

ANALYSIS OF NONNEGATIVE LEAST SQUARES ALGORITHMS

A Thesis

by

JASON STANLEY SATHYAKUMAR

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Freddie Witherden

Committee Members, Ignacio Rodriguez-Iturbe

 Daniele Mortari

Head of Department, Sharath Girimaji

May 2021

Major Subject: Ocean Engineering

Copyright 2021 Jason Stanley

ii

ABSTRACT

Nonnegative least squares problems (NNLS) which are least squares solutions

that are constrained to take nonnegative values often arise in many applications like

image processing, data mining, etc. There have been several approaches to solve such a

problem like the active set method by Lawson and Hanson, FNNLS by Bro and Jong, the

Quasi-Newton minimization method, and Randomized projections methods. In this

thesis, we evaluated the performance properties of all these algorithms by implementing

them in MATLAB and compared the results. The results obtained showed that

Randomized projections seem to work very efficiently, producing results around 3 times

faster than Quasi-Newton method with a relative error of 3.25% for randomly generated

matrices using MATLAB.

iii

DEDICATION

 This thesis is dedicated to my family and friends for their valuable support.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Freddie, for guiding me and

helping me throughout this research. I would also like to thank my committee members,

Dr. Ignacio, and Dr. Daniele, for their valuable comments on my thesis.

I would also like to thank my friends and colleagues and the department faculty

and staff for making my time at Texas A&M University a great experience.

Finally, thanks to my mother, father, and sister for their encouragement.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Dr.

Freddie Witherden [Advisor, Ocean Engineering] and Professor Dr. Ignacio Rodriguez-

Iturbe [Home Department – Ocean Engineering] and Professor Dr. Daniele Mortari

[Outside Department – Aerospace Engineering].

All work for the thesis was completed independently by the student.

Funding Sources

There are no outside funding contributions to acknowledge related to the research

and compilation of this document.

vi

NOMENCLATURE

LS Least Squares

NNLS Non-negative Least Squares

FNNLS Fast Non-negative Least Squares

SVD Singular Value Decomposition

vii

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

CONTRIBUTORS AND FUNDING SOURCES .. v

NOMENCLATURE .. vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES ... ix

LIST OF TABLES ... x

CHAPTER I INTRODUCTION .. 1

Motive of Research .. 1
Format of Research .. 1

CHAPTER II LEAST SQUARES ... 3

Mathematical Definition .. 3
Geometric Interpretation .. 4

Applications ... 6

Methods to solve Least Squares ... 8

CHAPTER III NON-NEGATIVE LEAST SQUARES ... 13

Importance of Non-Negative Least Squares .. 13
Mathematical Definition .. 14

Methods to solve Non-Negative Least Squares ... 15

CHAPTER IV TEST AND RESULTS .. 31

Test ... 31

Results .. 31

viii

CHAPTER V CONCLUSIONS ... 35

REFERENCES ... 36

APPENDIX A LAWSON & HANSON ALGORITHM CODE 37

APPENDIX B FNNLS ALGORITHM CODE .. 38

APPENDIX C QUASI-NEWTON ALGORITHM CODE .. 39

APPENDIX D RANDOMIZED ALGORITHM CODE ... 41

ix

LIST OF FIGURES

 Page

Figure 1 Geomteric Interpretation of the Least Squares solution……………. 5

Figure 2 Lawson & Hanson algorithm ... 17

Figure 3 Gradient Descent & Newton’s algorithm……………. 21

Figure 4 Quasi-Newton algorithm .. 25

Figure 5 Randomized NNLS algorithm……………. .. 30

Figure 6 Time vs matrix problem number .. 33

Figure 7 Relative norm vs matrix problem number……………. 34

x

LIST OF TABLES

 Page

Table 1. The list of matrix problems (labelled 1 to 8) used in the tests for m rows and

n columns. ... 31

Table 2. Cputime results (time in seconds) of the algorithms for each of the matrix

problem. .. 32

Table 3. Residual norm ‖𝐴𝑥 − 𝑏‖2 results of the algorithms for each of the matrix

problem. .. 33

1

CHAPTER I

INTRODUCTION

MOTIVE OF RESEARCH

Non-negative least square methods are used in various fields like image

processing, data mining, etc. There have been several algorithms that have been

proposed over the years to solve this kind of problem. Some of them include the Lawson

and Hanson algorithm (1974), FNNLS by Bro and Jong (1997), Quasi-Newton method

(2007), and the random projections method (2009). Many of these algorithms were

proposed nearly 10 years ago. With the improvement of processors and software over

the years, we wanted to see if there were significant improvements in the performance of

these algorithms individually and in comparison with each other.

The motive of this research was to implement these algorithms and compare the

performance parameters of the algorithms such as the computational time and the

residual error.

FORMAT OF RESEARCH

This research is divided into five sections as follows :

Chapter 1 describes the motive of the research.

Chapter 2 gives an introduction to least squares and the methods for solving a

least squares problem.

2

Chapter 3 presents the non-negative least squares problem and gives a detailed

explanation of the algorithms that are used in this research.

Chapter 4 describes the tests that were performed and the results that were

obtained for it.

Chapter 5 provides a summary of the research.

3

CHAPTER II

LEAST SQUARES

The Least Squares methods are used to find the approximate solution for an

overdetermined system of equations. They are called linear least squares when the given

system of equations is linear.

MATHEMATICAL DEFINITION

Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 and a vector 𝑏 ∈ ℝ𝑚×1, the vector 𝑥 ∈ ℝ𝑛×1 that

minimizes the L2-norm ‖𝐴𝑥 − 𝑏‖2 is called as the least squares solution to the system of

equations 𝐴𝑥 = 𝑏. The norm ‖𝐴𝑥 − 𝑏‖2 is called as the residual norm denoted by r =

‖𝐴𝑥 − 𝑏‖2.

𝑥 = argmin ‖𝐴𝑥 − 𝑏‖2

Example:

Given the system of equations 𝐴𝑥 = 𝑏 where 𝐴 = [
1 3
2 1

] and 𝑏 = [
2

−1
], we can

easily find the solution to the system by solving the equations 1𝑥 + 3𝑦 = 2 and

 2𝑥 + 1𝑦 = −1 which would give us the solution [
𝑥
𝑦] = [

−1
1

].

By adding another equation 2𝑥 − 2𝑦 = 3 to the existing system of equations,

we get 𝐴 = [
1 3
2 1
2 −2

] and 𝑏 = [
2

−1
3

]. The earlier solution we obtained clearly does not

solve the third equation 2(−1)– 2(1) = −4 ≠ 3. This is an example of an

4

overdetermined system of equations where we have more than the required number of

independent equations needed to determine the unknowns. In other words, the number of

equations (3 in this case) is higher than that of the number of unknowns (2, x and y in

this case). This is where we use a least squares solution to solve the overdetermined

system of equations. The solution to this new system would be [
𝑥
𝑦] = [

0.68
−0.12

] and the

residual norm would be 3.1305 which is lesser than the residual norm obtained for

[
𝑥
𝑦] = [

−1
1

] which is equal to 7.

GEOMETRIC INTERPRETATION

 The least squares solution can be viewed as the point on the column space of A

that is at the least distance from point b.

 Consider the overdetermined system of equations from the previous example.

The column space of matrix A is spanned by the column vectors 𝑎1 = [
1
2
2
] and

𝑎2 = [
3
1

−2
]. Taking the array x as x = [

𝑥
𝑦], the product Ax can be expanded as

𝐴𝑥 = [𝑎1 𝑎2]. [
𝑥
𝑦] = [𝑎1]𝑥 + [𝑎2]𝑦 which is the linear combination the column vectors of

A. Hence for any real vector x, Ax would be a vector in the column space of A pointing

to a point in the plane spanned by 𝑎1and 𝑎2. The norm ‖𝐴𝑥 − 𝑏‖2 would be the square

of the distance between this point and the point b = (2,-1,3). We know that the shortest

distance of a point from a plane is given by the length of the perpendicular from the

5

point to the plane. From Figure 1, we can observe that the point on the plane which is at

the least distance from b is (0.32, 1.24, 1.60). The vector joining this point from (0,0,0)

is given by Ax = [
0.32
1.24
1.60

] for x = [
0.68

−0.12
].

Figure 1. Geometric Interpretation of the Least Squares solution. Least Squares solution is

the vector x for which Ax is at the least distance from b.

The Uniqueness of Least Squares solution:

 The least squares solution always produces the least norm for ‖𝐴𝑥 − 𝑏‖2. To

prove this, say the least squares solution for the system is �̂�. The norm of this solution is

given by ‖𝐴𝑥 − 𝑏‖2. For any other vector 𝑥 ≠ �̂�, we have:

6

‖𝐴𝑥 − 𝑏‖2 = ‖𝐴𝑥 − 𝐴�̂� + 𝐴�̂� − 𝑏‖2

 = ‖𝐴(𝑥 − �̂�) + (𝐴�̂� − 𝑏)‖2

 = ‖𝐴(𝑥 − �̂�)‖2+‖𝐴�̂� − 𝑏‖2 + 2 𝐴(𝑥 − �̂�)𝑇(𝐴�̂� − 𝑏)

 = ‖𝐴(𝑥 − �̂�)‖2+‖𝐴�̂� − 𝑏‖2

> ‖𝐴�̂� − 𝑏‖2

𝐴(𝑥 − �̂�)𝑇(𝐴�̂� − 𝑏) is zero because 𝐴(𝑥 − �̂�)𝑇 is orthogonal to (𝐴�̂� − 𝑏). This is

because 𝐴(𝑥 − �̂�) is a vector that lies in the column space of 𝐴 (as 𝑥 ≠ �̂�, 𝐴(𝑥 − �̂�) is a

linear combination of the column space of 𝐴) and (𝐴�̂� − 𝑏) is a vector that is

perpendicular to the column space of A (as observed in the previous example). So

(𝐴�̂� − 𝑏) is orthogonal to 𝐴(𝑥 − �̂�) or vice versa.

APPLICATIONS

Least Sqaures methods have various applications in the field of statistics, control

systems, image processing, etc. Some of their simple applications are explained below:

1) Polynomial fitting:

Given the points (𝑥1, 𝑦1), (𝑥2, 𝑦2) …. (𝑥𝑚, 𝑦𝑚) we can find the best fit

polynomial of degree less than ‘n’ by solving the least squares problem Ax = b,

where:

𝐴 =

[

1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

. . 𝑥1
𝑛−1

. . 𝑥2
𝑛−1

. . .

. . .
1 𝑥𝑚 𝑥𝑚

2

. . .

. . .

. . 𝑥𝑚
𝑛−1]

 is known as the Vandermonde matrix

7

𝑥 =

[

𝑐0

𝑐1.
.

𝑐𝑛−1]

 and 𝑏 =

[

𝑦1

𝑦1.
.

𝑦𝑚]

Then the approximating polynomial passing through (𝑥1, 𝑦1), (𝑥2, 𝑦2) ….

(𝑥𝑚, 𝑦𝑚) with degree ‘n-1’ would then be given by :

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + ⋯+ 𝑐𝑛−1𝑥

𝑛

2) Deblurring of Images:

Least squares problem is used in deblurring images from the deblurring

model equation which is given by 𝑦 = 𝐴𝑥 + 𝑣, where 𝑥 is the unknown image, 𝑦

is the observed image, A is the blurring matrix, and 𝑣 is the noise. Images are of

the size MxN pixels stored as a single MNx1 vector in 𝑥 and 𝑦.

To solve, we minimize ‖𝐴𝑥 − 𝑦‖2 + 𝜆 (‖𝐷𝑉𝑥‖2 + ‖𝐷ℎ𝑥‖2), where the

first term is called the data fidelity term and the second term penalizes the

differences between the values at neighboring pixels:

‖𝐷𝑉𝑥‖2 + ‖𝐷ℎ𝑥‖2 = ∑ ∑ (𝑋𝑖,𝑗 − 𝑋𝑖,𝑗+1)
2𝑁−1

𝑗=1
𝑀
𝑖=1 + ∑ ∑ (𝑋𝑖,𝑗 − 𝑋𝑖+1,𝑗)

2𝑁
𝑗=1

𝑀−1
𝑖=1

where X is the MxN image stored in the MNx1 vector 𝑥. In this case, minimizing

‖𝐴𝑥 − 𝑦‖2 would be a least squares problem.

8

METHODS TO SOLVE LEAST SQUARES

Forming the Normal Equations:

Since we try to solve for the vector x that minimizes the norm ‖𝐴𝑥 − 𝑏‖2, we

need to find the vector for which the gradient of the objective function

(𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2) is zero.

𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2

 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏)

 = (𝑥𝑇𝐴𝑇 − 𝑏𝑇)(𝐴𝑥 − 𝑏)

 = 𝑥𝑇𝐴𝑇𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑏 − 𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏

We know that (𝑥𝑇𝐴𝑇𝑏)𝑇 = 𝑏𝑇(𝐴𝑇)𝑇(𝑥𝑇)𝑇 = 𝑏𝑇𝐴𝑥. Also, the size of 𝑥𝑇𝐴𝑇𝑏

(𝑥𝑇- 1xn and b – mx1) and 𝑏𝑇𝐴𝑥 (𝑏𝑇-1xm and x-nx1) are both 1x1. Hence,

𝑥𝑇𝐴𝑇𝑏 = 𝑏𝑇𝐴𝑥. This simplifies our objective function as:

 𝒇(𝒙) = 𝒙𝑻𝑨𝑻𝑨𝒙 − 𝟐 𝒙𝑻𝑨𝑻𝒃 + 𝒃𝑻𝒃

Taking gradient of the objective function we get:

∇𝑓(𝑥) = 2𝐴𝑇𝐴𝑥 − 2𝐴𝑇𝑏

 = 2𝐴𝑇(𝐴𝑥 − 𝑏)

Thus, to get the least squares solution we need to solve the equation:

𝐴𝑇(𝐴𝑥 − 𝑏) = 0

(Because at the minimum ∇𝑓(𝑥) = 0)

Simplifying the above equation we get:

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

9

These above equations are called as the normal equations of the least squares

problem. The coefficient matrix 𝐴𝑇𝐴 is called as the Gram matrix of A.

If A has linearly independent columns then:

- 𝐴𝑇𝐴 is non-singular.

- The normal equations have a unique solution (say �̂�), given by :

�̂� = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

The matrix (𝐴𝑇𝐴)−1𝐴𝑇 = 𝐴+ is called the pseudo-inverse of the matrix A.

Computational cost for forming the normal equations:

o To compute 𝐴𝑇𝐴, for each element we do ‘𝑚’ products and ‘𝑚 − 1’

addition operations. A total of 𝑛2 × (2𝑚 − 1) = 𝑂(𝑚𝑛2)

(𝑛2 − total elements) flops would be required to find all elements.

Since, 𝐴𝑇𝐴 is a symmetric matrix ((𝐴𝑇𝐴)𝑇 = 𝐴𝑇𝐴), computing either one

of the upper or lower triangle of the matrix should be enough to

determine it. Hence, it requires 𝑂(𝑚𝑛2) flops.

o To compute 𝐴𝑇𝑏, for each element we do ‘𝑚’ products and ‘𝑚 − 1’

addition operations. A total of 𝑛 (total elements) × (2𝑚 − 1) = 𝑂(𝑚𝑛)

flops would be required to find all elements.

Hence, a total of 𝑂(𝑚𝑛2) + 𝑂(𝑚𝑛) = 𝑂(𝑚𝑛2) would be required for

computing the normal equations.

- To solve the normal equations directly using the pseudo-inverse, we need 𝑂(𝑛3)

flops to compute the inverse of 𝐴𝑇𝐴 and 𝑂(𝑛2) flops to evaluate the product of

10

(𝐴𝑇𝐴)−1 and 𝐴𝑇𝑏. This is generally not a computationally efficient method to

solve the least squares methods especially when A is a very large matrix.

Solving Normal Equations:

 There are different methods to solve the normal equations after forming or

computing them. Some of them are as follows:

Cholesky Factorization:

Cholesky factorization is the decomposition of a positive-definite matrix into a

product of lower triangular matrix and its transpose. In our case, we can factorize our

𝐴𝑇𝐴 matrix into:

𝐴𝑇𝐴 = 𝐿𝐿𝑇

where 𝐿 − lower triangular matrix

This decomposition (to find the 𝐿 matrix) takes 𝑂(𝑚𝑛2) to compute.

Substituting this in the normal equations, we get:

𝐿𝐿𝑇𝑥 = 𝐴𝑇𝑏

Which reduces to

𝐿𝑤 = 𝐴𝑇𝑏

where 𝑤 = 𝐿𝑇𝑥

After solving for 𝑤, we find 𝑥 by solving:

𝐿𝑇𝑥 = 𝑤

11

QR Factorization:

QR factorization is the decomposition of a matrix into a product of an orthogonal

matrix 𝑄 and an upper triangular matrix 𝑅. Using QR decomposition, our 𝐴 matrix

becomes:

𝐴 = 𝑄𝑅

 The normal equations reduce to

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

𝑥 = (𝑅𝑇𝑄𝑇𝑄𝑅)−1𝑅𝑇𝑄𝑇𝑏

𝑥 = (𝑅𝑇𝑅)−1𝑅𝑇𝑄𝑇𝑏,

where 𝑄𝑇𝑄 = 𝐼 (orthogonality)

𝑥 = 𝑅−1𝑄𝑇𝑏

𝑅𝑥 = 𝑄𝑇𝑏

 Now, we just have to solve the system of equations 𝑅𝑥 = 𝑄𝑇𝑏, where we have a

reduced upper triangular system with 𝑅 being an upper triangular matrix.

 This approach is more stable than the Cholesky method and is considered as the

standard method for solving least squares problems.

SVD Decomposition:

 SVD decomposition is used for decomposing the matrix 𝐴 into a product of

matrices 𝑈Σ𝑉𝑇, where 𝑈- 𝑚x𝑚 and 𝑉- 𝑛x𝑛 are orthogonal matrices and Σ is a 𝑚x𝑛

diagonal matrix.

12

 Using SVD decomposition the normal equations reduce to

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

𝑥 = (𝑉Σ𝑈𝑇𝑈Σ𝑉𝑇)−1𝑉Σ𝑈𝑇𝑏

𝑥 = (𝑉Σ2𝑉𝑇)−1𝑉Σ𝑈𝑇𝑏,

where 𝑈𝑇𝑈 = 𝐼 (orthogonality)

𝑥 = 𝑉Σ−1Σ−1Σ𝑈𝑇𝑏

𝑥 = 𝑉Σ−1𝑈𝑇𝑏

 We solve the final equation to find the least squares solution using SVD

decomposition. Similarly, like the QR factorization, we don’t have to evaluate the 𝐴𝑇𝐴

product to solve the problem.

 Among the three methods to solve the least squares problem:

1) All the methods take 𝑂(𝑚𝑛2) operations to solve.

2) QR and SVD decompositions are more stable than the Cholesky methods.

3) Cholesky is the fastest, and QR is faster than the SVD method.

4) Hence, QR decomposition is the most efficient method to solve a least squares

problem.

13

CHAPTER III

NON-NEGATIVE LEAST SQUARES

The Non-negative Least Squares methods are least squares solutions but with a

constraint that our solution vector needs to be non-negative.

IMPORTANCE OF NON-NEGATIVE LEAST SQUARES

Non-negative least squares solutions are important because having negative

values in the solution no sense in certain cases. For example, if we’re solving equations

involving chemical reaction we don’t want our chemical concentrations to be negative.

Another example is when we’re dealing with images in the least squares problems, we

know that the blocks in images represent pixels with some color code values in them

which need to be non-negative. Hence, we need this constraint to ensure that the solution

is non-negative.

One idea to enforce Non-negativity is to set the negative values in the final

solution to be zero. This method is bad as it doesn’t give a least squares solution to the

problem with non-negative values. An example of why such an approach is bad is given

below.

Example:

Consider an example :

𝐴 = [
7 9
5 6
4 6

] and 𝑏 = [
7
9
10

]

14

The least squares solution, (call it 𝑥𝐿𝑆) was found to be [
 −2.56
 3.11

].

If we want our solution to be non-negative, one of the ways would be to set the

negative values to zero. By doing so we get

𝑥 = [
0

3.11
] and the norm ‖𝐴𝑥 − 𝑏‖2 = 609.56

But there exists a non-negative vector, 𝑥 = [
0

1.16
] for which we have a norm

‖𝐴𝑥 − 𝑏‖2 = 25.23. Hence, setting the negative value obtained from the least squares

solution to zero is not the best method to find the non-negative least squares solution to

the system as we do not get the least norm for the solution vector (not a ‘least square

solution’ to the system). Also, such an approach can cause problems when used in a

multiway algorithm (such as the Alternating least squares method) where it could cause

the algorithm to diverge [2].

MATHEMATICAL DEFINITION

Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 and a vector 𝑏 ∈ ℝ𝑚×1, the vector 𝑥 ∈ ℝ𝑛×1 that

minimizes the L2-norm ‖𝐴𝑥 − 𝑏‖2subject to the condition 𝑥𝑖 > 0 ∀ 𝑖 ∈ [1, 𝑛]

is called as the non-negative least squares solution to the system of equations 𝐴𝑥 = 𝑏.

𝑥 = argmin ‖𝐴𝑥 − 𝑏‖2

subject to 𝑥𝑖 ≥ 0 ∀ 𝑖 ∈ [1, 𝑛]

15

Quadratic Form of the Objective Function:

We know that the objective function for least squares is given by:

 𝑓(𝑥) = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2 𝑥𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏

For non-negative least squares problem, we have the same objective function

with a constraint that 𝑥𝑖 ≥ 0 ∀ 𝑖 ∈ [1, 𝑛].

Since 𝐴𝑇𝐴 is symmetric and positive definite, we have a convex quadratic

problem. This means that the function always has a global minimum even when it is

constrained to take non-negative values.

METHODS TO SOLVE NON-NEGATIVE LEAST SQUARES

There have been several algorithms proposed over the years to solve a non-

negative least squares problem. They can be broadly divided into:

1) Active set methods: The first algorithm for solving the NNLS problem was

proposed by Lawson and Hanson (which was published in their book

‘Solving Least Squares Problems’) in 1974 [1, 5]. This algorithm was later

modified by Bro and Jong [2] (called the FNNLS algorithm) in 1997 which

improved the speed of the original algorithm by a good amount for large

matrices.

2) Iterative methods: Since NNLS problem is a quadratic optimization problem,

methods like Newton’s methods can be used. The Quasi-Newton method [3]

proposed in 2007 improved the speed of the FNNLS algorithm by nearly 10

16

times for large matrices of size 6000x3600 and higher. Other iterative

algorithms include the sequential coordinate-wise approach.

3) Sampling methods: Some algorithms like the randomized NNLS [4] speeds

up any standard NNLS solver by decomposing the main problem into a new

problem involving lesser rows/equations that take lesser time to solve than

the main problem.

4) Other methods: Algorithms like interior-point methods can also be used to

solve the NNLS problems [4].

Lawson and Hanson algorithm:

The Lawson and Hanson algorithm is an active set algorithm. It involves the use

of two sets: Active – which contains the variables that violate the non-negativity

constraint and Passive – which contains the other variables. The algorithm solves for the

least square solution for the passive set system by moving a variable from the active set

to the passive set every iteration. The active set element with the most negative gradient

is chosen at each iteration. After the least square solution is obtained at every step, the

most negative value in the solution vector is moved to zero and a scale of this distance

was used to move the other values, thereby ensuring that the solution stays non-negative.

This value which was the most negative is sent back to the active set. This procedure

continues till there are no elements in the active set or till the objective function gradient

of the active set elements is positive. All the steps of this algorithm is shown in Figure 2

followed with an example case to illustrate this method. The code for this algorithm

which was implemented in MATLAB can be found in APPENDIX A.

17

Figure 2. Lawson & Hanson algorithm. A brief overview of the Lawson and Hanson

active set algorithm.

Active set method

A . Initialization

Requires input matrices : 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚×1

1. Initialize 𝑥 = 0 ∈ ℝ𝑛×1 , Z = {1,2…n} (Active set indices), P = Null (Passive set indices)

2. Compute 𝑤 = 𝐴𝑇(𝑏 − 𝐴𝑥) (The negative of the gradient of ||𝐴𝑥 − 𝑏||2)

B . Main loop (Proceeds to find and change values of 𝑥 in the active set which can be increased to

minimize the norm)

1. Proceed if Z = Null or if 𝑤𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑍 . Else, end the algorithm and return 𝑥.

2. Set 𝑡 = 𝑗 for which 𝑤 = max{𝑤}

3. Move the index t, from set Z to P

4. Calculate the least squares solution 𝑧 only for the indices present in the passive set using

the submatrix 𝐴𝑃 (containing only the columns that belong to the passive set) i.e., solve

𝐴𝑃𝑧 ≅ 𝑏

C. Inner loop (Proceeds to find the negative values coming from the least squares solution and

increase the 𝑥 values in the passive set by a factor each such that the most negative value is set to 0)

1. Proceed if min(𝑧𝑝) ≤ 0 ∀ 𝑝 ∈ 𝑃. Else, go to step A2.

2. Set 𝛼 = −min(
𝑥𝑝

𝑥𝑝−𝑧𝑝
) ∀ 𝑝 ∈ 𝑃

3. 𝑥 = 𝑥 + 𝛼(𝑥 − 𝑧)

4. Move indices whose 𝑥 values are 0 from set P to set Z. Go to step A2.

18

Example:

Take the example: 𝐴 = [
1 3
2 1
2 −2

] and 𝑏 = [
2

−1
3

].

 Initialization:

 A1. We initialize 𝑥 = [
0
0
] , Z = [1 2] (active set indices) and P = [] (passive set –

Null at start).

A2. First, we find the negative gradient vector 𝑤 = 𝐴𝑇(𝑏 − 𝐴𝑥):

𝑤 = [
1 2 2
3 1 −2

] x ([
2

−1
3

] − 0) = [
6

−1
]

We normally move the value at the index ‘𝑖’ of the active set, which will

decrease the norm by the highest amount. In this case the most negative gradient is at

position 1, so we choose that index from the active set and move it to the passive set.

Iteration 1:

B1 – B3. Updating our Z and P vectors, we get:

Z = [2] and P = [1]

B4. Now, we find the least squares solution for the active set system:

𝐴𝑃 = [
1
2
2
] 𝑎𝑛𝑑 𝑏 = [

2
−1
3

]

Which gives the value 𝑧𝑃 = [0.667]

𝑧𝑍 = [0] (as we don’t use the active set variables)

𝑧 = [
0.667

0
] (z at first iteration)

19

Since 𝑧𝑃 is non-negative, we skip the inner loop C, set 𝑥 = 𝑧 and go to step A2.

(If 𝑧𝑃 was negative, we move the value to 0 and move the other elements by the step C2.

We then move the index 1 from the passive set to the active set)

 Iteration 2:

A2. 𝑤 = 𝐴𝑇(𝑏 − 𝐴𝑥):

𝑤 = [
1 2 2
3 1 −2

] x ([
2

−1
3

] − [
1 3
2 1
2 −2

] [
0.667

0
]) = [

0
−1.667

]

Now, we have

𝑤𝑍 = [−1.667] (Checking for B1 step to enter the B loop)

This means that the active set gradient is greater than 0. So, we cannot increase

the value of 𝑥 for this index as it increases the norm (increases 𝑓(𝑥) as ∇𝑓(𝑥) > 0). We

cannot decrease this value to decrease the norm either as we have a non-negativity

constraint.

Hence, the algorithm stops here as Z = [2] and 𝑤𝑍 < 0.

Solution vector 𝑥 = [
0.667

0
].

FNNLS algorithm by Bro and Jong:

This algorithm modified the Lawson and Hanson method by pre-computing the

matrices 𝐴𝑇𝐴 and 𝐴𝑇𝑏 [2].

 If we look at the steps A2 and B4 of the Lawson and Hanson algorithm:

A2. 𝑤 = 𝐴𝑇(𝑏 − 𝐴𝑥)

B4. Solving (𝐴𝑃)𝑇 𝐴𝑃𝑦 = (𝐴𝑃)𝑇𝑏

20

We have to evaluate these matrix products 𝐴𝑇(𝑏 − 𝐴𝑥) and (𝐴𝑃)𝑇 𝐴𝑃 every

iteration. This can become computationally expensive when the number of iterations

become larger. For example, a randomly generated matrix problem of size 6000x3600 in

MATLAB took about 178 iterations to solve the problem.

Replacing these steps with:

𝑤 = (𝐴𝑇𝑏) − (𝐴𝑇𝐴)𝑥

𝐴𝑇𝐴(𝑃, 𝑃) 𝑥 = (𝐴𝑇𝑏)(𝑃)

We can reduce the time taken to solve the problem over large iterations by pre-

computing 𝐴𝑇𝐴 and 𝐴𝑇𝑏. The code for this algorithm in MATLAB can be found in

APPENDIX B.

Quasi-Newton algorithm:

This iterative method that is used for finding the minima of multi-dimensional

functions works very well for solving the NNLS problem because of the convex

quadratic form of the objective function.

This method is a modification to the Newton’s method where it uses an

approximate gradient scaling matrix 𝑆𝑘 that is evaluated at every iteration 𝑘 rather than

computing ∇2𝑓(𝑥)−1 at every step which could be computationally expensive.

Newton’s method is a second-order method that has a better convergence rate

than the gradient descent method. In these methods, we start from a point (the origin, in

most of the cases), find the direction that is opposite to that of the gradient, and move in

that direction based on a step size. This way we get closer to the minima at every step.

Identifying the direction and finding the best step size at every iteration is crucial to the

21

convergence speed of the algorithm. In addition, the solution vector is made non-

negative by projecting the negative values to zero at each update. The full steps of the

Gradient Descent and Newton’s methods are shown in Figure 3.

Figure 3. Gradient descent & Newton’s algorithm. Used for finding the minima of convex functions.

We can use this to find the minimum of the objective function 𝑓(𝑥).

The Quasi-Newton method for solving the NNLS problem proposed by Kim, Sra,

& Dhillon [3] partitioned the 𝑥 vector variables into free and fixed set at every iteration.

It then solved the problem over the free set at every iteration.

Fixed variable set (z) at the 𝑘𝑡ℎ iteration:

𝑧𝑖𝑛𝑑
𝑘 = {𝑖 | 𝑥𝑖

𝑘 = 0 & ∇𝑓(𝑥𝑘)𝑖 > 0}

22

Free variable set (y) at the 𝑘𝑡ℎ iteration:

𝑦𝑖𝑛𝑑
𝑘 = {1, 2, 3…𝑛}− 𝑧𝑖𝑛𝑑

𝑘

When 𝑥𝑖
𝑘 = 0 and ∇𝑓(𝑥𝑘)𝑖 > 0, decreasing 𝑥𝑖

𝑘 would decrease the norm (𝑓(𝑥))

but it would make 𝑥𝑖
𝑘 take a negative value which violates the nonnegativity constraint.

On the other hand, increasing it would increase the objective function value so it is better

to keep it fixed for the current iteration. The free variable set which consists of the

variables that do not belong to the free can be increased so that their norm can be

reduced.

At each iteration:

𝑥𝑖
𝑘 = [

𝑦𝑘

𝑧𝑘
], ∇𝑓(𝑥𝑘) = [

∇𝑓(𝑦𝑘)

∇𝑓(𝑧𝑘)
], where 𝑦 ∈ 𝑓𝑟𝑒𝑒 𝑠𝑒𝑡 and 𝑧 ∈ 𝑓𝑖𝑥𝑒𝑑 𝑠𝑒𝑡

 We need to solve:

minimize𝑦
1

2
 ‖𝐴[𝑦; 𝑧] − 𝑏‖2

subject to 𝑦 > 0, 𝑧 = 0

 The problem over free variable set reduces to:

minimize𝑦 𝑔𝑘(𝑦) =
1

2
‖�̅�𝑦 − 𝑏‖2, subject to 𝑦 > 0

 The solution vector for free variables 𝑦𝑘+1 is given by:

𝑦𝑘+1 = 𝑦𝑘 + 𝛼(𝛾𝑘 − 𝑦𝑘)

Where 𝛾𝑘 = 𝑃(𝑦𝑘 − 𝛽𝑆̅𝑘∇𝑓(𝑦𝑘)) is an intermediate step (Quasi-Newton update

step). The previous equation gives a point 𝑦𝑘+1 which is in the direction joining the

points 𝑦𝑘 and 𝛾𝑘 where the function 𝑔𝑘(𝑦) is minimum. 𝛼 and 𝛽 are line search

23

parameters obtained from minimization rule and Armijo backtracking line search

respectively. 𝑆̅𝑘 is the gradient scaling matrix for the free set which is evaluated at the

end of every iteration.

Limited Minimization Rule (for determining 𝛼):

 The 𝛼 value is obtained by minimization rule, where 𝛼 is the value between 0 and

1 for which the function 𝑔(𝑦𝑘 + 𝛼(𝛾𝑘 − 𝑦𝑘)) is minimum.

𝛼 = argmin𝛼∈[0,1] 𝑔(𝑦𝑘 + 𝛼𝑑),

where 𝑑 = 𝛾𝑘 − 𝑦𝑘

 To obtain the value of 𝛼, we take the derivative of the function with 𝛼 and equate

it to zero and solve for the value 𝛼. This can be done because we get a quadratic function

in single variable 𝛼 along the direction 𝑦𝑘 to 𝛾𝑘.

𝑑𝑔

𝑑𝛼
= 𝑑𝑇∇𝑔(𝑦𝑘 + 𝛼𝑑) = 𝑑𝑇(�̅�𝑇�̅�(𝑦𝑘 + 𝛼𝑑) − �̅�𝑇𝑏) = 0

𝑑𝑇�̅�𝑇�̅�𝑦𝑘 + 𝛼(𝑑𝑇�̅�𝑇�̅�𝑑) = 𝑑𝑇�̅�𝑇𝑏

𝛼 =
(�̅�𝑑)𝑇(𝑏−�̅�𝑦𝑘)

‖�̅�𝑑‖2

where �̅� = 𝐴(: , 𝑦𝑖𝑛𝑑
𝑘) (𝐴 matrix over free variable set)

Armijo Line Search (for determining 𝛽):

 The line search value 𝛽 is important because it makes a better choice of a step

size than having a constant step size (say a value of 1). This is because when we get

closer to the solution, 𝛽 has to be very small in order for the algorithm to converge to the

expected solution. If it remains high as the initial value chosen, then the minimization

24

rule applied to the current point and the projected point due to 𝛽 would make it require

many iterations to get very close to the solution.

 The 𝛽 value is determined iteratively till this inequality that is specified below is

satisfied.

𝑔𝑘(𝑦𝑘) − 𝑔𝑘(𝛾𝑘(𝑠𝑚𝜎)) ≥ 𝜏 ∇𝑔𝑘(𝑦𝑘)𝑇(𝛾𝑘(𝑠𝑚𝜎) − 𝑦𝑘)

Where: 𝜎 > 0 is the starting point specified, 𝑠 ∈ (0,1) is multiplied to 𝜎 at every

iteration till the condition is satisfied and 𝜏 ∈ (0,0.5) is multiplied to the gradient. The

line with this new slope starting from 𝑔𝑘(𝑦𝑘) intersects the curve at a point that is the

upper limit of the value 𝛽.

Gradient Scaling Matrix update (𝑆𝑘):

The gradient scaling matrix 𝑆𝑘 is updated at each step using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update given by:

𝑆𝑘+1 = 𝑆𝑘 + (1 +
𝑢𝑇𝐴𝑇𝐴𝑆𝑘𝐴

𝑇𝐴𝑢

𝑢𝑇𝐴𝑇𝐴𝑢
)

𝑢𝑢𝑇

𝑢𝑇𝐴𝑇𝐴𝑢
−

𝑆𝑘𝐴
𝑇𝐴𝑢𝑢𝑇 + 𝑢𝑢𝑇𝐴𝑇𝐴𝑆𝑘

𝑢𝑇𝐴𝑇𝐴𝑢

where 𝑢 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑆𝑘 is the gradient scaling matrix from the previous

iteration starting from 𝑆1 = 𝐼𝑛 (identity matrix of size 𝑛x𝑛).

 This method ensures that we get a matrix that is positive definite and symmetric

like the ∇2𝑓(𝑥)−1 matrix that we use this approximation for.

∇2𝑓(𝑥) = 𝐴𝑇𝐴 for our NNLS problem

(This requires 𝑂(𝑚𝑛2) operations for computation)

If we look at the term 𝑢𝑇𝐴𝑇𝐴𝑆𝑘𝐴
𝑇𝐴𝑢 in the BFGS update, we can combine the

products like 𝐴𝑢 and then multiply it with 𝐴𝑇 and similarly for (𝐴𝑢)𝑇𝐴(𝑆𝑘(𝐴
𝑇(𝐴𝑢))),

25

grouping the products in such a way that we always multiply a matrix with a vector. This

reduces the computational cost of evaluation of ∇2𝑓(𝑥)−1 at every step to 𝑂(𝑚𝑛). The

main steps of the Quasi-Newton algorithm is shown in Figure 4.

Figure 4. Quasi-Newton Algorithm. Code for this algorithm implemented in MATLAB is shown in

APPENDIX C.

Example:

Take the same example: 𝐴 = [
1 3
2 1
2 −2

] and 𝑏 = [
2

−1
3

].

 Initialization:

 A1. We initialize 𝑥1 = [
0
0
] , 𝑆1 = [

1 0
0 1

]

 ‖𝐴𝑥1 − 𝑏‖ = 3.7417

26

Main Loop:

This loop is executed whenever the stopping criteria is not satisfied.

Iteration 1:

B1. First, we find the fixed and free variable set:

∇𝑓(𝑥1) = 𝐴𝑇(𝐴𝑥1 − 𝑏) = [
−6
1

]

Since 𝑥1(2) = 0 and [∇𝑓(𝑥1)](2) = 1 > 0, the index 2 of 𝑥 goes to the fixed

variable set and index 1 goes to the free variable set.

We have, 𝑦𝑖𝑛𝑑
1 = [1], 𝑧𝑖𝑛𝑑

1 = [2], 𝑦1 = [0] and 𝑧1 = [0].

For this example, we take a constant value of 𝛽 = 1. For larger matrix problems

we need to do line search to obtain the 𝛽 value as 𝛽 = 1 could be large in some cases

causing the problem to take longer time to converge to the solution.

B2. For 𝛽 = 1, we get 𝛾1:

𝛾1 = 𝑃(0 − 1. [1]. [−6]) = 𝑃([6]) = [6]

The 𝑆̅𝑘 matrix is the 𝑆𝑘 matrix for free variable set i.e., 𝑆̅𝑘 = 𝑆𝑘(𝑦𝑖𝑛𝑑
𝑘 , 𝑦𝑖𝑛𝑑

𝑘).

Since 𝑆1 = [
1 0
0 1

], �̅�1 = 𝑆𝑘(𝑦𝑖𝑛𝑑
1 , 𝑦𝑖𝑛𝑑

1) = [1].

𝑃(𝑥) returns a non-negative projection (sets negative values to 0) of 𝑥 to

maintain the non-negativity constraint.

B3. Now we find 𝛼 using the minimization rule equation and get 𝛼 = 0.1111.

𝑦2 = 𝑦1 + 𝛼(𝛾1 − 𝑦1) = [0] + 0.1111. ([6] − [0]) = [0.667]

B4. Hence, we get 𝑥2 = [
𝑦2

𝑧2
] = [

0.667
0

] and ‖𝐴𝑥2 − 𝑏‖ = 3.1623

27

B5. Doing the BFGS update we get:

𝑆2 = [
0.1235 −0.1111

−0.1111 1.0000
] (Symmetric as expected)

We check for the stopping criterion: ‖𝐴𝑥𝑘−1 − 𝑏‖ − ‖𝐴𝑥𝑘 − 𝑏‖ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.

We take a tolerance value of 10−6 (or 1𝑒 − 6), which tells the program to stop if

the function value doesn’t change more than 0.000001 by value i.e., the function

converges to the solution for up to 6 figures.

‖𝐴𝑥1 − 𝑏‖ − ‖𝐴𝑥2 − 𝑏‖ = 3.7417 − 3.1623 = 0.5794

This value is greater than the 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 10−6. Hence, we go through the main

loop again.

Iteration 2:

B1. The fixed and free variable set:

∇𝑓(𝑥2) = 𝐴𝑇(𝐴𝑥2 − 𝑏) = [−8.8 × 10−16

1.666667
]

Since 𝑥2(2) = 0 and [∇𝑓(𝑥2)](2) = 1 > 0:

𝑦𝑖𝑛𝑑
2 = [1], 𝑧𝑖𝑛𝑑

2 = [2], 𝑦2 = [0.667] and 𝑧2 = [0].

B2. For 𝛽 = 1, we get 𝛾2:

𝛾2 = 𝑃([0.667] − 1. [0.1235]. [−8.8 × 10−16]) ≈ 𝑃([0.667]) ≈ [0.667]

B3. We find 𝛼 using the minimization rule equation and get 𝛼 = 0.8889.

 Using the value of 𝛼 we get: 𝑦3 ≈ 0.667.

B4. Hence, we get 𝑥3 = [
𝑦3

𝑧3
] ≈ [

0.667
0

] and ‖𝐴𝑥3 − 𝑏‖ ≈ 3.1623

B5. Doing the BFGS update we get:

28

𝑆3 ≈ [
0.1235 −0.1111

−0.1111 1.0000
]

Stopping criterion: ‖𝐴𝑥2 − 𝑏‖ − ‖𝐴𝑥3 − 𝑏‖ = −4.4409 × 10−16 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.

Hence, the program ends here, returning the result 𝑥 = 𝑥3 = [
0.667

0
].

Random Projections algorithm:

 Some methods involve sampling of the rows of the matrix 𝐴 and vector 𝑏 to

construct a smaller problem with lesser rows and the same columns. If 𝐴 ∈ ℝ𝑚×𝑛 and

𝑏 ∈ ℝ𝑚×1, these sampling algorithms choose 𝑟 (𝑟 < 𝑚) rows out of the 𝑚 rows and this

way they reduce the complexity of solving the problem. For example, least squares

problem that would take 𝑂(𝑚𝑛2) to compute would be reduced to 𝑂(𝑟𝑛2). These

methods can be applied to any NNLS algorithm to increase the speed of computing the

reduced problem. The problem that arises with such methods is the loss in accuracy

because it solves lesser equations than the given equations. Another challenge faced by

these algorithms is to determine a computationally efficient method to form this induced

problem. The sampling algorithm proposed by Drineas, Mahoney & Muthukrishnan [6]

involves the calculation of the L2-norms of the left singular matrix of A to determine the

probability of selecting the rows. This is not fast since the calculation of this probability

alone would cost 𝑂(𝑚𝑛2) operations.

 The method proposed by Boutsidis & Drineas [4] which is based on a fast

Johnson–Lindenstrauss Transform, makes use of the Hadamard matrix 𝐻 to form the

induced problem. The running time of this algorithm is given by 𝑂(𝑚𝑛 log 𝑟) +

𝑇𝑁𝑁𝐿𝑆(𝑟, 𝑛), where 𝑇𝑁𝑁𝐿𝑆 is the time taken to solve the reduced problem (𝑟x𝑛) using a

29

standardized NNLS solver. In this algorithm, the relative error bounds (which depends

on the size of the smaller probelm) of the norm ‖𝐴𝑥 − 𝑏‖ produced by this algorithm

with respect to the NNLS algorithm used can be predicted with a high probability.

The relative error bound is given by:

‖𝐴�̃� − 𝑏‖2 ≤ (1 + 𝜖)min𝑥≥0 ‖𝐴𝑥 − 𝑏‖2

𝑤ℎ𝑒𝑟𝑒 �̃� − 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑥 − 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑁𝑁𝐿𝑆 𝑠𝑜𝑙𝑣𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

This inequality holds with a probability that is at least 0.5

In this method, the matrices A and b are pre-multiplied by 𝑆, 𝐻 and 𝐷 matrices

which are given by:

Normalized Hadamard matrix (𝐻𝑚):

𝐻𝑚 =
1

√𝑚
[
𝐻𝑚/2 𝐻𝑚/2

𝐻𝑚/2 −𝐻𝑚/2
], where 𝐻2 = [

+1 +1
+1 −1

]

 Diagonal matrices 𝑆, 𝐷: (∀ 𝑖 ∈ [1,𝑚])

𝑆𝑖𝑖 = {√𝑚/𝑟 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟/𝑚

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐷𝑖𝑖 = +1 𝑤𝑖𝑡ℎ 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.5, 𝑒𝑙𝑠𝑒 − 1

 By doing such a transform, we can obtain the error bound with a probability of

0.5 which is shown by Boutsidis & Drineas [4]. The value of 𝑟 in our implementation

was taken to be 𝑛 + 20 as it was said to give the best results according to the literature.

All the steps for this algorithm is shown in Figure 5. Our code for this algorithm in

MATLAB is given in APPENDIX D.

30

Figure 5. Randomized NNLS Algorithm.

31

CHAPTER IV

TEST AND RESULTS

TEST

Firstly, the results produced by the 𝑙𝑠𝑞𝑛𝑜𝑛𝑛𝑒𝑔(𝐴, 𝑏) function in MATLAB was

verified to see if it was same as the Lawson and Hanson algorithm with our

implementation. The results obtained were similar to that of our implementation.

The Lawson and Hanson, FNNLS, Quasi-Newton and Random projections

algorithms were implemented in MATLAB. Fully dense random matrices were

generated using MATLAB’s randi function for the tests averaged over 20 iterations. The

computational time taken to solve the problem by each algorithm was measured using

cputime in MATLAB. The residual ‖𝐴𝑥 − 𝑏‖2 were also calculated for each algorithm

to check for accuracy. The matrix sizes chosen for these tests are shown in Table 1.

Table 1. The list of matrix problems (labelled 1 to 8) used in the tests for m rows and n columns.

Matrices 1 2 3 4 5 6 6 8

m 2800 3600 4400 5200 6000 7200 8800 10400

n 2000 2400 2800 3400 3600 4800 5600 6800

RESULTS

Computational Time:

The results obtained for computational time are shown in Table 2 and the plot

32

showing cputime for every matrix problem for each algorithm is shown in Figure 6.

The Lawson and Hanson algorithm took the most amount of time to solve the

problems, followed by FNNLS, Quasi-Newton and Randomized algorithms. For the

matrix problem 1 where 𝑚x𝑛 – 2800x2000 the Quasi-Newton took longer time than

FNNLS method. Randomized algorithm solved the problems the fastest, taking around

or less than 10s for matrix sizes up to 10400x6800. For the 10400x6800 case,

randomized algorithm solved the problem nearly 3 times faster than the Quasi-Newton

method. The results for computational time are shown in Figure 6.

Table 2. Cputime results (time in seconds) of the algorithms for each of the matrix problems.

Matrices 1 2 3 4 5 6 6 8

Lawson and

Hanson

5.25 10 15.281 22.75 29.484 54.844 72.766 124.08

FNNLS 1.8281 3.6563 5.7813 9.875 11.828 27.266 31.703 47.25

Quasi-Newton 2.3594 3.2969 4.0375 5.6375 6.5203 13.391 19.078 30.57

Randomized

NNLS

0.7672 1.125 1.4906 2.1234 2.4063 4.2344 5.6547 11.944

Residual Norm:

 The results obtained for the residual norm ‖𝐴𝑥 − 𝑏‖2 are listed in Table 3 and

the plot is shown in Figure 7. The results were as expected for the first two algorithms

because FNNLS is just a slight modification of the Lawson and Hanson algorithm.

However, the Quasi-Newton method only agreed with the Lawson and Hanson

algorithm results for up to 3 significant figures. To match more significant figures in the

33

final residual norm, the Quasi-Newton algorithm had to take more iterations as the line

search was producing very small steps. The randomized algorithm produced the highest

norm because it solves the smaller subset of equations from 𝐴𝑥 = 𝑏.

Table 3. Residual norm ‖𝐴𝑥 − 𝑏‖2 results of the algorithms for each of the matrix problem.

Matrices 1 2 3 4 5 6 6 8

Lawson and

Hanson

147.01 166.83 182.42 198.83 216.53 236.9 262.9 285.45

FNNLS 147.01 166.83 182.42 198.83 216.53 236.9 262.9 285.45

Quasi-Newton 147.16 166.97 182.58 198.92 216.62 236.92 262.92 285.56

Randomized

NNLS

149.58 171.77 188.32 203.61 221.54 242.35 267.99 291.67

Figure 6. Time vs matrix problem number. Shows the cputime taken to solve the problem.

34

Figure 7. Relative norm vs matrix problem number. Relative norm is taken with respect to Lawson &

Hanson algorithm (Relative norm = 100 ∗ ‖𝐴𝑥𝑎 − 𝑏‖2/‖𝐴𝑥𝐿𝐻 − 𝑏‖2, 𝑥𝑎- solution for each algorithm).

 The computational time results for a matrix size 6000x3600 shows that our

Quasi-Newton code solves the problem in 30s which is about of 1.57 the time taken by

FNNLS (47s). The results obtained by Kim & Sra & Dhillon [3] in 2006, showed that

the time taken to solve the same problem by Quasi-Newton took 294s which was about

10 times faster than FNNLS (3076s). This difference in speedup that we obtained for the

Quasi-Newton with respect to FNNLS method in comparison to their result could be

because of our line search, which may not be producing the best step sizes to converge to

the solution faster.

35

CHAPTER V

CONCLUSIONS

All the algorithms are faster than they were 15 years ago. This could be due to

the better processors available now. From this research, we see that the Quasi-Newton

method performs well up to 3 significant digits in comparison to the Lawson & Hanson

and FNNLS algorithms. To get results that match beyond 3 significant figures, the

Quasi-Newton method takes a lot of time because the iterations become higher as the

line search step sizes are lower. Line search is the area that could be looked at to provide

better step sizes so that the overall speed of the algorithm is reduced while obtaining

results with high significant figures with that of the expected solution. The results

obtained in our research for the 3 significant figures show that Quasi-Newton algorithm

starts taking lesser time than the FNNLS method for matrix sizes above 3600x2400. The

randomized algorithm is the fastest method to produce the results though there would be

some errors in the residual norm for the result. The maximum and minimum relative

error seems to be around 3.5% and 2% respectively for an average of 25 iterations,

which is very less given the speed at which it solves the problem. The only problem

where Lawson and Hanson algorithm would perform better is for very low dimension

matrix problems which are not ideal in real-world applications.

36

REFERENCES

[1] C. L. Lawson and R. J. Hanson, Solving least squares Problems, Prentice Hall,

(1987), pp. 121-132 & 158-162.

[2] R. Bro, S. D. Jong, A fast non-negativity-constrained least squares algorithm, Journal

of Chemometrics, Vol. 11, No. 5, (1997), pp. 393–401.

[3] D. Kim, S. Sra, and I. S. Dhillon, A new projected quasi-Newton Approach for the

non-negative least squares problem, Technical Report TR-06-54, Computer Sciences,

The Universityof Texas at Austin, (2006).

[4] C. Boutsidis, P. Drineas, Random projections for the nonnegative least-squares

problem, Linear Algebra and its Applications, Volume 431, Issues 5–7, (2009), pp. 760-

771.

[5] Y. Luo and R. Duraiswami. Efficient parallel nonnegative least squares on multicore

architectures. SIAM Journal on Scientific Computing, 33 (5), (2011), pp. 2848–2863.

[6] P. Drineas, M. Mahoney, S. Muthukrishnan, Sampling algorithms for l2 regression

and applications, in: ACM-SIAM Symposium on Discrete Algorithms, (2006), pp.

1127–1136.

37

APPENDIX A

LAWSON & HANSON ALGORITHM CODE

(Our Implementation in MATLAB)

tl = cputime;

%Initialization

n = size(A,2);

P = [];

N = 1:n;

x = zeros(n,1);

w = A'*(b - A*x); %Negative Gradient

wN = w(N);

iters = 0;

%Main Loop

while(~(isempty(N) || all(wN<=1e-12)))

 %Moving active and passive set indices

 wmax = max(wN);

 t = find(w==wmax);

 P = [P t];

 N(N==t) = [];

 %Solving the LS problem

 z = zeros(n,1);

 clear("Ap");

 Ap = A(:,P);

 zp = Ap\b;

 z(N) = zeros(length(N),1);

 z(P) = zp;

 %Inner loop handling the non-negativity constraint

 while(min(zp)<=0)

 xp = x(P);

 ratio = zeros(length(xp),1);

 for i=1:length(xp)

 ratio(i) = xp(i)/(xp(i)-zp(i));

 end

 qind = zp<=0;

 [alpha,pq] = min(ratio(qind));

 q = P(pq);

 x = x + alpha*(z-x);

 temp = P(x(P)==0);

 N = [N temp];

 P(P==temp) = [];

 clear("Ap");

 Ap = A(:,P);

 zp = Ap\b;

 z(N) = zeros(length(N),1);

 z(P) = zp;

 end

 x=z;

 w = A'*(b - A*x);

 wN = w(N);

 iters = iters + 1;

end

tlhnnls = cputime - tl;

38

APPENDIX B

FNNLS ALGORITHM CODE

(Our Implementation in MATLAB)

t1 = cputime;

%Precomputing AtA and Atb

AtA = A'*A;

Atb = A'*b;

n = size(AtA,2);

P = [];

N = 1:n;

x = zeros(n,1);

w = (Atb) - (AtA)*x;

wN = w(N);

iters = 0;

%Main Loop

while(~(isempty(N) || all(wN<=0)))

 %Moving active and passive set indices

 wmax = max(wN);

 t = find(w==wmax);

 P = [P t];

 N(N==t) = [];

 %Solving the LS problem

 z = zeros(n,1);

 An = AtA(P,P);

 bn = Atb(P);

 zp = An\bn;

 z(N) = zeros(length(N),1);

 z(P) = zp;

 %Inner loop handling the non-negativity constraint

 while(min(zp)<=0)

 xp = x(P);

 ratio = zeros(length(xp),1);

 for i=1:length(xp)

 ratio(i) = xp(i)/(xp(i)-zp(i));

 end

 qind = zp<=0;

 [alpha,pq] = min(ratio(qind));

 q = P(pq);

 x = x + alpha*(z-x);

 temp = P(x(P)==0);

 N = [N temp];

 P(P==temp) = [];

 An = AtA(P,P);

 bn = Atb(P);

 zp = An\bn;

 z(N) = zeros(length(N),1);

 z(P) = zp;

 end

 x=z;

 w = (Atb) - (AtA)*x;

 wN = w(N);

 iters = iters +1;

end

tsfnnls = cputime - t1;

39

APPENDIX C

QUASI-NEWTON ALGORITHM CODE

(Our Implementation in MATLAB)

t = cputime;

n = size(A,2);

S(:,:,1) = eye(n,n);

x(:,1) = zeros(n,1);

k = 1;

Ax_b = A*x(:,k) - b;

l2norm(k) = norm(Ax_b);

while(1)

 %Fixed and Free set evaluation

 x_zero = find(x(:,k)==0);

 F = A'*Ax_b;

 z_ind = intersect(x_zero,find(F>=0));

 z = x(z_ind,k);

 y_ind = setdiff(1:n,z_ind);

 y = x(y_ind,k);

 %Direction

 Sn = S(y_ind,y_ind,k); %Sn,An - matrix for free set vars

 An = A(:,y_ind);

 dfy = F(y_ind); %Gradient of f

 Any_b = An*y - b;

 dgy = An'*(Any_b); %Gradient of g

 %Line search parameters

 g_0 = 0.5*(norm(Any_b)^2);

 Sn_dfy = Sn*dfy;

 if(k<=3)

 beta = 1;

 end

 if(k>3)

 beta = stepsize(An,b,y,g_0,Sn_dfy,dgy);

 end

 ga = y - beta*(Sn_dfy);

 %ga(ga<0) = 0;

 %Minimization rule

 d = ga - y;

 denom = norm(An*d)^2;

 if(denom == 0)

 a1= 1;

 else

 a1 = d'*(-dgy)/denom;

 end

 a1(a1>1) = 1;

 a1(a1<0) = 0;

 %x Update

 y = y + a1*(ga-y);

 y(y<0)=0;

 k = k+1;

 x(y_ind,k) = y;

 x(z_ind,k) = z;

40

 %BFGS update

 u = x(:,k)-x(:,k-1);

 S(:,:,k) = BFGS(A,u,S(:,:,k-1));

 Ax_b = A*x(:,k) - b;

 l2norm(k) = norm(Ax_b);

 %Stopping criteria

 if(abs(l2norm(k-1) - l2norm(k)) < 1e-5)

 break;

 end

end

xq = x(:,k);

tq = cputime - t;

BFGS Update for 𝑆𝑘:

function BFGS = BFGS(A,u,S)

 Au = A*u;

 denom = norm(Au)^2;

 SAtAu = S*(A'*Au);

 SAtAuut = SAtAu*u';

 uutAtAS = SAtAuut';

 numer = (Au'*A)*SAtAu;

 BFGS = S + (1 + numer/denom)*(u*u')/denom - (SAtAuut + uutAtAS)/denom;

end

Armijo Line Search for 𝛽:

function b = stepsize(An,b,y,g_0,Sn_dfy,dgy)

 %Line search parameters

 tau = 0.2;

 sigma = 0.1e-4;

 s = 0.7;

 m = 0;

 while(1)

 beta = (s^m)*sigma; %Beta update

 ga = y - beta*(Sn_dfy);

 %ga(ga<0) = 0;

 g_1 = 0.5*(norm(An*ga-b)^2);

 condition = g_0 + tau*(dgy'*(ga - y));

 %Checks for the condition

 if(g_1<condition)

 break;

 end

 m = m+1;

 end

 b = beta;

end

41

APPENDIX D

RANDOMIZED ALGORITHM CODE

(Our Implementation in MATLAB)

 [m,n] = size(A);

 %Padding the rows with 0s to get power of 2

 pad = ceil(log2(m));

 m2 = 2^pad;

 A(m+1:m2,:) = zeros(m2-m,n);

 b(m+1:m2) = zeros(m2-m,1);

 [n,d] = size(A);

 r = d+20; %Setting r value (r = d+20 is best as per Boutsidis et al. [4])

 tstart = cputime;

 %D matrix

 dd = 2*randi(2,1,n)-3; %assigns +1 or -1 with equal probability

 %S matrix

 s = zeros(1,n);

 s(randsample(n,r)) = sqrt(n/r);

 ind = find(s~=0); %used to make mat multiplication easier

 %Hadamard Submatrix

 H = (1/sqrt(n))*hadamard(n); %multiply with * to normalize it

 %SHD product

 i = 1:n;

 i = i(ind);

 for i=i

 H(i,:) = H(i,:)*s(i);

 end

 H = H(ind,:);

 HD = zeros(size(H));

 for j=1:size(H,2)

 HD(:,j) = H(:,j)*dd(j);

 end

 %Induced system

 An = HD*A;

 bn = HD*b;

 tprep = cputime-tstart;

 tnew = cputime;

 x_rand = quasi(An,bn); %Calling the Quasi-Newton NNLS solver

 tsmall = cputime - tnew;

42

