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ABSTRACT

Solving nonlinear optimal control problems can be a difficult and time intensive process. This

is especially true when the state dynamics of the problem are computationally expensive to solve.

Using the Theory of Functional Connections, linear combinations of orthogonal manifolds are

used to approximate computationally expensive terms within the state dynamics. Doing so can

yield significantly faster solution time with minimal error compared to directly calculating these

terms.

To test this method, a longitudinal dynamic model of a hypersonic vehicle was created. The

aerodynamic lift and drag forces, as well as the pitching moment, were calculated using a panel

method along with Pradtl-Meyer expansion and compression wave equations. The calculated

forces and moment were then verified by comparing to CFD solutions generated by SOLID-

WORKS Flow Analysis Tool at various angles of attack and Mach numbers.

This panel method still took up a bulk of the computation time needed to solve optimal con-

trol problems as it has to run for every timestep in each trajectory iteration created in the solution

process. A new method to approximate the aerodynamic forces and moment was created by using

this panel method alongside a least squares algorithm to solve for weights of recursively generated

orthogonal manifolds. Lift, drag, and pitching moment could then be approximated by evaluating

each orthogonal manifold at locations corresponding to states and controls. Compared to the orig-

inal panel method, which took 117.30 seconds to calculate 10,000 different flight conditions, this

least squares method calculated the same conditions in 0.13 seconds, almost 1000 times faster.

The new least squares method was then used alongside a nonlinear optimal control problem

algorithm known as Dynamic Programming with Interior Points. Using the hypersonic model

with the aerodynamic forces and moment approximated using orthogonal manifolds, solutions to

several optimal control problems were found in a less than a minute for problems which would

take over 2 hours otherwise.
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NOMENCLATURE

0.1 Abbreviations

COM Center of Mass
DPIP Dynamic Programming with Interior Points
LQR Linear Quadratic Regulator
OCP Optimal Control Problem
TFC Theory of Functional Connections

0.2 Variables
a() Speed of Sound at Point n Number of Collocation Points
A Reshaped Manifold Array N() Number of Instance
A Manifold Array P() Pressure at Point
b Reshaped Evaluated Mesh Pt() Total Pressure at Point
B Manifold Q Pitch Rate
B Collocated Mesh T() Temperature at Point
c() Scaling Factor for Mapping Collocation Points Se Elevon Area per Unit Span
D Drag v Velocity
Fx Total Force Acting in x Direction x Horizontal Position
Fx() Force acting in x Direction due to Surface xi Collocated Input
Fz Total Force Acting in x Direction x̄() x Distance of Surface from COM
Fz() Force acting in x Direction due to Surface z Altitude (ASL)
g Gravitational Acceration zi Collocation Point
G Final State Penalty Function z̄() z Distance of Surface from COM
Iyy Moment of Inertia about y-axis α Angle of Attack
J Cost Function β() Oblique Shock Angle at Point
K Feedback gain on Error δ Pressure Ratio
L Lift δe Elevon Deflection Angle
L() Horizontal Length of Surface γ Specific Heat Ratio of Air
L State and Control Weighting Function θ Inertial Pitch Angle
L Legendre Polynomial θ() Flow Deflection Angle at Point
m Mass ν() Flow Turning Angle at Point
M Pitching Moment ξ Weighting Vector
M() Pitching Moment Induced by Panel τ() Surface Angle
M() Mach Number at Point φ Temperature Ratio
M()n Normal Mach Number

iv



0.3 Subscripts

0M Zero Moment Model
a Aft Panel
body Body
B Basis Manifolds
corrected Corrected for Unstable Aircraft
full Full State Model
inputs Number of Inputs
l Lower Panel
L Basis Functions
min Minimum
max Maximum
n Nacelle Panel
u Upper Surface
x Before Interact
y After Interact
δ Elevon
δu Upper Elevon
δl Lower Elevon
ε Error
∞ Freestream
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Optimal Control

Performance optimization of dynamic systems is an ongoing field of control systems. The

dynamics of a system can usually generalized as [1]:

ẋ(t) = f(x(t),u(t), t) (1.1)

Where x is a vector of the states of a system, u is a vector of the the controls applied to the

system, and t represents time. The performance index of a continuous nonlinear dynamic system

can be measured as [1]:

J = G(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t) dt (1.2)

The goal of optimal control is to minimize the performance index for the system. Other param-

eters may be specified such as initial and final state conditions, minimum or maximum constraints

on the control, a final time specified etc. But when calculating the derivatives of the states is com-

putationally expensive, as is the case for some nonlinear problems, minimizing the performance

index can become prohibitively long.

1.2 OCP for Hypersonic Vehicles

Solving optimal control problems for hypersonic vehicles is an ongoing investigation utiliz-

ing many different methods. The dynamics of the aircraft are highly nonlinear [2]. Unlike OCP

involving linear dynamics with a quadratic cost function, which can be solved directly by calcu-

lating the optimal gains for a given solution of the algebraic Ricatti equation, nonlinear problems

must be solved iteratively [1]. Previous methods used to solve OCP using hypersonic dynamics

have involved ideas such as linearizing the dynamics, H-infinity controllers, or adaptive dynamic

inversion [2] [3] [4]. This research will focus on developing new methods to simplify established
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nonlinear dynamical model for use with robust nonlinear OCP solvers. In addition, a simplified

dynamics model will also be considered for longer flight time problems.

1.3 Theory of Functional Connections

The Theory of Functional Connections (TFC) was conceived by Daniele Mortari at Texas A&M

University. One of the concepts of TFC is to represent a function as a linear combination of or-

thogonal polynomials [5]. While the orthogonal polynomials themselves are given and can be

generated recursively, the weighting for each is solved using a least squares method to best ap-

proximate the function. In a simple case, a single combination of orthogonal polynomials can

approximate a function with one input and one output as in the figure below:

Figure 1.1: Linear combination of orthogonal polynomials

In the case for our hypersonic problem where aerodynamic forces can be a function of altitude,

airspeed, angle of attack, etc. functions with multiple inputs must be considered. This can be

achieved by creating orthogonal surfaces or manifolds by first generating orthogonal polynomials,

then finding a linear combination of product combinations of these polynomials. In these products

each polynomial is evaluated for a unique input variable. For example, the first polynomial in a

product would be evaluated based on airspeed, and the second would be evaluated based on angle

of attack. Many surfaces can be created this way and once the weighting for each is solved, the

function can be approximated. An example for a 2 input case is shown below, with B as weighted

2



surfaces, A as the approximated function, and ξ as the solved weightings for each surface*:

Bi,j = Li(x)Lj(y)

f(x, y) ≈
∑

ξi,jBi,j
(1.3)

Figure 1.2: Orthogonal surfaces

The process to solve for the weightings for multiple input case is as follows:

1. Determine the lower and upper bounds of the Ninputs inputs to the function

2. For each input, create n collocation points and evaluate the function for every combination

of these collocation points

3. Collect the results into a n× · · · × n×Ninputs array B

4. For each input, recursively createNL orthogonal polynomials as basis functions and evaluate

each polynomial at the n number of collocation points on the domain [−1,+1]

*Figure reprinted with permission from The theory of functional connections, by D. Mortari, H. Johnston, and C.
Leake, Forthcoming book, 2021.
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5. Multiply every combination of the collocation points evaluated for the basis functions to get

N
Ninputs
L basis manifolds

6. Collect the results into a n× · · · × n×NNinputs
L array A

7. Rearrange arrays A and B into matrices A and b of dimension nNinputs × NL and nN × 1

respectively

8. Given the equation Aξ = b calculate the pseudo-inverse for A and solve for ξ = A+b

ξ is a vector containing the weighting of each orthogonal polynomial. To process to estimate

the function for a given input using the calculated ξ vector is as follows:

1. Linearly map each input to the [−1,+1] domain. The lower bound of each input should

correspond to −1 and the upper bound to +1

2. Using the same set of orthogonal polynomials used to generate the ξ vector, evaluate each

polynomial at the mapped inputs

3. Multiply every combination of the evaluated polynomials in the same order to get a set of B

manifolds each evaluated at only one point

4. Weight each of the resulting elements by its respective ξ element

5. The sum of the weighted results is the estimated value of function evaluated at the given

inputs

A good choice of basis functions would be orthogonal polynomials such as Legendre Polyno-

mials, which are described in the domain z ∈ [−1,+1] and can be generated recursively [5].

Lk+1 =
2k + 1

k + 1
zLk −

k

k + 1
Lk−1 where:


L0 = 1

L1 = z

(1.4)
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2. HYPERSONIC MODEL

One of the goals of this research is to construct and verify a hypersonic model to simulate

the dynamics of the vehicle on. Two models have been created, one using full state dynamics

developed by previous research and another reduced order model based on simplifying assump-

tions made in this study [6]. The geometry and mass properties of a sample vehicle are given

and slightly modified from prior examples [2]. Because the model considered is two dimensional,

some parameters such as mass are given as per unit width of the aircraft.

Parameter Value Parameter Value
Iyy 5E5 lb ft2/ft x̄ -50 ft
La 10 ft z̄ 0 ft
Lf 47 ft τa 46.5deg
Ln 43 ft τl 6.5deg
m 300 lbf/ft τu 3deg
Se 22 ft2/ft

Table 2.1: Aircraft Geometry and Mass Parameters

Figure 2.1: Hypersonic vehicle geometry
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2.1 Full State Model

The equations of motion for an in-plane hypersonic model are with only elevon deflection are

[6]:

ẋ = v cos(θ − α)

ż = v sin(θ − α)

θ̇ = Q

α̇ =
g cos(θ − α)− L/m

v
+Q

v̇ = −D
m
− g sin(θ − α)

Q̇ =
M

Iyy

(2.1)

While these equations of motion seem simple at a glance, the aerodynamic forces L,D,M are

computationally expensive to calculate. In this case, they were calculated using a panel method

and Prandtl-Meyer wave equations as described in the following subsection.

2.1.1 Panel Method

The direct method used to calculate lift, drag, and pitching moment are derived using Prandtl-

Meyer expansion and compression wave equations [2]. First, the vehicle was broken up into 6

distinct panels, the upper surface, the leading lower surface, the nacelle, the aft lower surface,

and the upper and lower elevon surface. Pressure was assumed to be constant across these panels.

When pressure on each panel was calculated, a normal force was applied at the center of each panel

creates the lift and drag forces, and the resultant force acting about the center of mass created the

pitching moment.

From the aircraft’s altitude given by the z state, the atmospheric properties of the freestream

air was be interpolated from a standard atmosphere table [7]. In the table used, the ratio of ambient

pressure at the current altitude and sea level is given as δ and the equivalent temperature ratio is

given as φ. These ratios can then be used to calculate the ambient pressure, temperature, and speed
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of sound.

P∞ = δ Pstd

T∞ = φ Tstd

a∞ =
√
θ astd

(2.2)

Once the speed of sound of the freestream is calculated, then the Mach speed of the aircraft

was then calculated.

M∞ = v/a∞ (2.3)

With the velocity of the aircraft now measured in Mach number, the stagnation or total pressure

and temperature of the freestream could then be calculated. These values correspond to the pressure

and temperature of the air if it is adiabatically slowed down with respect to the aircraft assuming it

is calorically perfect [7].

Pti = Pi

(
1 +

γ − 1

2
Mi

) γ
γ−1

(2.4)

At the leading edge of the aircraft, two wave interactions occur. Depending on the angle of

attack and geometry of the aircraft, these wave interactions can either be compression or expansion

waves. An oblique compression wave occurs when a supersonic flow is suddenly deflected by angle

θi due to the presence of a wall pushing into the flow. An expansion wave occurs when a supersonic

flow is gradually deflected by angle θi due to the presence of a wall pulling away from the flow [7].

This angle θ is a function of angle of attack and vehicle geometry.

θu = τu − α

θl = τl + α

(2.5)

When θ is positive, an oblique shock will occur on the corresponding surface. When θ is

negative, an expansion wave will occur. When θ is zero, the freestream flows parallel to the surface

geometry and there is no supersonic interaction whatsoever. Notice that the sign of α is flipped

between the upper and lower θ calculations. This is because, as the aircraft pitches further up and
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α becomes higher, the lower surface is rotated into the flow which encourages the formation of

stronger oblique shocks. Likewise, as the upper surface of the aircraft rotates down and away from

the flow, which encourages the formation of stronger expansion waves.

Figure 2.2: Shock Angles with respect to the leading edge of the aircraft

The oblique shock angle β which can occur in either of the forward surfaces was found using

the following equation [7]. This is completed with MATLAB’s iterative nonlinear equation solver

fsolve(), which iteratively tests solutions until a convergence criteria is satisfied [8].

tan(βi − θi) =
2 + (γ − 1)M2

i sin2 βi
(γ + 1)M2

i sin βi cos βi
(2.6)

While two unique solutions exist for the oblique shock angle, the smaller shock angle typically

occurs to form a weak shock angle [7]. To account for this, an initial angle of 10−6 was used

to iteratively solve for the shock angle as it is closer to the shock angle associated with a weak

oblique shock wave. Once the shock angle is found the flow properties behind it can be calculated

by treating it as a normal shock wave acting on the component of the flow normal to the wave [7].

Mxn = Mx sin βi (2.7)
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Figure 2.3: Oblique shock angles and Mach flow normal to the shock

Myn =

√√√√ Mx
2
n + 2

γ−1
2γ
γ−1Mx

2
n − 1

(2.8)

My =
Myn

sin(βi − θi)
(2.9)

Py = Px

(
2γ

γ + 1
Mx

2
n −

γ − 1

γ + 1

)
(2.10)

Pty = Py

(
1 +

γ − 1

2
M2

y

) −γ
γ−1

(2.11)

The post shock flow is assumed to be parallel to the subsequent surface of the aircraft after the

flow has been deflected. The resulting Mach number and total pressure behind the shock wave are

also computed to be used for subsequent supersonic interactions in the resulting flow. In the case

of the vehicle geometry used for this experiment, since there is only one panel used for the upper

surface of the vehicle, if an oblique shock occurs ahead of the upper surface only the equation used

to calculate pressure behind the shock is needed.
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If an expansion wave is expected to occur at the leading edge of the vehicle, during the tran-

sition from lower forward surface to nacelle, or from nacelle to lower aft surface, Pradtl-Meyer

expansion wave equations are used. First we evaluate the flow turning angle for the pre-fan flow

using the Pradtl-Meyer function [7].

Figure 2.4: Expansion fan due deflection away from the flow

νx =

(√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2

x − 1)− tan−1
√
M2

x − 1

)
(2.12)

νy = νx − θi (2.13)

Once the flow angle of the post-fan flow has been calculated, the resulting Mach number of the

flow was iteratively solved by MATLAB’s fsolve().

νy =

(√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2

y − 1)− tan−1
√
M2

y − 1

)
(2.14)
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Calculation for pressure behind the fan is simple as the expansion flow is adiabatic and isen-

tropic, meaning that the total temperature and total pressure do not change [7]. Changes in pressure

then only depend on the fact that the Mach number of the flow is higher behind the fan and can be

calculated using equation 2.4.

Ptx = Pty (2.15)

On the lower surfaces, there is guaranteed to be expansion waves at the turning point from the

lower forward surface and the nacelle and the nacelle to the aft surface. This is because after the

supersonic interaction at the leading edge of the aircraft, flow will be deflected to run parallel to

each panel. As such we can calculate the flow turning angles based on the geometry of the aircraft.

Note that at the leading edge θi was negative in cases where expansion fans occurred and the term

was negated to account for this. In the following two turns, the respective angles τ1l and τ2 are

positive and as such are added to ν instead of subtracted.

νy = νx + τi (2.16)

The pressure acting on every panel composing the body of the aircraft was then calculated. All

that remained was the pressure acting on the elevon. The elevon was treated as a flat plate in the

freestream, the flow angle was then calculated as the negative sum of the aircraft’s angle of attack

and the elevon deflection.

θe = −δe − α (2.17)

When θe is positive, an oblique shock occurs in front of the upper surface of the elevon while

an expansion wave occurs in front of the lower surface. The opposite is true when θe is negative,

and no interaction occurs when θe is zero. The pressure across the entire aircraft could then be

integrated and used to find the aerodynamic forces and pitching moment acting on the aircraft.

The location of the pressure panels and the acting force in the x and z directions are shown in the

figure and equations on the following page.
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Figure 2.5: Pressure acting on each panel of the aircraft

Fxu = −PuLu tan τu

Fxl = −PlLl tan τl

Fxn = 0

Fxa = −PaLa tan τa

Fxδ = (Pδu − Pδl)Se sin δe

Fx = Fxu + Fxl + Fxn + Fxa + Fxδ

(2.18)

Fzu = −PuLu

Fzl = −PlLl

Fzn = −PnLn

Fza = −PaLa

Fzδ = (Pδu − Pδl)Se cos δe

Fz = Fzu + Fzl + Fzn + Fza + Fzδ

(2.19)

From the forces acting in the body frame, lift and drag were then calculated as:

L = Fx sinα− Fz cos(α)

D = −Fx cosα− Fz cos(α)

(2.20)
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Pitching moment was also calculated by multiplying the forces acting in the x and z directions

by their respective moment arms. Because pressure is assumed to act uniformly across each panel,

the moment arm is calculated from the center of mass of the aircraft to the center of each panel.

Mi = z̄iFxi − x̄Fzi

M =
∑

Mi

(2.21)

2.1.2 Temperature Model

Maximum temperature of the hypersonic aircraft is not necessary to calculate aerodynamic

forces or moment. However, the heating of air due to compressible effects can present a constraint

on the performance of the vehicle. This being the case, it is advantageous to be able to calculate

maximum temperature of the airflow around the vehicle and to formulate optimal control problems

around conditions where a temperature limit is not exceeded. Fortunately, the hypersonic model

already permits the calculation of temperature ratio behind oblique shock waves and the freestream

temperature.

Given the geometry of the vehicle model, the location of the maximum nearby airflow tem-

perature could easily be deduced. The nacelle and aft surface of the aircraft must be behind an

expansion wave, as the vehicle is convex and flow is parallel to the surfaces ahead of them. Be-

cause expansion waves reduce the temperature of the flow, the flow ahead of these expansion waves

must be greater than the temperature measured at these panels [7]. This leaves the upper or lower

forward surfaces as candidates for highest temperature flow. Due to the geometry of the vehicle,

expansion waves cannot simultaneously occur in front of both surfaces. Therefore, if one surface

develops an expansion fan in front of it, the other surface will have a higher temperature as it will

either develop an oblique shock wave or run parallel to the flow with no supersonic interaction. In

either case, the temperature of the opposite surface will be higher as oblique shocks always result

in an increase in temperature of the flow [7]. At low angles of attack, it is possible for both surfaces

to form an oblique shockwave in front of them. In this case, whichever surface deflects the flow

13



more will create a stronger oblique shockwave and thus have a higher temperature in front of it.

Ultimately the surface with a greater associated θi will have the highest temperature. Recall

that this value describes the turning angle of the flow and an expansion wave will occur if θi is

negative. If the maximum θi is zero, than the highest temperature is expected to be that of the

freestream. Otherwise, the temperature can be found using the normal component of the flow

velocity to the shock wave along with the freestream temperature [7].

Ty = Tx

(
1 + γ−1

2
Mx

2
n

) (
2γ
γ−1Mx

2
n − 1

)
(γ+1)2

2(γ−1)Mx
2
n

(2.22)

2.1.3 Verification of Full State Model

The accuracy of the hypersonic model was verified by comparing the aerodynamic pressure and

temperature results to CFD results from a model created in SOLIDWORKS. Since the aerodynamic

model is longitudinal and there is no good way to model an elevon within the cross section of

the aircraft, the forces contributed by the elevon in both models is ignored. Essentially, only

the aerodynamic body forces and moment are considered. To test the aerodynamic forces and

moment, a variety of flight conditions with unique combinations of Mach numbers and angle of

attacks are created. Freestream pressure and temperature are given to be that of sea level for both

models. Since the MATLAB model calculates pressure and temperature on each panel directly

proportionally to the freestream, varying the ambient pressure and temperature is not necessary.

The pressure acting on each panel is recorded, as well as the total lift and drag force and the

pitching moment. The pressure acting on each panel in the simulations is given in the table on the

following page.
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M∞ α (rad)
MATLAB CFD

Pu Pl Pn Pa Pu Pl Pn Pa

3

-0.21 5.97E3 1.35E3 7.58E2 3.00E-1 5.97E3 1.38E3 7.89E2 1.64E2
-0.14 4.64E3 1.88E3 1.09E3 1.10E0 4.65E3 1.91E3 1.13E3 1.43E2
-0.07 3.55E3 2.56E3 1.54E3 3.00EE0 3.56E3 2.58E3 1.58E3 1.38E2
0.00 2.66E3 3.42E3 2.12E3 7.00E0 2.68E3 3.44E3 2.17E3 1.67E2
0.07 1.96E3 4.49E3 2.86E3 1.60E1 1.98E3 4.49E3 2.93E3 1.39E2
0.14 1.41E3 5.79E3 3.80E3 3.30E1 1.45E3 5.73E3 3.91E3 2.98E2
0.21 9.99E2 7.34E3 4.96E3 6.70E1 1.03E3 7.30E3 5.05E3 2.59E2

5

-0.21 1.01E4 1.02E3 3.82E2 0.00E0 1.01E4 1.07E3 4.38E2 1.38E2
-0.14 7.09E3 1.75E3 7.13E2 0.00E0 7.11E3 1.80E3 7.87E2 1.09E2
-0.07 4.75E3 2.87E3 1.26E3 0.00E3 4.79E3 2.92E3 1.36E3 8.90E1
0.00 3.04E3 4.50E3 2.12E3 0.00E0 3.09E3 4.52E3 2.27E3 8.80E1
0.07 1.87E3 6.76E3 3.40E3 7.00E-2 1.92E3 6.73E3 3.60E3 1.17E2
0.14 1.10E3 9.70E3 5.21E3 8.60E-1 1.15E3 9.62E3 5.47E3 1.73E2
0.21 6.13E2 1.33E4 7.64E3 5.79E0 6.75E2 1.32E4 7.95E3 2.61E2

7

-0.21 1.60E4 7.57E2 1.75E2 0.00E0 1.61E4 8.34E2 3.64E2 1.85E2
-0.14 1.04E4 1.62E3 4.48E2 0.00E0 1.05E4 1.71E3 6.75E2 1.42E2
-0.07 6.29E3 3.21E3 1.02E3 0.00E0 6.37E3 3.28E3 1.20E3 1.06E2
0.00 3.48E3 5.87E3 2.12E3 0.00E0 3.58E3 5.84E3 2.42E3 1.21E2
0.07 1.78E3 9.85E3 4.02E3 0.00E0 1.87E3 9.69E3 4.46E3 1.36E2
0.14 8.38E2 1.53E4 7.00E3 0.00E0 9.17E2 1.50E4 7.58E3 2.37E2
0.21 3.59E2 2.21E4 1.13E4 3.70E-1 5.66E2 2.18E4 1.19E4 4.63E2

Table 2.2: Pressure in psf/ft acting on each panel in MATLAB and CFD simulations

From the table, a good match between of pressures acting on the upper, lower forward, and

nacelle panels. There is a discrepancy in the calculation of the pressure acting on the aft surface,

with the MATLAB model underestimating the pressure acting against it. However, in either model

pressure acting on the aft surface is the smallest pressure experienced so its contribution to aerody-

namic forces will be relatively small. Plotting the calculated lift, drag, and pitching moment curves

against each other on the following pages gives a better idea of the accuracy of the MATLAB model

compared to CFD.
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Figure 2.6: Panel method and CFD comparison for Mach 3
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Figure 2.7: Panel method and CFD comparison for Mach 5
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Figure 2.8: Panel method and CFD comparison for Mach 7

18



These results show good correlation of lift and drag as well as pitching moment for small angles

of attack. The discrepancy in moment for large angles of attack can be explained by a nonuniform

pressure across each panel. The average pressure across each panel matches well and thus lift and

drag does as well. However, a shifting of the pressure towards the aft of the vehicle results at high

angles of attack is not accounted for in the MATLAB model and thus results in MATLAB predicting

a higher moment-curve slope. It should also be noted that while the moment-curve slope of the

aircraft is positive, suggesting the vehicle is unstable, the results are generated by neglecting the

contribution of the elevon which resides behind the center of mass and stabilizes the vehicle.

To verify the results of the temperature model, a similar approach was used to check the MAT-

LAB model against the CFD results. Mach number and angle of attack are varied and the greatest

temperature experienced by either the upper and lower forward surfaces is recorded. The ratio

between this maximum temperature and the freestream temperature is calculated for all test points

as it is independent of altitude. The results are shown in the table below and the figure on the

following page.

PPPPPPPPPM∞

α (rad)
-0.21 -0.14 -0.07 0.00 0.07 0.14 0.21

M
A

T
L

A
B

Te
m

pe
ra

tu
re

(R
)

3 720 660 600 600 660 710 790
4 800 710 630 620 700 790 900
5 900 770 670 660 760 880 1040
6 1020 840 700 690 820 990 1210
7 1150 920 740 720 890 1120 1404

C
FD

Te
m

pe
ra

tu
re

(R
)

3 750 680 630 620 680 750 830
4 860 750 670 660 750 850 950
5 970 830 700 690 800 960 1130
6 1100 910 750 730 900 1100 1320
7 1240 1010 830 770 960 1210 1510

Table 2.3: Maximum flow temperature in R adjacent in MATLAB and CFD simulations
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Figure 2.9: Leading surface temperature panel method and CFD comparison.

2.2 Zero Moment Model

With the full state model verified, a simplification was considered to reduce the complexity of

the model. Specifically, for long flight durations, the aircraft can be expected to be trimmed for

most of the flight. If the aircraft is statically stable, then the aircraft will naturally pitch to a stable

angle of attack as deviations from the trimmed state will result in a counteracting pitching moment

rotating the aircraft back to its trim state. In this case, only small perturbations are expected and can

be verified. Based on the equation of motion for pitch rate from equation 2.1, the time derivative of

pitch rate will be low when pitching moment is small or moment of inertia about the y axis is large.

The latter condition is inherient to the aircraft and not something that can be controlled, in addition

to the fact that a large moment of inertia would necessitate higher pitching moments experienced

by the aircraft anyway. Reducing the pitching moment however, is something achievable with the

elevon control available to the model.

The pitching moment of the aircraft is largely influenced by the elevon deflection. This is be-

cause the elevon is offset from the center of mass, can independently deflect relative to the rest

of the aircraft, and can generate aerodynamic force necessary to overcome the pitching moment

created by the lifting body. Elevon deflection may have a relatively small impact on lift and drag

relative to the lifting body, but it principally affects pitching moment [9]. To reduce the complexity
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of the current full state model, it is assumed that the elevon deflection required to trim the aircraft

is always active. Elevon deflection is then no longer considered a control for the system but rather

a function of states. When the aircraft is operating within expected flight conditions such as rea-

sonable angle of attack, an elevon deflection which trims the aircraft should exist if the vehicle

is well designed. With the assumption that the vehicle is always trimmed, pitching moment now

becomes very small if not zero. When this happens, the time derivative of the pitch rate also goes

to zero. Now there are only five equations of motion to consider, reducing the complexity of the

problem to the following:

ẋ = v cos(θ − α)

ż = v sin(θ − α)

θ̇ = Q

α̇ =
g cos(θ − α)− L/m

v
+Q

v̇ = −D
m
− g sin(θ − α)

δe = f(M∞, α)

(2.23)

However, now the vehicle cannot be controlled to follow a given trajectory as elevon deflection

is completely controlled by a closed loop that only wants to trim the aircraft. To open the design

space for a control, pitch rate is assumed to be directly controllable as a ’psuedocontrol’. Provided

pitch rate is very small, the elevon can deflect to a new position associated with the angle of attack

after rotating and zero the small pitching moment. For a statically stable aircraft, adjusting the

elevon deflection to this new trim condition will naturally rotate the aircraft to the new trim state.

For statically unstable aircraft, this assumption will not work as any perturbation will cause the

aircraft to pitch away from the trim state rather than towards it. Further feedback is needed to

ensure the zero moment model cooperates with statically unstable aircraft.
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As the elevon deflection does not influence the maximum temperature experienced on the body,

the process for calculating the maximum temperature for the zero moment model is the same as

the full state model.

2.2.1 Trimming Elevon Deflection

The elevon deflection required to trim the aircraft is associated with the angle required to re-

duce the pitching moment to zero. The total pitching moment can be broken up into each panel’s

components, and the moment created by the elevon must cancel out the moment applied by the

body panels.

0 = Mbody +Mδe (2.24)

Pitching moment induced by pressure acting on the body panels was calculated as in subsection

2.1.1. Neither elevon deflection nor the pressure acting on its upper and lower surface were con-

sidered at this point. After calculating the body moment, MATLAB’s fsolve() command was used

on equation 2.24. This iterative nonlinear equation solver considers the freestream Mach number

and angle of attack while varying elevon deflection using an iterative method. fsolve() will solve

for the angle of attack needed to cancel the body moment and also return the force acting on the

elevon in the body frame x and z directions. These forces derived after solving the trimmed elevon

deflection will be used to calculate the total aerodynamic force on the vehicle and finally the lift

and drag acting on the trimmed aircraft.

2.2.2 Verification of Zero Moment Model

To verify the results of the zero moment model, two sample trajectories were created. The first

trajectory will be a dynamic simulation of the zero moment model with the psuedocontrolled pitch

rate set to zero. Meaning that the aircraft will not rotate with respect to an inertia reference frame,

although angle of attack was expected to increase due to downwards acceleration by gravity. The

second trajectory is more complex, a sinusoidal input with small magnitude will be commanded for

the psuedocontrol making the aircraft oscillate in pitch. During the dynamic simulation of the zero

moment model, the elevon deflection required to trim the vehicle was recorded for each point in the
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simulation. Afterwards, two dynamic simulations of the full state model were created. This time,

the commanded control of the elevon deflection was the open loop history derived from the zero

moment model. If the zero moment model is a good representation of the full state dynamics, both

models should follow similar trajectories. This process was performed for both a statically stable

aircraft and a statically unstable aircraft using MATLAB’s ode45() dynamic simulation function

[10]. The unstable aircraft was identical to the stable aircraft with singular change that the center

of gravity has been defined further down the length of the vehicle x̄ = −55ft. The two trajectories

have the following initial states and final time:

x (ft) z (ft) θ (rad) α (rad) v (ft/s) Q (rad/s) tf (s)
0 6e4 0 0 5e3 0 120

Table 2.4: Initial states and final time of zero moment model verification simulations

The two psuedo-controlled inputs for pitch rate are shown below, with the trajectories of the

zero moment and full state model shown on the following page:

Q(t) = 0

Q(t) = 0.01 cos
( π

30
t
) (2.25)
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Figure 2.10: Stable zero moment and full state model comparison

These results show a strong correlation between the zero moment model and the full state

model for the statically stable vehicle. Using only the elevon deflection output of the zero moment

model, the dynamic model easily follows both trajectory and remains stable even in oscillatory

cases such as the second trajectory.

Figure 2.11: Deviation of zero moment model for unstable aircraft
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Unfortunately, the full state dynamic model of the statically unstable aircraft does not match

the zero moment model. Almost immediately, the vehicle destabilized and was thrown completely

off course. The spiral singularity is a result of saturating the maximum angle of attack to 0.21

radians beyond this point, the vehicle is assumed to have been destabilized and lost. As predicted,

when the vehicle is unstable perturbations in angle of attack are not naturally dampened but rather

explode and destabilize the aircraft. Ideally the vehicle is statically stable, but it is possible to

stabilize this behavior using feedback control.

From the zero moment trajectory, elevon deflection is not only recovered but also all state his-

tories. In addition to using the elevon deflection history, a feedback loop will also be placed on the

full state history. Effectively linearizing about the trim condition, the angle of attack error between

the full state and zero moment solution will be used to offset the elevon deflection command. Only

a small gain is needed to accomplish this.

αε = αfull(t)− α0M(t)

δecorrected(t) = δe0M(t) +Kαε

(2.26)

Figure 2.12: Feedback stabilization of unstable aircraft
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The error between the reduced order model and the full state model is relatively small compared

to the distance traveled. After moving over 500,000 feet, the zero moment model only deviates

from the full state model by a few hundred feet at most. The error between the models for the two

trajectories is shown below:

Figure 2.13: Error of stable and unstable with feedback zero moment models

The sinusoidal psuedocontrolled input does result in some oscillations in error, but this is ex-

pected given the nature of the input. Interestingly, the unstable aircraft has reduced error compared

to the stable aircraft in the sinusoidal input. This is likely due to the proportional feedback con-

troller steering the aircraft to keep it on course. There is nothing preventing a similar feedback

controller from being implemented on a stable aircraft, which could reduce error in the stable case

as well.
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3. LOOKUP AND TFC METHODS

When simulating the hypersonic dynamics of the vehicle, calculating aerodynamic forces and

moment take up a bulk of the computation time. This is expected as solving for the oblique shock

angles is an iterative process that has to be run for every point along the trajectory of the aircraft.

This creates problems with solving nonlinear optimal control problems using this model, as meth-

ods such as DPIP will iterate the entire control history. So not only will dynamics have to be

calculated across the entire trajectory, but the trajectory will be updated each time a new control is

solved for. New dynamics then have to be solved for given the new control history. This results

in a situation where solving optimal control problems involving this hypersonic model will take a

substantial time to solve.

Other methods can be used to approximate the aerodynamic forces of the vehicle. If the forces

can be estimated accurately and in a more time efficient method then solving with the current

method, the overall time to solve the dynamics of the vehicle and optimal control problems related

to it could be reduced.

3.1 Lookup Method

The first method considered is a "Lookup Table" method. This method has been used in other

studies and presents a way to approximate the aerodynamic forces quickly while solving for the

dynamics of the vehicle [11]. This method works by creating a mesh of flight conditions using

various combinations of states and control inputs. For each unique combination, aerodynamic

forces and pitching moment can be solved and stored on this mesh. All of this is done before

running the dynamics of the vehicle, during the actual solution process of the dynamics the values

of lift drag and pitching moment are interpolated from the mesh.
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3.1.1 4 Input Lookup

To apply this method, first the inputs to the mesh were determined. From the hypersonic

model developed in the previous chapter, each state and control is considered depending on if it

contributes to the calculation of the aerodynamic forces.

State/Control Contribution
x None
z Affects freestream pressure, temparture, and Mach number
θ None
α Affects where oblique shock and expansion waves occur as well as their intensity
v Affects freestream Mach number
Q None
δe Affects forces created by elevon

Table 3.1: State and Control Contribution to Aerodynamic Forces and Moment

This shows that the aerodynamic forces of the full state model are dependent on four inputs:

altitude (z), angle of attack (α), velocity (v), and elevon deflection (δe). These 4 inputs corre-

spond to the results published results [11]. Now, boundaries for these values will be established

to create the mesh within. The boundaries should encompass all expected flight conditions so that

aerodynamic forces and moment can be interpolated at any point. These boundaries were chosen

to be:

Input Boundaries
z (ft) [0 1E5]
α (rad) [−0.21 0.21]
v (ft/s) [3000 7000]
δe (rad) [−0.21 0.21]

Table 3.2: Boundaries on aerodynamic inputs
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With these boundaries established, a linearly spaced set of points was created between each

boundary. Each of these nodes functions as part of the mesh that will be created to be interpo-

lated from. For this experiment, a set of 16 linearly spaced nodes were established for each input

variable. This creates three empty 30×30×30×30 meshes for lift, drag, and pitching moment re-

spectively. These meshes are formatted as 4-dimensional arrays in MATLAB with each dimension

representing an input and each step along that dimension representing a defined node.

To store information in the arrays, a MATLAB script was created to iterate through each unique

combination of inputs. Lift, drag, and pitching moment are then calculated at this point and stored

in the corresponding indices in each array.

At the end of this process, lookup tables for lift, drag, and moment are completely filled in

and saved. Now given a set of input conditions, the inputs can be used along with a n-dimension

interpolator such as MATLAB’s ninterp() to approximate each force and moment. ninterp() takes

several arguments: the lookup table which was just created, lists of the nodes corresponding to

each index of the lookup table, and the queried list of inputs of the current flight condition.

3.1.2 4 Input Lookup Results

With the verification of the direct method model, the direct model is assumed to be the most

accurate model of the system. Therefore, this method and future methods will be compared to the

direct model. To test the effectiveness of the 4 input lookup table method, a script was created in

MATLAB which compares the output of the lookup table method to the output of directly calcu-

lating the aerodynamic forces. This is done by first randomly generating 10,000 flight conditions

within the input domains. For each flight condition, the lift, drag, and pitching moment were calcu-

lated using the direct method and are stored in three separate arrays. Then the aerodynamic forces

and moment are approximated using the lookup table method and stored in another three arrays.

The variance and average absolute value of the error between the direct calculation and the

lookup table method was then calculated. Unfortunately, relative error was not be meaningful in

this situation. For example, a flight condition which is trimmed would result in zero moment and

the relative error in this case will be undefined. In cases where lift and moment are small, even
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accurate approximations by the lookup method will result in large relative error.

To better show the accuracy of the lookup method, a histogram of all measurements was created

and is shown below. Another bar is superimposed on the graph with the width of the bar equal to the

maximum error. The thinner the bar compared to the domain of the histogram, the more accurate

the method is.

Figure 3.1: Histogram of tested forces and moment with 4 input lookup table error bounds

We see adequate performance of this 4 input lookup table method. An easy way to increase the

accuracy of this method would be to increase the number of elements within the table. However,

other methods were be investigated instead.
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3.1.3 Mach Lookup Table

The limitations of the 4 input lookup table can be addressed. Of the four inputs, altitude

has very predictable effects on the aerodynamic forces. Removing a dimension of the table will

drastically reduce the memory space required. From the hypersonic model, it was apparent that

all pressure acting on each panel of the aircraft is a fraction of the freestream pressure for a given

Mach number, angle of attack, and elevon deflection. A new lookup table could be created that

stores the aerodynamic forces and moment for a given flight condition normalized to sea level.

Then outside of the lookup table, the pressure ratio between the freestream at the current altitude

and sea level can be used to multiply the lookup table output.

The only remaining issue with this method is that temperature and the speed of sound change

with altitude. Thus, the freestream Mach number also depends on altitude. To account for this,

the velocity input to the lookup table was nondimensionalized to Mach number instead. This can

be done before using the lookup table. First, the freestream pressure ratio and the freestream

temperature ratio was interpolated from a standard atmosphere table given the altitude. Then,

the speed of sound was calculated using equation 2.2. The velocity of the aircraft could then be

nondimensionalized into Mach number using the speed of sound and equation 2.3. Each of the

lookup tables was then used to calculate the aerodynamic forces and moment normalized to sea

level. Finally, the true dynamic effects were found by multiplying the interpolated lookup table

value by the pressure ratio.

For this research, three 30× 30× 30 tables are created for lift, drag, and pitching moment and

used alongside the same standard atmosphere table used in the hypersonic model.
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3.1.4 Mach Lookup Table Results

With this simplification, each of the 6.48 MB 4 dimensional lookup tables have been simplified

to 216 kB tables. The performance of these tables are actually expected to be better than the 4

input table in both accuracy and computation time. This is because 3 degree interpolation is less

complex than 4 degree interpolation, which saves time, and because the standard atmosphere table

is more refined than the lookup table dimension associated with altitude, which increases accuracy.

Much like the 4 input table, the Mach lookup table is tested against the direct calculation

method in the same way. The performance is shown in the histograms below.

Figure 3.2: Histogram of tested forces and moment with Mach lookup table error bounds
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3.2 Theory of Functional Connections

The equations of aerodynamic forces and moment as a function of Mach number, angle of

attack, and elevon deflection are smooth and continuous and are confined to a specified domain.

The Theory of Functional Connections allows the creation of orthogonal manifolds to approximate

these multidimensional functions [5]. As described in the introduction, these orthogonal manifolds

are scaled and combined linearly to form a single manifold which can be evaluated to estimate

whatever function they have been trained on. In this case, manifolds estimating lift, drag, and

pitching moment are desired. Fortunately, most of the groundwork has already been laid to train a

vector of scaling factors for these manifolds.

For the lookup table methods, evaluation points were created by linearly spacing a mesh along

each axis of Mach number, angle of attack, and elevon deflection. A similar mesh must be created

for the method derived from Theory of Functional Connections. However, instead of linearly

spacing evaluation points, nodes were be chosen as collocation points as they give a more accurate

mapping [5]. The set of collocation points is first described on the z-domain [−1,+1].

zi = cos

(
π
i− n
n− 1

)
i ∈ [1, n] (3.1)

Like the lookup table method, 30 nodes will be chosen across the three inputs of Mach number,

angle of attack, and elevon deflection. From these nodes, another mesh of unique combination of

input values was created in the same way as the lookup table method only with a collocated mesh

instead of a linear one. To evaluate the corresponding nodes of the input values based on the

collocation points created on the z-domain, a scaling factor was be created for each input value [5].

cx =
zmax − zmin
xmax − xmin

=
2

xmax − xmin
(3.2)

The scaling factor can be used with the domain of the inputs as described in table 3.2. The

associated points with each collocation point for the three inputs are [5].
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xi = xmin +
zi + 1

cx
(3.3)

With these collocation points on the input variable domains, a collocated mesh was then created

in a similar way to the lookup table method. This mesh was stored as an array B.

3.2.1 Creation of Xi Vector

After the creation of the collocated mesh, a least squares solution algorithm can then be used to

optimize the weights of a series of orthogonal manifolds. As the orthogonal polynomials needed

to generate the orthogonal manifolds are recursive, the number of polynomials and the number of

manifolds used can be chosen. The maximum number of unique manifolds that can be created

from NL polynomials is reliant on how many input variables are considered.

NB = N
Ninput
L (3.4)

As more manifolds are considered, the accuracy of the approximated solution cannot decrease

[5]. In a case where a manifold has no possible way to increase accuracy of the estimation, its

weight will be optimized to zero and it will have no effect on the solution. In single input cases

where many orthogonal polynomials are considered, the accuracy of the estimation can converge

to machine error after around 10 basis functions [5]. Later, several tests where the number of basis

functions will be varied and the error of each iteration were compared. It is expected that every

manifold should contribute at least some accuracy to the least squares solution, so the maximum

number of manifolds as calculated by equation 3.4 will be considered for each collection of basis

functions.

Using Legendre orthogonal polynomials, the basis functions for the manifolds were created

through the process described in section 1.3. Each collocation point mapped to the z domain

of the Legendre domain were evaluated for each basis function. To determine the points of a

manifold, each basis function is considered as a multiplicand for two other basis function, the order

of which corresponds each of the inputs. For example, the first manifold B0 was the product of the
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first Legendre polynomial evaluated on the z domain location corresponding to a mapped Mach

number value, the first Legendre polynomial evaluated for angle of attack, and the first Legendre

polynomial evaluated for elevon deflection. The second manifold B1 would be in a similar way as

B0, but the final multiplicand would be the second Legendre polynomial was evaluated for elevon

deflection instead of the first polynomial.

As the manifolds are generated, they were stored in an array for the purposes of finding a

least squares solution. As each manifold has 3 inputs, a 3 dimensional array is needed to store

an individual manifold. However, to collect all of the manifolds, a 4 dimensional array A will

be created with the 4th dimension corresponding to each unique manifold. After creating the 4

dimensional array, one last adjustment is needed to allow an least squares algorithm to train the

manifold weightings to the collocated lookup table.

A robust method for solving a least squares problem requires both the orthogonal manifolds and

lookup table to be presented in a 2 dimensional matrixA and a 1 dimensional vector b respectively.

To reorganize the elements of each of the arrays, the MATLAB function reshape() command will be

used [12]. For the newly arranged A array, each column of must correspond to a unique manifold,

with the additional dimensions of the A array appended as additional rows.

A = reshape(A, [ ], NB)

b = reshape(B, [ ], 1)

(3.5)

For rearrangingA, the first argument givesA as the array to be rearraged, the second argument

allows the as many rows as necessary to exist, and the final argument will ensure that the number

of columns of the array is equal to the number of manifolds [12]. The collocated mesh was rear-

ranged into a vector in a similar way, with the first argument being the mesh, the second argument

permitting as many rows as necessary to rearrange, and the final argument ensuring the rearraged

array is a vector.

Solving for the ξ weighting vector was done using MATLAB’s matrix left division operator \
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[13]. A was not expected to be a square matrix and the left division operator will tend to use QR

decomposition to solve the least squares problem.

Aξ = b

ξ = A\b
(3.6)

It should be noted that the space complexity for creating the A is quite poor. Because A

contains collocated meshes for each basis manifold, its space complexity is O
(

(nNL)Ninputs
)

.

In this case, increasing n and NL will increase the accuracy of the solution, whereas Ninputs is

dictated by the problem itself. Clearly, Ninputs is the most critical term in determining the size of

A to the point where it can be a limiting factor.

3.2.2 Estimating Aerodynamic Forces using the Xi Vector

With a ξ vector now solved for lift, drag, and moment, it was possible to estimate these param-

eters by evaluating the manifolds used to create them. Given a set of input states, the states are

mapped to the z-domain of the orthogonal polynomials used, the manifolds are evaluated at those

points, and a weighted sum of the evaluated points was taken [5].

In a similar manner to equation 3.3, the inputs were mapped to the z-domain using the scaling

factor calculated by equation 3.2. The equation for mapping back to the z-domain is:

zi = (xi − xmin)cx − 1 (3.7)

Once each input was mapped to the z-domain, each manifold is evaluated at the point of in-

terest. This was done by evaluating every orthogonal polynomial that composes the manifolds at

the mapped points, then multiplying every unique combination to get the evaluated point on the

manifold. All that remained was to scale each manifold by the corresponding solved scaling value

in the ξ vector and sum the result [5]. Interestingly, because the orthogonal polynomials used as

basis functions can be generated recursively and all the "information" needed to compute aerody-
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namic forces is stored in the ξ which is very small compared to a lookup table, the total memory

required to use the TFC method during simulation is quite small even if the space complexity to

find the solution is very large.

3.2.3 Effect of Number of Basis Functions

To test how the number of basis vectors affects the accuracy and computation time of the TFC

method, several ξ vectors were created of varying length. This was done by incrementing the

number of polynomials used to create unique manifolds from the range of 1 to 10. The verification

method used in subsections 3.1.2 and 3.1.4 was repeated for each created ξ vector. The memory

required to store the ξ vector was considered for all cases, but it was so small as to be irrelevant to

any memory constraints. After running all test cases and comparing to the direct calculation, the

average absolute value of the error in lift was recorded as a way to measure accuracy. The time to

calculate all forces and moment for all test cases was also recorded. The results are shown in the

table below:

Polynomials Manifolds Memory (Bytes) Average Lift Error (lbf) Time (s)
1 1 8 1.29E5 0.076
2 8 64 7.22E3 0.068
3 27 216 3.20E3 0.059
4 64 512 1.83E2 0.056
5 125 1000 1.16E2 0.077
6 216 1728 8.77E0 0.088
7 343 2744 3.43E0 0.120
8 512 4096 2.10E0 0.193
9 729 5832 7.61E-1 0.180

10 1000 8000 5.16E-1 0.237

Table 3.3: Performance of TFC method based on number of basis function

As expected, increasing the number of basis functions increases the accuracy of the solution.

However, computation time penalties begin to collect beyond 5 basis functions. Given that there

are diminishing returns in terms of accuracy as number of basis functions increases for future

tests ξ vectors created from 6 basis functions will be used to optimize accuracy without hindering

computation time greatly.

37



3.3 Method Comparison

The average absolute value of lift, drag, and moment absolute error were calculated for each

method when they were tested in previous sections. For all methods, the error was calculated in

relation to the output of the direct method. The 10,000 flight conditions used are also the same

conditions tested across all methods to eliminate any random variation from method to method.

The results are shown in the subsequent table and bar graphs:

Method Panel 4 Input Lookup Mach Lookup TFC
Computation Time (s) 117.30 10.60 9.62 0.13

Average Lift Error (lbf) — 225.5 35.7 8.8
Average Drag Error (lbf) — 115.0 65.5 9.0

Average Moment Error (ft-lbf) — 2480 675 271

Table 3.4: Performance of TFC method based on number of basis function

Figure 3.3: Average absolute error of lift, drag, and moment for each developed method
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Figure 3.4: Average absolute error of lift, drag, and moment for each developed method

The direct panel method, although assumed to be the most accurate, takes far longer than any

other approximation. The long computation time to calculate is what drove the need to develop

faster approximations. As expected, the Mach lookup table method performed significantly better

in terms of accuracy and slightly better in terms of computation time. The best performing method

however is the TFC method, which computes almost instantly compared to all other methods and

has significantly less error in all cases. The Theory of Functional Connections gives us a strong

method for approximating aerodynamic forces.

It should also be noted that the development of the Mach Lookup table is integral to the creation

of the TFC method. Attempting to solve a least squares problem for a 4 input mesh is currently

infeasible for the hypersonic dynamics. Consider that a 30× 30× 30× 30 collocated mesh would

be needed for each basis manifold. To achieve a similar accuracy with 6 basis functions, 64 = 1292

manifolds are needed. This results in an array with over a billion elements. With 8 bytes needed

to store each element, the A array alone is over 8GB in memory size which is too unwieldy to use

effectively.
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3.4 TFC Applied to Zero Moment Model

It has been shown that lift, drag, and moment can be accurately estimated using various meth-

ods including the method derived from the Theory of Functional Connections. With aerodynamic

forces and moment derived, the full state model can be simulated quickly with minimal error.

However, the zero moment model is also of interest as it offers a simplified state space to create

flight trajectories. This section will focus on applying the TFC method to the zero moment model.

3.4.1 Approximating Trimmed Lift and Drag

The method to calculate the lift and drag of the trim condition has been developed in sec-

tion 2.2. The lift and drag forces depend on atmospheric pressure, velocity, and angle of attack.

However, these forces for the zero moment model were simplified through the same process as in

section 3.1.3. The velocity of the aircraft was nondimensionalized to Mach number and air pres-

sure was normalized to sea level. When the aerodynamic forces were calculated at sea level, they

are multiplied by the ratio of air pressure at the current altitude to air pressure at sea level. Unlike

the full state model, pitching moment is not needed and only aerodynamic forces are required.

Calculating lift and drag normalized to sea level for the trimmed aircraft now only depends on

two inputs: Mach number and angle of attack. Elevon deflection is already a function of these two

input variables and is already accounted for in the lift and drag. Using TFC, a linear combination

of 2 input orthogonal manifolds (the manifolds can also be referred to as orthogonal surfaces in

the case of 2 inputs) can be created to approximate lift and drag.

Before creating the collocated meshes for lift and drag, the input boundaries must be estab-

lished such that a nontrimmable flight condition does not occur on the mesh. An untrimmable state

would be where the elevon deflection required to trim the aircraft exceeds the deflection limits

(0.21 rad). The flight domain of Mach 3 to 7 and angle of attack -0.21 to 0.21 is investigated and

the elevon deflection required to trim is recorded for each point.
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Figure 3.5: Elevon deflection required to trim the aircraft at various alpha and Mach speeds

According to the contour plot, a valid elevon deflection does not exist when angle of attack is

less than -0.10 at high Mach numbers. The flight domain was then be restricted to angle of attack

from -0.10 to 0.21. A collocated mesh could now be created with this restricted domain.

Figure 3.6: Lift and drag forces of the trimmed aircraft

With the new collocated mesh, the TFC method was successfully applied using 6 Legendre

polynomials as basis functions resulting in an approximation with minimal error.
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3.4.2 Approximating Maximum Temperature and Trimmed Elevon Deflection

One of the reasons why the TFC method approximates lift and drag well is because they are

continuous differentiable functions [5]. TFC should also be able to be applied to calculating max-

imum temperature on the forward surface and the trimmed elevon deflection for the same reasons.

Both functions are continuous and a function of Mach number and angle of attack of the aircraft.

The trimmed elevon deflection is differentiable but there are points where the maximum temper-

ature calculation is not smooth. Specifically, at the point where two oblique shock waves occur

in front of the aircraft and the shock angles in front of the upper and lower surface are identical.

Perturbing the angle of attack in either direction will result in the temperature of either surface

increasing, so the function is not smooth at this location.

These nondifferentiable points should not be a problem despite the fact that the TFC method

will incur small inaccuracies near this point as it tries to approximate with smooth functions. The

point where shock angles are identical in front of the upper and lower surface will also correspond

to a local minima in temperature with respect to angle of attack as perturbing angle of attack in

either direction will increase temperature. In the case of this hypersonic vehicle, only maximum

temperature constraints are a concern so it is acceptable for small error in temperature calculation

to occur when temperature is minimized so long as it remains an inactive constraint.

A final consideration when calculating maximum temperature is that much like the Mach

lookup table simplification, when airspeed is nondimensionalized to Mach number the calcula-

tion for temperature presents itself as proportional to the freestream temperature. From equation

2.22 the fraction is a function of Mach number of angle of attack. This 2 input function could then

be approximated by TFC assuming sea level temperature and then scaled by the temperature ratio

of the current altitude and sea level much like how sea level pressure was assumed in the Mach

lookup table method.

With this in mind, the TFC method was then used to approximate maximum temperature ratio

and elevon deflection.
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Figure 3.7: Temperature ratio and elevon deflection of the trimmed aircraft

3.5 Testing Approximation Methods in ODE45()

It has been shown that the lookup table and TFC methods are able to approximate the aerodyan-

mic forces and moment calculated by the panel method. It was expected that this would translate

into allowing the approximation methods to speed up the solution time of flight trajectories de-

rived using ODE solvers within MATLAB. This section ensures this is the case by comparing the

flight trajectories of dynamics using the panel, lookup table, and TFC methods of determining

aerodynamic forces.

Flight trajectories were created for both the full state and zero moment model. For both of

these trajectories, each method was used to compute the aerodynamic forces acting on the aircraft.

The zero moment model does not use elevon deflection as an input so the 4 input lookup table is

not needed. This creates 4 dynamic models following the full state trajectory, and 3 following the

zero moment trajectory. The flight path derived by the panel method was assumed to be the most

accurate, and the deviation of the other flight paths are recorded as a function of time. The initial

conditions for both trajectories are shown below.
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Dynamic Model x (ft) z (ft) θ (rad) α (rad) v (ft/s) Q (rad/s) tf (s)
Full State 0 6e4 0 0 5e3 0 10

Zero Moment 0 6e4 0 0 5e3 — 120

Table 3.5: Initial states and final time of approximation method verification

The open loop control equations for the full state and zero moment model are calculated as

needed within ode45() and respectively are:

ufull(t) = 0.15 + 0.03 cos
(π

5
t
)

Q0M(t) = 0.01 cos
( π

30
t
) (3.8)

Figure 3.8: Flight paths of the method error trajectories

Figure 3.9: Positional Error of the method error trajectories
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Method Panel 4 Input Lookup Mach Lookup TFC
Maximum Full State Error (ft) — 35.4 12.5 13.2

Maximum Zero Moment Error (ft) — — 143.2 0.6
Full State Computation Time (s) 3.55 25.84 1.24 0.18

Zero Moment Computation Time (s) 12.70 — 0.32 0.16

Table 3.6: Computation time and maximum positional error of each approximation method]

While its clear that all methods do a reasonable job of predicting the dynamics of the vehicle,

several interesting results emerge from this test. For the full state model, the Mach lookup and TFC

method return approximately the same positional error as each other. This was unexpected as TFC

was shown to be more accurate in approximating aerodynamic forces. In addition, the calculation

time for the panel method is lower than the 4 input lookup table. This was also unexpected as per

case the 4 input lookup table performed faster than the panel method, but a possible explanation

is that the convergence criteria is more difficult to meet for the lookup table, which extends the

calculation time.

For the zero moment model, we see very small positional error for the TFC approximated

forces. The aircraft deviates less than a foot for a 2 minute flight. In this case, the Mach lookup

table also performs similarly to it’s full state test. In both cases, the positional error is about 13 feet

at the 20 second timestamp. A major advantage of the zero moment method is also shown here, as

because the aircraft is assumed to be trimmed the zero moment model is able to calculate a much

longer trajectory in less time. This is because the time step size between nodes can be increased

without much error.

3.6 Recovering Partial Derivatives with TFC

A major advantage of the TFC method is the ability to quickly compute partial derivatives of

parameters it approximates [5]. Calculating aerodynamic forces, elevon deflection, and tempera-

ture ratio are already lengthy processes. Finding their partial derivatives with respect to angle of

attack, velocity, etc. analytically is beyond the scope of this research. However, it has been shown

that the TFC method can approximate these parameters accurately using the same weighting vector

used to estimate the function [5].
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Consider that the TFC method works by representing each parameter as a linear combination

of manifolds. Each manifold is composed of basis functions, which typically are orthogonal poly-

nomials. Polynomials are much simpler to differentiate compared to the other complex iterative

functions used up until this point. To recover partial derivatives instead of the value of the param-

eter itself, all that is needed is to construct new manifolds composed of the partial derivatives of

the necessary inputs. The final approximating function is a linear combination of these manifolds,

so the partial derivative found on each manifold can simply be weighted and added together. The

weightings have already been calculated, so all that is needed is to differentiate the underlying

orthogonal polynomials.

While each polynomial can be differentiated as many times as needed, only the first and second

partial derivatives are required in the following chapter. The equation for the first and second partial

derivative of a Legendre polynomial is.

Lk+1 =
2k + 1

k + 1
zLk −

k

k + 1
Lk−1 where:


L0 = 1

L1 = z

L′k+1 =
2k + 1

k + 1
(Lk + zL′k)−

k

k + 1
L′k−1 where:


L′0 = 0

L′1 = 1

L′′k+1 =
2k + 1

k + 1
(2Lk + zL′′k)−

k

k + 1
L′′k−1 where:


L′′0 = 0

L′′1 = 0

(3.9)

The only other consideration needed is that because the Legendre polynomials are mapped to

the z-domain of [−1,+1] they must be multiplied by the scaling factor of the considered partial

derivatives. Below is an example of a 1st order partial, a 2nd order partial, and a 2nd order mixed

partial for a 3 input manifold.
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∂Bi,j,k
∂i

= (ci)L′i(zi)Lj(zj)Lk(zk)

∂2Bi,j,k
∂i∂j

= (cicj)L′i(zi)L′j(zj)Lk(zk)

∂2Bi,j,k
∂2k

= (c2k)Li(zi)Lj(zj)L′′k(zk)

(3.10)
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4. DYNAMIC PROGRAMMING WITH INTERIOR POINTS

With the hypersonic model and approximation methods completed and verified, it was then

possible to formulate optimal control problems based within the context of a hypersonic vehicle.

The dynamic model of the vehicle was still highly nonlinear even after simplifying the aerody-

namic forces and moment with the TFC method and the reduced zero moment model. These

nonlinear dynamics cannot be solved using traditional linear OCP solution methods [1]. To solve

the nonlinear dynamics, a set of DPIP scripts within MATLAB were used.

4.1 OCP Specific Scripts

DPIP is a very robust OCP solver whose intricacies are beyond the scope of this research [14].

Instead, DPIP functioned as a tool to solve these problems so that the performance of the TFC

method can be thoroughly investigated. DPIP operates off of several key functions, a majority of

which are not inherent to the specific OCP being solved and have been provided by Dr. Hurtado.

However, for each OCP a set of 5 problem-specific functions were written for this research [14].

The structure and function of these scripts are described below.

4.1.1 DPIP Executable

The executable function sets up most of the OCP for DPIP to solve. It defines the number of

states and controls, the final time, and lagrange multipliers for equality and inequality constraints.

It then simulates the uncontrolled dynamics of the problem before the OCP is solved. After the

uncontrolled dynamics are solved, the executable function sets up a loop to iteratively update the

control until a locally minimizing solution is found [14].

Within the loop, the main DPIP function is called with the parameters of the OCP as well as the

names of the other four OCP specific functions as arguments. The main DPIP function will take

the current control history, which should be zero for all time on the first iteration, and calculates

new offsets for control for every time step. The new control history is created by adding the control

offsets to the previous control history. A weighting parameter a which ranges from (0, 1] can scale
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the control offsets as well for cases where the problem is highly nonlinear. In which case, a can be

reduced from it’s typical value of 1, but should never be less than or equal to 0 as doing so would

cause DPIP to iterate control in the wrong direction or not at all respectively.

For the current iteration of the state trajectory, equality and inequality constraints are collected

at each node. For the OCP to be solved completely, all equality constraints must be 0 and all

inequality constraints must be less than or equal to 0. The constraints themselves are calculated in

the equality and inequality OCP specific functions.

Because DPIP uses an iterative process to calculate the optimal control, it must be given stop-

ping criteria otherwise it will continuously iterate smaller and smaller perturbations in control

beyond the accuracy of the model. Stopping criteria for exiting the iterative loop must be defined.

A good way for DPIP to automatically detect when it has converged on a solution is to check the

norm of the control offset matrix when constraints are met. In this model, there is only one control

so the control history will appear as a vector from which the Euclidean norm can be taken. In

other OCP where multiple controls exist, control history will be a 2 dimension array. Finding the

2-norm will return the maximum singular value of the control history. In either case, the norm

of the control history is guaranteed to be positive and will decrease in value as the control steps

become smaller. In most cases, the control step will converge but never reach zero, so a tolerance

is needed. The stopping criteria is then defined when the norm of the equality constraints is within

a tolerance, there are no positive inequality constraints, and the norm of the control step is within a

tolerance. With the stopping criteria defined, the executable function can be run after the remaining

4 functions are written.

4.1.2 DPIP Equations of State

The equations of state function determines the dynamics of the vehicle. It takes arguments of

current time, the state vector, and the control vector at that time. Given the arguments, this function

returns the derivatives of all of the states with respect to time [14]. For OCP involving the full state

dynamics, equation 2.1 is used to calculate state derivatives. For OCP involving the reduced state

dynamics of the zero moment model, equation 2.23 is used.
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Before aerodynamic forces or any state derivatives are calculated, the atmospheric pressure

and speed of sound are interpolated from a standard atmosphere table [7]. Mach number can then

be calculated using equation 2.3. Using the TFC method for the full state model, Mach number,

angle of attack, and elevon deflection are linearly mapped to the z-domain before using TFC to

calculate lift, drag, and pitching moment. In the case of the reduced order model, only Mach

number and angle of attack are mapped to the z-domain and then lift and drag of the trimmed

aircraft is calculated. Given the aerodynamic forces, the state derivatives can then be calculated.

4.1.3 DPIP Cost Derivative Function

The cost function of the associated OCP is considered by this function. DPIP determines the

control step each iteration by quadraticizing the problem and then stepping the control in the direc-

tion of cost minimization [14]. To do this, DPIP does not take the cost function into consideration

directly, but rather considers the partial derivative of the cost function with respect to states and

control. The value of the cost function itself is irrelevant so long as it is optimized to a minima.

The cost derivative function takes the arguments of the state and control history as well as the

time step and calculates the partials of the cost function at the current node. To fully represent

the 2nd order derivatives of the problem, the following derivatives are necessary: 1st partial with

respect to states, 1st partial with respect to controls, 2nd mixed partial with respect to states, 2nd

mixed partial with respect to states and control, and 2nd mixed partial with respect to controls. All

of this information is collected into 5 matrices of the following form.
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∂J

∂x
=



∂J
∂x1

∂J
∂x2

...

∂J
∂xn


∂J

∂u
=



∂J
∂u1

∂J
∂u2

...

∂J
∂um


∂2J

∂x2
=



∂2J
∂x2

1

∂2J
∂x1x2

. . . ∂2J
∂x1xn

∂2J
∂x2x1

∂2J
∂x2

2
. . . ∂2J

∂x2xn

...
... . . . ...

∂2J
∂xnx1

∂2J
∂xnx2

. . . ∂2J
∂x2

n



∂2J

∂u2
=



∂2J
∂u2

1

∂2J
∂u1u2

. . . ∂2J
∂u1um

∂2J
∂u2u1

∂2J
∂u2

2
. . . ∂2J

∂u2um

...
... . . . ...

∂2J
∂umu1

∂2J
∂umu2

. . . ∂2J
∂u2

m


∂2J

∂xu
=



∂2J
∂x1u1

∂2J
∂x1u2

. . . ∂2J
∂x1um

∂2J
∂x2u1

∂2J
∂x2u2

. . . ∂2J
∂x2um

...
... . . . ...

∂2J
∂xnu1

∂2J
∂xnu2

. . . ∂2J
∂xnum



(4.1)

4.1.4 DPIP Equality and Inequality Constraints

The final two OCP specific functions describe the constraints on the problem. The first function

calculates the equality constraints, while the second calculates the inequality constraints. DPIP will

iterate the control history to ensure the constraints are not violated. The equality constraints are

formatted such that when evaluated, the result is zero when the constraint is met. For example, an

equality constraint on the initial altitude of the aircraft may look like:

C = z0 − zinit (4.2)

Inequality constraints are formatted so that they evaluate to less than or equal to zero when

the constraint is met. A minimum or maximum constraint on the altitude of the aircraft may

respectively look like:

Ci = −zi + zmin

Ci = zi − zmax
(4.3)

For both equality and inequality constraints, the constraint equations are evaluated and stored
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in a vector C

C =



C1

C2

...

CNC


(4.4)

Much like the cost derivative function, DPIP also requires the derivative of constraints with

respect to states and control. Both 1st and 2nd order partial derivatives are needed. The constraint

partial derivative arrays are built in a similar way as the derivative arrays for the cost function. The

main difference is that each row of the array corresponds to a unique constraint and each column

corresponds to a state or a control. For 2nd order derivatives each row is expanded to multiple

rows, one for each of the 2nd derivative taken. When constructed the constraint partial derivative

arrays have the following form.

∂C

∂x
=



∂C1

∂x1

∂C1

∂x2
. . . ∂C1

∂xn

∂C2

∂x1

∂C2

∂x2
. . . ∂C2

∂xn

...
... . . . ...

∂CNC
∂x1

∂CNC
∂x2

. . .
∂CNC
∂xn


∂C

∂u
=



∂C1

∂u1

∂C1

∂u2
. . . ∂C1

∂um

∂C2

∂u1

∂C2

∂u2
. . . ∂C2

∂um

...
... . . . ...

∂CNC
∂u1

∂CNC
∂u2

. . .
∂CNC
∂um



∂2C

∂x2
=



[
∂2C1

∂x2

]
[
∂2C2

∂x2

]
...[

∂2CNC
∂x2

]


∂2C

∂u2
=



[
∂2C1

∂u2

]
[
∂2C2

∂u2

]
...[

∂2CNC
∂u2

]


∂2C

∂x∂u
=



[
∂2C1

∂x∂u

]
[
∂2C2

∂x∂u

]
...[

∂2CNC
∂x∂u

]



(4.5)

Fortunately, most of the relevant constraints are on the states and controls themselves. This

results in the 1st order partial derivatives for equality constraints being 1 for the relevant state and

zero for all others. For inequality constraints, the 1st order partial derivatives are −1 for minimum

constraints and +1 for maximum constraints. All 2nd order partials are zero in these cases.
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Calculating partial derivatives for non-states and non-controls can be more difficult. In the

case of elevon constraints for the zero moment model, the elevon can be prevented from exceeding

it’s upper and lower limit of 0.21 radians of deflection by enforcing the restricted flight domain

angle of attack from -0.10 to 0.21 radians as found in section 3.4.1. Another way to enforce these

constraints is to use the partial derivatives recovered by TFC as in section 3.6. Given a ξ vector

trained to approximate a parameter such as maximum temperature, the ξ vector can be used both to

calculate the temperature in determining if the constraint is violated or not and also it’s derivative

with respect to the states [5]. This is extremely convenient as without the TFC method, the partial

derivative of maximum temperature with respect to a state such as angle of attack would be difficult

to calculate.

4.2 Solving OCP with DPIP

To test the effectiveness of the TFC methods with DPIP, three OCP have been formulated to

test some aspect of solving OCP. The first OCP involved stabilizing the aircraft about a set angle

of attack using the full state model, testing the minimization of a cost function. The second OCP

involved maneuvering the aircraft around set "no fly" zones, testing active inequality constraints

placed on states using the zero moment dynamic model. The final OCP involved ensuring the

aircraft does not exceed strict temperature constraints, testing active inequality constraints placed

on non-states with the zero moment dynamic model. The initial state constraints and final time for

each OCP are shown in the table below.

OCP x (ft) z (ft) θ (rad) α (rad) v (ft/s) Q (rad/s) tf (s)
1 0 6e4 0 0.00 5e3 0 10
2 0 6e4 0 0.00 5e3 — 120
3 0 6e4 0 0.00 5e3 — 120

Table 4.1: Initial states and final time each OCP
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4.2.1 Stabilize Angle of Attack OCP

The following OCP was formulated to be solved with the full state system. The goal was to

stabilize the aircraft about a set angle of attack of 0.045 radians. The DPIP simulation uses 51

nodes spaced 0.2 seconds apart for a 10 second long OCP. Because the full state model is highly

nonlinear, the control step scaling between iterations was reduced to 0.6. In addition, the stopping

criteria for this problem was for the norm of the control step to be less than or equal to 0.01. The

cost function for this problem is defined as:

J = 1E6 ∗ 1

2

∫ 10

0

(α− 0.025) dt (4.6)

The initial test for this full state model was unsuccessful. With the initial elevon deflection

assumed to be zero, the aircraft pitches up beyond it’s limit during the first iteration of DPIP. As

this happens, DPIP loses ability solve for an adequate stabilizing control, it returns errors within

the main DPIP function that matrices used to solve for the new control step are singular. DPIP

cannot solve this problem without other considerations.

The main reason DPIP fails to solve the full state model is because the initial condition already

results in a stalled aircraft. To account for this, the initial control of the aircraft was changed such

that the aircraft trims at a reasonable angle of attack before control was iterated by DPIP. Using

figure 3.5, the elevon deflection required to trim the aircraft at the initial flight condition is roughly

0.13 radians. The OCP was then attempted again with the nonzero initial control history.

These results are much better than the zero initial control case and clearly show that DPIP is

capable of solving this OCP. This problem was solved after 9 iterations of DPIP in 32.2 seconds.

The cost function after each iteration of DPIP decreases, and it is clear that the optimized angle of

attack history tightens closely about the desired 0.025 radians.

However, there are clear limitations to this problem. For one, only 10 seconds of flight time

are accounted for in this problem and it would be infeasible to greatly extend the length of the

time period due to increased computation time. Also, the control had to be seeded with an initial
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Figure 4.1: Flight trajectory of the uncontrolled and optimized flight path for OCP 1

calculated value, essentially giving most of the "answer" to DPIP as it was not able to find an

optimal trim condition on it’s own.
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4.2.2 Avoid No Fly Zone OCP

The following OCP was to be solved with the zero moment reduced state dynamics. The goal

was to maneuver the aircraft around strict "no fly" zones. The uncontrolled dynamics of the aircraft

caused it to fly directly through both no fly zones, meaning it is up to DPIP to find a solution where

the aircraft avoids these zones. The OCP uses 121 nodes spaced 1 second apart each for a 120

second long OCP. The control step scaling between iterations is kept at 1. The stopping criteria for

the optimal solution requires that all inequality constraints are met and the norm of the control step

is less than or equal to 0.001. The active no fly altitude constraints are defined as:

C =


−z + 7E4, for 1.5e5 ≤ x ≤ 2.0e5

z − 5E4, for 4.0e5 ≤ x ≤ 4.5e5

(4.7)

The cost function for this problem is:

J = 1E2
1

2

∫ 120

0

Q dt (4.8)

Figure 4.2: Flight trajectory and angles of the uncontrolled and optimized flight path for OCP 2
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These results are also very promising. DPIP successfully solved the OCP in only 4 iterations

and in 27.8 seconds. The aircraft rises and dives around the no fly zones easily. The psuedocontrol

of pitch rate is the only term that is penalized, and it is kept very low and the aircraft pitches

smoothly, unlike the erratic behavior of the solved control in the previous OCP. Elevon deflection

was also able to be recovered after the solution process. Using the state histories and a ξ vector

trained for elevon deflection, the true control can easily be recovered from the aircraft.

Figure 4.3: Psuedo-controlled pitch rate and calculated elevon deflection for OCP 2

4.2.3 Temperature Limited OCP

The following OCP was to be solved with the zero moment reduced state dynamics. The goal

was to meet strict temperature constraints on the forward surfaces of the aircraft. To ensure the

temperature constraints are active, first the uncontrolled aircraft is simulated and temperature is

measured as a function of time. Then a maximum temperature constraint is imposed on the aircraft

such that DPIP must account for the constraint. Otherwise the number of nodes, step scaling,

stopping criteria and cost function are the same as the previous OCP. The temperature constraint is

defined as:

C = T − 530 (4.9)
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The partial derivatives of the maximum temperature are derived using the TFC method as

described in section 3.6. DPIP solves the problem by pitching the aircraft down to reduce the

strength of the oblique shock waves which would otherwise increase temperature.

Figure 4.4: Flight trajectory of the uncontrolled and optimized flight path for OCP 3
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Figure 4.5: Temperature of the leading surfaces for the uncontrolled and optimized OCP 3

4.3 Comparing TFC Results to Direct Results

One of the goasl of this research is to find new ways to simplify the dynamics of hypersonic

vehicles such that OCP can be solved faster. With this in mind, the results of the OCP solved using

dynamics simplified by TFC were compared to solutions using the direct method of calculating

aerodynamic forces using the panel method. OCP 1 and 2 from subsections 4.2.1 and 4.2.2 respec-

tively are considered. The temperature constrained OCP 3 cannot be tested using the direct method

because the temperature constraints rely on partial derivatives of the maximum temperature with

respect to states and control. As mentioned before, analytically solving these partial derivatives is

outside the scope of this research. Instead, consider that OCP 3 could not be solved easily without

the use of TFC which speaks to it’s usefulness of the method.
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In the table below, the computation time and final cost function of the solved problems are

compared.

OCP 1 OCP2 OCP3 (rad)
Direct Time (s) 7363 8417 —
TFC Time (s) 33 27 40
Direct Cost 50.79 0.1258 —
TFC Cost 47.45 0.1258 0.0054

Table 4.2: Solved OCP Solution Time and Final Cost

From the tabulated results, it is clear that using TFC offers a huge advantage in terms of de-

creasing computation time compared to calculating the aerodynamic forces directly. For both OCP

1 and 2, the DPIP program using TFC finds a solution which is lower or equal in cost in far less

time.
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5. SUMMARY AND CONCLUSIONS

In this research, a hypersonic model was developed to approximate the dynamics of a longi-

tudinal hypersonic vehicle. Using a panel method and Pradtl-Meyer wave theory, aerodynamic

forces and moment were calculated for the aircraft. These results were then verified against a CFD

model created in SOLIDWORKS Flow Simulator. The panel method was then used to simulate the

dynamics of the hypersonic vehicle in MATLAB. A reduced order model was also created by as-

suming that the aircraft is trimmed at any given point in the flight. The resulting flight trajectories

of this model were then verified by deriving the elevon deflection required to trim the aircraft and

running the full state model with the elevon deflection history. A strong match occurred when the

aircraft was statically stable but not when the aircraft was statically unstable. To address this, a

small feedback loop was placed on the angle of attack of the aircraft using the state history of the

zero moment model. This stabilized the aircraft. A temperature model was also created to record

the maximum temperature on the front panels of the aircraft. This temperature model was also

verified using CFD.

Figure 5.1: Pressure acting on each panel of the aircraft
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Calculating the aerodynamic forces and moment of the aircraft was shown to be a computa-

tionally expensive process. Methods to estimate these forces to improve computation time were

investigated. The first method utilized a lookup tables which interpolated lift, drag, and pitch-

ing moment from a large array using altitude, velocity, angle of attack, and elevon deflection.

This lookup table was later reduced in size by normalizing the atmospheric pressure to sea level,

nondimensionallizing the velocity to Mach number, and later multiplying the calculated forces and

moment by the ratio between the atmospheric pressure of the freestream and sea level. This re-

sulted in a reduction in the size of the lookup table as well as an increase in the accuracy of the

estimation. Finally, a new method to estimate aerodynamic forces using the Theory of Functional

Connections was developed. Aerodynamic forces and moment, as well as other parameters were

approximated as a linear combination of orthogonal manifolds whose weightings were solved by

a least squares algorithm. Ultimately, each of the methods was tested for a large sample of varied

flight conditions against the direct panel method. The error and computation time of each method

was recorded, with the TFC method outperforming all other methods by a large margin.

Figure 5.2: Performance of force approximation methods
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The TFC method was then used to approximate aerodynamic forces, moment, elevon deflec-

tion, and temperature constraints for three optimal control problems. The OCP were solved using

DPIP, and the resulting trajectories were compared. DPIP successfully solved OCP using the full

state model and the zero moment model. However, the full state model needed to be initialized

with a calculated trim condition in order to converge. Otherwise, the TFC derived forces and con-

straints cooperated with DPIP and resulting in a nonlinear OCP solver that could quickly solve

complex hypersonic dynamics with strict constraints.

Figure 5.3: Flight trajectory of the uncontrolled and optimized flight path for OCP 2
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APPENDIX

CARLEMAN LINEARIZATION

At the beginning of this research, a method referred to as Carleman linearization was studied

as a means to simplify the dynamics of nonlinear systems. The results were unsuccessful, but have

been included in this appendix for the sake of posterity.

Carleman linearization, or Carleman embedding, offers a way to expand a finite series of non-

linear equations into an infinite series of linear equations [15]. After performing this linearization,

the infinite series of linear equations can be used to calculate the behavior of the nonlinear sys-

tem exactly. This is particularly useful to the field of optimal control because, unlike a nonlinear

control system, linear control systems can be solved directly and without iteration [1].

However, it is not feasible to attempt to find the solution to the algebraic Ricatti equation or

otherwise solve an OCP for an infinite series of linear equations. In expanding a nonlinear system

into an infinite system, solution is no longer possible. At this point, truncating the infinite system

to a finite number of linear equations was considered. For example, a single nonlinear equation

could be expanded into an infinite series of linear equations which exactly calculate the behavior

of the nonlinear system. Then, the infinite series of equations is reduced to the first 10 equations

and all higher order terms and equations are omitted. Now the nonlinear equation, which requires

iteration to solve for an OCP, is approximated by a series of 10 linear equations, which can be

solved using a linear method such as LQR or through 1 iteration of a nonlinear OCP solver such

as DPIP [14].

Carleman Embedding works by creating lifted states based on a known basis, a convenient

basis being a power series. The state could then be recovered through the first lifted state, which is

equal to the actual state. An example of Carleman linearization being applied to an uncontrolled

scalar system is shown below.
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Let yn ≡ xn

ẋ = x2 →



ẏ1

ẏ2

ẏ3
...


=



0 1 0 0 . . .

0 0 2 0 . . .

0 0 0 3 . . .

...
...

...
... . . .





y1

y2

y3
...


(A.1)

Now that Carleman Embedding had been applied to uncontrolled systems it was necessary to

expand the process to controlled systems. However, the presence of a control term made it difficult

to completely linearize the system, so several different approaches were tested. For each approach,

the same controlled scalar system was considered.

ẋ = x+ εx2 + u (A.2)

Approach 1 involved directly applying the Carleman linearization process to the system with

no special considerations. This usually resulted in a bilinear system as the control’s effect on the

lifted states would be affected by other lifted states. An example of Approach 1 is shown below.

Let yn ≡ xn

ẏ1

ẏ2

ẏ3
...


=



1 ε 0 0 . . .

0 2 2ε 0 . . .

0 0 3 3 . . .

...
...

...
... . . .





y1

y2

y3
...


+



1

2y2

3y3
...


u

Form: ẏ = Ay +B(y)u

(A.3)

Approach 2 was developed as a method to remove the nonlinearities of the bilinear control

solution by defining new lifted controls that were an explicit function of the lifted state and the

original control. This created a linear system with the caveat that only the original control is
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available for control design. An example of Approach 2 is shown below.

Let yn ≡ xn and un = yn−1u

ẏ1

ẏ2

ẏ3
...


=



1 ε 0 0 . . .

0 2 2ε 0 . . .

0 0 3 3ε . . .

...
...

...
... . . .





y1

y2

y3
...


+



1 0 0 . . .

0 2 0 . . .

0 0 3 . . .

...
...

... . . .





u

u2

u3
...


Form: ẏ = Ay +Bu

(A.4)

Finally, Approach 3 was developed as a method to remove the control matrix all together and

instead compound the effects of control into the lifted state matrix by assuming a forced feedback

form where the control is defined by a scalar factor of the state itself.

ẋ = x+ εx2 + u

ẋ = (1 + k)x+ εx2 where: u ≡ kx

ẋ = k′x+ εx2 where: k′ ≡ 1 + k

(A.5)

An example of Approach 3 is shown below.

Let yn ≡ xn

ẏ1

ẏ2

ẏ3
...


=



k′ ε 0 0 . . .

0 2k′ 2ε 0 . . .

0 0 3k′ 3ε . . .

...
...

...
... . . .





y1

y2

y3
...


Form: ẏ = A(k′)y

(A.6)

To test each approach, a scalar OCP was defined and DPIP was used to solve the original

system. The cost function and initial and final state conditions for the problem are defined as.
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J =

∫ 1

0

x2 + u2dt where:


x(0) = 1

x(1) = 0.1

(A.7)

For the Carleman linearized systems, the first lifted state y1 is penalized instead of x. In the

case of Approach 3, the cost function is rewritten to account for the k′ term.

J =

∫ 1

0

x2 + (k′ − 1)2dt (A.8)

The optimal state and control trajectories were recorded as the true solution to the problem and

the time to converge on a solution was also recorded. Then the problem was solved for a Carleman

Embedded system derived from each of the three approaches where the first five states were kept.

Again, the optimal state and control trajectories were recorded for each method as well as the time

to converge. A close solution to the original problem was found, however every lifted system took

longer to solve than the original nonlinear equation.

Furthermore, when the process was expanded to a multistate OCP, it was found that increasing

the number of states required an increasing number of embedded equations to reach the same order

as a scalar system. While this result of the curse of dimensionality was expected, what was not

expected was that the computation time for solving the Carleman systems also exploded and was

significantly larger than just solving the nonlinear system. With this current implementation, Car-

leman Embedding was not effective as a method of rapid trajectory because it slowed computation

time while also being less accurate than solving the system directly.
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