIROM method. 

The first case is the UNISIM-I-D three-phase isotropic heterogeneous model without considering 

heat flow. In this case, the proposed method is applied to obtain an approximation of the pressure 

and three-phase saturation field within 20 years.  

The second case is a 3-dimensional geothermal reservoir with injection and production wells 

working at the same time. In this model, cold water is injected from the injection wells and hot 

water is produced from the production wells. Pressure field and temperature field are predicted 

within 5 years.  

In both cases, the NIROM method is proved to be able to significantly reduce the computational 

time of running the simulation after an offline training and an offline optional validation process 
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while remain the accuracy of the simulation within certain range. The accuracy of the proxy 

obtained is case dependent and varies when different timestep interval of the training data set is 

applied. 
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NOMENCLATURE 

 

𝐵 Radial basis function matrix 

𝑐 Controls 

𝑓 Surrogate model 

𝑛𝑔 Total number of grid blocks 

𝑛𝑡 Number of timesteps of the simulation for each set of controls 

𝑜𝑛 POD order of the state variable 𝑛 

𝑝 Pressure 

𝑟𝑖
(𝑐)

 Reduced snapshot of the state at timestep 𝑖 with the reservoir 

control 𝑐 

𝑅 Whole reduced snapshots matrix 

𝑅𝑛 Reduced snapshots matrix for the state variable 𝑛 

𝑠𝑖 Snapshot of the state at timestep 𝑖 

𝑆𝑜 Oil saturation 

𝑆𝑤 Water saturation 

𝑆𝑔 Gas saturation 

𝑇 Temperature 

𝑢 Number of sets of controls 

𝑊 Weighting factor matrix 

𝑤𝑘𝑚
 Weighting factor applied on each distance 

𝑥𝑛 Snapshot of the state variable 𝑛 

𝑋𝑛 Snapshots-matrix of the state variable 𝑛 
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𝑌 Label value matrix 

𝛽 Radial basis function 

𝛾 Shape factor 

𝜙 Whole POD projector 

𝜙𝑛 POD projector for the state variable 𝑛 
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1. INTRODUCTION 

Reservoir simulation is an essential and yet time-consuming process in reservoir engineering. 

Thousands or even more runs of reservoir simulation are commonly needed in optimization or 

history matching problems. This can already cause computational issues even some assumptions 

aiming at simplifying the problems like isothermal reservoir are made. However, with the recent 

focus on carbon free and sustainable production, geothermal reservoirs are becoming a key 

component on this transition to cleaner energy. In this case, temperature becomes an additional 

state variable and even more computational resource needs to be input when doing reservoir 

simulation.  Therefore, when solving such problems with traditional method of implicit pressure, 

explicit saturation (IMPES) or fully implicit method, expensive high-performance computers are 

usually needed.  

Reduced order modelling (ROM) is developed as a possible solution to increase the efficiency of 

reservoir simulation, especially if multiple calls of the high-fidelity model is needed as in the case 

of optimization and history matching. ROM can also be used as complementary to high 

performance computing devices to lower even further the computational cost associated with very 

large-scale simulations. ROM aims at reducing the computational time of running simulations with 

an acceptable compromise in accuracy which is commonly used in engineering problems related 

to dynamical systems. The idea of it is to reduce the dimension of state space or the degrees of 

freedom with multifarious algorithms and then simulate with a smaller model. 

To apply ROM on reservoir simulation, many algorithms have been developed and explored in the 

recent years. One commonly used method that many of those algorithms are based on is proper 

orthogonal decomposition (POD)1. The main idea of POD is to project a high dimensional state 

variable matrix onto a new system of coordinates in which the dimension of the original matrix is 
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reduced to a much lower order but at the same time preserve the original information as much as 

possible by keeping the largest principle-values. The most popular algorithm based on POD which 

is frequently used in reservoir simulation is POD-Galerkin method2 and its variants. During the 

training process of POD-Galerkin method, the reduced basis is computed from the training 

snapshots and it is then used in the online stage to construct the reduced matrix equation of state 

variables. The reduced equation is solved in the reduced subspace to obtain the next reduced state, 

and the next reduced state will be project back to the original space after each iteration. The 

computational time of projecting the reduced state back to the original space for each iteration 

offsets some of the time reduced by solving the non-linear equation in the reduced subspace. Some 

subsequent methods are developed to solve this issue. Discrete empirical interpolation method 

(DEIM)3 is one of the algorithms that has successfully improved the low efficiency of projecting 

the reduced state iteratively. DEIM is combined with several other ROM methods to further reduce 

the computational time and improve the accuracy. Trajectory-based DEIM (TDEIM) 4 is the 

combination of trajectory piecewise linearization (TPWL)5 and DEIM. In this method, the new 

states are represented as the linear combination of the previous trajectory simulated by the high-

fidelity model. 

All the ROM methods introduced above can be categorized as intrusive ROM methods. It means 

that the derivation converting the non-linear equation to lower dimensions is required which is not 

feasible in all the scenarios using analytical methods. Also, to successfully implement these 

algorithms, the access to the source code of the high-fidelity simulator is necessary which may 

cause unavoidable confidential issues. To overcome these problems, several non-intrusive ROM 

(NIROM) methods are developed which are usually the combination of machine learning 

techniques with ROM methods. When applying NIROM methods, the non-linear equation is 
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treated as a black box6 and the only thing the users need is the snapshots of states which are output 

by the high-fidelity model in several different control groups. This means NIROM can be 

potentially applied to any commercial simulators. 

Along with the rapid development in machine learning techniques in recent years, NIROM 

methods are being more actively explored, and as a result, have significant improvements in both 

the accuracy and the efficiency of the method. Dynamic mode decomposition (DMD)7 and its 

variants are an example of these NIROM methods which have been applied to solve several 

engineering problems especially in fluid dynamics and have had good performance in accuracy 

and efficiency. The idea of DMD method is to find a matrix to linear transform the current 

snapshots-matrix to the snapshots-matrix one step forward in the training process. In the online 

stage, the group of transform matrices will be multiplied to the snapshots-matrix iteratively to 

obtain the predicted state one by one. However, this linear relationship may not be enough to 

capture the nature of all the dynamical systems. Even so, DMD has provided a good framework 

for the following researchers to make modifications on. One method that can be used as an 

alternative of the assumption of linear relationship is radial basis function method (RBF)8 9 10. RBF 

is a method based on distance between the training data points which has increased the non-

linearity of the model. The stability of the method of combining RBF with NIROM framework 

fully depends on the stability of the solution of the high-fidelity model, which avoids the issue that 

normal ROM methods are sometimes unstable11. RBF has been widely applied for predicting the 

PVT properties of the oil in the reservoir12. However, it has not been applied to predict full state 

field of the reservoir. In this work, a new NIROM method which based on POD and RBF will be 

introduced and discussed. 
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1.1. Primary objectives 

The primary objectives of this thesis are to: 

(1)  Investigate the ability of the new NIROM method in reducing computational time of reservoir 

simulation under isothermal and non-isothermal conditions. 

(2) Evaluate the accuracy of the new NIROM method in predicting the values of state variables 

(i.e., pressure, saturations, temperature) of reservoir models. 

1.2. Thesis scope 

In order to achieve the two objectives proposed, we will: 

(1) Show the implementation workflow of the new NIROM method  

(2) Present two case studies to show the application of the NIROM method on the UNISIM-I-D 

reservoir model and the simple geothermal model to evaluate the abilities of NIROM to predict 

pressure field, saturation field, temperature field with different well flowrate setups. The models 

used are shown underneath. 

1.2.1. UNISIM-I-D13 

In the first case study of this thesis, UNISIM-I-D model is used which is a 3D isotropic 

heterogeneous reservoir model with one fault and four production wells (not fully perforated). The 

dimensions of this model are 58 * 81 * 20 (93960 grids) and the number of active grids is 36403. 

The mean porosity is 0.1434 and the standard deviation is 10.83. In this thesis, three-phase 

reservoir simulations are run on this model to obtain the training sets for the training of the proxy 

and the testing sets to evaluate the performance of the proxy. The model and the well locations are 

shown in Figure 1.1.  
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Figure 1.1 UNISIM-I-D and well locations. 

 

1.2.2. Geothermal model 

Another case study is a relatively simple geothermal 3D isotropic, homogeneous model with 8 

injection wells and 7 production wells. In this case study, the proxy of the high-fidelity geothermal 

model is used to predict the pressure and temperature field. The dimensions of this model are 80 

* 80 * 15 (96000 grids). In this case, the injection wells and production wells are perforated from 

layer 3 to layer 12 and are opened at the same time. The initial reservoir temperature is 170 ℃ and 

the injection wells are injecting cool water at 25 ℃. The initial reservoir pressure is 25000 kpa. 

The dimensions and the locations of the injectors and producers are shown in Figure 1.2 

underneath.  
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Figure 1.2 Well locations of 8 injection wells and 7 production wells of the 3-dimentional 

geothermal model 
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2. METHODOLOGY 

In reservoir simulation, the traditional method of computing the variation of states of two 

continuous timesteps is to solve an equation which contains a high dimensional Jacobian matrix 

in an iterative pattern14 . Although many new types of linear solver have been invented and 

optimized in order to enhance the performance of traditional reservoir simulation, the high 

computational time is still a big issue especially when many runs of simulation are needed in 

problems like optimization and history matching.  

Under this background, ROM methods are applied on reservoir simulation to reduce the 

computational time while preserve most of the accuracy. As contrast of the idea of enhancing the 

efficiency of the linear solver, ROM methods take a different strategy which is reducing the 

computation required through reducing the size of the model. One commonly used method to 

achieve this is to simplify the matrix computation by conducting it in a lower dimensional space.  

POD is a good tool for converting a higher dimensional matrix to a lower dimension while preserve 

the most important information of principle components in the original matrix. It is developed 

from Principal component analysis (PCA) which was firstly invented by Karl Pearson15. Karl 

Pearson thought a multi-dimensional ellipsoid can be used to fit the dataset and the principal 

component can be defined as the axes of the multi-dimensional ellipsoid. If the axis is short, it 

means there cannot be much variance along the axis and the amount of information contained by 

its corresponding principal component is small. Thus, if we ignore the shortest few principle 

components, not too much information will be lost. POD is based on the theory of singular value 

decomposition (SVD). SVD was discovered by several mathematicians independently and Carl 

Eckart and Gale J. Young first proved SVD for general rectangular and complex matrices16 which 

has guaranteed the stability of POD. 
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POD has enhanced the efficiency of computation of high dimensional matrices. However, the 

computational time reduced by solving linear equations in lower dimensional space is offset by 

the time spent on projecting the reduced state back to real space in each iteration. Also, 

modification to the source code of the simulator is not feasible under all circumstance, especially 

to commercial simulators due to confidential issue. Therefore, the technique of NIROM was 

developed where a proxy17 18 is used as a replacement for the iteration process of solving linear 

equations. The proxy is usually trained by machine learning techniques, and as contrast of 

expressing the physics relations by partial differential equations, the proxy learns patterns of the 

evolvement of the system directly from the training data. Then, the pattern learnt will be used for 

the purpose of prediction. The training data are usually several sets of continuous snapshots from 

several similar control setups of the reservoir19. Snapshots of state are a group of column vectors 

in which all the values of state variables in a model are stacked according to time. They are the 

most direct representation of the evolvement of the state of a system and are commonly used in 

data-based ROM problems related to dynamic system. 

There are many methods that have been used to build proxy for different parts of reservoir 

simulation using machine learning techniques20 21. In this work, the algorithm used for predicting 

the evolvement of state is RBF based on the method of Xiao, D. et al11. In 2000, Buhmann applied 

RBF as a tool for approximate numerical solutions of elliptic partial differential equations8. In 

2006, Schaback and Webdkabd showed the applications of RBF in machine learning and meshless 

methods for solving partial differential equations. In their opinion, radial basis function (kernel) 

can be viewed as bell-shaped functions like Gaussians. They can be shifted, scaled, and 

superimposed with weights to form new functions9.  Now, the sum of radial basis functions from 
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the training dataset points is commonly used for interpolating the multi-dimension surfaces 

constructed by the points in many engineering fields.  

In this section, we introduce the workflow of the new NIROM method and the several moving 

parts and algorithms that are used to construct a proxy for a high-fidelity reservoir simulation 

model. The workflow of the NIROM method used here can be divided into 5 steps and the flow 

chart is shown in Figure 2.1.  

 

Figure 2.1 Work flow of the new NIROM method 

 

Firstly, high-fidelity simulations are performed to collect the snapshots-matrices from different 

controls settings (inputs). The schematic illustration of snapshots of any state variable is shown in 

Figure 2.2. These matrices are the representation of the evolvement of the dynamic system. Our 

goal is to learn the pattern of the evolvement from the snapshots-matrices, and then, the pattern 
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can be used to predict the variation of new set of input. To achieve this, training data sets need to 

be built from the snapshots-matrices collected. However, the dimensions of the snapshots-matrices 

are usually very high especially the row dimension, because the row dimension is equal to the 

number of grid blocks used in the model. If use the snapshots-matrices directly for training, it will 

be very computational inefficient that the time cost may be even more than running the full-size 

simulation. 

 

Figure 2.2 Schematic illustration of snapshots of any state variable. 

 

Therefore, the second step is to implement POD to the snapshots-matrices to determine a low 

dimensional basis set. As introduced above, POD can significantly reduce the row dimension of a 

matrix by projecting it onto a projector (the row dimension of the matrix can be reduced to few 

tens according to the setup of the user). The efficiency of training can thus be significantly 

improved when using reduced snapshots matrices compared with using full snapshots matrices.  

Thirdly, the reduced snapshots-matrices will go through the training process to obtain the surrogate 

model. In the training process, each reduced snapshot in the matrices will act as a training data 

point, and the distances between each two of these data points will be computed. The value of the 
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radial basis function of the distances are used as a criteria to quantify the influence between each 

two data points (the larger the value of the distance, the less influence of one data point to the other 

data point). Then, the weighting factor assigned on each training data point is computed. When we 

have new data points (testing data), The evolvement on the new input is predicted by computing 

the weighted sum of the radial basis function of the distance between the new data point to all 

training data points. 

Fourthly, an algorithm that aims at improving the performance of the surrogate model to capture 

multiple trends of the variation of the state is implemented. In this algorithm, a validation set 

(reduced snapshots-matrix) is needed, and a validation process is performed. In this step, a group 

of surrogate models are collected, and they are combined as the final proxy of the high-fidelity 

model. This step is optional and depends on the complexity of the model simulated. The first four 

steps are all performed offline. Finally, the proxy (non-intrusive model) is used to predict the fields 

of states in the test case. The details of each step are explained underneath. 

2.1. Step 1: Collection of snapshots-matrices  

As mentioned above, snapshots of a system are the most representative information about the 

pattern of the evolvement of the system. The proxy will directly learn from the snapshots through 

training. Therefore, before the training process, snapshots of the states (e.g., pressure, saturations, 

temperature) of the reservoir under similar control setups need to be collected in advance. The 

snapshots-matrix of one state variable of one set of simulation control is a two-dimensional matrix 

with 𝑛𝑔 rows and 𝑛𝑡 columns where 𝑛𝑔 denotes the total number of grid blocks and 𝑛𝑡 denotes the 

number of timesteps of the simulation. For training, several snapshots-matrices from different 

simulation controls need to be taken. All these snapshots-matrices will be concatenated in a row 
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and thus the dimensions of snapshots-matrix for one state variable are (𝑛𝑔, 𝑛𝑡 * u), where u denotes 

the number of controls. 

Take pressure as an example, if the user decides to use 5 different sets of controls for training, the 

number of grid blocks is 10000, and the number of the total timesteps is 100, each snapshot of 

pressure 𝑥𝑝𝑖,𝑗
, 𝑖 ∈ [1, 𝑢], 𝑗 ∈ [1, 𝑛𝑡], then the final snapshots matrix of pressure 𝑋𝑝 will look 

like the matrix shown in Figure 2.3. The buildup of snapshots-matrix for other state variables are 

following exact the same method as pressure. 

 

Figure 2.3 Schematic illustration of building up the snapshots-matrix of pressure 

 

2.2. Step 2: POD of the training set  

The row dimension of snapshots-matrices is high because it is equal to the number of grids used 

in the model. Thus, if the snapshots-matrices are directly used for training, the efficiency of 

computation will be very low. Therefore, in step 2, POD is implemented to the training set 

collected in step 1 following the procedure shown in Figure 2.4 to reduce the row dimension of 
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the training data. The reduced snapshots matrix 𝑅 and the POD projector 𝜙 obtained from POD 

will be recorded.  𝑅  will be used for training, and 𝜙  will be used for projecting the reduced 

snapshots into real space. 

 

POD of the training set: 

  Data: 𝑋𝑝,  𝑋𝑆𝑜 , 𝑋𝑆𝑤, 𝑋𝑆𝑔, 𝑋𝑇 

             𝑜𝑝,   𝑜𝑆𝑜,   𝑜𝑆𝑤,   𝑜𝑆𝑔,   𝑜𝑇    

  Result: 𝑅, 𝜙 

1  for 𝑛 in [𝑝, 𝑆𝑜, 𝑆𝑤, 𝑆𝑔, 𝑇]: 

2        [𝑈, 𝑆, 𝑉] = 𝑆𝑉𝐷(𝑋𝑛) 

3        𝜙𝑛 =  𝑈(: ,1: 𝑜𝑛) 

4        𝑅𝑛 = 𝜙𝑛
𝑡 ∗ 𝑋𝑛 

5  end 

6  𝑅 = [𝑅𝑝; 𝑅𝑆𝑜; 𝑅𝑆𝑤; 𝑅𝑆𝑔; 𝑅𝑇] 

7  𝜙 = 𝑑𝑖𝑎𝑔(𝜙𝑝, 𝜙𝑆𝑜 , 𝜙𝑆𝑤, 𝜙𝑆𝑔, 𝜙𝑇)  

8  return 𝑅,𝜙 

Figure 2.4 Algorithm of implementing POD on the training set 

 

 

Figure 2.5 Schematic illustration of applying POD on the snapshots-matrix of one state variable. 
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The schematic illustration of POD is shown in Figure 2.5. The main idea of POD is to use Singular 

Value Decomposition (SVD) to express the snapshots-matrix as the product of three decomposed 

matrices, and then define a projector from the first matrix to apply on the snapshots-matrix itself. 

After SVD, first 𝑜𝑛 columns of the first decomposed matrix are taken as the projector applied on 

the full snapshots. 𝑜𝑛 denotes the order of POD. When the value of 𝑜𝑛 is large, it means more 

information regards to the principle components in the original space is captured in the reduced 

snapshots after projection, and thus the prediction results of the NIROM method using the reduced 

snapshots for training is expected to be more accurate. However, longer computational time in 

both the offline and online process is needed for larger 𝑜𝑛 value because of computation between 

higher dimensional matrices. Therefore, the balance between computational time and the accuracy 

of the model needs to be considered. The method to verify whether enough information is captured 

in the reduced snapshots is to compute the energy percentage of the principle components 

contained by the reduced snapshots. The energy percentage is computed by using the summation 

of the singular values selected divided by the summation of all the singular values. When the 

energy percentage is over 98%, we can say the POD order is high enough. 

After obtaining the projector, we can compute the reduced snapshots matrix for each state variable 

using Eq.2.1.  

𝑅𝑛 =  𝜙𝑛
𝑡 ∗ 𝑋𝑛    𝑛 ∈ [𝑝, 𝑆𝑜, 𝑆𝑤, 𝑆𝑔, 𝑇] 2. 1 

After collecting 𝑅𝑛 and 𝜙𝑛, 𝑅𝑛 are concatenated on one column to form 𝑅 and 𝜙𝑛 are aligned on 

the diagonal of the matrix 𝜙. 
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2.3. Step 3: NIROM training using Radial Basis Function (RBF) 

As mentioned before, a surrogate model 𝑓  is used to represent the variation between two 

continuous timesteps instead of the solution of a linear equation by iteration in traditional reservoir 

simulator. As shown in Eq. 2.2. 𝑟𝑖
(𝑐)

 denotes the reduced snapshot of states at timestep 𝑖 with the 

reservoir control 𝑐, and the evolvement from timestep 𝑖 to timestep 𝑖 + 1 is estimated by the value 

of 𝑓. 

𝑟𝑖+1
(𝑐)

=  𝑟𝑖
(𝑐)

+ 𝑓 (𝑟𝑖
(𝑐)

,  𝑐) 2. 2   

If we use a term 𝑦𝑖
(𝑐)

to represent 𝑟𝑖+1
(𝑐)

 −  𝑟𝑖
(𝑐)

, then we have obtained all the elements for training 

𝑓. 𝑟𝑖
(𝑐)

is the training data and 𝑦𝑖
(𝑐)

is the corresponding label. To obtain 𝑓, RBF is applied on 𝑅 

collected in step 2 which contains all the reduced snapshots 𝑟𝑖
(𝑐)

 to obtain 𝑊,𝛥, 𝐷𝑝 which are the 

weighting factor matrix, the scaling factor and the scaling factor diagonal matrix needed in the 

expression of 𝑓. The algorithm is shown in Figure 2.6. 
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Training with RBF: 

  Data: 𝑅, 𝑐 

  Result: 𝑊,𝛥, 𝐷𝑝 

1    𝑜 = sum(𝑜𝑝,   𝑜𝑆𝑜,   𝑜𝑆𝑤,   𝑜𝑆𝑔,   𝑜𝑇) 

2     𝑟eshape 𝑅 to (𝑜, 𝑛𝑡 , 𝑢) 

3    𝑥 = 𝑅(: ,1: 𝑒𝑛𝑑 − 1, : ) 

4    𝑦 = 𝑅(: ,2: 𝑒𝑛𝑑, : ) − 𝑅(: ,1: 𝑒𝑛𝑑 − 1, : ) 

5    𝑟eshape 𝑥, 𝑦 to (𝑜, (𝑛𝑡 − 1) ∗ 𝑢) 

𝟔    𝑊 = 𝑧𝑒𝑟𝑜𝑠(𝑜, (𝑛𝑡 − 1) ∗ 𝑢) 

7    𝐵 = 𝑧𝑒𝑟𝑜𝑠((𝑛𝑡 − 1) ∗ 𝑢, (𝑛𝑡 − 1) ∗ 𝑢) 

8    for i = 1: (𝑛𝑡 − 1) ∗ 𝑢 

9          for j = 1: (𝑛𝑡 − 1) ∗ 𝑢 

10              compute 𝛿 with eq. 8 

11              compute 𝐷𝑝 with eq. 7 

12              compute 𝛥 with eq. 6 

13              d = compute distance between 𝑥(𝑖, : ) and 𝑥(𝑗, : ) with eq. 5 

14              𝐵(𝑖, 𝑗) = compute 𝛽(𝑑) with eq. 4 

15        end 

17   end 

17   for k = 1: 𝑜 

18         𝑊(𝑘, : ) =  𝐵−1 ∗ 𝑦(: , 𝑘) 

19   end 

20   return 𝑊,𝛥, 𝐷𝑝 

Figure 2.6 Algorithm of obtaining 𝑊,𝛥, 𝐷𝑝 used for the expression of surrogate model 𝑓. 

 

RBF algorithm can be expressed by Eq. 2.3, and Eq. 2.4 to Eq. 2.6 are the extensions to the terms 

in Eq. 2.3. In Eq. 2.3, 𝑑 (•, •) denotes the distance between two training data points, 𝑤𝑘𝑚
 is the 

weighting factor applied on radial basis function of each distance, which is decided by the training 

process, 𝛽 is the radial basis function selected by the user.  

As mentioned before, radial basis function is a bell shape function of the distance between two 

data points. The bell shape implies that when the two data points are close to each other (the 

distance is close to zero), the value of radial basis function reaches to its maximum, which means 

the two data points are closely related to each other. The aim of the RBF algorithm is to solve the 
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weighting factors which are put on the radial basis function of each distance. If we write Eq. 2.3 

in the matrix format as shown in Eq. 2.9, and then it can be shortened as 𝐵 ∗ 𝑤 = 𝑌, and the 

process of solving the weighting factors is simply solving a linear equation. As contrast of solving 

linear equations iteratively in traditional reservoir simulator, the weighting factors only need to be 

solved once for each POD order. 

𝑓𝑘(𝑟𝑖 , 𝑐𝑗) = ∑ ∑ 𝑤𝑘𝑚
∗ 𝛽[𝑑(𝑟𝑖 , 𝑐𝑗), (𝑟𝑚, 𝑐𝑛)] =  𝑦𝑘(𝑟𝑖 , 𝑐𝑗)

𝑢

𝑛=1

𝑢∗(𝑛𝑡−1)

𝑚=1

 2. 3 

where 

𝑖 = 1, 2……𝑢 ∗ (𝑛𝑡 − 1) 

𝑗 = 1, 2……𝑢 

𝑘 = 1, 2……𝑜 

Eq. 2.4 shows the radial basis function selected in this work, where 𝑑 denotes the distance and 𝛾 

is a shape factor used for adjusting the shape of radial basis function.  

𝛽(𝑑) =
1

√𝑑2 + 𝛾2
    2. 4 

Eq. 2.5 shows the definition of distance between two data points, where 𝛥 is a scaling factor 

defined by Eq. 2.6, and 𝐷𝑝 is a diagonal scaling factor matrix which is defined by Eq. 2.7 and the 

scaling factors on the diagonal are defined by Eq. 2.8. 

𝑑2((𝑥1, 𝑐1), (𝑥2, 𝑐2)) =  
||𝑥2 − 𝑥1||2

𝛥2
+ 𝑐𝑇𝐷𝑝𝑐    2. 5 

𝛥 =
1

𝑢(𝑛𝑡 − 1)
∑ ∑||𝑟𝑛+1

(𝑐𝑘) − 𝑟𝑛
(𝑐𝑘)||

𝑢

𝑘=1

𝑛𝑡−1

𝑛=1

  2. 6 
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𝐷𝑝 =  

[
 
 
 
 
1

𝛿1
2 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝛿𝑢−1
2 ]

 
 
 
 

     2. 7 

𝛿 = 𝑚𝑒𝑎𝑛(𝑐(: ,1: 𝑢 − 1) − 𝑐(: ,2: 𝑢))        2. 8 

[
 
 
 
 
 𝛽{𝑑((𝑟1; 𝑐1), (𝑟1; 𝑐1))} … 𝛽 {𝑑 ((𝑟1; 𝑐1), (𝑟(𝑛𝑡−1)∗𝑢; 𝑐𝑢))}

𝛽{𝑑((𝑟2; 𝑐1), (𝑟1; 𝑐1))} … 𝛽 {𝑑 ((𝑟2; 𝑐1), (𝑟(𝑛𝑡−1)∗𝑢; 𝑐𝑢))}
… … …

𝛽 {𝑑 ((𝑟(𝑛𝑡−1)∗𝑢; 𝑐𝑢), (𝑟1; 𝑐1))} … 𝛽 {𝑑 ((𝑟(𝑛𝑡−1)∗𝑢; 𝑐𝑢), (𝑟(𝑛𝑡−1)∗𝑢; 𝑐𝑢))}]
 
 
 
 
 

 

[

𝑤𝑘1
𝑤𝑘2
…

𝑤𝑘𝑢∗(𝑛𝑡−1)

] = [

𝑦𝑘1
𝑦𝑘2
…

𝑦𝑘𝑢∗(𝑛𝑡−1)

]     2. 9 

Now that 𝐵 matrix and 𝑌 vector is known, 𝑤 can be easily solved by 𝑤 = 𝐵−1𝑌. When 𝑘 varies 

from 1 to o, o sets of such equation can be written and solved, which is shown in Figure 2.7. 

 

Figure 2.7 Schematic illustration of solving the weighting factors which will be used in the 

surrogate model for predicting the value of the state variables in each grid block. 
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2.4. Step 4: Improve the performance of the surrogate model in capturing multiple trends 

The variation of the state of a system usually does not follow a smooth trend from beginning to 

the end, which means there may exist sharp turning points when the variation of state switches 

from one trend to another. For example, in Figure 2.8, the variation of oil saturation can be easily 

separated into 3 pieces. The oil saturation of the grid holds constant for a while when the saturation 

front has not reached to the grid. Then, it decreases sharply after the oil starts to be drained from 

the grid. Finally, when the oil saturation reduces to the residue oil saturation, it holds constant 

again. It is harder for the surrogate model to predict the states at such turning points because of the 

high non-linearity at the turning points. Only one surrogate model is unable to capture both the 

general variation trend of the state and the switch in multiple trends. Therefore, an algorithm is 

used to recognize the turning points automatically and then improve the performance of the 

surrogate model to capture multiple trends. The algorithm is shown in Figure 2.9. 

 

Figure 2.8 Example of multiple trends of variation of the state. 
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Identify the turning points and obtain the proxy of the high-fidelity model: 

  Data: 𝑊,𝛥, 𝐷𝑝, 𝑠1
(𝑐𝑣)

, 𝑅, 𝜙 

  Result: 𝑡𝑡𝑢𝑟𝑛, 𝑊(𝑖), 𝛥(𝑖), 𝐷𝑝(𝑖), where 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛)] 

1    /* Predict the states on the validation set */ 

2    Obtain 𝑆 with the algorithm shown in Figure 2.10 

3    /* Compute the average relative error of the state variables, the 

4    derivative and the product of left and right derivative. The dimension of  

5    𝑟𝑒𝑙𝐸𝑟𝑟, 𝑑𝑒𝑟𝑅𝑒𝑙𝐸𝑟𝑟, 𝑝𝑟𝑜𝑑𝐿𝑅 are (1, 𝑛𝑡 + 1) */ 

6    𝑟𝑒𝑙𝐸𝑟𝑟 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑆, 𝑆ℎ)    

7    𝑑𝑒𝑟𝑅𝑒𝑙𝐸𝑟𝑟 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑟𝑖𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟( 𝑟𝑒𝑙𝐸) 

8    𝑝𝑟𝑜𝑑𝐿𝑅 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑑𝑒𝑟𝑅𝑒𝑙𝐸𝑟𝑟) 

9    /* Identify the turning points */ 

10  for 𝑝𝑟𝑜𝑑 in 𝑝𝑟𝑜𝑑𝐿𝑅 

11        if 𝑝𝑟𝑜𝑑 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

12              append the corresponding time of 𝑝𝑟𝑜𝑑 in 𝑡𝑡𝑢𝑟𝑛 

13        end 

14  end 

15  /* Train the surrogate model after each turning point */ 

16  for 𝑖 = 1:𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛) 

17        𝑡 = 𝑡𝑡𝑢𝑟𝑛(𝑖) 

18        𝑋𝑛 = 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡 𝑖𝑛 𝑋𝑛  

19        𝑅(𝑖), 𝜙(𝑖) = Implement POD to 𝑋𝑛 following Figure 2.4 

20       𝑊(𝑖), 𝛥(𝑖), 𝐷𝑝(𝑖) = Training the new surrogate model following Figure 2.6 

21  end 

22  𝑊(0) = 𝑊,𝛥(0) = 𝛥, 𝐷𝑝(0) = 𝐷𝑝, 𝜙(0) = 𝜙 

23  return 𝑊(𝑖), 𝛥(𝑖), 𝐷𝑝(𝑖), where 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛)] 

Figure 2.9 The algorithm of identifying the turning point of different trends of variation of the 

state. The method of forming the proxy of the high-fidelity reservoir simulation model which is 

the combination of a group of surrogate models with the parameter matrices 𝑊(𝑖), 𝛥(𝑖), 𝐷𝑝(𝑖), 

where 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛)]. 

 

In this algorithm, a validation set is collected from the high-fidelity model in the same way as 

collecting the training set. The initial condition of the validation set 𝑠1 is used as the input, and the 

states after are predicted by the surrogate model trained in step 3. The algorithm of the prediction 

process is shown in Figure 2.10. Taking another look at the Eq. 2.2, 𝑓 can now be expressed by 
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𝑊,𝛥, 𝐷𝑝 obtained in step 3 and the user can input arbitrary controls c into 𝑓. The reduced snapshot 

of the state at the beginning of the simulation 𝑟1 can be computed by projecting 𝑠1 on 𝜙 using 𝑟1 =

  𝜙𝑇 ∗ 𝑠1 where 𝑠1 is the first state. So far, all the reduced snapshots of the states can be computed 

iteratively. To compute the real value of the states, we only need to project the reduced snapshots 

back to real space by Eq. 2.10.  

𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑁𝐼𝑅𝑂𝑀 = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑁𝐼𝑅𝑂𝑀 ∗  (𝜙𝑇  )−1 2. 10 

 

Prediction on the validation set: 

  Data: 𝑊,𝛥, 𝐷𝑝, 𝑠1, 𝑅, 𝜙 

  Result: 𝑆 

1    𝑅 = 𝑅(: ,1: 𝑒𝑛𝑑 − 1, : ) 

2    𝑟1 =  𝜙𝑇 ∗ 𝑠1 

3    𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟1 

4    𝑟𝑒𝑑𝑆 = 𝑧𝑒𝑟𝑜𝑠(𝑜, 𝑛𝑡 + 1) 

5    𝑟𝑒𝑑𝑆(: ,1) = 𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

6    for k = 1: 𝑛𝑡 

7          for i = 1: 𝑜 

8                for j = 1: (𝑛𝑡 − 1) ∗ 𝑢 

9                      d = compute distance between 𝑥(𝑖, : ) and 𝑥(𝑗, : ) with eq. 5 

10                     𝑓(𝑖, 1) = 𝑓(𝑖, 1) + 𝑊(𝑖, 𝑗) ∗ 𝛽(𝑑)  

11              end 

12         end 

13         𝑟𝑁𝑒𝑥𝑡 = 𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑓 

14         𝑟𝑒𝑑𝑆(: , 𝑘 + 1) = 𝑟𝑁𝑒𝑥𝑡 

15         𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟𝑁𝑒𝑥𝑡         

16   end 

17   𝑆 = (𝜙𝑡 )−1 ∗ 𝑟𝑒𝑑𝑆 

18   return 𝑆 

Figure 2.10 The algorithm of predicting the snapshots-matrix 𝑆 with the surrogate model 

parameterized by 𝑊, 𝛥, 𝐷𝑝 and the initial condition 𝑠1 as input.  

 

After predicting the states with the initial condition of the validation set, the predicted result is 

compared with the result collected from the high-fidelity model, and the average relative error of 
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all state variables is computed for each timestep. The NIROM method usually has the worst 

performance near to the sharp turning points of the state, and thus the average relative error usually 

reaches to the local highest point when the variation trend of state switches. By identifying these 

local highest points in average relative error of all state variables, the possible turning points of 

the state is thus recognized. 

 

Figure 2.11 Average relative error of all the state variables. 
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Figure 2.12 Derivative of relative error of all the state variables estimated numerically. 
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Figure 2.13 Product of the left and right derivative of the relative error at every time point. 

 

An automatic method based on the numerical derivative of the relative error on the validation set 

is used to identify these turning points. The slope between each two continuous points is computed 

as the estimation of the derivative of relative error. Then, the product of the left and right derivative 

at each time point is computed which is shown in Figure 2.13. When the average relative error 

reaches to its local highest point (the spike in Figure 2.11), the product of the left and right 

derivative becomes a negative value, because the left derivative is positive, and the right derivative 

is negative. Then, the time point which has the most negative value is the most possible point 

where the trend of the variation of state changes. Here, a threshold value must be set up to filter 

those points which are slightly negative due to normal vacillation of relative error. 
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Knowing the possible turning points of state, we can then retrain a group of surrogate models after 

every turning point to better capture the non-linearity of the variation of state. For each iteration, 

we only need the snapshots after the turning point and repeat step 2 and step 3 to obtain a new 

surrogate model. This procedure is performed for as many times as the number of turning points 

identified above. Now, we have a group of surrogate models, and then they can be used to predict 

the states for other set of controls (input). The number of surrogate models obtained so far is equal 

to the number of turning points plus one. The first surrogate model obtained from training with the 

whole snapshots-matrix is used to capture the general variation trend of the state, and the following 

ones aim at revising the model whenever the trend of the variation of the state changes. The method 

of using these surrogate models as the proxy of the high-fidelity reservoir simulation model for 

the purpose of prediction is shown in detail in step 5. 

2.5. Step 5: Test the performance of the surrogate model 

The initial condition of the test set 𝑠1
(𝑐𝑡) is the input of the proxy trained from step 1 to step 4, 

where 𝑐𝑡 denotes the control of the testing set. The algorithm of computing the snapshots-matrix 

𝑆  with the proxy and the input 𝑠1
(𝑐𝑡)  is shown in Figure 2.14. Then, 𝑆  is compared with the 

snapshots-matrix collected from the high-fidelity model 𝑋(𝑡𝑒𝑠𝑡) to evaluate the performance of the 

whole NIROM method. The results of estimation are shown in detail in the chapter of Application 

of the methodology.  
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Testing: 

  Data: 𝑠1
(𝑐𝑡), 𝑅,𝑊(𝑖), 𝛥(𝑖), 𝐷𝑝(𝑖), 𝜙(𝑖), where 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛)] 

  Result: 𝑆 

1    𝑅 = 𝑅(: ,1: 𝑒𝑛𝑑 − 1, : ) 

2    𝑆(: ,1) = 𝑠1
(𝑐𝑡) 

3    𝑟1 =  𝜙𝑇 ∗ 𝑠1
(𝑐𝑡) 

4    𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟1 

5    𝑟𝑒𝑑𝑆(: ,1) = 𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 

6    for 𝑘 =  0: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑡𝑢𝑟𝑛) − 1 

7         for 𝑡 = 𝑡𝑡𝑢𝑟𝑛(𝑘): 𝑡𝑡𝑢𝑟𝑛(𝑘 + 1) − 1    /*  𝒕𝒕𝒖𝒓𝒏(𝟎) = 𝟏  */ 

8               for i = 1: 𝑜 

9                      for j = 1: (𝑛𝑡 − 1) ∗ 𝑢 

10                          d = compute distance between 𝑥(𝑖, : ) and 𝑥(𝑗, : ) with eq. 5 

11                            𝑓(𝑖, 1) = 𝑓(𝑖, 1) + [𝑊(𝑘)](𝑖, 𝑗) ∗ 𝛽(𝑑)  

12                    end 

13              end 

14               𝑟𝑁𝑒𝑥𝑡 = 𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑓 

15                𝑟𝑒𝑑𝑆(: , 𝑡 + 1) = 𝑟𝑁𝑒𝑥𝑡 

16                𝑟𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟𝑁𝑒𝑥𝑡         

17         end 

18         𝑆(: , 𝑡𝑡𝑢𝑟𝑛(𝑘) + 1: 𝑡𝑡𝑢𝑟𝑛(𝑘 + 1))… 

19          = [𝜙(𝑘)𝑡 ]−1 ∗ 𝑟𝑒𝑑𝑆(: , 𝑡𝑡𝑢𝑟𝑛(𝑘) + 1: 𝑡𝑡𝑢𝑟𝑛(𝑘 + 1)) 

20   end 

21   return 𝑆 

 

Figure 2.14 algorithm of computing the snapshots-matrix 𝑆 with the proxy and the input 𝑠1
(𝑐𝑡) 
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3. APPLICATION OF THE METHODOLOGY 

3.1. UNISIM-I-D model 

In the first case study, the NIROM method is applied on the UNISIM-I-D model to obtain the 

pressure and oil saturation field. To set up the model, the four production wells are producing at 

constant flow rate at first and then switch to produce at constant bottom-hole pressure when the 

reservoir pressure is not high enough to support constant oil flowrate production. Three different 

selections of timestep and timestep interval used to evaluate the performance of the NIROM 

method are 60 timesteps * 4 months = 20 years, 120 timesteps * 2 months = 20 years, 240 timesteps 

* 1 month = 20 years. The performance of the proxies trained by different timestep selections are 

compared.  

One thing to be clarified is that all the four wells are drilled on the left side of the fault and the 

spread of pressure front and saturation front is stopped by the fault. Thus, the grids on the right of 

the fault will not be affected and the pressure and saturation on the right side keep unchanged. The 

NIROM method can capture this phenomenon perfectly. However, in this thesis, the states of the 

grids on the right side of the fault are not shown in the pressure map and the saturation map, and 

it is not included in the error calculation in order to better evaluate the ability of NIROM to model 

changing properties. 

Firstly, the results without validation (without implementing the step 4 in the chapter of 

Methodology) are shown, and then, the results of using validation set to improve the performance 

of the proxy in predicting multiple variation trends of the states is shown. The two sets of results 

will be compared and discussed afterwards. 
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3.1.1. NIROM method on UNISIM-I-D model without validation 

In Table 3.1, the 5 different sets of controls of oil production rates used for generating the training 

set are listed under the column of training set initial oil production rate, and the oil production rates 

used for testing the performance of the NIROM method is listed under the column of testing set 

initial oil production rate. The training set is used as input to train the proxy of the high-fidelity 

reservoir simulation model following the procedure introduced in the chapter of Methodology. 

Then, the proxy is used to predict the snapshots-matrix with the input of the initial condition of the 

states of the testing set, and the snapshots-matrix is compared with it generated by the high-fidelity 

model to evaluate the accuracy of the NIROM method. 

In Table 3.2, the POD order (the number of singular values kept) used for each state variable is 

listed. When POD is implemented, the row dimension of the snapshots-matrix of one state variable 

is reduced to its corresponding POD order. The reason why the POD order used for the oil 

saturation is doubled from it used for the pressure is that the variation of oil saturation is usually 

more complex than the variation of pressure, and it is easier for oil saturation to be influenced by 

the high heterogeneity of the reservoir. The state variables usually have the most severe variation 

in the wells, and this needs to be modelled more carefully. Therefore, in order to make sure that 

the information of the state variables from the well is kept while training, the snapshots of the state 

variables in well grids are taken separately from the non-well grids.  
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Table 3.1 The initial oil flowrates for the training set and the testing set for each well in the case 

study of UNISIM-I-D without validation. 

Well name 
Training set initial oil production rate 

(m3/d) 
Testing set initial oil production rate 

(m3/d) 

NA1A 900 950 1000 1050 1100 925 

NA2 900 950 1000 1050 1100 975 

NA3D 900 950 1000 1050 1100 1025 

RJS19 900 950 1000 1050 1100 1075 

 

Table 3.2 The POD order for each state variable used for UNISIM-I-D model. 

  

Non-
well 
grids 

pressure  

Non-well 
grids oil 

saturation 

Non-well 
grids 
water 

saturation 

Well 
grids 

pressure 

Well grids 
oil 

saturation 

Well grids 
water 

saturation 

Well 
pressure 

POD order 10 20 20 10 20 20 10 

 

 

3.1.1.1.  Pressure matching results on UNISIM-I-D without validation 

In the results of pressure prediction, the pressure obtained from the NIROM method matches quite 

well in general with it collected from the high-fidelity reservoir simulation model. Figure 3.1 

shows the pressure matching results for the three different timestep setups in normal grids (not 

passed through by a well) and well grids. The pressure predicted by the NIROM method has 

captured the general trend in both normal grids and well grids. There are two obvious turning 

points in the pressure curve. One is at around 2 years because of the transfer from transient flow 

to pseudo-steady state flow, and the other is at around 12 years due to the switch of production 

strategy from constant oil flowrate production to constant bottom hole pressure production. The 

pressure curve predicted by the NIROM method is a little off from the pressure curve obtained 



 

30 

 

from the high-fidelity model at these turning points. This issue is improved when shorter timestep 

interval is used. 

To quantify the accuracy of the NIROM method, relative error is computed for each state variable. 

Figure 3.2 shows the average relative error of the pressure of normal grids. As we can see, the 

relative error reaches to the local highest point at around 2 years when the flow pattern switches.  

Generally, the NIROM method has better performance in pressure prediction when using shorter 

timestep interval for generating the training set. This is because shorter timestep interval and more 

timesteps taken in the training set means more detailed information about the model. This behavior 

is shown clearly in Figure 3.2. The case using the shortest timestep interval has the highest 

accuracy (within 3.22% average relative error), and the case using longest timestep has the worst 

accuracy (within 11.06% average relative error). 

Figure 3.3 shows the average relative error of the pressure for well grids. Compared with Figure 

3.2, the pressure in the well grids predicted by the NIROM method has higher relative error. The 

average relative error reaches to 10% and to 23.26% in the best case (240 steps * 1 month) and the 

worst case (60 steps * 4 months). Even though POD is implemented to the snapshots-matrix of the 

well grids and the normal grids separately, and the energy percentage of POD is high enough to 

guaranty that most information of the principle components related to the wells is reserved in the 

reduced snapshots matrix obtained from POD, the performance of the NIROM method in 

predicting the pressure in the well grids is still worse than it in normal grids. This is because that 

the well grids have more rapid and obvious reaction regarding the switch of production strategy, 

and there is a sharper turning point in the pressure curve in the well grids. It is hard for the proxy 

to capture such detail in the well. 
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Pressure Matching Results for Normal Grids Pressure Matching Results for Well Grids 

  

  

  

Figure 3.1 Pressure matching results of 3 different selections of timestep interval for UNISIM-I-

D without validation. 
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Figure 3.2 Average relative error of pressure for normal grids in UNISIM-I-D without validation. 
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Figure 3.3 Average relative error of pressure for well grids in UNISIM-I-D without validation. 

 

Figure 3.4 shows the pressure map of the first layer of UNISIM-I-D at the end of the simulation 

(20 years) obtained from the high-fidelity reservoir simulation model (CMG) for the test set. The 

pressure maps predicted by the NIROM method with the three different timestep selections are 

shown in the first column of Figure 3.5. The relative error of each grid is shown in the second 

column in Figure 3.5. In the pressure maps in the first column, the NIROM method has captured 

the location of the pressure front in all three timestep selections. In the relative error maps in the 

second column, the highest relative error concentrates around the four production wells. This is 

because of the phenomenon mentioned above that the well grids have a more rapid and obvious 

reaction to the switch in production strategy, and it is hard to be captured by the NIROM method. 

This problem is partly solved by using shorter timestep interval and more timesteps while training, 
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which has improved the overall accuracy of the proxy obtained. Although the relative error near 

the wells is still higher than it in the normal grids, it is within an acceptable range (within 10 % 

shown in Figure 3.3 when using the shortest timestep interval for training). 

 

Figure 3.4 Pressure map of layer 1 of UNISIM-I-D at 20 years obtained by high-fidelity reservoir 

simulator. 
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Pressure Map of the First Layer of UNISIM-I-

D Obtained by the NIROM Method 

Relative Error of Pressure in the First Layer 

of UNISIM-I-D 

  

  

  

Figure 3.5 Pressure map of layer 1 of UNISIM-I-D at 20 years obtained by the NIROM method 

without validation for 3 different selections of timestep intervals(left column). The relative error 

of pressure for each grid (right column). 
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3.1.1.2.  Oil saturation matching results on UNISIM-I-D without validation 

Figure 3.6 presents the matching results of oil saturation obtained from the NIROM proxy and 

from the high-fidelity simulator for the three different timestep selections. The oil saturation 

prediction obtained by the NIROM method is not as accurate as the pressure prediction. Before 

the oil saturation front reaches to a grid, the oil saturation in the grid holds constant for some time, 

the proxy has captured this behavior well. However, right after the oil saturation front reaches to 

the grid, where the oil saturation starts to decrease sharply, the saturation is overestimated by the 

NIROM method.  

The proxy has relative worse performance when multiple variation trends of the state variable exist. 

The variation curve predicted by RBF algorithm tends to be smoother compared to the curve 

obtained by the high-fidelity model. This is because the prediction using RBF algorithm is affected 

by all the data points in the training set basing on the distance. The data points coming from one 

of the trends may be far away from the data points from other trends in distance, which means the 

effect of them has been minimized by the radial basis function automatically. However, these 

points from a different trend still offset some influence of the data points in the correct trend to the 

prediction result due to cumulation effect.  

The oil saturation matching results for normal grids shown in Figure 3.6 is a good example of this 

characteristic of the RBF algorithm. In the training set, the data points can be separated into three 

groups corresponding to the three different trends in oil saturation (e.g. 1. the phase before the 

saturation front reaches to the grid, 2. after the saturation front reaches to the grid and the oil 

saturation has not decreased to the residue oil saturation, 3. after the oil saturation reduces to the 

residue oil saturation). When computing the snapshots in the second and third trend using RBF 

algorithm, the data points in the first trend still has influence on the snapshots.  
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This issue is improved by an algorithm aiming at capturing the multiple variation trends of the 

state which is introduced in the chapter of Methodology in the section of step 4. The results of 

implementing this algorithm is presented in the next section. 
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Oil Saturation Matching Results for Normal 

Grids 

Oil Saturation Matching Results for Well 

Grids 

  

  

  

Figure 3.6 Oil saturation matching results of 3 different selections of timestep interval for 

UNISIM-I-D without validation. 
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Figure 3.7 and Figure 3.8 present the average relative error of oil saturation for normal grids and 

well grids respectively. The case trained by the shortest timestep interval has the highest accuracy 

in general in both the normal grids and the well grids (within 6% average relative error for normal 

grids and within 5.45% average relative error for well grids). 

 

Figure 3.7 Average relative error of oil saturation for normal grids in UNISIM-I-D without 

validation. 
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Figure 3.8 Average relative error of oil saturation for well grids in UNISIM-I-D without 

validation. 

 

Figure 3.9 presents the oil saturation map of the first layer of UNISIM-I-D obtained from the high-

fidelity model. In Figure 3.10, the first column presents the oil saturation maps predicted by the 

proxy with the three different timestep selections. The second column shows the corresponding 

relative error maps. Comparing the relative error maps with Figure 1.1, we can see that the highest 

relative error concentrates around the area which has relative higher permeability. The oil depletes 

faster in this area which makes the turning between the behaviors of each phase sharper, and thus 

makes it harder for the proxy to capture. 
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Figure 3.9 Oil saturation map of layer 1 of UNISIM-I-D at 20 years obtained by high-fidelity 

reservoir simulator.
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Oil Saturation Map of the First Layer of 

UNISIM-I-D Obtained by the NIROM 

Method 

Relative Error of Oil Saturation in the First 

Layer of UNISIM-I-D 

  

  

  

Figure 3.10 Oil saturation map of layer 1 of UNISIM-I-D at 20 years obtained by the NIROM 

method without validation for 3 different selections of timestep intervals(left column). The 

relative error of oil saturation for each grid (right column).



 

43 

 

3.1.1.3.  Oil rate matching results without validation 

Figure 3.11 to Figure 3.13 show the oil production rate computed by the NIROM method and the 

high-fidelity reservoir simulator in the cases of 60 timesteps * 4 months = 20 years, 120 timesteps 

* 2 months = 20 years and 240 timesteps * 1 month = 20 years respectively. We can see that the 

NIROM method has generated reasonable oil production rate result for each well in general. 

However, when the oil production curve reaches to the switching point of constant rate production 

to constant bottom-hole pressure production, the NIROM method has the worst prediction result. 

This decrease in accuracy of prediction is improved when using training data set built by shorter 

timestep interval and will be further improved by using a validation data set. 

  

  
Figure 3.11 60 timesteps * 4 months oil rate matching results for each well (without validation). 
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Figure 3.12 120 timesteps * 2 months oil rate matching results for each well (without validation). 
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Figure 3.13 240 timesteps * 1 month oil rate matching results for each well (without validation). 

 

Figure 3.14 to Figure 3.16 show the relative error of oil rate prediction for each well in the cases 

of 60 timesteps * 4 months = 20 years, 120 timesteps * 2 months = 20 years and 240 timesteps * 

1 month = 20 years respectively. We can more clearly see that using training data set built by 

shorter timestep interval can improve the performance of the NIROM method in oil rate prediction. 

In the most accurate case, which uses 1 month as the timestep interval, the highest relative error is 

5.61%, 6.22%, 15.35%, 10.69% for the well NA1A, NA2, NA3D, RJS19 respectively. 
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Figure 3.14 60 timesteps * 4 months oil rate relative error (without validation). 
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Figure 3.15 120 timesteps * 2 months oil rate relative error (without validation). 
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Figure 3.16 240 timesteps * 1 month oil rate relative error (without validation). 

 

Figure 3.17 to Figure 3.19 show the cumulative oil production volume for each timestep case, 

and Figure 3.20 to Figure 3.22 show the correlated relative error plot. The NIROM method has 

generated accurate prediction in cumulative oil production and the highest relative error are 2.14%, 

3.96%, 5.86%, 8.02% in well NA1A, NA2, NA3D, RJS19 respectively. 
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Figure 3.17 60 timesteps * 4 months cumulative oil production volume matching results for each 

well (without validation). 
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Figure 3.18 120 timesteps * 2 months cumulative oil production volume matching results for 

each well (without validation). 
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Figure 3.19 240 timesteps * 1 month cumulative oil production volume matching results for each 

well (without validation). 
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Figure 3.20 60 timesteps * 4 months cumulative oil production volume relative error (without 

validation). 
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Figure 3.21 120 timesteps * 2 months cumulative oil production volume relative error (without 

validation). 
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Figure 3.22 240 timesteps * 1 month cumulative oil production volume relative error (without 

validation). 

 

 

3.1.1.4.  Time reduction on UNISIM-I-D without validation 

Table 3.3 presents the time data of implementing the NIROM method without using the validation 

method (step 4 in the chapter of Methodology). The proxy can reduce the computational time of 

running the high-fidelity simulation model significantly in all three cases. In the timestep selection 

that has generated the most accurate prediction results of the states using the most timesteps in the 

training set (240 steps * 1 month = 20 years), the proxy can reduce 60.65% of the computational 

time for each round of running the model compared with running the high-fidelity model.  
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When larger number of timesteps are used for training, the time reduction ratio decreases. The 

reason for this is that when more snapshots are used for training, more weighting factors are needed 

for building the surrogate model, because the weighting factor is corresponding to the distance 

between the reduced snapshots of each two timesteps. Therefore, in the process of prediction, more 

computation is needed when iteratively computing the reduced snapshot of the next timestep with 

the higher dimensional surrogate model. 

 Therefore, we can expect that if too many snapshots are used for training, the time reduced ratio 

will eventually decrease to zero or even negative. The balance between the accuracy of prediction 

and the computational time needs to be considered in most of the model reduction problems. 

 

Table 3.3 Time data of the NIROM method for UNISIM-I-D without validation. 

 

 

3.1.2. NIROM method on UNISIM-I-D model with validation 

In this section, the results of implementing the algorithm of improving the performance of the 

NIROM method when multiple variation trends of the state exist are presented. A validation set is 

needed for identifying the possible turning points of the variation trend of the state. The flowrate 

setup of the validation set is shown in Table 3.4. Except the additional validation set, all the other 

setup of the model (e.g. flowrates for setting up the training and testing set and the POD orders) 

are the same as before. 

Timesteps

High-Fidelity Commercial 

Simulator (CMG) Running 

Time (s)

Training Time (s) Testing Time (s）
Computational 

Time Reduction 

Ratio

60 steps * 4 months = 20 years 79.69 34.52 6.17 92.26%

120 steps * 2 months = 20 years 124.9 100.63 19.49 84.40%

240 steps * 1 month = 20 years 203.38 379.88 80.03 60.65%
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Table 3.4 The initial oil flowrates for the training set, the validation set, and the testing set for 

each well in the case study of UNISIM-I-D. 

Well Name 
Training Set Initial Oil Production 

Rate (m3/d) 

Validation Set Initial 
Oil Production Rate 

(m3/d) 

Testing Set Initial 
Oil Production Rate 

(m3/d) 

NA1A 900 950 1000 1050 1100 925 925 

NA2 900 950 1000 1050 1100 925 975 

NA3D 900 950 1000 1050 1100 925 1025 

RJS19 900 950 1000 1050 1100 925 1075 

 

3.1.2.1.  Pressure matching results on UNISIM-I-D with validation 

Figure 3.23 shows the pressure matching results for the three different timestep selections after 

implementing the validation algorithm. Figure 3.24 and Figure 3.25 show the average relative 

error of the pressure predicted by the proxy in normal grids and well grids respectively. The 

shortest timestep interval has the best accuracy results (within 6.25% for normal grids and 7.46% 

for well grids), and the longest timestep interval has the worst results (within 11.68 % for normal 

grids and 13.95% for well grids). Compared with Figure 3.2 and Figure 3.3, the proxy using the 

validation algorithm has better performance in the well grids and slightly worse accuracy in the 

normal grids. 
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Pressure Matching Results for Normal Grids Pressure Matching Results for Well Grids 

  

  

  

Figure 3.23 Pressure matching results of 3 different selections of timestep interval for UNISIM-

I-D with validation. 
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Figure 3.24 Average relative error of pressure for normal grids in UNISIM-I-D with validation. 
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Figure 3.25 Average relative error of pressure for well grids in UNISIM-I-D with validation. 

 

The left column of Figure 3.26 shows the pressure map obtained by the proxy for the three 

different timestep selections after the validation algorithm is implemented, and the right column 

shows the corresponding relative error map. Compared with Figure 3.5, the validation algorithm 

does not change the results obviously, because the variation of pressure is relative simpler than the 

variation of oil saturation, and the pressure prediction results for the proxy before is already quite 

accurate.
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Pressure Map of the First Layer of UNISIM-I-

D Obtained by the NIROM Method After 

Implementing the Validation Algorithm 

Relative Error of Pressure in the First Layer 

of UNISIM-I-D After Implementing the 

Validation Algorithm 

  

  

  

Figure 3.26 Pressure map of layer 1 of UNISIM-I-D at 20 years obtained by the NIROM method 

with validation for 3 different selections of timestep intervals(left column). The relative error of 

pressure for each grid (right column)
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3.1.2.2.  Oil saturation matching results on UNISIM-I-D with validation 

Figure 3.27 shows the oil saturation matching results for the three different timestep selections 

after implementing the validation algorithm. Compared with Figure 3.6, the oil saturation curve 

obtained by the NIROM method is much closer to the curve generated by the high-fidelity model 

in both normal grids and well grids. The performance of the proxy in predicting multiple variation 

behaviors of the oil saturation is significantly improved, and this time, the proxy can capture the 

residue oil saturation correctly, which is severely over-estimated when the algorithm is not 

implemented. The proxy is still not able to perfectly capture the turning points even it is built up 

with the consider of multiple variation trends of the state due to the nature of RBF algorithm. 

However, this issue can be improved by using shorter timestep interval for the training set. 

Figure 3.28 and Figure 3.29 show the average relative error of oil saturation for normal grids and 

well grids after the validation algorithm is implemented respectively. The relative error clearly 

proves that the validation process has improved the accuracy of the NIROM method. Before the 

validation algorithm is implemented, the highest average relative error for the normal grids are 11% 

and 6% for the worst and best selections of timestep interval, which reduce to 4.76% and 4.13%. 

For the well grids, the highest average relative error reduces from 8.5% and 5.45% to 4.72% and 

2.3% for the worst and best timestep selections. 
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Oil Saturation Matching Results for Normal 

Grids 

Oil Saturation Matching Results for Well 

Grids 

  

  

  

Figure 3.27 Oil saturation matching results of 3 different selections of timestep interval for 

UNISIM-I-D with validation. 
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Figure 3.28 Average relative error of oil saturation for normal grids in UNISIM-I-D with 

validation. 
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Figure 3.29 Average relative error of oil saturation for well grids in UNISIM-I-D with validation. 

 

The left column of Figure 3.30 shows the oil saturation map predicted by the proxy for the three 

different timestep selections after the validation algorithm is implemented, and the right column 

shows the corresponding relative error map. Compared with Figure 3.10, the accuracy of the 

NIROM method is significantly improved, especially in the grids that have high porosity and 

permeability. This is because the NIROM method can better capture the relative sharper changes 

after the validation algorithm is implemented. 
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Oil Saturation Map of UNISIM-I-D Obtained 

by the NIROM Method After Implementing 

the Validation Algorithm 

Relative Error of Oil Saturation of UNISIM-I-

D After Implementing the Validation 

Algorithm 

  

  

  

Figure 3.30 Oil saturation map of layer 1 of UNISIM-I-D at 20 years obtained by the NIROM 

method with validation for 3 different selections of timestep intervals(left column). The relative 

error of oil saturation for each grid (right column).
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3.1.2.3.  Oil rate matching results with validation 

Figure 3.31 to Figure 3.33 show the oil rate matching results for each producer when a validation 

data set is used to tune the surrogate model and make it capture the multiple variation trends of the 

state variables better. Compared with Figure 3.11 to Figure 3.13, the NIROM method has 

generated much more accurate prediction at the switching point from constant oil rate production 

to constant bottom-hole pressure production. 

  

  
Figure 3.31 60 timesteps * 4 months oil rate matching results for each well (with validation). 
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Figure 3.32 120 timesteps * 2 months oil rate matching results for each well (with validation). 
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Figure 3.33 240 timesteps * 1 month oil rate matching results for each well (with validation). 

 

Figure 3.34 to Figure 3.36 present the relative error of oil production rate of the prediction results 

of the NIROM method. The case using 1 month as the timestep interval has generated the most 

accurate prediction. The highest relative error is 2.86%, 4.15%, 5.48%, 8.13% in well NA1A, NA2, 

NA3D, RJS19 respectively. Compared with the case without the validation process, all 4 wells 

have generated more accurate prediction in oil production rate. 
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Figure 3.34 60 timesteps * 4 months oil rate relative error (with validation). 
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Figure 3.35 120 timesteps * 2 months oil rate relative error (with validation). 
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Figure 3.36 240 timesteps * 1 month oil rate relative error (with validation). 

 

Figure 3.37 to Figure 3.39 show the cumulative oil production volume prediction result in each 

well for each timestep case when the validation process is conducted. Figure 3.40 to Figure 3.42 

show the correlated relative error. The case using 1 month as the timestep interval for training has 

generated the most accurate prediction results. The highest relative error in the most accurate 

prediction result is 1.43%, 2.64%, 3.91%, 5.35% in well NA1A, NA2, NA3D, RJS19 respectively. 

The NIROM method has less relative error in all 4 producers compared with the no validation 

cases. 
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Figure 3.37 60 timesteps * 4 months cumulative oil production volume matching results for each 

well (with validation). 
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Figure 3.38 120 timesteps * 2 months cumulative oil production volume matching results for 

each well (with validation). 

  



 

74 

 

  

  
Figure 3.39 240 timesteps * 1 month cumulative oil production volume matching results for each 

well (with validation). 
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Figure 3.40 60 timesteps * 4 months cumulative oil production volume relative error (with 

validation). 
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Figure 3.41 120 timesteps * 2 months cumulative oil production volume relative error (with 

validation). 
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Figure 3.42 240 timesteps * 1 month cumulative oil production volume relative error (with 

validation). 

 

3.1.2.4. Time reduction on UNISIM-I-D with validation 

Table 3.5 presents the time data of implementing the NIROM method with the validation 

algorithm. Compared with Table 3.5, the training time significant increases, because more than 

one surrogate model are trained to capture multiple variation trends of the state after validation. 

The more complex the variation of the state, the more surrogate models are needed. Also, one 

round of validation is needed to identify the turning points of the trends of the variation of the state, 

which is taking additional computational time. However, all the time increased is in the offline 

process, and for the online process (testing), the computational time remains roughly the same as 



 

78 

 

before. Therefore, the increase in the offline time will become negligible compared with the time 

saved when many rounds of prediction of different simulation setups are run. 

Table 3.5 Time data of the NIROM method for UNISIM-I-D with validation. 

 

 

3.2. Geothermal Model 

After discussing the performance of the NIROM method on UNISIM-I-D in which isothermal 

assumption is made, a geothermal model is built to assess the performance of the NIROM method 

when non-isothermal condition needs to be considered. In this model, 8 injection wells and 7 

production wells are set up, and the location of the wells are shown in Figure 1.2. Each well is 

perforated from layer 3 to layer 12 and injecting or producing at constant water flowrate. The 

initial aquifer temperature is 170 ℃ and the injection wells are injecting water at 25 ℃. 

The same as what we did in the UNISIM-I-D model, the results of not implementing the validation 

algorithm is shown firstly. Then, the results of implementing the NIROM method with validation 

are shown, and they are compared with the results of without validation to evaluate the 

effectiveness of the validation algorithm in identifying multiple variation trends of the state, and 

thus improve the performance of the NIROM method. 

3.2.1. NIROM method on geothermal model without validation 

The well injection rate and production rate used for the training dataset and testing dataset are 

shown in Table 3.6. The simulating time is around 5 years in this model. The Injection process 

Online

Training Time (s) Validation Time (s) Testing Time (s)

60 steps * 4 months = 20 years 79.69 54.51 5.49 5.26 93.40%

120 steps * 2 months = 20 years 124.9 181.84 19.33 18.68 85.04%

240 steps * 1 month = 20 years 203.38 714.15 81.38 73.18 64.02%

OfflineHigh-Fidelity Commercial 

Simulator (CMG) Running 

Time (s)

Computational 

Time Reduction 

Ratio

Timesteps
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results in the increase of pressure near around the injection well for a very short piece of time 

(several hours). To capture this behavior correctly in the high-fidelity simulation model, a few 

short timesteps (4 hours) are used. In this case study, three different timestep cases are tested which 

are 8 steps * 4 hours + 60 steps * 30 days, 8 steps * 4 hours + 120 steps * 15 days, 8 steps * 4 

hours + 360 steps * 5 days. The performance of the NIROM method in predicting the pressure and 

temperature with these three timestep selections are shown in the following sections. The POD 

orders used for temperature and pressure of normal grids, injection well grids and production well 

grids are shown in Table 3.7. 
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Table 3.6 The initial water flowrates for the training set and the testing set for each well in the 

case study of the geothermal model without validation. 

  Training Set Well Injection/Production Rate (m3/d) 
Testing Set Well 

Injection/Production Rate 
(m3/d) 

Inj-1 625 675 725 775 825 650 

Inj-2 625 675 725 775 825 650 

Inj-3 625 675 725 775 825 650 

Inj-4 625 675 725 775 825 650 

Inj-5 625 675 725 775 825 650 

Inj-6 625 675 725 775 825 650 

Inj-7 625 675 725 775 825 650 

Inj-8 625 675 725 775 825 650 

Prod-1 2000 2100 2200 2300 2400 2350 

Prod-2 2000 2100 2200 2300 2400 2350 

Prod-3 2000 2100 2200 2300 2400 2350 

Prod-4 2000 2100 2200 2300 2400 2350 

Prod-5 2000 2100 2200 2300 2400 2350 

Prod-6 2000 2100 2200 2300 2400 2350 

Prod-7 2000 2100 2200 2300 2400 2350 
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Table 3.7 The POD order for each state variable used for the geothermal model. 

  
Normal 

Grids 
Pressure 

Injection 
Well Grids 

Temperature 

Production 
Well Grids 
Pressure 

Normal 
Grids 

Temperature 

Injection 
Well Grids 

Temperature 

 
Production 
Well Grids 

Temperature 

POD 
order 

10 10 10 10 10 
 

10 

 

 

3.2.1.1.  Pressure matching results on geothermal model without validation 

Figure 3.43 presents the pressure matching results of normal grids of the three different timestep 

selections, and Figure 3.44 shows the average relative error for pressure in normal grids of 

different timestep cases.  The pressure decrease of the normal grids in the geothermal model is 

relative smoother than it of the UNISIM-I-D model. Therefore, the length of the timestep interval 

used for training does not affect the accuracy of the NIROM method as obvious as in UNISIM-I-

D, and the average relative error of all three cases are within 9%.  
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Figure 3.43 Pressure matching results for normal grids of 3 different selections of timestep 

interval for the geothermal model without validation. 
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Figure 3.44 Average relative error of pressure for normal grids in the geothermal model without 

validation. 

 

Figure 3.45 shows the Pressure matching results for the injection well and production well grids. 

For all the three cases, the average relative error is generally within 10%. Compared with the 

UNISIM-I-D model, the geothermal model has much simpler geological properties (homogeneous 

and isotropic) but more complex operating scheme (both injection and production wells are used). 

The proxy has relative worse pressure matching results in this geothermal case due to the injection 

wells. The injection wells cause the pressure increasing for a very short piece of time and this 

increasing variation trend of pressure is inverse to the general pressure decreasing trend, which is 

hard for the proxy to capture. Therefore, the prediction of the proxy is a little off at the very 

beginning of the simulation, and this is cumulating gradually to the end of the simulation. 



 

84 

 

Pressure Matching Results for Injection Well 

Grids 

Pressure Matching Results for Production 

Well Grids 

  

  

  

Figure 3.45 Pressure matching results for well grids of 3 different selections of timestep interval 

for the geothermal model without validation. 
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Figure 3.46 Average relative error of pressure for injection well grids in the geothermal model 

without validation. 
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Figure 3.47 Average relative error of pressure for production well grids in the geothermal model 

without validation. 

 

3.2.1.2.  Temperature matching results on geothermal model without validation 

The variation of temperature in the normal grids and production well grids are negligible, and the 

temperature in most of these grids almost holds constant (only a few grids near around the well 

has slightly temperature variation due to the injection of cold water). Therefore, the matching 

results and the corresponding average relative error for these grids are not shown. 

Figure 3.48 shows the temperature matching results of the injection well grids for the three 

different timestep selections used. There is a sharp turning point on the temperature curve predicted 

by the NIROM method at the very beginning. This is because two different timestep intervals are 
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used in this model (4 hours timestep interval at the beginning and a longer timestep interval to the 

end). The prediction of temperature in the injection well grids by the proxy is clearly improved by 

using shorter timestep interval, and the sharp turning caused by the switching of timestep interval 

is also improved.  

Figure 3.49 shows the average relative error of the prediction of temperature in the injection well 

grids. The case of 8 steps * 4 hours + 360 steps * 5 days has generated the highest accuracy, in 

which the average relative error is within 21.85%. The case with the worst accuracy is 8 steps * 4 

hours + 60 steps * 30 days, and the highest average relative error can reach to 55.46%, which is 

not acceptable. 
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Figure 3.48 Temperature matching results for injection well grids of 3 different selections of 

timestep interval for the geothermal model without validation. 
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Figure 3.49 Average relative error of temperature for injection well grids in the geothermal 

model without validation. 

 

3.2.1.3.  Time reduction on geothermal model without validation 

Table 3.8 presents the time data of implementing the NIROM method to the geothermal model 

without validation.  All three cases have reduced the computational time significantly. The most 

accurate case (8 steps * 4 hours + 360 steps * 5 days) has time reduction of 92.56% with the 

average relative error within 10% in pressure prediction and within 21.85% in temperature 

prediction. 

 

  



 

90 

 

Table 3.8 Time data of the NIROM method for the geothermal model without validation. 

 

3.2.2. NIROM method on geothermal model with validation  

The same as the procedure used in UNISIM-I-D model, a validation process is implemented 

following the algorithm introduced in the chapter of Methodology in the section of step 4 to help 

the NIROM method capture the multiple variation trends of the state. The flowrate of the wells 

used for building the validation set is shown in Table 3.9. Besides the additional validation set, 

the training set and testing set and the POD orders remain the same as before. 

Table 3.9 The initial water flowrates for the training set, validation set, and the testing set for 

each well in the case study of the geothermal model with validation. 

  
Training Set Well Injection/Production 

Rate (m3/d) 

Validation Set Well 
Injection/Production 

Rate (m3/d) 

Testing Set Well 
Injection/Production 

Rate (m3/d) 

Inj-1 625 675 725 775 825 700 650 

Inj-2 625 675 725 775 825 700 650 

Inj-3 625 675 725 775 825 700 650 

Inj-4 625 675 725 775 825 700 650 

Inj-5 625 675 725 775 825 700 650 

Inj-6 625 675 725 775 825 700 650 

Inj-7 625 675 725 775 825 700 650 

Inj-8 625 675 725 775 825 2150 650 

Prod-1 2000 2100 2200 2300 2400 2150 2350 

Prod-2 2000 2100 2200 2300 2400 2150 2350 

Prod-3 2000 2100 2200 2300 2400 2150 2350 

Prod-4 2000 2100 2200 2300 2400 2150 2350 

Prod-5 2000 2100 2200 2300 2400 2150 2350 

Prod-6 2000 2100 2200 2300 2400 2150 2350 

Prod-7 2000 2100 2200 2300 2400 2150 2350 

Timesteps

High-Fidelity Commercial 

Simulator (CMG) Running 

Time (s)

Training Time (s) Testing Time (s）
Computational 

Time Reduction 

Ratio

8 steps * 4 hours + 60 steps * 30 days 334 18.74 3.77 98.87%

8 steps * 4 hours + 120 steps * 15 days 584 59.95 12.88 97.79%

8 steps * 4 hours + 360 steps * 5 days 1425 457.05 105.99 92.56%
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3.2.2.1. Pressure matching results on geothermal model with validation 

Figure 3.50 and Figure 3.51 present the pressure matching results for the normal grids and the 

average relative error for the three different timestep selections when the validation process is 

implemented. The validation algorithm does not have obvious improvement on the matching 

results of the pressure curves obtained from the NIROM method and the high-fidelity model, 

because the pressure variation in the normal grids follows a smooth trend, and there is no sharp 

turning existing. The highest average relative error of pressure in normal grids remains below 9% 

in all three timestep setups.  
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Figure 3.50 Pressure matching results for normal grids of 3 different selections of timestep 

interval for the geothermal model with validation. 
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Figure 3.51 Average relative error of pressure for normal grids in the geothermal model with 

validation. 

 

Figure 3.52 shows the pressure matching results in the injection well and production well grids 

for the three different timestep intervals, and Figure 3.53 and Figure 3.54 underneath show the 

average relative error of pressure of injection well and production well grids. 

In the injection well grids, the average relative error is slightly improved. The average relative 

error in the case using 8 steps * 4 hours + 360 steps * 5 days decreases from 10.12% to 7.65%. At 

the same time, the average relative error of the production well grids does not have noticeable 

improvement. This is expected because the only turning in the variation trend of pressure is in the 

pressure of injection well grids. The pressure increases at first shortly due to injection and then 
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decreases because of draining from the reservoir. The algorithm successfully identifies this turning, 

and the accuracy in the injection well grids is slightly improved. 
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Pressure Matching Results for Injection Well 

Grids 

Pressure Matching Results for Production 

Well Grids 

  

  

  

Figure 3.52 Pressure matching results for well grids of 3 different selections of timestep interval 

for the geothermal model with validation. 
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Figure 3.53 Average relative error of pressure for injection well grids in the geothermal model 

with validation. 
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Figure 3.54 Average relative error of pressure for production well grids in the geothermal model 

with validation. 

 

3.2.2.2.  Temperature matching results on geothermal model with validation 

Figure 3.55 presents the temperature matching results in the injection well grids, and Figure 3.56 

shows the average relative error. The matching results are slightly improved in all three cases. The 

highest average relative error decreases from 55.46% to 52.83% in the case 8 steps * 4 hours + 60 

steps * 30 days, from 36.09% to 32.87% in the case 8 steps * 4 hours + 120 steps * 15 days, and 

from 21.85% to 17.26% in the case 8 steps * 4 hours + 360 steps * 5 days. 
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Figure 3.55 Temperature matching results for injection well grids of 3 different selections of 

timestep interval for the geothermal model with validation. 
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Figure 3.56 Average relative error of temperature for injection well grids in the geothermal 

model with validation. 

 

3.2.2.3.  Time reduction on geothermal model with validation 

Table 3.10 shows the time data of implementing the NIROM method with the validation process 

to the geothermal model. Compared with Table 3.8, the offline computational time significantly 

increases for all the three cases. The computational time reduced ratio for each round of running 

the simulation with different setups does not vary too much, which coincide with the results of 

time reduction obtained in the UNISIM-I-D model. 
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Table 3.10 Time data of the NIROM method for the geothermal model with validation. 
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4. LIMITATIONS 

When conducting reservoir simulation with the NIROM method using the surrogate model, the 

control imposed on the reservoir is input to the model in the format of control matrix. Noting that 

the surrogate model based on RBF is simply a combination of weighting factors and training data 

points if we describe the nature of it in one sentence, and therefore, it is not possible for it to 

generate reasonable prediction results for all the extreme conditions imposed. Thus, some 

requirements must be satisfied by the control matrix input. So far, the mathematical description of 

the boundary of whether the surrogate model can generate accurate prediction results on an 

arbitrary control matrix has not been thoroughly developed. However, the rule of thumb on the 

boundary of the control matrix that we can input into the surrogate model is that the value in the 

control matrix that we are predicting cannot beyond the range restricted by the minimum value 

and the maximum value in the control matrix used for training. For example, if we want to predict 

the variation of state variables triggered by a well with the oil flowrate of 1000 m3/d, the training 

control matrix must contain flowrate values greater than 1000 m3/d and less than 1000 m3/d. The 

schematic illustration of the reason is shown in Figure 4.1. The solid curve is the surrogate model 

trained by RBF using the training data points. Remember that in RBF algorithm, a weighting factor 

correlated to each training point is computed basing on the distance and it represents the influence 

of the training data point to the value of the surrogate model (prediction). If a new data point 

(control matrix value) is close to the training data points, the distance from it to the training data 

points are small and we can thus correctly compute the influence of the training data points to the 

new data point. In contrast, if the new data point is far from the training data points, when we plug 

in the distance to the radial basis function, the value of it decrease very fast along with the increase 

in distance, which means the accuracy of the influence computed cannot be guaranteed. When 
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computing the value of a data point which is far from the training points, it is similar to computing 

the value of it using the extension of the trend of the surrogate model (grey dashed line in Figure 

4.1) which may not be good enough to capture the nature of the system because of lack of training 

data points near around. 

 

Figure 4.1 Schematic illustration of the requirement of the control matrix imposed to the 

surrogate model 

 

Another factor that may limit the accuracy of the surrogate model is the number of training data 

set. In general, more training data sets used in training will result in more accurate prediction on 

the state variables, because the surrogate model is based on more knowledge of different controls. 

However, arbitrarily increasing the number of training data set will significantly affect the 

computational efficiency, because the weighting factor assigned to each training data point is 

computed by solving a linear equation, and the time expense of solving it increases exponentially 

with regards to the dimensions of it. Therefore, it is possible that in some very complex reservoir 

system, the surrogate model cannot obtain accurate prediction result even the computational time 
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of the surrogate model is greater than the high-fidelity simulator because of extremely large 

amount of training data points used.  



 

104 

 

5. CONCLUSIONS 

5.1. Summary 

In this work, a new non-intrusive reduced order modelling method is introduced. It has 5 steps 

which are snapshots collection, implementation of POD to obtain the training data set, 

implementation of RBF algorithm on the training set to obtain the proxy of the high-fidelity 

reservoir simulation model, the optional step of improving the performance of the proxy when 

multiple variation trends of the state exist with a validation process, testing the proxy on the testing 

data set built by setting up the system with different set of controls. The first 4 steps are conducted 

offline while the last step is online. 

The NIROM method is implemented on two different case studies to evaluate both the accuracy 

and the ability of reducing computational time of the proxy. The first case study uses UNISIM-I-

D reservoir model which is a 3-phase heterogeneous, isotropic, isothermal model. There are 4 

production wells in this model which are producing at constant oil production rate at first, and then 

switch to constant bottom-hole pressure production. In this case study, the accuracy of the proxy 

is evaluated based on the prediction of pressure and oil saturation in both normal grids (no well 

passing through) and well grids. The second case study is on a geothermal 3-dimentional model 

which is homogenous and isotropic. In this case study, cold water is injected with a constant 

flowrate to the reservoir, and hot water is extracted from the reservoir at a constant flowrate as 

well. The accuracy of the proxy in this case study is evaluated on pressure in normal grids, injection 

well grids, and production well grids, as well as temperature in injection well grids. For each case 

study, three different timestep intervals used for collecting the snapshots of the states are compared. 

In addition, the results of including the validation process and not including the validation process 

are compared. 
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5.2. Conclusions 

The NIROM method has achieved the goal of predicting the states of the reservoir simulation 

model within an acceptable error in reduced computational time compared to the high-fidelity 

reservoir simulation model. More specifically, in the case study of UNISIM-I-D model, the proxy 

can reduce the computational time by 64.02% for each round of running. This time reduction 

causes at most 6.25% and 7.46% average relative error of pressure in the normal grids and well 

grids, 4.13% and 2.3% average relative error of oil saturation in normal grids and well grids, and 

1.43%, 2.64%, 3.91%, 5.35% of relative error in cumulative oil production volume in well NA1A, 

NA2, NA3D, RJS19 respectively.  

In the case study of the geothermal model, the proxy can reduce the computational time by 92.16% 

and causes at most 8.17%, 7.65%, 10.23% of average relative error of pressure in normal grids, 

injection well grids and production well grids respectively, and causes at most 17.26% average 

relative error of temperature in injection well grids. 

In the two case studies, the proxy trained by using the shortest timestep interval to collect the 

snapshots for training has the highest accuracy in predicting the states in general. However, shorter 

timestep interval may result in the decrease in computational time reduction ratio. Therefore, the 

balance between the accuracy of the proxy and the time reduction on the model needs to be 

considered. 

When multiple trends appear in the variation of state, the validation algorithm has successfully 

identified the turning points of the switch of these trends, and thus improves the performance of 

the proxy by training a group of surrogate models for which each surrogate model corresponds 

with one variation trend. In the case study of UNISIM-I-D model, the validation algorithm has 

improved the accuracy of the prediction of oil saturation. It has reduced the highest average relative 
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error of oil saturation from 6% to 4.13% in normal grids, and from 5.45% to 2.3% in production 

well grids. In the case study of the geothermal model, the validation algorithm has improved the 

performance of predicting pressure and temperature in injection well grids. The highest average 

relative error of pressure is reduced from 10.11% to 7.65%, and the highest average relative error 

of temperature is reduced from 21.85% to 17.26%. 

5.3. Recommendations for future work 

In this work, we have only discussed the feasibility of the NIROM method when the flowrate of 

the well needs to be adjusted. The other controls of the wells are kept the same when training the 

proxy with different flowrates. For example, the bottom-hole pressure of the well is also possible 

to be changed manually when solving optimization problems, which is not discussed in this work. 

Also, in this work, the locations of the wells are fixed, and only vertical wells are considered in 

the case studies. However, in optimization problems, it is common to adjust the well locations and 

the inclination angle of the wells. The possibility of implementing this NIROM method to such 

cases needs to be explored in the future. 
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