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ABSTRACT

We construct canonical absolute parallelisms over real-analytic manifolds equipped with 2-

nondegenerate, hypersurface-type CR structures of arbitrary odd dimension not less than 7 whose

Levi kernel has constant rank belonging to a broad subclass of CR structures that we label as recov-

erable. For this we develop a new approach based on a reduction to a special flag structure, called

the dynamical Legendrian contact structure, on the leaf space of the CR structure’s associated

Levi foliation. This extends antecedent results of Curtis Porter and Igor Zelenko, for which they

developed a kind of bigraded Tanaka prolongation, from the case of regular CR symbols constitut-

ing a discrete set in the set of all CR symbols to the case of the arbitrary CR symbols for which

the original CR structure can be uniquely recovered from its corresponding dynamical Legendrian

contact structure. We find an explicit criterion for this recoverability. The method developed here

clarifies the relationship between the bigraded Tanaka prolongation of regular symbols and their

usual Tanaka prolongation, providing a geometric interpretation of conditions under which these

two constructions coincide.

Motivated by the search for homogeneous models with given non-regular symbols, we describe

a process of reduction of an initial natural frame bundle, which is needed to treat structures with

non-regular CR symbols. We demonstrate this reduction procedure for examples whose underlying

manifolds have dimensions 7 and 9. We prove that for every n ≥ 3 the sharp upper bound for the

dimension of the symmetry groups of homogeneous, 2-nondegenerate, (2n + 1)-dimensional CR

manifolds of hypersurface type with a 1-dimensional Levi kernel is equal to n2 + 7. This supports

Beloshapka’s conjecture stating that hypersurface models with a maximal finite dimensional group

of symmetries for a given dimension of the underlying manifold are Levi nondegenerate. Essential

to the calculation of this upper bound is a classification of the CR symbols, which we also de-

rive. Lastly, we classify (up to local equivalence) the 7-dimensional maximally symmetric (among

structures with a given CR symbol) homogeneous, 2-nondegenerate, 7-dimensional CR manifolds,

of which there are eight, and give a similar partial classification of the 9-dimensional models.
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NOMENCLATURE

BT The transpose of a matrix B

B∗ The conjugate transpose of a matrix B

Bi,j The (i, j) entry of a matrix B

B(i,j) The (i, j) block of a matrix B that has been assigned a parti-
tion into blocks

δi,j The Kronecker δ, equal to 1 if i = j and equal to zero
otherwise

Ex The fiber of a fiber bundle E over the base point x

Γ(E) The space of smooth sections of a fiber bundle E

g0 A CR symbol

g0,mod A modified CR symbol

g0,red A reduced modified CR symbol

H A nondegenerate Hermitian matrix in Chapter 3 and a CR
structure in all other chapters

Jλ,m The m × m Jordan matrix with a 1-dimensional eigenspace
and eigenvalue λ

K A CR structure’s Levi kernel

L A CR structure’s Levi form

` A CR structure’s reduced Levi form

LG(V ) The Lagrangian Grassmannian of a symplectic vector space
V

Mλ,m A fundamental block in the canonical form for antilinear op-
erators (see (3.1.4))

Nλ,m A fundamental block in the canonical form for Hermitian ma-
trices (see (3.1.5))

Sm The m×m (0, 1)-matrix satisfying (Sm)i,j = δi+j,m+1

Tm The m×m (0, 1)-matrix equal to J0,m
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1. INTRODUCTION

This dissertation contributes to the program of solving local equivalence problems in Cauchy–

Riemann (or just CR) geometry initiated by the celebrated classical results of É. Cartan [7], Tanaka

[40], and Chern–Moser [8]. Motivation for this program stems from an observation by Poincaré

that real hypersurfaces embedded into complex vector spaces inherit some geometric structure

from the complex structure on the ambient space into which they are embedded, and that this

inherited structure (which in modern terminology is called a CR structure) has local invariants.

A revelatory early example of this phenomenon appeared from contrasting open subsets in C2,

namely the open unit ball B := {z ∈ C2 : |z| < 1} and the open unit polydisc P := {(z1, z2) ∈

C2 : |z1| < 1 and |z2| < 1}. Following Riemmann’s Mapping Theorem, there was keen interest

in whether or not there exist biholomorphisms between open sets in C2 such as B and P , and

Poincaré had the insight to address this question by contrasting the local geometry of these two

sets’ respective boundaries [31]. The boundaries themselves are real hypersurfaces in C2 (i.e., real

3-dimensional embedded submanifolds).

For a real hypersurface M in C2, the maximal complex sub-bundle in its tangent bundle TM

encodes the geometric structure, called a CR structure, that M inherits from its embedding into

C2. The (local) equivalence problem for these structures is to determine when two such hyper-

surfaces (locally) admit a diffeomorphism that preserves their respective CR structures. Poincaré

discovered that the boundaries of B and P are not locally equivalent at any points, and he raised

the question of what invariants distinguish the local geometry of hypersurfaces in C2.1 Later,

Segre observed in [34] that Poincaré’s problem is equivalent to classifying (up to analytic point

transformations) second order ordinary differential equations of the form y′′ = f(x, y, y′). Shortly

thereafter, applying what he referred to as his general method of equivalence, in [7] É. Cartan

1After referring to his observations as résultats partiels et fragmentaires (partial and fragmentary results) toward
a research program of clarifying the link between conformal geometry and the theory of functions of two variables,
Poincaré concluded the article [31] with the sentiment that he hopes this program, when complete, will shed light on
the theory of functions of multiple variables.

1



identified local invariants that completely distinguish hypersurfaces in C2, essentially classifying

CR structures that appear on these hypersurfaces. It is rumored that Cartan obtained similar results

for hypersurfaces in C3 (i.e., for CR structures on 5-dimensional manifolds), but the work was not

recorded. Cartan noted that motivation for his work on Poincaré’s problem includes its significance

for differential equations shown by Segre in [34]. Segre’s observations linking hypersurfaces in

C2 to differential equations were generalized in [37, 29], where the geometry of hypersurfaces in

Cn for n ≥ 2 is shown to be fundamentally linked to a more general family of differential equa-

tions. Also, meeting and exceeding Poincaré’s early hopes that the geometry of hypersurfaces in

C2 would have application to the theory of functions of 2 complex variables, deep relationships

have since been found between the geometry of hypersurfaces in Cn and the theory of functions of

several complex variables, such as the characterization of domains of holomorphy in terms of the

geometry of their boundaries (e.g., see [27, Theorem 5.1.3]), which further motivates the study of

CR geometry on manifolds of higher dimension.

Extensions of Cartan’s solution for treating CR manifolds of higher dimension have been

achieved by specializing to treat only the CR structures whose local invariants satisfy certain con-

ditions. The first broad generalizations of Cartan’s work for CR manifolds of higher dimension are

specialized to the class of structures known as Levi-nondegenerate structures [8, 40]. The solution

to the local equivalence problem for Levi-nondegenerate CR structures of hypersurface type is well

understood in the general framework of parabolic geometries [5, 6, 43].

This dissertation is focussed around extending those local equivalence results via a construction

of canonical absolute parallelisms (developed in Chapter 2) for CR structures that are uniformly

(i.e., at every point) Levi-degenerate while still satisfying further nondegeneracy conditions called

2-nondegeneracy (defined below). For such structures on 5-dimensional manifolds – that is, the

lowest dimension in which 2-nondegeneracy occurs – the structure of absolute parallelism was

constructed only recently and independently in the following three papers (preceded by the work

[13] for a more restricted class of structures): Isaev and Zaitsev [24], Medori and Spiro [28],

and Merker and Pocchiola [30]. For treating higher dimensions the complexity of calculations

2



and number of branching cases needed to be analyzed in order to implement Cartan’s method of

equivalence drastically increases, whereas the algebraic method used by Tanaka and the general

framework of parabolic geometries that worked for treating the Levi-nondegenerate case is not

directly applicable. Hence, new methods are required to treat this problem in higher dimensions.

A method of bigraded Tanaka prolongation was developed in [33] that is able to treat the local

equivalence problem for a specialized class of 2-nondegenerate structures defined by the property

of having a regular CR symbol (defined in Section 2.2) on manifolds of arbitrary dimension, the

most general previous result in this direction. Yet still the local equivalence problem remains in-

tractable to previously known methods for a preponderance 2-nondegenerate structures. In Chapter

2, we develop a new method for constructing canonical absolute parallelisms – solving the local

equivalence problem by reducing it to the classically solved equivalence problem for absolute

parallelisms (e.g., [36, Chapter VII, Theorem 4.1]) – for the expansive class of 2-nondegenerate,

hypersurface-type CR structures that can be encoded in a special associated flag structure that we

call a dynamical Legendrian contact structure (Definition 2.1.3).

Another classical problem setting in differential geometry is to find homogeneous structures

with the symmetry group of maximal dimension among all geometric structures of a certain class.

In CR geometry this problem is classically solved for the class of Levi-nondegenerate CR struc-

tures of hypersurface type of arbitrary dimension ([40, 8]). In Chapter 4, we apply the general

theory developed in Chapter 2 to solve this problem for 2-nondegenerate CR structures of hyper-

surface type with a rank 1 Levi kernel. Previously the solution to this problem was given only in

the 5-dimensional case [24, 28, 30], which, again, is the case of the smallest possible dimension

in which 2-nondegenrate structures exist. We give the solution for arbitrary dimension (which a

priori is odd) greater than 5, extending a previous result of [33] that applies only under the afore-

mentioned additional restriction that the considered structures’ CR symbols are regular. This result

supports Beloshapka’s conjecture [24, Conjecture 5.6] stating in particular that the homogeneous

hypersurface model with maximal finite dimensional group of symmetries is Levi nondegenerate.

To discuss this in more detail, let us now set some working definitions. A Cauchy–Riemann (or

3



just CR) structure of hypersurface type on a (2n+1)-dimensional real manifoldM is an integrable,

totally real, complex rank n distribution H contained in the complexified tangent bundle CTM ,

that is,

[H,H] ⊂ H and H ∩H = 0. (1.0.1)

Here CTM denotes the tensor product TM ⊗ C of the real tangent bundle TM and the trivial

complex line bundle on M . Note that this is merely an abstract definition of the very structure

that a hypersurface in a complex space inherits from the complex structure on the ambient space

into which it is embedded. Indeed, if we regard M as a hypersurface in C2n+1, let J : TC2n+1 →

TC2n+1 denote the standard complex structure on C2n+1 (i.e., the fiberwise linear bundle map

given in standard coordinates as multiplication by i), and let D denote the maximal sub-bundle

of TM invariant under J , then the pair (D, J |D) encodes a structure that M inherits from the

complex structure J , and, with this notation, a hypersurface-type CR structure H (in particular,

satisfying (1.0.1)) can be defined in terms of the pair (D, J |D) as the i-eigenspace of the linear

extension of J to the complexified distribution CD. Conversely, if the CR structure H is obtained

from such a pair (D, J |D) in this way then we can describe (D, J |D) in terms of H by setting

D =
(
H ⊕H

)
∩ TM and taking J |D to be the restriction of the operator on H ⊕ H whose

i-eigenspace and (−i)-eigenspace is H and H respectively.

Fixing some notation, if E is a fiber bundle over a base space B then we let Γ(E) denote the

space of smooth sections of E, and, for p ∈ B, we let Ep denote the fiber of E over p. For a given

CR structure H , a Hermitian form L, called the Levi form of the CR structure H on M , is defined

on fibers of H by the formula

L(Xp, Yp) :=
i

2

[
X, Y

]
p

(mod Hp ⊕Hp) ∀X, Y ∈ Γ(H) and p ∈M, (1.0.2)

where L takes values in the quotient spaces CTpM/
(
Hp ⊕Hp

)
. Note that the coset represented by

i
2
[X, Y ]p in CTpM/

(
Hp ⊕Hp

)
depends only on the values of X and Y at p rather than the values

4



of X and Y in a neighborhood of p. We let K denote the kernel of the Levi form. A CR structure

with Kp = 0 is called Levi-nondegenerate at p, and it is called Levi-degenerate at p otherwise.

Furthermore, assuming that K is a distribution, that is, dimKp is independent of p ∈ M , 2-

nondegeneracy can be defined as follows: we say that the CR structureH onM is 2-nondegenerate

at a point p ∈M if Kp 6= 0 and, for any Y ∈ Γ(K) with Yp 6= 0, there exists X ∈ Γ(H) such that[
X, Y

]
p
6∈ Kp ⊕Kp ⊕ Hp. The structure H is 2-nondegenerate if it is 2-nondegenerate at every

point in M . Equivalently, if for v ∈ Kp and y ∈ Hp/Kp, we take V ∈ Γ(K) and Y ∈ Γ(H) such

that V (p) = v and Y (p) ≡ y (mod K), and define a linear map adv : Hp/Kp → Hp/Kp by

adv(y) := [V, Y ]|p (mod Kp ⊕Hp), (1.0.3)

and similarly define a linear map adv : Hp/Kp → Hp/Kp for v ∈ Kp, then a Levi-degenerate

CR structure is 2-nondegenerate at p if and only if there is no nonzero v ∈ Kp (equivalently, no

nonzero v ∈ Kp) such that adv = 0.

The generalization of this definition to arbitrary k ≥ 1 via the Freeman sequence under analo-

gous constant rank assumptions was given in [14]. A more general definition, without the assump-

tion that K is a distribution and for arbitrary k ≥ 1 can be found in the monograph [2, chapter

XI]. Note that our definition of 2-nondegeneracy (the Freeman definition of k-nondegeneracy)

and the definition in [2] under the assumption that K is a distribution (respectively, of constancy

of ranks in the Freeman sequence) are equivalent (see [26, Appendix]). Freeman’s concept of

k-nondegeneracy organizes CR structures into a heirarchy of nondegeneracies, and the class of

2-nondegenerate structures can be seen as the next class in this hierarchy following the first class,

which is that of Levi nondegenerate CR structures.

As a direct consequence of the Jacobi identity for every v ∈ Kp the antilinear operator adv :

Hp/Kp → Hp/Kp, defned by adv(x) := adv(x), is a self-adjoint antilinear operator with respect

to the Hermitian form ` induced on Hp/Kp by the Levi form L on Hp, that is,

`(advx, y) = `(advy, x), ∀x, y ∈ Hp/Kp.

5



We call ` the reduced Levi form of H .

If H is a hypersurface-type CR structure, n = rankH , and r = rankK, then the assumption

of 2-nondegeneracy implies that (
n− r + 1

2

)
≥ r, (1.0.4)

as the left side is exactly the dimension of the space of self-adjoint antilinear operators on a fiber

of H/K (equal to the dimension of (n− r + 1)× (n− r + 1) symmetric matrices), which cannot

be less than rankK because the mapping v 7→ adv is injective on each fiber Kp of K. This implies

in particular that, as noted before, among hypersurface-type CR manifolds, the lowest dimension

in which 2-nondegeneracy can occur is dimM = 5 (i.e., with n = 2 and r = 1).

Referred to briefly above, the most general previous results on constructing canonical absolute

parallelisms for 2-nondegenerate, hypersurface-type CR structures of dimension higher than 5 (and

without an assumption of semisimplicity of the symmetry group of homogeneous models as in [17,

18] and implicitly in [32]) were obtained in [33] for a specialized class of structures, where under

specific algebraic conditions a bigraded (i.e., Z × Z-graded) analogue of Tanaka’s prolongation

procedure was developed to construct a canonical absolute parallelism for these CR structures in

arbitrary (odd) dimension with Levi kernel of arbitrary admissible dimension. The starting point

of these constructions was the introduction of the notion of a bigraded Tanaka symbol of a CR

structure at a point (called the CR symbol; see Definition 2.2), playing the role of the Tanaka symbol

in the standard Tanaka theory [42, 46], which is not applicable here. As with the usual Tanaka

symbol, the bigraded Tanaka symbol contains the information about Lie brackets of sections of the

(complexified) tangent bundle adapted to a filtration (determined by the CR structure) that remains

after a passage from the filtered structure to a natural bigraded structure at a point (see Section 2.2

for more detail), but in contrast to the standard theory the bigraded symbol is not a Lie algebra in

general, but rather a bigraded vector space.

The algebraic assumption of [33] under which the bigraded Tanaka prolongation approach

works is that the CR symbol they start with is a Lie algebra. Such a CR symbol is called regular.

Yet, for fixed n = rankH and r = rankK satisfying (1.0.4), apart from the case in which the
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equality in (1.0.4) holds, that is, when r =
(
l+1
2

)
and n = l(l+3)

2
for some positive integer l,

which was treated in [17, 18], the non-regular symbols constitute a generic subset in the set of

all symbols (see Lemma 2.6.5 for the proof), and a goal motivating the work in this dissertation

is to treat structures exhibiting non-regular CR symbols because these are precisely the structures

for which, in general, previously known methods for approaching the local equivalence problem,

such as the methods in [33], are not applicable. For this, in the real-analytic category, we develop

an alternative approach based on a (local) reduction of the original CR structure to a sort of flag

structure in the spirit of [10] (see Definition 2.1.4 below) or, equivalently, to families of Legendrian

contact structures (following the terminology of [11], see Remark 2.1.2 below) on the space of

leaves of the Levi foliation (or shortly the Levi leaf space) of the complexified manifold. We call

these flag structures dynamical Legendrian contact structures. Specifically, the Levi leaf space is

endowed with a contact distribution, and within the Lagrangian Grassmannian of each fiber of this

contact distribution (defined with respect to its canonical conformal symplectic form) the original

CR structure induces a pair of submanifolds with complex dimension equal to the rank of the Levi

kernel (see Section 2.1 for more detail). In particular, if the Levi kernel is one-dimensional, then

in each fiber of the contact distribution one has a pair of curves of Lagrangian subspaces.

We leverage this correspondence between CR structures and dynamical Legendrian contact

structures to obtain a canonical construction of absolute parallelisms for the CR structures, which

is the main result developed in Chapter 2. These parallelisms can be applied to obtain new local

equivalence results specifically for recoverable 2-nondegenerate, hypersurface-type CR structures,

which are those that are uniquely determined by their corresponding dynamical Legendrian contact

structure. The set of recoverable structures is a broad family that, at least in the case where the

Levi kernel has rank 1, includes the aforementioned non-regular structures. Chapters 4 and 5

are dedicated to applications of the underlying theory developed in Chapter 2, whereas Chapter 3

develops a linear algebra result that is essential for the analysis in Chapters 4 and 5.

In particular, in Chapter 4 we show that the symmetry group of a homogeneous, 2-nondegenerate,

hypersurface-type, (2n+ 1)-dimensional CR Manifold is not greater than n2 + 7 in any case where
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n ≥ 3, an upper bound that, moreover, can be attained for all n ≥ 3. The analagous upper bound

was previously known for the other case, which is where n = 2 [24, 28, 30], but it was not known

for any of the cases treated here, that is for each n ≥ 3.

In Chapter 5, we classify the CR symbols associated with homogeneous CR models on mani-

folds of dimension 7, and partially classify these symbols for structures on manifolds of dimension

9 with a rank 1 Levi kernel. Moreover, for 7-dimensional manifolds we classify the associated

(maximal) reduced modified CR symbols, an object introduced in Chapter 2 that encodes a larger

set of local invariants than the aforementioned CR symbols do. The importance of this classifica-

tion is that from each reduced modified CR symbol in the classification, we can construct a distinct

homogeneous, 2-nondegenerate, hypersurface-type CR Manifold, contributing to the larger pro-

gram of classifying homogeneous CR manifolds. The fact that all regular symbols correspond to

homogeneous models was shown in [33], wherein they show that each regular symbol is associated

with a (locally) unique maximally symmetric homogeneous model. The classification in Chapter

5 extends these results in low dimensions by finding homogeneous models associated with regular

symbols that have smaller dimensional symmetry groups than the models found in [33] and by

finding homogeneous models associated with non-regular symbols as well. An early conjecture

that all homogeneous models have a regular symbol was in fact the original motivation for the

work in this dissertation. In Chapter 5, we identify two 7-dimensional homogeneous models and

nine 9-dimensional homogenous models with non-regular CR symbols.
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2. UNDERLYING THEORY: A CONSTRUCTION OF CANONICAL ABSOLUTE

PARALLELISMS

Inspired by the theory developed in [9] for geometry of a single submanifold in flag varieties,

we apply a description of the local differential geometry of pairs of submanifolds in Lagrangian

Grassmannians to assign to our original CR structure a kind of Tanaka structure, in general of

nonconstant type and with the symbol at every point different from the original CR symbol of

[33] (correspondingly called the modified CR symbol), for which both a Tanaka-like prolongation

procedure for the construction of canonical moving frames and upper bounds for the dimension of

the pseudogroup of local symmetries can be established, which is this chapter’s most fundamental

result, Theorem 2.3.5. A nonstandard aspect in this theorem is that the modified symbol of our

structure is not necessarily a Lie algebra and it varies from point to point. So to prove Theorem

2.3.5 (see Section 2.8) we make certain modifications to the standard Tanaka prolongation in the

spirit of [46], obtaining a microlocal version of the standard construction.

In Section 2.1, we give criteria (Proposition 2.1.6) for when by passing from a CR structure

to its corresponding dynamical Legendrian contact structure we do not lose any information, that

is, the former can be uniquely recovered from the latter. In particular, we show that in the case

of rankK = 1 the CR structure is recoverable if and only if, for a generator v of K, the operator

adv has rank greater than 1 and, consequently, in this case every CR structure with non-regular

CR symbol is recoverable. Moreover, for fixed rankH > 1 and given signature of the reduced

Levi form ` (i.e., the Hermitian form induced on H/K from the Levi form), among all regular

CR symbols, if ` is sign-indefinite (Figure 2.1) then there are exactly two symbols for which the

operator adv has rank 1 and are consequently non-recoverable, whereas if ` is sign-definite then

there is exactly one such symbol. The two non-recoverable symbols arising in the sign-indefinite

case are distinguished by whether the antilinear operator adv is nilpotent or not. The former is not

possible in the sign-definite case.

In Section 2.4, we prove that structures with non-regular CR symbols cannot have constant
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Finitely many re-
gular and recov-
erable symbols

} {At most 2 non-
recoverable
symbols

Figure 2.1: Moduli space of CR symbols for rankK = 1, fixed dimM > 5, and fixed signature
of L

modified symbols (Theorem 2.4.2), a notion introduced in Section 2.3, which motivates the reduc-

tion procedure of Section 2.5. In particular, Section 2.5 introduces another theorem on absolute

parallelisms (Theorem 2.5.2), which gives more precise upper bounds for the dimension of alge-

bras of infinitesimal symmetries than Theorem 2.3.5 does in certain cases. As a consequence, we

obtain that if the CR symbol g0 is regular and recoverable then its usual Tanaka prolongation and

the bigraded Tanaka prolongation defined in [33, section 3] coincide.

Although to every regular CR symbol one can assign a homogeneous model, the existence of

homogeneous models exhibiting a given non-regular CR symbol turned out to be a subtle question.

In Section 2.6, we show (Theorem 2.6.1) that for any fixed rank r > 1, in the set of all CR symbols

associated with 2-nondegenerate, hypersurface-type CR manifolds of odd dimension greater than

4r + 1 with rank r Levi kernel, the CR symbols not associated with any homogeneous model are

generic, and for r = 1 the same result holds if the reduced Levi form is sign-definite, that is, when

the CR structure is pseudoconvex.

Despite these non-existence results for generic symbols, such homogeneous models do exist
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for specific non-regular symbols. In Section 2.7, we demonstrate our constructions with three ex-

amples. All three examples are actually homogeneous CR manifolds exhibiting the maximally

symmetric structures described in Theorem 2.5.2, and they illustrate novel applications of this

chapter’s main results. Example 2.7.1 has a non-regular CR symbol, and, as such, the method

developed in this chapter is the only known way to build an absolute parallelism over such CR

manifolds such that the parallelism’s automorphisms are all induced by its underlying CR mani-

fold’s symmetries. The other two examples have the same regular CR symbol in the sense of [33,

Definition 2.2] but different modified CR symbols, and, as such, while the construction of an ab-

solute parallelism given in [33] is the same for both examples, the construction given here varies,

resulting in parallelisms of different dimensions for each example whose dimension matches that

of the underlying CR manifold’s symmetry group. The classification of non-regular CR symbols

that admit homogeneous models is a nontrivial problem even for small dimensions and will be

treated partially in Chapter 5.

2.1 The Levi leaf space and its flag structure

From now on we assume that K is a distribution of rank r, that is, dimKp = r for all p ∈ M .

Note that directly from the definition (1.0.2) it follows that K is an involutive distribution. In

this section we introduce an important geometric object, the space of leaves of the foliation by

integral submanifolds of the distribution K ⊕ K, called the Levi leaf space. Since K and K are

subbundles in the complexified tangent bundle CTM , to define such leaves we must “complexify"

the manifold M , at least locally. For this to work we have to assume that all considered objects,

namely the manifoldM and the CR-structure given byH , are real-analytic. Under the real-analytic

assumption, locally (i.e., in some neighborhood of any point in M ) we can consider a complex

manifold CM , a complexification of M , by extending the transition maps between charts, which

are real-analytic by definition, to analytic functions of complex variables. We can then extend

locally the real-analytic distributions H and K to the holomorphic distributions on CM which, for

simplicity, will be denoted by the same letters H and K. The conjugation in local charts of CM

defines an involution τ on CM such that M is the set of its fixed points. Using this involution we
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can extend H and K by the formulas

H := τ∗(H) and K := τ∗(K), (2.1.1)

so H and K are antiholomorphic extensions of the corresponding distributions from M to CM .

Furthermore, distributionsH⊕H andK⊕K in CM are holomorphic as they are holomorphic

extensions of the real parts of the corresponding distributions on M . Also note that the constructed

extended distribution K on CM is involutive as is K ⊕ K, so CM is foliated by the maximal

integral (complex) submanifolds of K ⊕K. This foliation is called the Levi foliation and will be

denoted by Fol(K ⊕K) and, after an appropriate shrinking of CM , which always can be done as

our considerations are local, we can assume that the space of leaves of this foliation

N = CM/Fol(K ⊕K)

has a natural structure of a (complex) manifold. The manifold N is called the Levi leaf space of

the original CR structure.

Let π : CM → N be the natural projection, sending a point p ∈ CM to the leaf of the Levi

foliation passing through p. Since, by construction, for every vector field X ∈ Γ(K⊕K), we have

[X,H ⊕H] ⊂ Γ(H ⊕H). (2.1.2)

The set

D := π∗
(
H ⊕H

)
(2.1.3)

is a well defined (complex) corank 1 distribution on N .

Moreover, since X ∈ Γ(H⊕H) satisfies (2.1.2) if and only if X ∈ Γ(K⊕K), the distribution

D is contact, that is, if α is a 1-form on N annihilating D, then dα|Dγ is nondegenrate at every

point γ ∈ N . The form

ωγ := dα|Dγ
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is, up to a multiplication by a nonzero constant, a well defined symplectic form on Dγ , that is, it

defines a canonical conformal symplectic structure on Dγ .

For every γ ∈ N and every p ∈ π−1(γ), considered as the leaf of the foliation Fol(K ⊕K) in

CM , set

Ĵ−γ (p) := π∗Hp and Ĵ+
γ (p) := π∗Hp.

From the involutivity of the distributionsH andH , it follows that J−γ (p) and J+
γ (p) are Lagrangian

subspaces ofDγ with respect to the symplectic form ωγ , that is, they are elements of the Lagrangian

Grassmannian LG
(
Dγ
)
.

Finally, the distributions K and K are involutive and define foliations Fol(K) and Fol(K),

respectively. Obviously the leaves of Fol(K) (and of Fol(K)) foliate the leaves of Fol(K ⊕ K).

Since [K,H] ⊂ H , the space J−γ (p) is the same for every p in the same leaf of Fol(K) in π−1(γ)

for γ ∈ N . Hence, we can define the map

J−γ : π−1(γ)/Fol(K)→ LG
(
Dγ
)

(2.1.4)

such that, given p ∈ π−1(γ)/Fol(K), we have Ĵ−γ (p) := Ĵ−γ (p̂) for some (and therefore any)

p̂ ∈ CM lying on the leaf containing p of the foliation Fol(K).

Remark 2.1.1. Recall that the tangent space TΛLG(Dγ) to the Lagrangian Grassmannian LG(Dγ)

at the point Λ is identified with an appropriate subspace in Hom(Λ,Dγ/Λ). Also, for every

p ∈ π−1(γ), the map (π∗)p identifies Hp/Kp with J−γ (p) and Hp/Kp with J+
γ (p). Using these

identifications and basic properties of Lie derivatives, for every v ∈ Kp (or v ∈ Kp) we can

identify the operator adv defined by (1.0.3) with the operator
(
J+
γ

)
∗ v (or respectively

(
J−γ
)
∗ v).

By the identification of the previous remark, the 2-nondegeneracy condition implies that, after

an appropriate shrinking of CM , the map J−γ from (2.1.4) is a well defined injective immersion,

that is, its image is a submanifold of LG(Dγ) of complex dimension equal to rankK. Similarly,

the map

J+
γ : π−1(γ)/Fol(K)→ LG

(
Dγ
)
. (2.1.5)
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is a well defined injective immersion and its image is a submanifold of LG(Dγ) of complex di-

mension equal to rankK as well. In the sequel, by J−γ and J+
γ we will denote the images of the

maps in (2.1.4) and (2.1.5), respectively, rather than the maps themselves.

Remark 2.1.2. Note that, by construction, if Λ− ∈ J−γ and Λ+ ∈ J+
γ then Λ− and Λ+ are transver-

sal as subspaces of Dγ , that is, Dγ = Λ− ⊕ Λ+. Recall that a Legendrian contact structure on an

odd dimensional distribution is a contact distribution ∆ together with the fixed splitting of each

fiber ∆x by a pair of transversal Lagrangian subspaces smoothly depending on x (see [11]). Any

section s of the bundle π : CM → N , defines the Legendrian contact structure on N given by the

distribution D and the splitting of Dγ , given by J−γ
(
s(γ)

)
and J+

γ

(
s(γ)

)
.

Motivated by the previous constructions and Remark 2.1.2 we introduce the following defini-

tion.

Definition 2.1.3. A dynamical Legendrian contact structure (with involution) on an odd-dimensional

complex manifoldM is a contact distribution ∆ together with an involution σ onM and a fixed

pair of k-dimensional submanifods Λ−x and Λ+
x in the Lagrangian Grassmannian LG(∆x) of each

fiber such that the following conditions hold:

1. the submanifolds Λ−x and Λ+
x are smoothly dependent on x and any point of Λ−x , consid-

ered as a Lagrangian subspace of ∆x, is transversal to any point of Λ−x , considered as a

Lagrangian subspace of ∆x.

2. Λ−x = σ∗Λσ(x)+.

Such dynamical Legendrian contact structures with involution will be denoted just by the triple

(∆,Λ−,Λ+) when the involution is determined by context or by the triple (∆,Λ−, τ).

Definition 2.1.4. Letting H be a 2-nondegenerate hypersurface-type CR structure on the manifold

M , the dynamical Legendrian contact structure {D, J−, J+} on the Levi leaf space N , with D,

J−, J+, and involution τ defined by (2.1.3), (2.1.4), (2.1.5), and the sentence before (2.1.1), re-

spectively, is called the dynamical Legendrian contact structure associated with the germ (at some

point in M ) of the CR structure H .
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The reason that, in Definition 2.1.4, we say that dynamical Legendrian contact structures are as-

sociated with germs of CR structures rather than with the whole CR manifold, is that the construc-

tion of {D, J−, J+} is well defined only after an appropriate shrinking of M (i.e., after possibly

replacing M by a neighborhood of any given point in M ).

Remark 2.1.5. If {D, J−, J+} is the dynamical Legendrian contact structure associated with the

germ of the 2-nondegenerate CR structure H of hypersurface type on the manifold M then CM is

locally canonically diffeomorphic to the bundle Π : J− × J+ → N with the fiber over the point

γ ∈ N equal to J−γ ×J+
γ , where here J−×J+ :=

⋃
γ∈N

(
J−γ × J+

γ

)
. This canonical diffeomorphism,

denoted by F , is given by

F (p) := (J−γ (p), J+
γ (p)).

Moreover, each fiber J−γ × J+
γ is foliated by two foliations with leaves {J−γ × J+

γ (p)}p∈π−1(γ) and

{J−γ (p)× J+
γ }p∈π−1(γ), respectively. Denote by V1 and V2 the distribution tangent to this foliation.

Then it is clear that

V1 = F∗K, V2 = F∗K,

F∗(Hp +Kp) =
{
y ∈ TF (p)(J

− × J+)
∣∣∣Π∗y ∈ J−π(p)(p)

}
, and

F∗(Hp +Kp) =
{
y ∈ TF (p)(J

− × J+)
∣∣∣Π∗y ∈ J+

π(p)(p)
}
.

(2.1.6)

Finally the distribution H is an involutive subdistribution of H +K.

The main idea of the present chapter is to study the local equivalence problem for the dy-

namical Legendrian contact structures associated with CR structures instead of the CR structures

themselves. Before doing this, we have to understand the conditions under which passing from

the CR structure to the corresponding dynamical Legendrian contact structure does not lose any

information, that is, under which the former can be uniquely reconstructed from the latter. Such

CR structures will be called recoverable.

To describe the conditions for recoverability, recall ([36]) that, given two vector spaces V and

W and a subpsaceZ in Hom(V,W ), the anti-symmetrization (Spencer) operator ∂ : Hom(V, Z)→
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Hom(V ∧ V,W ) is defined by

∂(f)(v1, v2) = f(v1)v2 − f(v2)v1, v1, v2 ∈ V, f ∈ Hom(V, Z). (2.1.7)

The kernel of the operator ∂ is called the first prolongation of the subspace Z ⊂ Hom(V,W ) and

is denoted by Z(1).

Now for v ∈ Kp, take adv : Hp/Kp → Hp/Kp to be as in the sentence after (1.0.3). From the

assumption of 2-nondegeneracy it follows that the map v 7→ adv identifies Kp with a subspace in

Hom(Hp/Kp, Hp/Kp), which is denoted by adKp.

Proposition 2.1.6. A 2-nondegenerate, hypersurface-type CR structure H is recoverable in a

neighborhood of a point p if and only if the first prolongation
(
adKp

)
(1)

of the space adKp van-

ishes.

Proof. From Remark 2.1.5 it follows that a CR structure H is recoverable if and only if H is the

unique involutive subdistribution of H + K of rank n = rankH , transversal to K and containing

K, because the reconstruction can be obtained using formulas (2.1.6). Let H ′ be another complex

complex rank n involutive subdistrubution of H + K that is transversal to K and containing K.

Fix the point p ∈ CM . For each y ∈ CM , there exists a linear map fy : Hy/Ky → Ky such that

H ′ is the graph of fy characterized by

H ′y = {v + fy(v) | v ∈ Hy } .

In the sequel by f we mean the field of linear maps {fy}y∈CM . For two vectors y1, y2 ∈ Hp, let

Y1, Y2 ∈ Γ (H) be such that Yi(p) = yi for i ∈ {1, 2}, and let Y ′1 and Y ′2 be the associated vector

fields in Γ (H ′) such that

Y ′i = Yi + f (Yi) .
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We have

[Y ′1 , Y
′

2 ]p = [Y1, Y2]p + [Y1, f (Y2)]p + [f (Y1) , Y2] + [f (Y1) , f (Y2)]p (2.1.8)

≡ [Y1, f (Y2)]p + [f (Y1) , Y2]p (mod Hp +Kp) (2.1.9)

because [Y1, Y2] and [f (Y1) , f (Y2)] both belong to Hp + Kp due to the involutivity of H and K.

Since H ′ is involutive, it follows that the left side of (2.1.8) belongs to H ′p. Hence, using (1.0.3),

(2.1.9) can be written as

adfp(y1)y2 − adfp(y2)y1 = 0. (2.1.10)

Since y1 and y2 are arbitrary elements of Hp/Kp, by (2.1.7) and (2.1.10), we get that fp ∈(
adKp

)
(1)

, so the vanishing of
(
adKp

)
(1)

for generic p is equivalent to H ′ = H .

Based on this proposition we obtain the following sufficient condition for the recoverability of

the CR structure.

Proposition 2.1.7. If for a generic point p there is no nonzero subspace L of Kp satisfying,

dim

(⋂
v∈L

ker adv

)
≥ rankH − rankK − dimL, (2.1.11)

then the original CR structure given by H is recoverable.

Proof. By Proposition 2.1.6 it is sufficient to prove that if (2.1.11) cannot be satisfied for some L

then
(
adKp

)
(1)

= 0 for generic p. To prove the contrapositive of this statement, assume that for a

generic p there is a nonzero f ∈
(
adKp

)
(1)

. Set L = Imf . Then

dim ker f = rankH − rankK − dimL. (2.1.12)

On the other hand, if y ∈ ker f , then from the definition of the first prolongation for every z ∈

Hp/Kp

adf(z)y = adf(z)y − adf(y)z = 0,
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because f(y) = 0, which means that y ∈ ker adv for every v ∈ L, that is,

ker f ⊂

⋂
v∈Lp

ker adv

 .

This and (2.1.12) implies (2.1.11), that is if
(
adKp

)
(1)
6= 0 then there exists a space L satisfying

(2.1.11), which is the contrapositive of what we needed to prove.

Corollary 2.1.8. If rankK = 1 then the original CR structure given by H is recoverable if and

only if adKp is generated by an operator of rank greater than 1 for a generic point p.

Proof. First note that for rankK = 1 the only nonzero subspace of Kp is Kp itself and the

inequality (2.1.11) is equivalent to the condition that adKp is generated by an operator of rank 1.

This and Proposition 2.1.7 imply the “if” part of the corollary.

To prove the “only if” part assume by contradiction that adKp is generated by rank 1 operator

adv, v ∈ Kp for generic p. Accordingly, f ∈ Hom(Hp/Kp), adKp) such that ker f = ker adv will

be a nonzero element of ad
(
adKp

)
(1)

= 0. Hence, by Proposition 2.1.6 the CR structure is not

uniquely recoverable, which leads to the contradiction.

Remark 2.1.9. Propositions 2.1.6, 2.1.7, and Corollary 2.1.8 can be reformulated in an obvious

way to define CR structures in terms of their dynamical Legendrian contact structures, specifically,

using the identifications in Remark 2.1.1 and the formulas in (2.1.6). In all such reformulations we

have to replace “unique" recovery by “at most one," because in general a dynamical Legendrian

contact structure need not be associated with any CR structure as the distribution in the right side

of the second line of (2.1.6) may not contain any involutive subdistribution of rank equal to the

dimension of J−γ (p).

2.2 Symbols of 2-nondegenerate CR structures

Let us assume that (D, J−, J+) is a dynamical Legendrian contact structure with involution τ

on N associated with a germ of some 2-nondegenerate, hypersurface-type CR structure H on a

manifold M .
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For γ ∈ N and p ∈ π−1(γ), note that there is an identification J+
γ (p) ∼=

(
J−γ (p)

)∗ determined

by the symplectic form ωγ). Using this identification, the tangent space TJ−γ (p)J
−
γ can be canoni-

cally identified with a subspace of Sym2(J−γ (p))∗
)
⊂ Hom

(
J−γ (p), J+

γ (p)
)
, which will be denoted

by δ−(p).

Note that any element y of Sym2
(
(J−γ (p))∗

)
, considered as a self-adjoint operator from J−γ (p)

to (J−γ (p))∗ ∼= J+
γ (p) can be extended to an element ỹ of the conformal symplectic algebra csp(Dγ)

by setting ỹ|J−γ (p) = y and ỹ|J+
γ (p) = 0. In the sequel we will regard δ−(p) as an element of csp(Dγ).

The tangent space TJ+
γ (p)J

+
γ can be canonically identified with a subspace of Hom

(
J+
γ (p), J−γ (p)

)
similarly, which will be denoted by δ+(p) and will be also considered as a subspace of csp(Dγ).

Note that δ+(p) is obtained from δ−(p) by the involution of csp(Dγ) induced by the differential of

the involution τ whenever p belongs to the fixed point set of τ .

Definition 2.2.1. The symbol of the 2-nondegenerate, hypersurface-type CR structure H on a

manifold M at a point p in CM is the orbit of the pair of subspaces
(
δ−(p), δ+(p)

)
under the

action of the conformal symplectic group CSp(Dγ) on csp(Dγ) × csp(Dγ) induced by the Ad-

action of CSp(Dγ) on csp(Dγ). The 2-nondegenerate, hypersurface-type CR structure H is said

to have constant symbol (or be of constant type) if its symbols at every two points are isomorphic

via a conformal symplectic transformation between the corresponding fibers of D at these points.

If p belongs to M then τ induces an involution on the CR symbol, and, in this case, we refer to the

symbol at p as the CR symbol with involution.

In the sequel for simplicity we will work with 2-nondegenerate, hypersurface-type CR struc-

tures with constant symbol. Our constructions can in principle be extended to structures of non-

constant type, in the spirit of the proof of Theorem 2.3.5 given in Section 2.8, using an appropriate

identifying space in the very beginning.

Definition 2.2.1 is formally different from the notion of CR symbol as a certain bigraded (i.e.,

(Z×Z)-graded) vector space introduced in [33, Definition 2.2], but it contains equivalent informa-

tion. To relate these definitions in the subsequent paragraph we use a certain bigrading to denote

different spaces. The actual meaning of this bigrading is explained in detail in [33], but it is not
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crucial here.

The symbol in Definition 2.2.1 of the 2-nondegenerate, hypersurface-type CR structure H with

Levi kernel K on a (2n+ 1)-dimensional manifold at a point p in M is encoded by

1. a 2n-dimensional conformal symplectic space g−1 (over C) with antilinear involution σ,

2. a splitting g−1 = g−1,−1 ⊕ g−1,1, where g−1,±1 are Lagrangian with g−1,1 = σ(g−1,−1), and

3. two (rankK)-dimensional subspaces g0,2 and g0,−2 belonging to Sym(g∗−1,−1) ⊂ csp(g−1)

and Sym(g∗−1,1) ⊂ csp(g−1) respectively, such that one is obtained from the other via the

map induced by σ.

Specifically, we can identify σ with the antilinear involution induced by the complex conjugation

τ defined on CM , and make the identifications

g−1
∼= Dπ(p), g−1,1

∼= J+
π(p)(p), g−1,−1

∼= J−π(p)(p), and g0,±2
∼= δ±(p). (2.2.1)

Remark 2.2.2. The symbol in Definition 2.2.1 of the 2-nondegenerate, hypersurface-type CR struc-

ture at a point in CM not inM is also encoded by the objects in the 3-item list above but excluding

their properties referencing an involution.

Further we can consider the (2n + 1)-dimensional Heisenberg algebra g− := g−1 ⊕ g−2 char-

acterized as being a central extension of g−1 whose center is g−2 and such that for any represen-

tative ω of the conformal symplectic structure on g−1 there exists a nonzero z ∈ g−2 for which

[x, y] := ω(x, y)z for every x, y ∈ g−1.

Finally, let g0,0 be the maximal subalgebra of csp(g−1) such that

[g0,0, g−1,±1] ⊂ g−1,±1 and [g0,0, g0,±2] ⊂ g0,±2, (2.2.2)

where the brackets in the first line are just the action of elements g0,0 ⊂ csp(g−1) on g−1 and the

brackets in the second line are as in csp(g−1).
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The subspace

g0 = g− ⊕ g0,−2 ⊕ g0,2 ⊕ g0,0 ⊂ g− o csp(g−1) (2.2.3)

together with the involution induced on it by the involution σ on g−1 is the symbol introduced in

[33, Definition 2.2]. So there is a bijective correspondence between the notion of CR symbols (at

points in M ) introduced here and in [33].

Here in the semidirect sum we mean the natural action of csp(g−1) on g− induced from the

standard action on g−1. This induced action actually identifies csp(g−1) with the algebra of deriva-

tions of g−, so in the sequel we freely regard elements of each space g0,i as endomorphisms of both

g−1 and g−, letting context dictate which interpretation is being applied.

Definition 2.2.3. The CR symbol is called regular if [g0,−2, g0,2] ⊂ g0,0, where these brackets are

as in csp(g−1) or, equivalently, g0 is a Lie subalgebra of g− o csp(g−1).

Remark 2.2.4. By construction a CR symbol is regular if and only if [g0,−2, g0,2] ⊂ g0,0 or equiv-

alently

[g0,2, [g0,−2, g0,2]] ⊂ g0,2 and [g0,−2, [g0,−2, g0,2]] ⊂ g0,−2. (2.2.4)

A canonical absolute parallelism for CR structures with the regular symbols was constructed

in [33, Theorem 3.2] using bigraded Tanaka prolongations. The set of regular CR symbols, at least

for the case of rankK = 1, is a rather small discrete subset of the set of all symbols. To describe

this in more detail, we need the following observation.

Remark 2.2.5. A CR symbol can be also encoded by

1. a real line of Hermitian forms spanned by a form ` : g−1,1× g−1,1 → C defined by `(x, y) =

iω (x, σ(y)), for some representative ω of the conformal symplectic form on g−1, and

2. a vector space of `-self-adjoint antilinear operators on g−1,1 defined by {x 7→ [v, σ(x)] | v ∈

g0,2}

because the symbol’s Heisenberg algebra structure on g− can be recovered from the line of Her-

mitian forms spanned by `, and the subspaces g0,±2 can be recovered from the vector space of
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`-self-adjoint antilinear operators. In particular, if rankK = 1, then the vector space in item (2)

is generated by an `-self-adjoint antilinear operator A, so the CR symbol is encoded in the pair

(R`,CA). Canonical forms for these pairs were obtained in [38].

This allows us to state the following proposition.

Proposition 2.2.6 ([33, section 4], see also Remark 2.4.3 for generalization to an arbitrary rankK).

If rankK = 1, R` is the real line of Hermitian forms, and CA is the complex line of `-selfadjoint

antilinear operators spanned by a representative A : g−1,1 → g−1,1 such that the CR structure’s

symbol is encoded in (R`,CA) as described above, then the CR symbol is regular if and only if

A3 ∈ CA. (2.2.5)

In particular, if rankK = 1 and adK is generated by a rank 1 operator, then the corresponding

antilinear operator A is of rank 1 and so it satisfies (2.2.5). Therefore the CR symbol in this case

is always regular. This together with Corollary 2.1.8 immediately implies the following corollary.

Corollary 2.2.7. If the symbol of the CR structure H at a point p is not regular and rankK = 1

then the CR structure H is recoverable in some neighborhood of p, that is, H is uniquely deter-

mined by the dynamical Legendrian contact structure (D, J+, τ) associated with the germ of H at

p.

Moreover, based on the classification of regular symbols from [33, section 4], for fixed rankH >

1 and given signature of `, among all regular CR symbols, there are exactly two symbols for which

the operator A has rank 1 and is consequently non-recoverable if the reduced Levi form is sign-

indefinite, and exactly one if the reduced Levi form is sign-definite. These two symbols in the

sign-definite case are distinguished by whether the corresponding antilinear operatorA is nilpotent

or not. The former is not possible in the sign-definite case.

Finally note that the recoverability criteria of Proposition 2.1.6 can be reformulated in terms of

the symbol of the CR structure as follows.
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Proposition 2.2.8. A 2-nondegenerate, hypersurface-type CR structure with symbol g0(p) at a

point p is recoverable in a neighborhood of p if and only if the first prolongation (g0,2)(1) of the

space g0,2 considered as the subspace of csp(g−1) vanishes.

The CR symbols satisfying the condition of Proposition (2.2.8) will be called recoverable.

2.3 Modified CR symbols and the construction of absolute parallelisms

Assume that H is a 2-nondegenerate hypersurface-type CR structure with constant symbol

g0 (having the involution σ) as in (2.2.3). Here g0, which we will call the “model space,” is a

fixed representative in the equivalence class of CR symbols. On the other hand, at every point

p ∈ CM we have the representative g0(p) of the equivalence class of CR symbols, obtained by the

identifications (2.2.1) and the corresponding bigraded components of it will be denoted by gi,j(p),

including g0,0(p) defined accordingly as in (2.2.2).

Note that g− and each gi,j is determined by the symbol of the CR structure at a point p, so we

will write g−(p) or gi,j(p) instead of g− or gi,j whenever we need to emphasize the dependence of

g− or gi,j on p.

We now define two bundles, one over CM and another one over N with the same total space

P 0. For the first bundle pr : P 0 → CM , its fiber pr−1(p) over p ∈ CM is comprised of all adapted

frames, or bigraded Lie algebra isomorphisms, that is,

pr−1(p) =

ϕ : g− → g−(p)

∣∣∣∣∣∣∣∣
ϕ(gi,j) = gi,j(p) ∀ (i, j) ∈ {(−1,±1), (−2, 0)}

ϕ−1 ◦ g0,±2(p) ◦ ϕ = g0,±2

ϕ([y1, y2]) = [ϕ(y1), ϕ(y2)] ∀ y1, y2 ∈ g−

 .

Here g−2,0 := g−2 and g−2,0(p) := g−2(p). The second bundle is π ◦ pr : P 0 → N . Furthermore,

we define a bundle pr : <P 0 →M by

<P 0 := {ϕ ∈ P 0 | pr(ϕ) ∈M and τ∗ ◦ ϕ = ϕ ◦ σ}, (2.3.1)

where σ denotes the fixed involution on the model space g0 and τ∗ denotes the involution on
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J+×J− induced by the map τ introduced just before (2.1.1). Note that the set-inclusion conditions

defining the set in (2.3.1) have some redundancy, but we have stated them as such for clarity.

For any ψ ∈ P 0 with γ = π ◦ pr(ψ), the tangent space of the fiber (P 0)γ = (π ◦ pr)−1(γ) of

the second bundle at ψ can be identified with a subspace of csp(g−) by the map θ0 : Tψ(P 0)γ →

csp(g−) given by

θ0

(
ψ′(0)

)
:=
(
ψ(0)

)−1
ψ′(0) (2.3.2)

where ψ : (−ε, ε)→ (P 0)γ denotes an arbitrary curve in (P 0)γ with ψ(0) = ψ. Let

gmod
0 (ψ) := θ0(Tψ(P 0)γ).

Here the superscript mod stands for modified in order to distinguish it from the space g0 :=

g0,−2 ⊕ g0,0 ⊕ g0,2, defined in [33], which is in general another subspace of csp(g−).

Definition 2.3.1. The space g0,mod(ψ) := g− ⊕ gmod
0 (ψ) is called the modified CR symbol of the

CR structure at the point ψ ∈ P 0.

The bigrading g−1 = g−1,−1 ⊕ g−1,1 of g−1 confers a bigrading on csp(g−1) with weighted

components given by

(
csp(g−1)

)
0,i

=
{
ϕ ∈ csp(g−1) |ϕ(g−1,j) ⊂ g−1,i+j ∀i ∈ {−1, 1}

}
,

yielding the decomposition

csp(g−1) =
(
csp(g−1)

)
0,−2
⊕
(
csp(g−1)

)
0,0
⊕
(
csp(g−1)

)
0,2
. (2.3.3)

For an element ϕ ∈ csp(g−1) (or subset S ⊂ csp(g−1)), we write ϕ0,i (or S0,i) to denote the natural

projection of ϕ (or S) into
(
csp(g−1)

)
0,i

with respect to the decomposition in (2.3.3).
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By construction

(
θ0

(
pr−1
∗ (Kp)

))
0,2

= g0,2 ∀ p ∈M, (2.3.4)

and

(
θ0

(
pr−1
∗
(
Kp

)))
0,−2

= g0,−2 ∀ p ∈M. (2.3.5)

The bundle pr : P 0 → CM is a principal bundle whose structure group, which we label G0,0, has

the Lie algebra g0,0, and θ0 is the principal connection on this bundle, which means, in particular,

that

θ0

(
pr−1
∗ (0)

)
= g0,0. (2.3.6)

Since

Tψ(P 0)γ ∼= pr−1
∗ (0)⊕Kpr(ψ) ⊕Kpr(ψ)

and the subspace θ0 (pr−1
∗ (0)) ⊂ θ0 (Tψ(P 0)γ) belongs to the kernel of the projections ϕ 7→ ϕ0,±2,

it follows from (2.3.4), (2.3.5), and (2.3.6) that

dim θ0

(
Tψ(P 0)γ

)
= dim θ0

(
pr−1
∗ (0)

)
+ dim

(
θ0

(
pr−1
∗ (Kpr(ψ))

))
0,2

+ dim
(
θ0

(
pr−1
∗
(
Kpr(ψ)

)))
0,−2

= dim g0,0 + dimKpr(ψ) + dimKpr(ψ) = dimTψ(P 0)γ,

and hence θ0 is injective on each tangent space Tψ(P 0)γ . Accordingly,

dim g0
(
pr(ψ)

)
= dim g0,mod(ψ) ∀ψ ∈ P 0.

Now we are going to define the universal Tanaka prolongation of the modified symbol g0,mod(ψ)
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by analogy with the standard Tanaka theory [42, 46]. A nonstandard feature here is that the mod-

ified CR symbol is not necessarily a Lie algebra. In the standard Tanaka theory the universal

Tanaka prolongation of a graded Lie algebra g0 = g−2 ⊕ g−1 ⊕ g0 can be shortly defined as the

largest Z-graded subalgebra containing g0 as its nonnegative part satisfying the additional con-

dition that nonnegatively graded elements have nontrivial brackets with g−1 or, equivalently, one

can define each positively graded component of this resulting algebra recursively. Contrastingly,

since g0,mod(ψ) is not necessarily a Lie algebra, the recursive definition is the only available one to

define this prolongation of g0,mod(ψ) because the resulting universal prolongation is also not a Lie

algebra. In more detail, we recursively define the subspaces gmod
k (ψ) by

gmod
1 (ψ) :=

{
f

∣∣∣∣∣ f ∈ Hom(g−2, g−1) + Hom
(
g−1, g0(ψ)

)
f([v1, v2]) = [f(v1), v2] + [v1, f(v2)]∀ v1, v2 ∈ g−

}
(2.3.7)

and

gmod
k (ψ) :=

{
f ∈

⊕
i<0

Hom(gi, gi+k(ψ))

∣∣∣∣∣ f([v1, v2]) = [f(v1), v2] + [v1, f(v2)]

∀ v1, v2 ∈ g−

}
∀ k > 1,

(2.3.8)

and the universal Tanaka prolongation of g0,mod(ψ) is the space

u(ψ) := g− ⊕
⊕
k≥0

gmod
k (ψ).

Note that the antilinear involution on g− naturally induces an involution on csp(g−), which in turn

induces a natural involution on each modified symbol g0,mod(ψ) whenever ψ ∈ <P 0.

To state our main result we introduce the following definitions.

Definition 2.3.2. Fix a CR symbol g0 = g−⊕ g0,−2⊕ g0,0⊕ g0,2 of the form in (2.2.3). A subspace

g0,mod = g− ⊕ gmod
0 of g− o csp(g−1) is called an abstract modified CR symbol (with involution)

of type g0 if the following properties hold

1. dim gmod
0 = dim g0;
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2. gmod
0 ∩ (csp(g−1))0,0 = g0,0;

3.
(
gmod

0

)
0,±2

= g0,±2, where
(
gmod

0

)
0,±2

stands for the image of the projection to the subspace

csp(g−1) with respect to the splitting (2.3.3) of csp(g−1);

4. The subspace gmod
0 is invariant with respect to the involution on g−1 ⊕ csp(g−1).

Definition 2.3.3. A point ψ0 ∈ P 0 is regular (with respect to the Tanaka prolongation) if the maps

ψ 7→ dim gmod
k are constant in a neighborhood of ψ0 for all k ≥ 0.

If we assume that there exists an integer l ≥ 0 such that the set of points ψ ∈ P 0 with

gmod
l (ψ) = 0 is generic, then the regularity property in Definition 2.3.3 is also generic.

Remark 2.3.4. For a 2-nondegenerate CR structure whose Levi form has a rank one kernel such

that g0,2 is generated by an element of rank greater than one, the regularity property in Definition

2.3.3 is generic. This result will be shown in a forthcoming paper.

Now we formulate the main result of this chapter.

Theorem 2.3.5. Fix a CR symbol g0 and a corresponding modified CR symbol g0,mod so that its

universal Tanaka prolongation u(g0,mod) is finite dimensional.

1. Given a 2-nondegenerate, hypersurface-type CR structure with symbol g0 such that there

exists a regular point ψ0 (w.r.t. the Tanaka prolongation) in the bundle <P 0 of this struc-

ture with g0,mod(ψ0) = g0,mod, there exists a bundle over a neighborhood of ψ0 in <P 0 of

dimension equal to dimC u(g0,mod) that admits a canonical absolute parallelism.

2. The real dimension of the algebra of infinitesimal symmetries of a 2-nondegenerate, hypersurface-

type CR structure of the previous item is not greater than dimC u(g0,mod).

The proof of this theorem is obtained via a modification of the approach of [46] to the original

Tanaka prolongation procedure for the construction of absolute parallelisms developed in [42]. A

sketch of the proof with emphasis of the main modifications is given in Section 2.8.
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Let us clarify the meaning of the term canonical absolute parallelism in the formulation of item

(1) of Theorem 2.3.5. Similar to the standard Tanaka theory in [42], wherein a sequence of affine

fiber bundles

CM ← P 0 ← P 1 ← P 2 ← · · ·

are constructed, we will recursively construct a sequence of bundles {P i → Oi−1}1≤i≤l+µ such

that each base space Oi is a neighborhood in P i fitting into the sequence of fiber bundles

CM ← O0 ← O1 ← O2 ← · · · . (2.3.9)

Moreover, each of the spaces in (2.3.9) have an involution defined on them and by restricting the

maps in (2.3.9) to their respective fixed point sets one obtains another sequence of fiber bundles

M ← <O0 ← <O1 ← <O2 ← · · · .

The fibers of each P i are affine spaces with modeling vector space of dimension equal to

dim gmod
i (ψ0) from (2.3.8). If the positively graded part of the universal Tanaka prolongation

u(ψ0) of g0,mod(ψ0) consists of l nonzero graded components, then all Oi with i ≥ l are identified

with each other by the bundle projections, which are diffeomorphisms in those cases. The bundle

Ol+2 is an e-structure over Ol+1, which determines a canonical absolute parallelism on Ol via

aforementioned identification between Ol+1 and Ol. It is important to note that for any 0 < i ≤

l the recursive construction of the bundle Oi+1 over Oi depends on a choice of normalization

conditions, as in the standard Tanaka prolongation theory, and also on a choice of identifying

spaces, which is a new feature required for the prolongation procedure to work in the presence

of nonconstant (modified) symbols. Algebraically, “normalization condition” refers to a choice of

vector space complement to the image of a certain Lie algebra cohomology differential along with

identifying spaces that are the choices of complementary subspaces to gmod
k in the ith algebraic

Tanaka prolongation of the algebra g− o csp(g−1). Therefore, the word “canonical” in item (1)
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of Theorem 2.3.5 means that for any CR structure of the type referred to in item (1), the same

fixed normalization conditions are applied in each step of the construction of the sequence (2.3.9).

This also guaranties the preservation the constructed bundles under the action of the group of

symmetries of the underlying structure which essentially implies item (2) of the theorem.

2.4 CR structures with constant modified symbols

In this section we study the CR structures with constant modified CR symbol g0,mod, meaning

that g0,mod(ψ) = g0,mod for every ψ in P 0. We prove that in this case the modified CR symbol

must be a Lie algebra (Proposition 2.4.1) and that the CR structure has a regular symbol at every

point in the sense of Definition 2.2.3 (Theorem 2.4.2).

Proposition 2.4.1. If a 2-nondegenerate CR structure of hypersurface type has a constant modified

symbol g0,mod then the degree zero component gmod
0 is a subalgebra of csp(g−).

Proof. For a point p ∈ M , let γ = π(p) and let ϕ0 ∈ (P 0)λ be fixed. The differential of the

projection π : CM → N induces an isomorphism

π∗ : g−1(p)⊕ g−2(p)→ Dγ ⊕ TγN /Dγ.

The fiber (P 0)λ of P 0 can be identified with the submanifold

G :=
{

(π∗ ◦ ϕ0)−1 ◦ π∗ ◦ ψ
∣∣ψ ∈ (P 0)λ

}
in the Lie group CSp(g−). If we apply the Maurer–Cartan form Ω : T CSp(g−) → csp(g−) of

CSp(g−) to a tangent space of G then its image will be a subspace of csp(g−), and moreover we

can actually show that

Ω(TgG) = gmod
0 ∀ g ∈ G. (2.4.1)

Indeed, let us compute Ω(TgG). For a point g = (π∗◦ϕ0)−1◦π∗◦ψ ∈ G and a vector v ∈ TgG,
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let ψ : (−ε, ε)→ (P 0)λ be a curve with ψ(0) = ψ such that

v = (π∗ ◦ ϕ0)−1 ◦ π∗ (ψ′(0)) .

The value of the Maurer–Cartan form Ω at v is given by

Ω(v) =
(
(π∗ ◦ ϕ0)−1 ◦ π∗ ◦ ψ

)−1 ◦ (π∗ ◦ ϕ0)−1 ◦ π∗ (ψ′(0)) = ψ−1ψ′(0) = θ0

(
ψ′(0)

)
,

so indeed Ω(v) belongs to gmod
0 . Equation (2.4.1) now follows because dimG = dimP 0 =

dim gmod
0 .

Let us now show that gmod
0 is a subalgebra of csp(g−). Fix two vectors v1, v2 ∈ gmod

0 , and set

Vi = Ω−1(vi); that is, Vi is the left-invariant vector field on CSp(g−1) whose value at the identity

is vi. Since V1 and V2 are both tangent to G at each point in G, the left-invariant vector field

[V1, V2] is also tangent to G at every point in G. In particular, letting e denote the identity element

in CSp(g−), we have

[v1, v2] = [V1, V2]e ∈ TeG = gmod
0 ,

which shows that gmod
0 is closed under Lie brackets.

For the remainder of Section 2.4 our goal is to prove the following theorem.

Theorem 2.4.2. If a 2-nondegenerate CR structure of hypersurface type has a constant modified

symbol g0,mod then the CR structure has a regular CR symbol in the sense of Definition 2.2.3 and

the modified symbol equals the CR symbol as described in (2.2.3).

Before proving this theorem we introduce a matrix representation of gmod
0 and describe the

conditions for gmod
0 to be a Lie subalgebra of csp(g−1) in terms of this matrix representation. These

conditions will be also used for proving the results on non-existence of certain homogeneous CR

structures in Section 2.5.

Let ` be the Hermitian form on g−1,1 as in item (1) of Remark 2.2.5. Still setting r = rankK,

set m = rankH/K = n − r, and let {ei}mi=1 be a basis of g−1,1. Let {ei}mi=1 be the vectors
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obtained via the antilinear involution on g−1. Identify g−1,1 with Cm by identifying (e1, . . . , em)

with the standard basis of Cm, and let H` be the Hermitian matrix representing ` with respect to

this identification, that is, `(ei, ej) = e∗jH`ei, where (·)∗ denotes taking the conjugate transpose.

We define the basis (a1, . . . , a2m) of g−1 by the rule

ai =


ei : i ∈ {1, . . . ,m}

ei−m+1 : i ∈ {m+ 1, . . . , 2m}.
(2.4.2)

Let ω be the symplectic form on g−1 represented by the matrix

J` := i

(
0 H`

−HT
` 0

)
;

that is, identifying g−1 with C2m by identifying (a1, . . . , a2m) with the standard basis of C2m, we

have ω(ai, aj) = aTj J`ai.

This symplectic form ω represents the conformal symplectic form previously defined on g−1.

By representing operators with respect to the same basis (i.e., as given in (2.4.2)), we identify the

conformal symplectic Lie algebra with a matrix Lie algebra given by

csp(g−1) =


(
X1,1 X1,2

X2,1 X2,2

)
+ cI

∣∣∣∣∣∣∣X2,2 = −H−1
` XT

1,1H`, X2,1 = H−1
` XT

2,1H`,

X1,2 = H`
−1
XT

1,2H`, and c ∈ C

 . (2.4.3)

Let C1, . . . , Cr be matrices such that the spaces g0,2 and g0,−2 are spanned by matrices of the

form (
0 Ci
0 0

)
and

(
0 0
Ci 0

)
∀ i ∈ {1, . . . , r} (2.4.4)

respectively. In what follows, we consider the Lie algebras of square matrices α satisfying

αCiH
−1
` + CiH

−1
` αT ∈ span{CjH−1

` }
r
j=1 ∀ i ∈ {1, . . . , r} (2.4.5)
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and respectively

αTH`Ci +H`Ciα ∈ span{H`Cj}rj=1 ∀ i ∈ {1, . . . , r}, (2.4.6)

and we define the algebra A to be their intersection, that is,

A := {α |α satisfies (2.4.5) and (2.4.6)} . (2.4.7)

Remark 2.4.3. Using (2.2.4), it can be shown by direct computations that the CR symbol g0 is

regular if and only if

CiCjCk + CkCjCi ∈ spanC {Cs}rs=1, ∀i, j, k ∈ {1, . . . , r}, (2.4.8)

where the matrices are as in (2.4.4).

The four properties in Definition 2.3.2 imply that under the identification in (2.4.3), the space

gmod
0 has a decomposition gmod

0 = X0,2 ⊕ g0,0 ⊕ X0,−2 such that, for i ∈ {1, . . . , r} there exist

m×m matrices Ωi for which X0,2 and X0,−2 are spanned by the matrices

(
Ωi Ci
0 −H−1

` ΩT
i H`

)
and

(
−H`

−1
Ω∗iH` 0

Ci Ωi

)
∀ i ∈ {1, . . . , r} (2.4.9)

respectively, and, moreover, g0,0 consists of block diagonal matrices in terms of the block decom-

position given in (2.4.3). By Proposition 2.4.1, gmod
0 is a Lie subalgebra of csp(g−1), and hence X0

is a matrix Lie algebra. In particular,

[g0,0,X0,±2] ⊂ X0,±2 ⊕ g0,0, (2.4.10)

and

[X0,−2,X0,2] ⊂ X0,−2 ⊕ X0,2 ⊕ g0,0. (2.4.11)
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The following proposition is obtained by straightforward calculation using the identification in

(2.4.3) and applying the commutator relations in (2.4.10) and (2.4.11).

Proposition 2.4.4. The modified CR symbol g0,mod is a Lie subalgebra of g−ocsp(g−1) if and only

if there exist coefficients ηsα,i ∈ C and µsi,j ∈ C indexed by α ∈ A and i, j, s ∈ {1, . . . , rankK}

such that the system of relations

(i) αCiH
−1
` + CiH

−1
` αT =

r∑
s=1

ηsα,iCsH
−1
`

(ii) [α,Ωi]−
r∑
s=1

ηsα,iΩs ∈ A

(iii) ΩT
j H`Ci +H`CiΩj =

r∑
s=1

µsi,jH`Cs

(iv)
[
H−1
` ΩT

i H`,Ωj

]
+ CjCi −

r∑
s=1

(
µsi,jΩs + µsj,iH

−1
` ΩT

sH`

)
∈ A



(2.4.12)

holds for all α ∈ A and i, j ∈ {1, . . . , rankK}. Note that condition (i) on its own is satis-

fied automatically by the definition of A , but satisfying (i) and (ii) simultaneously with the same

coefficients ηsα,i is not automatic.

Remark 2.4.5. Under the identification in (2.4.3),

g0,0 = spanC

{(
α 0
0 −H−1

` αTH`

)
+ cI

∣∣∣∣ α ∈ A and c ∈ C
}
. (2.4.13)

Now we are ready to prove Theorem 2.4.2. Since I belongs to A , by setting α =
1

2
I , we get

ηsα,i = δi,s from item (i) of (2.4.12), where δi,s denotes the Kronecker symbol. Substituting this

α and the corresponding ηsα,i into the equation in item (ii) of (2.4.12), we get that Ωi ∈ A for all

i ∈ {1, . . . , r}. Then subtracting the matrix of the form appearing in (2.4.13) with α = Ωi from

the matrices appearing in (2.4.9) as the generators of X0,2 and using (2.4.4), we get that the space

g0,2 belongs to gmod
0 . A similar argument implies that g0,−2 belongs to gmod

0 , and hence g0 = gmod
0 .

Accordingly, by Proposition 2.4.1, if a CR structure satisfies the hypothesis of Theorem 2.4.2 then
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g0 is a subalgebra of csp(g−1) and therefore g0 is a regular symbol. This completes the proof of

Theorem 2.4.2.

2.5 Reduction to level sets of modified symbols

According to Theorem 2.4.2, a CR structure with a non-regular symbol cannot have a constant

modified symbol on P 0. Consequently, for such structures the upper bound for the algebra of

infinitesimal symmetries given in Theorem 2.3.5 is far from being sharp in the case of non-regular

g0 and can be improved under appropriate natural assumptions. The standard way to deal with

structures with nonconstant invariants (e.g., the modified CR symbol in our case) is to make a

reduction to the level set of these invariants.

In more detail, given an abstract modified CR symbol g0,mod of type g0 the set P 0(g0,mod)

consisting of all ψ ∈ P 0 such that g0,mod(ψ) = g0,mod is called the level set of g0,mod in P 0.

Assume that P 0(g0,mod) is a smooth submanifold of P 0 such that

CM = pr
(
P 0(g0,mod)

)
. (2.5.1)

The condition in (2.5.1) is motivated by the study of homogeneous CR manifolds, that is, CR

manifolds whose groups of symmetries act transitively. If θ0

(
TψP

0(g0,mod)
)

is the same subspace

g̃0,mod for all ψ ∈ P 0(g0,mod), then we say that P 0(g0,mod) is a reduction of P 0 with constant

reduced modified symbol g̃0,mod.

If, on the other hand, θ0

(
TψP

0(g0,mod)
)

is not constant on P 0(g0,mod), then we can repeat the

process of restriction to a level set. If the chosen level set projects onto a set containing CM and

the image of the tangent spaces to it under θ0 is a fixed subspace of csp(g−1) independently of a

point of the level set, then we again obtain the reduction of P 0 with constant reduced modified

symbol (after two steps of reduction), and if not then we can repeat the process again. In this way,

at least in the homogeneous case, after a finite number of steps we will arrive to a submanifold

P 0,red of P 0 that projects onto CM , and such that the tangent spaces to it are mapped under θ0

is a fixed subspace g0,red of csp(g−1). Also, at least in the homogeneous case, in every step of
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this reduction procedure the level set can be chosen so that it has a nonempty intersection with

<P 0 and hence g0,red will inherit an involution from the involution defined on g0,mod(ψ) for any

ψ ∈ <P 0 ∩ P 0,red. In this case we will say that the bundle P 0 associated with the CR structure

admits a reduction with constant reduced modified symbol g0,red.

Note that the subspace g0,red must be a Lie subalgebra of csp(g−1) by literally the same argu-

ments as in the proof of Proposition 2.4.1. These constructions motivate the following definition,

which generalizes Definition 2.3.2.

Definition 2.5.1. Fix a CR symbol g0 = g− ⊕ g0,−2 ⊕ g0,0 ⊕ g0,2 of the form in (2.2.3). A Lie

subalgebra g0,red = g− ⊕ gred
0 of g− o csp(g−1) is called an abstract reduced modified CR symbol

(with involution) of type g0 if the following properties hold:

1. dim gred
0 = dim

(
gred

0 ∩ g0,0

)
+ 2 dim g0,2 ≤ dim g0;

2. gred
0 ∩ (csp(g−1))0,0 ⊂ g0,0;

3.
(
gred

0

)
0,±2

= g0,±2, where
(
gred

0

)
0,±2

stands for the image under the projection to the sub-

space (csp(g−1))0,±2 with respect to the splitting (2.3.3) of csp(g−1);

4. The subspace gred
0 is invariant with respect to the involution on g−1 ⊕ csp(g−1).

To any abstract reduced modified symbol g0,red, we construct corresponding special homo-

geneous CR structures as follows. Set gred
0,0 := gred

0 ∩ (csp(g−1))0,0. Denote by G0,red and Gred
0,0

connected Lie groups with Lie algebras g0,red and gred
0,0 , respectively, such that Gred

0,0 ⊂ G0,red, and

denote by <G0,red and <Gred
0,0 the corresponding real parts with respect to the involution on g0,red,

meaning that <G0,red and <Gred
0,0 are the maximal subgroups of G0,red and Gred

0,0 whose tangent

spaces belong to the left translations of the fixed point set of the involution on g0,red and on gred
0,0

respectively.

Let MC
0 = G0,red/Gred

0,0 and M0 = <G0,red/<Gred
0,0 . In both cases here we use left cosets. For

every pair (i, j) with i < 0, let D̂flat
i,j be the left-invariant distribution on G0,red such that it is equal
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to gi,j at the identity. Also, for j = ±2, let D̂flat
0,±2 be the left-invariant distributions equal to

gred
0 ∩

(
(csp(g−1))0,0 ⊕ (csp(g−1))0,j

)

at the identity. Since all gi,j are invariant under the adjoint action of Gred
0,0 , the push-forward of each

D̂flat
i,j to MC

0 is a well defined distribution, which we denote by D0
i,j . Let D0

−1 be the distribution

which is the sum ofDflat
i,j with i = −1. We restrict all of these distributions toM0, considering them

as subbundles of the complexified tangent bundle of M0. The distribution Hflat := Dflat
−1,1 ⊕ Dflat

0,2

defines a CR structure of hypersurface type, and, by construction, the corresponding bundle P 0

associated with this CR structure admits a reduction with constant reduced modified symbol g0,red.

The structure Hflat on the constructed homogeneous model M0 is called the flat CR structure with

constant reduced modified symbol g0,red.

Theorem 2.5.2. Assume that for a given a CR symbol g0 there exists a reduced modified symbol

g0,red of type g0 with finite dimensional Tanaka prolongation. Then the following three statements

hold.

1. Given a 2-nondegenerate, hypersurface-type CR structure such that the corresponding bun-

dle P 0 contains a subbundle P 0,red with the reduced modified symbol g0,red, there exists a

bundle over <P 0,red := P 0,red ∩ <P 0 of dimension equal to dimC u(g0,red) that admits a

canonical absolute parallelism;

2. The dimension of the algebra of infinitesimal symmetries of a 2-nondegenerate, hypersurface-

type CR structure of item (1) is not greater than dimC u(g0,red). Moreover, if we assume that

the CR symbol g0 is recoverable then the algebra of infinitesimal symmetries of the flat

CR structure with constant reduced modified symbol g0,red is isomorphic to the real part

<u(g0,red) of u(g0,red);

3. If the CR symbol g0 is recoverable then any CR structure with the constant reduced mod-

ified symbol g0,red whose algebra of infinitesimal symmetries has real dimension equal to

36



dimC u(g0,red) is locally to equivalent to the flat CR structure with reduced modified symbol

g0,red.

Items (1) and (2) of this theorem follow from the standard Tanaka theory for constant symbols

[42] applied, after the reduction of the bundle P 0, to the bundle P 0,red. Item (3) follows from the

fact that u(g0,red) always contains the grading element E; that is, the element such that [E, x] = ix,

for x ∈ gi with i ∈ {−1,−2}, which also implies that [E, x] = 0 for x ∈ gred
0 . This grading

element is the generator of the natural family of dilations on the fibers of P 0. Explicitly, given a

point ψ0 ∈ P 0, the grading element in g0,red is the velocity at t = 0 of the curve ψ(t) such that

ψ(t)|g−2
= I and ψ(t)|g−1

= et ψ0|g−1
. The fact that the grading element is tangent to the level sets

after reduction follows from the fact that this orbit ψ(t) belongs to the same level set of modified

CR symbols. Further, the algebra of infinitesimal symmetries of a CR structure has a natural

filtration such that, in the case where the dimension of this algebra is equal to dimC u(g0,red),

the associated graded algebra is isomorphic to u(g0,red). The existence of this grading element

in the reduced symbol implies that the filtered algebra of infinitesimal symmetries is isomorphic

to its associated graded algebra (considered as filtered algebras) (see [12, Lemma 3]), that is, to

u(g0,red), which implies that the CR structure is locally equivalent to the flat one.

We conclude this section with the following corollary, which relates our Theorem 2.5.2 with

the main theorem of [33, Theorem 3.2].

Corollary 2.5.3. If the CR symbol g0 is regular and recoverable then its usual Tanaka prolongation

and the bigraded Tanaka prolongation defined in [33, section 3] coincide.

Proof. In the case of regular g0 there is a flat CR structure with the constant modified symbol equal

to g0 so that there is no reduction of the bundle P 0, and, from the assumption of recoverability,

item (2) of Theorem 2.5.2 gives the same algebra of infinitesimal symmetry as item (2) of [33,

Theorem 3.2]. The former algebra is the usual Tanaka prolongation of g0 whereas the latter is the

bigraded one.

Note that without the assumption of recoverability the statement of the previous corollary is
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wrong. For example, for rankK = 1, if adK is generated by a rank 1 operator, then the usual

Tanaka prolongation is infinite dimensional and the bigraded Tanaka prolongation is not.

2.6 Generic CR symbols and nonexistence of homogeneneous models

In this section we prove the following theorem.

Theorem 2.6.1. For any fixed rank r > 1, in the set of all CR symbols associated with 2-

nondegenerate, hypersurface-type CR manifolds of odd dimension greater than 4r+ 1 with rank r

Levi kernel and with reduced Levi form of arbitrary signature, the CR symbols not associated with

any homogeneous model are generic. For r = 1, the same statement holds if the reduced Levi form

is sign-definite, that is, when the CR structure is pseudoconvex.

Remark 2.6.2. We believe that the pseudoconvexity assumption in the case of r = 1 is not essen-

tial and can be omitted through more subtle analysis of the corresponding modification of system

(2.4.12) than the analysis we apply for the pseudoconvex case (see Remark 2.6.6 below for more

detail). For the discussion on sharpness of the lower bounds for the dimension of the ambient

manifold see Remark 2.6.4 below. The goal here is to exhibit the phenomena of non-existence of

homogeneous models for generic basic data such as the CR symbol rather than to get the most

general results in this direction.

Proof. The proof consists of a series of lemmas:

The following lemma is about the structure of the algebra A , defined in (2.4.7), for generic CR

symbols. Note that the inclusion

{sI | s ∈ C} ⊂ A (2.6.1)

always holds.

Lemma 2.6.3. For any fixed rank r, in the set of all CR symbols associated with 2-nondegenerate,

hypersurface-type CR manifolds of odd dimension greater than 4r+ 1 with rank r Levi kernel, the

subset of CR symbols such that the algebra

A = {sI | s ∈ C} (2.6.2)
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is generic.

Proof. Fix a CR symbol g0, and, still using m = n− r, let H` and {Cj}rj=1 be the m×m matrices

associated with g0 as in (2.4.4), where H` represents the reduced Levi form. Since the system for

the algebra A given by (2.4.5)-(2.4.6) is overdetermined and linear (in α) and the inclusion (2.6.1)

always holds, to prove our lemma it is enough to prove that for fixed signature of the reduced Levi

form ` (or equivalently, signature of the Hermitian matrix H`) there exists at least one tuple of

matrices {Cj}rj=1 for which (2.6.2) holds.

Assume that the matrices Cj are nonsingular for all 1 ≤ j ≤ r. If

Ai = αCiH
−1
` , (2.6.3)

with α satisfying (2.4.5), then we have that Ai +ATi ∈ span{CjH−1
` }rj=1. Recalling that the set of

solutions of the matrix equation A + AT = S (with respect to A for a fixed symmetric matrix S)

is 1
2
S + so(m) and that α = AH`C

−1
i from (2.6.3), we have that α satisfies system (2.4.5) if and

only if

Ai ∈ span{CjH−1
` }

r
j=1 + so(m) ∀ i ∈ {1, . . . ,m},

which is equivalent to

α ∈
r⋂
i=1

(
span{CjC−1

i }rj=1 + so(m)H`C
−1
i

)
. (2.6.4)

Similar analysis of (2.4.6) implies that α satisfies system (2.4.6) if and only if

α ∈
r⋂
i=1

(
span

{
C
−1

i Cj

}r
j=1

+ C
−1

i H−1so(m)

)
.

Hence, the algebra A satisfies

A =
r⋂
i=1

((
span

{
CjC

−1
i

}r
j=1

+ so(m)H`C
−1
i

)⋂(
span

{
C
−1

i Cj

}r
j=1

+ C
−1

i H−1so(m)

))
.

(2.6.5)
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Choose a basis in g−1,1 such that

H` = diag(1, . . . , 1︸ ︷︷ ︸
q entries

,−1, . . . ,−1). (2.6.6)

We consider the splitting of gl(m) into the space gldiag(m) of diagonal m × m matrices and

the space glholl(m) of m × m matrices with all zeros on the diagonal, sometimes called hollow

matrices,

gl(m) = gldiag(m)⊕ glholl(m). (2.6.7)

Since, by our assumptions, m > r, we can take a special tuple {Cj}rj=1 such that every matrix

Cj is nonsingular and diagonal, that is,

Cj = diag(λj,1, . . . λj,m). (2.6.8)

Accordingly, for every i ∈ {1, . . . r}, we have the following inclusions:

1. The spaces span
{
CjC

−1
i

}r
j=1

and span
{
C
−1

i Cj

}r
j=1

belong to gldiag(m);

2. The spaces so(m)H`C
−1
i and C

−1

i H−1so(m) belong to glholl(m).

Based on the splitting in (2.6.7), for α ∈ gl(m), we let αdiag ∈ gldiag(m) and αholl ∈ glholl(m)

denote the matrices for which

α = αdiag + αholl.

From (2.6.5) and the splitting in (2.6.7) it follows that

αholl ∈
r⋂
i=1

((
so(m)H`C

−1
i

)⋂(
C
−1

i H−1so(m)
))

∀α ∈ A (2.6.9)

and

αdiag ∈
r⋂
i=1

((
span

{
CjC

−1
i

}r
j=1

)⋂(
span

{
C
−1

i Cj

}r
j=1

))
∀α ∈ A . (2.6.10)
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In particular, for a fixed matrix α ∈ A , by (2.6.4) and (2.6.9), there exists B and B̃ in so(m) such

that

αholl = BH`C
−1
1 = C

−1

1 H−1B̃. (2.6.11)

Let

εqi =


1, 1 ≤ i ≤ q,

−1, q + 1 ≤ i ≤ m,

and in the following calculation we denote the (i, j) entry of a matrix X by Xi,j . Using (2.6.6) and

(2.6.8), we get that

(BH`C
−1
1 )i,j =

εqjBi,j

λ1,j

and
(
C
−1

1 H−1B
)
i,j

=
εqi B̃i,j

λ1,i

.

From this and (2.6.11) we have

Bi,j =
εqi ε

q
jλ1,j

λ1,i

B̃i,j,

and hence, since B and B̃ are skew symmetric,

εqi ε
q
jλ1,j

λ1,i

B̃i,j = Bi,j = −Bj,i = −
εqi ε

q
jλ1,i

λ1,j

B̃j,i =
εqi ε

q
jλ1,i

λ1,j

B̃i,j. (2.6.12)

If we now assume that

|λ1,i| 6= |λ1,j| ∀ i 6= j (2.6.13)

then it follows from (2.6.12) that B = 0, and hence αholl = BH`C
−1
1 = 0, that is, α = αdiag.

In other words, (2.6.13) implies that (2.6.5) can be simplified to

A =
r⋂
i=1

((
span

{
CjC

−1
i

}r
j=1

)⋂(
span

{
C
−1

i Cj

}r
j=1

))
. (2.6.14)

If r = 1 then (2.6.14) is equivalent to (2.6.2), which is what we wanted to show, so let us now
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assume that r > 1.

Now use that if α ∈ A then there exist {νi,j}ri,j=1 such that

α =
r∑
j=1

νi,jCjC
−1
i = νi,iI +

∑
j 6=i

νi,jCjC
−1
i , (2.6.15)

which implies by comparing the diagonal entries that for every i > 1

r∑
j=1

λj,s
λ1,s

ν1,j =
r∑
j=1

λj,s
λi,s

νi,j, ∀s = {1, . . . ,m}

or, equivalently,

∑
j>1

λj,sλi,sν1,j −
∑

1≤j≤r,j 6=i

λj,sλ1,sνi,j + λ1,sλi,s(ν1,1 − νi,i) = 0, ∀1 ≤ s ≤ m, 2 ≤ i ≤ r,

(2.6.16)

which is a system of (r − 1)m linear homogeneous equations with respect to r2 − 1 unknowns

{νi,j|1 ≤ i, j ≤ r, i 6= j} and {ν1,1 − νi,i|2 ≤ i ≤ r}.

It remains to note that (r − 1)m ≥ r2 − 1 if and only if m > r and for generic tuples

{λi,s|1 ≤ i ≤ r, 1 ≤ s ≤ m} the rank of the matrix in the system (2.6.16) is r2 − 1. Indeed,

this matrix (after appropriate rearrangement of columns) has a block-triangular form with r − 1

diagonal blocks.

The maximal size diagonal block has sizem×(2r−2) and it is obtained from columns that use

variables appearing in the equations in system (2.6.16) with i = 2 (i.e., {ν1,j|j > 1}, {ν2,j|j > 1})

and {ν1,1 − ν2,2|2 ≤ i ≤ r} and its sth row consists of evaluations of quadratic monomials xixj ,

i ≤ j such that at least one i or j takes values in {1, 2} at the point (x1, . . . xr) = (λ1,s, . . . , λr,s).

This diagonal block has maximal rank at generic points; the determinant of each of its maximal

minors is a nonzero polynomial in the λ’s, because when calculating this minor as the alternating

(according to the signature of permutations) sum of the corresponding products of the entries of the

submatrix corresponding to this minor there cannot be cancellation, as each term of this alternating

sum gives a unique monomial. The latter follows from the fact that distinct rows of this diagonal
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block depend on disjoint sets of variables and that the monomials at different columns are different.

The other r − 2 diagonal blocks are of size m × r and they are parameterized by i > 2. The

block corresponding to a given i > 2 is obtained from columns of the matrix of the system (2.6.16)

that correspond to the variables {νi,j|1 ≤ j ≤ r, j 6= i} and η1,1 − ηi,i. Similar to the maximal

size diagonal block, the sth row of the diagonal block under consideration consists of evaluations

of quadratic monomials x1xj , 1 ≤ j ≤ r such that at the point (x1, . . . xr) = (λ1,s, . . . , λr,s). This

diagonal block has maximal rank at generic points by the same reason as in the previous paragraph.

Therefore, the matrix corresponding to System (2.6.16) has maximal rank, which implies that

νi,j = 0 for all i 6= j and νi,i = ν1,1 for all i. So, by (2.6.15) the matrix α must be a multiple of

identity, which proves (2.6.2).

Remark 2.6.4. The lower bound 4r+ 3 for the dimension of manifold in Lemma 2.6.3 is sharp for

r = 1, as for 5-dimensional manifold there is only one CR symbol and it is regular and does not

satisfy (2.6.2). However, for r > 1 this bound is strictly greater than the minimal dimension for

which non-regular CR symbols exist, so we expect that this bound is not sharp, but our method of

proof using diagonal C’s, cannot improve it.

Lemma 2.6.5. For fixed n = rankH and r = rankK such that the strict inequality in (1.0.4)

holds, the non-regular symbols constitute a generic subset in the set of all CR symbols.

Proof. We prove this using the same principle that was applied for the proof of Lemma 2.6.3;

that is, we will characterize non-regularity as nonsolvability of a certain overdetermined algebraic

system and then find one example of a CR symbol for which this system has no solution.

Given a CR symbol g0 represented by the matrices {Ci}ri=1 as in (2.4.4), the condition for

regularity of g0 in Remark 2.4.3 is given by the system of equations (2.4.8).

Let m = n− r as before. First consider the case when n > 2r or m > r. Working with respect

to a basis of g−1,1 such that H` is as in (2.6.6), choose {Ci}ri=1 and {λi,s}m1≤i≤r,1≤s≤m satisfying
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(2.6.8). The system (2.4.8) can be rewritten as

r∑
l=1

νli,j,kλl,s = 2λi,sλj,sλk,s ∀ i, j, k ∈ {1, . . . , r}, s ∈ 1, . . . ,m (2.6.17)

for some unknowns {νli,j,k}. Fix the triple i, j, k and consider the m × (r + 1) matrix such that

its sth row consists of evaluations of monomials xl with 1 ≤ l ≤ r and 2xixjxk at the point

(x1, . . . xr) = (λ1,s, . . . , λr,s). By assumption m > r, so the solvability of the linear system

(2.6.17) with respect to {νli,j,k}ml=1 is equivalent to the fact that this matrix, which is exactly the

augmented matrix of this nonhomogeneous system, has rank not greater than r. On the other hand,

by the same arguments applied at the end of the proof of Lemma 2.6.3 this matrix has rank r + 1

for a generic tuple of diagonal matrices {Ci}mi=1, so the system is not solvable generically.

Now consider the case when m ≤ r but the strict equality in (1.0.4) holds. Note that this

implies m > 1. Choose the tuple {Ci}ri=1 such that the first m− 1 elements in it are diagonal as in

(2.6.8) and the rest have zero on the diagonal and consider the matrix equation (2.4.8) for example

for i = j = k = 1. By construction, using the splitting (2.6.7), we get that

C1C1C1 ∈ span{Ci}m−1
i=1 ,

which yields exactly the same relation as in the case r = m − 1, and we can repeat the argument

of the case m > r.

Now we are ready to prove our theorem. We will show that as a desired generic set of CR

symbols in the theorem one can take the set of non-regular symbols with the algebra A satisfying

(2.6.2) and maybe some additional generic conditions.

As is done in the proof of Lemma 2.6.3, after fixing a symbol g0 with these generic properties,

we let H` and {Cj}rj=1 be a set of m × m matrices associated with g0. There exists a reduced

modified CR symbol of type g0 if and only if there exist m × m matrices {Ωj}rj=1 such that the

system of relation (2.4.12) can be satisfied after replacing the algebra A with some subalgebra
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A0 ⊂ A . So, to produce a contradiction, let us assume that there exists a reduced modified

CR symbol g0,red of type g0, and fix such corresponding {Ωj}rj=1 and A0. In particular, under

the identification in (2.4.3), g0,red is spanned by matrices of the form in (2.4.9) along with block

diagonal matrices of the form in (2.4.13) but with A replaced by A0.

If I belongs to the subalgebra A0 then, for each i, the first two conditions in (2.4.12) imply that

Ωi belongs to A0, but this implies that g0 is regular, contradicting our assumptions. So I does not

belong to A0, and hence, by (2.6.2),

A0 = 0. (2.6.18)

Similar to arguments of Lemma 2.6.3, since the system of relations (iii) and (iv) from (2.4.12)

with A0 = 0 is overdetermined and algebraic (with respect to the unknown matrices Ωi), then by

the classical elimination theory in order to prove generic nonexistence of solutions of this system it

is enough to prove that for fixed signature of the reduced Levi form ` (or, equivalently, signature of

the Hermitian matrix H`) there exists at least one tuple of matrices {Cj}rj=1 for which this system

of equation is incompatible.

First consider the case r > 1, which is simpler. For each i, condition (iii) of (2.4.12) means

that α = Ωi satisfies (2.4.6), or equivalently, α = H`
−1

Ω∗iH` satisfies (2.4.5) and we can repeat

the arguments of the proof of Lemma 2.6.3 after formula (2.6.14) to show that for generic tuple of

diagonal matrices {Cj}rj=1 the matrix Ωdiag
i is a multiple of the identity matrix, noticing that in that

part of the proof of Lemma 2.6.3 we only used that α satisfies (2.4.5).

Now we apply an argument similar to the one in the proof of Lemma 2.6.3 between (2.6.11) and

(2.6.14) to conclude that Ωholl
i = 0. In more detail, by analogy with (2.6.9) , taking into account

that α = Ωi satisfies (2.4.6) only, we have that

Ωholl
i ∈

r⋂
j=1

(
C
−1

j H−1
` so(m)

)
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and therefore by analogy with with (2.6.11), there exist matrices B and B̃ in so(m) such that

Ωholl
i = C

−1

1 H−1
` B = C

−1

2 H−1
` B̃. (2.6.19)

Comparing entries in (2.6.19) and using skew-symmetricity of B and B̃, we get that in order to

guarantee that Ωholl = 0 we should replace the condition in (2.6.13) by the condition that

∣∣∣∣λ1,i λ1,j

λ2,i λ2,j

∣∣∣∣ 6= 0, ∀i 6= j.

Therefore, for a generic tuple of diagonal matrices {Cj}rj=1, we get that Ωi = sI ∈ A and so the

symbol is regular, contradicting our assumptions.

Now consider the remaining case, which is where r = 1 and H` is positive definite. Working

with respect to a basis of g−1,1 such that H` = I , by (2.6.18) and condition (iv) in (2.4.12), we

have
r∑
s=1

(
µs1,1Ωs + µs1,1Ω∗s

)
= [Ω∗1,Ω1] + C1C1. (2.6.20)

By analogy with (2.6.10) with r = 1, taking into account that α = Ωi satisfies (2.4.6) only, we

have that

Ωdiag
1 ∈ span{I}.

Note also that (2.6.19) holds with r = 1 and H` = I . Fix µ ∈ C and B ∈ so(m) such that

Ωdiag
1 = µI and Ωholl

1 = C1
−1
B.

Using the notation set in (2.6.8), the (i, j) element of [Ω∗1,Ω1] satisfies

([Ω∗1,Ω1])i,j =
([
BCT

1

−1
, C1

−1
B
])

i,j
=

m∑
k=1

(
1

|λ1,k|2
− 1

λ1,iλ1,j

)
Bk,iBk,j,
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and, for 1 ≤ i ≤ m, by equating the (i, i) elements of the matrices on each side of (2.6.20) we get

2<µ = |λ1,i|2 +
m∑
k=1

(
1

|λ1,k|2
− 1

|λ1,i|2

)
|Bk,i|2 ∀ i ∈ {1, . . . ,m}. (2.6.21)

Let i0 be the index such that |λ1,i0| = max{|λ1,1|, . . . , |λ1,m|}. Accordingly, every term on the

right side of (2.6.21) is nonnegative, and hence

|λ1,i0|
2 ≤ 2<µ. (2.6.22)

On the other hand, taking the trace of both sides of (2.6.20) yields

2m<µ =
m∑
i=1

|λ1,i|2 < m |λ1,i0|
2 , (2.6.23)

where the strict inequality is obtained by imposing the assumption in (2.6.13). Clearly (2.6.22)

and (2.6.23) are incompatible, which means that, for the chosen C1, no choice of Ω1 satisfies

(2.4.12).

Remark 2.6.6. The last arguments of the previous proof do not work in the case with r = 1 and

sign-indefiniteH`. There, additional analysis of the equations obtained by comparing off-diagonal

entries in the matrix equation given by condition (iv) of (2.4.12) is needed. Specifically, in general,

for each n and each (n−1)×(n−1) matrixH` representing the Hermitian form `, one needs to find

a single matrix C representing a nonzero `-self-adjoint antilinear operator such that the system

(4.2.4) is inconsistent, from which it then follows that (repeating the arguments used above), for

this given H`, the set of `-self-adjoint antilinear operators represented by a matrix C for which

(4.2.4) cannot be satisfied is a nontrivial Zariski open subset in the vector space of all `-self-

adjoint antilinear operators. In fact this need only be done for each signature of H`, because for

a given signature of H` one can always work in a basis with respect to which H` has a cononical

form. In Chapter (5), for each H` corresponding to n = 3 and n = 4 we obtain examples of C for

which the (4.2.4) cannot be satisfied, and consequently generalize the generic nonexistence result
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of this chapter to include sign-indefinite H` in low dimensions.

2.7 Examples

Although Theorem 2.6.1 shows that for non-regular CR symbols homogeneous models appear

rarely, they still exist. In this section we describe three examples of CR structures to which The-

orems 2.3.5 and 2.5.2 apply. All three examples are actually homogeneous CR manifolds, which

means that they exhibit the maximally symmetric structures described in Theorem 2.5.2, and they

illustrate novel applications of this chapter’s main results.

The first example is non-regular in the sense of Definition (2.2.3). This section’s second and

third examples have the same CR symbol in the sense of [33, Definition 2.2] but different modi-

fied CR symbols, and, as is mentioned in the introduction, while the construction of an absolute

parallelism given in [33] is the same for both examples, the construction given here varies, result-

ing in parallelisms of different dimensions for each example whose dimension matches that of the

underlying CR manifold’s symmetry group.

Each example here is described in terms of a reduced modified CR symbol, and since the ex-

amples are all homogeneous, Theorem 2.5.2 implies that we can indeed describe them up to local

equivalence by giving one of their reduced modified symbols as defined in (2.5.1). From a given

reduced modified symbol g0,red, one can construct globally the homogeneous model (M0, H
flat)

exhibiting the flat CR structure with constant reduced modified symbol g0,red as described in Sec-

tion 2.5.

Example 2.7.1. Let g− be the five dimensional Heisenberg algebra with a basis (e0, . . . , e4) whose

nonzero brackets are given by

[e1, e4] = [e2, e3] = e0.

The basis (e1, . . . , e4) spans g−1, and we define

g−1,−1 := spanC{e1, e2} and g−1,1 := spanC{e3, e4}.
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Representing elements of csp(g−1) as matrices with respect to (e1, . . . , e4), we define gred
0 to be the

subspace of csp(g−1) spanned by the three matrices


0 i√

2
0 i

1√
2

0 1 0

0 0 0 −i√
2

0 0 −1√
2

0

 and


0 i√

2
0 0

−1√
2

0 0 0

0 −i 0 −i√
2

1 0 1√
2

0

 (2.7.1)

and the 4× 4 identity matrix. With these definitions set, g0,red = g− o gred
0 is a Lie algebra and it

is an abstract reduced modified symbol of type g0 in the sense of Definition 2.5.1, where g0 is the

CR symbol with component g0,2 generated by the matrix obtained from the first matrix in (2.7.1)

by setting diagonal 2× 2 blocks equal to zero. In other words, as the matrix C1 in (2.4.4), we can

take

C1 =

(
0 i
1 0

)
. (2.7.2)

We also need to describe the antilinear involution σ : g0,red → g0,red associated with this model’s

CR structure. On g−, the map σ is defined by

σ(e0) = e0, σ(e1) = e3, σ(e2) = e4,

which uniquely defines an antilinear operator on g−. We extend σ to an antilinear involution on

csp(g−1) by the rule

σ(ψ)(x) = σ
(
ψ ◦ σ(x)

)
.

By Remark 2.4.3 the CR symbol g0 is not regular, as C1C1C1 /∈ CC1.

Consider the flat CR structure Hflat defined on M0 with constant reduced modified symbol gred
0

as described in section 2.5. Let us now explicitly describe P 0, the modified CR symbols, and level

sets of the mapping ψ 7→ θ0(TψP
0) associated with this CR structure.

Let G0,red be as described in Section 2.5 and let q : G0,red →MC
0 be the natural projection. Let
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us first show that G0,red can be naturally embedded into P 0. The reduced modified symbol g0,red

is, by construction, canonically identified with the tangent space TeG0,red of G0,red at the identity,

and, more generally, via the differential of the left translation Lh by an element h ∈ G0,red, we

canonically identify g0,red with the tangent space of G0,red at h. In particular, for each g ∈ G0,red,

these identifications can be restricted to give canonical isomorphisms ψh : g− → Dflat
−
(
q(h)

)
,

where ψh = q∗ ◦ (Lh)∗|g− and

Dflat
−
(
q(h)

)
:=

⊕
(i,j), i<0

Dflat
i,j

(
q(h)

)
.

The map h 7→ ψh defines the required embedding of G0,red into P 0. In the sequel, we identify

G0,red with its image under this embedding.

Using (2.7.2) together with H` =

(
0 1
1 0

)
and the identification in (2.4.3), it is easy to show

that g0,0 is a 2-dimensional subspace of csp(g−) spanned by

x1 =

(
I2 0
0 −I2

)
and x2 = I4 (2.7.3)

where Ik denotes the k × k identity matrix. The element x2 in (2.7.3) belongs to g0,red, and is

actually the grading element referred to in the paragraph immediately following Theorem 2.5.2.

Counting dimensions, G0,red has codimension 1 in P 0. Recall that P 0 is a G0,0-bundle over M0.

Using the identification in (2.4.3), we consider the one-parametric subgroup exp(cx1) ⊂ G0,0, so

then P 0 can described by

P 0 = {ψ ◦ exp(cx1) |ψ ∈ G0,red, c ∈ C}. (2.7.4)

For a given ψ ∈ P 0 such that

ψ = ψ0 ◦ exp(cx1), ψ0 ∈ G0,red (2.7.5)

50



the degree zero component of the modified symbol gmod
0 (ψ) is spanned by the two matrices in

(2.7.3) together with the two matrices


0 i√

2
e2c 0 i

1√
2
e2c 0 1 0

0 0 0 −i√
2
e2c

0 0 −1√
2
e2c 0

 and


0 i√

2
e−2c 0 0

−1√
2
e−2c 0 0 0

0 −i 0 −i√
2
e−2c

1 0 1√
2
e−2c 0

 . (2.7.6)

Clearly, the level sets of the mapping ψ 7→ θ0(TψP
0) are parameterized by the the value e2c

appearing in (2.7.6). The image of each tangent space to one of these level sets under the soldering

form θ0 is the space spanned by the matrices in (2.7.5) together with the matrix x2 in (2.7.3), which

is the reduced modified symbol corresponding to that level set. The space G0,red is a connected

component of the level set corresponding to e2c = 1, which has two connected components. So,

we started with an abstract reduced modified symbol g0,red and we have shown that it is indeed

the reduced modified symbol of the level set P 0,red corresponding to e2c = 1. Consequently,

Theorem 2.5.2 can be applied to the CR structure Hflat on M0 to obtain that this homogeneous

model’s symmetry group has dimension equal to dimC u(g0,red) = 8, where this formula follows

from a direct calculation that u(g0,red) = g0,red. By construction, in fact, G0,red is the connected

component of the symmetry group containing the identity.

Note that in the reduction of P 0 we can also use other level sets of the mapping ψ 7→ θ0(TψP
0)

to obtain a different reduced modified symbol isomorphic to g0,red from which we could build this

same homogeneous model, but we have to make sure that the chosen level set has a nonempty

intersection with the real part <P 0 of the bundle P 0, which happens if and only if the space

θ0(TψP
0) is invariant under involution on csp(g−1). The latter holds if and only if <c = 0, and

hence <P 0 belongs to the subset of pr−1(M0) ⊂ P 0 containing points at which the modified

symbol is characterized by (2.7.6) with <c = 0.

Example 2.7.2. Let g− be the 7-dimensional Heisenberg algebra with a basis (e0, . . . , e6) whose
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nonzero brackets are given by

[e1, e6] = [e2, e5] = [e3, e4] = e0.

The basis (e1, . . . , e6) spans g−1, and we define

g−1,−1 := spanC{e1, e2, e3} and g−1,1 := spanC{e4, e5, e6}.

Representing elements of csp(g−1) as matrices with respect to (e1, . . . , e6), we define gred
0 to be the

subspace of csp(g−1) spanned by



0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0

 and



0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0

0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0

 , (2.7.7)

together with

gred
0,0 =




c1 + c2 0 c4 0 0 0

0 c1 0 0 0 0
0 0 c1 + c3 0 0 0
0 0 0 c1 − c2 0 −c4

0 0 0 0 c1 0
0 0 0 0 0 c1 − c3



∣∣∣∣∣∣∣∣∣∣∣∣
ci ∈ C


. (2.7.8)

For this example, we again consider the flat CR structureHflat defined onM0 with constant reduced

modified symbol gred
0 and associated Lie group G0,red as described in section 2.5. Similar to the

calculations for Example 2.7.1, we calculate g0,0 explicitly using (2.4.7) with

C1 =

 0 1 0
0 0 1
0 0 0

 and H` =

 0 0 1
0 1 0
1 0 0
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to obtain that g0,0 is spanned by matrices of the form in (2.7.8) together with

x1 =

(
I 0
0 −I

)
. (2.7.9)

Note that, by Remark 2.4.3, the CR symbol of Hflat is regular at every point because C1C1C1 = 0.

Now by using (2.7.9) instead of (2.7.3) the formulas in (2.7.4) and (2.7.5) apply for our present

example. In particular, for a point ψ ∈ P 0 satisfying (2.7.5), the degree zero component of the

modified symbol gmod
0 (ψ) is spanned by the matrices in (2.7.7) and (2.7.9) together with the two

matrices 
0 e2c 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −e2c

0 0 0 0 0 0

 and


0 0 0 0 0 0
0 0 −e−2c 0 0 0
0 0 0 0 0 0
0 1 0 0 e−2c 0
0 0 1 0 0 0
0 0 0 0 0 0

 . (2.7.10)

As in Example 2.7.1, the level sets of P 0 are parameterized by the values e2c appearing in (2.7.10),

and the level sets having nontrivial intersection with <P 0 are those for which the corresponding

parameter e2c satisfies <(c) = 0. The Tanaka prolongation u(g0,red) is 14-dimensional with a

1-dimensional positively graded component.

Example 2.7.3. This third example should be contrasted with Example 2.7.2 and compared to the

constructions in [33]. For this example, let g0 be the CR symbol of the structure in Example 2.7.2

as characterized in (2.2.3), and set g0,red = g0. Consider the flat structureHflat on the homogeneous

model M0 constructed from g0,red in Section 2.5. Note that since the CR symbol in Example 2.7.2

is regular, gred
0 defined this way is indeed a Lie algebra. In contrast to Example 2.7.2, the model

(M0, H
flat) has constant modified symbol, and, again in contrast to Example 2.7.2, the construc-

tion of the absolute parallelism for (M0, H
flat) given in this text is equivalent to the construction

given in [33]. The Tanaka prolongation u(g0,red) for this example is 16-dimensional with a 2-

dimensional positively graded component. The prolongation u(g0,red) turns out to be equivalent

to the bigraded prolongation introduced in [33, Definition 2.2] whose dimension is given in [33,
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Theorem 5.3]. This equivalence is not incidental, but rather a consequence of recoverability. That

is, a CR structure is recoverable if and only if its associated bigraded prolongation is equivalent to

the corresponding usual Tanaka prolongation of its CR symbol. As a consequence, just as happens

with this example, the methods for constructing the absolute parallelism given here and in [33] are

equivalent for any recoverable structure having a constant modified symbol (which, by Theorem

2.4.2, implies that the modified symbol equals its CR symbol and its CR symbol is regular).

Remark 2.7.1. It turns out that, up to local equivalence, there is exactly one additional homoge-

neous 2-nondegenerate, hypersurface-type CR manifold that can be described as the flat model of

a constant reduced modified CR symbol (as described in Section 2.5) having the same CR symbol

that the models in Examples 2.7.2 and 2.7.3 have, and its symmetry group is 11-dimensional.

2.8 Proof of Theorem 2.3.5

In this section, we modify methods from the theory of Noboru Tanaka’s prolongation proce-

dure described in [46] in order to prove Theorem 2.3.5. In particular, we describe the modifica-

tions necessary to obtain the bundles {P i}∞i=1 corresponding to (2.3.9), which are required due to

the non-constancy of gmod
0 (ψ). For structures with constant modified CR symbols, however, the

standard Tanaka prolongation procedure can be applied directly without modification. The key

modifications appear in the constructions of P 1 and P 2, and we construct these explicitly. Each

higher degree prolongation P k is obtained from P k−1 in the same way that P 2 is obtained from

P 1.

2.8.1 Constructing the first geometric prolongation

Let Π0 : P 0 → M denote the natural projection. The contact structure D on N lifts to a

filtration D0
0 ⊂ D−1

0 ⊂ D−2
0 of TP 0 given by

D0
0 = (Π0)−1

∗ (0), D−1
0 = (Π0)−1

∗ (D), and D−2
0 = TP 0,
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and we use the notation

Di
0(ψ) := Di

0 ∩ TψP 0.

Informally, our first goal in this section is to define structure functions on P 0, which are elements

in

S0 = Hom (g−1 ⊗ g−2, g−2)⊕ Hom (g−1 ∧ g−1, g−1)

associated with horizontal subspaces in TP 0, and we will use this as a tool for finding a family of

objects similar to Ehresmann connections on P 0 that is naturally associated with the underlying CR

structure in a certain sense. But to be more precise, rather than associating horizontal subspaces

with a structure function – as is done in the theory of G-structures – the structure functions we

introduce will be associated with graded horizontal subspaces, namely pairs of subspaces of the

formHψ = (H−2
ψ , H−1

ψ ) where ψ is a point in P 0,

H−2
ψ ⊂ D−2

0 (ψ)/D0
0(ψ), H−1

ψ ⊂ D−1
0 (ψ), (2.8.1)

D−2
0 (ψ)/D0

0(ψ) = H2 ⊕D−1
0 (ψ)/D0

0(ψ), and D−1
0 (ψ) = H−1

ψ ⊕D
0
0(ψ). (2.8.2)

Notice that D0
0 is the domain of the map θ0 : D0

0 → csp(g−1) introduced in (2.3.2). We call

θ0 the degree zero soldering form on P 0 and introduce additional soldering forms θ−1 : D−1
0 →

g−1 and θ−2 : D−2
0 → g−2 as follows. The projection Π0 naturally induces a linear map from

D−2
0 (ψ)/D−1

0 (ψ)⊕D−1
0 (ψ)/D0

0(ψ)⊕D0
0(ψ)→ DΠ0(ψ) ⊕ TΠ0(ψ)N /DΠ0(ψ). Using these induced

maps and letting

π−2
0 : D−2

0 → D−2
0 /D−1

0 and π−1
0 : D−1

0 → D−1
0 /D0

0
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denote the natural projections, for a point ψ in P0, we define

θ−1(v) := ψ−1 ◦ (Π0)∗ ◦ π−1
0 (v) ∀ v ∈ D−1

0 (ψ),

and

θ−2(v) := ψ−1 ◦ (Π0)∗ ◦ π−2
0 (v) ∀ v ∈ D−2

0 (ψ).

We have the associated maps θ−2 : D−2
0 /D−1

0 → g−2, θ−1 : D−1
0 /D0

0 → g−1, and θ0 : D0
0 →

csp(g−1) given by

θi
(
πi0(v)

)
:= θi(v)

where π0
0 : D0

0 → D0
0 is taken to be the identity map.

Remark 2.8.1. These soldering forms {θi} are similar to the soldering forms introduced in [46,

Section 3], but a subtle difference is that the space θ0 (D0
0(ψ)) depends on ψ. For further reference,

the forms θ−2 and θ−1 are close analogues of the forms labeled as θ(0)
−2 and θ(0)

−1 in [41].

For a graded horizontal space Hψ of the form satisfying (2.8.1) and (2.8.2), we define prHψ−2 :

D−2
0 (ψ)/D0

0(ψ)→ D−1
0 (ψ)/D0

0(ψ) and prHψ−1 : D−1
0 (ψ)→ D0

0(ψ) to be the projections parallel to

the subspaces H−2
ψ and H−1

ψ respectively, and define the map

φHψ ∈ Hom
(
g−2, D

−2
0 (ψ)/D0

0(ψ)
)
⊕ Hom

(
g−1, D

−1
0 (ψ)

)
⊕ Hom

(
θ0

(
D0

0(ψ)
)
, D0

0(ψ)
)

by

φHψ(v) :=



(
(Π0)∗ ◦ π−2

0

∣∣
H−2
ψ

)−1

◦ ψ(v) if v ∈ g−2(
(Π0)∗ ◦ π−1

0

∣∣
H−1
ψ

)−1

◦ ψ(v) if v ∈ g−1(
θ0|D0

0(ψ)

)−1

(v) if v ∈ θ0 (D0
0(ψ)) .
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We can now define the structure function SHψ ∈ S0 associated withHψ by the formula

SHψ(v1, v2) :=


θ−2

(
[Y1, Y2](ψ) +D−1

0 (ψ)
)

if v2 ∈ g−2

θ−1

(
prHψ−2 ([Y1, Y2](ψ) +D0

0(ψ))
)

if v2 ∈ g−1

(2.8.3)

where Y1 and Y2 are vector fields defined on a neighborhood of ψ in P 0 such that, supposing

v2 ∈ gi for i ∈ {−1,−2},

Y1 ∈ Γ(D−1
0 ), Y2 ∈ Γ(Di

0), θ−1(Y1) = v1, θi(Y2) = v2, (Y1)ψ = φHψ(v1), (2.8.4)

and either

{
(a) i = −1 and (Y2)ψ = φHψ(v2), or

(b) i = −2 and (Y2)ψ ≡ φHψ(v2) (mod D0
0(ψ)).

(2.8.5)

The definition of SHψ given in (2.8.3), (2.8.4), and (2.8.5) coincides with the definition in [46,

(3.5)], wherein the following lemma is proven.

Lemma 2.8.2 (proven in [46, Section 3]). The definition of SHψ given in (2.8.3) does not depend

on the choice of vector fields Y1 and Y2 satisfying (2.8.4) and (2.8.5).

Considering another graded horizontal space H̃ψ, let us describe the difference between the

structure functions SHψ and SH̃ψ . For this we introduce the function

fHψH̃ψ ∈ Hom(g−2, g−1)⊕ Hom
(
g−1, θ0

(
D0

0(ψ)
))

defined by

fHψH̃ψ(v) = θi+1

(
φHψ(v)− φH̃ψ(v)

)
∀ v ∈ gi and i ∈ {−1,−2},
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and introduce the anti-symmetrization (or generalized Spencer) operator

∂0
ψ : Hom(g−2, g−1)⊕ Hom

(
g−1, θ0

(
D0

0(ψ)
))
→ S0

defined by

∂0
ψf(v1, v2) := [f(v1), v2] + [v1, f(v2)]− f([v1, v2]),

where the brackets [·, ·] are defined by the Lie algebra structure on g− o csp(g−1). It is shown in

[46, Proposition 3.1] that

SHψ = SH̃ψ + ∂0
ψfHψH̃ψ . (2.8.6)

In standard Tanaka theory, one defines the so-called first geometric prolongation of P 0, which

is a certain fiber bundle P 1 defined over the base space P 0, but here instead we define an analogous

first prolongation as a bundle P 1 over a neighborhood O0 in P 0. For defining this, let ψ0 ∈ <P 0

be as in the item (1) of Theorem 2.3.5. By regularity of ψ0 there exists an open neighborhood

O0 ⊂ P 0 of ψ0 such that there exists a subspace N0 ⊂ S0 for which

S0 = N0 ⊕ Im∂0
ψ ∀ψ ∈ O0. (2.8.7)

Moreover, the natural involutions on each previously defined gi induce the natural involution on

the space S0 and also Im∂0
ψ is invariant under this involution for ψ belong to <O0 := <P 0 ∩ O0,

based on the rule that the involution of the tensor product of two elements is the tensor product of

the involution of these elements. So, we can take N0 to be invariant with respect to the involution.

The subspace N0 is called the normalization condition of the structure function for the first

prolongation and the choice of N0 defines the bundle P 1 via the formula

P 1 :=

Hψ

∣∣∣∣∣∣∣
ψ ∈ O0 andHψ is a pair of horizontal
spaces in TψO0 as described in (2.8.1)
and (2.8.2) such that SHψ ∈ N0

 , (2.8.8)
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or, equivalently,

P 1 :=

φHψ
∣∣∣∣∣∣∣
ψ ∈ O0 andHψ is a pair of horizontal
spaces in TψO0 as described in (2.8.1)
and (2.8.2) such that SHψ ∈ N0

 . (2.8.9)

Since N0 is invariant with respect to the involution, we have that if φHψ ∈ P1 then φHψ ∈ P1 for

all ψ ∈ <O0, where

φHψ(v) := φHψ(v)

according to the rule of commuting the involution with tensor products. Hence a natural involution

is defined on the fibers of P 1 over <O0, and the fixed point set of this induced involution is a

subspace in P 1 that we denote by <P 1 and call the real part of P 1.

By (2.8.6), if Hψ and H̃ψ are two elements of P 1 belonging to the fiber (P 1)ψ of P 1 over the

point ψ ∈ O0, then ∂0
ψfHψH̃ψ = 0, and hence

fHψH̃ψ ∈ ker ∂0
ψ = gmod

1 (ψ).

Conversely, if f ∈ ker ∂0
ψ and Hψ is in the fiber (P 1)ψ of P 1 over ψ then the graded horizontal

space

{(v, w) + f(v, w) | (v, w) ∈ Hψ}

also belongs to (P 1)ψ. In other words, by the regularity of ψ0, P 1 is an affine bundle modeled on

gmod
1 (ψ0), and each tangent space THψP

1 is naturally identified with gmod
1 (ψ) by the map θ(1)

1 :

THψ(P 1)ψ → gmod
1 (ψ) defined by the formula

X =
d

dt

∣∣∣∣
t=0

{
(v, w) + tθ

(1)
1 (X)(v, w)

∣∣∣ (v, w) ∈ Hψ

}
. (2.8.10)

Similarly, <P 1 is an affine bundle over <O0 modeled on <gmod
1 (ψ0).

The difference between P 1 defined here and the first geometric prolongation defined in the
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standard Tanaka theory as in [46] is that the maps φHψ appearing in (2.8.9) have different domains

because gmod
0 (ψ) is non-constant. If gmod

1 (ψ0) 6= 0 then in order to continue the prolongation

procedure, constructing higher degree geometric prolongations, we need to somehow identify the

domains of each φHψ . Moreover, independent of gmod
1 (ψ0), ultimately we still will need to fix

an identification of all gmod
0 (ψ) in order to construct canonical absolute parallelisms. All of this

motivates the following introduction of what we call the identification space I0. By regularity of

ψ0, we can fix a subspace I0 ⊂ csp(g−1) invariant under the induced involution on csp(g−1), such

that, after possibly shrinking the neighborhood O0, in addition to (2.8.7), we have

csp(g−1) = I0 ⊕ gmod
0 (ψ) ∀ψ ∈ O0.

For all ψ in O0, each gmod
0 (ψ) is identified with gmod

0 (ψ0) via the projection to the latter that is

parallel to I0. We let

prI0 : g− ⊕ csp(g−1)→ g0,mod(ψ0)

denote the map that is equal to the identity on g− and equal to the projection parallel to I0 on

csp(g−1).

2.8.2 Constructing the second geometric prolongation

We define the second geometric prolongation as a bundle over a neighborhoodO1 in P 1 just as

we defined P 1 as a bundle over the neighborhood O0 in P 0. For this we now introduce structure

functions associated with graded horizontal spaces in TO1 and define P 2 to be the bundle of these

graded horizontal spaces whose structure functions satisfy a certain normalization condition.

The filtration D0
0 ⊂ D−1

0 ⊂ D−2
0 of TP 0 lifts to a filtration D1

1 ⊂ D0
1 ⊂ D−1

1 ⊂ D−2
1

of TP 1, where, for i ∈ {0,−1,−2}, Di
1 = (Π1)−1

∗ D
i
0, and D1

1 = (Π1)−1
∗ (0). We set Di

1(Hψ) =

Di
1∩THψP 1. Using the definition of P 1 given in (2.8.8), for eachHψ ∈ P 1 and i ∈ {−2,−1, 0, 1},

we also have soldering forms

θ
(1)
i : Di

1(Hψ)→ g0,mod(ψ)⊕ gmod
1 (ψ)
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where θ(1)
1 is as given in (2.8.10), and, for i < 1, θ(1)

i (v) = θi ◦ (Π1)∗(v). Each θ
(1)
i has the

corresponding map θ
(1)

i with domain Di
1(Hψ)/Di+1

1 (Hψ) defined by θ
(1)

1 = θ
(1)
1 and θ

(1)

i = θi ◦

(Π1)∗.

Similar to the definition of graded horizonal subspaces in TP 0, for p ∈ P 1, we define graded

horizontal subspaces in TpP
1 as tuples of subspaces Hp = (H0

p , H
−1
p , H−2

p ) such that H i
p ⊂

Di
1(p), H0

p ⊕ D1
1(p) = D0

1(p), H−1
p ⊕ D0

1(p) = D−1
1 (p), and H−2

p /D1
1(p) ⊕ D−1

1 (p)/D1
1(p) =

D−2
1 (p)/D1

1(p). For each of these graded horizontal subspaces Hp in TpP
1, we define prHp−2 :

D−2
1 (p)/D1

1(p) → D0
1(p)/D1

1(p) and prHp−1 : D−1
1 (p) → D1

1(p) to be the projections parallel to

the subspaces H−2
p and H−1

p respectively. Analogous to the map defined in (2.8.8), each graded

horizontal subspaceHp in TpP 1 uniquely determines an isomorphism

φHp : g− ⊕ gmod
0

(
Π1(p)

)
⊕ gmod

1

(
Π1(p)

)
→ H−2

p ⊕H−1
p ⊕H0

p ⊕D1
1(p)

such that, for i ∈ {−1,−2}, φHp(gi) = H i
p, φ

Hp
(
gmod

0 (p)
)

= H0
p , and φHp

(
gmod

1 (p)
)

= D1
1(p).

For a graded horizontal subspaceHp ⊂ TpP
1 we define its structure function SHp to be the element

of

S1 := Hom (g−1 ⊗ g−2, g−1)⊕ Hom
(
g−1 ∧ g−1, g

mod
0 (ψ0)

)
⊕ Hom

(
g−1 ⊗ gmod

0 (ψ0), gmod
0 (ψ0)

)
defined by

SHp(v1, v2) :=


θ

(1)

−1

(
prHp−2 [Y1, Y2](p) +D0

1(p)
)

if v2 ∈ g−2

prI0 ◦ θ(1)

0

(
prHp−1 ([Y1, Y2](p) +D1

1(p))
)

if v2 ∈ g−1

prI0 ◦ θ(1)

0 ([Y1, Y2](p)) if v2 ∈ gmod
0 (ψ0)

(2.8.11)

where Y1 and Y2 are vector fields defined on a neighborhood of p in P 1 such that, supposing
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v2 ∈ gi(ψ0) for i ∈ {0,−1,−2},

Y1 ∈ Γ(D−1
1 ), Y2 ∈ Γ(Di

1), θ
(1)
−1(Y1) = v1, θ

(1)
i (Y2) =

(
prI0

∣∣
g0,mod(Π1(p))

)−1

(v2),

(Y1)p = φHp(v1),

and either 
(a) i = 0 and (Y2)p = φHp ◦

(
prI0

∣∣
g0,mod(Π1(p))

)−1

(v2),

(b) i = −1 and (Y2)p ≡ φHp(v2) (mod D1
1(ψ)), or

(c) i = −2 and (Y2)p ≡ φHp(v2) (mod D0
1(ψ)).

(2.8.12)

Comparing this formula for SHp to the structure functions defined (for geometric prolongations

of arbitrary degree) in [46, Formula (4.16)], the only difference is that we include the projection

prI0 in multiple places, and this modification is necessary because the symbols gmod
0 (ψ) are non-

constant. Notice that if the structure’s modified CR symbols are constant on O0 then the formulas

in (2.8.11) and (2.8.12) would be unaffected by the removal of prI0 .

For a point p ∈ P 1, we introduce another anti-symmetrization operator

∂1
p : Hom

(
g−2, g

mod
0 (Π1(p))

)
⊕ Hom

(
g−1, g

mod
1 (Π1(p))

)
→ S1

defined by

∂1
pf(v1, v2) = prI0 ([f ◦ ι (v1) , v2] + [v1, f ◦ ι (v2)]− f ◦ ι ([v1, v2])) (2.8.13)

using the identification ι =
(

prI0
∣∣
g0,mod(Π1(p))

)−1

for brevity. Note that this definition of ∂1
p is

similar to the generalized Spencer operator defined for the second geometric prolongation in [46],

and the key difference is that our definition of ∂1
p here includes intertwining with the projection

prI0 .
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Similar to the construction of the first geometric prolongation, by regularity of ψ0 there exists

an open neighborhood O1 ⊂ P 1 with ψ0 ∈ Π1(O1) such that there exists a subspace N1 ⊂ S1 for

which

S1 = N1 ⊕ Im∂0
ψ ∀ψ ∈ O0. (2.8.14)

We can take it to be invariant with respect to natural involution induced on S1. We call N1 the

normalization condition of the structure function for the first prolongation and the choice of N1

defines a second geometric prolongation P 2 via the formula

P 2 :=

Hp

∣∣∣∣∣∣∣
p ∈ O1 and Hp is a pair of horizontal
spaces in TpO1 as described in (2.8.1)
and (2.8.2) such that SHψ ∈ N1

 .

Just as P 1 has the structure of an affine bundle modeled on the vector space gmod
1 (ψ0), the bundle

P 2 has the structure of an affine bundle over O1 modeled on gmod
2 (ψ0).

Finally, by complete analogy with the first prolongation, we can define the real part <P 2 of P 2

as an affine bundle over <O1 := O1 ∩ <P 1 modeled on the space <gmod
2 (ψ0).

2.8.3 Higher geometric prolongations

To summarize how the above constructions of P 1 and P 2 differ from the geometric prolon-

gations in [46], each bundle P i is defined over a neighborhood in P i−1 and the maps defined in

(2.8.11) and (2.8.13) differ from their analogs in [46] in that they are intertwined with the projec-

tion prI0 . This exact pattern continues for the construction of each higher geometric prolongation

P i with i > 2. In particular, for example, letting u1 denote the standard first Tanaka prolongation

of the graded Lie algebra g− ⊕ csp(g−1) (defined using the same formula given in (2.3.7) with

gmod
0 (ψ) replaced by csp(g−1)) and again using the regularity of ψ0, we can shrink the neighbor-

hood O1 so that, in addition to (2.8.14), there exists a subspace I1 in u1 that is invariant under the
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induced involution and satisfies

u1 = I1 ⊕ gmod
1 (ψ) ∀ψ ∈ O0.

Each g0,mod(ψ) ⊕ gmod
1 (ψ) is identified with g0,mod(ψ0) ⊕ gmod

1 (ψ0) via the projection prI1 to the

latter that is defined on g0,mod(ψ) as prI0 and is defined on u1 as the projection onto gmod
1 (ψ0) par-

allel to I1. Next, the third geometric prolongation P 3 can be constructed over a neighborhood O2

in P 2 using the construction in [46] with modification that the structure functions and generalized

Spencer operators must be intertwined with the projection prI1 just as the maps in (2.8.11) and

(2.8.13) are intertwined with prI0 . Repeating the process with these modifications give a microlo-

cal version of the Tanaka prolongation procedure, as it were.

The properties of the geometric prolongations defined in classical Tanaka theory that we are

interested in remain unaffected by the modifications to the prolongation procedure made above. In

particular,

(a) for each i > 0, the space P i has the structure of an affine bundle over Oi−1 modeled on the

vector space gmod
i (ψ0),

(b) for each i > 0, P i andOi−1 has a natural induced involution defined on it, and by restricting

to the fixed point sets of these involutions one obtains the space<P i defined as a fiber bundle

over <Oi−1 modeled on the vector space <gmod
i (ψ0),

(c) if l + 1 is the smallest number for which gmod
l+1 (ψ0) = 0 then the l + 2 normalization condi-

tions N0, . . . , Nl+1 chosen in the first l + 2 steps of the prolongation procedure determine a

canonical absolute parallelism both on Ol and <Ol,

(d) the pseudogroup of local symmetries of the underlying CR manifold has a naturally induced

partial action on each Oi and <Oi under which the parallelism mentioned in the last item is

invariant.

Item (c) completes the proof of item (1) in Theorem 2.3.5. Since the canonical frame on <Ol
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referred to in item (c) is invariant under the action of the pseudogroup of local symmetries, each

symmetry is uniquely determined locally near a point by its value at that point, and therefore the

dimension of this pseudogroup is not greater than the real dimension of the bundle <Ol, which

establishes item (2) in Theorem 2.3.5. By items (a) and (b) above, this dimension is equal to

dimC u(g0,mod) as desired.
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3. CLASSIFICATION OF CR SYMBOLS OF STRUCTURES WITH A RANK 1 LEVI

KERNEL∗

The content of the present chapter, although developed for this dissertation, was published

previously jointly with Igor Zelenko in [38]. The exposition here is modified from that in [38]

slightly and only as needed for coordination with the other chapters. Note that throughout Chapter

(3) we use H to denote a Hermitian matrix, whereas in all other chapters we use H to denote a CR

structure and H` to denote a Hermitian matrix.

In the present chapter we find canonical forms for pairs consisting of a nondegenerate Hermi-

tian form ` on a complex n-dimensional vector space W and an antilinear operator A : W → W ,

which is self-adjoint with respect to the form `. By a canonical form, as usual, we mean a specified

choice of matrices representing elements of any such pair, chosen from among matrix representa-

tions in all possible bases of W . Recall that, in light of Remark 2.2.5, CR symbols of structures

whose Levi kernel has rank 1 are given exactly by a pair of the algebraic objects under consider-

ation, and hence the assignment of canonical forms in this chapter’s main result, Theorem 3.1.2,

indeed yields a classification of CR symbols of structures with a rank 1 Levi kernel. Recall also

that a map A : W → W is an antilinear operator if

A(λv + w) = λA(v) + A(w) ∀v, w ∈ W,λ ∈ C,

and an antilinear operator A is self-adjoint with respect to the form ` or, shortly, `-self-adjoint if

`(Av,w) = `(Aw, v) ∀v, w ∈ W. (3.0.1)

This chapter’s main result also gives canonical forms for pairs consisting of a nondegenerate

*The content of this chapter is reprinted with permission from “A canonical form for pairs consisting of a Her-
mitian form and a self-adjoint antilinear operator” by David Sykes and Igor Zelenko, 2020, Linear Algebra and its
Applications, Volume 590, Pages 32-61
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Hermitian form and a symmetric bilinear form because the set of these pairs is in bijective corre-

spondence with the one we originally considered. Indeed, to the pair (`, A) we can assign the pair

(`, `′), where

`′(v, w) := `(w,Av)

is a symmetric bilinear form by (3.0.1). From the nondegeneracy of ` it follows that the assignment

of (`, A) to (`, `′) defines the bijection between the two sets of pairs under consideration.

Surprisingly, when we encountered the necessity of finding the canonical forms for pairs (`, A)

in the course of our study in CR geometry, we were not able to find the desired results in the

literature. The only results in this direction that we found are those addressing the problem of

simultaneous diagonalization [4, 23] and those giving canonical forms for a single antilinear oper-

ator [19, 20, 22] and, more generally, for a single semi-linear operator [1, 25] or for a square matrix

under ϕ-equivalence [21]. In [4, Theorem 7], it shown that ` and A can be simultaneously diago-

nalized if ` is positive definite, and, in [23, Theorem 2.1], the pairs (`, A) admitting a simultaneous

diagonalization are classified. Perhaps, the main difficulty here is that the matrix representations

for a Hermitian form and an antilinear operator transform differently under a change of the basis

(see formulas (3.1.2) below). It also cannot be reduced to the study of canonical forms of pairs of

other objects, wherein the matrix representations of each component of the new pairs transforms

in the same way under a basis change. An example of the latter reduction is the set of pairs con-

sisting of a nondegenerate Hermitian form ` and an `-self-adjoint linear operator that was treated

in [16, Theorem 5.1.1] where a canonical form for such pairs is given, which we will refer to as

the Gohberg–Lancaster–Rodman form. Although the matrix representations of each component in

such pairs transform differently under a basis change, using a process similar to the one in the pre-

vious paragraph, we can obtain a bijective correspondence between the set of such pairs and the set

of pairs of Hermitian forms (i.e., a pair of the same type of objects), one of which is nondegenerate.

In our case, however, such a reduction is not possible and the problem of finding canonical forms

cannot be totally reduced to the study of certain classes of matrix pencils, as was classically done

using Weierstrass–Kronecker normal forms for matrix pencils (see, for example, [15] and [44]).
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To prove Theorem 3.1.2, we develop in section 3.2 a geometric version of the construction of

the canonical form for a single antilinear operator of [20] (which was formulated in [22, Theorem

3.1], proved in [20], and stated for completeness in Remark 3.1.3 below) and combine it with a

simultaneous normalization of the Hermitian form, which is comparable in certain respects to the

method of [16, subsection 5.3] for obtaining the Gohberg–Lancaster–Rodman form, mentioned in

the previous paragraph. By a geometric version we are referring to the study of flags of subspaces

analogous to the generalized eigenspaces in the standard theory of linear operators as opposed

to the algebraic version in [1, 19, 25] based on the theory of invariant factors and manipulations

with matrices as in [20, 21]. Our Theorem 3.1.2 is related to the Hong–Horn canonical form of [22,

Theorem 3.1] for a single antilinear operator in the same way that the Gohberg–Lancaster–Rodman

form in [16, Theorem 5.1.1] is related to the classical Jordan normal form for linear operators.

In section 3.3, for completeness we sketch an alternative approach to the considered problem

that leads to an equivalent canonical form, Theorem 3.3.1. This approach was in fact our original

one before we found the more natural and apparently more simple approach leading to Theorem

3.1.2. The idea in this alternative approach is as follows: Since A2 is an `-self-adjoint linear

operator whenever A is an `-self-adjoint antilinear operator, one can first bring the pair (`, A2) to

the Gohberg–Lancaster–Rodman form and then find a canonical form for A with minimal changes

in the form of `. This requires solving a certain nonlinear matrix equation, which turned out to be

feasible.

3.1 A canonical form for pairs consisting of a Hermitian form and a self-adjoint antilinear

operator

As in the introduction to this chapter, ` denotes a nondegenerate Hermitian form and A denotes

an antilinear operator on an n-dimensional complex space W . Unless otherwise stated, throughout

this chapter A is assumed to be `-self-adjoint (i.e., (3.0.1) holds).

Choosing a basis {e1, . . . , en} of W , one can represent the form ` and the antilinear operator

A by n × n matrices H = (Hi,j) and C = (Ci,j) via a standard construction, requiring, for all
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i, j ∈ {1, . . . , n}, that

Hi,j = `(ej, ei) and A(ei) =
n∑
k=1

Ck,iek.

The conditions that ` is a nondegenerate Hermitian form and A is an `-self-adjoint antilinear oper-

ator are equivalent to

H∗ = H, detH 6= 0, and (HC)T = HC, (3.1.1)

respectively.

If one chooses another basis {ẽ1, . . . , ẽn}, letting H̃ and C̃ be the matrices representing the

form ` and the operator A in this new basis and letting M = (Mi,j) be the transition matrix from

the new basis to the old one, (i.e., ej =
∑n

i=1 Mi,j ẽi, ) then

H̃ = (M−1)∗HM−1 and C̃ = MCM
−1
. (3.1.2)

Our goal is to find a basis in which the matrix representation of the form ` and operator A has a

particularly simple form. In other words, if we define an action of the matrix group GLn(C) on

the pairs (H,C) of n× n matrices satisfying (3.1.1) by the mapping

(
M, (H,C)

)
7→
((
M−1

)∗
HM−1,MCM

−1
)
, M ∈ GLn(C),

then our goal is to choose a representative in each orbit of this action in a canonical way. This

canonical representative is usually called the canonical or normal form of the pair (`, A).

We let Tk be the k × k matrix whose (i, j) entry is 1 if j − i = 1 and zero otherwise, let Sk be

the k × k matrix whose (i, j) entry is 1 if j + i = k + 1 and zero otherwise, let Ik be the rank k

identity matrix, and let Jλ,k = λIk + Tk be the standard k × k Jordan block corresponding to the

eigenvalue λ, that is,
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Jλ,k :=



k columns︷ ︸︸ ︷
λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ




k rows and Sk =



k columns︷ ︸︸ ︷
0 · · · 0 1
... . .

.
. .
.

0

0 . .
.

. .
. ...

1 0 · · · 0


 k rows. (3.1.3)

To succinctly define new matrices constructed from others, we write

M1 ⊕M2 ⊕ · · · ⊕Mk =
k⊕
i=1

Mi

to denote the block diagonal matrix whose diagonal entries are the matrices M1, . . . ,Mk. For

λ ∈ C, we define the k × k or 2k × 2k matrix Mλ,k by

Mλ,k :=


Jλ,k if λ ∈ R(

0 Jλ2,k
Ik 0

)
otherwise,

(3.1.4)

where 0 denotes a matrix of appropriate size with zero in all entries. We define corresponding

matrices Nλ,k by

Nλ,k :=


Sk if λ ∈ R

S2k otherwise.
(3.1.5)

For a nonnegative integer k, we define

W
(k)
λ := spanC

{
v ∈ W : (A2 − λ2I)kv = 0 or

(
A2 − λ2I

)k
v = 0

}
. (3.1.6)

Since A2 is linear, we can enumerate its eigenvalues, letting λ2
1, . . . , λ

2
µ be the real eigenvalues of

A2 and λ2
µ+1, . . . , λ

2
γ be the distinct eigenvalues ofA2 with positive imaginary part. In the canonical
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forms below, we assume that each λi is the principle square root of λ2
i . Since the linear operator

A2 is `-self-adjoint, it is easy to show (see, for example, [16, Theorem 4.2.4]) that the space W

can be decomposed into pairwise-`-orthogonal A2-invariant subspaces

W = W
(n)
λ1
⊕W (n)

λ2
⊕ · · · ⊕W (n)

λγ
. (3.1.7)

Remark 3.1.1. In [16], the authors refine this decomposition of W , obtaining a canonical form

for (`, A2). For an `-self-adjoint linear operator B, their theorem, [16, Theorem 5.1.1], states

that the domain of B can be decomposed into B-invariant, pairwise `-orthogonal subspaces such

that there exists a basis with respect to which the restrictions of ` and B to the decomposition’s

component subspaces are represented by matrices of the form ±Sk and Jη,k if η ∈ R or ±S2k and

Jη,k ⊕ Jη,k if η 6∈ R (this gives a canonical form for (`, A2) by letting B = A2).

Note that W (n)
λi

is also A-invariant. Indeed , if v ∈ W (n)
λi

and (A2 − λ2I)kv = 0, then

(
A2 − λ2

i I
)n

(Av) = A(A2 − λ2
i I)nv = 0,

which shows that Av ∈ W (n)
λi

. Similarly, if v ∈ W (n)
λi

and (A2 − λ2I)kv = 0, then

(
A2 − λ2

i I
)n

(Av) = A(A2 − λ2
i I)nv = 0,

which shows that Av ∈ W (n)
λi

. This completes the proof of A-invariancy of W (n)
λi

.

Accordingly, we can normalize ` andA on the spacesWλi separately to obtain a general canon-

ical form.

Theorem 3.1.2. The domain of an `-self-adjoint antilinear operator A can be decomposed into

A-invariant, pairwise `-orthogonal subspaces such that there exists a basis with respect to which

the restrictions of ` and A to the decomposition’s component subspaces are represented by ma-

trices of the form ±Nλ,k and Mλ,k where λ ∈ {λ1, λ2, . . . , λγ} and k ∈ N. The corresponding

block diagonal matrices representing ` and A are unique up to a permutation of the blocks on the

71



diagonal.

Proof. Since the decomposition in (3.1.7) is pairwise `-orthogonal and A-invariant, the result is a

corollary of Propositions 3.2.10, 3.2.11, 3.2.12, and 3.2.13.

Remark 3.1.3. In [22, Theorem 3.1], the authors show that an antilinear operator A can be

represented by a matrix in the form of the matrix given in Theorem 3.1.2 representing the antilinear

operator, that is, the domain of A can be decomposed into A-invariant subspaces on which A is

represented by Mλ,k where λ ∈ {λ1, λ2, . . . , λγ} and k ∈ N (note, this is achieved without the

assumption that A is `-self-adjoint for some Hermitian form `).

A canonical form for a nonsingular antilinear operator is fully determined by the Jordan ma-

trix representing its square, and we have a similar relationship between Theorem 3.1.2 and the

Gohberg–Lancaster–Rodman form, recorded in the following lemma.

Lemma 3.1.4. If A is nonsingular then the canonical form for (`, A) given in Theorem 3.1.2 is

determined by the Gohberg–Lancaster–Rodman form for (`, A2).

3.2 Canonical forms for restrictions to generalized eigenspaces

In this section we obtain a canonical form for the restrictions of ` andA to the spacesW (n)
λ , and

these results can be taken together to obtain the canonical form in Theorem 3.1.2. The approach we

employ varies depending on the eigenvalue λ2 of A2, so this section is structured with subsections,

each dedicated to a case where λ2 belongs to a different family. We repeatedly use the following

lemma, which is completely analogous to a standard property of linear self-adjoint operators.

Lemma 3.2.1. If V ⊂ Cn is an A-invariant subspace on which ` is nondegenerate then the `-

orthogonal complement V ⊥` of V is also A-invariant.

Proof. Since V is A-invariant, for any w ∈ V , we have that Aw ∈ V , which implies that, for

v ∈ V ⊥` , we have `(Aw, v) = 0. Therefore, since A is `-self-adjoint, for v ∈ V ⊥` and w ∈ V , we

have `(Av,w) = `(Aw, v) = 0, which implies that Av ∈ V ⊥` .
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3.2.1 Treating generalized eigenspaces with positive eigenvalues

Throughout this subsection we assume λ2 > 0, and this subsection’s main result is Proposition

3.2.10.

For this special case with λ2 > 0, we define three additional filtrations of W (n)
λ . Namely,

W
(k)±
λ :=

{
x ∈ W : (A∓ λI)(A2 − λ2I)k−1x = 0

}
, (3.2.1)

and

W̃
(k)
λ :=

{
x ∈ W : (A− λI)k x = 0

}
. (3.2.2)

The following two lemmas address the relationship between the filtrations
{
W

(k)
λ

}
,
{
W

(k)±
λ

}
,

and
{
W̃

(k)
λ

}
, defined by (3.1.6), (3.2.1), and (3.2.2), respectively. Note that, for each k, W (k)±

λ

and W̃ (k)
λ are vector spaces over R but not over C. In principle, these lemmas can be deduced from

the Hong–Horn canonical forms for antilinear operators from [22, Theorem 3.1] (see also Remark

3.1.3 above), but we prefer to give an independent geometric proof of these Lemmas, first, in order

to make the presentation self-contained (as the source [20], where [22, Theorem 3.1] is proved, is

not easily available), second, because our proofs of these Lemmas are the main ingredient in the

new geometric proof of Hong and Horn’s result (outlined in section 3.2.5), and, third, because this

proof seems to be interesting by itself.

Lemma 3.2.2. For all positive integers k, we haveW (k)
λ /W

(k−1)
λ = W

(k)+
λ /W

(k−1)
λ ⊕W (k)−

λ /W
(k−1)
λ .

Moreover, W (k)
λ /W

(k−1)
λ = spanC

(
W

(k)+
λ /W

(k−1)
λ

)
.

Proof. If x ∈ W (k)
λ then λx± Ax ∈ W (k)±

λ because

(A∓ λI)(A2 − λ2I)k−1(λx± Ax) = (A2 − λ2I)kx = 0,

which shows {
λx± Ax : x ∈ W (k)

λ

}
/W

(k−1)
λ ⊂ W

(k)±
λ /W

(k−1)
λ .
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Accordingly,

W
(k)
λ /W

(k−1)
λ

∗
=
{
λx− Ax : x ∈ W (k)

λ

}
/W

(k−1)
λ ⊕

{
λx+ Ax : x ∈ W (k)

λ

}
/W

(k−1)
λ

⊂ W
(k)−
λ /W

(k−1)
λ ⊕W (k)+

λ /W
(k−1)
λ

∗∗
⊂ W

(k)
λ /W

(k−1)
λ , (3.2.3)

where ** holds because A2 − λ2I = (A + λI)(A − λI) and * holds for the following reason.

Both
{
λx− Ax : x ∈ W (k)

λ

}
/W

(k−1)
λ and

{
λx+ Ax : x ∈ W (k)

λ

}
/W

(k−1)
λ are disjoint subsets

of W (k)
λ /W

(k−1)
λ because they belong to the kernel of A+λI : W

(k)
λ /W

(k−1)
λ → W

(k)
λ /W

(k−1)
λ and

A − λI : W
(k)
λ /W

(k−1)
λ → W

(k)
λ /W

(k−1)
λ respectively, and these kernels are disjoint because if v

is in both kernels then λv ≡ −λv (mod W
(k−1)
λ ). This shows that the direct sum on the right side

of * is naturally a subset of W (k)
λ /W

(k−1)
λ . On the other hand, for any v ∈ W (k)

λ /W
(k−1)
λ , we have

v =
(
λ
(v
λ

)
− A

(v
λ

))
+
(
λ
(v
λ

)
+ A

(v
λ

))

which shows that W (k)
λ /W

(k−1)
λ is contained in the direct sum on the right side of *.

By (3.2.3),W (k)
λ /W

(k−1)
λ = spanC

(
W

(k)+
λ /W

(k−1)
λ

)
becauseW (k)+

λ /W
(k−1)
λ = iW

(k)−
λ /W

(k−1)
λ .

Remark 3.2.3. Notice, we have already used the special condition λ2 > 0 of 3.2.1, because Lemma

3.2.2 relies on the fact that A2 − λ2I = (A+ λI)(A− λI).

Lemma 3.2.4. Any basis of the real vector space W̃ (k)
λ is also a basis of the complex vector space

W
(k)
λ .

Proof. When k = 1, the statement follows from Lemma 3.2.2 because W̃ (1)
λ = W

(1)+
λ and W (0)

λ =

0. Proceeding by induction, let us assume any basis of the real vector space W̃ (k−1)
λ is also a basis

of the complex vector space W (k−1)
λ . Suppose dim W̃

(k−1)
λ = l and dim W̃

(k)
λ /W̃

(k−1)
λ = m, and

let {e1, . . . , el+m} be a basis of W̃ (k)
λ . Without loss of generality, we can assume {e1, . . . , el} ⊂

W̃
(k−1)
λ because this assumption does not change the real or complex span of {e1, . . . , el+m}.
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First, we show that the vectors el+1, . . . , el+m are linearly independent over C modulo W (k−1)
λ .

For this, consider a vector v ∈ spanC{el+1, . . . , el+m} with coefficients αl+1, . . . , αl+m ∈ R and

βl+1, . . . , βl+m ∈ R such that

v :=
l+m∑
j=l+1

(αj + iβj)ei ∈ W (k−1)
λ .

Set

v+ :=
l+m∑
j=l+1

αjei and v− :=
l+m∑
j=l+1

iβjei.

Since W̃ k
λ is a real vector space, v+ ∈ W̃ k

λ , and hence, by (3.2.1),

A(A− λI)k−1v+ = λ(A− λI)k−1v+.

Therefore

(A+ λI)(A− λI)k−1v+ = 2λ(A− λI)k−1v+ (3.2.4)

Notice (A+λI)kv− = 0 because, for all l < j ≤ l+m, (A+λI)k(iβiej) = −iβj(A−λI)kej = 0.

Since v ∈ W (k−1)
λ and (A+ λI)kv− = 0,

0 = (A+ λI)(A2 − λ2I)k−1v = (A+ λI)(A2 − λ2I)k−1v+ + (A− λI)k−1(A+ λI)kv−

= (A+ λI)(A2 − λ2I)k−1v+,

and hence

(A2 − λ2I)k−1v+ ∈ ker(A+ λI). (3.2.5)
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Furthermore, (A− λI)kv+ = 0 because, for all l < j ≤ l +m, (A− λI)kαjej = 0, so

(A2 − λ2I)k−1v+ ∈ ker(A− λI). (3.2.6)

Yet, ker(A− λI) ∩ ker(A+ λI) = 0, (3.2.5) and (3.2.6) imply

v+ ∈ ker(A2 − λ2I)k−1, (3.2.7)

and (3.2.4) implies

(A2 − λ2I)k−1v+ = (A+ λI)k−1(A− λI)k−1v+ = (2λ)k−1(A− λI)k−1v+. (3.2.8)

Together, (3.2.7) and (3.2.8) imply that

v+ ∈ ker(A− λI)k−1 = W̃
(k−1)
λ = spanR{e1, . . . , el}

and hence v+ = 0 because spanR{e1, . . . , el} ∩ spanR{el+1, . . . , el+m} = 0. Note that v+ = 0

implies αl+1 = · · · = αl+m = 0 because el+1, . . . , el+m are linearly independent over R. Repeating

the same argument with v replaced by iv yields v− = 0 and βl+1 = · · · = βl+m = 0 as well. Hence

v = 0, which shows that

spanC{el+1, . . . , el+m} ∩W (k−1)
λ = spanC{el+1, . . . , el+m} ∩ spanC{e1, . . . , el} = 0. (3.2.9)

Let us now establish the vector space isomorphism W̃
(k)
λ /W̃

(k−1)
λ

∼= W
(k)+
λ /W

(k−1)
λ . The cosets

el+1 +W
(k−1)
λ , . . . , el+m +W

(k−1)
λ

are linearly independent vectors (over R) in the spaceW (k)+
λ /W

(k−1)
λ . If we take an arbitrary vector
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w +W
(k−1)
λ ∈ W (k)+

λ /W
(k−1)
λ then (A− λI)w ∈ W (k−1)

λ , so

(A+ λI)w ≡ 2λw (mod W
(k−1)
λ ).

Hence,

(2λ)1−k(A+ λI)k−1w ≡ w (mod W
(k−1)
λ ). (3.2.10)

Now observe that (A + λI)k−1w ∈ W̃ (k)
λ . Indeed, from the definitions (3.1.6) and (3.2.1) and the

fact that w ∈ W (k)+
λ , it follows that

(A− λI)k(A+ λI)k−1w = (A− λI)(A2 − λ2I)k−1w = 0.

Hence, by (3.2.10), w ∈ W̃ (k)
λ . Therefore, there exist real coefficients al+1, . . . , al+m such that

w ≡ (2λ)1−k(A+ λI)k−1w ≡
l+m∑
i=l+1

aiei (mod W
(k)
λ ).

This shows that the cosets

el+1 +W
(k−1)
λ , . . . , el+m +W

(k−1)
λ

form a basis of W (k)+
λ /W

(k−1)
λ . On the other hand, the cosets

el+1 + W̃
(k−1)
λ , . . . , el+m + W̃

(k−1)
λ

form a basis of W̃ (k)
λ /W̃

(k−1)
λ , so the real vector spaces W̃ (k)

λ /W̃
(k−1)
λ and W (k)+

λ /W
(k−1)
λ are iso-

morphic.

Applying Lemma 3.2.2, we get

dimCW
(k)
λ /W

(k−1)
λ = dimRW

(k)+
λ /W

(k−1)
λ = dimRW

(k)+
λ /W

(k−1)
λ = m,
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which implies

dimCW
(k)
λ = m+ dimW

(k−1)
λ = l +m.

We have shown that v ∈ W
(k−1)
λ implies αl+1 = · · · = αm = βl+1 = · · · = βl+m = 0. In

particular, we have shown that v = 0 implies αl+1 = · · · = αl+m = βl+1 = · · · = βl+m = 0.

Therefore, el+1, . . . , el+m are linearly independent over C, that is,

dimC spanC{el+1, . . . , el+m} = m,

so, by the induction hypothesis and (3.2.9),

dimC spanC{e1, . . . , el+m} = l +m.

Therefore, W (k)
λ = spanC{e1, . . . , el+m} because e1, . . . , el+m are l +m linearly independent vec-

tors (over C) in W (k)
λ .

Corollary 3.2.5. If v ∈ W (k)
λ then there exist unique vectors v+, v− ∈ W̃ (k)

λ such that v = v++iv−.

Define s1 to be the minimal natural number such that W (s1)
λ = W

(n)
λ . We would like to find a

vector v ∈ W̃ (s1)
λ such that the space

V = spanC
{
v, (A− λI)v, . . . , (A− λI)s1−1v

}
(3.2.11)

is an s1-dimensionalA-invariant space on which ` is nondegenerate because we can then normalize

A and ` on the space V and on the `-orthogonal complement of V separately. Proceeding through-

out this subsection, for v ∈ W (n)
λ , we adopt the notation of letting v+, v− ∈ W̃ (n)

λ be the unique

vectors such that v = v+ + iv−, as given in Corollary 3.2.5.

Lemma 3.2.6. If H is a Hermitian k × k matrix, λ > 0, and HJλ,k is symmetric, then H is a
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Hankel matrix satisfying

Hi,j = 0 ∀i+ j ≤ k.

Proof. Let H ′ be the upper left (k − 1) × (k − 1) block of H . Symmetry of HJλ,k implies that

H ′Jλ,k−1 is symmetric. Since the Lemma is vacuously true for k = 1, we can proceed by induction,

and assume H ′ is a Hankel matrix satisfying

H ′i,j = 0 ∀i+ j ≤ k − 1.

Computing the (1, k) and (k, 1) entries of HJλ,k yields

(
HJλ,k

)
1,k

= λH1,k +H1,k−1 and
(
HJλ,k

)
k,1

= λH1,k.

Symmetry of HJλ,k allows us to equate the terms, so

H1,k−1 = λ
(
H1,k −H1,k

)
∈ {iz | z ∈ R}.

Yet, since H ′ is both Hankel and Hermitian, its entries are all real numbers. In particular, H1,k−1 ∈

R, so

H1,k−1 = 0 and H1,k = Hk,1 ∈ R.

Equating
(
HJλ,k

)
2,k

with
(
HJλ,k

)
k,2

yields

H1,k −H2,k−1 = λ
(
H2,k −H2,k

)
∈ {iz | z ∈ R}

which implies Hk,1 = H2,k−1 because, by the induction hypothesis, H2,k−1 ∈ R. Accordingly,

Hi,j = H1,k ∀i+ j = k + 1
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because H ′ is Hankel.

We conclude this proof with induction. Supposing, for some 1 < m ≤ k, we have Hk,j = Hj,k

and Hk,j = Hj+1,k−1 for all j < m, let us establish that Hk,m = Hm,k and Hk,m = Hm+1,k−1,

where we interpret Hk,m = Hm+1,k−1 as vacuously true for m = k (i.e., since Hi,j is only defined

for max{i, j} ≤ k, we can extend the definition of Hi,j for max{i, j} > k in a way that satisfies

the equations Hk,k+j = Hk+j,k and Hk,k+j = Hk+j+1,k−1 for all j by construction, and, of course,

this extension’s definition has no relevance to the normalization ofH). Symmetry ofHJλ,k implies

Hm,k−1 + λHm,k =
(
HJλ,k

)
m,k

=
(
HJλ,k

)
k,m

= Hk,m−1 + λHk,m,

and hence

Hm,k −Hk,m = λ−1(Hk,m−1 −Hm,k−1) = 0

because, by the induction hypothesis, Hk,m−1 = Hm,k−1. If m = k then there is nothing more to

check, that is, Hk,m = Hm+1,k−1 is vacuously true. Similarly, if m = k − 1 then we have already

shown Hk,m = Hm+1,k−1. For m < k − 1, we have

Hm+1,k−1 + λHm+1,k =
(
HJλ,k

)
m+1,k

=
(
HJλ,k

)
k,m+1

= Hk,m + λHk,m+1,

and hence

Hk,m −Hm+1,k−1 = λ(Hm+1,k −Hk,m+1) = λ(Hm+1,k −Hm+1,k) ∈ {z | iz ∈ R},

which impliesHk,m = Hm+1,k−1 because, sinceH ′ is a real matrix,Hm+1,k−1 ∈ R. This completes

the proof by induction.

Lemma 3.2.7. If a nondegenerate Hermitian form ` and antilinear operator A are represented

respectively by the k × k matrices H and Jλ,k, where H is a Hankel matrix satisfying

Hi,j = 0 ∀ i+ j ≤ k,

80



then there is a basis with respect to which ` and A are represented by ±Sk and Jλ,k respectively.

Proof. Every transformation of the matrices representing ` and A given by the rule (3.1.2) can be

induced by a change of basis, so it will suffice to find M such that

M∗HM = Sk and M−1Jλ,kM = Jλ,k. (3.2.12)

To satisfy M−1Jλ,kM = Jλ,k, let us suppose M is a real upper-triangular Toeplitz matrix, and

define h0, . . . , hk−1 ∈ R and α0, . . . , αk−1 ∈ R to be the coefficients for which

H = Sk

(
k∑
i=1

hi−1T
i−1
k

)
and M =

k∑
i=1

αi−1T
i−1
k .

Note, h1, . . . , hk must be real because H is Hermitian and Hankel. For our particular choice of M ,

we have M∗ = SkMSk, so

M∗HM = Sk

(
k∑
i=1

αi−1T
i−1
k

)(
k∑
i=1

hi−1T
i−1
k

)(
k∑
i=1

αi−1T
i−1
k

)
= Sk

(
k−1∑
i=0

∑
r+s+t=i

αrαshtT
i
k

)
.

Therefore, we need to solve the equation

k−1∑
i=0

∑
r+s+t=i

αrαshtT
i
k = ±Ik, (3.2.13)

that is, we need to choose αi such that (3.2.13) holds. Comparing entries of the main diagonal

in (3.2.13), we find that α0 = h
−1/2
0 , so let us choose α0 = |h0|−1/2. Note, h0 6= 0 because ` is

nondegenerate, and hence this choice of α0 is well defined. Having fixed α0, comparing entries in

the first super-diagonal of (3.2.13) shows that we can choose α1 as the solution to a linear equation

with real coefficients so that entries in the first super-diagonal of (3.2.13) match. Proceeding

similarly, for 1 < j < k, after choosing α0, . . . , αj−1 so that entries in the main diagonal and the

first j − 1 super-diagonals of (3.2.13) match, comparing entries in the j super-diagonal of (3.2.13)

shows that we can choose αj as the solution to a linear equation with real coefficients so that
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entries in the j super-diagonal of (3.2.13) match; moreover, the variable αj does not appear in the

first j − 1 super-diagonals of (3.2.13), so, by choosing αj in this way, we ensure that entries the

first j super-diagonals of (3.2.13) match. By choosing α0, . . . , αk in this way we obtain (3.2.12)

by construction.

Lemma 3.2.8. There exists a vector v ∈ W (n)
λ such that the space in (3.2.11) is an s1-dimensional

A-invariant space on which ` is nondegenerate.

Proof. It can be seen from the Gohberg–Lancaster–Rodman canonical form for ` and A2 (given

in [16, Theorem 5.1.1] and summarized in Remark 3.1.1) that there exists a vector v′ ∈ W (s1)
λ for

which

`
(
v′, (A2 − λ2I)(s1−1)v′

)
6= 0. (3.2.14)

Using the decomposition of Corollary 3.2.5, define the coefficients

a0 := `
(
v′+, (A− λI)(s1−1)v′+

)
+ `
(
v′−, (A− λI)(s1−1)v′−

)
,

a1 := `
(
v′+, (A− λI)(s1−1)v′+

)
− `
(
v′−, (A− λI)(s1−1)v′−

)
,

and

b1 := `
(
v′−, (A− λI)(s1−1)v′+

)
− `
(
v′+, (A− λI)(s1−1)v′−

)
.

By direct computation, we obtain the finite Fourier series

2(2λ)1−s1`
((
eiθv′

)
+
, (A− λI)s1−1

(
eiθv′

)
+

)
= a0 + a1 cos(2θ) + b1 sin(2θ) (3.2.15)

Also, since v′+, v
′
− ∈ W̃

(s1)
λ , A(A − λI)s1−1v′+ = λ(A − λI)s1−1v′+ and A(A + λI)s1−1iv′− =
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−λ(A+ λI)s1−1iv′−, and hence

(A2 − λ2I)(s1−1)v′ = (A+ λI)(s1−1)(A− λI)(s1−1)v′+ + (A− λI)(s1−1)(A+ λI)(s1−1)iv′−

= (2λ)s1−1(A− λI)(s1−1)v′+ + i(2λ)s1−1(A− λI)(s1−1)v′−.

So, by (3.2.14),

0 6= (2λ)1−s1`
(
v′, (A2 − λ2I)(s1−1)v′

)
= a0 + ib1.

If the left side of (3.2.15) is zero for all θ ∈ R then a0 = a1 = b1 = 0, so, by (3.2.14), there

exists θ ∈ R such that

`
((
eiθv′

)
+
, (A− λI)s1−1

(
eiθv′

)
+

)
6= 0. (3.2.16)

Fixing θ ∈ R so that (3.2.16) holds, define

v :=
(
eiθv′

)
+
, (3.2.17)

so, by (3.2.16),

`
(
v, (A− λI)s1−1v

)
6= 0. (3.2.18)

Proceeding, let V be as in (3.2.11) with v as in (3.2.17). Define basis vectors

ei = (A− λI)i−1v (i = 1, . . . , s1).

The matrix representing the restriction A|V of A to V with respect to the basis {ei}1≤i≤s1 is Jλ,s1 .

LetH be the matrix representing the restriction of ` to V with respect to the basis {ei}1≤i≤s1 . Since

A is `-self-adjoint, HJλ,s1 is symmetric. Therefore, applying Lemma 3.2.6, H is a Hankel matrix
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satisfying

Hi,j = 0 ∀i+ j ≤ k,

and hence, by (3.2.18),

detH =
√

2 sin

(
2kπ + π

4

)
Hk

1,k =
√

2 sin

(
2kπ + π

4

)(
`
(
v, (A− λI)s1−1v

))k
6= 0.

That is, ` is nondegenerate on V , as was needed.

Corollary 3.2.9. There is an s1-dimensional A-invariant space V on which ` is nondegenerate,

and there is a basis of V with respect to which the restrictions `|V and A|V of ` and A to V are

represented by the matrices ±Nλ,s1 and M|λ|,s1 respectively.

Proof. By Lemma 3.2.8, there exists an s1-dimensional A-invariant space V on which ` is nonde-

generate and there exists a basis of V with respect to which the restrictions `|V and A|V of ` and

A to V are represented by the matrices H and Jλ,s1 , where H is a Hankel matrix satisfying

Hi,j = 0 ∀ i+ j ≤ s1.

Therefore, by Lemma 3.2.7, there is a basis {e1, . . . , es1} of V with respect to which `|V and A|V

are represented by Ss1 and Jλ,s1 respectively. If λ > 0 then this completes the proof because

Jλ,s1 = M|λ|,s1 . If, on the other hand, λ < 0 then we observe `|V and A|V are represented by Ss1

and J−λ,s1 = M|λ|,s1 with respect to the basis {ie1, . . . , ies1}. So, in either case, we can find a basis

with respect to which `|V and A|V are represented by Nλ,s1 = Ss1 and M|λ|,s1 .

For the following proposition, let r1, . . . , rnλ and s1, . . . , snλ be the positive integers satisfying

si > si+1 such that the restriction of A2 to W (n)
λ has a Jordan canonical form with ri Jordan blocks

of size si × si. Note, this definition is consistent with the previous definition of s1, and

W
(n)
λ
∼= Cµ where µ =

nλ∑
i=1

risi.
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Proposition 3.2.10. There is a basis of W (n)
λ with respect to which the restrictions of ` and A to

W
(n)
λ are represented by the matrices

nλ⊕
i=1

(
ri⊕
j=1

εi,jNλ,si

)
and

nλ⊕
i=1

(
ri⊕
j=1

M|λ|,si

)
where εi,j = ±1

respectively.

Proof. By Corollary 3.2.9, there is a space V ⊂ W
(n)
λ that is A-invariant and `-nondegenerate

on which ` and A can be represented by matrices of the desired form. By Lemma 3.2.1, we can

normalize ` and A on V and the `-orthogonal complement V ⊥` of V separately, so we can repeat

this process, applying Corollary 3.2.9 to V ⊥` rather than W (n)
λ . Iterating the process

∑nλ
i=1 ri times

completes the normalization.

3.2.2 Treating generalized eigenspaces with eigenvalue zero

In this subsection we construct a canonical form for the restrictions of ` and A to the space

W
(n)
0 . Our approach is the same as in the proof of Theorem 4.5 in [33].

Proposition 3.2.11. The space W (n)
0 can be decomposed into A-invariant, pairwise `-orthogonal

subspaces such that there exists a basis with respect to which the restrictions of ` and A to the

decomposition’s component subspaces are represented by matrices of the form M0,k and N0,k.

Proof. Let

k = min
{
m ∈ N :

(
A|

W
(n)
λ

)m
≡ 0
}
.

Fix a basis, and let H and C be matrices representing ` and A with respect to this basis. If k is odd,

then Ak−1 is `-self-adjoint linear, which implies HCk−1 is Hermitian, and hence there is a basis

with respect to which the mapping

v 7→ H
(
Ak−1v

)
(3.2.19)
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is represented by a nonzero diagonal matrix. If, on the other hand, k is even, then Ak−1 is `-self-

adjoint antilinear, which implies HCk−1 is symmetric. By Takagi’s theorem in [39, Theorem 2],

for every symmetric matrix S, there exists an invertible matrixU such thatUSU
−1

is diagonal, and,

since the map in (3.2.19) is antilinear whenever k is even, Takagi’s theorem implies that there is a

basis with respect to which the mapping in (3.2.19) is represented by a nonzero diagonal matrix.

For either parity of k, these observations imply that there exists a vector a1 6= 0 such that

H
(
Ak−1a1

)
= γeiθa1 for some θ ∈ R, γ > 0. (3.2.20)

Furthermore, if k is odd then θ ≡ 0 (mod π) because (3.2.19) is a linear operator represented by

a Hermitian matrix. Accordingly, for z ∈ C,

`(Ak−1za1, za1) = (HAk−1za1, za1) =


±γ|z|2‖a1‖2 if k is odd

γeiθz2‖a1‖2 if k is even.

Therefore

`

(
Ak−1 1√

γ‖a1‖2eiθ/2
a1,

1√
γ‖a1‖2eiθ/2

a1

)
= ±1.

Define

ẽi = Ai−1 1√
γ‖a1‖2eiθ/2

a1,

and define

e1 = ẽ1 + α2ẽ2 + . . .+ αkẽk and ei = Ai−1e1,

where the coefficients α2, . . . , αk are chosen below. For all i+ j > k + 1 we have

`(ei, ej) = `(Ai−1e1, A
j−1e1) = `(Ai+j−2e1, e1) = `(0, e1) = 0.
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Fix the coefficients α2, . . . , αk such that for all j < k we have

`(e1, ej) = 0.

Since A is `-self-adjoint, we have

`(ei, ei+j) = `(ei+j, ei),

so our choices of α2, . . . , αk ensure

`(ei, ej) = 0 ∀i+ j < k + 1.

By construction,

`(e1, ek) = `(ej, ek+j−1) = 1,

so the restrictions of ` and A to the subspace spanC{e1, . . . , ek} are represented by Sk and J0,k

respectively with respect to the basis {ek, . . . , e1}.

By Lemma 3.2.1, we can normalize ` and A on spanC{e1, . . . , ek} and the orthogonal com-

plement of spanC{e1, . . . , ek} separately, so this normalization proceedure can be repeated on the

orthoganal complement of spanC{e1, . . . , ek} until W (n)
0 is exhausted.

3.2.3 Treating generalized eigenspaces with negative eigenvalues

Throughout this subsection we assume λ2 < 0 and that the restriction of A2 to W (n)
λ has a

Jordan canonical form with 2ri Jordan blocks of size si× si, where r1, . . . , rnλ and s1, . . . , snλ are

positive integers satisfying si > si+1.

Proposition 3.2.12. There is a basis of W (n)
λ with respect to which the restrictions of ` and A to
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W
(n)
λ are represented by the matrices

nλ⊕
i=1

(
ri⊕
j=1

εi,jNλ,si

)
and

nλ⊕
i=1

(
ri⊕
j=1

Mλ,si

)
where εi,j = ±1

respectively.

Proof. Given the Gohberg–Lancaster–Rodman canonical form for ` and A2 summarized in Re-

mark 3.1.1, there exists a vector a1 ∈ W
(n)
λ such that the restrictions of ` and A2 to the s1-

dimensional vector space spanC{a1, (A
2− λ2I)a1, . . . , (A

2− λ2I)s1−1a1} are represented respec-

tively by Ss1 and Jλ2,s1 with respect to the basis {(A2 − λ2I)s1−1a1, (A
2 − λ2I)s1−2a1, . . . , a1}.

Defining

ak+1 = (A2 − λ2I)ak and bk = Aak,

and letting e1 = αa1 + βb1, we have

`
(
e1, A(A2 − λ2I)s1−1e1

)
= α2`(a1, bs1) + αβ

(
`(a1, Abs1) + `(b1, bs1)

)
+ β2`(b1, Abs1

= α2`(a1, bs1) + αβ
(
λ2`(a1, as1) + λ2`(as1 , a1)

)
+ λ2β2`(b1, as1)

= α2`(a1, bs1)± 2λ2αβ + λ2β2`(b1, as1).

Clearly, either `(a1, bs1) = 0 or we can choose α, β ∈ C such that (α, β) 6= (0, 0) and

`
(
e1, A(A2 − λ2I)s1−1e1

)
= 0.

Accordingly, we can assume, by possibly replacing a1 with e1 as defined above, that

`(a1, bs1) = 0.

With this assumption made, we proceed with e1 defined as above, and will determine the coeffi-

cients α and β later. Note, this assumption implies also that `(b1, as1) = 0 because (A2 − λ2I) is
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an `-self-adjoint linear operator, and hence

`(e1, A(A2 − λ2I)s1−1e1) = ±2λ2αβ.

Define

ek := (A2 − λ2I)k−1e1 and es1+k := Aek ∀1 ≤ k ≤ s1,

and, on the span of {ei}, let ` andA be represented with respect to the basis {es1 , . . . , e1, e2s1 , . . . , es1+1}

by the matrices

H =

(
H1,1 H1,2

H2,1 H2,2

)
and C =

(
0 Jλ2,s1
Is1 0

)
where the each Hi,j is an s1 × s1 matrix. The matrices Hi,j are Hankel because A2 − λ2I is

H-self-adjoint. That is, H1,1 is Hankel because

`(ei, ej) = `
(
(A2 − λ2)i−1e1, (A

2 − λ2)j−1e1

)
= `

(
e1, (A

2 − λ2)i+j−2e1

)
= `(e1, ei+j−1) ∀i+ j ≤ s1 + 1

and

`(ei, ej) = `
(
(A2 − λ2)i−1e1, (A

2 − λ2)j−1e1

)
= `

(
e1, (A

2 − λ2)i+j−2e1

)
= ` (e1, 0) ∀i, j ≤ s1 with i+ j > s1 + 1.

Similarly, using the identity ((A2 − λ2I)v, w) = (v, (A2 − λ2I)w), we can show H1,2, H2,1, and

H2,2 are Hankel.

Since A is `-self-adjoint, HC is symmetric, which, as in Lemma 3.2.6, implies that the (i, j)

entry of H2,1 is 0 for all i + j < s1 + 1. On the other hand, if s1 + 1 < i + j then still the (i, j)

entry of H2,1 is 0 because

`
(
(A2 − λ2)i−1e1, (A

2 − λ2)j−1Ae1

)
= `

(
(A2 − λ2)i+j−2e1, Ae1

)
= ` (0, Ae1) = 0.
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Therefore,

H1,2 = H2,1 = ` (e1, e2s1)Ss1 .

The same analysis shows that the lower left and upper right s1×s1 blocks of the matrix representing

` with respect to the basis {as1 , . . . , a1, bs1 , . . . , b1} are also multiples of Ss1 , that is,

`(ai, bj) = `(a1, bs1)δi+j,s1+1.

Direct computation also shows that H1,1 is a multiple of Ss1 , that is,

H1,1 = `(e1, es1)Ss1 ,

where

`(e1, es1) = |α|2`(a1, as1) + αβ`(a1, bs1) + βα`(b1, as1) + |β|2`(b1, bs1)

=
(
|α|2 + λ2|β|2

)
`(a1, as1) + αβ`(a1, bs1) + αβ`(a1, bs1)

= ±
(
|α|2 + λ2|β|2

)
+ αβ`(a1, bs1) + αβ`(a1, bs1)

= ±
(
|α|2 + λ2|β|2

)
.

Since HC is symmetric, it follows that

H2,2 =
(
H1,1Jλ2,s1

)T
= `(e1, es1)Ss1Jλ2,s1 .

Lastly, fixing α = 1 and β = 0, the matrices

H = ±
(
Ss1 0
0 Ss1Jλ2,s1

)
and C =

(
0 Jλ2,s1
Is1 0

)

represent the restrictions of ` and A on spanC{ei}1≤i≤2s1 with respect to a permutation of the basis

{ei}1≤i≤2s1 . Since H is nonsingular, By Lemma 3.2.1, we can repeat this construction on the `-
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orthogonal complement of spanC{e1, . . . , e2s1}, and hence there exists a basis ofW (n)
λ with respect

to which ` and A are represented by the matrices

nλ⊕
i=1

(
ri⊕
j=1

εi,j

(
Ssi 0
0 SsiJλ2,si

))
and

nλ⊕
i=1

(
ri⊕
j=1

(
0 Jλ2,si
Isi 0

))
(3.2.21)

where εi,j = ±1. In particular, we have shown that if there is a basis with respect to which ` and A

are represented by

nλ⊕
i=1

(
ri⊕
j=1

εi,jS2si

)
and

nλ⊕
i=1

(
ri⊕
j=1

(
0 Jλ2,si
Isi 0

))

then there is a basis with respect to which ` and A are represented by the matrices in (3.2.21), and

hence, noting (3.1.2), there exist a matrix T such that

(T−1)∗
nλ⊕
i=1

(
ri⊕
j=1

εi,j

(
Ssi 0
0 SsiJλ2,si

))
T−1 =

nλ⊕
i=1

(
ri⊕
j=1

εi,jNλ,si

)

and

T

nλ⊕
i=1

(
ri⊕
j=1

(
0 Jλ2,si
Isi 0

))
T
−1

=

nλ⊕
i=1

(
ri⊕
j=1

Mλ,si

)
,

which completes the proof.

3.2.4 Treating generalized eigenspaces with nonreal eigenvalues

Throughout this subsection we assume λ2 6∈ R and that the restriction of A2 to W (n)
λ has a

Jordan canonical form with 2ri Jordan blocks of size si × si, where r1, . . . , 2rnλ and s1, . . . , snλ

are positive integers satisfying si > si+1.

Proposition 3.2.13. There is a basis of W (n)
λ with respect to which the restrictions of ` and A to
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W
(n)
λ are represented by the matrices

nλ⊕
i=1

(
ri⊕
j=1

εi,jNλ,si

)
and

nλ⊕
i=1

(
ri⊕
j=1

Mλ,si

)
where εi,j = ±1

respectively.

Proof. Given the Gohberg–Lancaster–Rodman canonical form for ` and A2 summarized in Re-

mark 3.1.1, there exist vectors a1, a
′
1 ∈ W

(n)
λ such that the restrictions of ` and A2 to the 2s1-

dimensional vector space spanC{a1, (A
2−λ2I)a1, . . . , (A

2−λ2I)s1−1a1, a
′
1, . . . , (A

2−λ2
I)s1−1a′1}

are represented respectively by S2s1 and Jλ2,s1 ⊕ Jλ2,s1 with respect to the basis

{(A2 − λ2I)s1−1a1, . . . , a1, (A
2 − λ2

I)s1−1a′1, . . . , a
′
1}.

Define

ak+1 = (A2 − λ2I)ak and a′k+1 =
(
A2 − λ2

I
)
a′k.

Our goal is to show that there exists a choice of vector a1 such that spanC{a1, (A
2−λ2I)a1, . . . , (A

2−

λ2I)s1−1a1, a
′
1, . . . , (A

2−λ2
I)s1−1a′1} isA-invariant, so let us proceed assuming otherwise and find

a new choice for a1 that satisfies this property.

Define

bk := Aa′k and b′k := Aak.

For 1 ≤ i, j ≤ s1,

`(bi, bj) = `
(
λ

2
a′j + a′j+1, a

′
i

)
= 0 and `(b′i, b

′
j) = `(λ2aj + aj+1, ai) = 0,

and

`(bi, b
′
j) = `

(
λ2aj + aj+1, a

′
i

)
and `(b′i, bj) = `

(
λ

2
a′j + a′j+1, ai

)
.

Therefore, the restrictions of ` andA2 to the 2s1-dimensional vector space spanC{b1, . . . , bs1 , b
′
1, . . . , b

′
s1
}
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are represented respectively by

(
0 Jλ2,s1Ss1

J
λ
2
,s1
Ss1 0

)
and Jλ2,s1 ⊕ Jλ2,s1

with respect to the basis spanC{b1, . . . , bs1 , b
′
1, . . . , b

′
s1
}.

Letting e1 = αa1 + βb1, we have

`
(
e1, A(A2 − λ2I)s1−1e1

)
= α2`(a1, b

′
s1

) + αβ
(
`(a1, A

2a′s1) + `(b1, b
′
s1

)
)

+ β2`(b1, A
2a′s1)

= α2`(a1, b
′
s1

) + αβ
(
λ2`(a1, a

′
s1

) + λ
2
`(a′s1 , a1)

)
+ λ2β2`(b1, a

′
s1

)

= α2`(a1, b
′
s1

) + αβ
(
λ2 + λ

2
)

+ λ2β2`(b1, a
′
s1

). (3.2.22)

Define

ek = (A2 − λ2)k−1e1 and es1+k = Aek ∀1 ≤ k ≤ s1

and, on the span of {ei}, let ` and A be represented with respect to the basis {ei} by the matrix

H =

(
H1,1 H1,2

H2,1 H2,2

)
and C =

(
0 Jλ2,s1
Is1 0

)

where the matricesHi,j are each s1×s1. Direct computation yieldsH1,1 = H2,2 = 0. Furthermore,

H1,2 is symmetric becauseHC is symmetric, and henceH2,1 is symmetric as well. If s1 +1 < i+j

then the (i, j)th entry of H1,2 is zero because

`
(

(A2 − λ2)i−1e1, (A
2 − λ2

)j−1Ae1

)
= `

(
(A2 − λ2)i+j−2e1, Ae1

)
= ` (0, Ae1) = 0.

Accordingly,

det(H) = ±
(
|`(e1, e2s1)|

)2s1 ,

which, by (3.2.22), can be made nonzero for an adequate choice of α and β. Since HC is symmet-

93



ric, evaluating the lower right s1 × s1 block of HC yields, as in Lemma 3.2.6, that

H2,1 = H1,2 = `(e1, e2s1)Ss1 .

By replacing e1 with
√

1
`(e1,e2s1 )

e1, we can assume `(e1, e2s1) = ±1, so the restrictions of ` and A

to spanC{e1, . . . , e2s1} are represented by the matrices

±S2s1 and
(

0 Jλ2,s1
Is1 0

)

with respect to the basis {e1, . . . , e2s1}. By Lemma 3.2.1, we can repeat this normalization procee-

dure on the `-orthogonal complement of spanC{e1, . . . , e2s1}, and hence there is a basis of W (n)
λ

with respect to which ` and A are represented by the matrices

nλ⊕
i=1

(
ri⊕
j=1

εi,jS2si

)
and

nλ⊕
i=1

(
ri⊕
j=1

(
0 Jλ2,si
Isi 0

))
where εi,j = ±1.

3.2.5 A canonical form for antilinear operators

It is worth noting that methods applied above can be used to obtain the canonical form for

antilinear operators (without considering Hermitian forms) given in [22, Theorem 3.1], referred to

in Remark 3.1.3, so here we briefly outline how this is done.

On a generalized eigenspace W (n)
λ for which λ 6∈ R, in subsections 3.2.3 and 3.2.4 we normal-

ize the restriction A|V of A to a subspace V , where V is defined to be the space spanned by some

Jordan chain of A2 and the image of A applied to this Jordan chain, and achieve the normalization

by first choosing a basis with respect to which A2 has the Jordan normal form and then transform-

ing this basis to a new one with respect to which A has the form in Theorem 3.1.2, all the while

taking care to simultaneously normalize `. The very same procedure can be applied to normalize

A|V without the additional steps needed to normalize `, that is, one can normalize A|V by reading

through the proofs of propositions (3.2.12) and (3.2.13) while disregarding all mention of ` (e.g.,
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using the Jordan normal form rather than the Gohberg–Lancaster–Rodman form). Next, letting U

denote the A-invariant space on which we have already normalized A, we repeat this normaliza-

tion on any A-invariant subspace of W (n)
λ \U containing a maximal Jordan chain of A2 rather than

applying Lemma 3.2.1 to choose a specific A-invariant complement of U . To find such a subspace,

we choose any maximal length Jordan chain of A2 in W (n)
λ \U and consider the subspace spanned

by this chain and the image of A applied to this chain.

On the generalized eigenspace W (n)
0 , we may normalize the restriction A|V of A to a subspace

V , where V is a maximal subspace of W (n)
0 that has a basis obtained by applying powers of A

to a single vector, by using the procedure in the proof of Proposition 3.2.11, again disregarding

all mention of `, that is, rather than choosing a1 ∈ {v |Ak−1v 6= 0} ∩ W (n)
0 such that (3.2.20)

holds we simply choose a1 to be an arbitrary vector in {v |Ak−1v 6= 0} ∩W (n)
0 . We repeat this

normalization on any maximal A-invariant subspace of W (n)
0 \U (where U denotes the A-invariant

space on which we have already normalized A) that has a basis obtained by applying powers of

A to a single vector. To find such a subspace, we choose any vector v ∈ W (n)
0 \ U for which the

subspace spanned by {v,Av, . . . , Anv} has maximal dimension.

Lastly, on a generalized eigenspace W (n)
λ for which λ2 > 0, we apply Lemma 3.2.8 to normal-

ize the restriction A|V of A to a subspace V , where V is the span of a Jordan chain of A2 given by

Lemma 3.2.8. Note, the proof of Lemma 3.2.8 does not use the assumption that A is `-self-adjoint

for some Hermitian form `. And as in the previous two cases, we repeat this normalization on any

A-invariant subspace of W (n)
λ \ U (where, again, U denotes the A-invariant space on which we

have already normalized A) containing a maximal length Jordan chain of A2.

Given that every antilinear operator can be represented by a matrix representing the antilinear

operator of a pair in the canonical form of Theorem 3.1.2, we have the following lemma.

Lemma 3.2.14. Every antilinear operator on Cn is `-self-adjoint with respect to some nondegen-

erate Hermitian form `.
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3.3 Alternative canonical forms

We conclude this chapter with a few remarks regarding an alternative approach to deriving a

canonical form for the pair (`, A), and we record an alternative canonical form, Theorem 3.3.1,

that naturally arises from this approach. The form in Theorem 3.1.2 has some advantages. Its

matrices have a minimal number of nonzero entries, for example. The form in Theorem 3.3.1

is, however, better suited for certain applications. Namely, analysis involving antilinear operators

often includes consideration of the operators’ squares, making use of the squares’ linearity and

well developed theory for linear operators. The alternative canonical forms of Theorems 3.3.1 and

3.3.2 below are ideal for studying A and A2 simultaneously because A2 is represented by a Jordan

matrix whenever A is represented by the canonical form of Theorem 3.3.2.

When searching for a canonical form for (`, A), after noticing that a linear operator A2 is

`-self-adjoint whenever the antilinear operator A is `-self-adjoint, it becomes natural to apply the

Gohberg–Lancaster–Rodman form to the pair (`, A2). Specifically, one may try to normalize (`, A)

by bringing (`, A2) to the Gohberg–Lancaster–Rodman form and then changing the basis to nor-

malize A while tracking the changes induced in the matrix representing ` (ideally, one would like

to achieve this without changing the matrix representing ` at all). Indeed, we use this approach

in subsections 3.2.3 and 3.2.4, and, from this perspective, noting Lemma 3.1.4, one must wonder

why we do not use this approach in section 3.2.1 as well. It turns out to be absolutely viable for

the normalization carried out in section 3.2.1, but the method presented in section 3.2.1 is simply

more efficient. Applying this alternative approach to carry out the normalization has its own merit,

however, because it naturally leads one to discover the canonical form given in Theorem 3.3.1

below.

To explore this further, let us consider the special case wherein A2 : Cn → Cn has a single

eigenvalue λ2, its only eigenspace is 1-dimensional, and λ2 > 0 (note, applying Lemmas 3.2.1 and

3.2.8, one can always reduce to this special case for the normalization carried out in section 3.2.1).

Applying the Gohberg–Lancaster–Rodman form to the pair (`, A2), we can choose a basis of Cn
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with respect to which ` and A are represented by matrices Sn and C respectively such that

CC = Jλ2,n. (3.3.1)

We attempt to normalize A by changing the basis with transformations that preserve the matrix

representations of ` and A2. Hence we consider the transformations represented by matrices in the

group

G :=
{
M ∈Mn×n(C) |M∗SnM = Sn and MCC = CCM

}
acting on the subspace

C := {C ∈Mn×n(C) |CC = Jλ2,n}

of GLn(C), via the action (M,C) 7→ MCM
−1

. It turns out that we can solve (3.3.1), that is, we

can completely describe the general form of a matrix C satisfying (3.3.1), and G acts transitively

on C.1 Matrices in (3.3.1) turn out to be upper-triangular and Toeplitz, and, for a matrix C ∈ C,

one can explicitly construct a matrix M ∈ G such that MCM
−1 ∈ GLn(R) and the eigenvalue

of MCM
−1

is |λ|. Choosing M to satisfy these conditions, it turns out that MCM
−1

equals the

matrix M|λ|,n defined below, which confirms that G acts transitively on C. Of course, we have

omitted details of the calculations summarized here, but the summary provides an outline of how

one can apply the aforementioned alternative approach to the normalization carried out in section

3.2.1. Furthermore, this summary illustrates how, from one perspective, the alternative canonical

form given in Theorem 3.3.1 below arises naturally.

This alternative form features the sequence

c0(λ) := λ, c1(λ) :=
1

2λ
, and ci(λ) :=

−1

2λ

i−1∑
j=1

cj(λ)ci−j(λ), (3.3.2)

1The space C turns out to be homeomorphic to the Cartesian product S1 × Rn−1 of a circle and Euclidean space
with the product topology.
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which arises if we try to solve the matrix equation

C2 = Jλ2,k λ 6= 0 (3.3.3)

by supposing C has the form

C =
k∑
i=1

ci−1(λ)T i−1
k (3.3.4)

and comparing coefficients, interpreting each side of the equation as a degree k − 1 polynomial in

Tk.2 An interesting observation is that the sequence

|c1(1/2)| = 1, |c2(1/2)| = 1, |c3(1/2)| = 2, . . .

is known as the Catalan numbers, |ci(1/2)| = 1
i+1

(
2i
i

)
, which play an important role in combina-

torics. The identity

ci(λ) = (−1)i(2λ)1−2i|ci(1/2)| = (−1)i+1(2λ)1−2i

i+ 1

(
2i

i

)
,

valid for all positive integers i, further illuminates the relationship between {ci(λ)}∞i=1 and the

Catalan numbers.
2If C satisfies (3.3.3) then C satisfies (3.3.4) for some choice of coefficients ci(λ). Nevertheless, proving this fact

is not necessary for understanding the provenance of (3.3.2), so we introduce (3.3.4) as though it is not a consequence
of (3.3.3).
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For λ ∈ C, we define the k × k or 2k × 2k matrix M̃λ,k by

M̃λ,k :=



∑k
i=1 ci−1(λ)T i−1

k if λ ∈ R \ {0}

1
2

(
J1, k

2
−J−1, k

2

J−1, k
2
−J1, k

2

)
if λ = 0 and k is even 0 0 I k−1

2

I k−1
2

0 0

0 0 0

 if λ = 0 and k is odd

(
0

∑k
i=1 ci−1(λ)T i−1

k∑k
i=1 ci−1(λ)T i−1

k 0

)
otherwise,

where 0 denotes a matrix of appropriate size with zero in all entries and, for odd k, M̃0,k is a k× k

matrix. We define corresponding matrices Ñλ,k by

Ñλ,k :=



Sk if λ ∈ R \ {0}

S k
2
⊕
(
−S k

2

)
if λ = 0 and k is even

Sb k2c ⊕ Sd k2e if λ = 0 and k is odd

Sk ⊕ (−Sk) if λ2 < 0

S2k otherwise,

where dae denotes the smallest integer not less than a and bac denotes the largest integer not larger

than a. For the following theorem, we let {λ1, λ2, . . . , λγ} denote the subset of principle square

roots of eigenvalues of A2 enumerated in section 3.1.

Theorem 3.3.1. The domain of an `-self-adjoint antilinear operator A can be decomposed into

A-invariant, pairwise `-orthogonal subspaces such that there exists a basis with respect to which

the restrictions of ` and A to the decomposition’s component subspaces are represented by ma-

trices of the form ±Ñλ,k and M̃λ,k where λ ∈ {λ1, λ2, . . . , λγ} and k ∈ N. The corresponding

block diagonal matrices representing ` and A are unique up to a permutation of the blocks on the

diagonal.
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A canonical form for antilinear operators, described in Remark 3.1.3 and section 3.2.5, is given

by Hong and Horn in [22, Theorem 3.1]. Since, as is noted in Lemma 3.2.14, every antilinear

operator is `-self-adjoint with respect to some nondegenerate Hermitian form `, by applying The-

orem 3.3.1 to the pair ` and A to get another matrix representation for A, we obtain the following

alternative canonical form for antilinear operators.

Theorem 3.3.2. The domain of an antilinear operator A can be decomposed into A-invariant

subspaces such that there exists a basis with respect to which the restriction of A to the de-

composition’s component subspaces are represented by matrices of the form M̃λ,k where λ ∈

{λ1, λ2, . . . , λγ} and k ∈ N. The corresponding block diagonal matrix representing A is unique

up to a permutation of the blocks on the diagonal.

Remark 3.3.3. In a basis with respect to which A is represented by a matrix with the above

canonical form, A2 is represented by a Jordan matrix. Similarly, if ` and A are represented by

matrices in the canonical form of Theorem 3.3.1 then the pair (`, A2) is represented by matrices

in the Gohberg–Lancaster–Rodman form. Noting this connection together with Lemma 3.1.4, one

can readily show that if A is nonsingular then Theorems 3.1.2 and 3.3.1 are indeed equivalent. To

show that each of these theorems is a consequence of the other in the more general case where

A is singular, it is not too difficult to explicitly construct a basis change of the maximal subspace

on which A is nilpotent transforming the canonical form in Theorem 3.1.2 to the form in Theorem

3.3.1 (and vice versa); for example, considering a change of basis transformation represented by

T :=
1√
2


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

 ,

we have (T−1)∗N0,6T
−1 = Ñ0,6 and TM0,6T

−1
= M̃0,6, that is, this change of basis transforms a

certain matrix representation given by Theorem 3.1.2 to a matrix representation given by Theorem

3.3.1.
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4. FIRST APPLICATION: MAXIMALLY SYMMETRIC HOMOGENEOUS MODELS WITH

A RANK 1 LEVI KERNEL

As mentioned in the introduction, a classical problem setting in differential geometry is to find

homogeneous structures with the symmetry group of maximal dimension among all geometric

structures of a certain class. In CR geometry this problem is classically solved for the class of

Levi nondegenerate CR structures of hypersurface type of arbitrary dimension ([40, 8]). In this

chapter 4 we solve this problem for 2-nondegenerate CR structures of hypersurface type with a

rank 1 Levi kernel. Previously the solution to this problem was given only in the 5-dimensional

case [24, 28, 30], which is the case of the smallest possible dimension in which 2-nondegenrate

structures exist. We give the solution for arbitrary dimension (which a priori is odd) greater than 5

extending the previous result of [33] that work under additional the restrictions the a local invariant

called the CR symbol is regular. This result supports Beloshapka’s conjecture [24, Conjecture 5.6]

stating in particular that the homogeneous hypersurface model with maximal finite dimensional

group of symmetries is Levi nondegenerate.

For a Levi-nondegenerate structure, if the Levi form has signature (p, q) with p + q = n then

a maximally symmetric model can be obtained as a real hypersurface in the complex projective

space CPn+1, obtained by the complex projectivization of the cone of nonzero vectors in Cn+2

that are isotropic with respect to a Hermitian form of signature (p + 1, q + 1), and the algebra

of infinitesimal symmetries of this model is isomorphic to su(p + 1, q + 1), having dimension

(n+ 2)2 − 1.

Throughout this chapter we letM denote a (2n+1)-dimensional homogeneous, 2-nondegenerate,

hypersurface-type CR manifold with CR structure H , and we assume that the fiber Kx of the Levi

kernel is 1-dimensional at every point x ∈ M , that is, K is a rank 1 distribution. The present

chapter is dedicated to finding an upper bound for the dimension of the Lie group Aut(M,H)

of symmetries of (M,H). The bound that we obtain is in fact sharp in the sense that it can ob-

tained for some choice of (M,H). As shown in [24, 28, 30] for the lowest dimensional case (i.e.,
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when dimM = 5) this sharp upper bound (even without the homogeneity assumption) is equal

to 10 and for the maximally symmetric model the algebra of infinitesimal symmetries is equal to

so(3, 2). The main result here, see Theorem 4.1.2 below, gives this sharp upper bound expressed

as a function of dimM for dimM ≥ 7 (equivalently, n = 1
2
(dimM − 1) ≥ 3), namely

dim Aut(M,H) ≤ 1

4
(dimM − 1)2 + 7 = n2 + 7. (4.0.1)

We also show that symmetries of (M,H) are all determined by their third weighted jet. By the

weighted jet we mean that the derivatives in various directions are calculated according to the

filtration

(K ⊕K) ∩ TM ⊂ (H ⊕H) ∩ TM ⊂ TM

of TM so that each derivative in a direction in (K ⊕ K) ∩ TM is assigned weight zero, each

derivative in a direction in
(

(H ⊕H) \ (K ⊕K)
)
∩TM is assigned weight 1, and each derivative

in a direction in TM \ H ⊕ H is assigned weight 2. These results (even without the assumption

of homogeneity) were previously obtained in [33] for the special class of CR structures whose

symbols are regular, wherein it was shown by example that the upper bound in (4.0.1) is achieved.

The essential technical bulk of this chapter consists of showing that the dimension of Aut(M,H)

for homogeneous structures with non-regular symbol is strictly less than the the right side of (4.0.1)

( in fact it is shown in Theorem 4.1.4 below that it is strictly less than (n− 1)2 + 7) and that in the

non-regular case symmetries of (M,H) are all determined by their first weighted jet.

In the proof of the bound (4.0.1) we apply two results from earlier chapters: the classification

of CR symbols for structures with rank-1 Levi kernels developed in chapter 3 and the description

of the upper bound for the dimension of symmetry groups in terms of a Tanaka prolongation of

the symbol or its reduced version developed in Chapter 2 (Theorem 2.5.2). The proof also features

significant application of the formulas derived in Appendix A. In the sequel, we calculate these

prolongations and their dimensions for each reduced modified symbol corresponding to a non-

regular CR symbol. In particular, we show (Theorem 4.1.4) that the first Tanaka prolongation of
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each reduced modified symbol corresponding to a non-regular CR symbol is equal to zero and we

find the upper bound for the dimension of its (entire) Tanaka prolongaiton.. Analogous analysis

for regular CR symbols was previously obtained in [33] with the help of the theory of biagraded

Tanaka prolongation. The result on the jth-jet determinacy follows from its equivalence to the

vanishing of the jth Tanaka prolongation. In Theorem 4.2.3 for each reduced modified symbol

corresponding to a non-regular CR symbol we give more precise upper bound for the dimension

of its (entire) Tanaka prolongaiton in terms of the parameters of this nonregular symbol.

Note that at this moment for structures with non-regular symbols (and therefore in the general

case) we are not able to remove completely the homogeneity assumption in our results, as this

assumption implies that the modified (and reduced modified) symbols introduced in Chapter 2 are

constant and therefore are Lie algebras, and we strongly use the latter fact. So, the assumption

of homogeneity can be relaxed to the assumption that the structures under consideration admit a

constant reduced modified symbol in the sense of Chapter 2, but the question of whether or not

there exist CR structures from the considered class with nontransitive symmetry group of dimen-

sion higher than the bound in (4.0.1) is still open, although the positive answer to this question is

highly unlikely.

4.1 Symmetry bounds and jet determinacy theorems

As a consequence of [33], see Theorems 3.2, 5.1, 5.3 and the last paragraph of section 5 there,

one gets the following theorem.

Theorem 4.1.1 (Porter and Zelenko [33]). If (M,H) is a 2-nondegenerate CR structure of hyper-

surface type with a 1-dimensional Levi kernel and constant regular symbol, then

1. the dimension of the algebra of infinitesimal symmetries of (M,H) is not greater than

1
4
(dimM − 1)2 + 7;

2. these symmetries are determined by their third weighted jet;

3. the dimension of the algebra of infinitesimal symmetries of (M,H) is equal to 1
4
(dimM −
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1)2 + 7 if and only if (M,H) is locally equivalent to the flat structure with CR symbol such

that the corresponding line of antilinear operators consists of nilpotent ones of rank 1.

A natural question is whether or not the assumption of regularity of symbol can be removed

in the previous theorem. Addressing this question, the main result of the present chapter is the

following.

Theorem 4.1.2. If (M,H) is a 2-nondegenerate homogeneous CR structure of hypersurface type

with a 1-dimensional Levi kernel and constant symbol (not necessarily regular), then

1. statements (1) and (3) of Theorem 4.1.1 are valid;

2. if the symbol is non-regular then the (infinitesimal) symmetries of (M,H) are determined by

their first weighted jet.

The proof of this theorem is given in sections 4.2 through 4.3 and the appendix. Also, a

generalization of this theorem is described in Remark 4.1.5 below. In the remainder of this section,

we outline the scheme of the proof of this theorem, based on the constructions and results of

chapter 2, namely a slight modification of Proposition 2.4.4 (see Lemma 4.2.1) and the combined

implications of Corollary 2.1.8 and Theorem 2.5.2 (see Theorem 4.1.3 below). Theorem 4.1.2 will

be essentially reduced to Theorem 4.1.4. The latter theorem is proved in section 4.3 with the help

of Appendix A. In this proof we also use the classification of symbols from Chapter 3.

Our analysis in this chapter branches depending on properties of the CR structure’s local invari-

ants, namely those encoded in its CR symbol and its reduced modified CR symbols. And indeed the

CR structure is associated with reduced modified CR symbols by applying the reduction procedure

to P 0 described in Section 2.5 to obtain a reduction P 0,red of P 0 with a constant reduced modified

modified symbol g0,red. Proceeding, let us fix one such constant reduced modified modified symbol

g0,red.

Accordingly, g0,red satisfyies the axioms in the definition of abstract reduced modified symbols

(Definition 2.5.1). Additionally, as noted in section 2.5, g0,red is a subalgebra of g− o csp(g−1)

because it was obtained from a reduction of P 0 with constant reduced modified CR symbol.
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For convenient reference, we now restate some results from Chapter 2.

Theorem 4.1.3 (follows immediately from Corollary 2.1.8 and Theorem 2.5.2). If (M,H) is a

2-nondegenerate CR structure of hypersurface type with a 1-dimensional Levi kernel and constant

reduced modified symbol g0,red, then the dimension of the algebra of infinitesimal symmetries of

(M,H) is not greater than dim u(g0,red).

Hence, if we can explicitly calculate dim u(g0,red) for non-regular CR symbols, then we can

obtain an upper bound for the algebra of infinitesimal symmetries of (M,H). This motivates the

following theorem, proved in section 4.3.

Theorem 4.1.4. If a reduced modified CR symbol g0,red corresponds to a non-regular CR symbol

then the following statements hold:

1. The first Tanaka prolongation gred
1 of g0,red vanishes or, equivalently, the universal Tanaka

prolongation u(g0,red) of g0,red is equal to g0,red.

2. dim g0,red and therefore the dimension of the algebra of infinitesimal symmetries of a ho-

mogeneous, 2-nondegenerate, (2n+ 1)-dimensional, CR structure of hypersurface type with

rank 1 Levi kernel and non-regular CR symbol is strictly less than (n− 1)2 + 7.

Theorem 4.1.4 is proved in Section 4.3 with the help of the Appendix A. Based on the well-

known fact [42, Section 6] that an infinitesimal symmetry of a filtered structure is determined by the

jth weighted jet, where j is the minimal nonnegative integer for which the jth Tanaka prolongation

is equal to zero, this theorem immediately implies item (2) of Theorem 4.1.2. Item (1) will follow

from combining the last theorem with Theorem 4.1.3. In Theorem 4.2.3, for each reduced modified

symbol corresponding to a non-regular CR symbol, we give more precise upper bounds (than the

ones in item (2) of Theorem 4.1.4) for the dimension of its (entire) Tanaka prolongation in terms

of the parameters of this non-regular symbol.

Remark 4.1.5. Finally note that the arguments of the previous paragraph imply that homogeneity

assumption in Theorem 4.1.4 and our main Theorem 4.1.2 can be relaxed to the assumption that

structures under consideration admit a constant reduced modified symbol.
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4.2 A matrix representation of the reduced modified CR symbol

Here we restate some of the formulas from Chapter 2 with simplifications specific to the present

rankK = 1 case. Without these simplifications, notation in the ensuing analysis would be too

dense.

Let ` be the reduced Levi form of (M,H) and letA be an ` self-adjoint antilinear operator such

that (R`,CA) determines the CR symbol of (M,H) as described in Remark 2.2.5. By construction

g0,red is a subset of some modified CR symbol g0,mod, which has a matrix representation of the form

described in Section 2.4. In particular, we can choose the decomposition gmod
0 = X0,2⊕g0,0⊕X0,−2

referred to above (2.4.9) such that X0,2 and X0,−2 belong to g0,red. To use more intuitive notation,

let us set gred
0,− := X0,−2 and gred

0,+ := X0,−2. So we now have the splitting

gred
0 = gred

0,0 ⊕ gred
0,− ⊕ gred

0,+.

Accordingly, letting H` and C be matrices representing ` and A respectively in some basis of

g−1, (2.4.7) is equivalent to

A :=

{
α

∣∣∣∣∣αCH
−1
` + CH−1

` αT = ηCH−1
` and

αTH`C +H`Cα = η′H`C for some η, η′ ∈ C

}
. (4.2.1)

whereas (2.4.9) implies that gred
0,+ and gred

0,− are spanned by

spanC

{(
Ω C
0 −H−1

` ΩTH`

)}
and spanC

{(
−H`

−1
Ω∗H` 0

C Ω

)}
(4.2.2)

respectively. Since gred
0 is a subalgebra of csp(g−1), essentially the same reasoning that justifies

Lemma 2.4.4 implies that (2.4.12) holds after replacing the algebra A with some subalgebra A0

of A . In other words, we have the following Lemma.

Lemma 4.2.1. There exists a subalgebra A0 of A invariant under the transformation α 7→
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H`
−1
α∗H` such that

gred
0,0 =

{(
α 0
0 −H−1

` αTH`

)
+ cI

∣∣∣∣ α ∈ A0, and c ∈ C
}
, (4.2.3)

and there exist coefficients {ηα}α∈A0 ⊂ C and µ ∈ C such that the system of relations

i) αCH−1
` + CH−1

` αT = ηαCH
−1
`

ii) [α,Ω]− ηαΩ ∈ A0

iii) ΩTH`C +H`CΩ = µH`C

iv)
[
H`
−1

Ω∗H`,Ω
]

+ CC − µΩ− µH`
−1

Ω∗H` ∈ A0


(4.2.4)

holds for all α ∈ A0.

Note that the condition regarding invariance under α 7→ H`
−1
α∗H` corresponds to axiom 4 in

the definition of abstract reduced modified CR symbols (Definition 2.5.1).

We label the following pair of results from Chapter 2.

Lemma 4.2.2. The following are equivalent.

1. g0 is regular.

2. CCC is a scalar multiple of C.

Moreover, if Ω is in A then g0 is regular.

Proof. Equivalence of (1) and (2) was established in [33, section 4] and is also given in Proposition

(2.2.6). The latter statement is also shown in Chapter 2, although it is not given a numbered result

there. We prove it more directly here anyway for clarity because it plays an essential role in this

chapter’s analysis. For this, let v+ and v− be elements in gred
0,2 and gred

0,−2 respectively. Note that if Ω

is in A then there exist vectors w+, w− ∈ g0,0 such that v± + w± belongs to g0,±2. Accordingly,

[v+ + w+, v− + w−] = [w−, w+] + [v+ + w+, w−] + [w+, v− + w−] + [v+, v−].
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Since

[g0,0, g0] ⊂ g0 (4.2.5)

by the definition of g0,0, the first three terms in the right side of this last equation belong to g0. Since

gred
0 is closed under Lie brackets, [v+, v−] belongs to gred

0 . Hence if Ω is in A then [g0,2, g0,−2] ⊂

g0 +gred
0 . On the other hand if Ω is in A then gred

0 ⊂ g0. Therefore, if Ω is in A then [g0,2, g0,−2] ⊂

g0. Noting (4.2.5), it follows that if Ω is in A then [g0, g0] ⊂ g0, that is, g0 is regular.

Now, for completeness, given a non-regular CR symbol g0 encoded by the pair (`, A), repre-

sented by the pair of matrices (H`, C) in the canonical basis as as in Theorem 3.1.2 we will give

more precise (i.e., in terms of integers m1, . . .mγ and numbers λ1, . . . , λγ) upper bound for the

dimension of the algebra of infinitesimal symmetries of a 2-nondegenerate (2n + 1)-dimensional

CR structure of hypersurface type with 1-dimensional Levi kernel admitting a constant reduced

modified symbol corresponding to CR symbol g0. For this, for every 1 ≤ i, j ≤ γ, let

d(i, j) =



0, (λi 6= λj) or (i = j and λ2
i is not a nonpositive real number)

min{mi,mj} (i 6= j and λi = λj > 0) or (i = j and λ2
i < 0)

2 min{mi,mj} i 6= j, λi = λj and (λ2
i /∈ R or λi = 0)

4 min{mi,mj} i 6= j, λi = λj and λ2
i < 0⌈

mi
2

⌉
i = j and λi = 0

where dm
2
e denotes the ceiling function, i.e. the smallest integer not less than mi

2
.

Let

dtotal :=
∑
i≤j

d(i, j).

Then the following theorem is the direct consequence of item (1) of Theorem 4.1.4 and Lemmas

A.0.2, A.0.4, Corollary A.0.5, and Lemma A.0.8:
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Theorem 4.2.3. Given a nonregular CR symbol g0 encoded by the pair (`, A) represented by the

pair of matrices (H`, C) in the canonical basis as in Theorem 3.1.2, the dimension of the algebra of

infinitesimal symmetries of a 2-nondegenerate (2n+ 1)-dimensional CR structure of hypersurface

type with 1-dimensional Levi kernel admitting a constant reduced modified symbol corresponding

to CR symbol g0 is not greater than dtotal +2n+3, if at least one λi is not zero, and it is not greater

than dtotal + 2n+ 4, if all λi are zero.

Note that the mentioned Lemmas and Corollaries from Appendix A together with (4.2.3) imply

that dim gred
0,0 is either not greater than dtotal + 2 or dtotal + 3 depending whether or not C is

nilpotent. The estimate for u(g0,red) = g0,red in Theorem 4.2.3 follows from this and the fact that

dim(g− + g0,−2 + g0,2) = 2n+ 1.

4.3 Proof of Theorem 4.1.4

Let σ : g0,red → g0,red denote the antilinear involution induced by the natural complex conjuga-

tion of CTM . We introduce this σ notation to avoid confusion because while working with matrix

representations in coordinates we will use the overline notation to denote the standard complex

conjugation of coordinates, which is a different involution. Let

(e1, . . . , e2n−2)

be a basis of g−1 with respect to which we get the matrix representation of gred
0 given by (4.2.2)

and (4.2.3). Notice in particular that (e1, . . . , en−1) spans g−1,1 and

σ(ei) := en+i−1 ∀ 1 ≤ i ≤ n− 1.

Note that σ extends to an involution defined of gred
1 by same formula that we use to extend the

natural conjugation from g− to be defined on csp(g−1), that is

σ(ϕ)(v) := σ ◦ ϕ ◦ σ(v) ∀ v ∈ g0,red ϕ ∈ gred
1 (4.3.1)
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defines an involution of gred
1 .

Recall the definition of the Tanaka prolongation of gred
k . Starting with k = 1, we recursively

define the kth prolongation

gred
k :=

{
ϕ ∈

−1⊕
i=−2

Hom(gi, gi+k)

∣∣∣∣∣ϕ([v1, v2]) = [ϕ(v1), v2] + [v1, ϕ(v2)]

∀ v1, v2 ∈ g−

}
∀ k ≥ 1.

An element ϕ in Hom(g−2, g−1)⊕ Hom(g−1, g
red
0 ) belongs to gred

1 if and only if

ϕ([ei, ej]) =
(
ϕ(ei)

)
(ej)−

(
ϕ(ej)

)
(ei) ∀ i, j ∈ {1, . . . , 2n− 2}. (4.3.2)

Note, here ϕ(ei) ∈ gred
0 ⊂ csp(g−1).

Given any element v ∈ g−1 let v− and v+ be the canonical projections of v to g−1,−1 and g−1,1,

respectively, with respect to the splitting g−1 = g−1,−1 ⊕ g−1,1.

As a direct consequence of (4.3.2) and (4.2.2), if n ≤ j ≤ 2n− 2 and 1 ≤ i ≤ n− 1, then

((
ϕ(ej)

)
ei)+ ∈ span{Aej−n+1} −

(
ϕ([ei, ej])

)
+
⊂ span{Aej−n+1,

(
ϕ(1)

)
+
}, (4.3.3)((

ϕ(ei)
)
ej)− ∈ span

{
σ
(
Aei
)}
−
(
ϕ([ei, ej])

)
− ⊂ span{Aei,

(
ϕ(1)

)
−}

In particular, the upper left (n − 1) × (n − 1) block in the matrix ϕ(ej) and the lower right

(n− 1)× (n− 1) block in the matrix ϕ(ei) both have rank at most 2.

Also from (4.3.2) and the fact that [ei, ej] = 0 for n ≤ i, j ≤ 2n− 2, we immediately have that

ϕ(ei)ej = ϕ(ej)ei, n ≤ i, j ≤ 2n− 2. (4.3.4)

Lemma 4.3.1. If the antilinear operator A (or, equivalently the matrix C) has rank greater than 1

and i ≥ n then ϕ(ei) ∈ gred
0,0 ⊕ gred

0,−, or, equivalently,

ϕ(ei) =

(
αi 0
cC −H−1

` αTi H`

)
for some c ∈ C and αi ∈ A0 + C(H`

−1
Ω∗H`). (4.3.5)
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Proof. By (4.2.2), there exists c ∈ C such that for every n ≤ j ≤ 2n− 2

((
ϕ(ei)

)
ej
)

+
= cAej−n+1 and

((
ϕ(ej)

)
ei
)

+
∈ span{Aei−n+1}.

By (4.3.4), for all n ≤ j ≤ 2n− 2,

cAej−n+1 ∈ span{Aei−n+1}.

This implies that c = 0, because otherwise rankA ≤ 1, contradicting our assumption. Therefore,(
ϕ(ei)v

)
+

= 0 for all v ∈ g−1,−1, which is equivalent to the statement of the Lemma.

Similarly, we have the following Lemma.

Lemma 4.3.2. If the antilinear operator A (or, equivalently the matrix C) has rank greater than 1

and i < n then ϕ(ei) ∈ gred
0,0 ⊕ gred

0,+ or, equivalently,

ϕ(ei) =

(
αi cC
0 −H−1

` αTi H`

)
for some c ∈ C and αi ∈ A0 + CΩ. (4.3.6)

Lemma 4.3.3. If C has rank greater than 1 and αi is the matrix defined by (4.3.5) and (4.3.6) then,

for i < n, we have

(
H`Cαi

)T
+H`Cαi = ηH`C for some η ∈ C (4.3.7)

and, for n ≤ i, we have

αiCH
−1
` +

(
αiCH

−1
`

)T
= ηCH−1

` for some η ∈ C. (4.3.8)

Proof. If αi is as in (4.3.6) then αi ∈ A +CΩ, so the definition of A and item (iii) of (4.2.4) imply

(4.3.7). If, on the other hand, αi is as in (4.3.5) then αi ∈ A + C(H`
−1

Ω∗H`), so the definition of

A and item (iii) of (4.2.4) imply (4.3.8).
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Corollary 4.3.4. If the CR symbol is not regular and the matrix αi given in (4.3.5) or (4.3.6) is

zero, then ϕ(ei) = 0.

Proof. Suppose αi = 0. By (4.2.2), (4.2.3), and Lemmas 4.3.1 and 4.3.2, if ϕ(ei) 6= 0 then either

Ω ∈ A or H`
−1

Ω∗H` ∈ A . The conditions Ω ∈ A and H`
−1

Ω∗H` ∈ A are, however, equivalent,

so either ϕ(ei) 6= 0 or Ω ∈ A . If the CR symbol is not regular then, by Lemma 4.2.2, Ω 6∈ A , and

hence ϕ(ei) = 0.

Lemma 4.3.5. If an element ϕ in gred
1 satisfies ϕ(1) = 0 and

ϕ(ei) = 0 ∀ i ≥ n (4.3.9)

then

ϕ(ei) = 0 ∀ i < n, (4.3.10)

and so ϕ = 0.

Proof. Since ϕ(1) = 0, the left side of (4.3.2) is zero for all i and j. Accordingly, for any i ∈

{1, . . . , n − 1} and j ∈ {n, . . . , 2n − 2}, (4.3.2) and (4.3.9) imply that the j column of ϕ(ei) is

zero. Hence, for all i ∈ {1, . . . , n−1}, the latter n−1 columns of ϕ(ei) are all zero. From this and

Lemma 4.3.2 (and specifically (4.3.6)), it follows that H−1
` αTi H` = 0. Hence αi = 0 and therefore

by (4.3.6) again (4.3.10) holds.

The general strategy of our proof of item (1) of Theorem 4.1.4 is, for a given arbitrary ϕ ∈ gred
1 ,

first to prove that ϕ(1) = 0 and then to prove (4.3.9).

We will also need the following equations and notation. In the sequel every (n− 1)× (n− 1)

matrix X will be also be regarded as an operator having the matrix representation X with respect

to the basis (e1, . . . , en−1). Let {ϕi}2n−2
i=1 ⊂ C denote the coefficients satisfying

ϕ(1) =
2n−2∑
i=1

ϕiei.
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By (4.3.5), it follows that

(
ϕ(ei))ej

)
− = −

(
H−1
` αTi H`

)
ej−n+1, ∀n ≤ i, j ≤ 2n− 2.

This together with (4.3.4) yields

(
H−1
` αTi H`

)
ej−n+1 =

(
H−1
` αTj H`

)
ei−n+1, ∀n ≤ i, j ≤ 2n− 2. (4.3.11)

Condition (4.3.11) is crucial in the subsequent analysis, namely in the proof of Lemmas 4.3.6

and 4.3.11. Therefore, we need to describe the matrix H−1
` αTj H`, which we begin by first describ-

ing the matrix αj . By (4.3.5), it follows that, for n ≤ j ≤ 2n− 2 and 1 ≤ i ≤ n− 1,

(
ϕ(ej)ei

)
+

= αjei.

From this and (4.3.3), taking into account that the matrix C represents the antilinear operator A,

we have that there exists the unique tuple (ai)
n−1
i=1 such that

αjei = aiCej−n+1 − (H`)i,j−n+1

(
ϕ(1)

)
+

(4.3.12)

for all 1 ≤ i ≤ n− 1 and n ≤ j ≤ 2n− 2. The uniqueness of (ai)
n−1
i=1 follows from the assumption

that C 6= 0 and that ai in (4.3.12) is independent of j.

4.3.1 The first special case

In this subsection, 4.3.1, we consider the special case wherein, for some integer m satisfying

2 ≤ m ≤ n− 1, we have

H` = Sm ⊕H ′` (4.3.13)
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where H ′` is an arbitrary nondegenerate Hermitian matrix, and

C = Jλ,m ⊕ C ′ for some λ ≥ 0, (4.3.14)

where C ′ is such that (`, A) is represented by (H`, C). Moreover, we assume that (H`, C) is in the

canonical form of Theorem 3.1.2. In particular,

Ce1 = λe1, Cei = λei + ei−1 ∀ 2 ≤ i ≤ m, (4.3.15)

and

H`ei = em+1−i ∀ 1 ≤ i ≤ m. (4.3.16)

Using (4.3.13) and (4.3.15) we obtain

αnei = aiλe1 − δi,m(ϕ(1))+ ∀ i ∈ {1, . . . , n− 1}, (4.3.17)

and, for 0 < p < m,

αn+pei = aiep + aiλep+1 − δi,m−p(ϕ(1))+ ∀ i ∈ {1, . . . , n− 1}. (4.3.18)

Now from (4.3.17), we get

αTne1 =
n−1∑
j=1

ajej − ϕ1em and αTnei = −ϕiem ∀ 2 ≤ i ≤ n− 1.

Using this together with (4.3.16) we can get

(H−1
` αTnH`)ei = −ϕm+1−ie1 ∀ i ∈ {1, . . . ,m− 1}, (4.3.19)
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(H−1
` αTnH`)em ≡ −ϕ1e1 + λ

m∑
j=1

am+1−jej (mod span{em+1, em+2, . . . , en−1}), (4.3.20)

and

(H−1
` αTnH`)ei = −

(
n−1∑

j=m+1

(H`)j,iϕj

)
e1 = −

(
n−1−m∑
j=1

(H ′`)j,i−mϕj+m

)
e1 ∀ i > m, (4.3.21)

where H` is as in (4.3.13).

Similarly, for 0 < p < m, from (4.3.18) we have

αTn+pei =



−ϕiem−p, i ∈ {1, . . . , n− 1} \ {p, p+ 1}

−ϕpem−p +
n−1∑
j=1

ajej, i = p

−ϕp+1em−p + λ
n−1∑
j=1

ajej i = p+ 1,

(H−1
` αTn+pH`)ei = −ϕm+1−iep+1 ∀ i ∈ {1, . . . ,m} \ {m− p,m− p+ 1}, (4.3.22)

(H−1
` αTn+pH`)em−p ≡ −ϕp+1ep+1 + λ

m∑
j=1

am+1−jej (mod span{em+1, . . . , en−1}), (4.3.23)

and

(H−1
` αTn+pH`)em−p+1 ≡ −ϕpep+1 +

m∑
j=1

am+1−jej (mod span{em+1, . . . , en−1}).

For p ≥ m,

(H−1
` αTn+pH`)ei ∈ span{em+1, . . . , en−1}. (4.3.24)
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Lemma 4.3.6. In the special case of 4.3.1 wherein (4.3.13) and (4.3.14) hold, if rank(C) > 1 then

ϕ(1) = 0. (4.3.25)

Proof. We will begin by showing that

(ϕ(1))+ = 0. (4.3.26)

The proof consists of analysis of equation (4.3.11) in three cases:

1. Equation (4.3.11) for i = n and j = n+ p with 0 ≤ p < m− 1. By (4.3.19)

(
H−1
` αTnH`

)
ep+1 = ϕm−pe1 ∀ 0 ≤ p < m− 1, (4.3.27)

and, by (4.3.22),

(
H−1
` αTn+pH`

)
e1 = ϕmep+1 ∀ 0 ≤ p < m− 1. (4.3.28)

Applying (4.3.27) and (4.3.28) to (4.3.11) with i = n and j = n+ p we get

ϕm−pe1 = ϕmep+1 ∀ 0 ≤ p < m− 1.

Therefore, using the last equation for 1 ≤ p < m− 1 (as for p=0 this equation is a tautology), we

get

ϕ2 = · · · = ϕm−1 = 0,

and also that ϕm = 0 for m > 2 (we will give another way to prove the latter identity including

the case m = 2 in item 3 of the proof below).
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2. Equation (4.3.11) for i = n and j = n+ p with p ≥ m. By (4.3.21) we get that

(
H−1
` αTnH`

)
ep+1 =

(
n−1−m∑
j=1

(H ′`)j,p+1−mϕj+m

)
e1. (4.3.29)

Using (4.3.11), from (4.3.29) and (4.3.24) it follows that
(
H−1
` αTnH`

)
ep+1 = 0 or, equivalently,

n−1−m∑
j=1

(H ′`)j,iϕj+m = 0, 1 ≤ i ≤ n− 1−m.

Since the matrix H ′` is nonsigular, this yields

ϕm+1 = · · · = ϕn−1 = 0.

3. Equation (4.3.11) for i = n and j = n+m− 1. If v = λ
∑m

j=1 am+1−jej , then, by (4.3.20),

(H−1
` αTnH`)em ≡ −ϕ1e1 + v (mod span{ei}n−1

i=m+1), (4.3.30)

and, by (4.3.23),

(H−1
` αTn+m−1H`)e1 ≡ −ϕmem + v (mod span{ei}n−1

i=m+1). (4.3.31)

Using (4.3.11) again and the fact that m ≥ 2, from (4.3.30) and (4.3.31) it follows that ϕ1 = 0 and

ϕm = 0. This completes the proof of (4.3.26).

Since (4.3.1) defines an involution of gred
1 , σ(ϕ) also belongs to gred

1 , so, sinceϕwas an arbitrary

element in gred
1 , the exact same arguments applied above show that (σ(ϕ)(1))+ = 0. Since σ(1) =

1,

σ
(
(ϕ(1))−

)
= (σ ◦ ϕ(1))+ = (σ(ϕ)(1))+ = 0,

and hence (ϕ(1))− = 0, which, together with (4.3.26) implies (4.3.25).

Lemma 4.3.7. In the special case of 4.3.1 wherein (4.3.13) and (4.3.14) hold, if rank(C) > 2 then
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(a1, . . . , an)C = 0.

Proof. Consider now the equation in (4.3.8) with i = n. The matrix on the right side of (4.3.8) is

either zero or it has rank equal to rank(C), which is at least 3 under this lemma’s hypothesis. On

the other hand, applying (4.3.15), (4.3.16), (4.3.17) and Lemma 4.3.6, we get

(αnCH
−1
` )ei ∈ span{e1} ∀ i ∈ {1, . . . ,m− 1}, (4.3.32)

and, applying (4.3.18) additionally, if λ = 0 then

(αn+1CH
−1
` )ei ∈ span{e1} ∀ i ∈ {1, . . . ,m− 1}. (4.3.33)

Hence, by (4.3.32),

rank
(
αnCH

−1
`

)
≤ 1 (4.3.34)

and rank
(
αnCH

−1
` +

(
αnCH

−1
`

)T) ≤ 2 because αnCH−1
` has at most one nonzero row. Simi-

larly, if λ = 0 then (4.3.33)

rank
(
αn+1CH

−1
`

)
≤ 1 (4.3.35)

and rank
(
αn+1CH

−1
` +

(
αn+1CH

−1
`

)T) ≤ 2. Since the matrix on the left side of (4.3.8) has

rank at most 2 whenever i = n or (λ, i) = (0, n+ 1), the matrix on the right side of (4.3.8) is zero

whenever i = n or (λ, i) = (0, n + 1). Thus by (4.3.8) the matrix αnCH−1
` is skew symmetric,

and the matrix αn+1CH
−1
` is skew symmetric whenever λ = 0. This together with (4.3.34) implies

that

αnCH
−1
` = 0, (4.3.36)

whereas applying (4.3.35) yields

αn+1CH
−1
` = 0, (4.3.37)
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whenever λ = 0. By (4.3.36) and (4.3.17) for λ 6= 0, or by (4.3.37) and (4.3.18) for λ = 0, we get

that the vector (a1, . . . , an)CH−1
` = 0, which completes this proof.

Lemma 4.3.8. In the special case of 4.3.1 wherein (4.3.13) and (4.3.14) hold, if rank(C) > 2 and

(λ,m) 6∈ {(0, 2), (0, 3)} then gred
1 = 0.

Proof. Let ϕ ∈ gred
1 and let (κi)

n−1
i=1 be as in (4.3.12). It will suffice to show that κi = 0 for every

1 ≤ i ≤ n − 1. Indeed, first plugging this condition and the conclusion (4.3.25) of Lemma 4.3.6

into relation (4.3.12) we obtain that αj = 0 for all n ≤ j ≤ 2n−2 . This and Corollary 4.3.4 imply

(4.3.9). Thus, the conclusion of the present lemma will follow from (4.3.25) and Lemma 4.3.5.

Notice that since (a1, . . . , an)C = 0, we have that ai = 0 for 1 ≤ i ≤ m if λ 6= 0, and ai = 0

for 1 ≤ i ≤ m− 1 if λ = 0 . In particular, as m ≥ 2 we have a1 = a2 = 0 always, and, since it is

assumed that m > 3 when λ = 0, if λ = 0 then a3 = 0 as well.

To produce a contradiction, assume that there exists an index r such that ar 6= 0 and let r be

the minimal such index. By (4.3.17),

αnei = δi,raiλe1 ∀ i ≤ r, (4.3.38)

and, by (4.3.18), for 0 < p < m,

αn+pei = δi,r(aiep + aiλep+1) ∀ i ≤ r. (4.3.39)

Note that, by Lemma 4.3.1, span{αn, αn+1} is a 2-dimensional subspace in A +C(H
−1

` Ω∗H`).

Since A is a subspace in A +C(H
−1

` Ω∗H`) of codimension at most 1, the subspaces span{αn, αn+1}

and A have a nontrivial intersection. That is, there exist b1, b2 ∈ C such that (b1, b2) 6= (0, 0) and

b1αn + b2αn+1 ∈ A . (4.3.40)
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By (4.3.38) and (4.3.39) again the first r − 1 columns of the matrix b1αn + b2αn vanish and

(b1αn + b2αn+1)er = ar

(
(λb1 + b2)e1 + λb2e2

)
(4.3.41)

By applying formulas from the appendix (i.e., Section A), we can derive a contradiction from

the assumption λ 6= 0 as follows. Let b1αn + b2αn+1 be partitioned as a block matrix whose

diagonal blocks have the same size as the diagonal blocks of C (referring to the block diagonal

partition of C given in Theorem 3.1.2).

By (4.3.40), if λ > 0 then each (i, j) block of b1αn + b2αn+1 is either characterized by Lemma

A.0.1 or Corollary A.0.5 and identically zero or it is characterized by Corollary A.0.3 and more

specifically characterized by (A.0.10). In particular, if the (1, j) block of b1αn + b2αn+1 is nonzero

(and therefore characterized by (A.0.10)) and contains part of the r column of b1αn + b2αn+1, then

(A.0.10) implies that the (j, 1) block of b1αn + b2αn+1 is nonzero and contained in the first r − 1

columns of b1αn + b2αn+1, which contradicts our definition of r. Accordingly, if λ > 0 then the

(1, j) block of b1αn + b2αn+1 containing part of the r column of b1αn + b2αn+1 is identically zero,

which implies λb1 + b2 = 0 and λb2 = 0 by (4.3.41). So, if λ > 0, then we obtain the contradiction

(b1, b2) = (0, 0).

On the other hand, if λ = 0 then, by Lemma 4.3.1, span{αn+2, αn+3} is a 2-dimensional

subspace in A + C(H
−1

` Ω∗H`). Similarly to the previous case, A and span{αn+2, αn+3} have a

nontrivial intersection, that is, there exist b1, b2 ∈ C such that (b1, b2) 6= (0, 0) and

b1αn+2 + b2αn+3 ∈ A . (4.3.42)

Note that we are now redefining b1 and b2 because the previous definition is no longer needed, and

that the bis in (4.3.42) are not related to the bis in (4.3.40). By (4.3.38) and (4.3.39) the first r − 1

columns of the matrix b1αn+2 + b2αn+3 vanish and

(b1αn+2 + b2αn+3)er = ar

(
b1e2 + b2e3

)
. (4.3.43)
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By applying formulas from the appendix again, we can derive a contradiction now from the

assumption λ = 0. For this, let b1αn+2 + b2αn+3 in (4.3.42) be partitioned as a block matrix

whose diagonal blocks have the same size as the diagonal blocks of C. By (4.3.42), if λ = 0

then each (i, j) block of b1αn + b2αn+1 is either characterized by Lemma A.0.1 and identically

zero or it is characterized by Lemmas A.0.4 and A.0.8 and Corollary A.0.5 and more specifically

characterized by (A.0.15), (A.0.16), (A.0.17), and (A.0.23). In particular, if λ = 0 and the (1, j)

block of b1αn+2 + b2αn+3 contains part of the r column of b1αn+2 + b2αn+3, and, furthermore, we

assume that the (1, j) block is not identically zero, then this (1, j) block is either characterized by

(A.0.17) and (A.0.23) or by (A.0.15) and (A.0.16).

Considering the first possibility where the (1, j) block containing part of the r column of

b1αn+2 + b2αn+3 is characterized by (A.0.17) and (A.0.23) (i.e., j = 1), by (4.3.43), the first

m entries of b1e2 + b2e3 form the r column of the (1, 1) block of b1αn+2 + b2αn+3. Since we are

assuming that this (1, 1) block is a linear combination of matrices (A.0.17) and (A.0.23) with the

latter being a diagonal matrix, noting that r > 3, it follows that the first entry in the r − 1 column

of this (1, 1) block is −b1 and the second entry in the r − 1 column of this (1, 1) block is −b2. Yet

the r − 1 column of the (1, 1) block of b1αn+2 + b2αn+3 is zero by the definition of r, so we have

obtained the contradiction that (b1, b2) = (0, 0).

Considering the remaining possibility, which is where the (1, j) block containing part of the r

column of b1αn+2 + b2αn+3 is characterized by (A.0.15) or (A.0.16), if this (1, j) block is nonzero

then (A.0.15) and (A.0.16) imply that the (j, 1) block is nonzero and contained in the first r − 1

columns of b1αn+2 + b2αn+3, which contradicts the definition of r.

Hence, the (1, j) block containing part of the r column of b1αn+2 + b2αn+3 must be identically

zero because all other possibilities yield contradictions, and yet, by (4.3.43), setting this (1, j)

block equal to zero again implies the contradiction (b1, b2) = (0, 0). Therefore, there is no index r

such that ar 6= 0.

Lemma 4.3.9. In the special case of 4.3.1 wherein (4.3.13) and (4.3.14) hold, if there is a basis
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with respect to which A is represented by the matrix

C = J0,3 ⊕ Jc,1 ⊕ C ′′ for some c > 0 (4.3.44)

or

C = J0,2 ⊕ Jc,1 ⊕ Jc′,1 ⊕ C ′′ for some c, c′ > 0 (4.3.45)

then gred
1 = 0.

Proof. Let ϕ ∈ gred
1 and let (κi)

n−1
i=1 be as in (4.3.12). By the same arguments as in the beginning

of the proof of Lemma 4.3.8 , it will suffice to show that κi = 0 for every 1 ≤ i ≤ n−1. Note that,

by Lemma 4.3.6, in the considered cases ϕ(1) = 0. It is more convenient to work with matrices

C̃ = J1,c ⊕ J0,3 ⊕ C ′′ (4.3.46)

or

C̃ = J1,c ⊕ J1,c′ ⊕ J0,2 ⊕ C ′′ (4.3.47)

instead of C in (4.3.44) and (4.3.45), respectively. This can be done by an obvious permutation of

the basis. Also, in the considered cases the rank assumptions of Lemma 4.3.7 with C replaced by

C̃ holds. Therefore, using (4.3.12) with C replaced by C̃ we get

a1 = a2 = a3 = 0. (4.3.48)

Note that if we would not replace C by C̃ we could conclude that a1 = a2 = a4 = 0 in the case of

(4.3.44) and that a1 = a3 = a4 = 0 in the case of (4.3.45), so that is why we make this permutation

of the blocks.

Assume for a proof by contradiction that there exists r such that ar 6= 0 and moreover that
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this is the minimal such index, that is, ai = 0 for all i < r. By (4.3.48), r > 3. From (4.3.12)

with C replaced by C̃ it follows that in both cases the first r − 1 columns of the matrices αi with

n ≤ i ≤ n+ 3 vanish,

αner = arce1, and αn+3er = are3. (4.3.49)

Further,

αn+2er = are2 (4.3.50)

if C̃ satisfies (4.3.46) and

αn+1er = arc
′e2 (4.3.51)

if C̃ satisfies (4.3.47). Note that, by Lemma 4.3.1, each αi in these equations belongs to A +

C
(
H`
−1

Ω∗H`

)
.

Hence, using similar arguments as in the proof of Lemma 4.3.8 we get that the 3-dimensional

subspace span{αn, αn+2, αn+3} in the first case and span{αn, αn+1, αn+3} in the second case has

at least a two dimensional intersection with A . Notice further that in either case, the rth columns

of matrices in these intersections must have a two-dimensional span because the natural projection

from the space span{αn, αn+2, αn+3} (or span{αn, αn+1, αn+3}) to the r column of matrices in

this space is injective. Yet, formulas from the appendix (i.e., Section A) can be applied to show

that these intersections are at most one-dimensional as follows.

Let us now first assume that C̃ satisfies (4.3.46). LetB(1) andB(2) be matrices belonging to the

intersection of span{αn, αn+2, αn+3} and A such that the r column ofB(1) is linearly independent

of the r column of B(2). For an (n − 1) × (n − 1) matrix B, let (B(i,j)) be a partition of B into

a block matrix whose diagonal blocks have the same size as the diagonal blocks of C. Let j be

the index such that B(1,j) contains part of the r column of B. By Lemma A.0.1, since c 6= 0 there
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exists i ∈ {1, 2} such that B(i,j) = 0 for all B ∈ A , because otherwise Lemma A.0.1 implies

that the (1, 1) and (2, 2) blocks of CC have the same eigenvalues. In particular, at most one of the

(1, j) and (2, j) blocks of any linear combination of B(1) and B(2) is nonzero. It follows that, for

each k ∈ {1, 2}, B(k)
(1,j) = 0 and B(k)

(2,j) 6= 0 because otherwise the r column of each B(k) belongs to

span{e1}, which contradicts our choice of B(1) and B(2). Moreover, by (4.3.49) and (4.3.50), the

first nonzero column of each block B(k)
(2,j) has zero in all but its first two entries.

Each B
(k)
(2,j) is either characterized by Lemma A.0.1 and is identically zero or characterized

by Lemma A.0.4 and Corollary A.0.5 and more specifically characterized by (A.0.15), (A.0.16),

or (A.0.17) (with λi = 0). If B(k)
(2,j) is characterized by (A.0.17) then j = 2 and, by (A.0.17),

the second entry of the first nonzero column of B(k)
(2,2) is zero. If, on the other hand, B(k)

(2,j) is

characterized by (A.0.15) (or (A.0.16)) and the second entry of the first nonzero column of B(k)
(2,j)

is nonzero, then, by (A.0.16) (or respectively (A.0.15)), the B(k)
(j,2) block of B(k) is nonzero and

contained in the first r − 1 columns of B(k), which contradicts our choice of r. Therefore if B(k)
(2,j)

is nonzero then the second entry of the first nonzero column of B(k)
(2,j) is zero. Yet this contradicts

our choice of B(1) and B(2) because it means that the only nonzero entry in the r column of B(1)

and B(2) is the second entry.

Let us now address the remaining case, that is, assume that C̃ satisfies (4.3.47). Again, let j be

the index such that B(1,j) contains part of the r column a given (n − 1) × (n − 1) matrix B. Let

B(1) and B(2) be matrices belonging to the intersection of span{αn, αn+1, αn+3} and A such that

the r column of B(1) is linearly independent from the r column of B(2). From this independence

condition and the fact that nonzero entries of these respective rth columns of B(1) and of B(2)

appear within their first three entries (the latter is a consequence of (4.3.49) and (4.3.51)), it follows

that there exists a matrix B in span{B(1), B(2)} such that there exists i ∈ {1, 2} with B(i,j) 6= 0

(because otherwise, the third entry is the only nonzero entry of rth columns ofB(1) andB(2), which

contradicts the independence of these columns). Since r > 3 it follows that j > 2. Thus, it follows

from Lemma A.0.1 and Corollary A.0.3 that this nonzero B(i,j) with i ∈ {1, 2} is characterized by

(A.0.10). Yet (A.0.10) implies that the B(j,i) is a nonzero block contained in the first r− 1 rows of
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B, which contradicts our choice of r.

Lemma 4.3.10. In the special case of 4.3.1 wherein (4.3.13) and (4.3.14) hold, if

C =

k copies︷ ︸︸ ︷
J0,2 ⊕ · · · ⊕ J0,2⊕Jc,1 ⊕ J0,1 ⊕ · · · ⊕ J0,1,

for some integer k and some c > 0 then αi = 0 for all i ≥ n.

Proof. Let ϕ ∈ gred
1 and let (κi)

n−1
i=1 be as in (4.3.12). By the same arguments as in the beginning

of the proof of Lemma 4.3.8 , it will suffice to show that κi = 0 for every 1 ≤ i ≤ n− 1. We work

with (H`, C) in the canonical form of Theorem 3.1.2, so H` is as in Theorem 3.1.2, that is

H` = ε1N0,2 ⊕ · · · ⊕ εkN0,2 ⊕ εk+1Nc,1 ⊕ · · · ⊕ εγN0,1

for some coefficients εi = ±1.

For a matrix B in A , let (B(i,j)) be a partition of B into a block matrix whose diagonal blocks

have the same size as the diagonal blocks of C. By Lemma A.0.4 and Corollary A.0.5 (in the

appendix below), we have

B(i,j) = εi

(
b c
0 d

)
and B(j,i) = −εj

(
b e
0 d

)
∀ i, j ≤ k

and

B(i,j) =

(
a
0

)
and B(j,i) =

(
0 b

)
∀ i ≤ k < j

for some b, c, d, e ∈ C that depend on (i, j). By Corollary A.0.5 and Lemma A.0.8 (in the appendix

below),

B1,1 = B2,2 = · · · = B2k+1,2k+1, (4.3.52)
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where hereBi,j denotes the (i, j) entry ofB rather than the (i, j) blockB(i,j). By Lemma A.0.1

and Corollary A.0.5 (in the appendix below),

B(i,k+1) = 0 and B(k+1,i) = 0 ∀ i 6= k. (4.3.53)

Since, by Lemma 4.3.7, (a1, . . . , an−1)C = 0, we have

ai = 0 whenever i is odd and i ≤ 2k + 1. (4.3.54)

From (4.3.12) and Lemma 4.3.6 it follows that, for 0 ≤ p ≤ n−1, the i column of the matrix αn+p

is equal to ai times the p+ 1 column of C. In particular, the (i, j) entry of αn+2k is

(αn+2k)i,j = ajcδi,2k+1. (4.3.55)

Since, by Lemma 4.3.1, each αn+p belongs to A0 + C
(
H`
−1

Ω∗H`

)
and αn+2k does not belong to

A0 \ {0}, which can be seen by contrasting (4.3.53) and (4.3.55), it follows that

either αn+2k = 0 or H`
−1

Ω∗H` ∈ A0 + spanC{αn+2k}.

But αn+2k = 0 if and only if a1 = · · · = an−1 = 0, which is equivalent to what we want to show,

so let us proceed assuming

H`
−1

Ω∗H` ∈ A0 + spanC{αn+2k}

in order to produce a contradiction. Accordingly, let Ω0 ∈ A0 and s ∈ C be such that

H`
−1

Ω∗H` = H`
−1

Ω∗0H` + sαn+2k, (4.3.56)
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or, equivalently,

Ω = Ω0 + sH`
−1
α∗n+2kH`. (4.3.57)

Here we will apply another result from the appendix (below), namely Corollary A.0.9, which

states that for B ∈ A , since C is not nilpotent, if
(
H`CB

)T
+ H`CB = µH`C then BCH−1

` +

CH−1
` BT = µCH−1

` . Noting that, by (4.3.54) and (4.3.55), CH`
−1
α∗n+2kH` = 0, item (iii) in

(4.2.4) and (4.3.57) imply that

(
H`CΩ0

)T
+H`CΩ0 = µH`C, (4.3.58)

and hence Corollary A.0.9 implies that

ηΩ0 = µ,

where this notation ηΩ0 refers to the coefficient with that label in items (i) and (ii) or (4.2.4).

Since the matrix equation
(
H`CX

)T
+H`CX = µH`C is equivalent to

(
H
−1

` X∗H`

)
CH−1

` + CH−1
`

(
H
−1

` X∗H`

)T
= µCH−1

` ,

(4.3.58) implies

η
H`
−1

Ω∗0H`
= µ. (4.3.59)

By (4.3.59), items (i) and (ii) in (4.2.4) imply

[
Ω, H`

−1
Ω∗0H`

]
+ µΩ ∈ A0, (4.3.60)
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and applying the transformation X 7→ H`
−1
X∗H` to the matrix in (4.3.59) yields

[
H`
−1

Ω∗H`,Ω0

]
− µH`

−1
Ω∗0H` ∈ A0. (4.3.61)

Now we analyze item (iv) of (4.2.4). Using (4.3.56), (4.3.57), and lastly (4.3.60), we have

[
H`
−1

Ω∗H`,Ω
]

=
[
H`
−1

Ω∗0H`,Ω
]

+ [sαn+2k,Ω0] + |s|2
[
αn+2k, H`

−1
α∗n+2kH`

]
≡ µΩ + [sαn+2k,Ω0] + |s|2

[
αn+2k, H`

−1
α∗n+2kH`

]
(mod A0).

Substituting the last equation into item (iv) of (4.2.4) we get, after the obvious cancellation, that

[sαn+2k,Ω0] + |s|2
[
αn+2k, H`

−1
α∗n+2kH`

]
+ CC − µH`

−1
Ω∗H` ∈ A0. (4.3.62)

Similarly, (4.3.56), (4.3.57), and then (4.3.61) yields

[
H`
−1

Ω∗H`,Ω
]

=
[
H`
−1

Ω∗H`,Ω0

]
+
[
H`
−1

Ω∗0H`, sH`
−1
α∗n+2kH`

]
+ |s|2

[
αn+2k, H`

−1
α∗n+2kH`

]

≡ µH`
−1

Ω∗0H` +
[
H`
−1

Ω∗0H`, sH`
−1
α∗n+2kH`

]
+ |s|2

[
αn+2k, H`

−1
α∗n+2kH`

]
,

where the equivalence is modulo A0. Substituting the last equation into item (iv) of (4.2.4) we get

[
H`
−1

Ω∗0H`, sH`
−1
α∗n+2kH`

]
+ |s|2

[
αn+2k, H`

−1
α∗n+2kH`

]
+ CC − µΩ ∈ A0. (4.3.63)

On the other hand, again from (4.3.56) , (4.3.57), and using that
[
H`
−1

Ω∗0H`,Ω0

]
∈ A0, we can

write

[
H`
−1

Ω∗H`,Ω
]
≡ [sαn+2k,Ω0] +

[
H`
−1

Ω∗0H`, sH`
−1
α∗n+2kH`

]
+ |s|2

[
αn+2k, H`

−1
α∗n+2kH`

]
,
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where here again the equivalence is modulo A0. By subtracting the matrix in item (iv) of (4.2.4)

from the sum of the matrices in (4.3.62) and (4.3.63) and using the last relation, we get

CC + |s|2
[
αn+2k, H`

−1
α∗n+2kH`

]
∈ A0,

or, equivalently,

(
CC + |s|2αn+2kH`

−1
α∗n+2kH`

)
− |s|2H`

−1
α∗n+2kH`αn+2k ∈ A0. (4.3.64)

Notice that the first two terms in (4.3.64), grouped together by parentheses, are matrices whose

only potentially nonzero entry is the (2k + 1, 2k + 1) entry, whereas the other term has the same

value in the first 2k + 1 entries of its main diagonal. By (4.3.52), each matrix in A0 also has the

same values in the first 2k + 1 entries of its main diagonal. Moreover, the (2k + 1, 2k + 1) entry

of CC is nonzero. Therefore, by (4.3.64),

CC = −|s|2αn+2kH`
−1
α∗n+2kH`. (4.3.65)

Defining

α := |s|2H`
−1
α∗n+2kH`αn+2k,

(4.3.64) and (4.3.65) imply that α is in A0.

It is straightforward to check that, with this definition for α, ηα = 0 in the notation of item (i)

of (4.2.4) (by calculating, for example, the (1, 1) entries of the terms in item (i)), and hence items

(i) and (ii) of (4.2.4) yield [Ω, α] ∈ A0. Or, equivalently, by (4.3.57), noting that [Ω0, α] ∈ A0,

s
[
H`
−1
α∗n+2kH`, α

]
∈ A0. (4.3.66)
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Notice that H`
−1
α∗n+2kH`α = 0 because

(
H`
−1
α∗n+2kH`

)2

= 0, and hence (4.3.66) implies

s|s|2H`
−1
α∗n+2kH`

(
αn+2kH`

−1
α∗n+2kH`

)
∈ A0. (4.3.67)

Applying (4.3.65), we get

−s|s|
2

|c|2
H`
−1
α∗n+2kH`

(
αn+2kH`

−1
α∗n+2kH`

)
=

s

|c|2
H`
−1
α∗n+2kH`

(
CC
)

(4.3.68)

= sH`
−1
α∗n+2kH`,

where this last equality follows easily from (4.3.55).

By (4.3.57), (4.3.67), and (4.3.68), we get that Ω is in A0, but this contradicts Lemma 4.2.2.

Therefore, the assumption that αn+2k 6= 0 must be false, which in turn implies that a1 = · · · =

an−1 = 0, completing this proof.

4.3.2 The second special case

In this subsection, 4.3.2, we consider the special case where we have some integer 1 ≤ m ≤

n− 1 such that

H` =

(
S2m 0

0 H ′`

)
, (4.3.69)

where H ′` is an arbitrary nondegenerate Hermitian matrix, and

C =


2m columns︷ ︸︸ ︷
0 Jm,λ
I 0

0

0 C ′

 }
2m rows

, for some λ ∈ C \ {x ∈ R |x ≥ 0}, (4.3.70)

where C ′ is a matrix such that (`, A) is represented by (H,C). The analysis in 4.3.2 is similar to

that of 4.3.1, but some formulas differ.
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By Lemma 4.3.3 there exist coefficients a1, . . . , an−1, given in (4.3.12), such that, first,

αn+mei = −δi,m−1

(
ϕ(1)

)
+

+ λaie1,

second, for any nonnegative integer p < m,

αn+pei = −δi,2m−p
(
ϕ(1)

)
+

+ λaiem+p,

and, third, if 0 < p < m then

αn+m+pei = −δi,2m−p
(
ϕ(1)

)
+

+ aiep + λaiep+1,

which we use to obtain the following formulas. For 0 ≤ p < m, we have

(αn+pCH
−1
` )ei = (am−iλ− am+1−iλ

2)em+p+1 ∀ i ∈ {1, . . . ,m− 1}, (4.3.71)

(αn+pCH
−1
` )em = a1λ

2em+p+1, (4.3.72)

(αn+pCH
−1
` )ei = a3m+1−iλem+p+1 − δi,m+p+1

(
ϕ(1)

)
+

∀i ∈ {m+ 1, . . . , 2m}, (4.3.73)

and

(αn+pCH
−1
` )ei ∈ span{em+p+1} ∀i > 2m. (4.3.74)

For any nonnegative integer p < m and 1 ≤ i ≤ 2m

(
H−1
` αTn+pH`

)
ei ≡ −ϕ2m+1−iep+1 + δi,m−p

2m∑
j=1

a2m+1−jλej (mod span{ek}n−1
k=2m+1) (4.3.75)
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and, moreover, this equivalence modulo span{ek}n−1
k=2m+1 can be replaced with ordinary strict

equivalence whenever δi,m−p = 0. Also, for 1 ≤ i ≤ 2m,

(
H−1
` αTn+mH`

)
ei ≡ −ϕ2m+1−iem+1 + δi,2m

2m∑
j=1

a2m+1−jλej (mod span{ek}n−1
k=2m+1), (4.3.76)

where equivalence modulo span{ek}n−1
k=2m+1 can be replaced with ordinary strict equivalence when-

ever δi,2m−1 = 0. For any 0 < p < m and 0 < i < 2m+ 1,

(
H−1
` αTn+m+pH`

)
ei = −ϕ2m+1−iem+p+1 + δi,2m−p

(
2m∑
j=1

a2m+1−jλej +
n−1∑

k=2m+1

akλek

)
(4.3.77)

+ δi,2m−p+1

(
2m∑
j=1

a2m+1−jej +
n−1∑

k=2m+1

akek

)
,

and for any 0 < p < m and 2m < i < n

(
H−1
` αTn+m+pH`

)
ei = −ϕiem+p+1.

Lastly, for all i ≥ 2m

(H−1
` αTn+pH`)ei = −

(
n−1∑

j=2m+1

(H`)j,iϕj

)
ep+1 ∀ 0 ≤ p < m (4.3.78)

and

(
H−1
` αTn+pH`

)
ei ⊂ span{e2m+1, . . . , en−1} ∀ 2m ≤ p. (4.3.79)

Lemma 4.3.11. In the special case of 4.3.2 wherein (4.3.69) and (4.3.70) hold

ϕ(1) = 0.

Proof. By the same argument applied at the end of the proof of Lemma 4.3.6, it will suffice to
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show that
(
ϕ(1)

)
+

= 0. Similar to the proof of Lemma 4.3.6, this proof consists of analysis of

equation (4.3.11) in four cases:

1. Equation (4.3.11) for i = n and j = n + p with 0 ≤ p < m and m 6= 1. By (4.3.75)

replacing p with 0 and replacing i with p+ 1,

(
H−1
` αTnH`

)
ep+1 = −ϕ2m−pe1 ∀ 0 ≤ p < m− 1, (4.3.80)

and, by (4.3.75) with i = 1,

(
H−1
` αTn+pH`

)
e1 = −ϕ2mep+1 ∀ 0 ≤ p < m− 1. (4.3.81)

Applying (4.3.11), (4.3.80), and (4.3.81) we get ϕm+2 = ϕm+3 = · · · = ϕ2m = 0. Furthermore,

by (4.3.75) with p = 0 and i = m,

(
H−1
` αTnH`

)
em ≡ −ϕm+1e1 +

2m∑
j=1

a2m+1−jλej (mod span{ek}n−1
k=2m+1) (4.3.82)

whereas, by (4.3.75) with p = m− 1 and i = 1,

(
H−1
` αTn+m−1H`

)
e1 ≡ −ϕ2mem +

2m∑
j=1

a2m+1−jλej (mod span{ek}n−1
k=2m+1). (4.3.83)

Applying (4.3.11), (4.3.83), and (4.3.82) yields ϕm+1 = 0 so, altogether, we have shown

ϕm+1 = · · · = ϕ2m = 0. (4.3.84)

2. Equation (4.3.11) for i = n + m and j = n + m + p with 0 ≤ p < m and m 6= 1. By

(4.3.77) replacing p with 0 and replacing i with m+ p+ 1,

(
H−1
` αTn+mH`

)
em+p+1 = −ϕm−pem+1 ∀ 0 < p < m− 1, (4.3.85)
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and, by (4.3.77) with i = m+ 1,

(
H−1
` αTn+m+pH`

)
em+1 = −ϕmem+p+1 ∀ 0 < p < m− 1. (4.3.86)

Applying (4.3.11), (4.3.85), and (4.3.86) we get ϕ2 = ϕ3 = · · · = ϕm = 0. Furthermore, by

(4.3.77) with p = 0 and i = 2m,

(
H−1
` αTn+mH`

)
e2m = −ϕ1em+1 +

(
2m∑
j=1

a2m+1−jλej +
n−1∑

k=2m+1

akλek

)
(4.3.87)

and, by (4.3.75) with p = m− 1 and i = m+ 1,

(
H−1
` αTn+2m−1H`

)
em+1 = −ϕme2m +

(
2m∑
j=1

a2m+1−jλej +
n−1∑

k=2m+1

akλek

)
. (4.3.88)

Applying (4.3.11), (4.3.87), and (4.3.88) yields ϕ1 = ϕm = 0 so, altogether, noting (4.3.84), we

have shown

ϕ1 = · · · = ϕ2m = 0 if m > 1. (4.3.89)

3. Equation (4.3.11) for i = n and j = n+m. By (4.3.75) and (4.3.76)

(
H−1
` αTnH`

)
em+1 = −ϕme1 and

(
H−1
` αTn+mH`

)
e1 = −ϕ2mem+1. (4.3.90)

By (4.3.11),
(
H−1
` αTnH`

)
em+1 =

(
H−1
` αTn+mH`

)
e1, and hence (4.3.90) implies ϕm = ϕ2m. This

is true in particular when m = 1, which together with (4.3.89) yields the general result

ϕ1 = · · · = ϕ2m = 0. (4.3.91)
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4. Equation (4.3.11) for i = n and j = n+ p with p ≥ 2m. By (4.3.78) we get that

(
H−1
` αTnH`

)
ep+1 =

(
n−1∑

j=2m+1

(H ′`)j,iϕj

)
e1. (4.3.92)

Using (4.3.11) again, from (4.3.79) and (4.3.92) it follows that
(
H−1
` αTnH`

)
ep+1 = 0 or, equiva-

lently,

n−1−m∑
j=1

(H ′`)j,iϕj = 0, ∀ 1 ≤ i ≤ n− 1− 2m. (4.3.93)

Since the matrix H ′` is nonsigular, (4.3.93) implies ϕ2m+1 = · · · = ϕn−1 = 0, which together with

(4.3.91) yields ϕ1 = · · · = ϕn−1 = 0, that is,
(
ϕ(1)

)
+

= 0.

Lemma 4.3.12. In the special case of 4.3.2 wherein (4.3.69) and (4.3.70) hold, (a1, . . . , an−1)C =

0.

Proof. First we want to show that αnCH−1
` is skew symmetric, and we do so by considering two

separate cases.

First, consider the case where m = 1. By (4.3.72), the (1, 1) entry of αnCH−1
` is zero. But the

(1, 1) entry of CH−1
` is nonzero, so (4.3.8) implies that αnCH−1

` is skew symmetric.

Now let us consider the second case, which is where m > 1. The right side of (4.3.8) is either

zero or its right side has rank equal to rank(C) (which is at least 4 because m > 1). On the other

hand, using formulas (4.3.71), (4.3.72), (4.3.73), and (4.3.74) for the matrix αnCH−1
` together

with Lemma 4.3.11, we can see that the matrix αnCH−1
` has rank at most 1. Therefore the matrix

on the left side of (4.3.8) (when setting i = n) has rank at most 2, and hence the matrix αnCH−1
`

appearing in (4.3.71) must be skew symmetric if m > 1.

So, for all values of m, we have shown that αnCH−1
` is skew symmetric and of rank at most

1. Thus it is identically zero, which implies that the rows of αn are in the left kernel of CH−1
` . In

particular, (a1, . . . , an)CH−1
` = 0, which completes this proof because H ′` is nonsingular.
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Lemma 4.3.13. In the special case of 4.3.2 wherein (4.3.69) and (4.3.70) hold, if C corresponds

to a non-regular CR structure then gred
1 .

Proof. Let ϕ ∈ gred
1 and let (κi)

n−1
i=1 be as in (4.3.12). By the same arguments as in the beginning

of the proof of Lemma 4.3.8 , it will suffice to show that κi = 0 for every 1 ≤ i ≤ n− 1.

To produce a contradiction, let us assume there exists an index i such that ai 6= 0, and let r be

the smallest such index. Since, by Lemma 4.3.12, (a1, . . . , an)C = 0, we have a1 = a2 = 0, and

hence 2 < r. Also,

αn+mei = δi,rarλe1 and αn+m+1ei = δi,r(are1 + arλe2) ∀ i ≤ r. (4.3.94)

By Lemma 4.3.1, span{αn+m, αn+m+1} is a 2-dimensional subspace in A + C(H
−1

` Ω∗H`).

Since A is a subspace in A + C(H
−1

` Ω∗H`) of codimension at most 1 it has a nontrivial inter-

section with span{αn+m, αn+m+1}, and hence there exist b1, b2 ∈ C such that (b1, b2) 6= (0, 0)

and

b1αn+m + b2αn+m+1 ∈ A . (4.3.95)

By (4.3.94) the first r − 1 columns of the matrix b1αn + b2αn vanish and

(b1αn + b2αn+1)er = ar

(
(λb1 + b2)e1 + λb2e2

)
. (4.3.96)

Using results from the appendix (Section A below), we can now derive a contradiction as

follows. Let b1αn + b2αn+1 be partitioned as a block matrix whose diagonal blocks have the

same size as the diagonal blocks of C. By (4.3.95), each (i, j) block of b1αn + b2αn+1 is either

characterized by Lemma A.0.1 and identically zero or it is characterized by Corollaries A.0.3 and

A.0.5 and more specifically characterized by (A.0.11), (A.0.12), (A.0.13), (A.0.14), and (A.0.17).

Notice that if this (1, j) block of b1αn+b2αn+1 is characterized by (A.0.17) then j = 1, and clearly

no matrix of the form in (A.0.17) can have nonzero values in either of the first two entries of its

first nonzero column, which shows that this (1, j) block of b1αn + b2αn+1 containing part of the r
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column of b1αn + b2αn+1 must be zero if it is characterized by (A.0.17).

If, on the other hand, the (1, j) block of b1αn + b2αn+1 is characterized by (A.0.11) or (A.0.12)

(respectively (A.0.13) or (A.0.14)), is nonzero, and contains part of the r column of b1αn+b2αn+1,

then (A.0.11) and (A.0.12) (respectively (A.0.13) and (A.0.14)) imply that the (j, 1) block of

b1αn + b2αn+1 is nonzero and contained in the first r − 1 columns of b1αn + b2αn+1, which

contradicts our definition of r. Therefore, the (1, j) block of b1αn + b2αn+1 containing part of the

r column of b1αn + b2αn+1 is identically zero, which, by (4.3.96), implies that λb1 + b2 = 0 and

λb2 = 0. Yet this yields the contradiction (b1, b2) = (0, 0).

4.3.3 The third special case

In this subsection, 4.3.3, we consider the special case where (H`, C) corresponds to a non-

regular CR structure and C is diagonal. Working in the normal form of Theorem 3.1.2, H` is

diagonal too. Since C corresponds to a non-regular CR structure, the matrix CC has at least two

distinct nonzero eigenvalues, so we can assume without loss of generality that there are numbers

λ1, . . . , λn−1,∈ C and ε1, . . . , εn−1 ∈ {1,−1} such that |λ1| 6= |λ2|, λ1 6= 0, λ2 6= 0, and

C = diag (λ1, . . . , λn−1) and H` = diag (ε1, . . . , εn−1).

Accordingly, by (4.3.12),

αn+pei = aiλp+1ep+1 − δi,p+1ϕ(1) ∀ 0 ≤ p < n, (4.3.97)

αnCH
−1
` ei = λiεiai

(
λ1e1 − δi,1ϕ(1)

)
, (4.3.98)

H−1αTn+pHe1 = ±ϕ1ep+1 ∀0 ≤ p < n, (4.3.99)
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and

H−1αTnHep+1 = ±ϕp+1e1 ∀0 < p < n. (4.3.100)

By (4.3.11), we can equate H−1αTnHep+1, and hence (4.3.99) and (4.3.100) yields

ϕ1 = ϕ2 = · · · = ϕn−1 = 0. (4.3.101)

Formula in (4.3.98) now simplifies giving that αnCH−1
` is a matrix with at most 1 nonzero row,

and hence the left side of (4.3.8) (when setting i = n) cannot be a diagonal matrix of rank greater

than one. Yet the right side of (4.3.8) is a diagonal matrix that is either zero or of rank greater than

1, so the right side of (4.3.8) must be zero for the equation to hold. Since the left side of (4.3.8) is

zero, (4.3.98) and (4.3.101) imply that

λ1a1 = λ2a2 = · · · = λn−1an−1 = 0

because λ1 6= 0. In particular,

a1 = a2 = 0 (4.3.102)

because λ1 and λ2 are both nonzero.

Lemma 4.3.14. If (H`, C) corresponds to a non-regular CR structure and C is diagonal then

gred
1 = 0.

Proof. Let ϕ ∈ gred
1 and let (κi)

n−1
i=1 be as in (4.3.12). Recall that

(
ϕ(1)

)
+

= 0 implies ϕ(1) = 0,

by the same argument applied at the end of the proof of Lemma 4.3.6, and hence ϕ(1) = 0 by

(4.3.101). Accordingly, by the same arguments as in the beginning of the proof of Lemma 4.3.8, it

will suffice to show that κi = 0 for every 1 ≤ i ≤ n− 1.

To produce a contradiction, assume that there exists r such that κr 6= 0 and r is the minimal
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index with this property. By (4.3.102) we have that r > 2. Noting (4.3.97), by Lemma 4.3.1,

κr 6= 0 implies span{αn, αn+1} is a 2-dimensional subspace in A + C(H
−1

` Ω∗H`). Accordingly,

κr 6= 0 yields that span{αn, αn+1} and A have at least a 1-dimensional intersection. By (4.3.102)

and (4.3.97), nonzero entries in the matrices in span{αn, αn+1} can only appear in their first two

rows and moreover they do not appear in their first two columns. Yet, in the appendix (Section A

below), we describe the matrices in A explicitly. In particular, given that H` and C are diagonal,

the description of A in the appendix implies that every matrix in A with nonzero entries in its first

two rows also has nonzero entries in its first two columns, which implies that span{αn, αn+1} and

A have a trivial intersection, a clear contradiction.

By combining the results of Lemmas 4.3.8, 4.3.9, 4.3.10, 4.3.13 , and 4.3.14, we finish the

proof of Theorem 4.1.4, because these Lemmas account for all non-regular symbols.

To prove item (2) of Theorem 4.1.4 note that by (4.2.3) and Lemma A.0.10 for the reduced

modified CR symbol corresponding to a non-regular symbol

dim gred
0,0 = dim A + 1 < n2 − 4n+ 7

Therefore, from item (1) of the theorem under consideration and the fact that dim gred
0 = dim gred

0,0 +

2 and dim g− = 2n− 1, it follows that

dim u(g0,red) = dim g0,red < (2n− 1) + (n2 − 4n+ 7) + 2 = (n− 1)2 + 7,

which together with Theorem 4.1.3 completes the proof of item (2) of Theorem 4.1.4.
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5. SECOND APPLICATION: LOCAL INVARIANTS OF HOMOGENEOUS MODELS IN

LOW DIMENSIONS

The regular CR symbols of CR structures with a rank 1 Levi kernel were classified in [33],

wherein they show that all such regular CR symbols are exhibited by homogeneous CR manifolds.

In particular, in the terminology of the present text, if g0 is one such regular CR symbol, then we

can consider the abstract reduced modified symbol g0,red = g0 and consider the flat CR structure

(M0, H
flat) with constant reduced modified symbol g0,red defined in Section 2.5. For this choice of

g0,red, the homogeneous model (M0, H
flat) is equivalent to the maximally symmetric homogeneous

model with CR symbol g0 studied in [33].

As is mentioned in Chapter 2 (and shown in Example 2.7.1), despite the non-existence results

for generic symbols associated with homogeneous models derived in Section 2.6, homogeneous

models do exist for specific non-regular symbols. The theory developed in chapter 2 prepares a

programatic approach to finding such examples, which we implement here. In fact, the original

motivation for developing the theory in this dissertation was to prove or disprove the conjecture

that all homogeneous, 2-nondegenerate, hypersurface-type CR manifolds have regular symbols,

which we now know is false (as shown in Example 2.7.1).

In this chapter we classify the CR symbols associated with homogeneous models of dimension

7 and give a partial classification of these symbols for dimension 9. For each CR symbol g0 in this

classification, we find a corresponding abstract reduced modified CR symbol g0,red whose associ-

ated flat model has the CR symbol g0. We furthermore classify all such 7-dimensional flat models

(up to local equivalence). We start with the dimension 7 case because it is the lowest dimension

in which we find nontrivial local invariants encoded in the CR symbol. Indeed, there is only one

CR symbol associated with a 2-nondegenerate, hypersurface-type CR structure of dimension 5, the

lowest dimension for which 2-nondegeneracy can occur. Our method centers around analysis of

the system of relations in Lemma 2.4.4 with the same modification of replacing A by A0 that was

applied in Chapter 4 to obtain (4.2.4).
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In more detail, throughout this chapter, we let A0 denote a subalgebra of the algebra A defined

in (2.4.7) invariant under the transformation α 7→ H`
−1
α∗H`. This invariance property that we

assume corresponds to axiom 4 in the definition of abstract reduced modified CR symbols (Def-

inition 2.5.1). We are concerned only with the abstract reduced modified CR symbols that are

associated with homogeneous models and maximal, meaning that each of these reduced modified

CR symbols can be obtained as the constant reduced modified CR symbol of some reduction of the

frame bundle P 0 via the reduction procedure described in Section 2.5. In particular, the reduction

procedure ensures that any constant reduced modified CR symbol that it produces is a maximal

subspace of its corresponding modified CR symbol that is also a Lie subalgebra of g− o csp(g−1),

which motivates the following definition.

Definition 5.0.1. A subspace g0,red = g− ⊕ gred
0 of g− o csp(g−1) for some Heisenberg algebra

g− = g−2⊕g−1 (with its grading as given throughout this text, e.g., as introduced in the paragraph

following Remark 2.2.2) is a reduced modified symbol associated with a homogeneous model with

CR symbol g0 if

1. g0,red is an abstract reduced modified CR symbol of type g0 in the sense of Definition 2.5.1.

2. g0,red is a Lie algebra.

Furthermore, we say that a reduced modified symbol associated with a homogeneous model is

maximal if

3. g0,red is the maximal subspace of g− o csp(g−1) with the previous two properties.

Remark 5.0.2. Finding (or classifying all) maximal reduced modified CR symbols associated with

homogeneous 2-nondegenerate, hypersurface-type CR manifolds, is equivalent to finding (or clas-

sifying all) tuples

(H`, {C1, . . . , Cn−r}, {Ω1, . . . ,Ωn−r},A0) (5.0.1)
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for which the system of relations (2.4.12) is consistent after replacing A with A0, with the added

condition that A0 is a maximal subalgebra of A for which (5.0.1) satisfies (2.4.12).

Indeed, each solution to (2.4.12) (of the form in (5.0.1)) determines the reduced modified CR

symbol g0,red that, in terms of its matrix representations, can be described as the symbol for which

there is a splitting gred
0 = gred

0,0⊕gred
0,−⊕gred

0,+ such that g0,0 is as given in (4.2.3), gred
0,−⊕gred

0,+ is spanned

by the matrices in (2.4.9), and the symbol’s corresponding reduced Levi form (which determines

the algebra’s structure equations on the negatively graded part of g0,red) is represented by H`.

For each g0,red that we find, the flat model with constant reduced modified symbol g0,red is

uniquely determined by the construction in Section 2.5, so we sort the maximal reduced modified

symbols associated with homogeneous models into equivalence classes such that two symbols are

equivalent if and only if their corresponding flat models are. In other words we consider the follows

equivalence relation.

Definition 5.0.3 (reduced modified CR symbol equivalence). Letting <G0,0 denote the maximal

subgroup of the linear group CSp(g−1) whose tangent bundle is contained in the left-invariant

distribution generated by

g0,0 ∩ {v ∈ csp(g−1) |σ(v) = v},

we say that two maximal reduced modified CR symbols associated with homogeneous models g0,red

and ĝ0,red are equivalent or of the same type if there exists an element g in <G0,0 such that

Adg(gred
0 ) = ĝred

0 , where, here, Adg denotes the standard adjoint action of CSp(g−1) on its Lie

algebra csp(g−1).

This equivalence relation comes from the observation that the bundle P 0 (referenced in Section

2.5) is a principal bundle over the complexified flat modelMC
0 (also in Section 2.5) with a structure

group that we label G0,0. Given a maximal reduction P 0,red of P 0 with constant reduced modified

CR symbol g0,red, the action of G0,0 on P 0 yields transformations of P 0,red, where each group

element in G0,0 transforms P 0,red into a different reduction of P 0 with its own constant reduced

modified CR symbol, and the new symbol obtained in this way is related to the old symbol via the
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adjoint action ofG0,0 on csp(g−1). We consider only the orbits of<G0,0 in Definition (5.0.3) rather

than the larger orbits of G0,0, because we are searching only for the reduced modified CR symbols

that are invariant under the natural involution csp(g−1) coming from the complex structure on

P 0, in other words, satisfying axiom 4 in the definition of abstract reduced modified CR symbols

(Definition 2.5.1).

For dimM = 7, we classify the equivalence classes determined by Definition (5.0.3), obtaining

a total of nine distinct classes, each corresponding to a different homogeneous model. Of these nine

models, six where found in [33], and the other three are new. One of these new models is given

in Example 2.7.1. Another exhibits the non-regular CR symbol encoded by (H`, C), where C

can be any Jordan matrix consisting of a single nonsingular Jordan block. The third new model

corresponds to a regular CR symbol and its symmetry group is strictly smaller than that of the

maximally symmetric model having the same CR symbol found in [33].

For dimM = 9, we find nine non-regular CR symbols exhibited by homogeneous models

whose Levi kernel has rank 1 and, in particular, obtain reduced modified CR symbols whose

flat models indeed exhibit these CR symbols. Additionally there are 11 regular CR symbols ex-

hibited by homogeneous models whose Levi kernel has rank 1, which were classified in [33].

Hence, there are at least twenty locally distinguished 9-dimensional homogenous 2-nondegenerate,

hypersurface-type CR manifolds with a rank-1 Levi kernel (there are in fact more because among

these CR symbols, some are exhibited by multiple homogeneous models, as is illustrated by Ex-

amples 2.7.2 and 2.7.3). This is, however, only summarizing a partial classification. Recall that

the matrices H` and C encoding each such structure’s CR symbol represent respectively a Hermi-

tian form ` and an antilinear operator A whose domain is 3-dimensional. The partial classification

obtained here, is a complete classification for the symbols whose corresponding linear operator A2

has at most 2 eigenvalues (not counting multiplicity). It remains to classify the symbols associated

with 9-dimensional homogenous models having a rank-1 Levi kernel for which A2 has 3 distinct

eigenvalues. Although this latter classification is beyond the scope of this chapter, show that such

symbols are generically not associated with homogeneous models, extending the results of Sec-
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tion 2.6 that established this generic nonexistance only for pseudoconvex structures. Specifically,

for each possible signature of H` we find a pair (H`, C) encoding a CR symbol that cannot be

exhibited by a homogeneous model, which, as is described in Remark 2.6.6, implies the generic

nonexistance result.

5.1 7-dimensional models

Here we classify the (equivalence classes of) maximal reduced modified CR symbols associated

with homogeneous models on 7-dimensional manifolds. We still set dim(M) = 2n + 1 and

rankK = r, so in this section we have n = 3. Note that by (1.0.4) with n = 3, we get that r = 1,

which corresponds to the fact that all 2-nondegenerate 7-dimensional CR manifolds have a rank 1

Levi kernel. Accordingly, each of reduced modified symbols that we are classifying in this section

is determined by a tuple {H`, C1,Ω1,A0}. Here we have writen C1 and Ω1 to match the notation

of (2.4.9), but for convenience let us drop the subscript since they are unnecessary in this case with

r = 1. Accordingly, we will analyze the simplified system in (4.2.4) rather than the more general

system in (2.4.12) (using A0 in place of A ).

Since n − r = 2, H` and C are 2 × 2 matrices, and, by Theorem 3.1.2, we can assume (after

possibly rescaling ` and C by different real coefficients) that they have one of the forms

H` =

(
1 0
0 ε

)
and C =

(
1 0
0 0

)
, for some ε = ±1, (5.1.1)

H` =

(
1 0
0 ε

)
and C = I for some ε = ±1, (5.1.2)

H` =

(
0 1
1 0

)
and C =

(
0 1
0 0

)
, (5.1.3)

H` =

(
0 1
1 0

)
and C =

(
0 −1
1 0

)
, (5.1.4)
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H` =

(
0 1
1 0

)
and C =

(
0 i
1 0

)
, (5.1.5)

H` =

(
0 1
1 0

)
and C =

(
0 eiθ

1 0

)
for some θ ∈

(
0, π

2

)
∪
(
π
2
, π
)
, (5.1.6)

H` =

(
1 0
0 ε

)
and C =

(
1 0
0 λ

)
for some ε = ±1, λ > 1, (5.1.7)

or

H` =

(
0 1
1 0

)
and C =

(
1 1
0 1

)
. (5.1.8)

These possible forms for the pair (H`, C) are ordered above to highlight a few key patterns. By

Lemma 4.2.2, the CR symbols corresponding to (5.1.2), (5.1.1), (5.1.3), and (5.1.4) are regular

and thus of the type classified in [33]. Therefore, as mentioned in the introduction, (5.1.2), (5.1.1),

(5.1.3), and (5.1.4) are all associated with homogeneous models, and it remains for us to determine

which reduced modified CR symbols exist corresponding to these four cases. We will establish the

following result.

Theorem 5.1.1. Up to local equivalence, there are nine 7-dimensional flat 2-nondegenerate, hypersurface-

type CR manifolds (referring to the concept of flat models introduced in Section 2.5). In particular:

1. There exist three equivalence classes of reduced modified CR symbols corresponding to

(5.1.1), one for ε = 1 and two for ε = −1.

2. There exist two equivalence classes of reduced modified CR symbols corresponding to (5.1.2),

one for each parameter setting of ε.

3. There exists one equivalence class of reduced modified CR symbols corresponding to each

of the four cases (5.1.3), (5.1.4), (5.1.5), and (5.1.8).
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4. No reduced modified CR symbols correspond to any of the cases in (5.1.6) and (5.1.7).

Each of these equivalence classes of reduced modified CR symbols corresponds to one of the afore-

mentioned nine models.

Corollary 5.1.2. There exist homogeneous 2-nondegenerate, hypersurface-type CR manifolds whose

CR symbol is nonregular. Specifically, there are two such maximally symmetric 7-dimensional

models and there CR symbols correspond to (5.1.5) and (5.1.8). Applying Theorem 2.5.2 and The-

orem 4.1.4 to the corresponding reduced modified symbols that we obtain in this chapter, one gets

that each of these two models has an 8-dimensional symmetry group.

Moreover, in this section, we will explicitly describe the equivalence classes of reduced modi-

fied CR symbols referred to in Theorem 5.1.1. Since our classification goal in this section reduces

to describing the tuples (H`, C,Ω,A0) for which the system (4.2.4) is consistent, let us suppose

that Ω and A0 are fixed such that (4.2.4) is satisfied. We also let g0 be the CR symbol encoded by

the pair (H`, C), as described in Remark 2.2.5. Depending on the value of (H`, C) we will either

describe this pair (Ω,A0) in more detail or derive a contradiction from our assumption that such a

pair exists.

5.1.1 Symbols corresponding to formulas (5.1.1) through (5.1.4)

Suppose that H` and C are as in (5.1.1), (5.1.2), (5.1.3), or (5.1.4). Since, by Lemma 4.2.2, g0

is regular, the algebra g0 is itself a reduced modified CR symbol corresponding to the pair (H`, C).

This reduced modified symbol is described by taking A0 = A and taking Ω to be any matrix in

A . Hence, all that remains for us to do is determine whether or not there exist reduced modified

symbols for which Ω is not in A .

If (H`, C) is as in (5.1.1), then there turns out to be exactly one equivalence class of solutions

with Ω not in A provided that ε = −1, whereas there is no such solution if ε = 1. So we record

this as a lemma.

Lemma 5.1.3. Suppose (H`, C) is as in (5.1.1). If ε = −1 then there exists exactly one type of

reduced modified symbol g0,red (in the sense of Definition 5.0.3) such that the matrix Ω is not in A ,

146



and if ε = 1 then there is no such reduced modified symbol. In the former case, this equivalence

class of reduced modified symbols is represented by any one of the symbols described by (5.1.1)

and

Ω = eiθ

(
0 0√

3
4

0

)
and A0 = span

{(
1 0
0 3

)}
for some θ ∈ R. (5.1.9)

Proof. Notice that A is the space of all 2 × 2 diagonal matrices, and item (iii) in (4.2.4) implies

Ω1,2 = 0. With (Ω1)1,2 = 0, we get

[
H−1
` ΩT

i H`,Ωj

]
=

(
ε|(Ω1)2,1|2 ε(Ω1)2,1((Ω1)2,2 − (Ω1)1,1)

ΩΩ2,1(Ω2,2 − Ω1,1) −ε|Ω2,1|2

)
. (5.1.10)

The coefficient µ in item (iii) of (4.2.4) is equal to 2Ω1,1, and hence, by (5.1.10), labeling the matrix[
H−1
` ΩTH`,Ω

]
+ CC −

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α, we have

α =

(
ε|Ω2,1|2 − 4|Ω1,1)|2 + 1 εΩ2,1(Ω2,2 − 3Ω1,1)

Ω2,1(Ω2,2 − 3Ω1,1) a

)
, (5.1.11)

where

a = −ε|Ω2,1|2 − 2
(
Ω1,1Ω2,2 + Ω1,1Ω2,2

)
.

By item (iv) of (4.2.4), α belongs to A , and is therefore diagonal. Since we are searching for a

solution with Ω not in A , we can assume that Ω2,1 6= 0, and hence setting the off-diagonal entries

in (5.1.11) equal to zero yields,

Ω2,2 = 3Ω1,1.

Accordingly

α =

(
ε|Ω2,1|2 − 4|Ω1,1)|2 + 1 0

0 −ε|Ω2,1|2 − 12|Ω1,1)|2
)
. (5.1.12)

147



Evaluating item (i) in (4.2.4) with α given by (5.1.12), we obtain η1
α,1 = 2ε|Ω2,1|2 − 8|Ω1,1)|2 + 2,

and since, noting Ω1,2 = 0,

[α,Ω] =

(
0 0

(−2ε|Ω2,1|2 − 8|Ω1,1)|2 − 1) Ω2,1 0

)
,

(2, 1) entry of [α,Ω]− η1
α,1Ω is equal to

(
[α,Ω]− η1

α,1Ω
)

2,1
= −

(
4ε|Ω2,1|2 + 3

)
Ω2,1. (5.1.13)

By item (ii) in (4.2.4), [α,Ω] − η1
α,1Ω belongs to A , and hence

(
[α,Ω]− η1

α,1Ω
)

2,1
= 0. If ε = 1

then we have obtained a contradiction because then the value in (5.1.13) is nonzero. Accordingly,

if Ω 6∈ A then ε = −1. Accordingly, setting (5.1.13) equal to zero with ε = −1, we get

|Ω2,1|2 =
3

4
. (5.1.14)

By (5.1.12) and (5.1.14)

α =

(
−4|Ω1,1|2 − 1

4
0

0 3
(
−4|Ω1,1|2 − 1

4

) ) ,
and hence

span

{
α

−4|Ω1,1|2 − 1
4

}
= span

{(
1 0
0 3

)}
⊂ A0. (5.1.15)

Notice that I is not in A0 because then items (i) and (ii) of (4.2.4) would imply that Ω is in A0,

so equality actually holds in (5.1.15), which together with (5.1.14) implies that (5.1.1) and (5.1.9)

indeed give a solution to the system (4.2.4).

Lastly, we need to show that changing the parameter θ in (5.1.9) does not change the equiva-

lence class represented by the corresponding reduced modified CR symbol. To see this last obser-
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vation, consider the 1-parameter subgroup

{(
eitI 0
0 e−itI

) ∣∣∣∣ t ∈ R
}

(5.1.16)

ofCSp(g−1). This subgroup belongs to the group<G0,0 (introduced in Definition 5.0.3) and it acts

transitively (via the natural adjoint action) on the set of reduced modified symbols parameterized

by θ described by (5.1.1) and (5.1.9).

Lemma 5.1.4. If (H`, C) is as in (5.1.2), (5.1.3) or (5.1.4) then the only corresponding reduced

modified symbol is the one described by taking A0 = A and taking Ω to be any matrix in A .

Proof. If (H`, C) is as in (5.1.2), it is easily checked that item (iii) in (4.2.4) implies that both of

the set inclusion conditions in (4.2.1) are satisfied by setting α = Ω. In other words, if (H`, C) is

as in (5.1.2) then Ω is in A .

This also happens if (H`, C) is as in (5.1.4) instead by exactly the same calculation, which is

clear because if (H`, C) is as in (5.1.4) then CH−1
` and H`C are the same in this case as they are

in when (5.1.2) holds.

Similarly, if (H`, C) is as in (5.1.3) then A is the space of 2× 2 upper-triangular matrices, and

item (iii) in (4.2.4) implies Ω2,1 = 0. In other words, if (H`, C) is as in (5.1.3) then again we get

that Ω is in A .

5.1.2 Symbols corresponding to formulas (5.1.5) through (5.1.8)

In each of these cases (i.e., in (5.1.5) through (5.1.8)), A is spanned by the identity matrix I .

If I is in A0 then items (i) and (ii) of (4.2.4) imply that Ω is in A0, which contradicts Lemma 4.2.2,

so

A0 = 0. (5.1.17)

Proceeding, suppose first that H` and C are as in (5.1.5) and (5.1.6). To treat both cases with

common formulas, for the case where H` and C are as in (5.1.5), we set θ = π
2

so that C is
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described by the same formula as in (5.1.6). Item (iii) in (4.2.4) implies

Ω1,1 = Ω2,2, Ω1,2 = −e−iθΩ2,1, and µ = 2Ω1,1. (5.1.18)

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+CC−

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.1.18) to simplify α, we obtain

α1,1 = eiθ − 4|Ω1,1|2 + (e−iθ − eiθ)|Ω2,1|2. (5.1.19)

Since item (iv) of (4.2.4) gives that α belongs to A0, by (5.1.17), the value in (5.1.19) is equal to

zero, and hence

Ω1,1 = 0 and |Ω2,1|2 =
eiθ

eiθ − e−iθ
. (5.1.20)

Since 0 < θ < π and 0 ≤ |Ω2,1|, (5.1.20) implies that θ = π
2
, and hence the system (4.2.4) is

inconsistent if (H`, C) is as in (5.1.6), which yields the following result.

Lemma 5.1.5. There are no reduced modified CR symbols corresponding to any of the cases in

(5.1.6).

Lemma 5.1.6. There exists exactly one equivalence class of reduced modified symbols g0,red (in the

sense of Definition 5.0.3) corresponding to the case where (H`, C) is as in (5.1.5). This equivalence

class of reduced modified symbols is represented by any one of the symbols described by (5.1.5)

and

Ω = eiθ

 0 i
√

1
2√

1
2

0

 and A0 = 0 for some θ ∈ R. (5.1.21)

Proof. By (5.1.17), (5.1.18), and (5.1.20), if (H`, C,Ω,A0) satisfies (4.2.4) with (H`, C) as in

(5.1.5) then, indeed (5.1.21) holds. Conversely, if (H`, C,Ω,A0) is as in (5.1.5) and (5.1.21) then

it is straightforward to check that the system (4.2.4) is consistent.
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We finish this proof using the same conclusion as in the proof of Lemma 5.1.3. That is, the 1-

parameter subgroup of CSp(g−1) given in (5.1.16) acts transitively on the set of reduced modified

symbols parameterized by θ described by (5.1.5) and (5.1.21). In other words, as θ varies in

(5.1.21) the corresponding reduced modified CR symbols belong to the same equivalence class (in

the sense of Definition 5.0.3).

The flat model corresponding to the class of reduced modified CR symbols of Lemma 5.1.6 is

described in detail in Example 2.7.1.

The following lemmas address the cases in (5.1.7) and (5.1.8).

Lemma 5.1.7. There are no reduced modified CR symbols corresponding to either of the cases

(i.e., ε = 1 and ε = −1) in (5.1.7).

Proof. Item (iii) in (4.2.4) implies

Ω1,1 = Ω2,2, Ω1,2 = −ελΩ2,1, and µ = 2Ω1,1. (5.1.22)

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+ CC −

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.1.22) to simplify α, we obtain

α1,2 = 2ε(λΩ1,1Ω2,1 − Ω1,1Ω2,1) and α2,1 = −2(Ω1,1Ω2,1 − λΩ1,1Ω2,1) (5.1.23)

and

α1,1 = 1− 4|Ω1,1|2 + ε(1− λ2)|Ω2,1|2 and α2,2 = λ2 − 4|Ω1,1|2 − ε(1− λ2)|Ω2,1|2.(5.1.24)

Since item (iv) of (4.2.4) gives that α belongs to A0, by (5.1.17), the values in (5.1.23) and (5.1.24)

are equal to zero. Accordingly,

(λ2 − ε)Ω1,1Ω2,1 =
α1,2 + λα2,1

2
= 0,
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which implies that either Ω1,1 = 0 or Ω2,1 = 0 because λ2 6= 1. If Ω2,1 = 0 then Ω a multiple of

the identity, which implies that Ω ∈ A , contradicting Lemma 4.2.2. Therefore, Ω1,1 = 0. Yet if

Ω1,1 = 0, since α1,1 = α2,2 = 0, the two equations in (5.1.24) respectively imply

1 = −ε(1− λ2)|Ω2,1|2 and λ2 = ε(1− λ2)|Ω2,1|2

which contradicts the fact that λ is real.

Lemma 5.1.8. There exists exactly one equivalence class of reduced modified symbols g0,red (in the

sense of Definition 5.0.3) corresponding to the case where (H`, C) is as in (5.1.8). This equivalence

class of reduced modified symbols is represented by any one of the symbols described by (5.1.8)

and

Ω = eiθ
(

1 1
2

0 0

)
and A0 = 0 for some θ ∈ R. (5.1.25)

Proof. Item (iii) in (4.2.4) implies

Ω1,1 = 2Ω1,2 + Ω2,2, Ω2,1 = 0, and µ = 2 (Ω1,2 + Ω2,2) . (5.1.26)

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+ CC −

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.1.26) to simplify α, we obtain

α1,2 = −2
(
Ω1,2

(
Ω1,2 + Ω2,2

)
+ Ω1,2 (3Ω1,2 + Ω2,2)− 1

)
(5.1.27)

and

α1,1 = 1− 2Ω2,2 (Ω1,2 + Ω2,2)− 2
(
Ω1,2 + Ω2,2

)
(2Ω1,2 + Ω2,2) (5.1.28)

=
(
1− 4 |Ω1,2|2

)
− 2

(
Ω2,2Ω1,2 + Ω2,2Ω1,2

)
− 2 |Ω2,2|2 − 4Ω2,2Ω1,2.

Since item (iv) of (4.2.4) gives that α belongs to A0, by (5.1.17), α = 0. Setting the value in
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(5.1.27) equal to zero is equivalent to

Ω2,2Ω1,2 + Ω2,2Ω1,2 = 1− 4 |Ω1,2|2 . (5.1.29)

Setting α1,1 = 0 and applying (5.1.29) to simplify (5.1.28), we obtain

0 =
(
1− 4 |Ω1,2|2

)
− 2

(
Ω2,2Ω1,2 + Ω2,2Ω1,2

)
− 2 |Ω2,2|2 − 4Ω2,2Ω1,2 (5.1.30)

= −
(
1− 4 |Ω1,2|2

)
− 2 |Ω2,2|2 − 4Ω2,2Ω1,2.

Therefore, Ω2,2Ω1,2 is a real number and (5.1.29) implies

Ω2,2 =
1− 4 |Ω1,2|2

2Ω1,2

. (5.1.31)

Together (5.1.30) and (5.1.31) imply

(
1− 4 |Ω1,2|2

)2

2 |Ω1,2|2
= 2 |Ω2,2|2 = −

(
1− 4 |Ω1,2|2

)
− 4Ω2,2Ω1,2 = −3

(
1− 4 |Ω1,2|2

)
,

which is equivalent to

0 =
(
1− 4 |Ω1,2|2

)2
+ 6

(
1− 4 |Ω1,2|2

)
|Ω1,2|2 = (1− 4 |Ω1,2|2)(2 |Ω1,2|2 + 1). (5.1.32)

By (5.1.31) and (5.1.32),

|Ω1,2|2 =
1

4
and Ω2,2 = 0. (5.1.33)

Therefore, noting (5.1.27) and (5.1.33), if (H`, C,Ω,A0) satisfies (4.2.4) with (H`, C) as in

(5.1.8) then (5.1.25) holds. Conversely, if (H`, C,Ω,A0) is as in (5.1.8) and (5.1.25) then it is

straightforward to check that the system (4.2.4) is consistent.

We finish this proof using the same conclusion as in the proof of Lemma 5.1.3. That is, the 1-
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parameter subgroup of CSp(g−1) given in (5.1.16) acts transitively on the set of reduced modified

symbols parameterized by θ described by (5.1.8) and (5.1.21). In other words, as θ varies in

(5.1.25) the corresponding reduced modified CR symbols belong to the same equivalence class (in

the sense of Definition 5.0.3).

5.2 9-dimensional models with a rank 1 Levi kernel

Here we partially classify the CR symbols exhibited by homogeneous models on 9-dimensional

manifolds with a rank 1 Levi kernel. Specifically, for a CR symbol encoded by the pair (H`, C)

representing the Hermitian form ` and `-self-adjoing antilinear operator A obtained from a CR

structure on a 9-dimensional manifold with a rank 1 Levi kernel, we classify all such symbols that

can exhibited by homogeneous model, with the the additional constraint that linear operator A2

has at most 2 eigenvalues. We

For each CR symbol g0 in this partial classification we also find at least one abstract reduced

modified CR symbol whose corresponding flat model (defined in Section 2.5) has g0 as its CR

symbol. This classification is formally less ambitious than the one carried out in section 5.1 in

the sense that we are not attempting to classify all reduced modified CR symbols here. Accord-

ingly, for simplicity, we will not aim to find abstract reduced modified CR symbols that satisfy the

maximality condition (i.e., condition 3) in Definition 5.0.1. Indeed, imposing this maximality con-

dition is useful primarily for classifying the flat models associated with reduced modified symbols.

For example, the maximality condition insures that the classes of symbols referred to in Theorem

5.1.1 indeed each correspond to a different homogeneous model, whereas an analogous classifica-

tion of abstract symbols satisfying Definition 5.0.1 without the maximality condition would yield

several different equivalence classes of abstract reduced modified CR symbols sharing a common

corresponding flat model.

Our approach will be similar to that in Section 5.1. Specifically, for a given pair (H`, C), if

a CR symbol encoded by the pair (RH`,CC), as described in Remark 2.2.5, is exhibited by a

homogeneous model then there exists Ω and A0 such that (H`, C,Ω,A0) satisfies the system of

relations in (4.2.4) because the reduction procedure described in Section 2.5 can be applied to this
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homogeneous model to obtain an associated constant reduced modified CR symbol encoded in a

tuple of the form (H`, C,Ω,A0) satisfying (4.2.4). In other words, our classification goal in this

section reduces to finding all pairs (H`, C) such that there exists a tuple (H`, C,Ω,A0) satisfying

(4.2.4). We will need the following lemma.

Lemma 5.2.1. If the tuple (H`, C,Ω,A0) satisfies (4.2.4) then so does (H`, C, e
iθΩ,A0) for all

θ ∈ R.

Proof. This is essentially immediate after replacing Ω in (4.2.4) with eiθΩ. Specifically, the pa-

rameter µ in item (iii) and (iv) of (4.2.4) is consequently replaced with eiθµ; so item (iii) clearly

still holds after this replacement, whereas item (iv) remains unchanged after this replacement (and

some obvious simplification). The matrix [α,Ω]−ηαΩ in item (ii) of (4.2.4) is rescaled by eiθ after

this replacement, so item (ii) of (4.2.4) clearly still holds after this replacement. Lastly, item (i) of

(4.2.4) is independent of Ω, so it too is unaffected by this replacement.

Since dim(M) = 9 and rankK = 1, H` and C are 3 × 3 matrices. It is shown in [33]

that all regular symbols are exhibited by homogeneous models, so what remains to for us to do

is find the non-regular symbols exhibited by homogeneous models. The regular symbols for our

present special case were classified in [33], and taking H` and C to be in the canonical form of

Theorem 3.1.2, it follows from Lemma 4.2.2 that the (H`, C) encodes a regular CR symbol if and

only if either C is nilpotent or C is diagonal with exactly one nonzero eigenvale (and possibly an

eigenvalue of zero as well). Accordingly, by Theorem 3.1.2, if (H`, C) encodes a non-regular CR

symbol then we can assume (after possibly rescaling ` and C by different real coefficients) that

they have one of the forms

H` =

 H ′`
0
0

0 0 ε

 and C =

 C ′
0
0

0 0 0

 for some ε = ±1, (5.2.1)

where (H ′`, C
′) is a pair of 2 × 2 matrices having one of the forms appearing for the pair (H`, C)
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in (5.1.1) through (5.1.8),

H` =

 0 1 0
1 0 0
0 0 ε

 and C =

 1 1 0
0 1 0
0 0 λ

 for some ε = ±1
and 0 < λ,

(5.2.2)

H` =

 0 1 0
1 0 0
0 0 ε

 and C =

 0 eiθ 0
1 0 0
0 0 λ

 for some ε = ±1, 0 < λ,
and θ ∈ (0, π],

(5.2.3)

H` =

 1 0 0
0 ε 0
0 0 ε′

 and C =

 1 0 0
0 1 0
0 0 λ

 for some ε, ε′ = ±1
and 1 < λ,

(5.2.4)

H` =

 0 0 1
0 1 0
1 0 0

 and C =

 1 1 0
0 1 1
0 0 1

 , (5.2.5)

and

H` =

 0 1 0
1 0 0
0 0 ε

 and C =

 0 1 0
0 0 0
0 0 1

 for some ε = ±1, (5.2.6)

or, alternatively, C is diagonal and has three distinct eigenvalues.

5.2.1 Symbols corresponding to formula (5.2.1)

In Section 5.1 we classified the maximal reduced modified CR symbols (and therefore all CR

symbols) associated with 7-dimensional homogeneous models. Each of the reduced modified CR

symbols in that classification can be used to construct a 9-dimensional homogeneous model in

accord with the following lemma.

Lemma 5.2.2. If the tuple {H ′`, C ′,Ω′,A ′
0} encodes a reduced modified CR symbol associated with

a 7-dimensional homogeneous model (in the sense of Remark 5.0.2 and the paragraph following
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it) then the tuple {H`, C,Ω,A0} defined by (5.2.1) and

Ω =

 Ω′
0
0

0 0 0

 and A0 =


 α

0
0

0 0 0

∣∣∣∣∣∣ α ∈ A ′
0


encodes a reduced modified CR symbol associated with a 9-dimensional homogeneous model (i.e.,

it satisfies system (4.2.4)).

Proof. This follows almost immediately from the observation that the system (4.2.4) is consistent

if we replace {H`, C,Ω,A0} by {H ′`, C ′,Ω′,A ′
0}.

Lemma 5.2.2 does not necessarily, however, describe all CR symbols of the form in (5.2.1) that

are associated with homogeneous models. Working toward a description of all such symbols, we

prove the following lemma.

Lemma 5.2.3. Each CR symbol encoded by a pair (H`, C) of the form in (5.2.1) where (H ′`, C
′)

has the form of the pair of matrices in (5.1.6) is not associated with a homogeneous model.

Proof. To produce a contradiction, suppose that Ω and A0 are such that (H`, C,Ω,A0) satisfies

system (4.2.4). In this case, the algebra A in (2.4.7) is given by

A =


 a 0 0

0 a 0
0 0 b

∣∣∣∣∣∣ a, b ∈ C

 , (5.2.7)

which can be verified directly from (2.4.7) and is derived explicitly in Appendix A. Let Ω′ denote

the upper left 2 × 2 block of Ω, and let A ′
0 denote the matrix algebra of 2 × 2 matrices spanned

by the identity matrix. Notice that by Lemma 5.1.5, the system in (4.2.4) is not consistent if we

replace (H`, C,Ω,A0) by (H ′`, C
′,Ω′,A ′

0) because, by Lemma 5.1.5, the CR symbol encoded by

(H ′`, C
′) does not correspond to a homogeneous model.

Item (iii) in (4.2.4) implies

Ω1,1 = Ω2,2, Ω1,3 = Ω2,3 = 0, Ω1,2 = −eiθΩ2,1, and µ = 2Ω1,1. (5.2.8)
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It follows that

(Ω3,1,Ω3,2) 6= (0, 0) (5.2.9)

because otherwise every matrix in the system in (4.2.4) is block diagonal, from which our assump-

tion that (H`, C,Ω,A0) satisfies (4.2.4) implies that (4.2.4) is consistent after replacing (H`, C,Ω,A0)

by (H ′`, C
′,Ω′,A ′

0), a contradiction.

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+CC−

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.2.8) to simplify α, we obtain

α1,3 = ε
(
eiθΩ3,1Ω2,1 + Ω3,2 (Ω3,3 − 3Ω1,1)

)
, (5.2.10)

α2,3 = ε
(
−Ω3,2Ω2,1 + Ω3,1 (Ω3,3 − 3Ω1,1)

)
, (5.2.11)

α1,1 = eiθ − 4 |Ω1,1|2 + εΩ3,2Ω3,1, and α2,2 = eiθ − 4 |Ω1,1|2 + εΩ3,1Ω3,2. (5.2.12)

By item (iv) of (4.2.4) and (5.2.7) α1,1 = α2,2, and hence (5.2.12) implies

Ω3,2Ω3,1 = Ω3,1Ω3,2. (5.2.13)

Also by item (iv) of (4.2.4) and (5.2.7) α1,3 = α2,3 = 0, and hence (5.2.10) and (5.2.11) imply

Ω3,1Ω2,1 = −e−iθΩ3,2 (Ω3,3 − 3Ω1,1) and Ω3,2Ω2,1 = Ω3,1 (Ω3,3 − 3Ω1,1) . (5.2.14)

Multiplying terms of the equations in (5.2.14) by either Ω3,2 or Ω3,1 yields

Ω3,1Ω3,2Ω2,1 = −e−iθ |Ω3,2|2 (Ω3,3 − 3Ω1,1) and Ω3,2Ω3,1Ω2,1 = |Ω3,1|2 (Ω3,3 − 3Ω1,1) ,
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and hence, by (5.2.13),

−e−iθ |Ω3,2|2 (Ω3,3 − 3Ω1,1) = |Ω3,1|2 (Ω3,3 − 3Ω1,1) ,

which leaves two possibilities, namely either −e−iθ |Ω3,2|2 = |Ω3,1|2 or

Ω3,3 = 3Ω1,1. (5.2.15)

Note that, since θ ∈
(
0, π

2

)
∪
(
π
2
, π
)
, −e−iθ |Ω3,2|2 = |Ω3,1|2 would imply Ω3,1 = Ω3,2 = 0,

contradicting (5.2.9). Therefore (5.2.17) indeed holds.

By (5.2.9), (5.2.14), and (5.2.17), we get Ω2,1 = 0, so, noting (5.2.8),

Ω1,2 = Ω2,1 = Ω1,3 = Ω2,3 = 0. (5.2.16)

Applying (5.2.17) to simplify α, we get

α1,2 = ε |Ω3,1|2 and α2,1 = ε |Ω3,2|2 . (5.2.17)

Since, by item (iv) in (4.2.4), α ∈ A , (5.2.7) implies α1,2 = α2,1 = 0, and hence (5.2.17) implies

Ω3,1 = Ω3,2 = 0, contradicting (5.2.12).

Corollary 5.2.4. If a CR symbol encoded by a pair (H`, C) of the form in (5.2.1) is associated

with a homogeneous model then either the pair (H ′`, C
′) encodes a CR symbol associated with

some 7-dimensional homogeneous model (and is therefore of the form classified in Section 5.1) or

(H ′`, C
′) has the form of the pair in (5.1.7).

Proof. Suppose that a CR symbol encoded by a pair (H`, C) of the form in (5.2.1) is associated

with a homogeneous model. By Theorem 5.1.1, the pairs of matrices in each formula among

(5.1.1) through (5.1.5) as well as (5.1.8) encode a CR symbol associated with some 7-dimensional

homogeneous model, so, by Lemma (5.2.2), (H ′`, C
′) could be of one of the form in (5.1.1) through
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(5.1.5) as well as (5.1.8). By Lemma 5.2.5, (H ′`, C
′) cannot be of the form in (5.1.6), so the

remaining possibility is that (H ′`, C
′) is of the form in (5.1.7).

5.2.2 Symbols corresponding to formula (5.2.2)

There are exactly two CR symbols encoded by a pair (H`, C) of the form in (5.2.2) that are

associated with a homogeneous model. In particular, the system in (4.2.4) is satisfied by the tuple

(H`, C,Ω,A0) defined by (5.2.2) with λ = 1 and

Ω =

 1
2

1 0
0 −3

2
0

0 0 −1
2

 and A0 =


 0 0 a

0 0 0
0 −εa 0

∣∣∣∣∣∣ a ∈ C

 . (5.2.18)

Note that if (H`, C) is of the form in (5.2.2) with λ = 1 then A0 as defined in (5.2.63) is indeed

a subalgebra of A as is required; specifically, in this case A is the algebra spanned by A0 and

the identity matrix, which can be verified directly from (2.4.7) and is also derived explicitly in

Appendix A.

Hence this tuple (H`, C,Ω,A0) defined by (5.2.2) with λ = 1 and (5.2.18) encodes a reduced

modified CR symbol whose flat model exhibits the CR symbol encoded by (H`, C). There are two

choices for the parameter ε in (5.2.2), so the construction works for each of the two corresponding

CR symbols.

All other CR symbols encoded by a pair (H`, C) of the form in (5.2.2) are not associated with

a homogeneous model, which is the content of the following lemma.

Lemma 5.2.5. Each CR symbol encoded by a pair (H`, C) of the form in (5.2.2) with λ 6= 1 is not

associated with a homogeneous model.

Proof. Let (H`, C) be of the form in (5.2.4) with λ 6= 1, and suppose that Ω and A0 are such that

(H`, C,Ω,A0) satisfies system (4.2.4).

Item (iii) in (4.2.4) implies

Ω2,1 = 0, Ω2,2 = Ω1,1 − 2Ω1,2, Ω1,3 = ελ (Ω3,1 − Ω3,2) , (5.2.19)
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Ω2,3 = −ελΩ3,1, Ω3,3 = Ω1,1 − Ω1,2, and µ = 2 (Ω1,1 − Ω1,2) . (5.2.20)

Since λ 6= 0, the algebra A in (2.4.7) is given by

A = spanC {I} , (5.2.21)

which can be verified directly from (2.4.7) and is also derived explicitly in Appendix A.

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+CC−

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.2.19) and (5.2.20) to simplify α, we obtain

α2,1 = ε
(
1− λ2

)
|Ω3,1|2 . (5.2.22)

By item (iv) is (4.2.4), α ∈ A , and hence, by (5.2.21), α2,1 = 0, which, by (5.2.22), implies

Ω3,1 = 0. (5.2.23)

Applying (5.2.19), (5.2.20), and (5.2.23) to simplify α, we obtain

α1,1 = 1 + 2Ω1,2 (3Ω1,1 − 2Ω1,2)− 2Ω1,1 (2Ω1,1 − Ω1,2) , (5.2.24)

α2,2 = 1 + 2Ω1,2 (Ω1,1 − 2Ω1,2)− 2Ω1,1 (2Ω1,1 − 3Ω1,2) , (5.2.25)

and

α3,3 = λ2 + 4Ω1,2 (Ω1,1 − Ω1,2)− 4Ω1,1 (Ω1,1 − Ω1,2) . (5.2.26)

Since α ∈ A , (5.2.21) implies that α1,1 = α2,2 = α3,3. Accordingly, applying (5.2.24), (5.2.25),
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and (5.2.26) yields

0 = α1,1 − α2,2 = 4
(
Ω1,2Ω1,1 − Ω1,1Ω1,2

)
(5.2.27)

and

0 = α1,1 − α3,3 = 1− λ2 + 2
(
Ω1,2Ω1,1 − Ω1,1Ω1,2

)
. (5.2.28)

Yet, this is a contradiction because together (5.2.27) and (5.2.28) imply λ2 = 1, whereas this

lemmas hypothesis supposes that λ is a positive number not equal to 1.

5.2.3 Symbols corresponding to formula (5.2.3)

The CR symbol encoded by the pair (H`, C) of the form in (5.2.3) with θ = π and λ =
√

3 is

associated with a homogeneous model. In particular, the system in (4.2.4) is satisfied by the tuple

(H`, C,Ω,A0) defined by (5.2.5) and

Ω =
1√
3

 1
2
−ε −

√
3eiφ

−ε 1
2

√
3eiφ

εeiφ eiφ 1
2

 and A0 = 0 for some φ ∈ R, (5.2.29)

where ε is the parameter defining H` in (5.2.3). Hence this tuple (H`, C,Ω,A0) defined by (5.2.3)

and (5.2.29) encodes a reduced modified CR symbol whose flat model exhibits the CR symbol

encoded by (H`, C) as in (5.2.3) with θ = π, λ =
√

3, and ε = 1.

We will show that there are no other CR symbols encoded by a pair (H`, C) of the form in

(5.2.3) associated with homogeneous models. For this, let (H`, C) be of the form in (5.2.3), and

suppose that Ω and A0 are such that (H`, C,Ω,A0) satisfies system (4.2.4).

Item (iii) in (4.2.4) implies

Ω1,1 = Ω2,2 = Ω3,3, Ω1,2 = −e−iθΩ2,1, Ω1,3 = −ελΩ3,1, and Ω2,3 = −eiθελΩ3,2
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that is

Ω =

 Ω1,1 −e−iθΩ2,1 −ελΩ3,1

Ω2,1 Ω1,1 −eiθελΩ3,2

Ω3,1 Ω3,2 Ω1,1

 . (5.2.30)

Applying (5.2.30) to simplify item (iii) in (4.2.4) yields

µ = 2Ω1,1. (5.2.31)

Since λ 6= 0, the algebra A in (2.4.7) is spanned by I , which can be verified directly from

(2.4.7) and is also derived explicitly in Appendix A. If I is in A0 then items (i) and (ii) of (4.2.4)

imply that Ω is in A0, which contradicts Lemma 4.2.2, so

A0 = 0. (5.2.32)

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+CC−

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.2.30) and (5.2.31) to simplify α, we obtain

trace(α) = eiθ + e−iθ + λ2 − 12 |Ω1,1|2 . (5.2.33)

By item (iv) of (4.2.4), α ∈ A0, and hence, by (5.2.32), α = 0. Setting the value in (5.2.33) equal

to zero yields

|Ω1,1|2 =
eiθ + e−iθ + λ2

12
. (5.2.34)

and

λ2 ≥ −eiθ − e−iθ = −2 cos(θ). (5.2.35)

By Lemma 5.2.1, we can assume without loss of generality that 0 ≤ Ω1,1. With this assumption,
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(5.2.34) implies

Ω1,1 =

√
eiθ + e−iθ + λ2

2
√

3
. (5.2.36)

Now using (5.2.30), (5.2.31), and (5.2.36) to simplify α, we obtain

α1,1 = −1

3

(
e−iθ − 2eiθ + λ2 + 3(eiθ − e−iθ) |Ω2,1|2 − 3ε

(
1− e−iθλ2

)
Ω3,2Ω3,1

)
. (5.2.37)

Since α1,1 = 0 and 1− e−iθλ2 6= 0, (5.2.37) implies

Ω3,2Ω3,1 = ε
e−iθ − 2eiθ + λ2 + 3(eiθ − e−iθ) |Ω2,1|2

−3 (1− e−iθλ2)
(5.2.38)

Accordingly, there are two possibilities; either

Ω3,2Ω3,1 = 0

or

Ω3,1 = ε
e−iθ − 2eiθ + λ2 + 3(eiθ − e−iθ) |Ω2,1|2

−3 (1− e−iθλ2) Ω3,2

.

Lemma 5.2.6. Each CR symbol encoded by a pair (H`, C) of the form in (5.2.3) with θ = π and

λ 6=
√

3 is not associated with a homogeneous model.

Proof. Suppose that Ω and A0 are such that (H`, C,Ω,A0) satisfies system (4.2.4) with (H`, C) of

the form in (5.2.3) with θ = π and λ 6=
√

3. Applying θ = π to simplify (5.2.38), we obtain

Ω3,1 = ε
(
3Ω3,2

)−1
. (5.2.39)
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With θ = π, applying (5.2.30), (5.2.31), (5.2.36), and (5.2.39) to simplify α, we obtain

α1,2 = −ε λ2

9 |Ω3,2|2
+ ε |Ω3,2|2 −

√
λ2 − 2

(
Ω2,1 + Ω2,1

)
√

3
(5.2.40)

and

α2,1 = ε
1

9 |Ω3,2|2
− ελ2 |Ω3,2|2 −

√
λ2 − 2

(
Ω2,1 + Ω2,1

)
√

3
. (5.2.41)

Since α is in A0 (and is therefore zero, by (5.2.32)), (5.2.40) and (5.2.41), we have

0 = α1,2 − α2,1 = ε
(1 + λ2)(9 |Ω3,2|4 − 1)

9 |Ω3,2|2
,

and hence |Ω3,2| = 1√
3
, or equivalently,

Ω3,2 =
1√
3
eiφ for some φ ∈ R. (5.2.42)

Applying (5.2.42) to simplify (5.2.41) and using α1,2 = 0, we get

0 = α1,2 = ε
1

3

(
1− λ2 − ε2

√
3
√
λ2 − 2

(
Ω2,1 + Ω2,1

))
,

which implies

Ω2,1 = ε
1− λ2

2
√

3
√
λ2 − 2

+ i=(Ω2,1), (5.2.43)

where =(Ω2,1) denotes the imaginary part of Ω2,1.

Now applying (5.2.42) and (5.2.43) in addition to (5.2.30), (5.2.31), (5.2.36), and (5.2.39) with

θ = π, to simplify α, we obtain

α1,3 =
e−iφ

(
3− λ2 − ε2i

√
3
√
λ2 − 2=(Ω2,1)

)
− ελeiφ

(
3− λ2 + ε2i

√
3
√
λ2 − 2=(Ω2,1)

)
6ε
√
λ2 − 2

.
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Since α1,3 = 0,

e−iφ
(

3− λ2 − ε2i
√

3
√
λ2 − 2=(Ω2,1)

)
= ελeiφ

(
3− λ2 + ε2i

√
3
√
λ2 − 2=(Ω2,1)

)
.(5.2.44)

By comparing the norms of the values on each side of (5.2.44) we see that if λ 6= 1 then each side

of (5.2.44) must be zero. Accordingly, by (5.2.44), either λ = 1 or

3− λ2 − ε2i
√

3
√
λ2 − 2=(Ω2,1), (5.2.45)

Yet, by (5.2.35) with θ = π, λ >
√

2, so (5.2.46) holds, which is equivalent to

λ =
√

3 and =(Ω2,1) = 0. (5.2.46)

This completes the proof of the lemma.

5.2.4 Symbols corresponding to formula (5.2.4)

Lemma 5.2.7. There is no CR symbol encoded by a pair (H`, C) of the form in (5.2.4) associated

with a homogeneous model.

Proof. Let (H`, C) be of the form in (5.2.4), and suppose that Ω and A0 are such that (H`, C,Ω,A0)

satisfies system (4.2.4).

Item (iii) in (4.2.4) implies

Ω1,1 = Ω2,2 = Ω3,3, Ω1,2 = −εΩ2,1, Ω1,3 = −ε′λΩ3,1, and Ω2,3 = −εε′λΩ3,2

that is

Ω =

 Ω1,1 −εΩ2,1 −ε′λΩ3,1

Ω2,1 Ω1,1 −εε′λΩ3,2

Ω3,1 Ω3,2 Ω1,1

 , (5.2.47)
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and item (iii) in (4.2.4) yields

µ = 2Ω1,1. (5.2.48)

The algebra A in (2.4.7) is given by

A =


 a b 0
−εb a 0

0 0 a

∣∣∣∣∣∣ a ∈ C

 (5.2.49)

which can be verified directly from (2.4.7) and is also derived explicitly in Appendix A.

Labeling the matrix
[
H−1
` ΩTH`,Ω

]
+CC−

(
µΩ + µH−1

` ΩTH`

)
in item (iv) of (4.2.4) α and

applying (5.2.47) and (5.2.48) to simplify α, we obtain

α1,1 = 1− 4 |Ω1,1|2 + ε′
(
1− λ2

)
|Ω3,1|2 , (5.2.50)

α2,2 = 1− 4 |Ω1,1|2 + εε′
(
1− λ2

)
|Ω3,2|2 , (5.2.51)

α3,3 = λ2 − 4 |Ω1,1|2 − ε′
(
1− λ2

)
|Ω3,1|2 − εε′

(
1− λ2

)
|Ω3,2|2 ,

α1,2 = α2,1 = −2εΩ2,1Ω1,1 + 2εΩ1,1Ω2,1 − ε′λ2Ω3,2Ω3,1 + ε′Ω3,1Ω3,2,

and

α2,1 = 2Ω2,1Ω1,1 − 2Ω1,1Ω2,1 + εε′Ω3,2Ω3,1 − εε′λ2Ω3,1Ω3,2. (5.2.52)

Since, by item (iv) in (4.2.4), α ∈ A , α1,1 = α2,2 = α3,3, and hence (5.2.50), (5.2.51), and ch3
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9d case f item 4 d imply

0 = ε′
α2,2 − α1,1

(λ2 − 1)
= ε |Ω3,2|2 − |Ω3,1|2 =

3 |Ω3,1|2 + ε′

2
− ε′α3,3 − α2,2

2(λ2 − 1)
=

3 |Ω3,1|2 + ε′

2
(5.2.53)

and

0 = ε′
α2,2 − α1,1

(λ2 − 1)
= ε |Ω3,2|2 − |Ω3,1|2 = ε′

α3,3 − α2,2

2(λ2 − 1)
− ε3 |Ω3,2|2 + ε′

2
(5.2.54)

= −ε3 |Ω3,2|2 + ε′

2
.

By (5.2.53),

ε′ = −1 and |Ω3,1|2 =
1

3
(5.2.55)

which together with (5.2.54) implies that

ε = 1 and |Ω3,2|2 =
1

3
. (5.2.56)

Note that α1,2 = −εα2,1, by (5.2.49), because α ∈ A , and hence, by (5.2.52), (5.2.52), (5.2.55),

and (5.2.56),

0 =
α1,2 + α2,1

λ2 − 1
= Ω3,2Ω3,1 + Ω3,1Ω3,2,

which together with (5.2.55) and (5.2.56) implies

Ω3,2 = ±iΩ3,1. (5.2.57)

By Lemma 5.2.1, we can assume without loss of generality that Ω1,1 is real. Accordingly,
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applying (5.2.47), (5.2.48), (5.2.55), (5.2.56), and (5.2.57) to simplify α, we obtain

α1,3 = 2Ω1,1

(
Ω3,1 − λΩ3,1

)
±
(
iΩ3,1Ω2,1 − λiΩ2,1Ω3,1

)
, (5.2.58)

so, since (5.2.49) implies that α3,1 = 0, by (5.2.59), we have

2Ω1,1Ω3,1 ± iΩ3,1Ω2,1 = λ
(

2Ω1,1Ω3,1 ± iΩ3,1Ω2,1

)

because Ω1,1 is real. Since λ > 1, it follows that

2Ω1,1Ω3,1 ± iΩ3,1Ω2,1 = 0,

which together with (5.2.55) yields

Ω1,2 = ±2iΩ1,1. (5.2.59)

Finally, applying (5.2.47), (5.2.48), (5.2.55), (5.2.56), (5.2.57), and ch3 9d case f omega sim-

plified k with the constraint that Ω1,1 is real to simplify α, we obtain

α =
1

3

 2 + λ2 − 12Ω2
1,1 −i(2 + λ2 − 24Ω2

1,1) 0
i(2 + λ2 − 24Ω2

1,1) 2 + λ2 − 12Ω2
1,1 0

0 0 2 + λ2 − 12Ω2
1,1

 (5.2.60)

and

Ω =
1

3

 Ω1,1 − (±2iΩ1,1) λΩ3,1

±2iΩ1,1 Ω1,1 ±iλΩ3,1

Ω3,1 ±iΩ3,1 Ω1,1

 (5.2.61)

where the ± signs are all consistent with the sign in (5.2.57). Using (5.2.60) to solve for the

coefficient ηα in item (i) of (4.2.4) we get ηα = 2
3

(
2 + λ2 − 12Ω2

1,1

)
. Accordingly, using (5.2.60)

and (5.2.61) to calculate [α,Ω] − ηαΩ, we obtain a contradiction directly; specifically, the (1, 3)

entry in [α,Ω] − ηαΩ turns out to equal −1
3
λ(3 + λ2)Ω3,1, which is nonzero by (5.2.55), and yet
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(5.2.49) and item (ii) of (4.2.4) imply that the (1, 3) entry in [α,Ω]− ηαΩ is zero.

5.2.5 Symbols corresponding to formulas (5.2.5) and (5.2.6)

The CR symbol encoded by the pair (H`, C) of the form in (5.2.5) is associated with a homo-

geneous model. Indeed, the system in (4.2.4) is satisfied by the tuple (H`, C,Ω,A0) defined by

(5.2.5) and

Ω =

 −3
2
−1 0

0 −1
2

0
0 0 1

2

 and A0 = 0. (5.2.62)

Each CR symbol encoded by the pair (H`, C) of the form in (5.2.6) – of which there are

two, distinguished by the parameter ε in (5.2.6) – is associated with a homogeneous model. For

example, the system in (4.2.4) is satisfied by the tuple (H`, C,Ω,A0) defined by (5.2.6) and

Ω =

 −3
2
−1 0

0 −1
2

0
0 0 1

2

 and A0 =


 0 a 0

0 0 0
0 0 0

∣∣∣∣∣∣ a ∈ C

 . (5.2.63)

Note that if (H`, C) is of the form in (5.2.6) then A0 as defined in (5.2.63) is indeed a subalgebra of

A as is required; specifically, in this case A is the algebra spanned by A0 and the identity matrix,

which can be verified directly from (2.4.7) and is also derived explicitly in Appendix A.

Hence this tuple (H`, C,Ω,A0) defined by either (5.2.5) and (5.2.62) or (5.2.6) and (5.2.63)

encodes a reduced modified CR symbol whose flat model exhibits the CR symbol encoded by

(H`, C).
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6. SUMMARY AND DISCUSSION

This work is inspired by the antecedent theory developed for CR geometry by Curtis Porter

and Igor Zelenko in [33] wherein they define and study the local invariants of 2-nondegenerate,

hypersurface-type CR structures encoded in their corresponding CR symbols. In particular they

develop a construction of canonical absolute parallelisms for the structures whose Levi kernels

have constant rank and whose CR symbols are regular, solving the local equivalence problem for

maximally symmetric CR manifolds whose CR symbols are regular, and furthermore obtaining

sharp upper bounds for the dimension of these structures’ symmetry groups expressed in terms

of their underlying manifolds’ dimension. A natural question, and starting point for this disser-

tation, concerns the extent to which these results be extended by relaxing the assumption that the

structures’ CR symbols are regular.

To treat 2-nondengenerate structures without imposing the regularity assumption on their CR

symbols we introduce (in Section 2.1) and study a correspondence between these CR structures and

the geometry of their associated dynamical Legendrian contact structures. The latter geometries

are naturally amenable to Tanaka prolongation and the general theory developed by Noboru Tanaka

for analysis of filtered structures, whereas this general theory is not straightforwardly applicable to

the analysis of 2-nondegenerate structures. A broad class of CR structures that we call recoverable

are uniquely determined by their associated dynamical Legendrian contact structure, and our study

of dynamical Legendrian contact structures directly transmutes into analysis of these recoverable

CR structures’ geometry. Necessary and sufficient conditions for a CR structure to be recoverable

are given in Propositions 2.1.6 and 2.2.8.

The fundamental theory developed in Chapter 2, essential for the conclusions in Chapters 4 and

5, is a construction of canonical absolute parallelisms for 2-nondengenerate, hypersurface-type CR

structures whose Levi kernel has constant rank (Theorems 2.3.5 and 2.5.2). This construction sup-

plies effective machinery for the study of recoverable CR structures, solving the local equivalence

problem for these structures by reducing it to the local equivalence problem for {e}-structures.
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From this construction we also obtain bounds for the dimension of these structures’ symmetry

groups and show that structures that attain these bounds are locally unique (Theorem 2.5.2).

Along with this construction, we introduce modified CR symbols and reduced modified CR

symbols, which are subspaces of a certain Lie algebra encoding more local invariants than their an-

tecedent CR symbols encode. We show (in Sections 2.4 and 2.5) that homogeneous 2-nondegenerate,

hypersurface-type CR structures admit reduced modified CR symbols that have the structure of a

Lie algebra. This is a strong algebraic constraint on the local invariants of these homogeneous

structures, which we use to show that – excluding a few exceptional parameter settings for the

dimension of the CR manifold and the rank of its Levi kernel – generic CR symbols are not found

in homogeneous structures. Specifically, we show that, for any fixed rank r > 1, in the set of all

CR symbols associated with 2-nondegenerate, hypersurface-type CR manifolds of odd dimension

greater than 4r + 1 with a rank r Levi kernel, the CR symbols not associated with any homoge-

neous model are generic, and, for r = 1, the same result holds if the CR structure is pseudoconvex.

Furthermore, for r = 1, the analysis in Chapter 5 together with the general arguments in Chapter

2 establish this generic nonexistence result without the pseudoconvexity assumption for manifolds

of dimension at most 9 (Remark 2.6.6). Later chapters (Chapters 3, 4, and 5) are geared toward

deeper analysis of the 2-nondegenerate structures whose Levi kernels have rank 1.

In Chapter 3 we classify the CR symbols of 2-nondegenerate structures whose Levi kernel has

rank 1 (Theorem 3.1.2). This classification is equivalent (see Remark 2.2.5) to the linear algebra

problem of obtaining a canonical form for pairs (`, A) consisting of a Hermitian form ` and an

`-self-adjoint antilinear operator A. It is also equivalent to obtaining canonical forms for pairs

consisting of a nondegenerate Hermitian form and a symmetric bilinear form. It was somewhat

surprising that these pairs were not previously classified given the fundamental role that Hermitian

and bilinear forms perform in so many areas of linear algebra and theoretical physics and the

extensive lineage of similar classifications [1, 4, 16, 15, 19, 20, 21, 22, 23, 25, 44, 45]. In any case,

the canonical forms obtained in Theorem 3.1.2 complement a large body of literature on canonical

forms in linear algebra.
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In Chapter 4 we obtain a sharp upper bound for the dimensions of the symmetry groups of

homogeneous 2-nondegenerate, hypersurface-type CR manifolds whose Levi kernel has rank 1

expressed in terms of the manifolds’ dimensions, namely the dimension of the symmetry group of

such a CR manifold M does not exceed 1
4
(dimM − 1)2 + 7 (Theorem 4.1.2). The technical work

in Chapter 4 is actually a calculation of this upper bound for the structures whose CR symbols are

non-regular, and the general upper bound follows by combining this upper bound for non-regular

CR symbols with the upper bound for regular CR symbols previously obtained in [33]. It turns

out that the maximally symmetric models have regular CR symbols, and hence the upper bound

obtained in [33] for regular CR symbols is also the general upper bound.

In the very recent paper [3] it was shown that for dimM = 7, without the homogeneity as-

sumption, the upper bound for the dimension of the group of symmetries of 2-nondegenerate,

hypersurface-type CR structures with a rank 1 Levi kernel is 17. The sharp bound (4.0.1) for the

homogeneous case is 16 and an example of the structure from the considered class with a 17-

dimensional symmetry group is unknown. The result of Chapter 4 (communicated in a private

correspondence) was in fact used in [3] to reduce the bound from 18, obtained initially by the

methods of normal forms, to 17 (see Proposition 16 there).

Within the symmetry group of each homogeneous 2-nondegenerate, hypersurface-type CR

manifold whose Levi kernel has rank 1, the isotropy subgoups’ Lie algebras each contain a special

subalgebra tangent to the subgroup of symmetries determined by their first weighted jet (i.e., a

subalgebra of the algebra of infinitesimal symmetries whose constituent vector fields are all zero

at a given point and are all fully determined by their Lie derivatives with vector fields contained

in the distribution H ⊕ H ∩ TM , where H denotes the CR structure on M ). In Appendix A, we

derive an explicit formula for a matrix representation of this special subalgebra, and this formula is

essential for the analysis carried out in Chapter 4. Prior to obtaining the general formulas derived

in Appendix A, we developed an alternative method for calculating the dimension of this special

subalgebra, which is recorded in Appendix B. Specifically, Appendix B outlines a way to apply

techniques of [15] to calculate the dimension of the transformation group preserving two sym-
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metric forms of which at least one is nondegenerate. The result of Appendix B is not necessary

for obtaining the other results in this dissertation because, wherever it would otherwise be applied

the results of Appendix A suffice. Appendix B is included rather solely because it is a result of

independent interest generalizing a formula obtained in [35] and complementing the calculations

in Appendix A.

In Chapter 5, we classify the CR symbols associated with homogeneous CR models on man-

ifolds of dimension 7, of which there are eight altogether, and partially classify these symbols

for structures on manifolds of dimension 9 with a rank 1 Levi kernel. Moreover, we classify the

7-dimension flat models associated with given reduced modified CR symbols, of which there are

nine altogether. The fact that all regular symbols correspond to homogeneous models was shown

in [33], wherein they show that each regular symbol is associated with a (locally) unique maxi-

mally symmetric homogeneous model. The classification in Chapter 5 extends these results in low

dimensions by finding homogeneous models associated with regular symbols that have smaller

dimensional symmetry groups than the models found in [33] and by finding homogeneous models

associated with non-regular symbols as well as. An early conjecture that all homogeneous models

have a regular symbol was in fact the original motivation for the work in this dissertation. In Chap-

ter 5, we identify two 7-dimensional homogeneous models and nine 9-dimensional homogenous

models with non-regular CR symbols.
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APPENDIX A

ON THE LIE ALGEBRA OF THE ISOTROPY SUBGROUP OF SYMMETRIES

DETERMINED BY THEIR FIRST WEIGHTED JET

In this appendix we give a general formula for matrices in the algebra A defined in (4.2.1)

together with an outline for how the formula can be verified. Naturally, it is easier to verify the

formula than to derive it, and, since the formula is ancillary to this paper’s topic, we omit the

analysis used to derive it. The formula depends on the matrices H` and C representing the pair

(`, A).

In the sequel we assume that H` and C are in the canonical form prescribed by Theorem 3.1.2

We will also use the notation of Section 4.2, and, in particular, we let λ1, . . . , λγ , m1, . . . ,mγ ,

ε1, . . . , εγ , Mλi,mi and Nλi,mi be as in Theorem 3.1.2. Recall that, in particular, this means the real

and imaginary parts of each λi are both nonnegative.

Define the bi-orthogonal subalgebra of A to be

A o := {B ∈ A |BCH−1
` + CH−1

` BT = BTH`C +H`CB = 0},

where this name is reflecting the observation that A o is analogous to an intersection of two orthog-

onal algebras. In this appendix, we first obtain a formula describing the elements in A o and then

obtain a formula for a subspace A s ⊂ A complimentary to A o, that is, such that

A = A o ⊕A s. (A.0.1)

Such a space A s is spanned by elements that we call conformal scaling elements of A , referring

to the observation that these are analogous to non-orthogonal elements in an intersection of two

conformally orthogonal algebras.

To begin, let B be an (n− 1)× (n− 1) matrix in A o and partition B into blocks {B(i,j)}γi,j=1
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where the number of rows in B(i,j) is the same as in the matrix Mλi,mi and the number of columns

inB(i,j) is the same as in the matrixMλj ,mj . Similarly, we partitionH`CB andBCH−1
` into blocks

{(H`CB)(i,j)}γi,j=1 and {(BCH−1
` )(i,j)}γi,j=1 whose sizes are the same as in the partition of B.

Let us now derive a relationship between the blocks B(i,j) and B(j,i). To simplify formulas, we

assume εi = εj . To treat the more general case where possibly εi 6= εj , one can simply replace

Nλi,mi (or Nλj ,mj ) with εiNλi,mi (or εjNλj ,mj ) in all of the subsequent formulas.

We have

(BCH−1
` )(i,j) = B(i,j)Mλj ,mjNλj ,mj and (H`CB)(i,j) = Nλi,miMλi,miB(i,j),

so, since B ∈ A ,

(Mλi,miNλi,mi)
T BT

(j,i) = −B(i,j)Mλj ,mjNλj ,mj

and

BT
(j,i)

(
Nλj ,mjMλj ,mj

)T
= −Nλi,miMλi,miB(i,j).

SinceA is `-self-adjoint, each matrixNλk,mkMλk,mk andMλk,mkNλk,mk is symmetric (one can also

verify this by directly using the canonical form), and hence

Mλi,miNλi,miB
T
(j,i) = −B(i,j)Mλj ,mjNλj ,mj , (A.0.2)

and

BT
(j,i)Nλj ,mjMλj ,mj = −Nλi,miMλi,miB(i,j). (A.0.3)

Multiplying both sides of (A.0.3) by Mλj ,mjNλj ,mj from the right and then applying (A.0.2) yields

BT
(j,i)Nλj ,mjMλj ,mjMλj ,mjNλj ,mj = −Nλi,miMλi,miB(i,j)Mλj ,mjNλj ,mj (A.0.4)

= Nλi,miMλi,miMλi,miNλi,miB
T
(j,i).
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Multiplying (A.0.4) by Nλi,mi from the left and by Nλj ,mi from the right yields

(
Nλi,miB

T
(i,j)Nλj ,mj

)
Mλj ,mjMλj ,mj = Mλi,miMλi,mi

(
Nλi,miB

T
(i,j)Nλj ,mj

)
. (A.0.5)

Notice that (A.0.2) is also equivalent to

Nλi,miMλi,mi

(
Nλj ,mjB(j,i)Nλi,mi

)T
= −

(
Nλi,miB(i,j)Nλj ,mj

)
Nλj ,mjMλj ,mj . (A.0.6)

Equation (A.0.5) gives us all restrictions on the general form of B(i,j) that are not coming from

the relationship between B(i,j) and other blocks in the matrix B. Equation (A.0.6), on the other

hand, gives us the restrictions on the general form of B(i,j) coming from its relationship with B(j,i).

Moreover, if (A.0.5) and (A.0.6) are satisfied for i and j then B is in A o because (A.0.2) and

(A.0.3) hold. In other words, our present goal is to solve the system of matrix equations in (A.0.5)

and (A.0.6), and whenever (λi, λj) 6= (0, 0), this exercise is equivalent to first solving the matrix

equation

XMλj ,mjMλj ,mj = Mλi,miMλi,miX, (A.0.7)

and then, for the case where i = j, solving the system of equations consisting of (A.0.7) and

Nλi,miMλi,miX
T = −XNλi,miMλi,mi .

The case where λi = λj = 0 requires special treatment because, in this case, contrary to the case

where (λi, λj) 6= (0, 0), even if i 6= j solutions for B(i,j) in (A.0.5) need not satisfy (A.0.6) for any

matrix B(j,i).

Equation (A.0.7) is of the form analyzed in [15, Chapter 8]. In fact, an explicit solution to

(A.0.7) is given in [15, Chapter 8], but the solution is expressed in terms of a basis with respect

to which Mλi,miMλi,mi and Mλj ,mjMλj ,mj have their Jordan normal forms. On the other hand,
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the transition matrix from the initially considered basis to a basis of the Jordan normal form is

block-diagonal with the blocks corresponding to the Jordan blocks. Hence, the following lemma

can be obtained from the solution in [15, Chapter 8].

Lemma A.0.1. If λi 6= λj then B(i,j) = 0.

Proof. Since the real and imaginary parts of λi and λj are all nonnegative, if λi 6= λj then the

eigenvalues of Mλi,miMλi,mi all differ from the eigenvalues of Mλj ,mjMλj ,mj . Accordingly, by

[15, Chapter 8, Theorem 1 and Equation (11)], the matrix X in (A.0.7) is zero.

Given Lemma A.0.1, all that remains is to find the general formula for B(i,j) when λi = λj . We

will say that a Toplitz p×q matrix is an upper-triangular Toeplitz matrix, if the only nonzero entries

appear on or above the main diagonal in their right-most p × p block if p ≤ q, and the top-most

q× q block if p ≥ q (in the terminology of [15, Chapter 8] they are called regular upper-triangular,

but we avoid this terminology because the term “regular" is already assigned in the present paper

to another concept).

Lemma A.0.2. Suppose λi = λj and mi ≤ mj . The dimension of the space of solutions of (A.0.7)

is equal to

1. mi if λi > 0;

2. 2mi if λ2
i 6∈ R;

3. 4mi if λ2
i < 0.

Proof. We use [15, Chapter 8, Theorem 1] again for each of the cases.

Suppose first that λi > 0. If λ > 0 thenMλ,mMλ,m is similar to the Jordan matrix Jλ2,m. Let Ui

and Uj be invertible matrices such that UjMλj ,mjMλj ,mjU
−1
j = Jλ2j ,mj and UiMλi,miMλi,miU

−1
i =

Jλ2i ,mi . For a matrix X satisfying (A.0.7), set X̃ = U−1
j XUi so that, by (A.0.7),

X̃Jλ2j ,mj = Jλ2i ,miX̃. (A.0.8)
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It is shown in [15, Chapter 8, Theorem 1] that the space of solutions of (A.0.8) consists of upper-

triangular Toeplitz matrices. Therefore, the space of solutions of (A.0.8) has dimension mi, which

shows item (1) because X 7→ U−1
j XUi gives an isomorphism between the space of solutions of

(A.0.8) and the space of solutions of (A.0.7).

Let us now suppose λ2
i 6∈ R or λ2

i < 0. If λ2 6∈ R or λ2 < 0 then

Mλ,mMλ,m = Jλ2,m ⊕ Jλ2,m. (A.0.9)

For a matrix X satisfying (A.0.7), consider the 2 × 2 block matrix partition (X(r,s))r,s∈{1,2} of

X whose blocks are all mi × mj matrices. It is shown in [15, Chapter 8, Theorem 1] that the

space of solutions of (A.0.7) with Mλi,miMλi,mi and Mλj ,mjMλj ,mj of the form in (A.0.9) consists

of matrices (X(r,s))r,s∈{1,2} for which each X(r,s) is an upper-triangular Toeplitz matrix, where,

moreover, if λ2
i 6= λi

2
then X(1,2) = X(2,1) = 0. Accordingly, if λ2

i 6∈ R (respectively λ2
i < 0) then

solutions to (A.0.7) are determined by two (respectively four) upper-triangular Toeplitz mi ×mi

matrices. Items (2) and (3) follow because each upper-triangular Toeplitz mi ×mi is determined

by mi variables.

Corollary A.0.3. If mi ≤ mj , λi = λj = λ and λ 6= 0 then the matrices B(i,j) and B(j,i) are

described by one of three formulas, where the correct formula depends on λ.

1. If λ > 0 then B(i,j) and B(j,i) respectively equal



mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
0 · · · 0

mi−1∑
k=0

bkT
k
mi

 and − εiεj


mi−1∑
k=0

bkT
k
mi

0 · · · 0
...

...
0 · · · 0


mj − mi

rows,

(A.0.10)

for some coefficients {bk}.
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2. If λ2 6∈ R then

B(i,j) =



mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
0 · · · 0

mi−1∑
k=0

akTmi

0

mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
0 · · · 0

0

mi∑
k=0

bkTmi

 , (A.0.11)

and

B(j,i) = −εiεj



mi∑
k=0

akTmi 0

0 · · · · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · · · · 0

0
mi∑
k=0

bkTmi

0 · · · · · · · · · · · · · · · 0
...

...



mj −mi

rows

}
mj −mi

rows,

(A.0.12)

for some coefficients {ak, bk}.

3. If λ2 < 0 then

B(i,j) =



mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
0 · · · 0

mi−1∑
k=0

ckT
k
mi

mi−1∑
k=0

(∑k
r=0 er

)
T kmi

mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
0 · · · 0

mi∑
k=0

dkT
k
mi

mi∑
k=0

fkT
k
mi

 , (A.0.13)
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and

B(j,i) = εiεj



−
mi∑
k=0

ckT
k
mi

mi∑
k=0

ekT
k
mi

0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0

mi∑
k=0

(∑k
r=0 dr

)
T kmi −

mi∑
k=0

fkT
k
mi

0 · · · · · · · · · · · · 0
...

...



mj −mi

rows

}
mj −mi

rows,

(A.0.14)

for some coefficients {ak, bk, ck, dk, ek, fk}.

Proof. Using the formula for B(i,j) given in (A.0.10), (A.0.11), and (A.0.13), it is straightforward

to check that (A.0.7) holds with X = B(i,j). Moreover, this formula for B(i,j) is the most general

formula with this property because, by Lemma A.0.2, it has the maximum number of parameters

possible. Lastly, the formula forB(j,i) given in (A.0.10), (A.0.12), and (A.0.14) is obtained through

another straightforward calculation by applying (A.0.6) directly to the formula for B(i,j).

To simplify notation in the following lemma, for an integer q, we let [q]2 denote the residue of

q modulo 2, that is, [q]2 = 0 if q is even and [q]2 = 1 if q is odd.

Lemma A.0.4. If mi ≤ mj and λi = λj = 0 then

B(i,j) =



mj −mi
columns︷ ︸︸ ︷

0 · · · 0
...

...
...

...
...

...
0 · · · 0

c1
1 c1

2 · · · · · · c1
mi

0 c0
1 c0

2 · · · · · · c0
mi−1

0 0 c1
1 c1

2 · · · c1
mi−2

... . . . c0
1 · · · c0

mi−3
... . . .

. . .
...

0 · · · · · · 0 c
[mi]2
1


, (A.0.15)
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and

B(j,i) = −εiεj



c
[mi+1]2
1 c

[mi+2]2
2 · · · · · · c

[2mi]2
mi

0 c
[mi+2]2
1 c

[mi+3]2
2 · · · · · · c

[2mi]2
mi−1

0 0 c
[mi+3]2
1 c

[mi+4]2
2 · · · c

[2mi]2
mi−2

... . . . c
[mi+4]2
1 · · · c

[2mi]2
mi−3

... . . . . . .
...

0 · · · · · · · · · 0 c
[2mi]2
1

0 · · · · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · · · · 0

mj −mi rows


(A.0.16)

for some coefficients {ak, bk, c1
k, c

0
k}.

Proof. Let us refer to the main diagonal of the upper right mi×mi block in each matrix B(i,j) and

B(j,i) as that matrix’s reference diagonal.

Notice that equations (A.0.2) and (A.0.3) hold in the present context with λi = λj = 0 and

εi = εj . Let us assume εi = εj , noting that for the other case, where εi 6= εj , we would first

change the sign of the right side of (A.0.2) and (A.0.3) and then proceed with exactly the same

calculations.

Applying (A.0.2), we find that the last row of B(i,j) contains only zeros below the reference

diagonal, and, applying (A.0.3), we find that the first column of B(i,j) contains only zeros to the

left of the reference diagonal. Similarly, by (A.0.2) and (A.0.3), the first column and last row of

B(j,i) contain zeros in their entries that are below or to the left of the reference diagonal. After

substituting 0 in for those entries, applying (A.0.2) again, we now find that the second to last row

of B(i,j) (or of B(j,i)) contains only zeros below (or to the left of) the reference diagonal, whereas,

by applying (A.0.3) again, we find that the second column ofB(i,j) (or ofB(j,i)) contains only zeros

to the left of (or below) the reference diagonal. Repeating this analysis, we eventually find that all

entries in B(i,j) and B(j,i) that are below or to the left of the reference diagonal are zero.

Let us now calculate the restrictions that (A.0.2) and (A.0.3) impose on the remaining nonzero

entries in B(i,j) and B(j,i). For the next observations, we use the term secondary transpose to refer
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to the transformation of square matrices described by reflecting their entries over the secondary

diagonal, that is, sending the (i, j) entry of an m×m matrix to the (m+ 1− j,m+ 1− i) entry.

Applying (A.0.2), we see that upper left (mi − 1) × (mi − 1) block of the upper right mi × mi

block of B(i,j) is equal to −1 (or −εiεj in the general case) times the secondary transpose of the

upper left (mi − 1)× (mi − 1) block of B(j,i). Similarly, applying (A.0.3), we see that lower right

(mi − 1) × (mi − 1) block of the upper right mi ×mi block of B(i,j) is equal to −1 (or −εiεj in

the general case) times the secondary transpose of the lower right (mi − 1) × (mi − 1) block of

B(j,i). These last two observations, taken together, complete this proof.

Corollary A.0.5. For all i ∈ {1, . . . , γ},

B(i,i) =



(∑dmi/2e
k=1 akT

mi−2k+1
mi

)
Ialt,mi if λi = 0

0
mi−1∑
k=0

akT
k
mi

mi−1∑
k=0

(∑k
r=0 ar

)
T kmi 0

 if λ2
i < 0

0 otherwise,

(A.0.17)

where Ialt,m denotes the m ×m diagonal matrix with a 1 in its odd columns and a -1 in its even

columns.

Proof. This follows immediately from the formulas in Corollary A.0.3 and Lemma A.0.4 with

i = j.

The previous results provide a general formula for matrices in A o. We now focus on obtaining

a general formula of a subspace A s satisfying (A.0.1).

Lemma A.0.6. Either dim(A )− dim(A o) = 1 or dim(A )− dim(A o) = 2, and the latter case

occurs if and only if there exists a matrix X in A satisfying

XCH−1
` + CH−1

` XT = 2CH−1
` ⇔ (X − I)T H`C

−1 +H`C
−1 (X − I) = 0, (A.0.18)

XTH`C +H`CX = 0.
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Proof. Define

A o
1 :=

{
X
∣∣XCH−1

` + CH−1
` XT = 0

}
and A o

2 :=
{
X
∣∣XTH`C +H`CX = 0

}
.

Since A o = A o
1 ∩A o

2 ,

dim(A o) + dim(A o
1 + A o

2 ) = dim(A o
1 ) + dim(A o

2 ), (A.0.19)

and, letting CI denote span{I}, since A = (A o
1 + CI) ∩ (A o

2 + CI),

dim(A ) + dim (A o
1 + A o

2 + CI) = dim (A o
1 + CI) + dim (A o

2 + CI)

= dim(A o
1 ) + dim(A o

2 ) + 2

= dim(A o) + dim(A o
1 + A o

2 ) + 2,

where this last equation holds by (A.0.19). Therefore,

dim(A )− dim(A o) = dim(A o
1 + A o

2 )− dim (A o
1 + A o

2 + CI) + 2,

and hence

dim(A )− dim(A o) =


1 if I 6∈ A o

1 + A o
2

2 if I ∈ A o
1 + A o

2 .

In particular, dim(A )−dim(A o) = 2 if and only if there existsX ∈ A o
2 such that (I−X) ∈ A o

1 ,

which is equivalent to (A.0.18).

Lemma A.0.7. If C = Mm,λ and λ 6= 0 then dim(A )− dim(A o) = 1.

Proof. We assume that (H`, C) is in the canonical form of Theorem 3.1.2, so H` = Sm, where

Sm is defined in (3.1.3). Fix a subspace A s of A satisfying (A.0.1). To produce a contradiction,
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let us assume that dim(A ) − dim(A o) 6= 1. By Lemma A.0.6, we can assume that there exists a

matrix X in A s satisfying (A.0.18). Since H`C
−1 and H`C are symmetric, condition (A.0.18) is

fundamentally related to the two symmetric forms Q1 and Q2 defined by

Q1(v, w) := wTH`C
−1v and Q2(v, w) := wTH`Cv.

Note that

Q2(v, w) = Q1

(
CCv,w

)
= Q1

(
A2v, w

)
,

where A is, again, the antilinear operator represented by C.

Let us now work instead with respect to a basis that is orthonormal with respect to Q1, that is,

letting L denote the matrix representing the linear operator A2 in this basis, we have

Q1(v, w) = wTv and Q2 = wTLv

in this new basis. By [15, Chapter 11.3, Corollary 2], we can assume without loss of generality

that

L =


1
2
(I + iSm)Jλ,m(I − iSm) if λ2 > 1

1
2
(I + iSm)Jλ,m(I − iSm)⊕ 1

2
(I + iSm)Jλ,m(I − iSm) otherwise.

The second equation in (A.0.18) implies that X is in the Lie algebra of the transformation

group that preserves Q2, whereas the first equation of (A.0.18) implies that X − I is in the Lie

algebra of the transformation group that preserves Q1. That is, with respect to the new basis,

(X − I) = −(X − I)T and XTL+ LX = 0,which is equivalent to

(X − I) = −(X − I)T and [X,L] = 0. (A.0.20)
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Defining the pair of matrices (S, J) by

(S, J) =


(I + iSm, Jλ,m) if λ2 > 1

((I + iSm)⊕ (I + iSm), Jλ,m ⊕ Jλ,m) otherwise,

the condition [X,L] = 0 is equivalent to

[
S−1XS, J

]
= 0. (A.0.21)

Solving for the matrixX in [X,L] = 0 is a classical problem of Frobenious whose general solution

is given in [15, Chapter 8]. In [15, Chapter 8], a formula is given for matrices that commute with

a Jordan matrix such as J , so we have rewritten [X,L] = 0 as in (A.0.21), in order to apply the

solution of [15, Chapter 8] directly. The formula in [15, Chapter 8] gives that, after partitioning the

matrix S−1XS into sizem×m blocks, each block of S−1XS in this partition is an upper-triangular

Toeplitz matrix. If X is a Toeplitz matrix then (I + iSm)X(I − iSm) is symmetric because SmX

and XSm are both symmetric whereas XT = SmXSm. Accordingly, letting X ′ denote the upper

left m×m block of X , since (I − iSm)(X ′ − I)(I + iSm) is Toeplitz,

X ′ − I =
1

4
(I + iSm)

[
(I − iSm)(X ′ − I)(I + iSm)

]
(I − iSm) (A.0.22)

=

(
1

4
(I + iSm)

[
(I − iSm)(X ′ − I)(I + iSm)

]
(I − iSm)

)T
= (X ′ − I)T .

By (A.0.20) and (A.0.22), X ′ = I , which contradicts the upper left m × m block of the second

matrix equation in (A.0.18).

With Lemmas A.0.6 and A.0.7 established we now give a general formula for a subspace A s

of A satisfying (A.0.1).

Lemma A.0.8. For a subspace A s of A satisfying (A.0.1), dim(A s) = 2 if and only if C is
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nilpotent. In particular, if

C = J0,m1 ⊕ . . .⊕ J0,mγ

then, to satisfy (A.0.1), we can take the subspace A s of A spanned by the identity matrix and the

matrix

γ⊕
i=1

Dmi ,

where, for an integer m, Dm denotes the m×m diagonal matrix defined by

Dm := Diag
(m

2
,
m

2
− 1, . . . ,

m

2
−m+ 1

)
. (A.0.23)

Proof. Suppose that (H`, C) is in the canonical form of Theorem 3.1.2, specifically such that

C = Jλ1,m1 ⊕ · · · ⊕ Jλγ ,mγ ,

and suppose that dim(A s) = 2. As is shown in the proof of Lemma A.0.6, we can assume without

loss of generality that there exists a matrix X in A s satisfying (A.0.18). In particular, partitioning

X into a block matrix whose diagonal blocks X(i,i) are size mi ×mi, the blocks X(i,i) satisfy

X(i,i)Mmi,λiNmi,λi +Mmi,λiNmi,λiX
T
(i,i) = 2Mmi,λiNmi,λi (A.0.24)

and

XT
(i,i)Nmi,λiMmi,λi +Nmi,λiMmi,λiX(i,i) = 0. (A.0.25)

Lemma A.0.7 implies that (A.0.24) and (A.0.24) are consistent if and only if λi = 0, and hence if

A s = 2 then C is nilpotent.
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Conversely, if C is nilpotent then λ1 = · · · = λγ = 0. Hence, by (3.1.4) and (3.1.5) the

relations (A.0.24) and (A.0.25) can be rewritten as

X(i,i)J0,miSmi + J0,miSmiX
T
(i,i) = 2J0,miSmi and XT

(i,i)SmiJ0,mi + SmiJ0,miX(i,i) = 0

(A.0.26)

for each i individually. Assuming that B(i,i) = Diag
(
xi1, . . . x

i
mi

)
, by comparing the entries of

(A.0.26) with the help of the expressions for matrices J0,m1 and Smi from (3.1.3), one gets that

(A.0.26) is equivalent to

xij + ximi−j = 2 ∀ 1 ≤ j ≤ m− 1, (A.0.27)

xij + xim−j+2 = 0 ∀ 2 ≤ j ≤ m.

Finally, it is clear that taking X(i,i) = Dmi , where Dmi is as in (A.0.23), satisfies (A.0.27) which

completes the proof.

As a direct consequence of the previous Lemma, since for nilpotent C we have A = A o+CI ,

one gets immediately the following

Corollary A.0.9. If C is not nilpotent then in (4.2.1) one can take η′ = η.

Now we prove the final result of this section.

Lemma A.0.10. If H` and C are in the canonical form prescribed by Theorem 3.1.2 and C 6= 0

then

dim(A ) ≤ n2 − 4n+ 6. (A.0.28)

Moreover, this bound is attained if and only if (`, A) can be represented by the pair (H`, C) in the

canonical form of Theorem 3.1.2 with

C = J0,2 ⊕
n−3 copies︷ ︸︸ ︷

J0,1 ⊕ · · · ⊕ J0,1 . (A.0.29)
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Proof. Assume that

dim(A ) ≥ n2 − 4n+ 6, (A.0.30)

and that (H`, C) are in the canonical form of Theorem 3.1.2. We will still use the notation of

Theorem 3.1.2 as well, in particular referring to the sequence (λ1, . . . , λγ).

Suppose that the λis are not all the same. Without loss of generality, we can assume that

(λ1, . . . , λγ) is enumerated so that there exists an integer k such that

λ1 = . . . = λk and λj 6= λ1 ∀j > k. (A.0.31)

Define

s =
k∑
i=1

[number of rows in Mλi,mi ]

where k is as in (A.0.31). By Lemma A.0.1, for every matrix B in dim(A o + span{I}), the upper

right (s)×(n−1−s) block and the lower left (n−1−s)×(s) block ofB is zero. Moreover, since

the λis are not all zero, there is at least one index i such that B(i,i) has zeros on its main diagonal.

Accordingly, if the λis are not all the same, then

dim(A o) + 1 = dim(A o + span{I}) ≤ (n− 1)2 − 2s(n− 1− s).

Since

2n− 4 ≤ 2j(n− 1− j) ∀ 1 ≤ j < n− 1,

it follows that

dim(A ) = dim(A o) + 1 ≤ (n− 1)2 − 2s(n− 1− s) ≤ (n− 1)2 − 2n+ 4 = n2 − 4n+ 5,

where the identity dim(A ) = dim(A o) + 1 follows from Lemma A.0.8 and the assumption that

the λis are not all the same. Clearly, this contradicts (A.0.30), so if (A.0.30) holds then there exists

193



a value λ ∈ C such that

λ = λi ∀ i. (A.0.32)

If (A.0.32) holds with λ 6= 0 then Corollaries A.0.3 and A.0.5 imply that each matrix B in A o

is fully determined by its entries above the main diagonal, and hence, applying Lemma A.0.8,

dim(A ) ≤
(n− 1)(n− 2)

2
+ 1 < n2 − 4n+ 6 ∀n ≥ 2.

Therefore, if (A.0.32) holds with λ 6= 0 then our assumption (A.0.30) fails.

In other words, – assuming for a moment that (A.0.30) can be satisfied, which we will prove

below by giving an explicit example – if dim(A ) is maximized then we can assume without loss

of generality that

C = J0,m1 ⊕ · · · ⊕ J0,mγ with m1 ≥ · · · ≥ mγ. (A.0.33)

For B in A o, let us partition B as is done in Lemma A.0.4. By Lemma A.0.4, for i < j the B(i,j)

and B(j,i) blocks are together determined by 2mj parameters, whereas, by Corollary A.0.5, the

B(i,i) block is determined by dmi
2
e parameters, where dmi

2
e denotes the ceiling function, that is, the

smallest integer not less than mi
2

. Hence, by counting the number of parameters determining B,

Lemma A.0.4 and Corollary A.0.5 imply that if (A.0.33) holds then

dim(A o) =

γ∑
k=1

(⌈mk

2

⌉
+ 2(k − 1)mk

)
. (A.0.34)

Let r ∈ {1, . . . , γ} be an integer such that

mi = 1 ∀ i > r,
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and to compare with C, let us also consider the matrix

C ′ = J0,m1 ⊕ · · · ⊕ J0,mr−1 ⊕ J0,1 ⊕ · · · ⊕ J0,1.

In other words, C ′ is obtained from C by replacing the last nonzero block on the diagonal of C

with zeros. We will compute the dimension of A o corresponding to the case where C = C ′, but,

since are going to compare this to the sum in (A.0.34), for clarity let A ′ denote the algebra that we

would otherwise denote by A o corresponding to this case where C = C ′, and let A o still denote

the algebra refered to in (A.0.34).

Notice that the kth summand in (A.0.34) counts the number of parameters determining the

blocks B(i,j) of a matrix B in A o for which max{i, j} = k. If we compare the general formula for

a matrix B in A o to that of a matrix B′ in A ′, the only difference appears in the blocks B(i,j) of B

for which max{i, j} = r, and hence a formula for dim(A ′) should match the formula in (A.0.34),

except that the rth summand will change. Using Lemma A.0.4 and Corollary A.0.5, it is however

straightforward to work out exactly how this rth summand of (A.0.34).

Specifically, in replacing the formula for B with the formula for B′, the B(r,r) block is re-

placed with the mr ×mr matrix having m2
r independent parameters, whereas, for all i < r, B(i,r)

(respectively B(r,i)) is replaced with a matrix having mr independent parameters in its first row

(respectively column) and zeros elsewhere. Accordingly,

dim(A ′) = dim(A o)−
(⌈mr

2

⌉
+ 2(r − 1)mr

)
+m2

r + 2(r − 1)mr ≥ dim(A o).(A.0.35)

Since equality holds in (A.0.35) if and only if mr = 1, the dimension of A o is maximized with C

as in (A.0.33) if and only if

C = J0,m1 ⊕
n−1−m1 copies︷ ︸︸ ︷
J0,1 ⊕ · · · ⊕ J0,1, (A.0.36)
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in which case, by (A.0.34),

dim A o =
⌈m1

2

⌉
+

n−m1∑
k=2

(2k − 1) =
⌈m1

2

⌉
+ (n−m1)2 − 1. (A.0.37)

Since C 6= 0, this last sum is maximized with C as in (A.0.36) if and only if C is as in (A.0.29), in

which case applying (A.0.37) with m1 = 2 yields (A.0.28) because, by Lemma A.0.8, if C is as in

(A.0.36) then dim A = dim A o + 2.
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APPENDIX B

DIMENSION OF THE TRANSFORMATION GROUP PRESERVING TWO SYMMETRIC

FORMS OF WHICH AT LEAST ONE IS NONDEGENERATE

The main result of Appendix B is Lemma B.0.1, which gives a formula describing the di-

mension of the group of transformations preserving two symmetric forms of which at least one

is nondegenerate. In particular, this formula gives the dimension of the algebra A (defined in

(4.2.1)) studied in Appendix A for the case where C is nonsingular. Of course, this dimension can

alternatively be calculated using the formulas in Appendix A.

For this special case wherein C is nonsingular, we can alternatively characterize A as an

intersection of two certain indefinite orthogonal algebras. Specifically, still letting H` and C be

matrices representing a nondegenerate Hermitian form ` and an `-self-adjoint antilinear operator

A, if C is nonsingular, then we define bilinear forms Q1 and Q2 by

Q1(v, w) = 〈H`C
−1v, w〉 and Q2(v, w) = 〈H`Cv,w〉,

where 〈·, ·〉 denotes the standard inner product on Cn−1. Note,

Q1(v, w) = Q2(CCv,w). (B.0.1)

The form Q1 is symmetric because

Q1(v, w) = 〈H`C
−1(Cṽ), Cw̃〉 ∗= 〈H`w̃, CC

−1(Cṽ)〉 = 〈H`C
−1(Cw̃), Cṽ〉 = Q1(w, v),

where ṽ = C−1v and w̃ = C−1w, and ∗ holds because A is `-selfadjoint. Similarly, Q2 is sym-

metric because H`C is a symmetric matrix. For a symmetric form Q, let us denote by CO(Q) the

group of matrices that preserve the quadratic form associated with Q up to a scalar multiple, and
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let co(Q) denote the Lie algebra of CO(Q). With this notation, (4.2.1) equivalent to

A = co(Q1) ∩ co(Q2). (B.0.2)

Of course, the description of A in (B.0.2) does not apply to the general case where C may be

singular because, although the form Q2 is well defined, Q1 might not be.

Notice that the algebra in (B.0.2) is indeed the Lie algebra of the group of transformations

(conformally) preserving two symmetric forms of which at least one is nondegenerate. Our formula

given in Lemma B.0.1 generalizes the formula given [35], wherein the authors consider only groups

that preserve a pair of nondegenerate symmetric forms Q and Q′ for which Q′(x, y) = Q(Lx, y)

for some diagonalizable matrix L, whereas Lemma B.0.1 allows for that matrix L to be arbitrary,

which is important in light of (B.0.1) because we want to treat the case where L = CC.

For the remainder of Appendix B, letQ andQ′ denote symmetric forms on a finite dimensional

vector space V . We assume Q is nondegenerate, so there exists a linear operator L such that

Q′(x, y) = Q(Lx, y).

Define

A := A(Q,Q′) :=

{
B ∈ Aut(V )

∣∣∣∣∣Q′(Bx, y) +Q′(x,By) = 0 and
Q(Bx, y) +Q(x,By) = 0 ∀x, y ∈ V

}
,

that is, A is the intersection of the Lie algebras of the groups of operators that preserve the forms

Q and Q′.

We would like to describe the algebra A. For this first let us adopt the notation

E
(i)
λ := {v ∈ V : (L− λI)iv = 0} and Eλ :=

⊕
i∈N

E
(i)
λ .
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For each λ ∈ Spec(L), define

nλ = dim (ker (L− λI))

Let us work in a basis in which L has a Jordan normal form,

L =
⊕

λ∈Spec(L)

nλ⊕
i=1

Jλ,mλ,i , (B.0.3)

where the matrices Jλ,mλ,i denote the standard Jordan blocks as in (3.1.3) and mλ,i ≥ mλ,j for

i > j.

Further, we call a p×q matrixB an upper-triangular Toeplitz matrix (a regular upper-triangular

in the terminology of [15]) if it has the form



q − p columns︷ ︸︸ ︷
0 · · · 0
...

...
...

...
0 · · · 0

p−1∑
k=0

bkT
k
p

 if p ≤ q, and


q−1∑
k=0

bkT
k
q

0 · · · 0
...

...
0 · · · 0


 p− q rows if q < p

for some sequence of coefficients (bi). Here again the Tp and Tq refers to the notation given in the

beginning of Section 3.

Theorem B.0.1. There exists a basis in which L has the Jordan canonical form (B.0.3), and the

algebra A consists of the block diagonal matrices

B =
⊕

λ∈Spec(L)

Bλ,

where each diagonal block Bλ has size nλ × nλ and is partitioned into blocks {Bλ
(k,j)}

nλ
k,j=1 where

Bλ
(j,k) is a matrix of size mλ,j ×mλ,k with the following properties:

1. Bλ
(k,j) are upper-triangular Toeplitz matrices;

2. If mλ,j ≤ mλ,k the right mλ,j ×mλ,j block of Bλ
(k,j) equals the upper mλ,j ×mλ,j block of
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−Bλ
(j,k), so, in particular, Bλ

(j,k) is determined by Bλ
(k,j), and Bλ

(j,j) = 0.

Moreover,

dimA =
∑

λ∈Spec(L)

nλ−1∑
k=1

kmλ,k+1 =
∑

λ∈Spec(L)

∑
k∈N

(
dλ,k
2

)
, (B.0.4)

where dλ,i = dim
(
E

(i)
λ /E

(i−1)
λ

)
.

Proof. Since Q is nondegenerate, we can also work in a basis orthonormal with respect to Q.

The matrices of the operators with respect to this basis will be denoted by the same letters as the

matrices of the same operators with respect to the basis in which L has a Jordan normal form, but

with the circumflexˆabove the letter. In this basis

A =
{
B̂
∣∣∣ B̂ = −B̂T and

[
L̂, B̂

]
= 0

}
.

Note that
[
L̂, B̂

]
= 0 implies that [L,B] = 0. In [15, Chapter 8, Section 2] an explicit

description is given for matrices that commute with a matrix in a Jordan normal form. From this

description it follows that a matrix B in A (w.r.t. the basis pertaining to (B.0.3)) must satisfy

condition (1) of Theorem B.0.1. It remains to show that the additional condition

B̂ = −B̂T (B.0.5)

implies condition (2).

According to [15, Chapter 11.3, Corollary 2] there exists a basis orthonormal with respect to Q

such that in this basis

L̂ =
⊕

λ∈Spec(L)

nλ⊕
i=1

J
(mλ,i)

λ

200



where J (mλ,j)

λ denotes the mλ,j ×mλ,j symmetric matrix defined by

J
(mλ,j)

λ :=
1

2
(I + iSmλ,j)Jλ,mλ,j(I − iSmλ,j),

with Smλ,i and Jλ,mλ,i again being as in (3.1.3).

By construction

B̂ = SBS−1,

where S =
⊕nλ

j=1(I + iSmλ,j). Note that S2
mλ,j

= I . Therefore condition (B.0.5) is equivalent to

(I + iSmλ,k)B
λ
(k,j)(I − iSmλ,j) = 2B̂λ

(k,j) = −2
(
B̂λ

(j,k)

)T
= −

(
(I + iSmλ,j)B

λ
(j,k)(I − iSmλ,k)

)T
= (iSmλ,k − I)

(
B̂λ

(j,k)

)T
(I + iSmλ,j),

which implies that

Bλ
(k,j) = −1

4
(iSmλ,k − I)2

(
Bλ

(j,k)

)T
(I + iSmλ,j)

2 = −Smλ,k
(
Bλ

(j,k)

)T
Smλ,j .

Noting that
(
Bλ

(j,k)

)T
is upper-triangular Toeplitz, this yields condition (2) of Theorem B.0.1.

Further, the block Bλ
(j,k) with j < k is determined by mλ,k variables. Therefore, counting the

number of variables that determine B, we obtain the first equality in the chain of the equalities

(B.0.4). It is an elementary exercise to get the second equality in this chain.

The significance of Theorem B.0.1 for our present broader study of CR geometry is that, regard-

ing the algebra A in (B.0.2), by settingQ1 = Q′,Q2 = Q, andL = CC, we get A = A⊕spanC(I)

(an identity that indeed holds when C is nonsingular).

For example, we conclude this appendix with an application of Lemma B.0.1.

Lemma B.0.2. If CC is invertible and its eigenspaces are all 1-dimensional then

A = {sI | s ∈ C} . (B.0.6)
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Proof. Setting Q′ = Q1, Q = Q2, and T = CC, applying Lemma B.0.1 yields dim(A ) = 1

because A = A⊕ spanC(I). Since A contains multiples of I , (B.0.6) is correct.

Lemma B.0.2 is, of course, alternatively immediately obtained from the formulas derived in

Appendix A. The method for obtaining it described Appendix B, regarding A as an intersection

of two familiar Lie algebras is, however, more conceptual.
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