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ABSTRACT

In modern multivariate statistics learning from “Big Data” is ubiquitous, and understanding

relationships and dependencies of variables is imperative to develop learning algorithms. Unequiv-

ocally, the (inverse) covariance matrix and Bayesian Networks are the most fundamental objects

that specify multivariate associations and dependencies.

Time series literature is rich in methods advocating utilization of the Cholesky factor to model

temporal dependence and dynamics in data. Recently, a similar movement is evolving in modern

statistical and machine learning literature where the focus is on the estimation of (inverse) covari-

ance matrices and Bayesian Networks. The main contributions in this dissertation pivot around

two topics: sparsity and smoothness of the Cholesky factor.

The smoothness of subdiagonals of the Cholesky factor of a large covariance matrix is closely

related to the degree of nonstationarity of the autoregressive model for time series and longitudinal

data. Heuristically, one expects for a nearly stationary covariance matrix, entries in each subdiag-

onal of the Cholesky factor of its inverse to be approximately the same, in the sense that the sum

of absolute values of successive terms is small or can be bounded. Statistically, such smoothness

is achieved by regularizing each subdiagonal using fused-type lasso penalties. In Chapter 2, we

rely on the Cholesky factor as the new parameter within a regularized normal likelihood setup

which guarantees: (1) joint convexity of the likelihood function, (2) strict convexity of the likeli-

hood function restricted to each subdiagonal even when n < p, and (3) positive-definiteness of the

estimated covariance matrix. A block coordinate descent algorithm, where each block is a subdi-

agonal, is proposed, and its convergence is established under mild conditions. Simulation results

and real data analysis show the scope and good performance of the proposed methodology.

In Chapter 3, we propose an algorithm to learn Gaussian Bayesian Networks. The impetus of

our work is the observation that the Cholesky factor of the inverse covariance matrix entails the

structure of a directed acyclic graph (DAGs) when the ordering of variables is known. However,

the combinatorial problem of learning the order of variables in DAGs is NP-hard and computa-
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tionally infeasible for high-dimensional problems. We introduce the permutation matrix as a new

parameter within a regularized Gaussian log-likelihood to estimate variable ordering. The pro-

posed algorithm iteratively learns DAGs by optimizing the regularized likelihood function over

the set of permutation and lower triangular matrices. First, by relaxation, it finds the permutation

matrix, and then for a given ordering estimates a sparse Cholesky factor by decoupling row-wise.

The convergence and statistical properties of the algorithm in each step are established under mild

conditions. We use our methodology to analyze a macro-economic dataset.

iii



DEDICATION

To my parents, my wife, and my son.

iv



ACKNOWLEDGMENTS

I believe one can easily get lost on the beautiful, and at the same time terrifying, explorations of

unknown terrains of Ph.D. if not surrounded by “lighthouses” that guide into a safe harbor. I offer

my sincerest thanks and heartfelt gratitude to my adviser Professor Mohsen Pourahmadi for being

an outstanding adviser, a dedicated teacher, and an amiable person with an extraordinary sense of

humor. I am grateful for the exceptional freedom he allowed, as well as the guidance he provided

when I was facing difficulties.

I want to thank Dr. Francis Narcowich for teaching me applied mathematics in the most beau-

tiful and inspiring way I could have ever imagined. His explanation of Lebesgue integral, using the

coins analogy, will be stuck with me my entire life. I am indebted to Dr. Anirban Batacharya for

introducing me to the statistical learning field. His knowledge and teaching style were the impe-

tus of my decision to change my major from Agricultural Economics to Statistics. I am sincerely

thankful to Dr. Xianyang Zhang for teaching me the probability and asymptotic theory.

I have been fortunate to have attended courses taught by Dr. Irina Gaynanova and Dr. Depdeep

Pati, some of the best teachers and researchers I have ever seen. I am also thankful to Dr. Jianhua

Huang and Dr. Alan Dabney for their encouragement to teach undergraduate statistical classes.

As I look down the memory lane, I feel immensely grateful to Dr. Rafael Bakhtavoryan and Dr.

Armen Asatryan at the Agribusiness Teaching Center, without whose support it would be difficult

to make it here. I also feel indebted to Dr. David Bessler, my former adviser from the Department

of Agricultural Economics, for his immense encouragement to change my major. Without his

support, I wouldn’t have probably dared to switch to Statistics.

Beyond academics, I feel honored to know Dr. John Nichols, Mrs. Carol Nichols, and their

family. They never made us feel lonely and filled our lives with care and joy. Without their help,

advice, and support, our days in the USA would have been much difficult.

Finally and most importantly, lots of love for my parents, Hambardzum Dallakyan and Rima

Atoyan, who sacrificed lots of pleasures of their lives to see their children achieving newer and

v



newer heights. Neither this dissertation nor any success I had in the past six years would have been

possible without the love, unwavering support, and encouragement from Mane, my best friend, life

partner, and wife, who also brought into the world the most precious thing in my life, our six years

old son Daniel. I dedicate this to them.

vi



CONTRIBUTORS AND FUNDING SOURCES

Contributors

All work for the dissertation was completed by the student, in collaboration with Professor

Mohsen Pourahmadi.

Funding Sources

Graduate study was supported by the Department of Statistics at Texas A&M University.

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Regularized Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cholesky Factorization and Bayesian Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. FUSED-LASSO REGULARIZED CHOLESKY FACTORS OF LARGE NONSTATION-
ARY COVARIANCE MATRICES OF LONGITUDINAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Smooth Cholesky Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The Gaussian-Likelihood and Fused Lasso Penalties . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 The Conditionally Separable Convex Objective Function . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 A Block Coordinate Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Convergence of the SC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 Computational Complexity of the SC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Smoothness of L, T and Local Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Simulation and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 The Simulation Setup: Four Cases of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Capturing Smoothness: A Graphical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Comparing Estimation Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.4 Covariance Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 The Cattle Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.6 The Call Center Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. LEARNING BAYESIAN NETWORKS THROUGH BIRKHOFF POLYTOPE . . . . . . . . . . . . 38

viii



3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Bayesian Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Gaussian BN and Structural Equation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 A Minimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Optimization Over the Permutation Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1.1 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1.2 Gradient Projection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1.3 Projection onto the Birkhoff Polytope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1.4 Sampling Permutations from the Doubly Stochastic Matrix . . . . . . . . 50

3.4.2 Cholesky Factor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.1 Convergence of the Cyclic Coordintewise Algorithm . . . . . . . . . . . . . . . 54

3.5 Simulation and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1.1 Structure Learning and Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Additional Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Macro-Economic Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Statistical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.2 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Additional Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4 Cattle data: Additional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.5 Example of SC Penalty Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Algorithms and Related Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.3 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



LIST OF FIGURES

FIGURE Page

2.1 Depiction of a Time-Varying AR(1) and the matrix T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Cases A-D, plots of the first subdiagonal of T vs rescaled time (p = 50). . . . . . . . . . . . . . 26

2.3 Estimated first subdiagonal of T for SC-HP, SC-Fused and SC-Trend (p = 50). . . . . . . 27

2.4 Estimated first subdiagonal of T for SC-HP, SC-Fused and SC-Trend (p = 150). . . . . 27

2.5 Estimation accuracy when data are generated from Case A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Estimation accuracy when data are generated from Case B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Estimation accuracy when data are generated from Case C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Estimation accuracy when data are generated from Case D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Performance of covariance and inverse covariance matrix estimators for p = 150. . . . 31

2.10 Plots of estimated first and second subdiagonals of the covariance matrix for the
various estimation methods. The difference of the structure of subdiagonal curves
from the AR model and Sample covariance matrix suggests adverse affect of the
stationary assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Forecast Error for each estimation method for training data size 205,150,100,75 . . . . . 37

3.1 Illustration of DAG G, corresponding coefficient matrix B, permutation matrix P ,
and permuted strictly lower triangular matrix Bπ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 A geometric depiction of relaxation (3.14) forD3 Birkhoff polytope. Here, vertices
represent permutations, and matrix J/p indicates the center of the polytope. . . . . . . . . . 47

3.3 Structural Hamming Distance boxplot for four (p, s) settings. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 ROC curve over the grid of λ values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The response of Consumer Price Index to Federal Fund Rate shock. . . . . . . . . . . . . . . . . . . 60

A.1 Estimated first four subdiagonals ( p = 150). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 ROC curve for p = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



A.3 Comparison of snapshots for the simulated example for p = 150. . . . . . . . . . . . . . . . . . . . . . 89

A.4 Plot of the mean of the estimated first subdiagonal and ±2sd for each penalty and
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.5 The plot of bias and variance for the simulated example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.6 Plots of estimated first and second subdiagonals of the covariance matrix for vari-
ous estimation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xi



LIST OF TABLES

TABLE Page

2.1 Log-likelihood values for various estimation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Test data log-likelihood values for various estimation methods with training data
size 205,150, 100, 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Number of times (out of 51) each estimation method achieves the minimum fore-
cast error for training data size 205, 150, 100, 75.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Aggregate forecast error for training data sizes 205,150,100,75. . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Average of three metrics over 20 replication for four (p,m) settings. . . . . . . . . . . . . . . . . . . 57

A.1 Mean and Standard Deviation of area-under-the-curve (AUC) for 20 simulations
for p = 150. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



1. INTRODUCTION

The Cholesky factorization of a positive definite matrix, named after Andrè-Louis Cholesky, a

French military officer involved in geodesy (Brezinski, 2006), has its deep roots in the statistical

and numerical analysis literature. In numerical analysis, the widespread use of Cholesky decompo-

sition is to solve a system of equations as opposed to a direct matrix inversion, which is computa-

tionally costlier (Golub and Van Loan, 1996). In Statistics, its usage extends from the least squares

and generalized least squares problem, auto-regressive models, and Monte-Carlo simulations to

the modern statistical learning algorithms. The Bartlett decomposition provides the distribution of

the Cholesky factor of the sample covariance matrix (Bartlett, 1933) and Olkin (1985) discusses

the bias of the Cholesky factor elements. For the matrix-valued functions, Chern and Dieci (2000)

connect the smoothness of the covariance matrix and its Cholesky factor where the smoothness is

in terms of the degree of differentiability.

In time series analysis, popular models such as moving average, autoregressive (AR), and

ARMA rely on the modified Cholesky factorization of the inverse covariance or precision matrix

to model stationary data (Ansley, 1979). The modified Cholesky factorization and Cholesky fac-

torization of the precision matrix are defined Θ = T
′
Λ−1T = L

′
L, where L = Λ−1/2T , and

T, L are lower unitriangular and triangular matrices, respectively. In this thesis, a stationary time

series is defined as a finite variance process, such that the mean is constant and independent from

time, and the autocovariance function depends on time stamps s and t only through their difference

|s − t|. A time series is ARMA(p, q) if it is stationary and Xt = φ1Xt−1 + · · · + φpXt−p + εt +

θ1εt−1 + · · ·+ θqwt−q.

For a time-ordered random vector X = (X1, . . . , Xp), regressing a variable on its preceding

variables

Xt =
t−1∑
j=1

φtjXt−j + εt, t = 1, 2, . . . , p, φ11 = 0, (1.1)

1



and letting ε = (ε1, . . . , εp)
′, the matrix representation of (1.1) can be written as

ε = TX, (1.2)

where T is a unit lower triangular matrix with −φtj in the (t, j)th position for 2 ≤ t ≤ p. There-

fore, from (1.1) and (1.2), the stationary AR model of order p is closely related to a p-banded

lower triangular matrix where all entries of its first subdiagonal are the same and equal to the

negative of the lag-1 AR coefficient, and so on. For nonstationary time series, when data ex-

hibit mild departures from stationarity (Dahlhaus, 1997; Adak, 1998; Davis et al., 2006), the focus

has been on (time-)varying AR models (Gabriel, 1962; Rao, 1970; Kitagawa and Gersch, 1985;

Dahlhaus, 1997; Zimmerman and Nunez-Anton, 2010) where coefficients of (1.1) are modeled

as time-varying, smooth functions. For example, for piecewise stationary processes (Davis et al.

(2006)), AR coefficients and corresponding subdiagonals of T could be modeled as certain step

functions. To emphasize the time-varying nature of the coefficient φtj in (1.1) for fixed j, one can

resort to a doubly indexed triangular array Xt,p notation and rewrite (1.1) as

Xt,p =
t−1∑
j=1

φj(
t

p
)Xt−j,p + σ(

t

p
)εt, t = 1, . . . , p, (1.3)

where φj(u) and σ(u) are smooth functions of the rescaled time u = t
p
∈ [0, 1] and ε’s are i.i.d.

random variables with mean zero and variance one. Ding and Zhou (2019) showed global approx-

imation of the short-range dependent nonstationary and non-linear time series to an autoregressive

process of slowly diverging order, assuming a positive definite covariance matrix.

1.1 Regularized Cholesky Factorization

Inspired by the functional view (1.3), Wu and Pourahmadi (2003) proposed nonparametric

estimation procedure for subdiagonals of T . Pourahmadi (1999); Huang et al. (2006) and Levina

et al. (2008) advocated the use of modified Cholesky factor T of the precision matrix for parsimony

(GLM-based) and sparse (regularized) estimation of its Cholesky factor and hence the precision
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matrix.

In the linear regression setup, as in (1.1), the seminal lasso paper by Tibshirani (1996) laid the

foundation for several sparse estimation techniques. The lasso problem minimizes the following

convex objective function

arg min
φt

‖Xt −
t−1∑
j=1

φtjXt−j‖2
2+λρ(φt); ρ(φt) = ‖φt‖1. (1.4)

Here, the tuning parameter λ controls the sparsity level, i.e the larger value yields the sparser co-

efficient vector φt = (φt1, . . . , φtt−1)′ and vice versa. A rich literature exists on various forms

of penalty function ρ(·), which enforces different structured forms on the coefficient vector. The

most commonly used ones are fused lasso (Tibshirani et al., 2005) ρ(φt) =
∑t−1

i=2|φti−φti−1|, and

group lasso (Yuan and Lin, 2006) ρ(φt) = ‖φt‖2 penalties. Fused lasso applies `1 penalty to dif-

ferences between corresponding elements of coefficient matrix and imposes a piecewise constant

fit. It is used in settings where coordinates in the true model are closely related to their neighbors

(Tibshirani and Taylor, 2011).

Meinshausen and Buhlmann (2006) impose sparsity on elements of inverse covariance matrix

Θ by fitting a lasso model to each other variable, using others as predictors. On the other hand,

Banerjee et al. (2008); Friedman et al. (2008) exploit the log-likelihood function to estimate sparse

precision matrix.

In the longitudinal data setup, where the variables inherit a natural order, with a sampleX1, · · · ,

Xn ∼ Np(0,Σ) and the sample covariance matrix S = n−1
∑n

i=1 XiX
′
i, its log-likelihood function

`(Θ) = tr(ΘS)− log detΘ (1.5)

is used for penalized likelihood estimation of the Cholesky decomposition (T,Λ) in Huang et al.
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(2006). In particular, the authors obtain a sparse T by iteratively minimizing

arg min
T,Λ

tr(T
′
Λ−1TS) + log detΛ + λ

∑
1≤i<j≤p

|Tij|, (1.6)

with respect to T and Λ. However, the objective function (1.6) is not jointly convex or bi-convex.

To ensure convexity, Khare et al. (2019) reparameterize the likelihood in terms of the standard

Cholesky factor L rather than the customary (T,Λ)-parametrization and minimize the following

objective function with respect to L

arg min
L

tr(L
′
LS)− 2 log detL+ λ

∑
1≤i<j≤p

|Lij| (1.7)

While T and L share the same sparsity patterns (since L = T 1/2Λ), the connection between

the degree of smoothness of their subdiagonals is a bit more complicated and controlled by the

boundedness and smoothness of the diagonal entries of Λ (see Lemma 2).

Both approaches in Huang et al. (2006) and Khare et al. (2019) assume a domain-specific

ordering of variables, as in time series, longitudinal, location based or gene studies applications.

In the Chapter 2, assuming that the order of variables is known, we incorporate nonstationarity

assumption of varying coefficients in (1.3) onto Cholesky factor by smoothing its subdiagonals.

The smoothness is achieved through regularizing subdiagonals of the Cholesky factor L of Θ

using the family of fused lasso penalties (Tibshirani et al., 2005) as an alternative to their smooth

(nonparametric) estimation.

Thus, using a family of fused lasso penalty functions on subdiagonals, we propose a novel

smooth Cholesky (SC) algorithm to estimate subdiagonals of L and hence the (inverse) covariance

matrix via a block coordinate descent algorithm.

1.2 Cholesky Factorization and Bayesian Networks

The SC algorithm relies on the pertinent assumption of domain-specific ordering. In appli-

cations where such ordering is not available a possible solution is to include the ordering as an
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additional parameter in the objective function (van de Geer and Bühlmann, 2013; Aragam and

Zhou, 2015). In Chapter 3, we lift the stringent assumption of the domain-specific ordering of

variables and focus on learning Bayesian Networks (BNs). Bayesian Networks are a popular class

of graphical models, whose structure is represented by a directed acyclic graph (DAG). They are

interdisciplinary subjects that have been used in many applications such as economics, etc (Dal-

lakyan, 2020; Bessler and Akleman, 1998), finance (Neil et al., 2005), biology (Needham et al.,

2007),etc.

Broad utilization of BNs is to encode probabilistic expert systems, for example, ALARM net-

work (Beinlich et al., 1989), or explicitly express conditional independence assumptions, as in

hidden Markov models. However, in many applications, interest relies on learning knowledge

from data rather than encoding them. For instance, given observational data generated from a

DAG model, the interest is in learning the underlying structure of the DAG.

The paramount challenge in learning DAG structure is that the problem is NP-hard (Chick-

ering et al., 2004), and the space of DAGs is combinatorial and scales super-exponentially with

the number of nodes (Robinson, 1977). In recent years, the following main approaches have

been evolved to estimate underlying DAG structure from data: Independence-based (also called

constraint-based) methods such as the inductive causation (IC) (Pearl, 2009) and PC (Spirtes and

Glymour, 1991) algorithms, and score-based methods, which learn DAGs by searching over three

different spaces: the DAG space (Heckerman et al., 1995), equivalence classes (Chickering, 2003)

and ordering space of variables (Teyssier and Koller, 2005).

In this thesis, we resort to the salient connection of the structural equation model (SEM) and

BN to propose a score-based algorithm for learning DAGs. In particular, for a p-dimensional

random vector X , whose distribution factorizes according to a BN G:

P (X;G) =

p∏
j=1

P (Xj|XΠGj
), (1.8)

where ΠGj is the set of parent nodes of the j-th node and a node j is a parent of its child k if the
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DAG G contains a directed edge j → k. The conditional distribution (1.8) can be equivalently

represented by the linear SEM:

Xj =
∑
k∈ΠGj

βjkXk + εj, j = 1, . . . , p, (1.9)

where we assume εj ∼ N(0, ω2
j ) are mutually independent and, as well, independent of variables

in the parent set {Xk : k ∈ ΠGj }. In a vector form, the precision matrix Θ can be characterized by

Θ = (I −B)
′
Ω−1(I −B), where Ω = diag(ω2

1, . . . , ω
2
p) and B = {βjk}. A series of recent papers

established that under some suitable assumptions on error terms, the unique structure identification

of B and the DAG G is possible from the joint distribution P (X;G). For example, see Peters and

Bühlmann (2013); Ghoshal and Honorio (2018); Chen et al. (2019), and Peters et al. (2017) for the

review.

Ye et al. (2020) proposed a score-based Annealing on Regularized Cholesky Score (ARCS)

algorithm to estimate BNs generated from the SEM. To develop their algorithm, Ye et al. (2020)

utilize the fact that for each DAG there exist a topological ordering such that the coefficient matrix

B in (1.9) is strictly lower traingular; i.e., there exist a permutation matrix P such that (1.9) can be

written in a matrix form as PX = BπPX + Pε, where Bπ = PBP
′ is a strictly lower triangular

matrix obtained by permuting rows and columns of B, respectively. Here, a permutation π of the

vertex set V = {1, · · · p} is a topological order for DAG if π(j) < π(k) whenever (j, k) ∈ E.

Thus, the Cholesky factor of the precision matrix

Θπ = L
′

πLπ, Lπ = (I −Bπ)Ω−1/2
π , (1.10)

preserves the DAG structure of Bπ; i.e., non-zero elements in Lπ correspond to directed edges in

the DAG G. Incorporating (1.10) into the Gaussian log-likelihood, Ye et al. (2020) introduced a

permutation matrix, combined with the Cholesky factor of the precision matrix, as an additional

parameter in the optimization problem, and resort to simulated annealing technique for a topolog-
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ical order estimation.

In the Chapter 3, motivated by the Ye et al. (2020) framework, we propose a score-based

two stage method for learning Gaussian BNs by minimizing a regularized negative log-likelihood

function

arg min
P∈Pp,L∈Lp

1

2
tr
(
PSP

′
L
′
L
)
−

p∑
j=1

logLjj +
∑

1≤j≤i≤p

ρ(|Lij|;λ), (1.11)

where ρ(|Lij|;λ) is a penalty term, Lp and Pp are the space of lower triangular and permutation

matrices, respectively. In (1.11) we omitted subscript π from the matrix L.

Our proposal has the following distinct features and advantages. First, instead of an expensive

search of a permutation matrix P in the non-convex space of permutation matrices, we propose the

following relaxation: project P onto the Birkhoff polytope (the convex space of doubly stochastic

matrices) and then find the “closest” permutation matrix to the optimal doubly stochastic matrix

(See Figure 3.2). The projection step includes a concave regularization term, which pushes the

projected doubly stochastic matrix “closer” to the permutation matrix if the penalization parameter

is sufficiently large. The proposed relaxation is convex if the number of observations exceeds the

number of variables (Lemma 6).

Second, given P , we recover the DAG structure entailed in the Cholesky factorL by decoupling

row-wise. We show that the optimization reduces to p decoupled penalized regressions where each

iteration has a closed form solution. Moreover, the convergence of iterates to the stationary point

is guaranteed.

Third, on the statistical side, our method produces a consistent Cholesky factor estimator for

the non-convex score function, assuming that the true permutation matrix is known. To the best of

our knowledge, consistency results for the sparse Cholesky factor estimator were established only

for the convex problems (Yu and Bien, 2017; Khare et al., 2019).

The rest of the dissertation is organized as follows: Chapters 2, and 3 describe in detail the

two proposed methodologies. Simulation studies and real data applications of the two techniques

are presented. Finally, in Chapter 4, we conclude with the discussion and some problems for the

further research.
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2. FUSED-LASSO REGULARIZED CHOLESKY FACTORS OF LARGE

NONSTATIONARY COVARIANCE MATRICES OF LONGITUDINAL DATA

2.1 Introduction

A salient feature of stationary time series analysis is its reliance on the Cholesky decomposition

to model temporal dependence and dynamics. Important examples include moving average models

(Cholesky decomposition of a covariance matrix), autoregressive (AR) models (Cholesky decom-

position of an inverse covariance matrix), ARMA models in the time-domain (Ansley, 1979), see

Dai and Guo (2004); Rosen and Stoffer (2007) for explicit use of the Cholesky factors in the

spectral-domain. For nonstationary time series the focus has been on (time-)varying coefficients

AR models (Gabriel, 1962; Rao, 1970; Kitagawa and Gersch, 1985; Dahlhaus, 1997; Zimmerman

and Nunez-Anton, 2010; Ding and Zhou, 2019).

Recently, a similar dichotomy is taking roots in the modern multivariate statistics and machine

learning where the focus is on either estimation of large covariance or inverse covariance matrices

of longitudinal data using Cholesky decomposition. Whereas the entries of a covariance matrix

quantifies pairwise or marginal dependence, those of the precision or inverse covariance matrix

specifies multivariate relationships among the variables in a p-dimensional random vector X =

(X1, . . . , Xp)
′ ∈ Rp with a positive-definite covariance matrix Σp. More precisely, whenX follows

a Gaussian distribution a zero off-diagonal entry of Ωp = (Ωj,k) = Σ−1
p or Ωj,k = 0 implies that

Xj and Xk are conditionally independent given all other variables (Whittaker, 1990). When the

number of observations n is less than the number of variables p, it is reasonable to impose structure

or regularize Ωp directly in the search for sparsity (Banerjee et al., 2008; Friedman et al., 2008),

see Pourahmadi (2013) for an overview.

The use of the modified Cholesky decomposition of Ωp was advocated in Pourahmadi (1999);

Wu and Pourahmadi (2003), Huang et al. (2006) and Levina et al. (2008) for parsimony (GLM-

based) and sparse (regularized) estimation of its Cholesky factor and hence the precision matrix.
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Recall that the standard and modified Cholesky factors of a positive-definite precision matrix are

defined and connected by

Ωp = L′pLp = T ′pΛ
−1
p Tp, Lp = Λ−1/2

p Tp, (2.1)

where Lp = (Li,j) is a unique lower triangular matrix with positive diagonal entries and Tp = (φi,j)

is a unit lower triangular matrix with diagonal entries equal to 1, Λp = diag(σ2
1, . . . , σ

2
p) is a

diagonal matrix with positive diagonal entries. From now on, whenever there is no confusion in

the context, we drop the subscript p from T, L,Σ and Ω.

For time series and longitudinal data the entries in each row of T have the useful interpretation

as the regression coefficients and each diagonal entry of Λ as the variance of the residual εt of

regressing a variable on its preceding variables:

Xt =
t−1∑
j=1

φtjXt−j + εt, t = 1, 2, . . . , p, φ11 = 0. (2.2)

The genesis of this representation and interpretation of the coefficients for stationary processes can

be traced to the rise of finite-parameter AR models in 1920’s (Pourahmadi, 2001, Section 1.2);

(Ansley, 1979). For example, a stationary AR model of order p0 is closely related to a p0-banded

lower triangular matrix where all entries of its first subdiagonal are the same and equal to the

negative of the lag-1 AR coefficient, and so on. Heuristically, one expects for a nearly stationary

(Toeplitz) covariance matrix the entries in each subdiagonal of the Cholesky factor of the inverse

covariance matrix to be nearly the same in the sense that sum of absolute values of its successive

terms is small or can be bounded using a Baxter-type inequality. In fact, if the underlying process

is a stationary AR(∞) with representation Xt = φ1Xt−1 + φ2Xt−2 + · · · + εt and one fits lower

order AR(p0) models, the aforementioned sum over the jth subdiagonal is bounded by

p∑
t=j+2

|φtj − φt−1j|≤ 2C(log p)
∞∑
l=j

|φl|,
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which follows from |φtj − φj|≤ C
t

∑∞
l=j|φl| (Inoue and Kasahara, 2006, Theorem 3.3).

Important examples of mild departures from stationarity are locally stationary (Dahlhaus, 1997)

and piecewise stationary (Adak, 1998; Davis et al., 2006) processes where in the latter the subdiag-

onals could be certain step functions. Figure 2.10 illustrates the potential adverse effect of learning

a genuinely nonstationary covariance matrix of the cattle data (Kenward, 1987) using a (misspeci-

fied) stationary AR model.

We emphasize the time-varying nature of the coefficients φtj in (2.2) for fixed j using a doubly

indexed triangular array Xt,p (Dahlhaus, 1997) and rewriting our data generating model as

Xt,p =

p0∑
j=1

φj(
t

p
)Xt−j,p + σ(

t

p
)εt, t = 1, . . . , p, (2.3)

where φj(u) and σ(u) are smooth functions of the rescaled time u = t
p
∈ [0, 1] and ε’s are i.i.d.

random variables with mean zero and variance one. For p0 < p, this rescaling enables one to view

the (sub)diagonals of T and Λ as realizations of smooth functions (see Figure 2.1) which brings the

estimation problem within the familiar nonparametric infill asymptotic setup where one observes

the smooth functions φj(u) and σ(u) on a finer grids for a larger p. Interestingly, choosing φj(u)

and σ(u) as functions of bounded variation guarantees that, under mild conditions, the solutions of

(2.3) are locally stationary processes (Dahlhaus and Polonik, 2009, Proposition 2.4).

The functional view of (2.3) for longitudinal data has been a major source of inspiration for

nonparametric estimation of the subdiagonals of T , see Wu and Pourahmadi (2003) and Huang

et al. (2007). Furthermore, within the smoothing spline ANOVA framework, Blake (2018) treats

the AR coefficients φtj, t > j as a bivariate smooth function and decomposes it in the stationary

direction of the lag ` = t − j and the nonstationary (additive) direction m = t+j
2

and a possible

interaction term. Finally, she regularizes the nonstationary direction more heavily which amounts

to shrinking the covariance estimator toward the more parsimonious and desirable stationary struc-

tures.

We focus on the longitudinal data (replicated time series) setup, with a sample X1, · · · , Xn ∼
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Np(0,Σ) and the sample covariance matrix S = n−1
∑n

i=1 XiX
′
i. The corresponding log-likelihood

function `(Ω) = tr(ΩS) − log det(Ω) was used for penalized likelihood estimation of the param-

eters (T,Λ) in Huang et al. (2006), see also Levina et al. (2008) and Khare et al. (2019) for a

comprehensive review. The lack of convexity of the likelihood in (T,Λ) was noted first in Khare

et al. (2019) and Yu and Bien (2017). They ensure convexity by reparameterizing the likelihood in

terms of the standard Cholesky factor L rather than the customary (T,Λ)-parametrization. While

the last identity in (2.1) reveals that T and L share the same sparsity patterns, the connection be-

tween the degree of smoothness of their subdiagonals is a bit more complicated and controlled by

the boundedness of the diagonal entries of Λ (see Theorem 2).

In this paper we achieve smoothness through regularizing the subdiagonals of the Cholesky

factor L of Ω using the fused lasso penalties (Tibshirani et al., 2005) as an alternative to smooth

(nonparametric) estimation of subdiagonals. More specifically, using the family of fused lasso

penalty functions on the subdiagonals we propose a novel smooth Cholesky (SC) algorithm for

estimating the subdiagonals of L and hence the (inverse) covariance matrix via a block coordinate

decent algorithm. The SC objective function is convex in L, and compared to the recent algorithms

in Khare et al. (2019) and Yu and Bien (2017) when n << p, the update of each block is obtained

by solving a strictly convex optimization problem. We establish the convergence of the iterates to

stationary points of the objective function, and elaborate on the connection between the smoothness

of the subdiagonals of L and those of T under the assumption of boundedness of the diagonal

entries of Λ.

Our SC algorithm and the corresponding methodology for longitudinal data can be specialized

to the setup of a long stretch of a single stationary time series, namely for n = 1 and p large. To this

end, banded estimates of Toeplitz covariance matrices and properties of the corresponding optimal

linear predictors are studied in Wu and Pourahmadi (2009); Bickel and Gel (2011) and McMurry

and Politis (2010, 2015). For covariance estimation and prediction of locally stationary processes,

see Das and Politis (2020).

In the rest of this section, we introduce notation used throughout the paper. For a vector x =
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(x1, . . . , xp) ∈ Rp, we define its norm ‖x‖q= (
∑q

i=1|xi|q)1/q for q ≥ 1. We denote by Lp the space

of all lower triangular matrices with positive diagonal elements. Given a p × p lower-triangular

matrix L, the p2 × 1 vector V = (vi) = vec(L) is its standard vectorization formed by stacking up

its column vectors including the zero (redundant) entries. Each vector of (sub)diagonal entries of

L corresponds to those from V with the following set of indices:

Ij = {k(p+ 1) + j + 1 : k = 0, . . . , (p− j − 1)}, j = 0, 1, . . . , p− 1,

so that I0 corresponds to the main diagonal entries, L[j] = VIj = (vi)i∈Ij is the |Ij|-subvector of the

jth subdiagonal entries. We denote by L−[j] = (vi){i∈Ik,k 6=j} a vector of diagonal and subdiagonals,

except for the jth subdiagonal. For simplicity in notation, we replace Ij by j so that for a given

p2 × p2 matrix A and index sets Ij, Ik, A·j denotes the p2 × |Ij| submatrix with column indices

selected from Ij , and Ajk is the |Ij|×|Ik| submatrix with rows and columns of A indexed by Ij and

Ik, respectively.

2.2 The Smooth Cholesky Algorithm

In this section, we develop the SC algorithm for a convex penalized likelihood function using

fused-type Lasso penalties on the subdiagonals of the standard Cholesky factor. Such penalties

are bound to induce various degrees of sparsity and smoothness on the subdiagonals, but our main

focus is on smoothness. The objective functions turn out to be conditionally separable. Compu-

tational and statistical properties of a block coordinate descent algorithm for its minimization are

studied.

2.2.1 The Gaussian-Likelihood and Fused Lasso Penalties

Let `(Ω) be the Gaussian log-likelihood function for a sample of size n from a zero-mean

normal distribution with the precision matrix Ω. Its convexity is ensured by reparametrizing it in

terms of the standard Cholesky factor L, see Khare et al. (2019) and Yu and Bien (2017). More
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precisely, we consider

Q(L) = tr(L
′
LS)− 2 log det(L) + λP (L), (2.4)

where P (L) is a convex penalty function and S is a sample covariance matrix.. There are two

recent important choices of P (L) designed to induce sparsity in the rows of the Cholesky factor.

The method of Convex Sparse Cholesky Selection (CSCS) of L in Khare et al. (2019) employs

the penalty P (L) = ‖L‖1. The ensuing objective function turns out to be jointly convex in the

(nonredundant) entries of L, bounded away from −∞ even if n < p; but it is not strictly convex in

the high-dimensional case. A cyclic coordinatewise minimization algorithm is developed in Khare

et al. (2019) to compute L. Note that once L is computed using the CSCS or other methods consid-

ered here, then one can compute (T,Λ), and the (inverse) covariance matrix Σ and Ω. Sparsity of

Ω is not guaranteed since the sparsity pattern of the estimated L in Khare et al. (2019), as in Huang

et al. (2006) and Shojaie and Michailidis (2010), has no particular structure. Fortunately, a more

structured sparse L which guarantees sparsity of the precision matrix is developed in Yu and Bien

(2017). Their hierarchical sparse Cholesky (HSC) method relies on the hierarchical group penalty

P (L) =
∑p

r=2

∑r−1
l=1 (

∑l
m=1w

2
lmL

2
rm)1/2 where the wlm’s are quadratically decaying weights. The

HSC method has the goal of learning the local dependence among the variables and leads to a more

structured sparsity with a contiguous stretch of zeros in each row away from the main diagonal. Its

flexibility is similar to that of the nested lasso in Rothman et al. (2010). Yu and Bien (2017) relies

on an alternating direction method of multipliers (ADMM) approach to compute L. Computation-

ally, both penalty functions lead to a decoupling of the above objective function into p separate and

parallelizable optimization problems each involving a separate row of L.

For the SC algorithm developed in this paper, we employ a number of fused lasso penalty

functions on the Cholesky factor or its subdiagonals. However, unless stated otherwise the phrase
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fused lasso refers to

P (L) =

p−1∑
i=1

P∇(L[i]), P∇(L[i]) =

p−i∑
j=2

|L[i]
j − L

[i]
j−1|, L[i] ∈ Rp−i and i = 1, . . . , p− 1,

based on the `1-norm of the first differences, and we do not penalize diagonal elements. In Ap-

pendix A.5 we give an illustrative example of the penalty form. Note that this penalty is slightly

different from the more general sparse fused lasso penalty function in Tibshirani et al. (2005) and

Tibshirani and Taylor (2011) which is of the form

λ1

p−i∑
j=1

|L[i]
j |+λ2P∇(L[i]).

The latter includes an additional lasso penalty term to achieve sparsity on top of smoothness of

the subdiagonals. In fact, our usage of fused lasso is more in the spirit of the total variation penalty

in Rudin et al. (1992).

When higher-order smoothness of the subdiagonals is desirable, then it is natural to penalize

sum of higher-order differences such as ‖D2y‖1, the `1-trend filtering (Kim et al., 2009), and

‖D2y‖2
2 (Hodrick and Prescott, 1997), referred to as H-P hereafter, where D2 is the matrix of

second-order differences. For other higher order difference matrices belonging to the family of

generalized lasso penalties, see Tibshirani et al. (2005);Tibshirani and Taylor (2011).

2.2.2 The Conditionally Separable Convex Objective Function

We express the objective function (2.4) as the sum of p quadratic functions each involving

distinct (sub)diagonals ofL (given the others), so that it is conditionally separable in the sense made

precise in Lemma 1(b). This is in sharp contrast to the objective functions in Khare et al. (2019)

and Yu and Bien (2017) which decouple over the rows of the matrix L with nice computational

consequences. Nevertheless, our objective function is jointly convex in L, in general, and strictly

convex when n < p.

Let B = S ⊗ Ip be the Kronecker product of the sample covariance matrix from a sample of
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size n and the identity matrix. The structure of the matrix B and the (p− i)× (p− j) submatrices

Bij, 0 ≤ i, j ≤ p − 1, introduced in the proof of the following lemma play a vital role in proving

properties of our SC algorithm.

Lemma 1. For the lower triangular matrix L it holds that:

(a) The first term in (2.4) can be rewritten as

tr(LSL′) = V ′(S ⊗ Ip)V =

p−1∑
i=0

p−1∑
j=0

L[i]BijL
[j] (2.5)

(b) The objective function Q(L) is conditionally separable in that

Q(L) =

p−1∑
i=0

Qi(L
[i]|L−[i]), (2.6)

where for i = 0, 1, . . . , p− 1 and fixed L−[i],

Qi(L
[i]|L−[i]) = qi(L

[i]|L−[i]) + λP∇(L[i]), Q0(L[0]|L−[0]) = q0(L[0]|L−[0])− 2

p∑
j=1

logL
[0]
j

(2.7)

and

qi(L
[i]|L−[i]) = (L[i])′BiiL

[i] + (L[i])′(
∑
j 6=i

BijL
[j]), (2.8)

(c) Qi(·)’s are strictly convex in L[i] even when n < p.

A proof of the lemma is provided in the Appendix. Parts (a) and (b) are fundamental for

constructing our SC algorithm in the spirit of the coordinate descent algorithm in Khare et al.

(2019, Lemma 2.3). However, since our objective function is not separable over the subdiagonals,

the details of the proof of our block coordinate descend algorithm differ considerably from those

in Khare et al. (2019).
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2.2.3 A Block Coordinate Descent Algorithm

In this section, relying on the conditional separability as expressed in (2.6) we minimize Q(L)

using a block coordinate descent algorithm where each block corresponds to a subdiagonal of L

given the values of the others. The minimization of Q(L) is done sequentially over the summands

Qi(·), 0 ≤ i ≤ p − 1. In this sense, our SC algorithm is different from the recent approaches

in covariance estimation where the objective functions are either minimized by iterating over the

columns of a covariance matrix (Banerjee et al., 2008; Friedman et al., 2008) or the rows of its

Cholesky factor (Khare et al., 2019; Yu and Bien, 2017). However, it inherits some of the desir-

able convergence properties of the latter two algorithms even though their optimization problems

decouples into p parallel problems over the rows of the matrix L.

The following two generic functions stand for the objective function restricted to each (sub)diagonal:

h0(x|y0) = 2x′y0 + x′C0x− 2

p−1∑
j=1

log xj (2.9)

and

hi(x|yi) = 2x′yi + x′Cix+ λ‖Dx‖1, (2.10)

whereCi = Bii is a diagonal matrix introduced in Lemma 1, and yi =
∑

j 6=iBijL
[j], 0 ≤ i ≤ p−1

is a (p − i) × 1 vector. Note that the function h0 is from Rp
+ to R and hi is from Rp−i to R for

1 ≤ i ≤ p− 1. These functions are simpler than those in Khare et al. (2019, equation (2.8)) since

the matrices Ci are diagonal with positive diagonal entries so that for a fixed vector yi, hi’s are

strictly convex functions (Lemma 6). We note that a block coordinate descent algorithm which

sequentially optimizes hi with respect to each L[i] will also optimize the objective function Q(L).

Consider the global minimizers of h0 and hi:

x∗0 = arg min
x∈Rp+

h0(x|y0) and x∗i = arg min
x∈Rp−i

hi(x|yi). (2.11)

Next, we show that the vector x∗0 has a closed-form and provide methods to compute {x∗i }
p−1
i=1
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for various members of the fused-type Lasso family. A proof of the lemma is provided in the

Appendix.

Lemma 2. (a) For a given y0, x∗0 is unique and its entries have the closed-form:

(x∗0)1 = 1/
√

(C0)1,1, for i = 2, . . . , p, (x∗0)i =
−(y0)i +

√
(y0)2

i + 4(C0)i,i
2(C0)i,i

. (2.12)

(b) For a given yi (1 ≤ i ≤ p − 1), x∗i corresponds to the unique solution of the fused lasso

problem (Tibshirani and Taylor, 2011, Algorithm 1) for the ith subdiagonal of L.

(c) When D in (2.10) is the matrix of second-order differences, then

(1) x∗i corresponds to the solution of the `1-trend filtering (Kim et al., 2009, Section 6).

(2) For hi(x|yi) = 2x′yi + x′Cix + λ‖Dx‖2
2, (1 ≤ i ≤ p − 1), x∗i has a closed form and

corresponds to the H-P solution:

x∗i = −1

2
(Ci + λ(D′D))−1yi

(d) For λ1 > 0, the solution of sparse fused lasso,

arg min
x∈Rp−i

h̃i(x|y) = hi(x|y) + λ1‖x‖1, 1 ≤ i ≤ p− 1 (2.13)

is given by

x̂i(λ1, λ2) = sign(x̂i(0, λ2))(|x̂i(0, λ2)|−1

2
(diag(C−1

i ))λ1)+,

where x̂i(0, λ2) is the solution of (2.13) when λ1 = 0 and λ2 ≥ 0.

It is well-known that the tuning parameter λ controls the bias-variance trade-off of the `1 pe-

nalization (Hastie et al., 2001), i.e bias increases as λ increases and vice-versa. Fan and Li (2001)
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and Zhang (2010) attack this issue by introducing SCAD and MCP penalties to produce nearly

unbiased estimates for large coefficients.

Even though the sample covariance matrix is an unbiased estimate of the covariance matrix, its

Cholesky factor is biased for its population counterpart (Olkin, 1985). Moreover, for p < n−1, the

inverse sample covariance matrix is a biased estimate of the inverse covariance matrix (Anderson,

2003). To empirically capture the bias and variance of our estimator, we estimate 1-banded true

Cholesky factor generated from the first subdiagonal of the Case B described in Section 2.4 and

illustrated in Figure 2.2. Here, the goal is to estimate bias for the three different values of the step

function using fused lasso penalty. As illustrated in Figure A.5 in the Appendix, for jumps with

the large magnitude bias is large in absolute value and variance is relatively flat with small bumps

at jump points.

Lemma 2 provides the necessary ingredients for minimizing the objective function (2.6) via the

following block coordinate descent algorithm where each block is a (sub)diagonal of the standard

Cholesky factor L.

Algorithm 1 The SC algorithm
1: input:

2: ε, λ, kmax ← Stopping criteria, Tuning Parameter, and max. number of iteration

3: L(0) ← Initial Cholesky factor

4: Set B ← S ⊗ Ip; Ci ← Bii

5: while ‖L(k+1) − L(k)‖∞> ε or k < kmax:

6: L(k) ← L(0)

7: for i = 0, . . . , p− 1 do:

8: L̂[i] = arg minhi(L
[i]|yi)

9: Update L(k) by replacing the ith subdiagonal by L̂[i]

10: L(0) ← L(k); k = k + 1

11: Output: L
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We note that the Algorithm 1 is well-defined so long as the diagonal entries of sample covari-

ance matrix and the initial Cholesky factor are positive. That is the minimum in the optimization

appearing in line 6 of the algorithm is attained. This follows from Part (b) of Theorem 1 and the

fact that hi’s are strictly convex functions of L[i], 0 ≤ i ≤ p − 1. There exists rich literature on

analyzing properties of block coordinate descent. It is known (Beck and Tetruashvili, 2013) that,

under suitable conditions, the block coordinate descent achieves sublinear rate of convergence.

2.2.4 Convergence of the SC Algorithm

In this section, we establish convergence of the SC algorithm under the weak restriction that

the diagonal entries of S are positive.

A key step is to reduce the objective function (2.6) to the following widely used objective

function in the statistics and machine learning communities (Khare and Rajaratnam, 2014):

h(x) = x′E ′Ex−
∑
i∈Cc

log xi + λ
∑
i∈C

|xi| (2.14)

where λ > 0 is a tuning parameter, C is a given subset of indices and the matrix E does not have

a zero column. Since the objective function restricted to each subdiagonal (line 6 in Algorithm 1)

is strictly convex, a unique global minimum with respect to each subdiagonal is guaranteed even

when n < p. This additional strict convexity property along with Theorems 2.1 and 2.2 in Khare

and Rajaratnam (2014) are the key ingredients for showing that the iterates in SC algorithm con-

verge to the global minimum of the objective function Q.

Theorem 1. (a) The objective function Q(L) with the fused Lasso penalty admits the generic

form:

h(x) = x′E ′Ex−
p∑
i=1

log xi + λ
∑
j∈C

|xi|, (2.15)

where,

x = [L1,1, . . . , Lp,p, L3,2 − L2,1, . . . , Lp,p−1 − Lp−1,p−2, . . . , Lp,2 − Lp−1,1, Lp,1]′,
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and the set C of indices consists of the last element of x and along with those of difference

forms, and E is a suitable matrix with no 0 columns.

(b) If diag(S) > 0, then the sequence of iterates {L(k)} in Algorithm 1 converges to a global

minimum of Q.

Proof of the theorem given in the Appendix relies on the following:

Lemma 3. For every n and p

inf
L∈Lp

Q(L) ≥ −1′pK1p > −∞,

where 1p is a p × 1 vector of 1’s and K is a positive semi-definite matrix. Moreover, any global

minimizer of Q(L) over the open set Lp lies in Lp.

A discussion of convergence of the sequence of iterates for `1-trend filtering and HP is provided

in the Appendix A.1.

2.2.5 Computational Complexity of the SC Algorithm

The sequential SC algorithm in each iteration sweeps over the diagonal and subdiagonals of

L where in each sweep it must compute yi and hi. For example, for fused lasso penalty, from

Lemma 6, updating each subdiagonal requires solving a fused lasso problem. Therefore, the com-

putational cost of each subdiagonal update depends on the chosen penalty function. Denoting by

Rp the computational cost for the chosen penalty to minimize hi, 1 ≤ i ≤ p − 1, the next lemma

provides the computational cost for each iteration of SC algorithm.

Lemma 4. The computational cost of Algorithm 1 in each iteration is min(O(np2 +pRp), O(p3 +

pRp)) .

The proof is provided in Appendix A.1. For example, Rp = O(p) for x∗i for the `1-trend filter-

ing penalty (Kim et al., 2009). Thus, the computational cost of the SC algorithm ismin(O(np2), O(p3))

which is comparable to the cost of the existing sequential algorithms such as GLasso (Friedman
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et al., 2008), SPACE (Peng et al., 2009) and CONCORD (Khare et al., 2015) and CSCS (Khare

et al., 2019) when iterations have been run sequentially.

2.3 Smoothness of L, T and Local Stationarity

A promising feature of using fused lasso penalty and the ensuing SC algorithm seems to be

its ability to capture aspects of the smoothness of subdiagonals of the Cholesky factors through

regularized likelihood estimation rather than the traditional (non)parameteric methods. In this sec-

tion, we discuss some details on AR data generating process, and explore the connection between

smoothness of T , L, and Ω when the diagonal elements of Λ are bounded away from zero.

Smoothness of the subdiagonals of L, T can be studied by considering a doubly indexed se-

quence Xt,p (triangular arrays), and functions defined on the rescaled time u ∈ [0, 1]. For example,

Figure 2.1 provides a simple illustration of the correspondence between the time-varying AR(1)

model in (2.3) and the subdiagonals of T .

X1,p = φ1

(1

p

)
X0,p + σ

(1

p

)
ε1

...
Xp,p = φ1

(p
p

)
Xp−1,p + σ

(p
p

)
εp

T =


1 0 · · · 0

−φ1

(
1
p

)
1 0 0

... . . . . . . ...
0 . . . −φ1(p

p
) 1


j

*

Figure 2.1: Depiction of a Time-Varying AR(1) and the matrix T

Motivated by the connection between the coefficients of the time-varying AR (2.3) and the

subdiagonals of the Cholesky factor, it is of interest to connect the smoothness of the entries of the

ith subdiagonal of the Cholesky factors L, T , the diagonal entries of Λ and the inverse covariance
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matrix viewed as functions of the rescaled time u by writing: L[i](·) : [0, 1] → R where L[i](u) =

L[i](j/p) = L
[i]
up for j = i, . . . , p− 1 and L[i](u) = L

[i]
bupc otherwise. Here bxc is the largest integer

smaller or equal to x and L[i]
bupc stands for its bupcth element. In this section, smoothness of a

function refers to it being of bounded total variation (TV):

TV (L[i]) = sup
{ l∑

j=1

|L[i](xj)− L[i](xj−1)|: 0 ≤ x0 < · < xl ≤ 1
}
, (2.16)

for xi’s of the form i
p

and TV (L[i]) <∞, i = 0, . . . , p− 1. It is instructive to note that (Chern and

Dieci, 2000, Lemma 2.8) smoothness of a covariance (positive-definite matrix-valued) function is

also inherited by its unique standard Cholesky factor when smoothness is in terms of degree of

differentiability.

Next, we establish the connections among the subdiagonals of the standard Cholesky factor

and related matrices so far as they being of bounded variation is concerned.

Theorem 2. (a) For any u, v ∈ [0, 1] of the form t/p, we have

|L[i](u)− L[i](v)|≤ c−1|T [i](u)− T [i](v)|+c−2|T [i](u)||σ(u)− σ(v)|,

provided that σ(i) > c > 0, i = 1, . . . , p.

(b) If in addition, σ(·) and the ith subdiagonal T [i](·) are functions of bounded total variation

on the rescaled interval [0, 1] with TV (T [i]) ≤ K1, TV (σ) ≤ K2, and ‖T [i]‖∞< m , then L[i] is of

bounded total variation with

TV (L[i]) ≤ c−1K1 + c−2K2m. (2.17)

(c) If the (sub)diagonals of the Cholesky factor L are of bounded variation on the rescaled

interval [0, 1] with TV (L[i]) ≤ Ki, ‖L[i]‖∞≤ mi (0 ≤ i ≤ p− 1), then the (sub)diagonals of the
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matrix Ω = L′L are of bounded variation with

TV (Ω[i]) ≤
p−i−1∑
j=0

(mjKj+i +mj+iKj).

Moreover, the converse of (c) is true.

The proof is provided in the Appendix A.1. Theorem 2(a) is a motivation for penalizing L in

the reparametrized log-likelihood (2.4) rather than the traditional modified Cholesky factor T .

The appearance of the bounded variation property on σ, T [i] and other matrices opens up a win-

dow to connect and approximate nonstationary processes by the class of time-varying AR models.

For locally stationary processes with a time-varying MA(∞)-representation see Dahlhaus (1997);

Dahlhaus and Polonik (2009); Dahlhaus (2012). Recently, Ding and Zhou (2019) has considered

a different class of nonlinear, nonstationary processes which can be approximated well by AR

processes of increasing orders. It includes the linear process

Xt,p =
∞∑
j=1

aj,p(t)εt−j, t = 1, 2, . . . , p,

where εk’s are i.i.d random variables and

sup
t∈[0,1]

|aj,p(t)|2≤ Caj, j ≥ 1, and 0 < a < 1. (2.18)

This geometrically decaying bound on the time-varying coefficients implies that the series has

short-memory when temporal dependence is assessed using the physical dependence measure

(Ding and Zhou, 2018, Example 2.4). Moreover, they establish that the coefficients φtj of the

increasing order AR approximants can be bounded by

|φtj|≤ C max{p−2, aj/2} (2.19)

under Assumption 2.3 in (Ding and Zhou, 2019, Theorems 2.5 and 3.6, Remark 2.8), for some
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constantC. Consequently, the sum of absolute differences over the jth subdiagonal of the Cholesky

factor of the inverse covariance matrix is controlled by

p∑
t=j+2

|φtj − φt−1j|≤ 2C max{p−1, paj/2}. (2.20)

These bounds within the rather general nonlinear and nonstationary setup of Ding and Zhou (2019)

reveal that, under reasonable conditions, one can apply our SC algorithm and the related method-

ology to estimate/approximate the underlying stochastic structure.

2.4 Simulation and Data Analysis

In this section, we illustrate and gauge the performance of our methodology using simulated

and real datasets. We use three commonly used penalty functions: fused lasso, `1-trend filtering and

Hodrick-Prescott (H-P) filtering (Hodrick and Prescott, 1997). The corresponding SC algorithm is

referred to as SC-Fused, SC-Trend and SC- HP, respectively.

2.4.1 The Simulation Setup: Four Cases of T

In all simulations, the sample sizes are n = 50, 100, and dimensions p = 50, 150, covering

settings where p < n and p > n, respectively. Each simulated dataset is centered to zero and

scaled to unit variance. The tuning parameter λ is chosen from the range [0.1, 1] over 100 equally

spaced grid points using the BIC and CV criterion described in the Appendix A.2. We repeat the

simulation 20 times. As inputs to the Algorithm 1, we set the tolerance ε = 10−4 and the initial

Cholesky factor is the diagonal matrix with diagonal elements equal to
√
diag(S).

We start with a pair (Λ, T ) and use the parameterization L = Λ−1/2T as in (Khare et al., 2019)

where Λ is a diagonal matrix and T is a unit lower-triangular matrix constructed for the four cases

A-D described below. For given pairs (n, p), (T,Λ), sample data are drawn independently from

Np(0, (L
′L)−1). In each case, except for the Case B, where the number of nonzero subdiagonals

is equal 2, the number of non-zero subdiagonals is restricted to be 5, that is in each iteration

the SC algorithm sweeps only over the first 5 subdiagonals and the rest of subdiagonals are set

to 0. Except for the Cases A and B, construction of the matrix T starts with generating its first
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subdiagonal, and then filling the rest of its subdiagonals by eliminating the last element of the

previous subdiagonal. The diagonal elements of Λ1/2, for the Cases A and B are equal one and are

of the form log((1 : p)/10 + 2) for the Cases C and D.

The four cases of T with varying degrees of smoothness (nonstationarity) of their subdiagonals

and the diagonal matrix Λ considered are:

Case A: A stationary AR(1) model where T is a Toeplitz matrix with the value for the first subdi-

agonal randomly chosen from the uniform distribution on [−0.7, 0.7].

Case B: Resembles an AR(2) model as in Davis et al. (2006, Section 4,1) dealing with piecewise

stationary processes:

Xt =


−0.7Xt−1 + εt 1 ≤ t ≤ p/2

0.4Xt−1 − 0.81Xt−2 + εt p/2 < t ≤ 3p/4

−0.3Xt−1 − 0.81Xt−2 + εt 3p/4 < t ≤ p

,

where εt ∼ N(0, 1). The matrix T here is 2-banded and the diagonal elements of Λ1/2 are

equal to 1 (See Figure 2.2).

Case C: The first subdiagonal of T is given by T [1]
i = 2(i/p)2−0.5, i = 1, . . . , p−1, correspond-

ing to a (time) varying-coefficient AR model (Wu and Pourahmadi, 2003).

Case D: The first subdiagonal of T is generated according to

T
[1]
i = xi + zi, i = 1, . . . , p− 1, xi+1 = xi + vi, i = 1, . . . , p− 2,

with x1 = 0, zi ∼ N(0, 1) and vt is a simple Markov process (Kim et al., 2009, Section

4). That is with probability m, vi+1 = vi and with probability 1 −m it is chosen from the

uniform distribution [−b, b] where m = 0.8, b = 0.5.

Figure 2.2 illustrates plots of the first subdiagonal of the matrix T versus the rescaled time in [0, 1]
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for the four cases with p = 50.

Figure 2.2: Cases A-D, plots of the first subdiagonal of T vs rescaled time (p = 50).

2.4.2 Capturing Smoothness: A Graphical Comparison

First, we assess graphically the ability of our methodology to learn the varying degrees of

smoothness of the first subdiagonal for the four cases introduced above. Figures 2.3 and 2.4 illus-

trate the simulation results using the SC algorithm for p = 50 and 150, respectively. In each 2 by

4 layout, each column corresponds to one of the four cases and the row to the criteria (BIC or CV)

for choosing the tuning parameters. The results for n = 50 and n = 100 were similar, therefore

we report only those for the larger sample size.

The simulation results in both figures provide ample evidence on the good performance of the

SC method for estimating time-varying subdiagonals. In particular, for the Case A, as expected,

the SC-Fused learns perfectly the flatness (stationarity) of the first subdiagonal, showing only some

wiggliness for the BIC. For the Case B, which corresponds to a piecewise stationary process, esti-

mators tuned using CV and BIC correctly identify the jumps and show small oscillation around the

flat segments. The CV criterion shows an advantage over the BIC for the Case C. More specifically,

the SC-Trend learns better the quadratic structure of the first subdiagonal than the other estimators.

For the case D the SC-Trend and SC-HP provide nearly identical estimates of the first subdiagonal.

The results for the other subdiagonals nearly match those in Figures 2.3 and 2.4, and are omitted.

As p gets larger, there seems to be evidence of improvement in performance of the SC algorithm.
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Figure 2.3: Estimated first subdiagonal of T for SC-HP, SC-Fused and SC-Trend (p = 50).

Figure 2.4: Estimated first subdiagonal of T for SC-HP, SC-Fused and SC-Trend (p = 150).

In Appendix A.3, we provide an additional simulation results to illustrate the variability of our

method for each penalty function (SC-Fused, SC-HP, SC- Trend) and Case A-D.
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2.4.3 Comparing Estimation Accuracies

In this section, we compare the accuracies of the three SC estimators: SC-HP, SC-Fused and

SC-Trend. The overall measures of performance involve magnitudes of the estimation errors T̂−T

and L̂ − L, as measured by the scaled Frobenius norm 1
p
‖Â − A‖2

F , and the matrix infinity norm

|‖Â− A|‖∞ for a p× p matrix A.

Boxplots of the overall estimation errors for the matrix T are reported in Figures 2.5 through

2.8, where each figure corresponds to a particular case, each row to a value of p and the two

columns correspond to using BIC and CV criteria, respectively. They corroborate the findings in

the graphical explorations Figures 2.3 and 2.4, in that the SC-Fused shows tendency to capture

well cases with constant subdiagonals, SC-Trend and HP are better in capturing the wiggliness and

smoothness of the subdiagonal. The corresponding estimation errors for the matrix L show similar

patterns, and are thus omitted.

Figure 2.5: Estimation accuracy when data are generated from Case A.
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Figure 2.6: Estimation accuracy when data are generated from Case B.

Figure 2.7: Estimation accuracy when data are generated from Case C.

29



Figure 2.8: Estimation accuracy when data are generated from Case D.

In the Appendix A.3 we provide two additional simulations for a more general matrix T (L)

than those discussed previously, and to compare our sparse SC with the existing sparse Cholesky

estimators (CSCS, HSC) so far support recovery is concerned. The results confirm the good perfor-

mance of the SC method. The two general matrices are: (1) T is a full lower triangular matrix and

its subdiagonals are chosen randomly from the Cases (A-D), (2) T has a nonhierarchical structure

(Yu and Bien, 2017), that is nonzero subdiagonals are followed by block zero subdiagonals and

again by nonzero subdiagonals.

2.4.4 Covariance Estimators

In this section, we assess the performance of our method on learning (inverse) covariance

matrices for the Cases A-D. We compare our SC method (Fused, HP, Trend) with the CSCS and

HSC methods. To make them comparable, instead of limiting the SC algorithm to run over the first

five subdiagonals, as in the last two sections, here we use the more general sparse SC estimator

(see Lemma 2) with the two tuning parameters λ1 and λ2, respectively. Due to space limitation,

we report results only for the p = 150 with the tuning parameters selected using the CV criterion.

30



We evaluate performance of the estimators using the scaled Kullback-Leibler loss 1
p

[
tr(Ω̂Σ)−

ln|Ω̂Σ|−p
]

for the inverse covariance and scaled Frobenious norm for the covariance matrix. From

results reported in Figures 2.9a and 2.9b for cases A, B, and C, it is evident that the SC algorithm

learns the covariance matrix better than the SCSC and HSC methods. In particular, for the case

A, SC-Fused provides the lowest error measure and for cases B and C, SC-Trend and HP are the

lowest. For the Case D, the HSC is the best. For learning the inverse covariance matrix, the SC

performs better for all the four cases.

(a) Frobenious norm (b) Kullback - Leibler loss

Figure 2.9: Performance of covariance and inverse covariance matrix estimators for p = 150.

2.4.5 The Cattle Data

This dataset Kenward (1987) is from an experiment in which cattle were assigned randomly

to two treatment groups A and B. The weights of animals were recorded to study the effect of

treatments on intestinal parasites. The animals were weighed p = 11 times over 122 days. Of 60

cattle n = 30 received treatment A and the other 30 received treatment B. The dataset has been

widely used in the literature of longitudinal data analysis (Wu and Pourahmadi, 2003);Huang et al.

(2007).
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The classical likelihood ratio test rejected equality of the two within-group covariance matri-

ces, thus it is recommended to study each treatment group’s covariance matrix separately. In this

paper, we report our results for the group A cattle. It is known (Zimmerman and Nunez-Anton,

2010) that the variances and the same-lag correlations are not constant, but tend to increase over

time , so that the covariance exhibits nonstationarity features. To learn the 11 × 11 covariance

matrix, we apply the following methods : SC (HP, Fused, Trend), sample covariance S, unstruc-

tured antedependence (AD) (Zimmerman and Nunez-Anton, 2010, Section 2.1), autoregression

process (AR), variable-order antedependece (VAD) (Zimmerman and Nunez-Anton, 2010, Sec-

tion 2.6) and the structured AD model in (Pourahmadi, 1999), referred to as POU in the following

plot. More specifically, following Zimmerman and Nunez-Anton (2010, Section 8.2) we consider

AD(2), VAD(0,1,1,1,1,1,1,2,2,1,1), AR(2), and POU model for which the log-innovation variances

are a cubic function of time and the autoregressive coefficients are a cubic function of lag. Tuning

parameters for all three SC methods were selected using a 5−fold cross-validation.

Figure 2.10: Plots of estimated first and second subdiagonals of the covariance matrix for the
various estimation methods. The difference of the structure of subdiagonal curves from the AR
model and Sample covariance matrix suggests adverse affect of the stationary assumption.

We plot the first two subdiagonals of estimated covariance matrices for the SC(HP, Fused,

Trend), S and AR(2) methods in Figure 2.7. It can be seen that the estimators of subdiagonals
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provided by the SC methods are almost identical to those of the sample covariance matrix. How-

ever, the estimated subdiagonals from AR(2) illustrate a different behavior suggesting that the data

does not support the underlying AR model. In Appendix we provide similar plots for all eight

estimators. In Table 2.1 we report the values of the negative log-likelihood for various methods

which also confirm the results in Figure 2.10. The maximum log-likelihood is in bold.

Table 2.1: Log-likelihood values for various estimation methods.

Method

SC-HP -541.836
SC-Fused -547.129
SC-Trend -546.573
AD(2) -541.451
VAD -542.861
AR(2) -1, 637.894
POU -862.430
S −529.4207

2.4.6 The Call Center Data

In this section, we assess the forecast performance of the SC, CSCS, and HSC algorithms by

analyzing the call center data (Huang et al., 2006), from a call center in a major U.S. northeastern

financial organization. For each day in 2002 phone calls were recorded from 7:00 AM until mid-

night, the 17-hour interval was divided into 102 10-minute subintervals, and the number of calls

arrived at the service queue during each interval were counted. Here, we focus on weekdays only,

since the arrival patterns on weekdays and weekends differ.

We denote the counts for day i by the vector Ni = (Ni,1, . . . , Ni,102)′, i = 1, . . . , 239, where

Ni,t is the number of calls arriving at the call center for the tth 10-minute interval on day i. The

square root transformation xit =
√
Nit + 1/4, i = 1, . . . , 239, t = 1, . . . , 102, is expected to

make the distribution closer to normal. The estimation and forecast performances are assessed by

splitting the 239 days into training and test datasets. In particular, to estimate the mean vector and
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the covariance matrix, we form the training dataset from the first T days (T = 205, 150, 100, 75).

Six covariance estimators, five penalized likelihood methods, SC (HP, Fused, and Trend), CSCS

and HSC, along with S were used to estimate the 102 × 102 covariance matrix of the data. The

tuning (penalty) parameters were selected using 5-fold cross validation described in Section A.2.

We report the log-likelihood (Khare et al., 2019) for the test dataset evaluated at all above estima-

tors in Table 2.2, where the largest value in each column is in bold. For all training data sizes, the

SC algorithm demonstrates superior performance compared to the other methods. In particular, for

T = 205, 150, the SC-Trend is the best, but for T = 100, 75 the SC-Fused provides better results.

Table 2.2: Test data log-likelihood values for various estimation methods with training data size
205,150, 100, 75.

Methods Training data size

205 150 100 75

SC
HP -14, 435.700 -9, 018.556 -7, 472.817 -7, 467.412

Fused -13, 123.300 -8, 587.785 −7,034.868 −7,097.938
Trend −12,274.970 −8,477.271 -7, 040.924 -7, 222.989

Sparse Cholesky
CSCS -16, 814.450 -9, 754.996 -7, 484.153 -7, 365.298
HSC -14, 382.330 -8, 971.729 -7, 395.206 -7, 342.343

Next, we focus on forecasting the number of call arrivals in the later half of the day using ar-

rival patterns in the earlier half of the day (Huang et al., 2006). In particular, for a random vector

xi = (xi,1, . . . , xi,102)′, we partition xi = ((x
(1)
i )′, (x

(2)
i )′)′ where x(1)

i and x(2)
i are 51-dimensional

vectors that correspond to early and later arrival patterns for day i. Assuming multivariate normal-

ity, the optimal mean squared error forecast of x(2)
i given x(1)

i is

E(x
(2)
i |x

(1)
i ) = µ2 + Σ21Σ−1

11 (x
(1)
i − µ1), (2.21)
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Table 2.3: Number of times (out of 51) each estimation method achieves the minimum forecast
error for training data size 205, 150, 100, 75.

Training data size

Method 205 150 100 75

SC-HP 1 5 9 20
SC-Fused 3 7 2 3
SC-Trend 7 8 16 1

CSCS 3 8 10 15
HSC 12 13 14 12

S 25 10 - -

corresponding to partitioning of the mean and covariance matrix of the full vector:

µ′ = (µ′1, µ
′
2), Σ =

Σ11 Σ12

Σ21 Σ22.


We compare the forecast performance of six covariance estimators (SC (HP, Fused, Trend),

CSCS, HSC, and S) by using training and test datasets described above. The sample mean and

covariance matrix are computed from the training data for each T . Using (2.21), the 51 first half

of a day arrival counts were used to forecast the second half of the day arrival counts. For each

time interval t = 52, . . . , 102, we define the forecast error (FE) by the average

FEt =
1

239− T

239∑
i=T+1

|x̂it − xit|,

where xit and x̂it are the observed and forecast values, respectively (Huang et al., 2006). Table 2.3

reports the number of times each of the six forecast methods has the minimum forecast error values

out of the total 51 trials. The maximum of the number of times the method achieves the minimum

forecast error in each column is in bold. When T = 205 and the training data size is larger than the

number of variables, the forecast based on the Sample covariance matrix performs the best in terms

of the number of times it achieves the minimum forecast error. For T = 150, the HSC is a bit better
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than the sample covariance matrix. However, as the training data size decreases, the forecasting

ability of the SC algorithm increases. In particular, the SC-Trend and HP report the best result in

terms of the number of times they achieve the minimum forecast error for T = 100 and T = 75,

respectively. Most of the result in Table 2.3 is supported by the aggregate forecast errors reported

in Table 2.4, where aggregate forecast error is the sum of forecasted errors over t = 52, . . . , 102.

The minimum aggregate forecast error the method achieves is in bold. The discrepancies between

Table 2.3 and Table 2.4 can be explained by looking on Figure 2.11, which illustrates a plot of

FEt for varying values of the training data size. For example, for T = 150 the HSC achieves

the minimum forecast error the most in terms of the number of times, however SC-Fused is the

lowest in terms of the aggregate forecast error. This discrepancy explained from the top right plot

of Figure 2.11, where it can be seen that when the FEt of HSC is lowest, the FEt of SC-Fused

does not concede to much, but when the FEt of SC-Fused is the lowest, HSC takes higher values,

which forces the aggregate error of SC-Fused to be lower than the error of HSC,

Table 2.4: Aggregate forecast error for training data sizes 205,150,100,75.

Training data size

Methods 205 150 100 75

SC-HP 403.555 34.093 24.186 9.363
SC-Fused 377.938 25.299 31.377 44.403
SC-Trend 371.936 31.981 23.202 23.565

CSCS 307.096 38.130 28.578 13.799
HSC 151.817 28.299 22.917 11.214

S 111.276 42.432 − −

An R (R Core Team, 2019) package, named SC, is available on Github repository (Dallakyan,

2019). The core functions are coded in C++, allowing us to solve large-scale problems in substan-

tially less time.
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Figure 2.11: Forecast Error for each estimation method for training data size 205,150,100,75
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3. LEARNING BAYESIAN NETWORKS THROUGH BIRKHOFF POLYTOPE

3.1 Introduction

Bayesian Networks (BNs) are a popular class of graphical models whose structure is repre-

sented by a DAG G. BNs are interdisciplinary subjects that have been used in many applications

such as economics, finance, biology, etc (Bessler and Akleman, 1998; Neil et al., 2005; Needham

et al., 2007; Dallakyan, 2020). In recent years the following main approaches have been evolved to

learn the structure of the underlying DAG from data: Independence-based (also called constraint-

based) methods (Pearl, 2009; Spirtes and Glymour, 1991) and score-based methods (Heckerman

et al., 1995; Chickering, 2002; Teyssier and Koller, 2005; Loh and Bühlmann, 2014). Here, struc-

ture learning refers to recovering DAG from observational data.

Independence-based methods, such as the inductive causation (IC) (Pearl, 2009) and PC (Peter-

Clark) (Spirtes and Glymour, 1991) algorithm, utilize conditional independence tests to detect the

existence of edges between each pair of variables. The majority of independence-based methods

require a faithfulness assumption for the joint distribution P to the DAG, where P is faithful to the

DAG G if all conditional independencies in P are entailed in G.

In contrast, score-based methods measure the goodness of fit of different graphs over data by

optimizing a score function with respect to the unknown (weighted) adjacency matrix B with a

combinatorial constraint that the graph is DAG. Then use a search procedure to find the best graph.

Commonly used search procedures include hill-climbing (Heckerman et al., 1995; Tsamardinos

et al., 2006), forward-backward search (Chickering, 2002), dynamic, and integer programming

(Silander and Myllymäki, 2006; Koivisto, 2006; Jaakkola et al., 2010; Studený and Haws, 2014;

Hemmecke et al., 2012). Recently, Zheng et al. (2018, 2020) proposed a fully continuous program

for structure learning by introducing a novel characterization of acyclicity constraint. Generally,

the DAG search space is intractable for a large number of nodes p and the task of finding a DAG

is NP-hard (Chickering, 2002). To make the space tractable, approximate methods have been
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proposed with additional assumptions such as bounded maximum indegree of the node (Cooper

and Herskovits, 1992) and tree-like structures (Chow and Liu, 1968).

In parallel with searching in DAG space, ordering space (or the space of topological order-

ing) has been exploited for score-based methods (Teyssier and Koller, 2005; van de Geer and

Bühlmann, 2013; Aragam and Zhou, 2015; Ye et al., 2020) in which the topological ordering is

considered as an additional parameter in the score function. Here, a score of particular order is

defined as the score of the best DAG consistent with it (Teyssier and Koller, 2005), and a permu-

tation π of the vertex set V = {1, · · · p} is a topological order for DAG if π(j) < π(k) whenever

(j, k) ∈ E. Such a topological order exists for all DAGs, but it may not be unique (Koller and

Friedman, 2009). The order-based search has two main advantages: The ordering space (2O(p log p))

is significantly smaller than the DAG search space (2O(p2)), and the existence of ordering guaran-

tees satisfaction of the acyclicity constraint.

Annealing on Regularized Cholesky Score (ARCS) algorithm, proposed in Ye et al. (2020),

represents an ordering by the corresponding permutation matrix P , and then given the ordering,

encodes the weighted adjacency matrix B into the Cholesky factor L of the inverse covariance

matrix. ARCS optimizes a regularized likelihood score function to recover a sparse DAG structure

and utilizes simulated annealing (SA) to search over P . In SA, using pre-specified constant m and

a temperature schedule {T (i), i = 0, . . . , N}, in each ith iteration the new permutation matrix P ∗ is

proposed by flipping a fixed-length m random interval in the current permutation P̂ , and checking

whether to stay at the current P̂ or move to the proposed P ∗ with some probability.

Motivated by the ARCS two-part framework, we propose an order-based method for learning

Gaussian DAGs by optimizing a non-convex regularized likelihood score function. Our proposal

has the following distinct features and advantages. First, instead of an expensive search of a per-

mutation matrix P in the non-convex space of permutation matrices, we propose the following

relaxation: project P onto the Birkhoff polytope (the convex space of doubly stochastic matrices)

and then find the “closest” permutation matrix to the optimal doubly stochastic matrix (See Fig-

ure 3.2). The projection step includes a concave regularization term, which pushes the projected
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doubly stochastic matrix “closer” to the permutation matrix if the penalization parameter is suffi-

ciently large. The proposed relaxation is convex if the number of observations exceeds the number

of variables (Lemma 6).

Second, given P , we resort to the cyclic coordinatewise algorithm to recover the DAG structure

entailed in the Cholesky factor L. We show that the optimization reduces to p decoupled penalized

regressions where each iteration of the cyclic coordinatewise algorithm has a closed form solution.

Moreover, the convergence of iterates to the stationary point is guaranteed.

Third, on the statistical side, our method produces a consistent Cholesky factor estimator for

the non-convex score function, assuming that the true permutation matrix is known. To the best of

our knowledge, consistency results for the sparse Cholesky factor estimator were established only

for convex problems (Yu and Bien, 2017; Khare et al., 2019).

3.2 Bayesian Networks

We start by introducing the following graphical concepts. If the graph G contains a directed

edge from the node k → j, then k is a parent of its child j. We write ΠGj for the set of all parents

of a node j. If there exist a directed path k → . . . → j, then k is an ancestor of its descen-

dant j. A Bayesian Network is a directed acyclic graph G whose nodes represent random variables

X1, . . . , Xp. Then G encodes a set of conditional independence assumptions and conditional proba-

bility distributions for each variable. It is well-known that for a BN, the joint distribution factorizes

as:

P (X1, . . . , Xp) =

p∏
j=1

P (Xj|ΠGj )

The DAG G = (V,E) is characterized by the node set V = {1, . . . , p} and the edge set

E = {(i, j) : i ∈ ΠGj } ⊂ V × V .

3.2.1 Gaussian BN and Structural Equation Models

In this section, we focus on recovering the DAG of the Gaussian BN. Saliently, the Gaussian

BN can be equivalently represented by the linear SEM:
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Xj =
∑
k∈ΠGj

βjkXk + εj, j = 1, . . . , p, (3.1)

where εj ∼ N(0, ω2
j ) are mutually independent and independent of {Xk : k ∈ ΠGj }. Denoting

B = (βjk) with zeros along the diagonal, the vector representation of (3.1) is

X = BX + ε, (3.2)

where ε := (ε1, . . . , εp)
t and X := (X1, . . . , Xp)

t. We can characterize the linear SEM X ∼

(B,Ω) by the weighted adjacency matrix B and the noise variance matrix Ω = diag(ω2
1, . . . , ω

2
p).

From (3.2), the inverse covariance matrix of X ∼ Np(0,Σ) is Σ−1 = (I −B)tΩ−1(I −B), where

B−t denotes the inverse transpose of the matrixB, and the edge set of the underlying DAG is equal

to the support of the weighted adjacency matrix B; i.e., E = {(k, j) : βjk 6= 0}, which defines the

structure of DAG G. Consequently, B should satisfy the acyclicity constraint so that G is indeed a

DAG.

As discussed in the Introduction, each DAG admits a topological ordering π. To each π, we

associate a p × p permutation matrix Pπ, such that Pπx = (xπ(1), . . . , xπ(p), for x ∈ Rp. The ex-

istence of a topological order leads to the permutation-similarity of B to a strictly lower triangular

matrix Bπ = PπBP
t
π by permuting rows and columns of B, respectively (see Figure 3.1 for the

illustrative example). Therefore, the stringent acyclicity constraint on B transforms into the con-

straint that Bπ is a strictly lower triangular matrix, and the linear SEM model can be represented

by

PπX = BπPπX + Pπε, (3.3)

since P t
πPπ = I . From (3.3), the inverse covariance matrix can be expressed as

Σ−1
π = (I −Bπ)tΩ−1

π (I −Bπ), (3.4)

where Ωπ = PπΩP t
π. From (3.3) and (3.4), defining Lπ = (I−Bπ)Ω

−1/2
π , the relationship between
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Figure 3.1: Illustration of DAG G, corresponding coefficient matrix B, permutation matrix P , and
permuted strictly lower triangular matrix Bπ.

the Cholesky factor Lπ of the inverse covariance matrix Σ−1
π = LtπLπ and the matrix Bπ is

(Lπ)ij = −(Bπ)ij/
√
ωj, and

(Lπ)ij = 0 ⇐⇒ (Bπ)ij = 0 for every i ≥ j

(3.5)

Hence, Lπ preserves the DAG structure of Bπ; i.e., non-zero elements in Lπ correspond to directed

edges in DAG G.

3.3 Score Function

In this section, given data from the Gaussian BN (or SEM), we derive the form of the score

function to recover the underlying DAG structure. We assume that each row of data matrix X =

(X1, . . . , Xp) ∈ Rn×p is an i.i.d observation from (3.1). Using reformulation (3.3),

XP t
π = XP t

πB
t
π + EP t

π, (3.6)
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where each row of E is an i.i.d vector and follows Np(0,Ω). Thus, each row of XP t
π is, again, an

i.i.d from Np(0,Σπ), and the negative log-likelihood for (3.6) is:

`(Bπ,Ωπ, Pπ|X) =
1

2
tr
(
PπX

tXP t
π(I −Bπ)tΩ−1

π (I −Bπ)
)

+
n

2
log|Ωπ|,

(3.7)

where we used Σπ = cov(PπX) = PπΣP t
π = (I − Bπ)−1Ωπ(I − Bπ)−t, and Bπ is a strictly

lower triangular matrix. From now on, whenever there is no confusion in the context, we drop the

subscript π from Pπ, Bπ,Ωπ and Σπ.

After reparametrizing (3.7) in terms of L and P , we obtain the following log-likelihood func-

tion:

`(L, P |X) =
1

2
tr
(
PSP tLtL

)
−

p∑
j=1

logLjj, (3.8)

where we used S = XtX/n for the sample covariance and matrix determinant |Ω|−1/2= |L|=∏p
j=1 Ljj . Given the permutation matrix, we denote the optimal value of (3.7) as

`∗(P ) = min
L∈Lp

`(L, P ), (3.9)

where Lp is the space of lower triangular matrices with positive diagonal entries. Ye et al. (2020,

Proposition 1) showed that `∗(·) is invariant to permutations, and maximum likelihood does not

favor any particular ordering. Consequently, all maximum likelihood DAGs corresponding to a

different permutation produce the same Gaussian likelihood.

In order to break the permutation invariance in (3.9), we follow Ye et al. (2020) and regularize

the negative log-likelihood function to favor sparse DAGs. We consider the following penalized

loss function:

Q(L;P ) =
1

2
tr
(
PSP tLtL

)
−

p∑
j=1

logLjj

+
∑

1≤j≤i≤p

ρ(|Lij|;λ),

(3.10)
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where the penalty function ρ(·, λ) : R → R satisfies conditions listed in Loh and Wainwright

(2015) and reiterated in Appendix for convenience. Those conditions are important for establishing

theoretical properties of our estimator in Section 3.6:

From (3.10), a permutation leading to a sparser Cholesky factor L has a smaller loss value

Q(L;P ), and a DAG learning problem can be restricted to finding a permutation matrix, which

gives the sparsest solution L; i.e.,

min
L∈Lp,P∈Pp

Q(L, P ) = min
L,P

{1

2
tr
(
PSP tLtL

)
−

p∑
j=1

logLjj

+
∑

1≤j≤i≤p

ρ(|Lij|;λ)
}
,

(3.11)

where Pp is the set of all p× p permutation matrices.

3.4 A Minimization Algorithm

We now provide an algorithm to minimize the score function (3.11), called Relaxed Regu-

larized Cholesky Factor (RRCF), with respect to P and L, respectively. It has two main steps

formulated in Algorithm 2. First, we propose a regularized relaxation to solve the optimization

problem in line 5 through a gradient projection algorithm (see Algorithm 4). Then estimate a

Cholesky factor in line 6 utilizing a cyclic coordinatewise algorithm (see Algorithm 5). We show

that in the first step, a convex relaxation can be achieved when the number of observations exceeds

the number of variables.

3.4.1 Optimization Over the Permutation Space

A paramount issue in finding an optimal permutation matrix is that the number of fixed ar-

rangements of variables is p!. Ye et al. (2020) mitigate the problem by using simulated annealing

technique to search over the permutation space. Our approach is significantly different and relies

on enlarging the non-convex set of permutation matrices by the convex set of doubly stochastic

matrices (Birkhoff polytope) and finding the “closest” permutation matrix to the optimal doubly
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Algorithm 2 RRCF algorithm
1: input:
2: λ, kmax ← Tuning Parameter, iteration
3: L(0), P (0) ← Initial matrices
4: while k < kmax:
5: P̂ (k) = arg minP∈Pp QRRCF (L(k−1), P )

6: L̂(k) = arg minL∈Lp QRRCF (L, P (k))
7: k = k + 1
8: Output: (L̂, P̂ )

stochastic matrix. Inspired from the recent advances in Seriation (Fogel et al., 2013) and Graph

Matching problems (Zaslavskiy et al., 2009; Wolstenholme and Walden, 2016), we propose a re-

laxation to the hard combinatorial problem.

3.4.1.1 Relaxation

The impetus of this section is the framework developed in Fogel et al. (2013, Section 3.2). The

optimization in line 5 of Algorithm 2 can be written as:

min
P

1

2
tr(LPSP tLt)

s.t. P ∈ Pp,
(3.12)

where we eliminate terms that are constant with respect to P . We denote the Birkhoff polytope by

Dp (the space of doubly stochastic matrices), whereDp = {A ∈ Rp×p : A ≥ 0, A1 = 1, At1 = 1}.

The polytope Dp has p! vertices and dimension of (p − 1)2. It is informative to note that every

permutation matrix is a doubly stochastic matrix, and a matrix is a permutation if and only if it is

both doubly stochastic and orthogonal; i.e., Pp = Dp∩Op, whereOp is the set of p× p orthogonal

matrices. Moreover, from Birkhoff’s Theorem, every doubly stochastic matrix can be written as

a convex combination of permutation matrices and the set of doubly stochastic matrices is the

convex hull of the set of permutation matrices (Horn and Johnson, 2012, Theorem 8.7.2), where

permutation matrices are vertices (extreme points) of the polytope. More on Birkhoff polytopes

and its properties can be found in Brualdi and Gibson (1977).
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Since the sample covariance matrix S < 0 is positive semi-definite, we can introduce a convex

relaxation to the combinatorial problem (3.12) by replacing Pp with its convex hull Dp:

min
P

1

2
tr(LPSP tLt)

s.t. P ∈ Dp,
(3.13)

However, as we show in Corollary 1, the solution of (3.13) is not an acceptable candidate for

developing our algorithm. Before introducing the corollary, in the next lemma, we list well-known

properties of doubly stochastic matrices that are used to establish the framework for the relaxation.

Since we are not aware of a source to cite, we give proof in the Appendix for completeness. We

denote by J ∈ Dp the p× p matrix all of whose entries are 1.

Lemma 5. For any p× p doubly stochastic matrix P ∈ Dp,

1 ≤ ‖P‖F≤
√
p

The left and right equalities hold if and only if P = J/p and P is a permutation matrix, respec-

tively.

From the Lemma 5, the following corollary easily follows.

Corollary 1. The optimal solution of (3.13) is P̂ = J/p.

Thus, the solution of (3.13) is the center of the Birkhoff polytope (Ziegler, 1995, page 20)

and far from vertices where permutation matrices are located. To force it closer to the vertex, we

utilize Lemma 5 to add a proper penalty to the objective function (See Figure 3.2 for the geometric

depiction.)

min
P

1

2
tr(LPSP tLt)− 1

2
µ‖P‖2

F

s.t. P ≥ 0, P1 = 1, P t1 = 1,

(3.14)

where for the large enough value µ > 0, ‖P‖2
F achieves its upper bound, which is p from the

Lemma 5; i.e., the larger µ, the closer the solution of (3.14) is to a permutation matrix. Similar
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J/p

(2,3,1)(2,1,3)

(1,2,3)

(1,3,2) (3,1,2)

(3,2,1)

Figure 3.2: A geometric depiction of relaxation (3.14) for D3 Birkhoff polytope. Here, vertices
represent permutations, and matrix J/p indicates the center of the polytope.

to Fogel et al. (2013, Proposition 3.5), the next lemma shows that the convexity of the objective

function (3.14) depends on the intertwined values of µ and the smallest eigenvalue of S and LtL.

As a result, the convexity is untenable when n << p. We mitigate this problem by introducing

an additional transformation to maintain convexity when n ≈ p (Lemma 6(b)). The following

notation is used in the lemma: we write λ1 < λ2 < · · · < λm as an ordered, distinct eigenvalues

of the p× p matrix. The proof is provided in the Appendix for completeness.

Lemma 6. a. If µ ≤ λ1(S)λ1(LtL), optimization problem (3.14) is convex in P .

b. If µ ≤ λ2(S)λ1(LtL) and T = I − 1
p
11t is the projection matrix into the orthogonal com-

plement of 1, then the optimization problem

min
P

1

2
tr(LPSP tLt)− 1

2
µ‖TP‖2

F

s.t. P ≥ 0, P1 = 1, P t1 = 1,

(3.15)

is equivalent to problem (3.14) and is convex in P .

c. If µ > λm(S)λm(LtL), optimization problem (3.14) is concave in P and the solution is a

permutation matrix.

From Lemma 6(a) and (b), for n << p, λ2(S) is zero, and there is no µ > 0 that validates

convexity of (3.15). The question we investigate next is whether, under the convexity assumption

of Lemma 6(a) or (b), there is a value of µ that asymptotically achieves “closeness” to the permu-

tation matrix in terms of Frobenius norm. We provide the answer only for (3.14), but the similar
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result holds for (3.15) by analogy. Recall that we tacitly assume the condition n > p to maintain

convexity.

Lemma 7. Under convexity condition in Lemma 6(a), for µ > 0

‖P̂ − P‖F 6→ 0, as n→∞, (3.16)

where P ∈ Pp and P̂ is the solution of (3.14).

The proof can be found in Appendix. Lemma 7 suggests that under a convexity condition, the

solution of (3.14) does not get “close” to the permutation matrix, even when n → ∞. The result

may encourage the use of higher values of µ, resulting in a non-convex objective function. How-

ever, this approach is not recommended. Our empirical results suggest that for comparably large

µ, the RRCF algorithm becomes independent from the data and highly dependent on the initial

choice of P . Consequently, it gets stuck at one of the extreme points of the Birkhoff polytope. The

choice of µ for this setting is an open question and left for further investigation. Here, when n < p,

we propose to treat µ as a tuning parameter and use information criteria or cross-validation for the

selection.

3.4.1.2 Gradient Projection Algorithm

We provide details for solving (3.15), but the procedure similarly applies to (3.14). Optimiza-

tion (3.15) is a quadratic program (QP), and rich literature exists on solving this class of problems.

In this section, we rely on the Gradient Projection (Bertsekas, 2015) method and show the conver-

gence of the algorithm. Algorithm 3 outlines general steps, where [·]+ denotes projection on the

space of doubly stochastic matrices Dp.

Line 6 of the algorithm requires projection onto the Birkhoff polytope, which can be efficiently

implemented by the block coordinate ascent, where each iteration has a closed form solution. The

details on the block coordinate ascent algorithm are given in the next section. The following lemma

guarantees convergence of Algorithm 3, where T is the projection matrix defined in Lemma 6.
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Algorithm 3 Gradient Projection
1: input:
2: kmax, µ, η ← the number of iterations and positive scalars
3: L, P (0) ← Cholesky and Initial Permutation matrix
4: Set initial stepsize and update: P̄ 0 = P 0

5: while ‖P (k+1) − P (k)‖> ε :
6: P̂ (k+1) = [P (k) − η∇QRRCF (P (k), L)]+ via Algorithm 8
7: P (k+1) = P (k) + αk(P̂ (k+1) − P (k))
8: k = k + 1
9: Output: Doubly Stochastic Matrix P

Lemma 8. For µ ≤ λ2(S)λ1(LtL) and with a constant stepsize η ∈ (0, 2/(‖S‖‖LtL‖+µ‖T‖)),

Algorithm 3 converges to the global minimum.

The proof is provided in Appendix.

3.4.1.3 Projection onto the Birkhoff Polytope

Here, we give details on solving line 6 of Algorithm 3. For a given matrix P0, the projection

onto P ∈ Dp can be written as

min
P

1

2
‖P − Po‖2

F

s.t. P ≥ 0, P1 = 1, P t1 = 1.

(3.17)

The Lagrangian of (3.17) is (Bertsekas, 2015)

L(P, u, v, U) =
1

2
‖P − P0‖2

F+ut(P1− 1)

+ vt(P t1− 1)− tr(U tP ),

and the dual objective function is defined as:

L∗(u, v, U) = inf
P
L(P, u, v, U). (3.18)
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Consequently, the dual problem of (3.17) is (see Appendix B.2 for details)

max
u,v,U

− 1

2
‖u1t + 1vt − U‖2

F−tr(U tP0)

+ ut(P01− 1) + vt(P t
01− 1)

s.t. U ≥ 0,

(3.19)

Following Fogel et al. (2013, Section 4.2), we use the block coordinate ascent algorithm to opti-

mize the dual problem (3.19). We show that each block update has a closed form solution. Details

of the algorithm and the derivation of closed form solutions are relegated to the Appendix.

In the next section, we propose a framework to find the “closest” permutation matrix to the

doubly stochastic matrix solution (3.14) or (3.15).

3.4.1.4 Sampling Permutations from the Doubly Stochastic Matrix

From Lemma 7, under a convexity condition or for moderately large values of µ, the solution of

a convex relaxation (3.14) or (3.15) does not result in a permutation matrix P . Thus, after finding

a doubly stochastic matrix, we need to project the solution to the “closest” matrix P ∈ Pp. If

we denote by P̃ a doubly stochastic matrix solution of (3.14) or (3.15), then a common method

to project matrix to a permutation space is through the following optimization (Zaslavskiy et al.,

2009, Section 2.1):

arg min
P∈Pp

‖P̃ − P‖2
F= arg max

P∈Pp
tr{P̃ tP}, (3.20)

which is a linear assignment problem and usually solved by the Hungarian algorithm (Burkard

et al., 2012, Section 4.2.1), which takes O(p3) time.

However, (3.20) suffers a serious drawback since it only delivers one candidate solution to

(3.14) or (3.15), and if it is not “close” to the true permutation matrix P , it is unclear how to con-

tinue (Wolstenholme and Walden, 2016, Section 3). For this class of problems, as an alternative,

the literature suggests a permutation sampling procedure initially proposed for the orthogonal ma-

trices in Barvinok (2005). The idea is to “round” an orthogonal matrixQ to a permutation matrix P

by considering its action on the random vector x ∈ Rn sampled from a Gaussian distribution. Con-
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sider a sample x ∈ Rp from a Gaussian distribution and an ordering vector r(x) such that r(x)i = k

where xi is the kth smallest value of x. For example, if x = [4.7,−2.1, 2.5]t ⇒ r(x) = [3, 1, 2]t.

Barvonik argues, if the permutation matrix P satisfies

P (r(x)) = r(Qx) (3.21)

then it is “close” in Frobinius norm to Q with respect to x, as they both act on x in a similar way

(Barvinok, 2005, Theorem 1.6). In other words, P matches the kth smallest coordinate of x with

the kth smallest coordinate ofQx, and P represents a “rounding” ofQ. This provides a framework

to project an orthogonal matrix to a distribution of permutation matrices.

The proof of Barvinok (2005, Theorem 1.6) reveals that the argument is not restricted to orthog-

onal matrices and successfully extends to doubly stochastic matrices (Wolstenholme and Walden,

2016, Section 4A). We use (3.21), selecting a doubly stochastic matrix P̃ instead of Q, to generate

N permutation matrices each “close” to the doubly stochastic matrix P̃ . Then a usual way to select

the “best” permutation matrix from the N sampled matrices is to pick a matrix that provides the

lowest cost to (3.13) (Fogel et al., 2013, Section 3.2.4).

Finally, Algorithm 4 combines necessary steps to estimate a permutation matrix P in line 5: es-

timation of the doubly stochastic matrix (3.15), and its approximation to the “closest” permutation

matrix via (3.21).

Algorithm 4 Optimization over permutation matrices
1: input:
2: Nmax ← max. number of sampling
3: Find P̃ via Algorithm 3
4: if P̃ 6∈ Pp:
5: while j < Nmax:
6: Sample: x(j) ∼ N(0, Ip)}
7: Solve for P (j) using (3.21):
8: From {P (j)}Nmaxj=1 choose P that minimizes (3.13) .
9: Output: Permutation Matrix P
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3.4.2 Cholesky Factor Estimation

In this section, we focus on estimating a Cholesky factor L from line 6 of Algorithm 2. We fix

a permutation matrix P and update the Cholesky factor L using a non-convex objective function

(3.10). Recall that a Cholesky factor L entails the DAG structure, and by learning L, accordingly,

we learn the DAG structure in B.

Recently, there has been active research on estimating the sparse Cholesky factor L with the

known order of variables, using various penalty forms and a convex objective function. For ex-

ample, Shojaie and Michailidis (2010) and convex sparse Cholesky selection (CSCS) algorithm

proposed in Khare et al. (2019) achieve sparsity through the lasso penalty. Yu and Bien (2017)

used a structured penalty form, which also guarantees sparsity of the precision matrix. In a differ-

ent approach, the SC algorithm, proposed in Dallakyan and Pourahmadi (2020), estimates matrix

L focusing on capturing the smoothness of subdiagonals instead.

We propose a cyclic coordinatewise algorithm to estimate the Cholesky factor L for a fixed

permutation matrix P . We show that the non-convex objective function of RRCF (3.10), can be

decoupled into p parallel penalized regression problems. From (3.10) and denoting SP = PSP t,

SPi the i× i sub-matrix of Sp, Li· the ith row of L, and βi non-zero values of the Li· it follows

QRRCF (L) = tr(LSpLt)− 2

p∑
i=1

logLii

+
∑

1≤j<i≤p

ρ(|Lij|, λ) =

p∑
i=1

(βi)tSPi β
i − 2

p∑
i=1

log(βii)

+

p∑
i=2

i−1∑
j=1

ρ(|βij|, λ) =

p∑
i=1

QRRCF,i(β
i),

(3.22)

where in arguments of QRRCF (·) we omit the dependence from P , and

QRRCF,i(β
i) = (βi)tSPi β

i − 2 log βii

+
i−1∑
j=1

ρ(|βij|, λ)
(3.23)
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for 2 ≤ i ≤ p, and

QRRCF,1(L11) = L2
11S

P
11 − 2 logL11 (3.24)

Here, as in Ye et al. (2020), we focus on the class of penalties called the minimax concave

penalty (MCP) proposed in Zhang (2010). The MCP satisfies condition stated in Appendix B.2

and utilizes convexity of the penalized loss near the sparse regions and turns concave outside. It

includes `1 and `0 as extreme cases. The MCP with two parameters (γ, λ) is given

ρ(θ, λ, γ) =


λ|θ|− θ2

2γ
|θ|< γλ,

1
2
γλ2 |θ|≥ γλ,

(3.25)

where λ ≥ 0 and γ > 1.

Next, we derive steps to minimize the score functionQRRCF (L) with respect to non-zero values

of L for the fixed P . We assume that diagonal entries of the sample covariance matrix S are strictly

positive. Since {βi}pi=1 disjointly partition the parameters in L, then optimizing QRRCF (L) can be

implemented by separately optimizing QRRCF (βi) for 1 ≤ i ≤ p.

We define a generic function h : Rk−1 ×R+ → R of the form

hk,A,λ,γ(x) = −2 log xk + xtAx+
k−1∑
i=1

ρ(|xi|, λ, γ), (3.26)

where λ > 0, γ > 1 and A is a positive semi-definite matrix with positive diagonal entries. It is

instructive note that QRRCF,i(β
i) = hi,Si,λ,γ(β

i) for every 1 ≤ i ≤ p, and it suffices to develop an

algorithm which minimizes a function of the form hi,A,λ,γ . For every 1 ≤ j ≤ k, we define

x∗j = inf
xj
hk,A,λ,γ(x).

Next lemma shows that {x∗j}kj=1 can be computed in the closed form. The proof is provided in

Appendix.
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Lemma 9. The optimal solution {x∗j}kj=1 can be computed in the closed form.

x∗k =
−
∑

l 6=k Alkxl +
√

(
∑

l 6=k Alkxl)
2 + 4Akk

2Akk
(3.27)

and for 1 ≤ j ≤ k − 1,

x∗j =
Sλ(−2

∑
l 6=k Alkxl)

2Ajj − 1/γ
(3.28)

Here, Sλ is the soft-thresholding operator given by Sλ(x) = sign(x)(|x|−λ)+. Using Lemma 9,

we can construct a cyclic coordinatewise minimization algorithm for hk,A,λ,γ . We use Algorithm 5

to minimize QRRCF (βi) for 1 ≤ i ≤ p, and combine outputs to obtain the estimated Cholesky

factor L in Algorithm 6.

Algorithm 5 Cyclic coordinatewise algorithm
1: input:
2: kmax, A, λ, γ, ε
3: x(0) ← Initial estimate
4: Set xcurrent = x(0); Converged = FALSE
5: while Converged == FALSE or k < kmax :
6: xold ← xcurrent

7: For j = 1,2,. . . , k - 1
8: xcurrentj = x∗j via (3.28)
9: xcurrentk = x∗k via (3.27)

10: if ‖xcurrent − xold‖< ε
11: Converged = TRUE
12: else k = k + 1
13: Output: x

3.4.2.1 Convergence of the Cyclic Coordintewise Algorithm

As discussed, the score function QRRCF (L) is non-convex with respect to L, and the conver-

gence of iterates in Algorithm 6 is guaranteed only to a local minimum. We begin by showing

that for fixed permutation matrix P , the objective function QRRCF (L) is lower bounded, a local
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Algorithm 6 Cholesky Factor Estimation
1: input:
2: kmax,X, λ, γ, ε
3: L(0) ← Initial Cholesky factor
4: For i = 1,2,. . . , p
5: βi = arg minβi QRRCF,i(β

i) via Algorithm 5
6: Construct L ∈ Lp by setting its non-zero values as βi

7: Output: Lower diagonal matrix L

minimum lies in the space of lower triangular matrices Lp with positive diagonal entries, and for

certain values of γ, the generic function h(·) is strictly convex.

Lemma 10. a. If Aii > 0, for 1 ≤ i ≤ p

hk,A,λ,γ(x) ≥ 2xk − 2.

b. For γ > max{1/2Aii, 1}, hk,A,λ,γ(x) is a strictly convex function of xi for 1 ≤ i ≤ k − 1.

c. For every n and p

inf
L∈Lp

QRRCF (L) =

p∑
i=1

inf
βi
QRRCF,i(β

i) ≥ −2p > −∞

and any local minimum of QRRCF over the open set Lp lies in Lp.

From this lemma, we can establish the convergence of the cyclic coordintewise algorithm.

Theorem 3. Under the Assumptions of Lemma 10, Algorithm 6 converges to a local minimum of

QRRCF (L).

3.5 Simulation and Data Analysis

In this section, we assay the empirical performance of our estimator on simulated and macro-

economic datasets.
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3.5.1 Simulation Study

For comparison, we include three other BN learning algorithms: ARCS:(Ye et al., 2020),

CCDr:(Aragam and Zhou, 2015), and RRCF-L (this method differs from our proposed method

only by having lasso penalty λ
∑

j<i|Lij| in (3.11) instead of MCP penalty).

In all simulations, the sample size n = 150 and each sample follows p-dimensional Gaussian

distribution N(0, (LtL)−1). We compare the performance of our method with the three algorithms

above, both in terms of the structure learning, and how well the weighted adjacency matrix B̂

estimates B. The weighted adjacency matrix B is constructed following Kalisch and Bühlmann

(2007, Section 4.1) framework. We adapt parameterization L = (I − B)Ω−1/2 to generate data

where we choose Ω = Ip. We consider p ∈ {100, 200} and expected sparsity level s ∈ {p, 2p}

which corresponds to the expected number of edges in the DAG. Each of the simulation settings

(p, s) is repeated over 20 datasets. The optimization parameters η, µ for the RRCF algorithm are

chosen according to Lemmas 6 and 8, α = 1, and for the tuning parameter selection, we rely on

the extended BIC criterion (Foygel and Drton, 2010) (See Appendix B.3 for details).

3.5.1.1 Structure Learning and Estimation Accuracy

We compare the four algorithms using the following four metrics: True Positive Rate (TPR),

False Positive Rate (FPR), Structural Hamming Distance (SHD), and scaled Frobenius norm,

which estimates how far is weighted adjacency matrix B̂ from B; i.e., 1
p
‖B̂ −B‖F .

Table 3.1 and Figure 3.3 report the simulation results based on the above four metrics. The

best average score for each metrics and (p, s) setting are highlighted in bold. Results suggest

that RRCF performance improves when s is higher for fixed p. In particular, for the (100, 100)

case, CCDr provides the best results for the TPR metric, followed by RRCF and ARCS, which

provide similar output. For the FPR metric, RRCF, CCDr, and ARCS provide identical results.

The situation changes for the (100, 200) case, where RRCF provides the best TPR average score,

and ARCS provides the best FPR average score. A similar pattern follows when we increase the

dimension from 100 to 200. RRCF_L provides the best scaled Frobenius norm result for all four
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Table 3.1: Average of three metrics over 20 replication for four (p,m) settings.

(p, s) Method TPR FPR FRB. NORM

(100,100)

RRCF_L 0.569 0.002 6.238
RRCF 0.600 0.001 6.868
CCDr 0.621 0.001 9.930
ARCS 0.601 0.001 7.052

(100,200)

RRCF_L 0.566 0.011 8.989
RRCF 0.652 0.009 10.299
CCDr 0.615 0.005 14.305
ARCS 0.635 0.004 10.569

(200,200)

RRCF_L 0.589 0.003 11.119
RRCF 0.622 0.003 12.509
CCDr 0.657 0.007 19.845
ARCS 0.641 0.001 12.883

(200,400)

RRCF_L 0.600 0.002 10.617
RRCF 0.653 0.001 11.752
CCDr 0.658 0.001 17.679
ARCS 0.655 0.001 12.043

(p,m) settings.

From Figure 3.3, for the (100, 100) case, the performance of RRCF is compatible with the

other algorithms. However, its performance, with respect to the SHD metric, deteriorates for the

other settings. ARCS and CCDr provide similar SHD scores for all four (p, s) settings.

3.5.2 Additional Simulation Results

Finally, we compare RRCF, RRCF_L, and ARCS performance using the receiver operating

characteristic (ROC) curve for the case (200, 400). ROC compares the true positive rate (TPR) and

the false positive rate (FPR). Curves closer to the upper-left corner indicate a better performance.

We fix the tuning parameter for RRCF and ARCS at γ = 2 and use a grid of 40 λ values for

comparison. Figure 3.4 shows the ROC curve for each estimator. From it follows that RRCF is

superior compare to the other algorithms.

3.5.3 Macro-Economic Application

We illustrate the practical use of RRCF by applying it to the macro-economic dataset. In

particular, we utilize our methodology to estimate the order of shocks (impulses) in the structural
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Figure 3.3: Structural Hamming Distance boxplot for four (p, s) settings.

Figure 3.4: ROC curve over the grid of λ values.

vector autoregression (SVAR) model. Impulse response functions are one of the main techniques

employed to analyze the dynamics in SVAR models (Lütkepohl, 2007, Section 2.3.2). They are

used to discover the future effects of a shock on variables.

The estimation of the impulse response function requires knowledge of the ordering among

contemporaneous error terms. There is growing literature on the use of DAGs for recovering such

an order. For example, see Swanson and Granger (1997); Bessler and Akleman (1998); Demiralp

and Hoover (2003) for Gaussian data and Dallakyan (2020) for non-Gaussian data. Algorithm 1

in Dallakyan (2020) provides details on the use of DAGs for the SVAR estimation. We iterate it in

Algorithm 7 by incorporating the RRCF step in line 7 to recover the ordering of error terms.
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Algorithm 7 SVAR procedure with RRCF
1: procedure
2: input:
3: y1, . . . , yt ← K dimensional stationary series
4: top:
5: Estimate the VAR model yt = A1yt−1 + · · ·+ Apyt−p + ut,
6: Estimate the residuals ût = yt − Â1yt−1 − · · · − Âpyt−p
7: Perform RRCF algorithm on residuals to recover ordering among residuals û1t, . . . , ûKt.
8: Estimate matrix K of structural coefficients by maximizing likelihood function (3.29)
9: Output:

10: B

The log-likelihood in line 8 of the Algorithm 7 is given by (Lütkepohl, 2007, Chapter 9.3.1)

ln lc(K) = constant +
T

2
ln|K|2−T

2
tr{K−TK−1Σ̃u}, (3.29)

where Σ̃u = T−1(Y − ÂX)(Y − ÂX)t, T is the length of series and matrix K contains structural

coefficients for the impulse response function.

We use RRCF incorporated Algorithm 7 to solve the price puzzle. The price puzzle in a struc-

tural autoregression (SVAR) system is known as an inability to explain the positive relationship

between an innovation(shock) in the federal funds rate (FFR) and inflation (Bernanke and Blin-

der, 1992; Sims, 1992; Balke and Emery, 1994; Demiralp et al., 2014). It is a puzzle since an

increase in the federal funds is expected to be followed by a decrease in the price level rather than

an increase (See Figure 3.5a).

Dallakyan (2020) showed that utilization of the recent DAG techniques to recover the ordering

of error terms in VAR mitigates the price puzzle problem. Here, we show that using the sparse VAR

approach and RRCF algorithm to recover the DAG structure of error terms leads to the complete

disappearance of the price puzzle.

To analyze the price puzzle, we use a relatively rich dataset from Demiralp et al. (2014). Data

consist of 12 monthly series for the United States that run from 1959:02 to 2007:06. Data sources

and details are provided in Demiralp et al. (2014). In the dataset, monetary policy is represented
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both by the Federal funds rate (FFR) and two reserve components: (the logarithms of) borrowed

reserves (BORRES) and nonborrowed reserves (NBORRES). Financial markets are represented

by two monetary aggregates (the logarithms of) M1 and (the non-M1 components of) M, as well

as by three interest rates: the own-rate of interest on M2 (M2OWN), the 3-month Treasury bill

rate (R3M), and the 10-year Treasury bond rate (R10Y ). Prices are represented by (the logarithms

of) the consumer price index (CPI) and an index of sensitive commodity prices (COMPRICE).

Finally, the real economy is represented by the (logarithm of) industrial production (INDPRO) and

the output gap (GAP). Our sample period runs from January 1990 until 2009. The sample period

is chosen such that to avoid a policy break (Demiralp et al., 2014).

To introduce sparsity in the VAR estimation, we impose a lasso penalty on the VAR coefficient

matrix (Song and Bickel, 2011; Nicholson et al., 2016). For the sparse VAR estimation, we use the

BigVAR package in R (Nicholson et al., 2017), with the number of lags equal to 4. Then, using

contemporaneous time restrictions obtained from Algorithm 7, we estimate impulse response func-

tions. For comparison, we include the impulse response function obtained from the PC algorithm

(Bessler and Akleman, 1998).

Figure 3.5 plots the responses of Consumer Price Index (CPI) to Federal Fund Rate (FFR)

obtained from the PC and RRCF algorithms, respectively. From Figure 3.5a, the prize puzzle is

apparent when the response is estimated using the PC algorithm. However, it disappears when the

response is estimated using the RRCF algorithm (see Figure 3.5b). The latter result is consistent

with the macro-economic literature.

(a) PC (b) RRCF

Figure 3.5: The response of Consumer Price Index to Federal Fund Rate shock.
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3.6 Statistical Properties

In this section, we study the consistency of the RRCF estimator, assuming that the true per-

mutation matrix P is known; i.e., data have known order. Under this assumption, we can omit the

dependence of QRRCF on P and focus only on the consistency of a Cholesky factor estimator in

(3.10).

Khare et al. (2019); Yu and Bien (2017) provide consistency of the sparse Cholesky factor

estimator for the convex objective function. However, our objective function is non-convex and it

may possess multiple local optima that are not global. Therefore, the standard statistical techniques

are not applicable for establishing consistency.

We establish upper bounds on the Frobenius norm between any local optimum of the empirical

estimator and the unique minimizer of the population. Even though the non-convex function may

possess multiple local optima, our theoretical results guarantee that, from a statistical perspective,

all local optima are fundamentally as good as a global optimum. The theoretical analysis relies on

the following assumptions:

• A1 Marginal sub-Gaussian assumption: The sample matrix X ∈ Rn×p has n indepen-

dent rows with each row drawn from the distribution of a zero-mean random vector X =

(X1, . . . , Xp)
t with covariance Σ and sub-Gaussian marginals; i.e.,

E[exp(tXj/
√

Σjj)] ≤ exp(Ct2)

for all j = 1, . . . , p, t ≤ 0 and for some constant C > 0.

• A2 Sparsity Assumption: The true Cholesky factor L ∈ Rp×p is the lower triangular matrix

with positive diagonal elements and support S(L) = {(i, j), i 6= j|Lij 6= 0}. We denote by

s = |S| cardinality of the set S.
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• A3 Bounded eigenvalues: There exist a constant κ such that

0 < κ−1 ≤ λmin(L) ≤ λmax(L) ≤ κ

Before providing our main result, we recall that a matrix L̂ ∈ Lp is a stationary point for QRRCF

if it satisfies (Bertsekas, 2015)

〈∇Ln(L̂) +∇ρ(L̂, λ), L− L̂〉 ≥ 0, forL ∈ Lp, (3.30)

where Ln(L) = tr(SLLt)− 2 log|L| and ∇ρ(·, ·) is the subgradient.

Theorem 4. Under Assumptions A1-A3, with tuning parameter λ of scale
√

log p
n

, and 3
4γ
< (κ +

1)−2, the scaling (s + p) log p = o(n) is sufficient for any stationary point L̂ of the non-convex

program QRRCF to satisfy the following estimation bounds:

‖L̂− L‖F = Op
(√(s+ p) log p

n

)
‖Σ̂−1 − Σ−1‖F = Op

(√(s+ p) log p

n

)
The proof is provided in Appendix.

62



4. CONCLUSION

Cholesky decomposition has diverse applications in the statistical discipline, including least

squares, time series, and statistical/machine learning. Motivated by these applications, the Cholesky

factor has been the main subject of our research. In this dissertation, we have proposed methods to

learn inverse covariance matrix and Bayesian Network exploiting the Cholesky factor.

In Chapter 2, we developed a block coordinate descent algorithm to estimate the inverse co-

variance matrix from longitudinal data by imposing smoothness assumption on subdiagonals of

the Cholesky factor. The algorithm iteratively updates subdiagnals of the Cholesky factor until

convergence. Reliance on the Cholesky factor, as the new parameter within a regularized likeli-

hood setup, guarantees: joint convexity of the likelihood function, strict convexity of the likelihood

function restricted to each subdiagonal even when n < p, and positive-definiteness of the estimated

covariance matrix.

In Chapter 3, we eliminate the assumption of known order and learn the Gaussian Bayesian

Network through the two-step procedure. In the first step, we impose relaxation to find the permu-

tation matrix, and then for a given ordering, we estimate a (sparse) Cholesky factor by decoupling

row-wise. Introduced relaxation avoids the hard combinatorial problem of order estimation and

enables learning DAGs without a need to verify expensive acyclicity constraints.

Further Study

As with most research projects, detailed investigation and exploration spawned more ideas

with which to approach the problem. For instance, in Section 2.3, we discussed the close rela-

tionship between the smoothness of the Cholesky factor subdiagonals and the (inverse) covariance

matrix. One of the further extension of our work of Chapter 2 can be an algorithm which directly

learns the smoothness of the (inverse) covariance matrix. The other follow-up work that deserves

investigation is the statistical properties of our SC estimator.

The statistical properties for the RRCF algorithm, derived in Chapter 3, assume the knowledge
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of the permutation matrix. Future work can investigate the theoretical properties by eliminating

the stringent, fixed permutation matrix assumption.
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APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIALS

A.1 Proofs

Proof of Lemma 6

(a): We use the selection matrices Ki which are (p− i)× p2 submatrices of the p2 × p2 identity

matrix with row indices in Ij such that L[i] = KiV . Then it is evident that V =
∑p−1

i=0 K
′
iL

[i] and

a compatible partition of B leads to

tr(LSL′) = V ′BV =

p−1∑
i=0

(L[i])′KiB

p−1∑
j=0

K ′jL
[j]

=

p−1∑
i=0

p−1∑
j=0

(L[i])′KiBK
′
jL

[j] =

p−1∑
i=0

p−1∑
j=0

(L[i])′BijL
[j].

(A.1)

Note that the submatrix Bii = diag(S1,1, S2,2, . . . , Sp−i,p−i) is diagonal with positive entries, and

the (p − i) × (p − j) matrix Bij has nonzero values in the ((1 + j − i + k), (1 + k)), 0 ≤

k ≤ min(p − 1 + i − j, p − i − 1) entries, which correspond to the diagonal of the submatrix

S[(1 + j − i) : (p− i), 1 : (p− j)] of S.

(b): From rewriting (A.1)as

tr(LSL′) =

p−1∑
i=0

[
(L[i])′KiBK

′
iL

[i] +
∑
i 6=j

(L[i])′KiBK
′
jL

[j]
]
,

=

p−1∑
i=0

[
(L[i])′BiiL

[i] + (L[i])′
∑
i 6=j

BijL
[j]
] (A.2)

the desired result follows from substituting into the objective function (2.4) and noting that |L|=∑p
j=1 logL

[0]
j .
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(c): Since Bii is positive definite, then Qi(·) as the sum of strictly convex and convex functions,

is strictly convex (Boyd and Vandenberghe, 2004).

Proof of Lemma 2

(a): The derivative with respect to x of the quadratic form in (2.9) is

− 2

p∑
i=1

1

xi
ei + 2C0x+ 2y0 = 0, (A.3)

where ei is the p−vector with ith element equal to 1 and 0 otherwise. By construction, the C0

matrix is diagonal and the first element of y0 is 0, so that the first identity in (A.3) is

− 1

x1

+ (C0)1,1x1 = 0⇒ x1 = 1/
√

(C0)1,1.

Similarly, for the rows, i = 2, . . . , p we have

− 1

xi
+ (C0)i,ixi + (y0)i = 0,

where its non-negative solution is as given in (2.12).

(b): In (2.10),Ci is a diagonal matrix with positive entries, setting ỹi = −C−1/2
i yi and completing

the square, then finding x∗i is equivalent to solving a generalized lasso problem:

min
x

{
‖C1/2

i x− ỹi‖2
2+λ‖Dx‖1

}
, (A.4)

which has a unique solution Tibshirani and Taylor (2011).

(c):

(1): Proof is similar to the transformation in part (b).
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(2): Setting the derivative of hi(x|yi) to zero and solving for xi gives

x∗i = −1

2
(Ci + λ(D′D))−1yi.

The matrix inverse can be computed in O(p − i) flops Golub and Van Loan (1996), since Ci is

diagonal and D′D is a tridiagonal matrix. Here p− i is the length of the vector xi, i = 1, . . . , p−1.

(d): Proof of the lemma is similar to Friedman et al. (2007, Proposition 1), thus omitted.

Proof of Theorem 1

(a): Recall that L−[0] = [(L[1])′, . . . , (L[p−1])′]′ where L[i] is the vector of ith subdiagonal. To

make a change of variables in terms of difference of successive subdiagonal terms, define θ =

[(θ1)′, . . . , (θp−1)′]′, where θj1 = L
[j]
1 , θ

j
i = L

[j]
i −L

[j]
i−1, for each 1 ≤ j ≤ p− 1, i = 2, . . . , p− j.

Then, we have L−[0] = Aθ where A ∈ R(p2)×(p2) is a block diagonal matrix where the ith (1 ≤

i ≤ p− 1) block is a (p − i) × (p − i) lower triangular matrix with ones as the nonzero entries.

Substituting for L−[0] in Q(L), we get

Q(L) = (L[0])′B00L
[0] + 2(L[0])′B0−0Aθ+ θ′A′B−0−0Aθ− 2

p∑
i=1

logL
[0]
i + λ

p−1∑
j=1

p−j∑
i=2

|θji |, (A.5)

where B−0−0 is the submatrix that selects the rows and columns of B with indices in {I−0, I−0}.

Next, we rewrite

Q(L) = x′Mx−
p∑
i=1

log xi +
∑
j∈C

|xi|, (A.6)

where x = [L0, θ]′ , M = Ã′B̃Ã ,

Ã =

 I 0

0′ A

 , B̃ =

 B00 B0−0

(B0−0)′ B−0−0

 ,
and the set C = {i|xi = θjk, 1 ≤ j ≤ p − 1, 2 ≤ k ≤ p − j} corresponds to the indices of the

difference terms in θ.
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The matrix B̃ is positive semi-definite, since it is a submatrix of the positive semi-definite

matrix B obtained by selecting specific rows and columns . Therefore, from Horn and Johnson

(2012, Observation 7.1.8) the matrix M is positive semi-definite and can be written as M = E ′E

(Horn and Johnson, 2012, Chapter 7) which establishes the equivalency of Q(L) and (2.15). Since

the diagonal elements of the sample covariance matrix is assumed to be positive, then B and hence

E do not have 0 columns.

We note that (A.6) is not a fully form of (2.14), since the `1 penalty reformulation involves

p − i − 1 of the p − i components in each subdiagonal L[i]. However, with the transformation

similar to Rojas and Wahlberg (2014, Lemma 2.4) easily formulate (A.6) as (2.14).

(b): We show the convergence of iterates produced by Algorithm 1 to a global minimum by

invoking Khare and Rajaratnam (2014, Theorem 2.2).

From Part (a) of the Theorem, there exist matrix E with no 0 columns such that (2.15 holds and

Lemma 3 shows an existence of an uniform lower bound for Q(L). Thus, to show convergence, it

suffices to show that the assumption (A5)* Khare and Rajaratnam (2014, page 6) is satisfied or the

level set of Q(L), {L|Q(L) ≤ Q(L(0))} is bounded. The latter property follows from the coercive

property of the Q(L) established in Lemma 3, since the level sets of coercive function are bounded

(Bertsekas, 2016).

Proof of Lemma 3

In objective function Q(L), L ∈ Lp and the eigenvalues of a lower triangular matrix are its

diagonal elements, then from the well-known inequality log x ≤ x− 1, x > 0 it follows that

p∑
j=1

logL
[0]
j ≤

p∑
j=1

(L
[0]
j − 1) ≤ (L[0])′1p.
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Thus

Q(L) ≥ (L[0])′B00L
[0] + 2(L[0])′B0−0L

−[0] + (L−[0])′B−0−0L
−[0] − 2(L[0])′1p

(*)
= ‖B1/2

−0−0L
−[0] +B

−1/2
−0−0B−0 0L

[0]‖2
2+(L[0])′(B00 −B0−0B

−1
−0−0B−0 0)L[0] − 2(L[0])′1p

(**)
≥ ‖B1/2

−0−0L
−[0] +B

−1/2
−0−0B−0 0L

[0]‖2
2+‖K1/2L[0] −K−1/21p‖2

2−1′pK1p

(***)
≥ (‖B1/2

−0−0L
−[0]‖−‖−B−1/2

−0−0B−00L
[0]‖)2 + (‖K1/2L[0]‖−‖K−1/21p‖)2 − 1′pK1p

≥ −1′pK1p > −∞,

where the equality in (*) follows from adding and subtracting ‖B−1/2
−0−0B−0 0L

0‖2
2 to complete the

square and writing (L[0])′B0−0L
−[0] = (L[0])′B0−0B

−1/2
−0−0B

1/2
−0−0L

−[0]. The inequality in (**) fol-

lows by completing the middle term as square and noting that K = B00 − B0−0B
−1
−0−0B−0 0 is

positive semi-definite (the Schur complement of the positive semi-definite matrix B̃) and (***) is

based on the triangle inequality ‖x‖−‖y‖≤ ‖x− y‖.

It follows from (**) and (***) that Q(L) → ∞ as any subdiagonal ‖L[j]‖→ ∞ , and that if

any diagonal element L[0]
j = 0 then Q(L) → ∞. Therefore, any global minimum of Q(L) has a

strictly positive values for L[0] and hence any global minimum of Q(L) over the open set Lp lies

in Lp. Here, Lp is open in the set of all lower triangular matrices. Moreover, from the discussion

above the function Q(L) is coercive, i.e. if ‖[L[0], L−[0]]‖→ ∞, then Q(L)→∞.

Convergence of `1-trend filtering and HP

The convergence proof of trend filtering follows the same steps as described in previous section.

For this case, the change of variables occurs by taking A ∈ R(p2)×(p2) as a block diagonal matrix

where the ith (1 ≤ i ≤ p− 1) block is a (p− i)× (p− i) lower triangular matrix with the sequence

1, . . . , p − j as a nonzero elements in jth column (Kim et al., 2009, Section 3.2). The rest of the

proof is similar to Appendix A.1, thus omitted.

For the convergence of HP, we note that for this caseQ(L) is convex differentiable function and

the existing literature can be used to show convergence. For example see Luo and Tseng (1992).
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Proof of Lemma 4

We use ideas similar to the Friedman et al. (2010); Cai et al. (2011); Khare et al. (2019). We

start by considering two cases

Case 1 (n ≥ p) Each iteration of SC Algorithm sweeps over diagonal and subdiagonal elements.

Thus, update of the diagonal consists of estimating y and then computing diagonal using Lemma 2.

From the discussion provided before the Theorem 6, recall that matrix Bii is diagonal and Bij has

p − j + 1 nonzero elements located in separate columns, for 0 ≤ i, j ≤ p, i 6= j. Thus the

complexity of computing y0 in SC algorithm is

p−1∑
j=1

(p− j) = p(p− 1)− p(p− 1)

2
≈ O(p2)

From the Lemma 2, the computational cost of estimating diagonal is O(p). Therefore the cost of

diagonal update can be done in p(p+ 1)/2 steps.

The update of each subdiagonal consist of computing yi, 1 ≤ i ≤ p − 1 and estimating the

subdiagonal in SC algorithm. Thus, the cost of estimating yi is

p+
i−1∑
j=0

(p− j) +

p−1∑
j=i+1

(p− j) =
p(p− 1)

2
− p− i2

and since each iteration sweeps over p− 1 subdiagonals we have

p−1∑
i=1

p(p− 1)

2
− p− i2 ≈ O(p3).

Case 2 (n < p) We use similar technique as in Khare et al. (2019, Lemma C.1). Note that, since

S = Y Y ′/n, where Y ∈ Rp×n matrix, then B = S ⊗ Ip = (Y ⊗ Ip)(Y ⊗ Ip)′/n = AA′, where

A = (Y ⊗ Ip)/
√
n. Moreover Bjk = Aj·A

′
·k, where Aj· is submatrix whose rows were selected

from index Ij . Recall V = vec(L) and let r(V ) = A′V ∈ Rpn, which takes O(np2) iterations, due

to sparsity structure of A. Given initial value V 0, we evaluate r(V 0) = A′V 0 and keep truck of
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AtV current. If V and Ṽ differ only in one block coordinate k, then

(A′V )j =

p−1∑
j=0

A·jL̃
[j] =

p−1∑
j=0

A·jL
[j] + A·k(L̃

[k] − L[k]), (A.7)

for 1 ≤ j ≤ np. Therefore it takes O(np) computations to update A′V to A′Ṽ . Hence, after each

block update in SC algorithm, it will take O(np) computations to update r to its current value.

Thus, the computation of yi can be transformed into

∑
j 6=i

Bij(L
[j]) =

p∑
j=1

BijL
[j] −BiiL

[i] = Ai·

p∑
j=1

A′·jL
[j] −BiiL

[i], (A.8)

for 0 ≤ i ≤ p− 1. It follows the update of k’th block in (A.7), consequently in (A.8) takes O(np)

computations. Hence one iteration will take O(np2) computations.

Proof of Theorem 2

(a): From (2.1), for any two elements in ith subdiagonal u, v

|L[i](u)− L[i](v)|= |T
[i](u)

σ(u)
− T [i](v)

σ(v)
|= |T

[i](u)− T [i](v)

σ(v)
+
T [i](u)∆vu(σ)

σ(u)σ(v)
|,

where ∆vu(σ) = σ(v)− σ(u). The simple algebra shows that

|L[i](u)− L[i](v)|≤ 1

c
|∆uv(T

[i])|+ 1

c2
|T [i](u)||∆vu(σ)| (A.9)

(b): The bounded total variation of L[i] follows from the fact that it is product of two functions of

bounded total variation (Grady, 2009, Theorem 2.4) and (2.17) follows from summing (A.9) over

u, v ∈ [0, 1]

|L[i](u)− L[i](v)| = |T
[i](u)

σ(u)
− T [i](v)

σ(v)
|= |T

[i](u)

σ(u)
− T [i](u)

σ(v)
+
T [i](u)

σ(v)
− T [i](v)

σ(v)
|

≤ |T
[i](u)||σ(v)− σ(u)|

σ(u)σ(v)
+
|T [i](v)− T [i](u)|

σ(v)
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(c): We say that the matrixA ∈ Rp×p belongs to the class TV(Rp×p) if its diagonal and subdiago-

nals are functions of bounded variation. The following notation introduced in Golub and Van Loan

(1996, Chapter 1.2.8) simplifies the discussion of the proof. For L ∈ Rp×p we introduce the ma-

trix D(L, i) ∈ Rp×p, which has the same ith sub(sup)diagonal as L and 0 elsewhere. Clearly, if

A ∈ TV (Rp×p) then D(A, i) ∈ TV (Rp×p), 0 ≤ i ≤ p− 1. For the lower triangular matrix L we

have

L =



L11 0 . . . 0

0 L22
...

...
...

... . . . 0

0 . . . 0 Lpp


D(L, 0)

+



0 . . . . . . 0

L21 0
...

...
... . . . ... 0

0 0 Lp,p−1 0


D(L, 1)

+ · · ·+



0 . . . . . . 0

...
...

...
...

...
...

...
...

Lp1 0 . . . 0


D(L, p− 1)

and

Ω = L′L = (D(L, p− 1) + · · ·+D(L, 0))′(D(L, p− 1) + · · ·+D(L, 0)).

From the structure of D(L, i)’s it can be seen that the ith subdiagonal of Σ can be written as the

sum of the ith subdiagonals of the following matrix products

Ωi =

p−i−1∑
j=0

((D(L, j)′D(L, j + i))i, (A.10)

where from the position of degenerate values, the matrix product D(L, j)′D(L, j + i) has nonzero

values on the ith subdiagonal and zero elsewhere. Moreover, nonzero values in the ith subdiagonal

of (D(L, j)′D(L, j + i))i = (L
[i]
(p−j−i−1):(p−1))

′L[j+i]. Now, since the product of two functions of

total bounded variation are of bounded variation and after adding and subtracting corresponding

terms as in the proof of Lemma 2, we get

TV (((D(L, j)′D(L, j + i))i) ≤ mjKj+i +mj+iKj
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and the result follows from (A.10).

Now we show the converse, i.e. if Ω ∈ TV(Rp×p) then there exist a unique L ∈ TV(T p×p)

and Ω = L′L. The proof uses similar strategy proposed in (Chern and Dieci, 2000, Lemma 2.8).

Before introducing the main argument, we state the following lemma, which will be used in the

proof.

Lemma 11. If lower triangular matrices G,M ∈ TV(Rp×p) then A = GM ∈ TV(Rp×p)

Proof. Using the matrix notation (D(L, · · ·) introduced in part(a), it can be shown that the ith

subdiagonal of the matrix product A = GM can be written as

Aj = (GM)j =

j∑
i=0

(D(G, i)D(M, j − i))j

and the result follows by recalling that the product of the functions of bounded variation is of

bounded variation.

The main argument consist in writing Ω =

Ω̂ b

b′ ω2
pp

 and let G1 =

Ip−1 b/ωpp

0 ωpp

. From the

construction of G1 and Ω ∈ TV(Rp×p), it is easy to see that G1 ∈ TV(Rp×p) and G−1
1 ΩG−t1 =Ω1 0

0 1

, where Ω1 = Ω̂ − bb′/ω2
pp. Clearly, Ω1 ∈ TV (Rp−1×p−1) since Ω̂ ∈ TV (Rp−1×p−1) by

construction and TV (Ω
[i]
1 ) = TV (Ω̂[i]−(bb′)i/ω2

pp) ≤ TV (Ω̂[i]) <∞. By repeating this procedure

and using Lemma 11, result follows.

A.2 Tuning Parameter Selection

We use BIC-like measure and cross-validation to choose the tuning parameter λ. In particular,

the tuning parameter λ is determined by choosing the minimum of BIC-like measure and CV over

the grid. BIC is defined as:

BIC(λ) = ntr(L̂′L̂S)− n log det(L̂′L̂) + log n× E,
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where E denoted the degrees of freedom, n and S are the sample size and covariance matrix,

respectively. For example for the sparse fused lasso, E corresponds to number of nonzero fused

groups in L̂ (Tibshirani and Taylor, 2011).

For K−fold cross-validation, we randomly split the full dataset D into K subsets of about the

same size, denoted by Dν , ν = 1, . . . , K. For each ν, D − Dν is used to estimate the parameters

andDν to validate. The performance of the model is measured using the log-likelihood. We choose

the tuning parameter λ as a minimum of the K−fold cross-validated log-likelihood criterion over

the grid.

CV (λ) =
1

K

K∑
ν=1

(
dν log det(L̂′−νL̂−ν)

−1) +
∑
Iν

y′iL̂
′
−νL̂−νyi

)
,

where L̂−ν is the estimated Cholesky factor using the data set D − Dν , Iν is the index set of the

data in D, dν is the size of Iν , and yi is the ith observation of the dataset D .

A.3 Additional Simulation

In this section we provide additional simulation results. Two different cases are considered. In

the first case, matrix T is a full lower triangular matrix and each subdiagonal is generated from the

first subdiagonal of one of the Cases (A-D) by eliminating the corresponding excessive elements.

In the second case, matrix T follows nonhierarchical structure, in a sense described in Yu and Bien

(2017). That is, in a full lower triangular matrix T , we enforce first and last p/3 subdiagonals

admit nonzero values, drawn from uniform [0.1, 0.2] and positive/negative signs are then assigned

with probability 0.5. The rest of p/3 subdiagonals admit zero value. See Figure A.3 for an

illustration. For the latter case, Sparse SC have been used for the estimation. That is we use two

tuning parameters λ1 to control sparsity and λ2 smoothness, respectively.

For both cases, we consider settings when p = 50, 150 and n = 100, however because of the

space limitation only p = 150 is reported. Each possible setting is repeated over 20 simulated

datasets. The tuning parameters were chosen using cross-validation. Moreover, for the second

case we compare the results from sparse SC (HP, Fused, Trend) estimator with CSCS and HSC

using a receiver operating characteristic curve, or ROC curve.
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We start by providing results for the first case. The Figure A.1 plots the first four estimated

subdiagonals of the full lower triangular matrix T , using SC estimator. From the figure, the first

two subdiagonals correspond to the Case B, the third to the Case D and the fourth to the Case C,

respectively. Visually, the SC-Fused captures the step function the best for the first subdiagonal.

However, all three estimators failed to capture the stepwise linear structure of the second subdiago-

nal, but there is a significant improvement of SC estimator to capture the wiggliness of the Markov

process in the third subdiagonal (SC-HP being the best) and smooth, slow time-varying structure

of the fourth subdiagonal (SC-Trend being the best). Next we report the performance of three

estimators using Frobenius and Infinity norm. Figure A.2 plots the results. Overall, for matrix T ,

SC-Trend filtering provides the lowest Frobenius and Infinity norm followed by SC-Fused.

Figure A.1: Estimated first four subdiagonals ( p = 150).
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Figure A.2: ROC curve for p = 150.

Remark 1. Relying on the result above, one can learn the lower triangular matrix L(T ) by con-

sidering the penalty form as an additional parameter to tune for each subdiagonal.

Now, we compare the performance of the SC with the CSCS and HSC on the support recovery,

when the structure is non-hierarchical. Comparison is implemented using ROC curves. The ROC

curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at

various penalty parameter settings (Friedman et al., 2010). Here, the ROC curve is obtained by

varying around 60 possible values for the penalty parameter λ1. For the SC-Fused, Trend and HP,

the smoothing tuning parameter λ2 is obtained from the cross-validation by fixing λ1 in a given

value. In applications, FPR is usually controlled to be sufficiently small, thus following Khare et al.

(2019), the focus is on comparing portion of ROC curves for which FPR is less than 0.15. The

comparison of ROC curves is implemented using Area-under-the-curve (AUC) (Friedman et al.,

2010).

Table A.1 reports the mean and the standard deviation (over 20 simulations) for the AUCs for

SC (HP, Fused and Trend), CSCS and HSC when p = 150 and n = 100. The best result is given

in bold.

From the table above, it can be seen that HSC provides the best result. However, Figure A.3,

which captures snapshot of the graphical comparison of the estimated matrix L for the five esti-
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Table A.1: Mean and Standard Deviation of area-under-the-curve (AUC) for 20 simulations for p
= 150.

Method Mean Std. Dev

SC-HP 0.068 0.019
SC- Fused 0.121 0.023
SC- Trend 0.104 0.015
CSCS 0.058 0.007
HSC 0.137 0.025

mators, sheds more lights into characteristics of estimators. As can be seen, even though HSC

provides the highest AUC for FPR less than 0.15, it fails to capture the zero gap between subdiag-

onals of matrix L compare, for example, with SC-Fused, which provides the second best result in

the Table A.1.

Figure A.3: Comparison of snapshots for the simulated example for p = 150.
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Additional Visualization of Subdiagonals

In this section, we provide an addition visualization of the estimated first subdiagonals for cases

A-D using CV criteria. In particular, we calculate the mean and standard deviation (sd) for each

element of a lower triangular matrix over 20 simulated repetitions. Then the estimated mean and

mean±2∗ sd were plotted for each penalty function (SC-Fused, SC-HP, SC-Trend) and Case A-D,

resulting to 3 × 3 panel plot. Figure A.4 illustrated the result. The columns and rows correspond

to the penalty form and cases, respectively. In each plot, the red thick line corresponds to the mean

and the gray line to mean± 2sd, the true line is depicted in black.

Figure A.4: Plot of the mean of the estimated first subdiagonal and ±2sd for each penalty and
case.
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Illustration of Bias

Figure A.5 illustrates the plot of bias and variance for the simulated example.

Figure A.5: The plot of bias and variance for the simulated example.

A.4 Cattle data: Additional Analysis

Figure A.6 provides the plot of the first two subdiagonals using eight estimators descirbed in

Section 2.4.5.
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Figure A.6: Plots of estimated first and second subdiagonals of the covariance matrix for various
estimation methods.

A.5 Example of SC Penalty Form

In this section we give details of the SC penalty form based on a toy example. We consider

p = 4, i.e 4× 4 lower triangular matrix L.

L =



L1,1 0 0 0

L2,1 L2,2 0 0

L3,1 L3,2 L3,3 0

L4,1 L4,2 L4,3 L4,4


Here L[0] = [L

[0]
1 , L

[0]
2 , L

[0]
3 , L

[0]
4 ]′ = [L1,1, L2,2, L3,3, L4,4]′, L[1] = [L

[1]
1 , L

[1]
2 , L

[1]
3 ]′ =

[L2,1, L3,2, L4,3]′, L[2] = [L
[2]
1 , L

[2]
2 ]′ = [L3,1, L4,2]′ and L[3] = L4,1. The penalty for the subdi-

agonal L[1] is

P∇(L[1]) =
4−1∑
j=2

|L[1]
j − L

[1]
j−1|=

4−1∑
j=2

|Lj+1,j − Lj,j−1|

The penalties for the second L[2] and third L[3] subdiagonal can be written similarly.
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APPENDIX B

CHAPTER 3 SUPPLEMENTARY MATERIALS

B.1 Proofs

Proof of Lemma 5

For the proof of only if side; i.e., P is a permutation matrix or P = J/p, the equality holds

trivially from the definition of the Frobenius norm (Horn and Johnson, 2012, Chapter 5.6).

For the if part, it is known that the maximum spectral radius and the spectral norm ‖P‖2 of the

doubly stochastic matrix P ∈ Dp are equal 1 (Horn and Johnson, 2012, Chapter 8.7). From the

matrix norm inequality (Horn and Johnson, 2012, Corollary 5.4.5)

1 = ‖P‖2
2≤ ‖P‖2

F=

p∑
j=1

σ2
j (P ) ≤ p‖P‖2

2≤ p, (B.1)

where σj(·) is the jth singular value. Thus, ‖P‖F= ‖P‖2= 1 if and only if it is a matrix of rank

one; i.e., P = J/p from the Marcus and Minc (1962, Theorem 4).

On the other hand, it is easy to see that ‖P‖2
F= p equality holds if and only if σj(p) = 1, j =

1, . . . , p, that is P ∈ Pp, and any doubly stochastic matrix with Frobenius norm
√
p is a permuta-

tion matrix.

Proof of Corollary 1

We write for P ∈ Dp

tr(LPSP tLt) = vec(P )t(LtL⊗ S)vec(P ) ≥ λ1(LtL⊗ S)‖P‖2
F ,

where λ1(A) is the smallest eigenvalue of the symmetric matrixA and the minimum value achieved

when P = J/p from the Lemma 5.
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Proof of Lemma 6

(a): The Hessian of the objective function can be found by noting that

1

2
tr(LPSP tLt)− 1

2
µ‖P‖2

F=
1

2
vec(P )t(LtL⊗ S)vec(P )− 1

2
µvec(P )tvec(P )

where vec(·) is the usual matrix vectorization operator. Thus the Hessian is

LtL⊗ S − µI,

and the result easily follows from the definition of convexity (Boyd and Vandenberghe, 2004).

(b): We first show that the transformation (3.15) is equivalent to (3.14). Following Fogel et al.

(2013), we write

‖TP‖2
F= tr(P tT tTP ) = tr(P tP − 11t/p) = ‖P‖2

F−1,

where we use idempotent property of the projection matrix T . Thus, (3.15) has the same objective

function as (3.14) up to a constant. To show convexity we look on the Hessian of the objective

function. Note that

1

2
tr(LPSP tLt)− 1

2
µ‖TP‖2

F=
1

2
vec(P )t(LtL⊗ S)vec(P )− 1

2
µvec(P )t(I⊗ T )vec(P ),

where vec(·) is the usual matrix vectorization operator. Thus the Hessian is

LtL⊗ S − µI⊗ T (B.2)

and under µ ≤ λ2(S)λ1(LtL) convexity holds.

(b): Similarly, from (B.2) if µ > λm(S)λm(LtL) then the objective function of (3.15) is concave.

Thus, from the Horn and Johnson (2012, Corrollary 8.7.4) the minimum of concave function over
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the set of doubly stochastic matrices is attained at a permutation matrix and the proof follows.

Proof of Lemma 7

We start by assuming contradiction. The proof exploits strategy introduced in Rothman et al.

(2008). Let for P̃ ∈ Dp belonging to a Birkhoff polytope

Q(P̃ ) = tr(LP̃SP̃ tLt)− 1

2
µ‖P̃‖2

F−
1

2
tr(LPSP tLt)− 1

2
µ‖P‖2

F

= tr(L(P̃ − P )S(P̃ − P )tLt)− 1

2
µ(‖P̃‖2

F−‖P‖2
F ),

(B.3)

where P ∈ Pp is a true permutation matrix, ‖P‖2
F= p from Lemma 5. Our estimate P̂ minimizes

Q(P̃ ), or equivalently ∆̂ = P̂ − P minimizes G(∆) = Q(P + ∆), where ∆ = P̃ − P . Under

convexity condition in Lemma 6(a), G(∆) is a convex function and G(∆̂) ≤ G(0) = 0.

Next we introduce the set

Θn = {∆ : ‖∆‖F= rn},

where rn → 0. Now if we show that inf{G(∆) : ∆ ∈ Θn} > 0 then ∆̂ ∈ Θn and ‖∆̂‖F≤ rn.

We write

G(∆) = I + II, (B.4)

where I = tr(L∆S∆tLt) and II = µ
2
(‖P‖2

F−‖P + ∆‖2
F ).

For the part I ,

I = tr(LtL∆S∆t) = vec(∆)t(LtL⊗ S)vec(∆) ≥ λ1(LtL⊗ S)‖∆‖2
F (B.5)

To find lower bound for II , we denote by C = {(i, j) : Pij = 1} non-zero entries of the

permutation matrix P . We also note that the cardinality |C|= p. Thus,

‖P + ∆‖2
F=

∑
(i,j)∈C

|1 + ∆ij|2+
∑

(m,n)6∈C

|∆mn|2= p+ 2
∑

(i,j)∈C

|∆ij|+‖∆‖2
F
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and

‖P + ∆‖2
F−‖P‖2

F= 2
∑

(i,j)∈C

|∆ij|+‖∆‖2
F≤ 2pmax

i,j
|∆ij|+‖∆‖2

F≤ 2p+ ‖∆‖2
F , (B.6)

where we used the norm inequality ‖A‖max≤ ‖A‖F and maxi,j|∆ij|≤ 1. It follows from (B.5)

and B.6 the lower bound for (B.4) is

G(∆) ≥ λ1(LtL⊗ S)‖∆‖2
F−2pµ− µ‖∆‖2

F

= ‖∆‖2
F (λ1(LtL⊗ S)− µ− 2p

r2
n

µ)
(B.7)

Thus, G(∆) > 0 condition holds if and only if

λ1(LtL⊗ S)− µ− 2p

r2
n

µ > 0,

from which follows that

µ <
λ1(LtL⊗ S)

1 + 2p
r2n

and from rn → 0, it follows µ→ 0, which contradicts the initial statement.

Proof of Lemma 8

The result follows from the Bertsekas (2015, Proposition 6.1.2), since the gradient of the ob-

jeciton function of (3.15) is Lipschitz

‖LtLP1S − µTP1 − LtLP2S + µTP2‖≤ (‖LtL‖‖S‖+µ‖T‖)‖P1 − P2‖

and the convergence to global minimum follows from Lemma 6.
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Proof of Lemma 9

We start by writing for 1 ≤ j ≤ k − 1

hk,A,λ,γ = x2
jAjj + 2xj(

∑
l 6=j

Aljxl) + ρ(|xj|, λ, γ) + Cj, (B.8)

where Cj includes terms independent of xj . Taking derivative with respect to xj and noting that

the subdifferential

ρ‘(|xj|, λ, γ) =


λs− xj

γ
|xj|< γλ

0 |xj|≥ γλ

(B.9)

Here, the subgradient s = sgn(xj) if xj 6= 0 and take values in [−1, 1] otherwise. Thus it follows

x∗j =
Sλ(−2

∑
l 6=j Aljxl)

2Ajj − 1/γ

Similarly,

hk,A,λ,γ = x2
kAkk + 2xk(

∑
l 6=k

Aljxl)− 2 log xk + Ck,

where Ck includes terms independent of xk and after taking derivatives with respect to xk

−2

xk
+ 2xkAkk + 2

∑
l 6=k

Alkxl = 0 ⇐⇒ x2
kAkk +

∑
l 6=k

Alkxlxk − 1 = 0,

and (3.27) follows after retaining the positive root of the above quadratic equation.

Proof of Lemma 10

(a): From (3.26)

hk,A,λ,γ(x) ≥ 2xk − 2,

where we used that A is positive semidefinite and xtAx ≥ 0, ρ(|xi|, λ, γ) ≥ 0 and for y > 0,

log y ≤ 1− y.
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(b): We denote by Duh and D2
uh the derivative and the second derivative of h in the direction of

u. Thus, the proof follows from (B.8) and (B.9) by writing

min{D2
β−i
hk,A,λ,γ(β), D2

β+
i
hk,A,λ,γ(β)} ≥ 2Aii −

1

γ

(c): Note that

inf
L∈Lp

QRRCF (L) ≥ −2p > −∞

directly follows from the part (b) of the proof. Moreover, from (3.24) if |βij|→ ∞ or βii = 0, then

QRRCF →∞. Therefore, any local minimum of QRRCF over the open set Lp lies in Lp.

Proof of Theorem 3

For the proof of Theorem 3, we exploit Tseng (2001, Theorem 5.1), where the author es-

tablished sufficient conditions for the convergence of cyclic coordinate descent algorithms to

coordinate-wise minima. The strict convexity of (3.23) with respect to each coordinate direc-

tion and lower boundedness established in Lemma 10 satisfy the required conditions in Theorem

5.1. Thus, convergence to a coordinate-wise minimum point is guaranteed. Moreover, since all

directional derivatives exist, every coordinate-wise minimum is also a local minimum.

Proof of Theorem 4

We start by showing that Ln satisfies RSC conditions. Recall that the differentiable function

Ln : Rp×p → R satisfies RSC condition if:

〈∇Ln(L+ ∆)−∇Ln(L),∆〉 ≥


α1‖∆‖2

F−τ1
log p

n
‖∆‖2

1, ∀‖∆‖F≤ 1 (B.10)

α2‖∆‖F−τ2

√
log p

n
‖∆‖2, ∀‖∆‖F≥ 1 , (B.11)

where the αj’s are strictly positive constants and the τj’s are nonnegative constants. From Loh and

Wainwright (2015, Lemma 4), under conditions of Theorem 4, if (B.10) holds then (B.11) holds.
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Thus, we concentrate only on showing that (B.10) holds for ‖∆‖F≤ 1. Recall that

Ln(L) = tr(SLtL)− 2 log|L| (B.12)

Lemma 12. The cost function (B.12) satisfies RSC condition (4) with α1 = (κ+ 1)−2 and τ1 = 0;

i.e.,

〈∇Ln(L+ ∆)−∇Ln(L),∆〉 ≥ (κ+ 1)−2‖∆‖2
F , ∀‖∆‖F≤ 1 (B.13)

The proof is provided in Appendix B.1.

From the penalty conditions listed in Appendix B.2, ρµ(L, λ) = ρ(L, λ) + µ
2
‖L‖2

F is convex,

where in case of MCP µ = 1/γ. Thus,

ρµ(L, λ)− ρµ(L̂, λ) ≥ 〈∇ρµ(L̂, λ), L− L̂〉 = 〈∇ρ(L̂, λ) + µL̂, L− L̂〉,

which implies that

〈∇ρ(L̂, λ), L− L̂〉 ≤ ρ(L, λ)− ρ(L̂, λ) +
µ

2
‖L̂− L‖2

F (B.14)

From stationarity condition (3.30)

〈∇Ln(L̂), L− L̂〉 ≥ −〈∇ρ(L̂, λ), L− L̂〉

and combining above result with (B.13)

(1 + κ)−2‖∆‖2
F ≤ 〈Ln(L̂),∆〉 − 〈∇Ln(L),∆〉

≤ 〈∇ρ(L̂, λ), L− L̂〉 − 〈∇Ln(L),∆〉

≤ ρ(L, λ)− ρ(L̂, λ) +
µ

2
‖L̂− L‖2

F−〈∇Ln(L),∆〉
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After rearrangement and H’́older inequality

(
(1 + κ)−2)− µ

2

)
‖∆‖2

F≤ ρ(L, λ)− ρ(L̂, λ) + ‖∇Ln(L)‖∞‖∆‖1

From Loh and Wainwright (2015, Lemma 4)

λ‖∆‖1≤ ρ(∆, λ) +
µ

2
‖∆‖2

F

and from Yu and Bien (2017, Lemma 15) under the assumed scaling of λ

‖∇Ln(L)‖∞≤
λ

2

with probability going to 1. Combining above two results and using subadditive property; i.e.,

ρ(∆, λ) ≤ ρ(L, λ) + ρ(L̂, λ):

(
(1 + κ)−2 − µ

2

)
‖∆‖2

F ≤ ρ(L, λ)− ρ(L̂, λ) +
λ

2
‖∆̂‖1

≤ ρ(L, λ)− ρ(L̂, λ) +
ρ(∆, λ)

2
+
µ

4
‖∆‖2

F

≤ ρ(L, λ)− ρ(L̂, λ) +
ρ(L, λ) + ρ(L̂, λ)

2
+
µ

4
‖∆‖2

F

After rearranging and using 3/4µ ≤ (1 + κ)−2

0 ≤
(

(1 + κ)−2 − 3

4
µ
)
‖∆‖2

F≤ 3ρ(L, λ)− ρ(L̂, λ) (B.15)

From (B.15) and Loh and Wainwright (2015, Lemma 5) follows

ρ(L, λ)− ρ(L, λ) ≤ 2λ‖∆S‖−λ‖∆Sc‖⇒ ‖∆Sc‖1≤ 3‖∆S‖1
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Thus,

(
2(1 + κ)−2 − 3

2
µ
)
‖∆‖2

F≤ 3λ‖∆S‖2−λ‖∆Sc‖1≤ 3λ‖∆S‖1≤ 3λ
√
p+ s‖∆‖F ,

from which we conclude that

‖∆‖F≤
6λ
√
p+ s

4(1 + κ)−2 − 3µ
, (B.16)

and the result follows from the chosen scaling of λ.

For the precision matrix bound, from page 45 of Yu and Bien (2017) we note that

L̂tL̂− LtL = (L̂− L)t(L̂− L) + (L̂− L)TL+ Lt(L̂− L)

and

‖Lt(L̂− L)‖F≤ |||L|||2‖L̂− L‖F

From submultiplicativity property of matrix norm

‖(L̂− L)t(L̂− L)‖F≤ ‖(L̂− L)‖2
F

Therefore,

‖L̂tL̂− LtL‖F≤ (‖L̂− L‖F+2|||L|||2)‖L̂− L‖F (B.17)

Proof of Lemma 12

The following facts will be useful in the proof.

Fact 1

1. (Kpp)
−1 = Kpp

2. λmax(Kpp) = 1

3. tr(ABCD) = vec(Dt)(Ct ⊗ A)vec(B)
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4. λmax(A⊗B) = λmax(A)λmax(B)

where Kpp is the commutation matrix such that vec(L) = Kppvec(L
t). The proof of the facts can

be found in Magnus and Neudecker (1986, Section 4).

To show the RSC condition, we rely on the directional derivatives (for example see Tao (2016,

Section 6.3)). In particular, if we denote by D∆Ln(L) the directional derivative with respect to the

direction ∆, then from Tao (2016, Lemma 6.3.5) :

〈∇Ln(L),∆〉 = D∆Ln(L) = 2tr[(SLt − L−1)∆] (B.18)

Similarly

〈∇Ln(L+ ∆),∆〉 = D∆Ln(L+ ∆) = 2tr[(S(L+ ∆)t − (L+ ∆)−1)∆] (B.19)

From Woodbury identity (Horn and Johnson, 2012)

(L+ ∆)−1 = L−1 − L−1∆(L+ ∆)−1

Plugging back into (B.19) and after some algebra

〈∇Ln(L+ ∆),∆〉 = 2tr[(S(L+ ∆)t− (L+ ∆)−1)∆] + 2tr[S∆t∆ +L−1∆(L+ ∆)−1∆] (B.20)

Thus, from (B.18) and (B.20)

〈∇Ln(L+ ∆)−∇Ln(L),∆〉 = 2tr[∆tS∆ + L−1∆(L+ ∆)−1∆]

≥ vec(∆)tKpp((L+ ∆)−t ⊗ L−1)vec(∆)

= vec(∆)t[((L+ ∆)t ⊗ L)K−1
pp ]−1vec(∆)

≥ λmin([((L+ ∆)t ⊗ L)K−1
pp ]−1)‖∆‖2

F ,

(B.21)

where for the first inequality we used the fact that S is positive semi-definite and the second equal-
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ity follows from the Fact 1. Now, since

λmin([((L+ ∆)t ⊗ L)K−1
pp ]−1) = λ−1

max[((L+ ∆)t ⊗ L)K−1
pp ]

≥ λ−1
max(K

−1
pp )λ−1

max(L)λ−1
max(L+ ∆) ≥ (κ+ 1)−2,

(B.22)

where the first inequality follows from the submultiplicativity property of the norm and lower-

triangularity of the L and ∆. The second inequality follows from the triangular property, the fact

that ‖∆‖2≤ ‖∆‖F≤ 1 and, properties of the Kpp stated in Fact 1. After plugging (B.22) into

(B.21), the result follows.

B.2 Algorithms and Related Derivations

Conditions

The penalty function ρ(·, λ) satisfies the following conditions:

• The function ρ(·, λ) satisfies ρ(0, λ) = 0 and is symmetric around zero.

• On the non negative real line, the function ρ(·, λ) is nondecreasing.

• For t > 0, the function t→ ρ(·, λ)/t is nonincreasing in t.

• The function ρ(·, λ) is differentiable for all t 6= 0 and subdifferentiable at t = 0, with

limt→0+ρ
′(t, λ) = λC.

• There exists µ > 0 such that ρµ(t, λ) = ρ(t, λ) + µ
2
t2 is convex.

Algorithm and derivation of the closed form solution for itarates in (3.19)

For each iteration k, we use the following notations:

f(P (k)) =
1

2
‖P (k) − P0‖, f∗(u(k), v(k), U (k)) = −1

2
‖u(k)1t + 1(v(k))t − U (k)‖2

F−tr((U (k))tP0)

.
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Algorithm 8 Projection on doubly stochastic matrices
1: input:

2: kmax, ε← max. number of iteration and stopping criteria

3: U (0) ∈ Rp×p
+ , u(0), v(0) ∈ Rp ← Initial dual variables

4: converged = FALSE

5: while converged == False and k < kmax:

6: U (k) ← max{0, u(k−1)1t + 1(v(k−1))t − P0}

7: u(k) ← 1
p
(P01− ((v(k−1))t1 + 1)1 + U (k)1)

8: v(k) ← 1
p
(P t

01− ((u(k))t1 + 1)1 + (U (k))t1)

9: Update primal variable: P (k) = P0 − u(k)1t − 1(v(k))t + U (k)

10: If |f(P (k))− f∗(u(k), v(k), U (k))|< ε

11: converged = TRUE

12: else

13: k = k + 1

14: Output: Doubly Stochastic Matrix P

The convergence of Algorithm 8 is guaranteed since the objective function is differentiable

and strictly concave in each block component when all other block components are held fixed

(Bertsekas, 2015, Proposition 6.5.2).

Dual function derivation

The Lagrangian of (3.17) is (Bertsekas, 2015)

L(P, u, v, U) =
1

2
‖P − P0‖2

F+ut(P1− 1)

+ vt(P t1− 1)− tr(U tP )
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The dual objective function is defined as

L∗(u, v, U) = inf
P
L(P, u, v, U) (B.23)

Thus,

P = P0 − u1t − 1vt + U

Plugging this back into (B.23)

L∗(u, v, U) =
1

2
‖u1t + 1vt − U‖2

F+ut(P01− 1) + vt(P t
01− 1)− tr(U tP0)

− tr(utu1t 1+ut 1 vt 1+utU 1+vt 1ut 1+vtv 1t 1+vtut 1

− U tu1t−U tu1t−U t 1 vt − U tU)

Then the (3.19) follows by noting that the expression in the trace function is equal to ‖u1t−1vt +

U‖2
F . Now taking derivative with respect to u, v, U , the corresponding expressions for iterations in

the Algorithm 8 follows.

B.3 Tuning Parameter Selection

We use extended BIC (eBIC) criterion (Foygel and Drton, 2010) for the tuning parameters

θ = (λ, γ) selection in Algorithm 2. Ideally, we want to tune the parameters for each update of

L̂(k) in line 6, however, when the convergence takes more iteration this approach is computationally

costly. In practice, the tuning parameters are selected before starting the iterations (Ye et al., 2020),

hence a particular scoring function is fixed throughout the algorithm.

The eBIC criterion takes the form

BICγBIC (S(L)) = −2Ln(L̂) + s log n+ 4sγbic log p,

where S(L) is the support of matrixL, s = |S(L)|,Ln(L̂) is the maximized log-likelihood function

and γBIC ∈ [0, 1]. A larger value of γBIC results to a stronger penalization of L, and the case

γBIC = 0 corresponds to the classical BIC. In general, the value of γeBIC is unknown, but relying
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on simulation results, authors suggest γeBIC as a candidate value.
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