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ABSTRACT

With approximately 15 to 20 percent of adults aged 65 and older living with Mild Cognitive

Impairment (MCI), researchers in neuropsychology have placed increasing emphasis in early de-

tection to best preserve quality of life for MCI patients before the turnover to full Alzheimer’s or

similar types of dementia. Current methods of diagnosis in clinical neuropsychology involve a

lengthy process of developing a full behavioral profile, in which tests are administered to exam-

ine the existence and extent of cognitive impairment. Efforts to digitize and semi-automate the

process have emerged, but solutions tend to be limited in scope and there exists ample room for

improvement in developing new and faster diagnosis techniques.

This dissertation presents digital neuropsychological diagnosis tools by adapting existing neu-

ropsychological tests or presenting new prototypes based on existing methodology. Digitizing

these examinations allows for the collection of high-granularity data that allows for the creation of

machine learning algorithms as well as automated graders designed to be supported with various

intuitions about the test-taker’s behavior in a manner consistent with existing literature in neu-

ropsychology. We sought to produce knowledge on the mapping of sketch recognition analysis to

identifying MCI in patients. On a technical level, we present novel sketch recognition techniques

that identify specific degrees of shape correctness for automated grading of complex-figure tests,

as well as sketch segmentation techniques specific to the TMT.

To that end, we present three digitized systems that collect fine-grained behavioral usage data

through cognitive examinations: 1) a digital TMT that simulates the paper-and-pencil experience

on a tablet, 2) an automated grader for digitized ROCF tests, and 3) a new examination that

leverages modern touch tablet technology to expand on the inherent diagnosis weaknesses of

paper-based examinations as patients manipulate a virtual 3-dimensional object. We present our

technical approach, results from experiments, expected goals, and the intellectual contributions of

this dissertation research.

Our studies produced over 350 digital sketches from neuropsychological examinations across

ii



our three presented systems. Data segmentation techniques have resulted in over 6000 pieces of

segmented sketch data. We believe the findings presented in this dissertation can provide valuable

insight into the process of developing semi-automated or fully automated neuropsychological

diagnosis tools.
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1. INTRODUCTION

Clinical neuropsychology focuses on identifying and managing behavioral abnormalities that

might lead to severe conditions such as Alzheimer’s disease and dementia, both of which are

conditions that continue to climb in prevalence in recent years [3–12]. Neuropsychologists identify

and track cognitive decline through observation of a patient’s behavior, and this frequently involves

exercises and tests, some of which are handwritten. Handwriting in particular offers a window

into a person’s cognitive state [13, 14]. Handwriting is affected by a wide variety of conditions

that affect cognition, ranging from temporary (tiredness and inebriation [15–20]) to permanent

(Alzheimer’s disease [21–26]).

In recent years neuropsychology and modern digital technologies have intersected. Aside

from obvious applications that focus on digitizing records, modern mobile applications and the

development of analytical and predictive algorithms are increasingly being leveraged as assistants

for diagnostic and therapeutic purposes [27–30].

Of the many neuropsychological tools to diagnose and track cognitive decline, tests involving

drawing on paper with a pen or pencil garnered our interest, as there exists a multitude of digital

sketch recognition technologies that leverage machine learning to assist in handwriting recogni-

tion, labeling, ideation, and technologies for creative expression. Existing research has extended

to identify properties of those who are writing with these technologies; research has identified

sketching behaviors correlated to development in young children, domain expertise in creative

design problems, the trajectory of experience with perspective sketching activities, and the tracking

of aptitude in handwriting foreign-language characters and symbols among many others. It stands

to reason that if these technologies can be successfully leveraged for cognitive development, they

may also be used to identify cognitive decline. The fact that drawing activities remain in use to

this day as a diagnostic tool to measure cognitive decline further motivates a research focus in

intersecting both domains of research.

This research focuses on two sketching activities that are frequently used in clinical neuropsy-
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chology: the Trail-Making Test [31], and the Rey-Osterrieth Complex Figure Test [32]. The former

is a connect-the-dots exercise that tests executive function, while the latter is a test involving the

memorization and copying of a large complex figure. Trail-Making Tests have been in use for

several decades, initially as part of a general intelligence test but quickly adapted for diagnosis

purposes once it became clear it was also sensitive to cognitive decline. Rey-Osterrieth Complex

Figure Tests are but one of several complex-figure examinations developed and used over several

decades as the sensitivity to cognitive decline was also identified. This research dissertation

documents the process of adapting these tests to a digital format, and how these applications were

built and adapted to ensure the task of drawing is as unaffected as possible in the transition to

digital technology. We developed recognition technology for predictive purposes in two fronts.

For ROCFT, we focus on the recognition of the same geometric shape a neuropsychologist looks

for when grading complex figure tests. For TMT, we focus on the recognition of cognitive decline

in order to develop a predictive model. The former is meant to create an assistive technology that

aids neuropsychologists by automating an existing process. The latter aims to create a predictive

technology to identify cognitive decline itself.

This document also outlines research into a third option: the creation of entirely new tests using

current advancements in mobile technology. We present our findings and document the design

of a new test, called the 3D-Trail-Making Test, that uses touch tablet technology to adapt the

TMT to a more dynamic examination. We outline the reasoning behind design decisions and draw

comparisons in performance between participant groups and how these show similar sensitivity to

specific conditions.
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2. INTELLECTUAL MERIT

Digitizing existing neuropsychological tests and creating new ones necessitates domain knowl-

edge in neuropsychology as well as expertise in digital sketch recognition algorithms and tech-

niques. This intersection of both domains is non-trivial and requires careful considerations for ap-

plication and interaction design for participants who use the presented solutions. Existing solutions

for general-purpose sketch recognition techniques are not adequate for the task given the specificity

of a neuropsychologist’s needs in automating sketch analysis. Similarly, resulting sketches for both

the TMT and ROCFT tasks are intentionally designed to not resemble everyday writing tasks. This

requires solutions specifically tailored for these tasks if the recognition techniques are expected to

work well for this domain.

This dissertation focuses on the contributions to human-computer interaction, specifically in

two broad categories: 1) the creation of a comprehensive set of recognition heuristics to present

an automated analyzer that grades existing neuropsychological examinations with largely the same

rules as applied by an actual neuropsychologist, and 2) the creation of predictive algorithms that

uses high-granularity digital sketch input data to generate predictions of possible signs of cognitive

decline. The former leverages heuristic rules for recognition of geometric shapes, while the latter

leverages the computation of geometric features of sketches to produce predictive algorithms.

These two categories are representative of the two major categories of diagnosis and treatment

automaton: a system that analyses tests with already established grading heuristics (albeit orig-

inally designed to be graded by humans), and a system that can generate its own heuristics for

predictions via machine learning.

A third class of contributions is orthogonally developed in this dissertation: design consider-

ations developed for the adaptation of digital neuropsychological tests, both existing and novel.

Early designs in digitizing the TMT, for example, consisted of the manipulation of computer mice

to connect dots. This task, especially in the 1990s when the computer mouse was a relatively

more novel input modality for the general consumer, introduced a confounder in the requirement
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to manipulate a mouse pointer successfully. Our intent is to mimic the test taking experience as

closely as possible to the pen-and-paper experience, both on a a tablet application and via "smart

pen" use on a printed piece of paper. We also intentionally created a novel, digital-only task

and explored how input would be designed. These considerations, while not the focus of this

dissertation, may provide key insights into how to develop these digital applications to aid, rather

than hinder or replace, existing diagnosis methodology in neuropsychology.

We present the following contributions to the field of human-computer interaction as it pertains

to sketching and cognition:

• This dissertation work presents a more granular analysis of sketches produced by the TMT

and ROCFT neuropsychological examinations, as well as the novel 3D-TMT task. The

segmentation and analysis techniques developed for these tasks is intended to be applied

to other similar tasks, such as different abstract shape layouts for complex-figure tests, and

other dot layouts for TMT variations.

• For the TMT task, we present predictive algorithms derived via machine learning techniques

to explore the classification of participants based on cognitive decline. We perform analysis

on general binary classification tasks for “non-MCI” vs. “MCI” participants, as well as pre-

dictions of more continuous levels of cognitive decline as reflected in the Montreal Cognitive

Assessment task (MoCA).

• For the ROCFT task, we present a comprehensive set of geometric rules for automatically

grading complex-figure examinations, striking a balance between leniency for hand-drawn

shapes while simultaneously having rigidity through which to determine distortion or ab-

sence of shapes.

• For the 3D-TMT task, we present design considerations for a novel neuropsychological ex-

amination and a predictive algorithm to determine whether a cognitively healthy participant

is a native of the United States vs. a native of Japan. The original TMT task has been

shown to be sensitive to background such as nationality, as subtle cultural changes can result
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in different test completion behaviors. We present how these differences are reflected in a

novel neuropsychological examination.
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3. PRIOR WORK

Prior work relevant to the study of cognitive decline reflected in digital sketches from neurop-

scyhological examinations can be divided into domain-specific information on clinical neuropsy-

chology, as well as existing research in digital sketch recognition, digitizing cognitive examina-

tions, and the current state of research in both.

Clinical neuropsychology has a long and rich history with sketching, as the act of sketching

and tasks related to the act of drawing have been shown over the years to be reflective of a patient’s

cognitive state. The Compendium of Neuropsychological Examinations [2] provides an in-depth

look at common examinations and how they are administered, and serves as repository of acquired

normative data. Among the many examinations provided, several consist of sketching or drawing

tasks, ranging from making patients draw small marks such as in the Double Letter Cancellation

tes, to recreating entire sets of abstract geometric shapes such as the Rey-Osterrieth Complex

Figure Test.

3.1 Clinical Neuropsychology

3.1.1 Mild Cognitive Impairment

The characteristics of MCI were initially established as part of the Global Deterioration Scale

(DGS) [33], defining it as a syndrome where an individual’s cognitive decline is greater than

expected for their age [34–36]. It is generally somewhat as a precursor to further decline that

may progress into dementia, with Alzheimer’s in particular being likely. The existence of MCI in

itself is not an indication that decline will progress into a more severe disease or condition, and

in fact many MCI patients do not decline further. Additionally, unlike these more severe forms of

cognitive decline, MCI does not severely impact one’s daily quality of life [37] and can thus be

challenging to diagnose. Often the signs are subtle and can be easily dismissed as expected decline

in executive function for an individual’s age. MCI itself is characterized as not having a significant

impact on daily activities, and may not manifest in a noticeable way for years.
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However, MCI over the longer term can decline into more severe deficits. Characteristics of

severe cognitive decline in this condition can vary depending on the severity along with background

and genetic conditions particular to the patient. Reisberg et al. [33] specifies the emergence of “be-

havioral disturbances,” neurological abnormalities, electrophysiological changes, motor deficits,

balance and coordination deficits, and deficits in general active daily living activities. Such activity

can be identified from analyzing biomarkers like MRI data with machine learning [38–40], but

more subtle behavioral recognition remains an active field of study. With an increase in life

expectancy seeing a rise in the prevalence of dementia and Alzheimer’s disease [41], research atten-

tion has turned to the successful identification of MCI, both in the physical and digital spaces [42,

43], and how existing tools can be improved to assist. Constructional abilities are also significantly

affected [44,45], which have led to the development of tasks aimed at probing said abilities to help

identify abnormal decline.

3.1.2 Trail-Making Test

Clinicians have historically relied on paper-and-pencil neuropsychological examinations as

one of the primary methods to diagnose MCI, as handwriting and cognitive decline have been

shown to be related [46]. These typically involve a series of simple tasks for an individual to

complete, and have been shown to be sensitive to the same cognitive functions affected by MCI

through several decades of research [47]. We focus on Trail-Making Test, a connect-the-dots task

that tests executive function and active memory. Initially conceived as a test to assess general

intelligence, the TMT is known to be sensitive to cognitive decline and possible early signs of

dementia. Currently the Trail-Making Test is widely used in neuropsychologists’ test battery to

assess for various signs of cognitive decline, including MCI [2]. The switching between numbers

and letters found in the TMT-B relies on frontal lobe function [48–52], and is one of the primary

reasons for the sensitivity of the test to MCI.

The test consists of two separate connect-the-dots tasks. The participant is handed a piece of

paper with a series of labeled dots printed on it, and are handed a pen or pencil with which to

connect the dots. The “A” variant of this test consists of a participant connecting dots in ascending
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numerical order (1, 2, 3, and so on), while the “B” variant of the test requires connecting dots

alternating between numbers and letters in ascending order (1, A, 2, B, and so on). The participant

is typically asked to complete the test as a pair, starting with variant A and immediately followed

by variant B. Multiple layouts of these tests exist and are used when a clinician wishes to test

the participant more than once, since a different arrangement of labeled dots is necessary to avoid

the learning effect. Dot layout has been observed to directly affect time to completion on healthy

populations [53]. Participants are asked to not lift their pen or pencil whenever possible. While it

is necessary to lift the pen or pencil to correct mistakes should the participant connect the incorrect

dot in the sequence, at every other time the participant is asked to leave the pen touching the

paper, including when the pen is stationary while they look for the next dot. The participant is not

allowed to make erasures of lines already drawn. In some instances of the pen-and-paper version

of the TMT, the participant will be asked to cycle between several colored pencils every set number

of seconds to aid the proctor in determining how long the participant would take to connect certain

dots.

Assessment of Trail-Making Tests is primarily done in two ways: comparing the test score

with established normative data, and the qualitatively observed behavior of a participant as the test

is being completed. The test score is calculated as the test’s time to completion rounded to the

nearest whole number. The fact that a score is reported as a single numerical value necessitated

the qualitative observation, and over the decades clinicians have devised multiple methods for

assessing a participant’s performance as they complete the test. Colored pencils were introduced

to have participants switch between colors every few seconds, to color-code their progress and

visualized how often it takes for a participant to connect the next dot in the test. Clinicians have

also recorded the video of the participants to be able to repeatedly analyze their behavior during

the test. These behaviors include but are not limited to: sitting posture, ability to follow directions,

reactions to mistakes, process to identify the next dot if participants lose their place, and how a

participant holds the pen.

These measures taken highlight the notion that the behavior a participant exhibits during the
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test is just as important, if not more so, as the single time-to-completion reported score. The subtle

nature of MCI, however, has historically meant that clinicians rely on their own expertise and

experience for qualitative observations. Most recent advancements to digital sketching technology

have made it feasible for these tests to be assessed with much higher granularity than in previous

decades.

3.1.3 The Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is among the most widely used assessment

protocols for gauging an individual’s cognitive function. It consists of various short tasks, both

written and verbal, aimed at testing various functions of a person’s cognition and is frequently

administered as a triage to help determine whether a patient requires further diagnosis and possible

treatment, and is also frequently used to determine whether patients have symptoms of MCI [54,

55] and more serious diseases like Alzheimer’s [56]. Originally developed in 1995 by Ziad

Nasreddine [57], it has since been the subject of various validation studies [48, 58], and normative

data has been collected and analyzed for patients of various populations [59–62], diseases [63,64],

cognitive states [64, 65], education level [66], and post-trauma conditions [67, 68]. The primary

conditions that it has been validated for include MCI, Alzheimer’s disease and Parkinson’s Disease

dementias [54, 58, 69], and has been shown to be more sensitive than other similar examinations

such as the Mini-Mental State Examination (MMSE) at detecting early signs of decline related

to MCI [70]. Hobson describes that the MoCA can assess cognitive domains including but not

limited to “Visuospatial/Executive, Naming, Memory, Attention, Language, Abstraction, Delayed

Recall and Orientation (to time and place)” [57].

The MoCA is completed in around 10 minutes and can be completed by anyone who under-

stands the instructions, with the test being translated and validated to over 30 languages [57].

Julayanont et al. [48] describes the tasks of the MoCA as follows:

• Modified Trail Making Test. A shortened, modified version of TMT-B with 10 dots.

• Copy of the Cube. Converting a two-dimensional contour into a 3-dimensional object.
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Figure 3.1: The Montreal Cognitive Assessment (MoCA). Reprinted from mocatest.org [1]
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• Clock Drawing Test. Drawing a circle representing the lock, and setting the hour and minute

hands to half-past eleven.

• Naming Test. Subject sees three animal pictures and must name correctly a lion, rhinoceros,

and camel.

• Digit Span. Proctor reads two sets of digits and subject must repeat them. The first set is

read in forward order, and the second set read in backwards order.

• Letter A Tapping Test. Proctor reads a list of letters that do not spell any word, and subject

must tap their hand with each mention of the letter A.

• Serial 7 Subtractions. Subject must specify how many times the number 7 must be subtracted

from 100 to achieve 5 numbers that the proctor reads.

• Sentence Repetition. Proctor reads two sentences and the subject must repeat them back.

• Letter F Frequency. Subject must list aloud as many words as they can remember that begin

with the letter F.

• Object Similarity. Subject must describe the difference between two pairs of objects that the

proctor reads.

• Delayed Recall. After several minutes of being read a list of words, the subject must repeat

the words back.

• Time and Place Orientation. Subject must identify date, month, year, day, place, and city in

which they currently are.

The MoCA is frequently used in tandem with other neuropsychological examinations for en-

suring that its results are consistent across various other examinations such as the Trail-Making

Test. In effect, one might consider performance of the MoCA and the TMT to be correlated, such

that exceptionally well or poor performance of one test is likely to lead to poor performance in the
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other. Indeed, a brief TMT-B appears in the MoCa as one of the tasks [48], and they both test of

the same frontal lobe function. Given that the TMT isolates this particular task to its own test and

introduces a TMT-A variant along with a longer set of dots to connect provides a more thorough

test of the same functions that the MoCA’s TMT-B task tests. For this reason comparisons can

be made between performances for both, although little work has been done in machine-learning

systems that could predict the MoCA based on the performance of the TMT.

3.1.4 Rey-Osterrieth Complex Figure Test

The Rey-Osterrieth Complex Figure Test (ROCF), developed by Rey [71] in 1941 and refined

by Osterrieth [32] in 1944, is a neuropsychological test that evaluates several cognitive functions

including visuospatial abilities, memory, attention, planning, working memory and executive func-

tions [2, 72–74]. The ROCF is characterized as a complex cognitive task [75], and is known in the

field of neuropsychology as a useful metric for the frontal lobe function [76] and to possibly detect

conditions such as Alzherimer’s [77, 78] and schizophrenia [79]. A participant is asked to copy

the figure into a piece of paper, then copy it again two more times from memory. The shape

is specifically designed to be abstract so that participants cannot associate it with any common

object or concept. A clinician then grades all three sketches on whether 18 separate sub-shapes

(henceforth called “details”) exist and, if they do, how neatly they were drawn. A clinician grants

up to 2 points for each detail that totals to 36 points, with partial credit given to distorted or

misplaced shapes. Points for overall neatness of individual details is subjective and is generally

dependant on an expert’s intuition, especially for shapes that exist but might be drawn poorly.

This results in different ROCF graders potentially producing two different scores. The prolifer-

ation of digital sketch recognition techniques and a push to digitize clinical neuropsychological

examinations motivated our creation of an automated ROCF that can grade itself on the existing

grading scheme. The ROCF test is not only used to detect cognitive decline but is also used to

gauge executive function across age populations from adults [80–82] to children [83–85], to study

conditions from learning disabilities [86], eating disorders [87], and decline due to age [88] among

many others. The ROCF’s sensitivity to various participant’s cognitive and behavioral states have
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thus necessitated developing various methods to grade the test.

From a digital sketch recognition standpoint, the task of grading an ROCF is non-trivial due to

the complexity of the figure and test conditions resulting in inherently fuzzy sketch data. Assessing

participant performance and how it might inform their behavior has been an ongoing topic of

research [89, 90], with proposals for new grading rubrics being compared against each other [91–

93]. When grading the ROCF tests, no two completed sketches are drawn in the same order, and

very frequently shapes are drawn using portions from other shapes [94]. Bottom-up approaches

tend to classify shapes as soon as their constraints are met, but shapes in an ROCF may in fact be

only part of a detail or may end up as a portion of an entirely different one. A top-down approach

not only more closely resembles a human grading an ROCF, but it also simplifies the recognition

process by not needing to re-classify a shape at every step of the hierarchical recognition process.

3.1.5 Uses in Clinical Neuropsychology

Neuropsychologists employ a variety of cognitive examinations through which to observe a

patient’s behavior. Some of these involve manipulating physical objects, answering a series of

oral questions, solving exercises that integrate drawing exercises. These tests typically involve

paper and pencil, and the patient is required to complete an examination by sketching, drawing on

objects, crossing out or circling shapes, and other forms of interaction using pen on paper.

The TMT was conceived and originally introduced as a testing tool in the field of clinical

neuropsychology to assess general intelligence. Shortly thereafter, clinicians found utility in the

test’s ability to aid in the detection of cognitive abnormalities. Clinicians who administer the

Trail-Making test observe the patient’s behavior according to a predetermined checklist. Among

the items include sitting posture, how well they maintain eye contact, reaction to mistakes, and

their efforts in remembering the next item in the sequence among others [2]. Tests produce one

quantitative performance metric in the form of the time taken to complete the test, rounded to the

nearest second. A clinician compares the score against established normative data depending on

which age classification the patient belongs to. The lengthy diagnosis process combined with the

increased emphasis for early detection due to the climbing proliferation of Alzheimer’s disease and
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other types of dementia1 has maintained the TMT’s relevance in modern diagnoses.

3.1.6 Uses in Other Fields

One of the landmark traits of the TMT is in its reliable utility as a general tool to test cognitive

function. It has been shown to be sensitive to a wide variety of differing behaviors. It is used

in sports to assess the extent of effects from mild head injuries [95]. These tests have shown to

be an improvement over a subjective report of mild traumatic brain injury symptoms following

injuries in sports [96]. The TMT has been shown to be sensitive to both age and education among

healthy participants in various populations such as Japan [97], Brazil [98], and Portgual [99],

exemplifying its versatility across cultures and geographic regions. It is used to gauge the effects

of drug addiction such as cocaine and alcohol on cognitive functions among participants [100].

It is also sensitive to sleep deprivation such as when studying sleep apnea/hypopnea [101]. The

TMT also is used in the military, with extensive studies being done to gauge the effect of PTSD

on combat veterans [102]. In short, the TMT is sensitive to changes in behavior based on brain

injuries, traumatic events, sleep deprivation, age, education, drug addiction, cultural background,

and geographic location. This has allowed the TMT’s expansion of utility across a wide range of

purposes over the decades of its existence.

3.2 Digital Sketch Recognition

3.2.1 Sketch Recognition Systems

Digital sketch recognition techniques favor bottom-up approaches that employ computational

geometry to classify shapes [103–107] or gestures [108–111]. Hierarchical sketch recognition

systems such as LADDER [112–127], Sketchread [128], Chemink [129] and Mechanix [130–139,

139–144] generate composite figures by re-classifying shapes into more complex shapes in every

step of the sketching process. In early bottom-up sketching approaches “steps” were typically

separated by a UI button that explicitly instructed the system to create a recognition step. More

modern systems, however, automatically separate “steps” by single-stroke actions and usually

1Centers for Disease Control and Prevention: www.cdc.gov/features/alzheimers-disease-deaths/index.html
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triggered when the user lifts their pen. This allows the system to continuously check the sketch to

see whether the user is drawing a composite sketch made up of shape primitives.

Popular applications for bottom-up recognition of composite shapes using geometric prim-

itives is especially popular in digital recognition of hand-drawn diagrams [145–151], tutoring

systems [152–166], artistic drawings requiring technical skill [167–172], distinguishing text from

images [173], teaching and recognizing handwritten characters of various languages including

Chinese [174–179], Japanese [180,181], Urdu [182], and Arabic characters [183,184], handwritten

mathematical formula recognition [185–187], military course-of-action diagrams [188, 189] and

drone interaction [190, 191], music [192, 193], document notation recognition [147, 194, 195], and

converting offline images into digital stroke data [196, 197]. For hand-drawn diagram recognition,

researchers seek to digitize hand-drawn flowchart and system design diagrams, interpreting dia-

gram structure, flow of information, and preservation of variable and state checks through digital

sketch recognition techniques [148, 149, 198–202]. Circles, rectangles, diamonds, rhombi, and

directional arrows [106] are used in diagrams to denote specific system or algorithm states or

commands [150, 151, 203]. Indeed, these projects originally served as the basis of Auto ReyO’s

recognition due to the emphasis in recognizing primitives as part of a larger composite system of

shapes. However, a chief difference between these projects and an ROCF sketch is that the ROCF

by design has a large number of overlapping shapes, and specific details can be as granular as a

single line within a specific area of other shapes. Diagrams and flowcharts, by contrast, are required

to have clear spacing between its components and recognizing missing or distorted shapes is not a

focus of these automated systems. While some form of composite figure recognition is necessary

for automatically grading the ROCF, a top-down approach as explored in other systems [204]

proved ultimately the most viable for Auto ReyO.

Corner detection [205–207] also helps characterize digital shapes, with lightweight systems

such as ShortStraw [208] and iStraw [209] being among the most efficient. Auto ReyO uses the

open-source ShortStraw library in its recognition of corners and endpoints to generate the vertices

that will be used in the graph creation as explained in 5.1.3. This is used in tandem with line-
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intersection algorithms to segment the sketch lines such that individual shapes can be recognized.

A frequent use case of this is recognizing details 4 and 6 of the ROCF (see Fig. 5.1). A user

typically draws a single long line at once across the ROCF shape, so we are unable to use individual

stroke order to recognize details, but rather need the segmentation that a line-intersection algorithm

combined with ShortStraw is able to provide.

Hierarchical sketch recognition approaches generally check drawn lines to see if they meet

requirements for a composite shape [210, 211]. However, this creates a need to check for every

possible shape component at every step of the sketching process. This becomes prohibitive for

large, complex line drawings such as the Rey-Osterrieth complex figure, especially if there is no

guarantee that every line is present. Although important foundational work has been established,

no one system has presented fully automated grading of ROCFs that also identifies absent and

distorted details.

3.2.2 Cognition in Digital Sketch Recognition

One of the prevalent methods of digital sketch recognition is through the analysis of sketches as

“gestures” comprising of geometric properties of sketches. This includes but is not limited to line

length, speed, acceleration, line straightness, and various trigonometric properties of line strokes.

Individual features were calculated in early efforts from Rubine et al. [103,212], and later expanded

by others [105,213–219]. Digitial sketch recognition initially leveraged machine learning to afford

developers tools to recognize simple geometric shapes. Shape recognition expanded to alphabets,

scaffolded recognition to identify components of complex composite shapes, and entire sketches.

Machine learning algorithms have allowed these analyses to be made feasible over a large corpus,

resulting in models that are able to distinguish between objects depending on subtle changes in

sketching behavior.

An increasingly common application of digital sketch recognition does not identify the shapes

drawn, but rather characteristics of those who draw them. In addition to identifying writers based

on their drawing style [220, 221], Kim et al. identified strong correlations between sketching

behavior and early cognitive development in infants [222–226], with Paulson et al. also exploring
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the relationship between digital sketching and children’s cognitive development [227]. Davis et

al. [228] and Muller et al. [229] similarly has focused on cognitive decline by analyzing sketches

from Clock-Drawing tests [230]. Zham et al. identified the presence of Parkison’s disease through

the way a participant drew spirals with a smart-pen [228]. Digital variants on existing neuropsycho-

logical tests are numerous, with various proposed systems designed for test automation, diagnosis

assistance, or self-administration [231–234]

3.3 Intersecting Neuropsychology with Human-Computer Interaction

3.3.1 Template Matching Shape Classification Systems

The “Dollar” family of recognition systems [235–239] remains among the most well known

single and multi-stroke gesture classification algorithms, and serve as the basis for our own template-

matching recognition algorithm presented as part of our system. While most techniques rely on

stroke order, geometric properties, and physical characteristics such as speed, acceleration, etc.,

the “$P+” recognizer calculates similarity via ”point cloud” approximation [240]. A point cloud

is generated by resampling both a template shape and an input shape on the same resampling

parameters, overlaying the input shape on top of the template sketch matching its shape, centering,

and orientation as close as possible, and iterating through every point finding the closest match

between template points and input points. The distance between the points that are closest together

are added cumulatively and are presented as the overall “distance” metric between the template

shape and the input shape. The “$P+” recognizer returns the closest template match, identifying

what kind of shape the user has drawn. This is especially flexible when the application in question

necessitates recognition that is agnostic to stroke order. Our technique for shape recognition

as described in Section 5.1.5 is based on the “$P+” recognizer, particularly the technique of

calculating a “distance.”

Our technique differs, however, in that rather than calculating distance via point-for-point

comparison, we generate a fixed-resolution matrix of point density for both the template and the

input shapes and calculate distance between cells of both matrices. This allows us to generate a
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more accurate grader for shape neatness. Indeed, “$P+” only focuses on finding the closest match

to a template since it is a shape classifier, but its internal distance metric value does not perform

well to gauge whether an input shape is poorly drawn next to its provided “ideal” template shape.

3.3.2 Hierarchical Sketch Recognition

Hierarchical sketch recognition approaches generally check drawn lines to see if they meet

requirements for a composite shape [210, 211]. Layered hierarchical systems for graph creation

have been applied to both bottom-up and top-down systems [204], and involve the decomposition

of a drawn sketch to specific broad categories by analyzing sub-graphs [241–243]. This is typically

used in the fields of computer vision to help decompose a system to primitive parts and represent

them as a tiered graph. We envisioned a similar hierarchical tiered approach to the recognition of an

ROCF due to the nature of the drawn details. To draw detail 10 in an ROCF, for example, the user

needs to have drawn both details 2 and 3 to be able to connect the line properly (see Figure 5.1).

Similarly, detail 14 requires the existence of detail 13 to receive full marks for both correct

placement and shape neatness. Rather than represent the entirety of the sub-shape as a single

vertex in a graph, however, we envisioned the vertices of a graph being represented by intersecting

lines and endpoints, and applied the concepts behind sub-graph composite object recognition to

identify the ROCF details themselves. The cited foundational work on graph implementations to

supplement computer vision and object recognition informed our own approach to automatically

grade ROCFs using a graph itself as the vehicle for tiered object recognition.

3.3.3 Efforts to Automate Neuropsychological Examination Analysis

Since interactions with digital interfaces is often impacted by a decline in a user’s cognition

from handwriting tasks [244–247] to tasks involving physical movement [248–252] and wayfind-

ing [253–255], an active area of research is developing automated tools that can track decline

from a digital system’s usage metrics [256–264] while taking into account the non-equivalence

of computerized and paper-based tests [265, 266]. Tracking systems also have been developed

with the intent to aid in post-diagnosis therapy in an information-rich, unobtrusive manner [267–
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273] Efforts to automate other neuropsychological tests has renewed interest in sketch sub-object

detection [274–279]. Object recognition ranges across various neuropsychological examinations

including clocks [280, 281] and general handwriting tasks [282–286]. However, whereas recog-

nized objects for these tests tend to have heavily distinct characteristics, ROCF details are mostly

composed of simple primitives that appear frequently. For example, detail 5 shown in Figure 5.1

is defined not only as any vertical line, but rather a specific vertical line within the sketch. Work

presented by Prange et al. [287] cites Rey-Osterrieth figures as a motivating factor in the need

to identify geometric shapes inside complex abstract figures. Existing attempts to automatically

grade ROCFs are semi-automated or do not implement detection of all 18 details [94, 288]. The

most recent attempt automates grading using a deep-learning neural network but leaves ample

room for improvement of individual segment detection, most notably single-line details [289].

Additionally, our system is able to produce a recognizer from only five training sketches to serve

as templates, whereas neural networks require exponentially higher amounts of training data to

function properly.

3.3.4 Challenges of Assessing TMT Participants

The TMT’s sole quantitative measure is the participant’s completion time, rounded to the

nearest second [31]. While this facilitates analysis of participant performance, it also discards

large amounts of context-sensitive data that may yield insight into the participants’ state of mind.

Whether the administrator is attempting to identify brain injury, mild cognitive impairment, cul-

tural or education differences, PTSD or inebriation, much of the assessment is left to subjective

evaluation. The only quantitative comparison that can be made is to whether their score is within

the range of “normal” scores according to established normative data. As mentioned above, the

test’s primary use in clinical neuropsychology still relies on external factors such as sitting posture

and reactions to mistakes to gauge a patient’s cognitive state, resulting in a lengthy testing process.

The TMT also does not test a participant’s perception of objects in a 3-dimensional space and

any cognitive functions related to 3-dimensions such as image recognition of rotated objects, object

permanence, and depth perception. Since the TMT’s introduction in the 1940s, newer research
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into human cognition has more recently identified general perception of 3-D space as an important

indicator in a participant’s cognitive state [290].

3.3.5 Leveraging Technology for Existing Cognitive Tests

Researchers have previously used segmentation and recognition techniques of drawn shapes

for the purposes of assessing cognitive testing performance. Souillard-Mandar et. al developed

machine learning algorithms to detect behavioral abnormalities on a digital version of the Clock

Drawing Test [230]. Moetesum et. al uses distorted shape recognition to help automatically grade

the widely used Bender Gestalt Test (BGT), a drawing test similar in style as the TMT [275, 291],

but does not share the TMT’s same versatility or ubiquity. Nazar et. al advanced the computerized

grading process of the BGT by employing convolutional neural networks [292]. Similar techniques

have been employed for the Rey-Osterrieth Complex Figure Test, which consists of copying a

complex figure consisting of various simple geometric shapes arranged together. Canham et. al

performed some early work in identifying only some individual shapes of the larger complex fig-

ure [94], while more recent work from the same author further developed recognition of structures

from the naturally distorted Rey-Osterrieth figure drawn by a human [288].

These works establish the concept of leveraging modern machine learning techniques to recog-

nize behavior from neuropsychological exams, but have not worked with the TMT previously. We

have previously been able to perform these sketch recognition technologies on a digital version of

the TMT to correctly classify a participant’s age based on their digital pen input [293].
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4. RESEARCH QUESTIONS

4.1 R1. Can we create a predictive algorithm for estimating cognitive decline using digital

sketch recognition features?

H1. A combination of existing general-purpose sketch recognition features in combination with

novel features aimed at capturing participant performance while completing a digital Trail-Making

Test can help create a predictive algorithm that can predict cognitive decline in two ways:

• A binary classification between a participant with Mild Cognitive Impairment (MCI), and a

participant without it

• A continuous classification that can predict a participant’s MoCA scores depending on their

performance of the TMT within 5 points.

4.2 R2. How closely can an automated grader for a complex figure examination mirror a

human grader for ROCFTs?

H2. We expect an automated grader for the inherently subjective task of ROCFT grading to

perform in two aspects:

• A recognition F1-score of greater than 0.8 for the majority (at least 14 of the 18) of ROCFT

details when gauging whether the automted grader can recognize the existence of individual

drawn details.

• An average difference of no greater than 5 points for the entire test’s score between expert

graders and our automated grader

4.3 R3. How well can we differentiate between participants of different nationalities from

a novel cognitive examination?

H3. We expect a novel neuropsychological examination based on the TMT to be sensitive

to nationality, much like the original TMT. In conducting a binary classification when analyzing
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movement metrics between American and Japanese participants, we expect a significantly higher

than random-chance performance (greater than 0.75) F1-score for the classification between na-

tionality of said participants.
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5. AUTOMATICALLY GRADING SKETCH-BASED NEUROPSYCHOLOGICAL

EXAMINATIONS

The Rey-Osterrieth Complex Figure Test (ROCF) is among the most widely used neuropsy-

chological examinations to analyze visual spatial constructional ability and memory skills, but

grading the patient’s sketched complex figure is subjective in nature and can be time consuming.

With increasing demand for tools to help detect cognitive decline, there is a need to leverage

sketch recognition research to assist in detecting fine details within an ROCF’s inherently abstract

figure. We present a series of recognition algorithms to detect all 18 official ROCF details using

a top-down sub-shape recognition approach. This automated grader transforms a sketch into an

undirected graph, identifies and isolates detail sub-shapes, and validates sub-shape neatness via

a point-density matrix template matcher. Experimental results from hand-drawn ROCFs confirm

that our approach can automatically grade ROCF Tests on the same 18-item sketch detail checklist

used by neuropsychologists with marginal error margin.

5.1 Auto Rey-O: A System For Automated Grading For Rey-Osterrieth Complex Figure

Tests

This chapter contains research work currently in submission.*

5.1.1 Contribution

Significant research has been produced in analyzing the reliability of current rubrics [93, 294–

296]. Automating the process started over two decades ago [94], but even recently surveys have

cited a lack of contributions towards grading all 18 details at once. Moetsum et al. in research

published in 2020 [297] specifies that “due to the unconstrained nature, these drawings, localization

and segmentation of individual scoring sections become a highly challenging task” and existing

work localizes only a “small subset of ROCF scoring sections.”

*Auto Rey-O: A System For Automated Grading For Rey-Osterrieth Complex Figure Tests. Raniero Lara-Garduno,
Benton Guess, Thomas Merner, Zengxiaoran Kang, Nancy Leslie, and Tracy Hammond. Review in Progress
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Figure 5.1: Our automated grader highlighting Details 2, 3, and 6 in red, green, and blue
respectively.

Whereas previous efforts in automatically grading the ROCF can identify only a subset of

the complex figure’s details, we present the first fully automated ROCF grader that does not

require user input to point to baseline shapes from which to begin recognition. Our contribution

widely expands on Field’s truss recognition technique [130] by introducing several graph traversal

algorithms in order to isolate specific sub-shapes or regions from a given sketch. In addition to

triangles, we also recognize squares, parallel lines, crosses, straight horizontal and vertical lines,

and diamonds as well as shapes specific to the ROCF such as detail 6 (Cross with Square), detail 14

(Circle and 3 Dots), and 18 (Square with Line). Our system uses a multi-step recognition process

that can identify shapes whether by crawling the resulting graph, by using template-matching

shape recognition, or a combination of both, resulting in a more accurate and robust sub-shape

recognition system for ROCF grading. Many of our recognition algorithms utilize well-known

graph traversal [298] and optimization algorithms (such as Dijkstra’s Shortest Path [299–301]

and Depth-First Search [302]). Our system represents the first fully-automated ROCF grader that

recognizes the existence or absence of each of the 18 details and checks individual shapes for

distortion.

To test our recognizer’s performance, the system graded 141 digitized Rey-Osterrieth tests from

participants and we compare how closely our system’s grades correlate with those of two expert
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graders. The experimental results demonstrates the proposed approach is successful in identifying

the existence of sub-shapes within a large abstract shape.

We wish to emphasize the purpose of this automation is to re-create the grading process to

similar to a hand-grader to the best of this technology’s ability. It is not intended to automatically

detect MCI or similar conditions on its own. This is an important distinction due to the nature

of the examinations, since normative data points to correlations between exam performance and

possible signs of decline, but require a more holistic analysis of a patient’s behavior and cognition

to draw a formal diagnosis.

Additionally, the top-down recognizer does not intend to counteract existing physiological

conditions that might exist in patients. For example, poor eyesight, hand tremors due to trauma or

diseases such as Parkinson’s can have a significant effect on the patient performance of this test

in that the produced shapes might be heavily distorted. In these cases the distortion may not be

due to cognitive decline, and in those cases the Rey-Osterrieth Complex Figure’s grading would

not be able to distinguish it apart from partial credit due to a correct but distorted shape. While it

might seem feasible to have an automated system recognize and work around it, our intent with

this work is to automate an existing grading scheme rather than significant adapt it. Future work

might be able to identify the difference between distorted shapes due to physiological conditions

versus those as a result of cognitive decline.

5.1.2 Generalizability of Recognition Technique

An important consideration of novel recognition and automation techniques in sketch recog-

nition lies in articulating the generalizability and defining the constraints under which a presented

technique aims to perform well.

Automating the ROCF motivates a brief discussion on generalizability due to the inherently

"hard-coded" nature of its automation. Indeed, the complexity of the ROCF shape coupled with

the requirements of detecting very specific lines necessitates a certain specificity of location and

shape composition requirements. Some details, for example, are a single horizontal or vertical

line, but of most importance is the location of the line relative to other details and the starting and
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Figure 5.2: Grading rubric for the Rey-Osterrieth Complex Figure Test. Reprinted from A
Compendium of Neuropsychological Tests [2]
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Figure 5.3: Description of ROCF sub-shape recognition system. Stages 2 and 3 shown in the figure
are repeated for each of the 18 details of a Rey-Osterrieth complex figure.

Figure 5.4: Auto ReyO’s recognition hierarchy, designed to have as few dependencies as possible.
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Figure 5.5: The six other complex figure tests. Our 3-stage technique can also be applicable for
complex-figure tests, provided the exact heuristics are implemented for the details. Reprinted from
A Compendium of Neuropsychological Tests [2]

stopping points. It is, in fact, this specificity in requirements that allows our method to recognize

all 18 details, opposing previous work that only detects a subset of them.

At the same time, however, generalizability was taken into account when designing the rec-

ognizers that will be described in the following section. Generalizability was considered for two

primary reasons:

• Our set of recognizers is intended to work with imperfect hand-drawn ROCFs. Our

algorithm must be general enough to recognize details despite a varying list of imperfec-

tions including but not limited to: crooked lines, shapes not entirely closed, various lines

intersecting at different points, sharp angles accidentally being curved, the same line being

drawn over several times, etc. The algorithm must also be able to, within reason, identify as

many shapes as possible even in the absence of other shapes. Unless the shapes are directly

dependent on each other for recognition, the absence or heavy distortion of one unrelated
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detail should not prevent the recognition of the other. These design considerations were

aligned with existing research for digital applications that involve sketching modalities [303].

• As many recognition techniques as possible should be easily adaptable for other com-

plex figure tests. As per the Compendium of Neuropsychological Tests [2], seven complex

figures are recognized as valid and tested figures for this purpose, and the Rey-Osterrieth

Complex Figure test is the most popular. New variants with small changes are uncommon.

The remaining six figures are: Taylor Alternate Version, Modified Taylor Complex Figure,

and four Medical College of Georgia Complex Figures [304]. All have similar size, com-

plexity, and are a combination of straight lines, triangles, and simple geometric shapes. All

contain a “detail 2”: a large rectangle that serves as an anchor for the rest of the shapes.

Our system was designed to be adaptable to recognize the 18 details of the remaining six

complex figure tests by applying variations on the pathfinding algorithms on Table 1. Our

three-stage method detailed in Fig. 3 can be adapted for all six remaining complex figure

tests, so that extent we consider this approach generalizable for other complex figure tests of

this type. Location heuristics need to be tailored for each detail, since the rules themselves

are inherently specific and unique to the ROCF. We believe our three-step approach can

be usable for any hierarchical sketch recognition problem involving complex figures where

multiple sub-shapes must be discretely recognized but may share any number of lines.

To this end we intend to highlight the balance that we aimed to strike between a set of shape

recognition heuristics specific enough to separate detail shapes from the more complex ROCF,

while generalizable enough to provide effective shape recognition techniques for other complex

shapes and hand-drawn imperfections of the ROCF. Section 5.1.4.1 distills the recognition tech-

niques into four distinct categories that should be applicable for the other listed complex shapes.

5.1.3 Stage 1: Graph Creation

The graph creation stage is divided into four distinct steps. First, we prepare the sketch for

corner detection by resampling the sketch points of the entirety sketch to a uniform interspace
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Figure 5.6: Auto ReyO in use, digitizing the ROCF test in real-time for saving and processing. The
same app can be used to load existing ROCFs and automatically grade the tests with our recognizer.

length S as follows:

S =

√
(xm − xn)2 + (ym − yn)2

c
(5.1)

where (xm, ym) is the lower-right corner of the sketch, (xn, yn) is the upper-left corner of the

sketch, and c is a constant c = 40. The value of c was empirically determined to produce enough

granularity of the resulting sketch to preserve detail while being spaced far enough such that the

following step of corner finding is able to perform properly.

The second step utilizes the corner-finding algorithm from Wolin et al. [208] to identify any

“corner” from drawn strokes. To detect line intersections, two straight-line segments are compared

with the target segment ya = a2x + a1 checked for intersection against comparison segment yb =

b2x+ b1 with equation 5.2.

a1 + b1

a2 + b2

∈
(
x1 −

(0.15l)2

1 + a2
2

, xn +
(0.15l)2

1 + a2
2

)
(5.2)

where x1 and xn represent the x values of the less and greater vertices of the target segment
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respectively with l being its segment length. Comparing every line with every other line in this

way will return a series of points where the lines themselves intersect. This along with the detected

corners from the algorithm of Wolin et al. will serve as the vertices of the undirected graph, which

is constructed in the following step.

The third step creates undirected graph G, where every vertex v is a line endpoint, corner, or

intersection, and every edge e is a drawn line connecting each v. Each v contains a point from the

sketch, and each e contains the sampled points that connect the two vertices.

The fourth and final step performs vertex contraction on the created graph. Each vertex is

iterated over and checked for near vertices that fall below a predetermined distance threshold. If

two vertices are joined, their respective sampled points si including points from an edge that might

fall between them are combined into a single vertex v containing all the sampled points. The

distance measure is determined through complete distance used in hierarchical clustering, taking

the maximum of the set in equation 5.3.

{ ||si − sj||2 | si ∈ v1, sj ∈ v2 } (5.3)

This serves both to connect segmented or near vertices and to reduce the overall complexity of

the graph by eliminating edges. Finally, the vertices are iterated over a second time, checking if

near vertices fall below a distance threshold, where the distance is determined through taking the

minimum of the set in equation 5.3 referred to as single distance used in hierarchical clustering. If

the distance falls below a predetermined threshold, the points are then are linked through an edge.

5.1.4 Stage 2: Detail Recognition

All 18 ROCF details are recognized by applying a graph traversal algorithm to identify a

“shape” within the graph. Each detail has an associated algorithm that is called in the hierar-

chical order defined by Figure 5.4. Every algorithm is designed to accommodate inherent graph

imperfections from both the graph creation stage and the participant’s hand sketch. For example,

if the algorithm checks for a horizontal edge, there we allow a slope between 0.3 and -0.3 since
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Figure 5.7: Finding path p for the top horizontal side of detail 2’s rectangle. Dotted area on
right indicates dist radius. In this example vm2 = c1, dir = Right and nextdir = Down (See
Algorithms 1 and 2). This also serves as an example for any agent-based graph crawling recognizer.

participants are not expected to produce a perfectly horizontal line. The algorithms were designed

to strike a balance between leniency to accommodate the imperfect nature of a hand-drawn shape

and precision to find the expected shape if it exists.

5.1.4.1 High-Level Recognition Categories

Although the composition of the ROCF necessitates specific recognition requirements for each

detail, all of our recognition approaches can be categorized in four separate techniques:

• Agent-based graph crawling. This technique places an agent in a specified vertex and

instructs the agent to move in a specific direction, changing directions when it finds a corner

or can no longer move in said direction (see Figure 5.7). This technique saves every edge

and vertex that the agent crawls through, constructing the specified shape along the way. A

recognizer using this technique would have parameters to construct the specific detail, with

enough leniency to recognize hand-drawn shapes that are not geometrically perfect. This

technique is the primary method used for details 2, 4, 5, 7, 13, 15, 16, and 18.

• Bounded depth-first search. This technique is employed for details where the graph created

in Stage 1 is expected to vary too widely for the previous technique to be effective for hand-

drawn ROCFs. It uses a slightly modified version of the common depth-first searches found

in tree and graph traversal [305, 306], and it is intended to crawl through and return all
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Figure 5.8: An example of a bounded depth-first search recognition algorithm. It defines an initial
direction to begin DFS, then crawls finding any vertex and edge not part of a predetermined outer
bound.

connected vertices and edges inside a bounded area of a graph (see Figure 5.8). For this

technique we bound the area by labeling adjacent details that have already been identified,

indicating that the depth-first search should go no further if it encounters edges or vertices

associated with other shapes. If certain edges are meant to be shared (such as the left-hand

side of detail 2 and the left-hand side of detial 6), the edges are added through a second-pass

technique, usually a short version of agent-based graph crawling or Dijkstra’s shortest-path.

Bounded depth-first search is the primary technique used for recognizing details 1, 6, 17

• Dijkstra’s shortest-path for diagonal detection. [307] Due to the imperfect nature of hand-

drawn ROCFs, diagonal lines across shapes that connect several details would be difficult to

identify via graph-crawling. This technique leverages the inherent geometric property that

diagonals inside a rectangular shape are the shortest path between the rectangle’s corners (see

Figure 5.9). This technique is used twice, in details 3 and 18, where it is most applicable for

diagonal lines embedded within rectangular shapes.

• Area-based recognition. This technique is used in rare instances where the detail in ques-

tion is expected to vary too widely to accurately identify the shape via the previous two

recognition techniques. This technique constructs an area where the detail is expected to

be drawn in, and all vertices and edges situated inside this area are deferred to the Stage 3
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Figure 5.9: Dijkstra’s shortest-path algorithm is used to find diagonals, since geometrically they
are the shortest path between corners such as c4 and c2.

Figure 5.10: Area-based recognition defines a space a bounded by, for example, va1 to va5,
constructs a polygon comprising these vertices, and returns all vertices such as v0 to v2 inside
the bounds of said polygon area a.

template matcher to identify whether the sketch inside this area is that of the specified detail

(see Figure 5.10). As a result, this offloads all recognition to the Stage 3 template matcher.

This technique is only used for two details: 11 and 12.

The recognizers were implemented with the intent to be able to recognize a drawn detail

that matches the spirit of the description as detailed in The Compendium of Neuropsychological

Tests [2]. In order to effectively communicate the comparison between the written description of

the recognizer with our internal implementation we will provide a quote for each from the Com-
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pendium along with a description of how each of the recognizers were designed and implemented.

Detail 2’s description varies slightly, as we describe it as primarily a graph-crawling algorithm. For

detail 2 we provide pseudo-code as an aid due to the complexity of the recognizer and to provide

a clearer picture of the code implementation. The rest of the details 17 detail recognizers in the

paper are described at a higher level and more briefly out of space considerations.

5.1.4.2 Detail 2’s Recognizer

“The large rectangle. The horizontal dimensions of the rectangle must not be greater

than twice the vertical dimensions of the rectangle, nor must the rectangle resemble

a square. Because there are so many possibilities of distorting the rectangle and it

is not possible to score for position, a score of 1/2 point is given if the rectangle is

incomplete or distorted in any way”

Figure 5.11: Detail 2, as detected by our recognizer.

Detail 2’s recognition algorithm defined in Algorithm 1 and 2 is a greedy graph traversal

algorithm tasked with finding the large rectangle that serves as the anchor for all other shapes in the
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graph. Our pathfinder finds one rectangle side b and the corner at its end c at a time. For each side

dir is the intended path direction, and dirnext is the next path direction once we find our corner.

Detail 2’s recognizer consists of two main algorithms, algorithm 1 nested inside 2, to automatically

determine the largest rectangle of the input sketch. The fuzziness and unpredictability of the input

data necessitates that the algorithm consider every vertex as a possible candidate for the top-left

corner of the detail 2 rectangle. Algorithm 1 then finds the four sides and corresponding corners

and cralws as far as it can along every side. This ensures that not only will we receive the largest

rectangle we can recognize, it also ensures that the starting vertex v0, which automatically serves

as corner c0, is also corner c4 at the end of crawling. If c0 = c4, it a closed shape and a potential

candidate for detail 2. The algorithm then produces the largest such rectangle as detail 2, since the

rectangle of detail 6 and some erroneous drawings of detail 18 can also return closed rectangles

through algorithms 1 and 2.
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Algorithm 1 SideAndCorner
Input: Start node n, directions dir, dirnext
Output: Side d of rectangle, corner c

1: push n to stack s
2: while s not empty do
3: pop s to p, mark as visited
4: for all adjacent pairs (p1,p2) of p do
5: if direction of (p1, p2) = dir or distance e (p1,p2)<25 then
6: push p2 to s
7: p=p2, repeat from line 5
8: end if
9: if dead end pn reached then

10: add shortest path as a stack from p to pn to set c
11: end if
12: end for
13: end while
14: for all current longest path a in c do
15: for all adjacency pairs (pa1,pa2) of leaf pan in a do
16: if pa2 is dirnext of pa1 then
17: return c = pa1, d = a
18: else
19: pop pan from a
20: repeat from line 15
21: end if
22: end for
23: end for
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Algorithm 2 Detail 2: Largest Rectangle
Input: Sketch Graph’s vertex adjacency list
Output: Largest rectangle vertices

1: for all node n in Graph do
2: corner c1=SideAndCorner(n,Right,Down)
3: corner c2=SideAndCorner(c1,Down,Left)
4: corner c3=SideAndCorner(c2,Left,Up)
5: corner c4=SideAndCorner(c3,Up,Right)
6: if n = c4 then
7: add all SideAndCorner b sides to rectangle q
8: end if
9: end for

10: return largest q

We define N as single agents where every agent n ∈ N has a start location sn ∈ G and a goal

location gn ∈ G. The path p of n consists of one side b of our rectangle where gn = c. Path p is of

length k that is a sequence of vertices p = {v0, v1, v2, ..., vk} such that each consecutive vertex is

either in a defined direction dir (up, down, left, right, or diagonals) or Eucledian distance r < 25.

At the end of our sequence vk one of two conditions is true:

1. vk is connected to a vertex vx such that direction of (vk, vx) = dirnext

2. vk is connected to other vertices vm such that r of (vk, vx) < 25.

The conditions describe that we have either (1) found a corner characterized by the start of the

next side of the rectangle, or (2) the end of our sequence consists of various vertices very close

together. This creates a set of “dead-end” nodes Q. For condition 1, vk ∈ Q and c = vk. For any

vm that satisfies condition 2, {vm1, vm2, ..., vmn} ∈ Q. We check all vertices in Q and return the

vertex ve that satisfies condition 1. The final sequence is p = {v0, v1, v2, ..., ve}, and c = ve. This

is repeated four times to find the four sides of our rectangle, and return the largest such rectangle

as detail 2.
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5.1.4.3 Detail 1’s Recognizer

“The cross at the upper left corner, outside of the rectangle. The cross must come

down to the horizontal midline of the rectangle and must extend above the rectangle.

The line that joins the cross to the rectangle must be approximately in the middle of

the cross and must come between Detail 7 and the top of the rectangle.”

Figure 5.12: Detail 1, as detected by our recognizer.

Once detail 2 is recognized, the recognizer is able to use its sides and location and an anchor

through which to recognize every other detail. From this point forth we follow the same order as

presented by the Compendium’s grading rubric.

Detail 1 uses a two-step combination of defining edge borders to isolate an area, then run

a depth-first-search algorithm to identify all vertices and edges within said area. This method

proves effective for several details that have two conditions: 1) the area in question is relatively

straightfoward to isolate under normal drawing conditions, and 2) the sketch inside the area is
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expected to vary widely enough that makes a more heuristics-based pathfinding recognizer used in

Stage 2 to be inadequate.

When designing heuristics for a potential pathfinding algorithm for recognizing a cross, in

practice we found that the Stage 1 graph generator would sometimes alter the edge and vertex

composition to such a degree that it would require a high amount of alternate recognizers for

crosses even if the sketch itself resembled a cross to a human eye. In these cases a template matcher

would be considerably stronger in recognizing a cross and, more importantly, the proportions of

the cross line lengths as described in the Compendium hand-graded rubric.

Detail 1 is recognized by taking the left-hand side of the detail 2 rectangle and its vertices as

the border limit, then employing DFS to isolate all sketch data to the immediate left of the complex

figure. The recognizer starts by iterating through the left-hand side of the detail 1 rectangle starting

from the top and moving toward the bottom, then employs a directed DFS algorithm aimed toward

the leftward direction when it detects that any of the iterated vertices have an edge to its left.
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5.1.4.4 Detail 3’s Recognizer

“The diagonal cross must touch each of the four corners of the rectangle and must

intersect in the middle of the rectangle”

Figure 5.13: Detail 3, as detected by our recognizer.

Despite the wide variability of vertex composition and the tendency for participants to draw the

diagonals in non-straight trajectories resulting in relatively unpredictable graphs, the algorithm for

identifying detail 3 was straightfoward. The four corners of detail 2 are identified by extracting the

last vertex of each returned rectangle side from detail 2 which will return the top-right corner,

bottom-right corner, bottom-left corner and bottom-right corner in that order. These vertices

are then saved and identified by their location. An implementation of Dijkstra’s shortest-path

algorithm [299] was employed twice, identifying shortest possible connecting path between the

corners, where the starting and ending vertices were the opposing diagonal corners from detail 2.

This cross of two diagonals intersecting in the middle are identified as detail 3 and passed to the

template matching algorithm for identification.
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We found this shortest-path algorithm the most effective at identifying diagonals within a

rectangle given the geometric properties of said diagonals; by definition these diagonals constitute

the shortest path between opposing corners of a rectangle. If the diagonals are incomplete, such as

when a participant does not completely connect the diagonal lines to the corners, or when the lines

themselves are incomplete, the template matcher would find a significant discrepancy between

templates provided for the detail 3 diagonal cross and the sub-sketch returned from this recognizer.

Thus the advantage of this three-step process becomes emphasized. In some cases, such as

detail 2, the recognizer itself is able to mostly verify the integrity of the shape within the recognition

algorithm by itself. By contrast, some algorithms such as detail 3, or detail 1, the recognizer

merely identifies and isolates a sub-shape where it expects the detail to exist if it is drawn correctly,

and then passes whatever is returned to the Stage 3 template matcher. This allows us to create

recognizers that are not just relatively flexible, it also keeps the recognizer algorithms feasible by

not needing to account for every possible alternate graph composition from the provided sketches.

Should those details be drawn too poorly, the Stage 3 template matcher would identify that and

deduct points due to a distorted shape.

42



5.1.4.5 Detail 4’s Recognizer

“The horizontal midline of the rectangle must go clearly across from the midpoint of

the left side of the rectangle to the midpoint of the right side of the rectangle in one

unbroken line”

Figure 5.14: Detail 4, as detected by our recognizer.

The recognition of detail 4 exemplifies the sketch recognition problem of recognizing a simple

shape in a relatively complex location. While recognizing a single horizontal line is trivial in digital

sketch recognition, the fact that we seek a specific horizontal line embedded within several lines

inside a complex figure is the challenge of this automated ROCF grader, and our solution shows

why we believe a graph-traversal based approach is straightforward in concept and execution.

Detail 4 is a horizontal line situated across the width of detail 2. The key is differentiating

this line, which runs along the middle of the rectangle of detail 2, from the horizontal lines of the

rectangle of detail 2 itself. We exclude the horizontal lines of detail 2 by dropping the last and
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the first nodes of the left and right sides of the detail 2 rectangle from consideration in the detail 4

recognizer.

With the first and last nodes of each side excluded from consideration, the agent’s starting

position index is l − 1/2, the middle of the path of the left-hand side of detail 2. A uni-directional

DFS, the same implementation used for detail 2, is deployed to find a horizontal line from one side

of the rectangle to the other. For the detail 4 line to be valid, the ending vertex must be part of the

right-hand side of Detail 2, meaning the horizontal line must run the entire width of detail 2.

If the uni-directional DFS line is not found at the starting position of l − 1/2, the agent moves

outward in increasing distance from the center with each new check. We introduce a counter i

that increases in absolute distance of 1 with each new iteration. If no line is found in any of the

iterations, the detail 4 recognizer will return "not found" and award no points.
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5.1.4.6 Detail 5’s Recognizer

“The vertical midline must start at the midpoint of the bottom of the rectangle and go

through in one unbroken line to the midpoint at the top of the rectangle. In scoring of

details 4, 5, and 6, they should intersect at the midpoint of the rectangle. Usually, if

they do not , only one of them is scored as incorrect for position. Very seldom are all

three scored incorrect for not being in position”

Figure 5.15: Detail 5, as detected by our recognizer.

Detail 5 is a very similar implementation to that of detail 4, with the exception that the starting

and ending sides are the top and bottom sides of detail 2 and the uni-directional algorithm seeks to

recognize a vertical line from top to bottom. The starting and ending points of the top side of detail

2 are still excluded, the starting position of the agent is still the middle of the top line of detail 2,

and the agent still moves outwardly away from the center on both sides from the center in similar

fashion as the detail 4 recognizer. Therefore, the implementation of detail 5’s recognizer is largely

the same with the exception of direction.

45



5.1.4.7 Detail 6’s Recognizer

“The small rectangle within the large rectangle and to the left side of it. The bound-

aries of Detail 6 are defined by the top of the rectangle falling between lines 2 and 3 of

the parallel lines that make up Detail 8, and the width of the small rectangle must be

approximately one-quarter of the width of the large rectangle; that is, it should come to

the midpoint between the left side of the large rectangle and the vertical midpoint of the

rectangle. The cross within Detail 6 must come from the four corners of the rectangle

and should intersect at the mid-point of the rectangle (i.e., words intersecting on Detail

4)”

Figure 5.16: Detail 6, as detected by our recognizer.

Detail 6 recognizer has the most robust behavior of all features in this automated grader. An

eye-level observation of the composition of detail 6 in a ROCF test allows one to intuit why; the

shape consists of both a square shape as well as a cross inside it, and is embedded between the

left-hand side of detail 2, and shares the remaining two corners with two lines from the cross of
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detail 3. Additionally, detail 4’s line runs through the middle of detail 6 but is actually excluded

from detail 6 itself. All of these characteristics need to be taken into account in the recognizer’s

code, with enough leniency to still recognize the shape when it is drawn less than ideally.

The first step is in identifying the bounds of the shape. As previously described, the bounds

consist of the left-hand side of the detail 2 rectangle and the two lines that form the cross of detail

3. Additionally, the vertex and edge sets for details 7 and 4 are saved only for the purposes of

exclusion so that they are not recognized as part of detail 6.

Once these bound vertices are established, several omni-directional DFS algorithms are de-

ployed. The reason why several DFS algorithms must be deployed is that the bounded vertices

forces the algorithm to stop the search in that direction to prevent the recognizer from continuing

past the vertex bounds. As such, the recognizer might fail to find every line of detail 6 if only one

omni-direcitonal bounded DFS algorithm is used. An agent is placed on the left-hand side of detail

2 and the first and last vertices are excluded from consideration (see detail 4 for the reasoning as to

why). The agent then iterates through each vertex and conducts an omni-directional DFS algorithm

with a starting direction toward the right. This type of DFS differs from the uni-directional DFS

algorithm described in previous details in that it is meant to search every direction but its very first

search is aimed in a specific direction to help focus the search in a particular area. Otherwise, a

true omni-directional DFS will jump beyond the bound vertices at the beginning of the search.

The final step is in excluding all the edges and vertices that are part of detail 6 and 7, and

including the edges and vertices that are part of detail 2 but connect the top-left and bottom-left

corners of detail 6. This needs to be done separately at the end of the process since the left hand

side is used beforehand to construct the boundaries of the DFS searches.

As with the other DFS-based recognition approaches, the detail 6 recognizer uses stage 3 to

verify the integrity of the drawn shape before awarding points. This shape in particular, with

the challenges in dissecting the specific edges that part of detail 6 since not every line inside the

rectangle is part of it, is one of the details that benefits the most from the Stage 3 recognition pass.
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5.1.4.8 Detail 7’s Recognizer

“The straight line above Detail 6 must be shorter than the horizontal aspect of Detail

6 and must fall between the top of Detail 6 and the second line of Detail 8”

Figure 5.17: Detail 7, as detected by our recognizer.

Detail 7, along with detail 10, is among the most straightforward recognizers since they are

both single lines with a common vertex with detail 2. In the case of detail 7, the line is horizontal

and is situated just above detail 6. The algorithm places an agent along the left-hand side of

detail 2, excluding the first and last vertices to avoid detecting the top and bottom lines of detail

2 as the horizontal line. The detail 4 edges and corresponding vertices are also excluded from

consideration, since they are also horizontal lines and would otherwise be confused with detail 7

if the participant does not draw detail 7 in their complex figure.

The detail 7 recognizer returns a single edge and pair of vertices corresponding to the line just

above detail 6 if it exists. The algorithm makes a single direction comparison per inner vertex v of

the left-hand side of detail 2.
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5.1.4.9 Detail 8’s Recognizer

“The four parallel lines within the rectangle in the upper left corner should be parallel

with the spaces between them approximately equal. If the lines are unduly slanted or,

of course, if there are more or less than four of them, then the scoring is penalized.”

Figure 5.18: Detail 8, as detected by our recognizer.

The detail 8 recognizer also uses the Stage 3 template matching before awarding points, since

it is the most robust way to check for number of lines and parallel line straightness. Detail 8 is

contingent on the existence of detail 5 for the parallel lines to be attached to the right vertical

line and detail 4 for the lines to be attached the diagonal cross of detail 4. We are not aware of a

widespread amount of instances where detail 8 exists in a drawn ROCF but without the existence

of a detail 4 and 5. For that reason we consider details 4 and 5 as pre-requisites in our hierarchy

for recognizing detail 8.

The algorithm places two agents, one to crawl along the vertical line of detail 4 and one along

the diagonal line of detail 3. The crawling for both agents iterates from the top of the detail 2
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rectangle, excluding the vertices along the top line of detail 2. The crawlers stop at the intersections

of details 3 and 5, since we do not expect parallel lines belonging to detail 8 to exist on the right

half of detail 2, or the bottom half of detail 2.

The agent that moves along the vertical line of 4 checks for single lines to the left of the detail

4 line. The agent that moves along the diagonal line of 3 checks for single lines to its right. The

recognizer checks for both directions since the stage 1 graph creator often inserts a vertex along

the parallel lines of detail 8, and thus we hope to account for those instances.
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5.1.4.10 Detail 9’s Recognizer

“The triangle above the rectangle on the upper right, with the height less than the

base”

Figure 5.19: Detail 9 as detected by our recognizer.

Detail 9 is among the first details that were previously recognized in past efforts by Canham et

al. [94] due to the simplicity of the shape along with the fact that it is isolated at the top of detail

2. In a similar fashion our recognizer is relatively straightforward and focuses on identifying the

vertical and diagonal lines that make up the upper two lines of the right triangle.

Our detail 9 recognizer places an agent along the top of detail 2. The agent searches for a

vertical line moving upward from the top of detail 2. When it finds one the agent moves to the top

vertex of this line and then searches for a slanted line in the south-east direction. If it finds such

a slanted line that intersects back into detail 2 then it has completed the closed right triangle and

thus we have detected a potential detail 9 triangle. The algorithm performs two comparisons for

each vertex (one for the vertical line and one for the slanted line).

51



Figure 5.20: Detail 10, as detected by our recognizer.

5.1.4.11 Detail 10’s Recognizer

“The small vertical line within the rectangle just below Detail 9. The line should be

clearly shifted to the left within the upper right quadrangle in the rectangle”

This is the vertical counterpart to detail 7, in that it is a single line pointing inwards from an

outer edge of the detail 2 rectangle. Similar to detail 7, we wish to exclude recognition of other

unrelated vertical lines such as the vertical lines of detail 2 on either side, as well as the line of

detail 5.

This recognizer places a single agent along the top line of detail 2 and excludes the first and

last vertices of the top line. It seeks the first downward line it finds that is not already part of detail

5. This recognizer performs single comparisons with each iterated vertex.
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5.1.4.12 Detail 11’s Recognizer

“The circle with three dots in the lower right half of the upper right quadrangle. It

must not touch any of the three sides of the triangular area in which it is placed, and

the positioning of the dots should be such that there are two above and one below, so

that it resembles a face”

Figure 5.21: Detail 11, as detected by our recognizer.

Detail 11 was one of the primary reasons for the recognition technique of returning all vertices

and edges within a certain location and having the stage 3 template matcher verify the integrity

of the shape. It is important to note that even though stage 1 constructs straight-line edges and

approximates corners into vertices, it associates the vertices and edges to the actual hand-drawn

sketch. Therefore, we can use the vertices and edges to quickly identify an area of interest and

return the actual sketch data to the stage 3 template matcher easily.

Detail 11 employs an area-based boundary that differs from vertex/edge boundaries found for

BFS-based recognizers. This area-based boundary constructs a polygon from a set of vertices to
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serve as an outer boundary, then returns every vertex and edge inside that area.

The boundary is defined by the right half of the detail 4 horizontal line, the upper-right half of

the detail 3 cross, and the upper half of the detail 2 right side. This boundary information is then

fed into a function that generates an n-sided polygon constructed from the set of vertices that make

up the boundary.

This helper function, named “CreatePolygon,” saves the coordinates of the generated polygon

to identify which nodes in the graph are inside. To determine whether a vertex is inside of the

generated polygon, we employ a horizontal line test, a technique frequently used to determine

whether a point is inside of an n-sided polygon. In a horizontal line test, we use the y-coordinate

of the point we want to check and a theoretical "infinite" horizontal line to the right of the he x-

axis. We then how many times such horizontal line intersects with the sides of the n-sided polygon.

If the number of times the horizontal line, which extends to a distance of infinity to the right of

the vertex’s coordinates, intersects an odd number of times, it means the coordinates lie inside the

n-sided polygon since the horizontal line "entered" the polygon but did not leave. Conversely, an

even number of intersections indicates the the horizontal line entered the polygon as many times as

it left, meaning the coordinates are outside of the n-sided polygon. This process is repeated to find

every vertex that lies inside the n-sided polygon, and by returning the edges associated with these

vertices we are able to determine the shapes that are inside of the area we define in the n-sided

polygon.

This is used to identify every vertex and edge that is situated inside the triangular area as seen

in Fig. 5.21. The ROCF guidelines specify only the circle and three smaller dots inside said circle

are expected to be found in this area. We not only determine that only this shape is inside the area,

but we also determine the neatness of the shape of detail 11 using the template matching algorithm

in Stage 3.
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5.1.4.13 Detail 12’s Recognizer

“The five parallel lines that are crossing the lower right aspect of Detail 3 must all be

within the lower right quadrangle. They must not touch any sides of the quadrangle,

and they should be approximately equidistant from one another”

Figure 5.22: Detail 12, as detected by our recognizer.

The technique to recognize detail 12 is very similar to that of detail 11, with the main change

being the area of comparison. In this case, because the diagonal line is itself a portion of the detail

itself, we use a larger area of comparison.

The n-sided polygon consists of the area bounded by the lower portion of the right-hand side

of the detail 2 rectangle, the right portion of the lower side of the detail 2 rectangle, the right-hand

side of detail 4, and the bottom half of detail 5. Every line vertex and edge that is inside this defined

area is considered detail 12 and checked against the template in Stage 3 to verify that this shape

was drawn correctly.
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5.1.4.14 Detail 13’s Recognizer

“The triangle on the right end of the large rectangle. The height of the triangle must

not be greater than half of the horizontal mid-line of the rectangle and, as already

mentioned, the slope of the sides of the triangle must not be a continuation of the slope

of Detail 9.”

Figure 5.23: Detail 13, as detected by our recognizer.

The detail 13 triangle can be complicated by imperfect drawings of the attached diamond of

detail 14, and adjacent details 15 and 16. The main consideration behind detail 13 is ensuring

this triangle can be independently detected regardless of whether details 14, 15, and 16 are drawn

correctly or at all.

Our recognition of detail 13 sees a return of edge crawling not too dissimilar from detail 2. This

recognizer is more straightforward because we can estimate the agent’s starting point; we place an

agent at the bottom-right corner of the detail 2 rectangle, then crawl upwards as we search for the

first slanted line with a slope that is upward and to the right. Once the first such line is detected (and
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is ideally the agent’s starting vertex at the bottom-right corner of the detail 2 rectangle), the crawler

then continuously moves across the slanted line and stops when it cannot continue in the same up-

and-right direction. If the ROCF is drawn correctly, this stopping point will place the agent at the

right-most tip of the detail 13 triangle. The agent then changes direction and continues crawling

along attached edges that have an up-and-left direction. To avoid crawling along the slanted line

of detail 9 recognizer, the agent stops when it either encounters a vertex or edge associated with

either detail 9, or detail 2. If this detail is drawn correctly, all edges and vertices that the agent has

crawled through are those belonging to the two lines associated with the detail 13 triangle to the

right of detail 2.
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5.1.4.15 Detail 14’s Recognizer

“The diamond attached to the end of Detail 13 should be diamond-shaped and must

be attached to the end of Detail 13; it must not extend down below the bottom of the

large rectangle, Detail 2.”

Figure 5.24: Detail 14, as detected by our recognizer.

Despite the diamond being simple in shape during testing and analysis of participant data we

encountered that the diamond results in a fairly wide variety of vertices and edges when Step 1 of

our process converts the ROCF to a graph. For that reason, rather than opting for an agent-based

crawler, we have instead decided to employ a directed depth-first search somewhat similar to the

bounded and directed DFS system found in detail 1 and detail 6.

The outer bounds of of this DFS-based recognizer is defined by the edges and vertices defined

by detail 13, 15, and 16, and the DFS search begins at the tip of the detail 13 triangle. Because this

requires details 15 and 16 to be included in the boundary, this means those two details are detected

first (see Fig. 5.24).
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5.1.4.16 Detail 15’s Recognizer

“The vertical line within triangle 13 must be parallel to the right vertical of Detail 2,

the large rectangle, and it must be shifted to the left within Detail 13.”

Figure 5.25: Detail 15, as detected by our recognizer.

Detail 15 is a relatively straightforward implementation of an crawler-based agent recognizer,

working backwards from the default order of a detail 13 triangle and only crawling when it en-

counters a vertical line moving downward that is not already associated with the detail 2 rectangle.

Once such a vertical edge is detected, the agent keeps moving downward and returns the vertical

lines and vertices it crawls through until it encounters the bottom side of the detail 13 triangle.

This recognizer makes a single comparison for every n-node in the detail 13 triangle, and

continues up to an m number of vertical edges in the downward direction, generally not more than

2 or 3 depending on the composition of the drawn ROCF and how the graph is created in Stage 1.
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5.1.4.17 Detail 16’s Recognizer

“The horizontal line within Detail 13, which is a continuation of Detail 4 to the right,

must come from the midpoint of the right side of the large rectangle and extend to the

top of triangle 13. If triangle 13 is slightly askew, or if Detail 4 does not meet the

midpoint of the right side of the rectangle, Detail 16 should still be scored as a full

2 points if it went to the top of the triangle from the midpoint of the right side of the

rectangle”

Figure 5.26: Detail 16, as detected by our recognizer.

Similar to detail 15, detail 16 is a crawling agent that moves along the right-hand vertical side

of detail 2 and begins crawling in a rightward direction the first time that it can. It continues

crawling until it arrives a vertex without a rightward edge attached.

The recognizer makes similar comparisons as detail 15, with n vertices of the right-hand side

of detail 2 and m vertices of the horizontal line comprising detail 16.
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5.1.4.18 Detail 17’s Recognizer

“The cross attached to the lower center area of the rectangle. The right side of the

cross must be clearly longer than the left side of the cross but must not extend beyond

the right end of the large rectangle. It should also, at its left end, commerce at the

midpoint of the right side of the square, which is Detail 18.”

Figure 5.27: Detail 17, as detected by our recognizer.

Detail 17 is recognized in a similar fashion as the detail 14 diamond, which in itself is similar

to the only other cross in an ROCF, detail 1. The reasoning is similar; all three of these details

generate widely varying vertices and edges when the graph is created in Stage 1. Detail 17 further

shares a similarity with detail 14 in that it this recognizer is deployed after the subsequent detail,

in this case detail 18, since recognizing the latter detail significantly simplifies the generation of

boundaries for the DFS-based recognition.

The boundaries for this DFS recognition is defined by vertices and edges associated with detail

18, and vertices and edges associated with detail 2. The DFS crawler finds detail 17.
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5.1.4.19 Detail 18’s Recognizer

“The square on the lower left corner of Detail 2. It must clearly be a square, as

opposed to the rectangular shape of Detail 6, and its sides should be the same size as

the vertical aspect of Detail 6, extending halfway between the left side of the rectangle

and the vertical midline of the rectangle.”

Figure 5.28: Detail 18, as detected by our recognizer.

The most effective version of the detail 18 recognizer is one that employs slightly modified

versions of the detail 2 crawler and the detail 3 diagonal detector. The detail 18 recognizer benefits

from a set starting point for the agent being placed at the bottom of the detail 2 rectangle. The

agent is placed on the left and starts crawling to the right.

The agent then checks for the first edge that is in a downward direction, moving down along

the first edge it detects. Once it moves down it continues its motion until it can detect an edge to

its right, then repeats the process until it finds an edge to the top, and once it moves to the top it

should encounter an edge that is part of the detail 2 rectangle again. The agent then crawls to the
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Det. Method of Recognition Det. Method of Recognition

1 Isolate region, then DFS to fill 10 Greedy single-direction pathfinding
2 Greedy pathfinding, repeated per side 11 Isolate triangle, then DFS to fill
3 Dijkstra’s between diagonal corners of #2 12 Isolate lower-right region, DFS
4 Greedy single-direction pathfinding 13 Find upward, downward diagonals
5 Greedy single-direction pathfinding 14 DFS to find all edges on tip of #13
6 Direction path for top/bottom, Dijkstra’s 15 Greedy single-direction pathfinding
7 Greedy single-direction pathfinding 16 Greedy single-direction pathfinding
8 Connect horizontal lines bet. #3 and #5 17 Isolate region, then DFS to fill
9 Find vertical, diagonal line above #2 18 #2’s technique, then single diagonal

Table 5.1: General recognition method types for all 18 details. DFS is the Depth-First Search
pathfinding algorithm. Dijkstra’s is the Dijkstra Shortest-Path Algorithm

left where it is expect to come into contact with its starting vertex. If it does not find its starting

vertex in this final step, it is not considered a closed rectangular shape situated below detail 2, and

the agent is then placed further along the bottom of detail 2 in a rightward direction. However, a

correctly drawn ROCF is expected to result in a closed rectangular shape of detail 18 the first time.

Detail 18 also consists of a single diagonal line connecting the top-left of the detail 18 square

with the bottom-right corner. We employ Dijkstra’s shortest path algorithm to detect this diagonal

in the same way the diagonals are detected for detail 3. Because we observed several instances

where participants would erroneously also draw another diagonal to form a cross like in detail 3,

we have chosen to also run a second Dijkstra’s shortest-path algorithm from the top-right to the

bottom-left corners of the detail 18 square. If the ROCF is drawn correctly and no such diagonal

exists, it will make no change to the shape that is given to Stage 3. If, however, the second diagonal

is erroneously included, the additional line will be included and Stage 3 will detect this additional

line, deducting points during grading.

5.1.5 Stage 3: Detail Validation

Stage 3 compares only the isolated sample of the recognized detail to a set of template details

to score the sample’s quality. With the exception of details that are a single straight line, every other

detail in the ROCF test is passed through Stage 3 for validation. The system begins by centering,
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scaling, and resampling the isolated sample points so that they lie in a [−1, 1] range on the x and

y plane. Re-sampling is done a second time to ensure that the isolated shapes can all be uniformly

compared against the resampled template shapes.

Stage 3 uses a system loosely based on the $P recognizer [237] that turns gestures into point-

clouds whose distances from provided templates serve as the basis for shape recognition. Point-

cloud techniques have been used for fast recognition [308–311], and different implementations

employ their own versions, with $P itself being loosely based off of Hidden Markov Models [312].

Figures 5.12 through 5.28 highlight in blue the line data that is passed to Stage 3, and is the

sampled data from the pen that that pre-processed for conversion to a graph for Stage 1.In the

process of recognition, however, small parts of the lines might get omitted from recognition during

Stage 2 in order to facilitate the algorithm function. Certain corners and segments where lines

intersect, particularly with lines that are not a part of the detail, might get omitted. By re sampling

the isolated details we are able to restore the small "holes" created during the Stage 2 recognition

process.

The resampled points are then used to create a dot density a map of an empirically provided

resolution n such that a detail is represented as a n×n matrix where space in the figure is mapped

to a cell of the matrix, each cell being some range [xi, xj], [yi, yj]. Each cell is then given a p-

value based on the number of points that lie within the range for each cell. A visualization of

this is shown in figure 5.29. This is applied to each of the templates, then each template matrix

is then averaged cell-wise to form a template mapping. This template point-density matrix data is

calculated with shapes that have been isolated ahead of time. New templates can always be added

and existing ones can be replaced without any change in the rest of the Stage 3 code. Although

any number of templates can be added for any one particular detail, we have chosen 5 templates

for each detail based on our testing during development.

The template matrix Q is compared sampled detail matrix P with equation 5.4 to determine

how closely the two matched. The best match is then found by shifting the the sample matrix

by row and column to find the best possible position when compared to the template, given that
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Figure 5.29: Comparing two point-density matrices to asses detail distortion: our sample, and a
saved template. The process is repeated for all templates.

some details will match in terms of their stroke and dimension but have somewhat different centers

relative to the the template.

n∑
i=1

n∑
j=1

max (0, Qi,j − Pi,j) (5.4)

The value of “distance” between template and sample is between 0 and 1, with 0 being the

best. A shape that receives full credit for neatness is characterized as how close the sample is

to the templates. Any value below 0.5 assigned to a sample is given full credit of 2 points. A

value between 0.5 and 0.9 is given partial credit of 1 point. A value above 0.9 is given 0 points.

This is distinct from point-cloud recognizers such as $P that match input gestures to its closest

shape category in what is considered a weighted-matching problem [313]. Our system, rather than

matching to a type of shape, instead focuses on the distortion of the provided shape, since we can

make a closer inference about the shape that is intended to be drawn. For example, if we compare

against detail 2 templates, we know the user should have drawn a rectangle.

The design of this template-matching technique places emphasis on both the line composition

of the proportion of the shape. Extra lines in the isolated sample or omitted lines will create a
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difference in distance p when compared with the template. Proportion also works in a similar

fashion; observing the point-density matrix on the left of Figure 5.29 shows that the horizontal

line at the bottom of the matrix has higher point density value than the vertical line on the left of

the matrix. This discrepancy is due to the fact that the triangle in question is that of detail 9 in an

ROCF (see Figure 5.19), which is a right triangle where the horizontal line is considerably longer

than the vertical line. The resolution of the matrix is a static n×n across the details, meaning shape

dimensions will be compressed and the longer one dimension is, the more dense the cells are in

that dimension when the matrix is created. This essentially preserves the proportion of length to

height of each shape for both templates and samples. While an ROCF’s shape is bounded by the

size of the physical page, it is important to note that total size of an ROCF does vary in size. This

"compression" of the shape proportions when creating the point density matrix allows us to grade

for shape proportion regardless of shape’s absolute size.

5.2 Data Collection and Results

5.2.1 Data Collection Protocol

We conducted a study with 68 cognitively healthy participants to complete a Rey-Osterrieth

Complex Figure Test between the ages of 19-32, following the protocol as specified in the Com-

pendium of Neuropsychological Tests [2]. Participants were recruited via email and classroom

announcements at the local university. All participants took the test in a simulated neuropsychol-

ogist’s test environment of an office setting free of distractions and below-average background

noise. Every participant was tested one at a time and first completed the necessary consent

form. Participants were provided the following: the prompt ROCF printed on a piece of paper,

a Neo SmartPen already connected via Bluetooth to a laptop running our Auto ReyO app for

data collection, and ”blank” canvas page that tracks the pen’s location and pressure in real-time.

Participants were asked to re-create the ROCF they see into the blank canvas page using the

SmartPen, informing them to pay as close attention as possible to the composition of the shape

as they will be asked to re-create it from memory. They are asked to draw as cleanly as possible,
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although they are allowed to draw over their own line once or twice to correct for mistakes. There is

no time limit to this or any other condition on the test. This stage constitutes the ”Copy Condition”

of an ROCF test.

Immediately after the shape is copied, we collect the pre-printed ROCF and their drawn copy,

as testing protocol does not allow participants to study the ROCF by memorizing it through sight

alone. A second ”blank” canvas page is given to them, this time with no pre-printed ROCF page

along with it, and are asked to draw the same shape again from memory. They are informed

they should construct as much of the shape as possible, and to try their best even if they cannot

remember every shape. They can think aloud through their process but the test proctor does not

provide hints answers. This constitutes the ”Recall Condition.”

The ”Delayed Recall Condition” is the final part of the testing protocol. It is the same as the

previous ”Recall Condition” but is not started until after 30 minutes of other activity. For ROCF

tests, this 30 minute wait time for ”Delayed Recall” can vary in length: test proctors can wait

anywhere between 20 minutes to 50 to conduct a ”Delayed Recall,” and in this time participants

are asked to engage in an unrelated activity. In our protocol they were asked to engage with any

activity of their choosing on their personal laptop or phone. Most commonly, participants browsed

the internet, checked email, worked on homework, or any combination. At the conclusion of 30

minutes participants were asked to re-create the ROCF with a new ”blank canvas” page one last

time.

All three test conditions were recorded separately as their own sketches, and were graded by

our Auto ReyO system for analysis at a later time.

5.2.2 Data Analysis

Although this test is meant to assess constructional ability and memory loss, healthy partici-

pants do not always score full marks on an ROCF [314], and indeed our testing corpus reflects a

wide range of scores that conform to established normative data for our participants.

A total of 204 sketches from the 68 participants were collected. Of these, 5 perfect-score tests

were set aside to be used as templates for Stage 3 validation. 14 were not gradable or their sketch
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data was corrupted, bringing the total graded to 185. All tests were also graded by two field experts

whose grades we consider “ground truth” in this context. The first grader is a practicing clinical

neuropsychologist and the second is a professor specializing in cognitive and visual perceptual

rehabilitation in older adults. We measure our system’s success in two ways: the F1-Score of our

recognition algorithm for each detail, and the comparison between our system’s total grade and

the expert graders’ total grade. For the latter, both our system’s and the grades are on the 36-point

scale as defined in Section 3.1.4.

A key factor considered when calculating F1-score was the subjectivity of distortion thresholds.

While we implemented our own thresholds for distortion in Stage 3, instructions for the ROCF in

the literature leave the definition of “distortion” at the discretion of the grader [2]. For recognition

purposes we are interested in gauging whether our system can successfully either find a detail or

confirm its absence. The F1-score reports our system’s ability to recognize the existence of a detail.

Since we are still interested in comparing 36-point grades that also integrate distortion as partial

credit, we also calculate Spearman’s rank coefficient (ρ = 0.767) between our automatically-

graded tests and those of our expert grader.

5.2.3 Results Discussion

In clinical neuropsychology, grading Rey Osterrieth Complex Figure tests has been the subject

of constant iteration and is an active research topic, with numerous methods of interpretation being

proposed and refined. As such, analyzing the process of grading these ROCFs automatically is

not a trivial subject. Our analysis centered on simulating the perception of an detail since the

granular differences in distortion are frequently attributed to grader subjectivity. Our aim, then,

was the provide evidence the system perceived the details correctly, even if they might have been

slightly distorted, or in the case of severe distortion the Stage 3 validation stage would be able

to separate those clear cases. In terms of overall score comparisons, we sought to analyze how

far apart individual test grades our system was from those of expert graders. Although the grades

from individual graders were closer to each other than between each grader and Auto ReyO, our

system compares favorably due to the high F1-score of the vast majority of details, and the average

68



Det. # ∆a,g1 ∆a,g2 ∆g1,g2 F1-Score Det. # ∆a,g1 ∆a,g2 ∆g1,g2 F1-Score

1 0.69 0.68 0.37 0.787 10 0.21 0.20 0.10 0.962
2 0.18 0.44 0.33 0.857 11 0.47 0.45 0.21 0.878
3 0.07 0.11 0.16 0.978 12 0.46 0.44 0.11 0.872
4 0.27 0.30 0.12 0.927 13 0.13 0.11 0.11 0.966
5 0.08 0.49 0.49 0.978 14 0.42 0.41 0.15 0.881
6 0.31 0.56 0.26 0.958 15 0.50 0.49 0.09 0.770
7 0.47 0.26 0.13 0.855 16 0.21 0.19 0.08 0.919
8 0.28 0.33 0.13 0.966 17 0.57 0.66 0.34 0.788
9 0.35 0.20 0.07 0.904 18 0.45 0.49 0.21 0.925

Table 5.2: Classification results and average scoring differences for each detail across all graded
tests. n=141 for all details except for Detail 2, where n=185. ∆a,g1 denotes the average point
score difference between Auto Rey-O and Grader 1, ∆a,g2 is the difference between Auto Rey-O
and Grader 2, and ∆g1,g2 between Grader 1 and Grader 2.

difference between Auto ReyO and our system being around 3 points out of 36 possible points for

an ROCF test. We believe these results are significant in light of the fact that a fully automated

ROCF grader that grades all 18 details has yet been proposed.

Also of note is the performance of detail 2, the large rectangle that serves as the anchor for

the rest of the sketch. The organizational strategy score of the Rey-Osterrieth Complex Figure

test places the highest priority on the existence of Detail 2 in a sketch due to its importance to the

overall figure structure [315, 316]. For the purposes of our system, this resulted in calculating F1-

Score for recognition of the 18 details being conditional on whether detail 2 could be successfully

recognized within a sketch. Exceptionally poor figures that lack a discernible detail 2 almost

always result in very low or ungraded scores when hand-graded. Similarly, in very rare cases a

poorly drawn ROCF could be graded by Auto ReyO if detail 2 could be recognized, while another

ROCF that would score higher might not be graded due to a detail 2 that could not be recognized.

For this reason, we have designed our recognition hierarchy such that the test is not graded if it

cannot automatically recognize detail 2. This provides the most consistent application of grading

requirements that is still consistent with the grading rubric as presented in the Compendium of

Neuropsychological Tests [2].
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A total score of 0, however, is not necessarily due to a true negative. For 44 sketches, our

algorithm was unable to find detail 2 due to a sloppy or unconnected drawing, but other details

would exist. If we flatly calculated F1-Score of all Details for every sketch included the ungraded

ones, this would assign incorrect false negatives to the rest of the details. For that reason we tier

F1-score calculations; for detail 2 we calculate it for all sketches (n=185), and for all other Details

we calculate it where detail 2 was correctly detected (n=141).

The F1-Score results in Table 5.2 and the graph in Figure 5.30 demonstrate the effectiveness

of Auto Rey-O. Our top-down system correctly identifies and validates the details with a high

enough F1-score that shows the system working for typical test-takers. Table 5.2 also shows the

average differences in scores (in points, maximum of 2) assigned between our Auto Rey-O system

and our expert graders. All of the average differences in scores for each detail are well below 1

point and the vast majority below half a point, indicating a marginal difference in scoring between

expert graders and our Auto Rey-O system. The system also works successfully for ROCFs with

higher amounts of distortion. Such instances display the flexibility of the system in still identifying

present details even if the participant has heavy lapses in memory.

The lowest-performing details are 1, 17 and 15. These had the highest amount of false neg-

atives, although our manual review of these false negatives showed our system did recognize the

details but chose to grant a score of 0 due to our threshold for distortion. Further refinements of

distortion threshold values for these two details would improve their recognition quality.

Figure 5.30 compares the scores assigned by our automated grader and the two expert graders.

Between the two expert graders, the correlation was p = 0.948, a Spearman’s rank coefficient

of ρ = 0.942, and an average difference in scores of ∆g1,g2 = 1.68. Between our system and

grader 1, p = 0.799, ρ = 0.765, and average ∆auto,g1 = 3.21. Between our system and grader

2, p = 0.829, ρ = 0.802, and average ∆auto,g2 = 2.78. Our automated system produced grades

with a generally high correlation with those of the graders, although the grades from the experts

were more similar to each other. In all three cases, low-scoring tests somewhat deviate across

all graders, even between the expert graders. This is likely due to the aforementioned ambiguity
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Figure 5.30: Grade plots for all 36-point scores, compared between Auto Rey-O and expert graders
(n=141). (a) p=0.799, (b) p=0.829, (c) p=0.948

in interpreting detail distortion. Our automated grader can also be observed to be consistently too

strict on grading that produces consistently lower scores, which is partially attributed to the fact that

it does not recognize details that were placed in the wrong location. In addition, at the suggestion

of the expert graders who also served as domain experts, we chose to prioritize consistency in

grading over leniency when deciding on partial credit thresholds since consistency is one of the

key advantages of an automated recognition system.

5.2.4 Insight Into Other Tasks

As a point of higher-level discussion, we also wish to specify the insights that we have gained

while implementing this solution, particularly in how we might approach other tasks. Of immediate

interest is that this approach has granted us the ability to create generalized sub-shape recognition

for any scanned sketch that does not have timestamped per-stroke sketch information. Although

our saved sketches contain within them timestamped coordinates, we do not use timing data for

our Auto ReyO system. Our approach, on a high level, can also be applied to any ROCF shape

provided we are able to digitize a completed examination via scanning, and would thus allow us to

conduct automated grading for tests that have been completed in years prior.

To further expand to the topic of general sketch recognition, our solution drew inspiration from
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the existing work provided by the Mechanix project [130–133, 135], which largely provided its

solution for hand-drawn truss recognition by turning the small sketch into a graph and ensuring the

resulting graph was a series of triangles with one common side on each. The same approach for

truss recognition used in tandem with an application of our system, however, could be an asset in

the task of recognizing other static-body systems that require the analysis of specific components.

This would be especially useful in instances where a top-down recognition system is necessary,

such as implementing an option to scan and grade sketches completed in pencil and paper. Such

scans would lack the timestamped stroke data that Mechanix relies on, but the individual pieces of

the system would still need to be individually recognized.

This approach in particular would provide us with a low-cost, computationally inexpensive

alternative to sub-shape sketch recognition from scanned sketches. The more common deep-

learning approaches require a far higher amount of training data (whereas we only used five

well-drawn ROCFs for training), would require significant computational power to train a multi-

layered network, and would be unable to exactly point to the absence or presence of individual

lines. Our approach has shown us it is possible to build a graph-based approach for sketch

recognition where individual details are of interest, usually any graded task such as in education

or neuropsychological tests. The fact our system is able to produce strong recognition results

without the need to analyze high granularity timestamped sketch data would allow scanned images

to be brought into the corups of data without the need for computationally expensive deep-learning

solutions.

5.2.5 Discussion on Grade Timing

Although an extensive study on the computational complexity and time performance of this

system was out of scope for this project, we still would like to make some brief remarks on

the improvements of time taken to complete this task that is inherent to an automated system.

Canham et al. [94] reports that, on average, the time to fully grade an ROCF is between 5 and 15

minutes per test. Expanding this out to the three conditions of a full battery of ROCF, this translates

to between 15 and 45 minutes for each subject.
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By comparison, the full 3-stage pipeline we have created on average takes between 1.5 and

3 seconds per test to be completed, with the possibility of taking upwards of 10 seconds per test

depending on the speed of the CPU of the computer in which this test is graded, and depending

on the overall messiness of the sketch drawn. We further automated the process of automatically

grading every sketch file in a folder containing all 185 sketches from our test corpus with a one-

click solution. This included the reading of the file, the full 3-stage grading process, and the output

of each test’s automated grades into a file in the comma-separated value (CSV) format. This entire

process took Auto ReyO to grade 185 tests in 5 minutes, 24 seconds in our system consisting of an

Intel i7-7700K CPU clocked at a frequency of 4.2GHz and 16 GB DDR4 RAM clocked at 4,100

MHz. Based on the estimates provided by Canham et al., the same task of grading 185 tests by a

human grader would have taken roughly 15 and 46 hours. These remarks intend to highlight the

inherent advantages of time savings for clinicians who wish to automate a process currently done

by hand. While we did not request the expert graders of our study to time themselves, but will

include some time-keeping mechanism for our expert graders in a future study to produce a more

formal timing comparison.

5.2.6 Comparison with Normative Data

A comparison of interest is in analyzing how the scores reported by the Auto ReyO system

comes close to reporting true-positive predictions of a subject’s cognitive decline compared against

the same scores reported by the expert graders. In practice this is a challenging comparison as cut-

off scores in normative data depend on a variety of factors, particularly depending on the cognitive

state or prior diagnosis of the participant themselves. Little research work exists for cut-offs among

healthy populations, since poor performance of the ROCF alone is not necessarily indicative of an

undiagnosed condition. Rather than score cut-offs, normative data for various populations that

include reporting of mean and standard deviation are published, and clinicians make a comparison

of scores for ROCF in addition to performance of other tests as well as their qualitative observations

to complete a full behavioral profile. Mean and standard-deviation normative scores for aging

populations for both healthy and those with cognitive decline exists, as does normative data exists
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to help differentiate between healthy subjects and malingering subjects. The Compendium of

Neuropsychological Tests defines “malingering subjects” as healthy participants who perform

poorly “based on litigation status and failure of effort measures” [2].

For our dataset we perform an assumption of malingering subjects who fit the second category

of “failure of effort measures.” Although we did not conduct a survey to measure the participants’

level of effort in an exact manner for each of the conditions, we still believe this would be the most

accurate form of providing a score cut-off comparison since all recruited subjects were deemed

to be cognitively healthy in our population. Strauss et al. cites a study that found that “examined

patients with suspect effort” versus those who had “various neurological and psychiatric disorders”

and found that “patients suspected of poor effort displayed significantly lower recognition scores

than did patients with bona fide visual memory impairment,” and thus cutoffs would indicate that

a lower score among healthy populations below a specific cutoff could be signs of malingering

subjects.

Along these lines, the Compendium of Neuropsychological Tests [2] reports that a cut-off score

of 25 or less for the Copy condition resulted in a Predictive Positive Value (PPV) of 90%, which

translates to a 90% possibility that the subjects below this cutoff fit in the malingering status. A

cutoff of 9 or less had a PPV value of 78% for the Immediate Recall. In that study Delayed Recall

was not reported, so cutoff data was unavailable. For the Copy condition our first expert grader had

no tests that fell below our ≤ 25 cut-off, our second expert grader had 4 tests that fell below this

cut-off, and Auto ReyO had 5 tests that fell below this cut-off. When examining the Immediate

Recall condition, the first expert grader reported 1 test that scored below the ≤ 25 cut-off, the

second expert grader reported 2 tests below the cutoff, and Auto ReyO reported no tests.

These cut-offs serve as a point of comparison of how the scores might be interpreted as

belonging to different categorical classifications. While the majority of the time normative data

only reports mean and standard deviation of the scores of a given population and the cut-off

for what a clinician might consider signs of cognitive decline or malingering subjects, we have

attempted to perform the closest point of score cut-off comparison that is identifying malingering
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subjects. Clearly the expert graders did not fully agree with each other how many or which

participants fell under this cut-off, but the number of tests were similar in magnitude and Auto

ReyO makes a similar amount of comparisons. A more formal study would need to be performed

for a full comparison of predicting malingering subjects. It is worth noting that according to Strauss

et al., “individual ROCF scores ... were not very sensitive in capturing suspect effort” [2], since it

bears repeating that the ROCF by itself is unable to make such a determination.

5.2.7 Comparison With Off-the-Shelf Solutions

Although a common point of comparison when gauging the performance of an automated

system is to compare it to existing state-of-the-art solutions, such a comparison is made challenging

against this particular topic since there is currently no automated system for in existence for

detecting the ROCF’s 18 details. Still, there is value in the comparison between the closest

equivalent of a baseline. Because there is no equivalent of a sub-shape recognizer, we have opted

for the closest off-the-shelf system that exists, the creation of a machine learning classification

system using common features created by Rubine et al. [103, 212].

Feature-based machine learning classification relies on the geometric properties of drawn shapes

to help classify them to labels of various types. This technique is used extensively in our second

project featured in Chapter 6. Most commonly, these labels in question are of the types of shapes

that are drawn, such as numbers, letters, shapes, and other simple geometric symbols. This kind

of classification can be effective at classifying input drawings on shape types since the Rubine

features have been shown over the decades to provide a strong enough description of how a shape

is drawn. These tend to be applied in bottom-up recognition systems but can also be applied top-

down by treating an entire sketch as the input once and calculating the 12 Rubine features at once.

This technique is inadvisable to perform for complex figures since the features were created for

gestures, not entire sketches (see section 3.2.1). Some amount of segmentation would have to be

performed on-the-fly and a custom algorithm would have to be created for the ROCFT to repeatedly

attempt to re-classify the sketch as the subject draws. However, for illustrative purposes, and for

the purpose of demonstrating that existing shape classification techniques are not adequate for the
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automation of grading ROCFTs, we have attempted to produce a classification algorithm on all

18 ROCF sub-shapes with the off-the-shelf solution using Rubine features to develop a machine

learning classifier using Random Forest [317], the most commonly well-performing classifier.

All 185 sketches from the user study that were collected had their 12 Rubine features calculated

(see [103] for a detailed explanation of each feature) on a per-sketch basis, as any more granular

would require extensive custom code for the ROCF domain and thus would not be off-the-shelf.

For labels we used the same expert grader’s grades that were used as ground-truth scores to

calculate the F1-scores seen in table 5.2. The grades for each of the 18 details were linked to

the Rubine features of the corresponding sketch, along with the total grade of the entire sketch

from the expert grader.

We produced two kinds of predictive algorithms: (1) a regression to attempt a prediction of the

feature score itself (between 0 and 2 for each detail) based on the total score given by the expert

grader, and (2) a binary classification that attempts to reproduce the "is there" vs. "not there"

classes that we derive and describe in section 5.2.2. For the first predictive algorithm, we report on

two measurements that report on the Relative Absolute Error (in percentage, lower is better) of the

predicted score (between 0 and 2 per detail). For the second predictive algorithm, the off-the-shelf

system is effectively tasked with attempting to classify the sketches as to whether or not each of the

18 details exist, based on a training set that contains a randomized sample of the provided sketches.

The F1-score that we report, in a value between 0 and 1 (1 being best), represents how effective

each classifier is at detecting which of the 18 details are missing in each sketch, if any. Because

we aim to compare this with our system’s task, which is in finding which individual details are

present in an ROCF, we create 18 different predictive algorithms with one for each detail. The

results are reported in Table 5.3, with the RAE for prediction (1) and the F1-Score for prediction

(2). Lastly, we report on a predictive algorithm to predict the total score between 0 and 36: an

RAE of 81.708%. All predictive algorithms were tested with a standard 10-fold cross-validation

method that prevents overfitting of data.

This method, regardless of whether we attempted to predict the whole ROCFT score, the score
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Det. RAE (%) F1 Rubine F1 Auto Det. RAE (%) F1 Rubine F1 Auto

1 91.394 0.096 0.787 10 83.410 0.561 0.962
2 87.396 0.019 0.857 11 92.964 0.041 0.878
3 92.390 0.011 0.978 12 89.654 0.126 0.872
4 92.479 0.016 0.927 13 77.863 0.062 0.966
5 91.456 0.016 0.978 14 97.263 0.038 0.881
6 84.173 0.082 0.958 15 82.763 0.189 0.770
7 87.223 0.186 0.855 16 91.721 0.135 0.919
8 87.227 0.039 0.966 17 88.230 0.155 0.788
9 67.708 0.119 0.904 18 89.496 0.073 0.925

Table 5.3: Comparison with baseline of off-the-shelf machine-learning based solution. RAE is
Relative Absolute Error (in percentage) of raw score prediction. F1 Rubine is the F1-Score of
the machine-learning solution that uses Rubine features for classification of the entire sketch. For
comparison purposes, we repeat the classification F1-Scores of our own system in F1 Auto. For
all classifications, n=185

of each of the 18 details, or whether the 18 details could be individually detected, we can see

that the traditional methods of digital sketch recognition are inadequate for the task of sub-shape

recognition. The RAE for the prediction of each detail and the overall sketch was very high, and

similarly the F1-Score for all but one of the details was unable to achieve a value above 0.1. For

reference, an indicator of an effective F1-Score in digital sketch recognition should be at least 0.8,

preferably closer to 0.9 or above. This allows us to recognize the effectiveness of our Auto ReyO

solution.

5.2.8 Limitations

The main limitation of this graph-based approach to top-down sketch recognition is the reliance

on line connections. Our vertex-contraction algorithm in Step 1 of the system’s process does

connect lines with corners within a certain radius. We found this technique worked very well if

sketches were drawn with reasonable neatness. If the lines are disconnected by more than half

an inch, however, these lines will remain disconnected. This was a conscious design choice since

vertex contraction cannot be too aggressive; otherwise, regions where any correct sketch would

have high numbers of vertices would all get incorrectly contracted into one. This is the case such
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as the area where detail 6, 7, 3, and 8 all converge—even neatly-drawn sketches have a high

concentration of vertices here. We intend to improve refine the recognition system to “jump” gaps

and close disconnected lines only where appropriate.

Additionally, another limitation of note is the custom nature of the individual recognizers. As

per section 5.1.2, we discussed the careful balance that needed to be struck in designing a series of

recognizers aimed at identifying not only geometric details, but specific ones in certain locations.

The series of generalized approaches that we deployed on each detail’s recognizer can also be

applied in a similar manner as the other 7 complex-figure examinations found in the Compendium

of Neuropsychological Tests [2]. However, we should point out the code itself would need to be

written for each of the recognizers.

In that sense, of the three stages that we present in our system, the second stage that comprises

of the individual recognizers would need to be written for the other 7 examinations. However,

several of the details in other other complex figures would likely share a large proportion of similar

coude. In the case of Detail 2, for example, the code to find the largest rectangle that serves as

an anchor for the rest of the shapes would be largely the same as the solution we have presented.

Other more specific shapes, especially geometric figures that do not appear in the ROCF, would

need to be written in a similar sense. This work disseminates the approach to the graph-traversal

approaches that we use to recognize sub-shapes as a framework from which grading other complex

figure examinations could also be automated. It should also be emphasized that stages 1 and 3 can

be applied to any complex figure examination with little additional work. Stage 1 would not require

any changes when applied to other tests, and stage 3 would only need the templates for well-drawn

examples of each detail. In that sense stages 1 and 3 do not use custom solutions that would only

work for the ROCF.

5.3 Future Work and Conclusion

Refinements can be made to help recognize specific kinds of poorly-drawn details. As previ-

ously mentioned, most sources of grading inaccuracies for our system came from poorly connected

graphs due to sketch sloppiness. For healthy participants taking this test, our expert graders
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attributed sloppiness as a lack of effort rather than genuine memory loss if the patient has no

hand motor issues. Still, there would be an interest in supplementing our graph traversal with

connecting otherwise unconnected vertices to improve recognition performance.

Additionally, improvements to our Stage validation approach could be made to recognize finer

details. Our validation method sometimes may not properly distinguish between small changes,

such as an extra stray mark or one line missing. Identifying missing lines is important for details 8

and 12, where the number of parallel lines drawn is relevant to its grading. Our validation method

is able to find these discrepancies somewhat frequently, but potential for improvement exists.

We also seek to further generalize this work by allowing a GUI-powered method of graph

crawling. With such an approach a clinician would be able to produce new complex figure exami-

nations by drawing the test in a GUI, letting the system convert it to a graph, and letting the clinician

label with click-and-drag motions each of the details that need to be automatically recognized. The

system would internally keep track of the order of the path such that this behavior can be re-created

when input graphs from subjects.

Lastly, we aim to work with clinical neuropsychologists to administer their test to willing

clients to evaluate system usability in a clinical setting. This would produce additional sketch data

taken from actual patients, and would allow us to perform UI/UX usability studies for clinicians.

The ultimate aim of the system is to aid diagnosis process by automating the grading of an ROCF,

so evaluating the user experience of clinicians as they collect the digital data and use the Auto

Rey-O application for themselves is the next step to further this project.

Our Auto ReyO automatic Rey-Osterrieth Complex Figure test grader demonstrates the validity

of a top-down sketch recognition approach using graph traversal algorithms. This significantly sim-

plifies the recognition process where a bottom-up approach would need to take into consideration

a prohibitively wide array of possible shape interpretations and re-interpretations. By employing

graph crawling, vertex search, and optimization algorithms we are able to identify key sub-shapes

of geometric shapes and thus are able to present one of the first fully automated ROCF grader that

analyzes all 18 details.
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6. DEVELOPING PREDICTIVE ALGORITHMS TO DETECT MILD COGNITIVE

IMPAIRMENT

With the number of Alzheimer’s patients reaching 5 million in 2014 according to the Center

for Disease Control and Prevention, increasing emphasis has been placed on identifying and un-

derstanding its precursor condition, Mild Cognitive Impairment (MCI). MCI is characterized by

subtle but abnormal cognitive decline and is challenging to detect without formal testing. Neu-

ropsychologists use paper-and-pencil tests such as the Trail-Making Test (TMT) for diagnosis, and

ongoing research places importance on high-granularity sketch data from digital TMTs. We present

SmartStrokes, a digital TMT app designed to simulate the paper-and-pencil testing experience on

a tablet and stylus. Our contribution is a pair of classification models that identify MCI on an

individual segmented line basis, which could provide localized sketching behavior indicative of

MCI. We also present a refinement of line segmentation algorithms from previous research to

better distinguish between the actions that a participant takes when completing the exam.

6.1 Applying Sketch Recognition Techniques to Detect Mild Cognitive Impairment in Dig-

itized Trail-Making Tests

This chapter contains work currently under review for publication.*

6.2 Motivation

The Center for Disease Control and Prevention has reported 5 million Alzheimer’s patients in

2014, with the expected number to more than double to 13.9 million by 2060. Due to advancements

in interventions aimed at mild-to-moderate cases of Alzheimer’s disease, neuropsychologists have

placed an increasing emphasis on early detection of Mild Cognitive Impairment (MCI) to better

preserve quality of life [318–320]. A clinical neuropsychologist typically conducts paper-and-

pencil cognitive examinations with a patient to help detect MCI, and the process is laborious, re-

*by Raniero Lara-Garduno, Yajun Jia, Nicolaas E Deutz, Marielle Engelen, Nancy Leslie, and Tracy Hammond.
Review in Progress
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quires multiple rounds of testing, and frequently subjective analysis of a patient’s subtle behavioral

patterns. Digitizing these clinical examinations, specifically the Trail-Making Test among them,

has allowed researchers to attempt to aid the diagnosis process by employing machine learning for

behavioral analysis. Existing work in this space has not yet leveraged recognition techniques used

in digital sketch recognition, particularly research that links sketching with cognition.

Our proposed contribution presents a classification model that can distinguish between MCI

and healthy participants on a per-line basis. It builds on existing work from Dahmen et al. [321],

which in its conclusion states the belief that the high-granularity digital sketch data from a digitized

version of the TMT could provide higher-granularity analysis. Per-line classification would offer

two advantages: 1) targeting individual lines for classification of MCI could give a more localized

assessment of individual dots that challenged the participant, and 2) building a classification model

that analyzes sketches on a per-line basis could allow generalizability for more layouts, since the

TMT frequently needs a wide variety of dot layouts to avoid the Learning Effect.

Further, our proposed model compares uses the scores from the Montreal Cognitive Assess-

ment (MoCA) to detect MCI, whereas the existing work from Dahmen uses the TICS [322] and

FAB [323] to assess more advanced dementia. MCI is characterized as being much more subtle in

nature, meaning milder cases of MCI frequently result in sketching behavior that only slightly

deviates from a healthy participant. Our proposed solution achieves an accuracy in line with

Dahmen’s existing work, with the added advantage of offering classifications on a more granular

per-line basis, and classifying for a more subtle degree of cognitive decline.

Our goal with this research was driven by the main research question:

R1—Can we create a predictive algorithm for estimating cognitive decline using digital sketch

recognition features?

To answer R1, we conducted a study with 37 participants with varying degrees of MCI as

reflected on associated MoCA scores. A portion of the segmented data was used for predictive

algorithm training purposes while the testing data was used for verification and accuracy perfor-

mance metrics.
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Our contributions in this work include:

• An analysis of how existing digital sketch recognition techniques can be applied to the

domain of clinical neuropsychological examinations.

• A predictive model that estimates MoCA scores based on how they complete a digital TMT.

Figure 6.1: A sample completed test in our SmartStrokes app. The interface is designed to be as
close as possible to an actual paper-and-pencil test

6.3 Design

SmartStrokes is a digital testing suite focused on re-creating commonly-used Trail-Making

Test layouts for use on Microsoft Surface Pro 4 devices. The Universal Windows Platform (UWP)

was chosen for reasons that include rapid development of a mobile-style application on Windows
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devices, ease of exporting pen data for analysis, and its firmware-level digital pen integration with

Surface Pen devices and allows us to easily extract pen pressure to supplement our feature set.

The system’s users are intended to be test proctors; either medical or research professionals

working with participants. Every participant is associated with individual users and every test is

directly associated with each participant. All participant data including completed tests can only

be accessed from within the app if the test proctor username and password is entered at the login

screen. Proctors have the option to export digital images of the completed examinations at the

conclusion of each test, at which point the proctor should ensure proper data anonymization.

Figure 6.2: The SmartStrokes interface displaying the instructions for TMT-A for participants. The
instructions are also delivered orally by the proctor.

A total of 8 separate Trail-Making Test layouts were converted into a digital format, comprising

of 4 pairs of the “A” and “B” variations. These Trail-Making Test layouts are among those that are

generally used by neuropsychologists when conducting these tests in their practice. Dimensions

of the white space were cropped to account for the different aspect ratio between the Surface

Pro 4 and a regular 8” 1/2 x 11” piece of paper, and the layout and size of the dots were scaled

accordingly. The test interface itself resembles a paper-and-pen test as much as possible. This

includes extending the drawing canvas across the entire screen, beyond the black large rectangle
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Figure 6.3: Four of the color-coded features and sketch properties that SmartStrokes can display.
Search and travel Lines are also used to segment data for constructing the classificaton models

where the dots are placed, since in a real piece of paper some participants may draw outside of lines

even when it is not advised to do so. Our intention with this interface is to capture the same types

of mistakes a participant might make with a traditional pencil-and-paper modality. SmartStrokes

also intentionally offers no indication of visual feedback given to participants when the next dot

is connected in sequence. An earlier version of the test turned correctly connected dots green, but

experts advised that feedback be only given in the case of a mistake since that is the only scenario

in which a clinician would intervene. Although testing protocol dictates participants should only

complete each pair once to avoid the Learning Effect, SmartStrokes has the ability to test each

participant as many times as they wish on any arbitrary layout and order to accommodate for any

testing procedure.

Completed tests can be viewed at any time if the application is signed into the proctor’s profile.

This allows proctors to review each participant’s tests at their leisure and can also choose to “play

back” the test in real-time to qualitatively review the participant’s performance. Additionally,

SmartStrokes can display color-coded visualizations of the sketch that include: separation of

“travel” and “search” actions during the test, pen speed, pressure, location of “Hesitation” regions,

and line straightness.
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SmartStrokes also assists in data analysis by performing feature calculation of individual tests

and outputting the anonymized data into a local Comma-Separated Value file (CSV). Additionally,

the user can choose to automatically perform this calculation for every test associated with that

proctor. This allows researchers to conduct data analytics by easily importing the CSV for rapid

visualization and machine-learning analytics tasks.

6.4 Analyzing Digitized Trail-Making Tests

One of the significant challenges in analyzing the Trail-Making Test is in the proper segmenta-

tion of the data. Although the task is designed to result in simple straight lines, the ideal resulting

sketch consists of a singular line making 25 stops that change direction each time. Analysis

is further complicated by behaviors arising from cognitive decline, most commonly involving

repeated mistakes and prolonged periods of searching for the next dot, hesitation, or doubt.

Complicated line drawings are frequently segmented in the digital sketch recognition domain

in order to properly characterize key elements in the sketch. The most appropriate domain-specific

method of line segmentation separates the lines in two different categories: Search lines, and

Travel lines.

• Search: all lines drawn when the participant is looking for the next dot

• Travel: the line segment where the participant is actively moving from one dot to the next.

The following two subsections outline the differences between the two types of lines, what

thresholds exist between the line segmentation, and which sketching characteristics we believed

would be the most relevant to identifying MCI.

6.4.1 Search Lines

According to the protocol of Trail-Making tests as outlined by the Compendium of Neuropsy-

chological Tests [2], participants are required to have their pen on the test at all times, even if they

are not moving from one place to the next. This is done for two reasons. The first is that it is less

likely that a participant loses their place if they do not lift their pen as they search for their next
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Figure 6.4: Test analysis interface of SmartStrokes, demonstrating line deviation and separation of
search and travel lines on a completed test

dot. The second reason is that this maximizes the amount of data collection, since a participant

who leaves their pen on the paper as they search for the next dot almost always results in random

pen movements while they move their hand to see the rest of the test. This kind of behavior is

typically characterized by noisy, erratic movement that tends to “hover” around the current dot as

the participant searches for the next one. This is the kind of line that we identify as a Search line.

We define the beginning of a search line as the instant a participant enters the next correct dot

in the TMT sequence. We define the end of the search line as the moment the participant identifies

the next dot and moves out of the area of the current dot. We complicate the definition of the

end of the search line beyond simply “outside of a dot,” because of how participants behave when

searching for a dot for a long time; participants who hover around a dot for a long time frequently
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Figure 6.5: Separated travel and search lines. Travel lines are rotated to always face a top-to-bottom
orientation.

move the pen inside and outside of the dot’s area as they move the pen erratically. They may also

stray away from the dot moments before identifying the next one. For these reasons we include an

additional speed threshold outside of a dot’s area as the end of the search line segment.

Healthy participants typically do not pause for long as they search for the next dot in the

sequence, if at all. Indeed, search lines from typical healthy participants are usually short in length

and are of a single curve clearly detailing the change in direction from the previous dot in the

sequence to the next with very little or no erratic “hover” behavior. MCI participants or any other

participants who find the TMT challenging typically remain in this search state for longer, resulting

in longer and more erratic search line segments.

6.4.2 Travel Lines

Our parameters for defining travel lines are more straightforward, as we define travel lines as

the moment the participant begins to move with intent to arrive at the next dot, and the travel
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line segment ends when the next dot in the sequence is reached. When done correctly, the travel

line will be a single straight line from the previous dot to the next. We implemented a pen speed

threshold to identify this “intent to move” to help us clearly delineate between a search line outside

of a dot’s area and the moment the participant moves toward the next.

Every dot in a Trail-Making Test in sequence can be connected with a single straight line.

For that reason, participants who perform well in the TMT usually have a series of travel lines

drawn straighter and without turning to change direction while moving from one dot to the next.

Participants who perform poorly sometimes stop in the middle of a “travel” line to either check

their destination again or change direction as they realize they are going to the wrong dot.

Sometimes, such participants stop entirely in the middle of travel and begin a similar “search”

behavior to find the next dot. We call all of these mid-travel stops or significant reduction in speed

as “hesitation.” While not every participant with MCI enters this state, several instances of these

hesitation states in one test is likely to point to a poorly-performing examination

6.5 Experiment Design and Analysis

This subsection details the process by which TMT data collection was conducted, and the

sketch recognition features that were selected and applied to a machine-learning classification

model to detect MCI.

6.5.1 Data Collection

37 participants were recruited for data collection and classification purposes. Participants were

screened and classified as MCI or healthy based on scores from the Montreal Cognitive Assessment

(MoCA) [54]. The inclusion criteria for participants were the following:

• Healthy subjects without MCI: Healthy older adults, normal cognition. MoCA score is 26

or above. Subject group labeled as “Healthy” for model classification purposes.

• Healthy subjects with MCI: Healthy older adults. MoCA score is between 19 and 26.

Subject group labeled as “MCI” for model classification purposes.
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Table 6.1: Participant demographics for user study. 95% confidence interval for participant age is
0.94, for MoCA scores 2.49

Age Group Male Female MCI Non-MCI Avg. Age Avg. MoCA

55-59 1 1 0 2 57 26.5
60-64 1 5 1 5 63 26.5
65-69 5 2 5 2 67.7 23.9
70-74 3 5 4 4 71.5 25.5
75-79 4 5 7 2 76 23.3
80-84 2 0 1 1 82 25.5
85-89 2 1 3 0 85.7 21.3
Totals 18 19 21 16 71.43 24.54

• Exclusion criteria: Older adult subjects with a MoCA score below 19; any history of severe

medical/neurological/psychiatric disease, including diabetes/hypertension; taking medica-

tion primarily targeting central nervous system; any other condition at investigator’s judg-

ment that clearly demonstrates severe cognitive decline

Additional demographic information is available on Table 6.1.

For the purposes of classification we refer to our subjects without MCI as “healthy,” but

we must highlight that our MCI participants are not considered “unhealthy” by contrast. All

participants were given two sets of Trail-Making tests, the first in the morning and the second

in the afternoon. Each test set consisted of a Trails A variant (numbers) and its accompanying

Trails B variant (alternating numbers and letters). Each of the two sets used different standard dot

layouts to eliminate a learning effect [324]. All participants were given the same Microsoft Surface

Pro 3 device with accompanying Surface Pen to complete the digital tests.

6.5.2 Preprocessing

Several pre-processing steps are conducted on individual completed examinations. Each test’s

sketch data is separated by travel and search lines according to the description in Section 4. Sketch
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data is then resampled to uniform interspace S using the formula:

S =

√
(xm − xn)2 + (ym − yn)2

c
(6.1)

Where S is the new spacing between each sample, (xm, ym) is the lower-right corner of the

sketch (xn, yn) is the upper-left corner of the sketch, and c is a constant c = 40.

Lastly, we implemented an additional key step in this process by normalizing individual line

rotation for travel lines. The chosen features explained later in this section make significant use

of sketch direction, either as a per-sample basis or the entire line. In more typical digital sketch

recognition problems, features relating to direction inform a user’s style of drawing, or are directly

related to the type of shape that the user intends to draw. The Trail-Making Test, however, places

all dots in pre-arranged locations that strongly influences the direction of a correct line. This

would introduce a confounder, since differences between angles or sketch direction would not be

attributed to MCI but rather the layout of the test’s dots. We normalize travel lines by rotating every

line such that the endpoint of the line is directly underneath the start point. This allows us to still be

able to leverage direction-related sketch features to calculate characteristics like tremor, changes

in direction due to mistakes made, and other types of directionality affected by the participant’s

performance rather than the layout of the Trail-Making Test. We are not aware of similar work in

constructing a Trail-Making Test classification model that employs this segmented line direction

normalization technique.

6.5.3 Feature Calculation

6.5.3.1 Rubine Features

We implemented a combination of digital sketch recognition features known to yield accu-

rate models in similar research projects. The first set of 13 features introduced by Rubine et

al., abbreviated as “Rubine features” [103]. The 13 features were first introduced alongside a

recognition technology named GRANDMA (Gesture Recognizers Automated in a Novel Direct

Manipulation Architecture), a toolkit that sought to provide users with the ability to train any
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Figure 6.6: A clear example of the search Line difference between an MCI participant and a healthy
one. This discrepancy is usually the result of the participant unable to locate the next dot in the
sequence for an extended period of time. Although the discrepancy is obvious in this example, not
all MCI participants exhibit this behavior, making diagnosis challenging.

Figure 6.7: The traditional application of the Steering Law is on top, with W and L being
predetermined. Our use of Steering Law, on bottom, creates a simple tunnel with W based on
the total “width” of the pen trajectory.

gesture for recognition using a click-and-drag interface. The Rubine features themselves have

since then been implemented in various sketch recognition projects that can gauge not only the

type of shape that is drawn, but also the cognitive state of the participant who drew them. Rubine
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Table 6.2: Rubine features f1 through f13. Let ∆xp = xp+1 − xp, and ∆yp = yp+1 − yp, and
∆tp = tp+1 − tp

Rubine Features

f1 = x2−x0√
(x2−x0)2+(y2−y0)2

f8 =
∑P−2

p=1

√
∆x2

p + ∆y2
p

f2 = y2−y0√
(x2−x0)2+(y2−y0)2

f9 =
∑P−2

p=1 θp

f3 =
√

(xmax − xmin)2 + (ymax − ymin)2 f10 =
∑P−2

p=1 |θp|
f4 = arctan ymax−ymin

xmax−xmin
f11 =

∑P−2
p=1 θ

2
p

f5 =
√

(xp−1 − x0)2 + (yp−1 − y0)2 f12 = maxP−2
p=0

∆x2
p+∆y2p
∆t2p

f6 = (xp−1−x0)

f5
f13 = tP−1 − t0

f7 = (yp−1−y0)

f5
θp = arctan∆xp∆yp−1−∆xp−1∆yp

∆xp∆xp−1+∆yp∆yp−1

features f1 and f2 specify the cosine and sine features of the first few samples, usually limited

to the first two samples as was done in our implementation. The bounding box diagonal of the

entire gesture is analyzed as features f3 and f4. The distance in pixels between the first and the

last point is specified in feature f5. The difference between the first and last point of a gesture is

analyzed through features f6 cosine and f7 sine between the start and end points, the total length

of the gesture is calculated for f8, and the total angle traversed is f9. Three total summations are

calculated, with f9 being the total angle traversed over the course of the gesture, f10 being the sum

of the absolute value of the angle per mouse point that does not take into account direction, and f11

being the sum of the square of the value of f9. The square of the maximum speed achieved in the

gesture is f12, and the last feature f13 is the total duration of the gesture, measured in milliseconds.

The calculations for the Rubine features are provided on Table 6.2.

The Rubine features represent the various geometric properties of any given gesture. They can

measure speed, curvature, direction at the start and ends of the gesture, total time taken, and the

properties of the total area (referred to by Rubine as the “bounding box”) of any particular gesture.

These features offer an alternative to template-matching recognition in that they do not require

a point-for-point comparison, but rather are geometric calculations of the gestures themselves.

Although these have been used mostly for recognizing gestures, their frequent use in recognizing
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shapes provides us with an opportunity for analysis of cognitive impairment.

Figure 6.8: The traditional application of the Steering Law is on top, with W and L being
predetermined. Our use of Steering Law, on bottom, creates a simple tunnel with W based on
the total “width” of the pen trajectory.

6.5.3.2 Fitts’ and Steering Law Features

We leverage principles from Fitts’ Law by calculating that law’s Index of Performance [325]:

IDF = log2

2D

W
(6.2)

Fitts’ Law was originally conceived as a method to quantify pointing task complexity [326–329]

and has has been widely used in HCI research, particularly UI navigation tasks [330–336]. Because

Fitts’ Law is rooted in tracing lines across distances between targets and measure that task’s

complexity and a user’s performance [337–339], we believed it could be leveraged to help identify

task performance.

A related feature we use is the more recent variant, the Steering Law. The Steering Law

assesses the difficulty of a user navigating a pointer through a path with a set width [340–344].
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For a generic tunnel C, and a width W(s) along the path, the Steering Law’s Index of Difficulty IDS

is:

IDS =

∫
C

ds

W (s)
(6.3)

For our purposes, we use a straight path of length L and a constant with W as defined by Pastel

et al. [345], which reduces IDS to:

IDS =
L

W
(6.4)

By using the user’s input lines as the basis for calculating W, we essentially create a form of

performance index using the Steering Law. For the Trail-Making Test, a narrower line width W

is straighter and effectively more difficult to recreate. We integrated this metric as a feature for

the classification model to test whether a participant with MCI would create lines with a generally

lower IDS. We also scaled and averaged IDF and IDS as a separate feature to explore a possible

combination of the two.

6.5.3.3 Additional Behavioral Features

Hesitation is a feature that we briefly discussed in section – as a feature unique to travel lines.

It characterizes the prevalence of stop-and-go motion for participants who start connecting a dot

but stop or slow down significantly while inside a travel state. Hesitation begins when the pen

slows down to an empirically-derived speed of 0.4 over five consecutive sampled points, and our

calculated feature is distance the pen traveled while the pen remains in this state. The pen exits

this state when at least five consecutive sampled points have a speed above 0.4. If the pen enters

Hesitation state multiple times inside a single travel line, the total distance across all of these states

is reported for the one travel line

Line Ratio is a feature meant to normalize the length of a participant’s drawn line. We believe

the length of the line is important to understand how confident and accurate the lines were con-

nected, since meandering behaviors and course correction would naturally result in a longer line

than a straight line drawn directly from dot to dot. However, a drawn line will also be longer if the
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correct dots are placed further apart. The Trail-Making Test is explicitly designed to place dots a

variety of distances from each other to measure a participant’s ability to identify dots that might

be further away from their immediate location. To take relative line length into account we divide

the total distance drawn from one dot to the next by the theoretical “perfect” line drawn from one

dot to the next. The closer the number is to 1, the closer to “perfect” this distance becomes and the

better a participant performs. The formula for Line Ratio Rln is found below, where (xn,yn) is the

final sampled dot of the input line:

Rln =

√
(xn − x0)2 + (yn − y0)2∑n

i=0

√
(xi − xi−1)2 + (yi − yi−1)2

(6.5)

Pen Lift Time is the amount of time during each segment that the user lifts their pen. Although

participants are required to leave their pen on the tablet at all times as per the instructions of the

Trail-Making Test, some participants still absent-mindedly lift the pen when searching for a dot

or when correcting a mistake. This feature is intended to capture the behavior of both of these

scenarios to explore a possible correlation with MCI.

Pen Pressure Average and Pen Pressure Standard Deviation are features pertaining to the

pressure that a participant places on the pen as they complete the test. We wanted to explore the

possibility that a participant places more pressure on the tablet if they are unsure of their trajectory

or if the test is difficult for them to complete.

We complete the feature set by adding a few sets from existing sketch and gesture recognition

literature. We implemented 11 features from Long et al. [215] as a supplement to the Rubine

features for general-purpose sketch recognition. Alamudun et al. [218] applied Rubine and Long

features and added two direction-based features to help with saccade detection in an eye-tracking

task, but have we believe can also be implemented as general-purpose sketch recognition as well.

Finally, Paulson et al. introduced two features, normalized distance between direction extremes

(NDDE) and direction change ratio (DCR), as general-purpose sketch recognition features that we

also included for this study [216, 346].
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Table 6.3: Classification features. Model describes whether the feature was used for the model for
classification of travel (T) or search (S) lines. Some features were excluded due to high collinearity
and/or were inappropriate for a specific model.

Name Model Name Model Name Model Name Model

rubine1 T rubine10 avgPressure T+S openness T+S
rubine2 T rubine11 stdevPressure T+S boundBoxArea
rubine3 T+S rubine12 T+S avgSpeed T+S logArea T+S
rubine4 T+S rubine13 T+S stdevSpeed T+S rotRatio T+S
rubine5 S fitts aspect lengthLog T+S
rubine6 steering T+S curviness T+S aspectLog T+S
rubine7 lineRatio T relativeRot T+S fittsSteering
rubine8 S hesitation T densityMetric1 ndde T
rubine9 T+S penLiftTime T+S densityMetric2 T+S dcr

6.5.4 Model Construction

Because Trail-Making Test behavior is characterized by the distinct actions of travelling to the

next line and searching for the next, we decided to produce two separate classification models to

explore the possibility of either being more indicative of MCI and compare their performance.

Additionally, because the actions yield different behaviors, not all features were applicable for

both types of actions. For example, line direction is important for travel lines to identify incorrect

line deviation after we normalize travel lines as shown in Fig. 6.5. However, search lines cannot

be normalized since direction at entry and at exit of a dot, even for healthy participants, depends

heavily on the test layout itself. Table 6.3 lists every feature initially integrated into the feature set,

and the subscripts next to the feature names indicate which were chosen for the models.

Some features were also removed from search and travel classification models due to a high

collinearity value (>0.90). Fig. 6.11 shows the collinearity heatmap of the remaining features that

were used for both search and travel lines. Further, all values were normalized between 0 and 1.

Every segmented line from the 149 tests is included and is given the label according to the

participant’s cognitive state (MCI or healthy). 3,490 search lines and an equal number of travel

lines were used for their respective classification models.
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Models were constructed according to a 90/10 split for a 10-fold cross-validation. The models

were trained and evaluated according to the two labels of MCI or healthy assigned during the

screening phase of the study. We used 7 binary classification models to compare performance.

(a) Feature amounts chosen for Search.

(b) Feature amounts chosen for Travel.

Figure 6.9: Box plot of different feature amounts chosen for Recursive Feature Elimination.
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6.5.5 Prediction of MoCA Scores

Participant labels of “healthy, without MCI” and “healthy, with MCI” essentially is dividing

participants between two broad categories of MoCA scores. Section 6.5.1 specifies the categories

are a MoCA score of 26 and above for “healthy, without MCI” and between 19 and 26 for “healthy,

with MCI.” This in effect means our classification attempts to predict a wide range of the MoCA

scores of the participants. However, we also sought to more directly predict the MoCA score in a

more granular fashion as part of the data analysis of this study.

Table 6.4: Features chosen by Recursive Feature Elimination to directly predict MoCA scores.

Search Model RFE Features Travel Model RFE Features
aspectLog avgPressure
avgPressure avgSpeed
avgSpeed rubine12
logArea rubine13
rubine11 stdDevPressure
stdDevPressure steering

Our approach to MoCA score prediction is similar to the prediction of broad categories in that

we are using the same training and classification features, and the same 90/10 split for 10-fold

cross-validation. The similarity also extends to the training and classification being performed

on the individual lines, and the F1-score and accuracy being calculated on how closely each

line is being predicted to the actual MoCA score associated with that line’s entire test. This is

distinct from other methods of classification that seek to analyze the entire page and create a single

prediction. We believe that participants of Trail-Making Test do not perform evenly through the

entirety of the test; while they might perform well for a few dots, a single dot might prove to be

difficult for participants to find. Indeed, several participants from our empirical observations who

performed poorly would find certain dots easy while finding others significantly more difficult.

Our wish to capture this particular type of behavior is the reason behind our use of the segmented
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lines. We believe per-line sketch analysis and predictions might yield a novel insight into the

participants’ behavior. Because the original scoring system was conceived at a time when granular

sketch analysis was not possible, we believe per-line analysis can provide a more granular and

complete picture of a participant’s behavior during the test. Prediction was trained and tested on

both the Travel and the Search models.

We performed a Recursive Feature Elimination (RFE) on the Travel and Search Models to

determine the top-ranking features that can be included in a logistic regression to predict the MoCA

scores. The number of features ideal for both was determined to be 6 since that is the number of

features where the accuracy plateaus for both Search and Travel models. The features selected for

the Search and Travel models are listed in Table 6.4, and the box plot depicting the comparison of

feature selection to accuracy is shown in Figure 6.9.

A logistic regressor with an iteration of limit of n = 100000 was employed for both models

to predict the MoCA scores based on the features selected by the RFE. We then used a repeated

K-Fold cross-validator, with a 90/10 split repeated 3 times for a total of 30 comparisons in the

calculation of the predictors. To gauge the performance of the predictions being made, we cal-

culated the average Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) of

the predicted vs. the actual MoCa test scores for all of the lines. In this prediction algorithm all

of the segmented lines of test and training participants have been labeled their respective MoCA

scores. Although MoCA is not typically labeled on a per-line basis, our experiment is to determine

whether such a prediction can be accurately made on per-line granularity. MAE and RSME were

both used to help determine the mean error between the predictions of the logistic regressions.

Both of the Travel and Search prediction algorithms had RSME and MAE as well as their standard

deviation calculations and are shown in Table 6.6.
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Table 6.5: Classification metrics. Acc is accuracy, F1 is F1-score, Prec is precision. For both the
travel lines and search lines models, n=3,490

Travel Lines Search Lines
Classifier Acc F1 Prec Recall Acc F1 Prec Recall

Majority 0.51 0.51 0.50 0.50 0.53 0.53 0.52 0.52
Gaussian Naive-Bayes 0.47 0.36 0.60 0.53 0.47 0.38 0.58 0.53

Decision Tree 0.59 0.59 0.58 0.58 0.60 0.60 0.59 0.59
K-Nearest Neighbor 0.60 0.60 0.59 0.59 0.58 0.58 0.57 0.57

Linear Regression 0.65 0.64 0.65 0.63 0.62 0.59 0.61 0.58
SVM 0.65 0.63 0.66 0.62 0.63 0.61 0.64 0.60
LDA 0.65 0.63 0.65 0.62 0.62 0.60 0.61 0.59

Random Forest* 0.67 0.73 0.67 0.80 0.66 0.72 0.68 0.77

6.6 Results

6.6.1 Accuracy Metrics of MCI Prediction

The main results of model performance are reported on Table 6.5, meant to report on how

well a classification model trained and tested on travel lines and search lines independently is

able to identify whether the author of those lines had MCI or was a healthy participant. A total

of eight different classification models, listed in the Classifier column on the table, were trained

with the features listed in section 5.3. These are classifiers that are most commonly used in either

binary classification tasks or have historically performed well with digital handwriting recognition:

Majority classifier [347] as a baseline, Gaussian Naive-Bayes [348], Decision Tree [349], K-

Nearest Neighbor [350], Linear Regression [351], SVM [352, 353], LDA [353], and Random

Forest [317,354]. Results are reported for both the search line model and the travel line model, and

we report the models’ accuracy, F1-score, precision, and recall. For both travel and search lines,

Table 6.5 shows that the best performing models were created using a Random Forest classifier.

Additionally, pressure-related features had among the highest feature importances when analyzing

drop-column importances for the random-forest classifiers.

As a point of comparison, we refer to the Specificity/Recall metrics of diagnostic classification
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accuracy as provided by the study led by Ashendorf et al. reports a Specificity of TMT-B based on

number of errors alone is 70.3% [47], whereas our per-line classifier achieves a specificity of 80%

if classifying travel lines and 77% if classifying search lines. It is important to note that our model

does not differentiate between TMT-A and TMT-B, which emphasizes the layout-agnostic element

of these classification models. While this makes direct comparisons non-trivial with accuracy

metrics that limit their accuracy statistical analysis to a subset of test layouts, we are still able to

report on some level a comparison of specificity with non-machine-learning classification efforts.

Figure 6.10: Feature importance metrics of the Random Forest classification model built for travel
lines
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Figure 6.11: Feature collinearity for both search and travel lines. Features with collinearity above
0.9 were removed from the model

6.6.2 Accuracy Metrics of MoCA Score Prediction

Two sets of metrics can be reported for the MoCA score prediction: the results of Recursive

Feature Elimination and how the number of features affects the prediction accuracy, and the results

of the average MAE and RSME of the predictions made on the test data. Prediction of the MoCA,

as opposed to the prediction of MCI, is non-binary and more of a continuous set of data in nature.

For this exercise we allowed fractions of numbers to be predicted, since our chief method of

comparison is the calculation of RSME and MAE. Small discrepancies in MoCA scoring due

to the inclusion of non-whole fractions would be minor, if that were the chief difference between

predicted and actual scores. The accuracy metrics are reported in Table 6.6.

6.6.3 Discussion

6.6.3.1 Mild Cognitive Impairment

One of the primary challenges in detecting MCI is the inherently subtle nature of changes.

Research such as that of Zhang et al. [37] outline difficulties in formalizing behaviors that correlate
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Table 6.6: Root Mean Squared Error (RSME) and Mean Absolute Error (MAE) of predicted points
of MoCA scores.

Travel Lines Search Lines
Error Metric Average Std. Dev Average Std. Dev

RSME 3.325 0.132 3.315 0.134
MAE 2.415 0.110 2.406 0.105

significantly with the manifestation of MCI in the Trail-Making Test. Depending on the severity

of cognitive decline and multiple factors in how MCI affects each participant, they may not find

the TMT specifically that challenging. For that reason, it is generally believed that the TMT, while

proven sensitive to MCI in many cases, is not alone the only tool needed to reliably detect MCI.

The results from the accuracy metrics of the travel and search lines supports the notion that

detecting subtle levels of MCI is inherently challenging if only analyzing one test. In several of

our observed cases, participants who we classified as just under our MCI threshold based on their

MoCA score completed the test in a similar manner as a typical healthy user. In these cases a

clinical neuropsychologist would continue testing their patient with several other kinds of exams

or use the Trail-Making Test to primarily to identify other conditions of cognitive decline. This

differs from other digital sketch recognition problems where the exhibited behaviors are not subtle

by nature, or if the goal is to differentiate between discrete shapes. Models for those problems

typically result in much higher accuracy and F1-scores (closer to >0.9) since the labels are more

cleanly delineated.

Overall, we believe the results present a meaningful contribution on the analysis of MCI

through the TMT, largely due to the analysis and model construction on a per-line basis. Our

implementation refined steps to segment the sketches by integrating speed thresholds to identify

when the participant has found the next dot in the process. Whereas previous work in analyzing

digitized TMT sketch data tends to average behaviors over an entire test, we sought to leverage the

high-granularity nature of sketch data to provide analysis on individual lines. Our contribution also

extends to the normalization of line direction and total length to avoid differences between lines
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that are due to the TMT individual dot locations. The key is to eliminate potential confounders

introduced by the fact that the TMT stimulates all participants to change line directions and total

line length. We chose not to map a “perfect” line for each of the different segments to gauge

performance, since Trail-Making Test layouts are numerous and clinicians frequently use modified

versions for their own purposes. We sought to create a classification model that would work

regardless of the dot layout to avoid creating a model that only works on that specific layout.

Ultimately we sought to explore whether segmented lines could individually be labeled as MCI or

healthy with at least similar performance as existing work.

A popular method for creating behavioral models is in the leveraging of deep learning tech-

niques such as neural networks. These techniques are becoming more prevalent due to its ease

of deployment for large data sets and higher efficacy in classification. However, we did not

believe these techniques appropriate for this experiment for two primary reasons. The first is

due to the necessity of collecting a considerably larger dataset for the creation of a classification

algorithm using deep learning techniques. Challenges related to the proper collection of data for

this experiment are explained in the following section. The second reason is due to the lack of

explainability in deep learning techniques. While it would be possible to produce a more accurate

behavioral model provided we acquire a considerably larger dataset, we would be unable to explain

to a clinician which behaviors of the participant are responsible for the conclusion they are likely

to have MCI. We believe that behavioral analysis in these types of domains should be usable to

domain experts, thus motivating the manual creation of features to explain behavior.

6.6.3.2 Montreal Cognitive Assessment Score Prediction

Challenges of the MoCA score prediction were similar to those of predicting MCI, but were

exacerbated by the labeling of a single score point to every line. Per-dot line segmentation resulted

in likely an unbalanced training set, since a small subset of participants who performed fairly

well the MoCA could skew the training and test sets considerably. This unevenness in MoCA

distribution suggests that a much larger and wider range of MoCA scores is needed for accurate

score prediction. As it stands, the Recursive Feature Elimination for both models as shown in
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Figure 6.9 suggests that even the optimal amount of chosen features yields only an accuracy above

0.35 for the Search model and an accuracy of up to 0.30. For this current version of the calculated

features and those chosen by the RFE, we believe that additional features and changes to the

existing ones would be necessary to increase the prediction accuracy.

At present the results for predicting MoCA scores are inconclusive. The errors as reported in

Table 6.6 might suggest an average error of about 10% given the range of the MoCA scores to

be from 0 to 30 points. The demographic data shown in Table 6.1 and discussed in section 6.5.1

shows an average MoCA score of 24.54 for all participants as well as the total overall criteria for

inclusion of participants from 19 onward. Due to limitations on protocol safety, we are unable at

present to recruit and test for participants with more severe cognitive impairment for participants

who score below 19. This is largely due to safety protocols requiring participants below that age

to be accompanied by a guardian or healthcare official, since institutional review boards consider

severely cognitive impaired individuals who would be unable to provide informed consent of their

own volition. Following the safety protocols fortunately does not impair significantly the predic-

tion of MCI vs. non-MCI populations since MCI participants are still able to provide informed

consent, but this does reduce the efficacy of predicting MoCA performance as a continuous score.

In order to create a more accurate MoCA predictor, we will require a larger corpus of data with

a more even distribution of MoCA scores such that the scores are more evenly distributed as per

established normative data. At present the inclusion of an MCI predictor did somewhat limit the

performance of a MoCA score predictor.

6.7 Limitations and Future Work

One of the main challenges in building an accurate predictive behavioral model is the creation

of a new dataset for that specific purpose. Despite the fact that the Trail-Making Test has been

in use for several decades, the granularity of digital data and the requirement of a digital pen

necessitated the creation of a new dataset. The prevalence of different Trails Test layouts and the

small differences of protocol that vary from clinician to clinician also necessitated a unified testing

protocol. Accompanying this challenge is the laborious recruitment process. Although the task is
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simple, the administration of the MoCA and the proper administration of the Trail-Making Test

resulted in a slower rate of data collection that is typical of sketch recognition tasks.

Currently, the age ranges of the Trail-Making Test’s normative data, as found Tombaugh’s

stratified normative data for paper-and-pencil Trail Making Tests [31], divides the age range into

11 distinct categories. Our normative data covers the latter 7 bins with our participants ranging

from 57 to 86 years of age. Since the focus of this experiment is in identifying MCI among middle

aged and older individuals, the study focused on that age range. Future studies will continue the

data collection process to build a more complete normative body of data across all age ranges.

These might potentially result in differing behaviors between patients with MCI from different

age ranges, but a solid body of data from those age ranges is necessary for verification. We also

aim to further expand on localizing areas that were difficult for participants with MCI, reporting

these lines on a UI-level in real time and evaluating a clinician’s diagnosis experience with such an

automated tool.

Also of note is the fact that a protocol of collecting data on an MCI population inherently

removes a full range of ages and conditions for normative data. This impacts the ability for a

prediction system to make a machine-learning-based prediction of the actual MoCA score. The

prediction of the MoCA scores yielded relatively small error percentages but when taking into

account the reduced range of MoCA scores that were available for testing and training, we conclude

the results for direct prediction of exact MoCA scores are inconclusive despite being somewhat

promising. We are considerably more confident about the binary classification between non-MCI

and MCI populations precisely because the range of data and the collection protocol yielded the

most appropriate data for that kind of classification. Future work will require a wider range of

participants with normative data closer to that of Tombaugh et al. [31]. We are confident the

digital sketch data from digital TMTs can be used to make much more accurate predictions about

the participants’ MoCA scores if said data were available.

Subtle changes in behavior due to Mild Cognitive Impairment continue to present significant

challenges in identifying the earliest possible signs for conditions that may lead to dementia and
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Alzheimer’s disease. Existing efforts to aid in this challenge highlight the difficulty of finding

the nuances in behavioral changes present in a Trail-Making Test. However, with significant

improvements over previous efforts we present a solution that suggests individual lines, regardless

of their direction, can distinguish between MCI and Healthy with noticeably higher levels of

accuracy. We look forward to employing additional preprocessing methods, features, and a larger

digital sketch dataset to further improve on this effort. We believe sketch data from the Trail-

Making Test still has the potential to yield insights into behavioral changes that are yet to be

discovered.
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7. DEVELOPING NOVEL NEUROPSYCHOLOGICAL TESTING*

7.1 3D-Trail-Making Test: A Touch-Tablet Cognitive Test to Support Intelligent Behavioral

Recognition

This chapter contains previously published work* [355].

Figure 7.1: A participant completing the A variation of the 3D-Trail-Making Test.

7.2 Motivation

The decades-old Trail-Making Test has established itself as an effective and versatile cognitive

testing tool. However, its reliance on a paper-and-pencil method of administration severely limits

its capabilities for quantitative evaluation. We evaluate input data via sketch recognition algorithms

*Reprinted with permission from "3D-Trail-Making Test: A Touch-Tablet Cognitive Test to Support Intelligent
Behavioral Recognition" by Raniero Lara-Garduno, Takeo Igarashi, and Tracy Hammond, 2021, Proceedings of
Graphics Interface (GI) 2019, Copyright 2019 by ACM Digital Libraries. DOI: 10.20380/GI2019.10
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on a digitized version of the Trail-Making Test, as well as exploring the viability of a novel touch-

based version designed around the basic concepts of the traditional paper-and-pencil exam.

For this project we were interested in exploring the creation of a novel cognitive test, one

that would only be able to be performed and administered via a mobile device such as a tablet.

Typical applications of neuropsychological tests in a digitized space adapt existing tests to work

with current technology, but we believe a true intersection of human-computer interaction digital

user experiences and neuropsychological testing have remained relatively unexplored.

One of the reasons for the lack of exploration is in the fact that for every novel test or variant

of an existing one, new normative data must be constructed. In practice, neuropsychologists must

have an established body of past data from which to draw comparisons to assess whether a patient’s

performance is within parameters of neurodivergence whether these may be inherited, a result of

trauma, or as part of cognitive decline.

This work aims to examine the viability of a novel neuropsychological test by evaluating

whether a proposed novel test is sensitive an aspect of cognition an existing test is already sensitive

to. Existing work cited below shows the Trail-Making Test is sensitive to cultural and ethnic

background, since behaviors informed by culture and heritage result in changes to normative data.

We believe if a proposed novel test may also elicit a cognitive response that differs between cultural

backgrounds from an adapted test, there may yet be a path to create novel digital tests adapted

from existing paper-and-pencil tests. This would allow further research into creating tests that may

examine certain parts of cognition currently not feasible in paper and pencil tests, mainly dynamic

tests that change significantly on user input and touch-based examinations.

7.3 Neuropsychological Influence

Neuropsychologists employ a variety of cognitive examinations through which to observe a

patient’s behavior. Some of these involve manipulating physical objects, answering a series of

oral questions, solving exercises that integrate drawing exercises. These tests typically involve

paper and pencil, and the patient is required to complete an examination by sketching, drawing on

objects, crossing out or circling shapes, and other forms of interaction using pen on paper.
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The TMT was conceived and originally introduced as a testing tool in the field of clinical

neuropsychology to assess general intelligence. Shortly thereafter, clinicians found utility in the

test’s ability to aid in the detection of cognitive abnormalities. Clinicians who administer the

Trail-Making test observe the patient’s behavior according to a predetermined checklist. Among

the items include sitting posture, how well they maintain eye contact, reaction to mistakes, and

their efforts in remembering the next item in the sequence among others [2]. Tests produce one

quantitative performance metric in the form of the time taken to complete the test, rounded to the

nearest second. A clinician compares the score against established normative data depending on

which age classification the patient belongs to. The lengthy diagnosis process combined with the

increased emphasis for early detection due to the climbing proliferation of Alzheimer’s disease and

other types of dementia† has maintained the TMT’s relevance in modern diagnoses.

7.4 Design

Conceptually, our novel 3D-Trail-Making Test is an intelligent cognitive testing computer

application designed to leverage modern mobile capabilities to ultimately facilitate behavioral

recognition. Paper-based examinations are used due to the ease of administration and quick com-

pletion times, but they lack the inherent ability to test for more complex cognitive functions such

as difficulties with depth perception and 3-dimensional spatial relationship of objects. Mendez et

al. describes the ways in which neuropsychologists test for these difficulties, which still involves

drawing and observing flat images on a paper to simulate 3-dimensional perception [356]. Other

forms of testing visuospatial capabilities have included complex experiments, such as the work of

Prvulovic et al. which involved custom made foam pads, projectors, frosted screens, and several

different stimuli per participant [357]. The complexity of using custom-built objects and the fact

that experts already test depth perception from simulating the perception of depth on a flat surface

motivated the design of a touch-based mobile application on a tablet.

After careful consideration of the existing technology applications for early diagnosis, we

identified five key components for a new examination tool:

†Centers for Disease Control and Prevention: www.cdc.gov/features/alzheimers-disease-deaths/index.html
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• Leverage advantages of existing clinical neuropsychological diagnosis methods by adapting

an existing paper test into a more modern examination

• Preserve the paper test’s ease of administration and speed of test completion while testing

new aspects of a participant’s cognitive abilities that a paper test cannot.

• Carefully design the user experience to develop a streamlined, intuitive interface that

captures a user’s behavior rather than examine their proficiency with consumer electronics

• Capture usage data on a scale appropriate for machine learning classification

• Provide behavioral usage data that can be used to intelligently identify differing behaviors

among participant groups

7.4.1 Design Overview

This 3-dimensional test contains both versions of the traditional Trail-Making test, wherein

version A has all the boxes labeled in ascending numbers, and version B has the boxes alternating

between numbers and letters. Like in traditional 2-dimensional paper-based exams, the correct

sequence is different for both the A and B variations and participants complete both exams as a

pair. This test was created on the Unity game engine platform and compiled to run on Windows

10.

7.4.1.1 Input

The classic Trail-Making test serves as the primary basis for this new examination with some

differences to better leverage modern tablet technology in the diagnosis process. Rather than

placing every labeled dot on a flat 2-dimensional surface with every dot visible to the participants

at once, we have rendered every “dot” as interactive 3-dimensional boxes. The boxes are arranged

in a spherical pattern and float in an empty virtual space, and with one finger participants drag

anywhere on the screen to rotate the sphere on every axis at its center point. The rotation was

designed specifically to emulate the rotation gestures of Google Earth ‡ due to its familiarity and
‡Google Earth: google.com/earth/
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simplicity. Rotation speed is calculated by directly measuring how much the finger moved across

the screen (X and Y, measured in pixels) each frame, multiplied by a constant of 0.5 after testing

different rotation speeds in pilot studies. With the same finger, the participant taps on the next box

in the sequence. If the correct box is tapped, it disappears with a shrinking animation to clearly

indicate correct input. If the incorrect box is tapped, it changes its color to red and remains static to

indicate a mistake has been made. When boxes disappear, they reveal more boxes hidden in deeper

layers of the sphere. This design is intentional since our goal is to create a dynamic examination

wherein not every number or letter is visible at once. This encourages participants to be closely

engaged with the exam at all times, since the dynamic nature of the sphere geometry will require

their constant re-evaluation of the state of the exam.

Figure 7.2: The participant taps and drags the screen to rotate the test sphere. The program
samples the sphere’s position dozens of times per second, serving as the movement “trail” data
to be analyzed for classification.

112



7.4.1.2 Ease of Use

The one-finger input modality is intended to mirror the TMT in its ease of use; participants

of all age brackets, cultures, educational backgrounds and cognitive states are expected to be able

to reasonably engage with the test [358]. When designing our test, the commitment to ergonomic

design led us to avoid using Virtual Reality and Augmented Reality despite the more realistic

depictions of depth; these relatively cutting-edge technologies are more expensive to deploy than

a touch tablet, require more complex setups, and inherently demand a level of comfort with

more complex technology. Our intention is to avoid testing a participant’s acumen in consumer

electronics, and instead to simply produce data directly sensitive to their cognitive state.

7.4.2 Visual Design

7.4.2.1 Depiction of Free Space

We have also made efforts to avoid possible confusion resulting from an interactive 3-dimensional

object projected into a 2-dimensional screen. We took special consideration in several aesthetic

design choices to ensure a participant of any age can clearly differentiate between objects of

varying depths and angles. During the test, the sphere is surrounded by a realistic depiction of

a sky in the distance in order to clearly indicate that the sphere is floating in a free, empty space

and that the sphere’s motions will not be interrupted by collision with other objects.

7.4.2.2 Depiction of Depth

The background depicting a clear afternoon sky also communicates to the user to expect

daytime lighting, which we have implemented into the examination with a global illumination

system. This heightens the depiction of depth as the sphere of boxes is rotated. The boxes are also

capable of casting shadows on each other, with shadow lengths dynamically changing depending

on the sphere’s location relative to the source of global illumination. This produces very clear

distinctions between boxes that differ in depth, as without shadows boxes might seem at the same

depth relative to the screen. To further communicate the notion of depth of a 3-dimensional object,

each box is rendered with a slight metallic material so that the box subtly shines as it is being
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rotated. We carefully muted this shine effect so that the reflection does not impede a participant

from properly reading the box’s number or letter. To make rotation as intuitive as possible, the

center box is always the last box of the examination since it is also the center point of rotation of the

entire sphere. This serves as a visual anchor for the participant so that rotation is not disorienting

even toward the end of the exam when the cluster of boxes no longer forms a spherical shape.

Figure 7.3: The interface of the Test Replay feature in the 3D-Trail-Making Test application.
It provides a real-time playback of a participant’s movements. Additional UI features include
a running clock, participant information on the top left, and a real-time trail of captured finger
movements synchronized with the sphere rotations and finger tap actions.
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7.4.3 Replay of Completed Tests

The fine granularity of recorded input data allows us recreate the entirety of participant’s exam

by reading the file in sequence and advancing the position of the sphere and tapped-box actions

with the proper timing and speed. As a result, we have created an additional “Replay” functionality

so that a participant or researcher can view the completed test as many times as desired. This

functionality also displays a translucent trail of the participant’s finger drag across the screen

to directly see their input. This “Replay” enhances the observer’s ability to produce qualitative

analysis, although it is not used for the quantitative evaluation we present in the following section.

7.4.4 Effects in Cognitive Load

The 3D-TMT deliberately introduces two cognitive tasks not found in the original paper TMT:

performing mental rotation tasks, and manipulating a test that dynamically introduces and removes

elements. The former is tested by box labels rotating naturally as the participant rotates the test

sphere (resulting in boxes that may be skewed, angled, or upside down), while the latter is tested

through the mechanic of disappearing cubes that reveal more cubes underneath. These two tasks

have been explored in clinical neuropsychology previously, and frequently involve the introduction

of new tests [290, 359, 360]. In leveraging the computing power of modern tablet technology, our

interest is in carefully designing tests that intuitively combine tasks already known to be explored in

the field of clinical neuropsychology. Traditional paper tests requires only one or two of these tasks

being tested at one time [361]. As a result, the 3D-TMT is observed to have a higher cognitive

load. We recognized this would likely mean a higher average time to test completion than the

traditional TMT, a prediction supported by our evaluation results.

7.5 System Evaluation

Cognitive examinations, specifically the TMT, have been previously administered to overseas

populations and compared to existing normative data, such as the work of Kim et al. [362], Seo

et al. [363], and Cavaco et al. [99]. Our first of the two quantitative studies presented in this

paper compares differences between the performance baseline of this examination with that of
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the traditional paper-and-pencil version. The second quantitative study explores the recognition

capabilities of the 3D-TMT, aiming to differentiate between two populations in a way that would

be impossible to do with a typical paper-and-pencil examination. All participants in this study are

cognitively healthy.

Table 7.1: Summary of the normative data collected for test variations A and B across paper,
digital, and the new 3D examination. Tombaugh’s normative data is the first row for reference.

TMT-A - Time (sec.)
Mean SD Median Min-Max Skewness Kurtosis

Tombaugh Normative Data 22.93 6.87 21.70 12-57 1.64 4.46
Paper-based TMT 22.57 5.69 21 15-42 1.36 3.24
Digital TMT 23.97 6.61 23 16-46 1.93 4.63
3D-TMT 53.5 15.24 50.5 35-79 0.45 -1.32

TMT-B - Time (sec.)
Mean SD Median Min-Max Skewness Kurtosis

Tombaugh Normative Data 48.97 12.69 47.0 29-95 0.91 0.92
Paper-based TMT 42.93 13.80 42.5 27-102 2.73 11.26
Digital TMT 50.86 15.97 47.5 30-99 2.01 4.24
3D-TMT 58.83 15.08 56.5 38-92 0.57 -0.61

7.5.1 Normative Studies

7.5.1.1 Experiment Design

In order to establish a performance baseline for the 3D-TMT, we conducted normative studies

with cognitively healthy individuals with a methodology that mirrors that of the existing paper-and-

pencil TMT. The 3D-TMT’s performance score in this normative study mirrors that of the method

of scoring the examination of the traditional TMT, which is “expressed in terms of the time in

seconds required for completion of each of the two parts of the test” [2]. For instance, a test with

a score of 26 indicates that a participant completed the test in 26 seconds. Existing normative data

for the TMT includes dividing the test population into different age groups, one of which is the

age group of participants between the ages of 18-24. Normative data can be established with the
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data of around 30 participants. Following established protocols, our quantitative study involves 30

cognitively healthy participants between the ages of 18-24.

In order to explore the level of consistency between the paper-and-pencil TMT and the 3D-

TMT, we conducted a within-subjects study in which each participant in our user study was tasked

with completing three sets of Trail-Making tests. The first was a regular paper-based examination

administered using the protocol as outlined in Compendium of Neuropsychological Tests. The

second set of tests tasks the participant with completing a digital version of the same connect-the-

dots exercise by drawing on a Microsoft Surface Pro 4 with a Surface Pen. This simulated the

paper-based examination in every way, but with a different layout and positioning of the dots so

as to avoid data skew through a Learning Effect. This second test also serves as an anchor point

linking the traditional TMT and the touch-based 3D-TMT; establishing consistency in performance

between using a paper-based exam and one with a touch-enabled tablet eases concerns about

introducing a confounding effect by having to use a tablet for the completion of the 3D-TMT.

The third set of tests is the 3D-Trail-Making test completed on the same Microsoft Surface Pro 4

with the participant using his or her finger as input. For each of these three tests, the participants

completed both the A variation of the test (order 1, 2, 3, 4) as well as the B variation (order 1, A,

2, B).

7.5.1.2 Results

Table 1 shows the summary of the collected data from 30 cognitively healthy individuals

between the ages of 18-24. For comparison, the established normative data Tombaugh’s normative

data that is stratified by age [31]. Skewness and kurtosis are two statistical measures typically

reported in normative data studies. Skewness is the measure of symmetry where the data distribu-

tion is symmetric if it looks the same to the left and right of the center point, while kurtosis is a

measure of how heavy the distribution tails are, where high kurtosis values indicate higher presence

of outliers§. The general performance across the digital version falls in line with that of the paper

version, although performance baselines change for the 3D-TMT. The 3D-TMT test A’s mean and

§Measures of Skewness and Kurtosis: itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
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standard deviations are considerably higher than the either of the two 2-dimensional examinations

(paper or digital), and while test B showed a noticeable increase as well in completion time, its

increase is considerably less pronounced. Also of note is the fact that the performance across both

tests A and B are remarkably close to each other, indicating that across all cognitively healthy

participants, expected time to complete the test is more uniform for both tests A and B.

7.5.1.3 Discussion

Time to test completion has appreciably changed for both tests A and B for the 3D-TMT.

Specifically, test A’s completion time has nearly doubled in time. Despite the time increase, we

do not consider this detrimental since the average completion time is still under a minute and

within the normal range for neuropsychological examinations. Observing a difference in average

time to completion alone is not a measure of test efficacy; every neuropsychological test has its

own normative time to completion. A more accurate measure of efficacy is consistency among

participants of the same classification.

Overall, observed participant behavior remained consistent in nature across all forms of the

examination for tests A and B. The changes in test completion time can be attributed to the

changes inherent to the different format and increased cognitive load of the examination. It is

important to note that sknewness for the 3D-TMT is lower than even that of the skewness presented

in Tombaugh’s established paper-based normative data, suggesting that test completion times

are more consistent between healthy participants. This results in observably consistent behavior

among healthy participants, which provides us with strong results as our first set of normative data

for the 3D-TMT.

7.5.2 Classification Capabilities of the 3D-TMT

7.5.2.1 Experiment Design

The 3-D Trail-Making Test was designed to produce rich volumes of data in order to facilitate

machine learning classification. The simplified input modality results in two possible labeled

actions: “tap” and “drag.” Each of these actions is logged into the usage metrics data along with
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a time-stamp of when these occurred, the cartesian coordinates of the center box of the sphere,

and the x-y coordinates of where the participant’s finger was touching the screen. New actions

are logged as “Drag” any time the finger is placed and a change in finger position is detected.

“Tap” actions get two additional labeled points: which box the participant tapped, and whether

it was the next correct one in the sequence. New “Tap” or “Drag” data samples are created only

as the participant completes said action. That is, there are no “no action” or “blank” action logs

to conserve space, and participant pauses are still preserved by finding the difference between the

samples’ time-stamps. In total, participants log actions at an average magnitude of several dozen

actions per second, typically resulting between 1,000 to 2,000 actions per test. Each usage metric

log is saved into a text file along with a participant’s anonymized ID number, age, which variant of

the exam this log belongs to (A or B), and the date and time that this exam was taken.

This quantitative study is based in concept on the previously mentioned Trail-Making Test

studies that analyze populations across different geographic regions [97–99, 362, 363]. A total of

52 participants completed both variations of test A and B. Of these 52, 32 of them live in the US

and identify as having American nationality, and 20 were native citizens of Japan currently residing

there. All members of both groups were cognitively healthy and both had an age range of 18-45

years of age.

7.5.2.2 Feature Calculation

Data features were calculated with the intention to capture participant’s behavioral patterns.

This is motivated largely due to multiple qualitative observations that we made during the user

studies. For instance, members of the Japanese population would more frequently rotate in only

one direction as they searched for the next box in the sequence, and they tended to rotate the sphere

at a higher speed than that of the American participants. For this reason, our calculated features

focused on speed and direction of movement in each of the sphere’s three axes. Time to completion

was included as well due to the test’s relation to the paper-based TMT, as well as timing data in

finer granularity. Along those same lines, time spent moving in each direction was also included

as a feature. Every feature calculated is shown in Table 2.
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Table 7.2: Total list of features used in this classification experiment. “[1–25]” indicates each
feature was split into an additional 25, one per the data captured in between each of the boxes.
“[X,Y,Z]” indicates each feature was further split into 3, one per the direction in which the
movement is cumulatively captured.

Behavioral Features
TotalMistakes
TotalTestTime
TimeStartDelay
BoxTimes [1-25]
TimeDragPositive [X,Y,Z] [1-25]
TimeDragNegative [X,Y,Z] [1-25]
DeltaDragPositive [X,Y,Z] [1-25]
DeltaDragNegative [X,Y,Z] [1-25]
AverageTimeDragPositive [X,Y,Z]
AverageTimeDragNegative [X,Y,Z]
AverageDeltaDragPositive [X,Y,Z]
VelocitySamples [X,Y,Z] [1-25]
Magnitudes [1-25]

“TotalMistakes” is the total amount of mistakes that the participant made over the course of

the test. “TimeStartDelay” is the amount of time that a participant took between starting the

test and beginning to control the sphere to find the first box. “BoxTimes” is the time taken

to correctly tap the next box in the sequence (e.g., the time taken between Box 1 and 2, box

2 and 3, etc.). “TimeDragPositive” is the amount of time that a participant spent rotating the

test sphere in the direction that increased the coordinate value (X, Y, and Z were calculated

separately). “TimeDragNegative” is, similarly, the amount of time a participant spent rotating

in the opposite direction. “DeltaDragPositive” is the distance that the test sphere traveled while

the participant rotated the sphere in the positive direction. This was calculated as a separate

feature since at different speeds a participant may cover different distances. “DeltaDragNegative”

similarly captures distance traveled in the negative direction. The averages of each of these

described features across the entire tests were also calculated and included as features. Finally,

the velocity vector of the X, Y and Z coordinates is captured in order to track the speed of the

participant’s movements. The velocity vector is calculated with the formula:
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v =
[xt − xt−1, yt − yt−1, zt − zt−1]

timeDiff
(7.1)

“Magnitudes” are the calculated magnitudes of the velocity vector using the formula:

vm =
√
v[x]2 + v[y]2 + v[z]2 (7.2)

Some features were further segmented into each box, indicated by “[1–25]” in Table 2. For

example, “TimeDragPositiveX” was divided further into 25 segments, one per box, to indicate

the time that the participant spent moving the test sphere in the positive X direction between box

1 and 2, 2 and 3, etc. This would allow us to analyze the participant’s behavior on a per-box

basis rather than just across the entirety of the test, since we anticipated that patterns might emerge

between specific boxes.

This resulted in a total of 440 features, the vast majority of which we anticipated would be

culled during feature analysis as we introduced this data into our classifier. We used the standard

Naive Bayes classifier, as it is optimal for the Binary classification that we intended to perform

between a Japanese and an American population. Classification was supported by 10-fold cross

validation.

7.5.2.3 Results

Classification was performed with the Weka data mining software [364]. Table 4 shows the

subset of features across both variations A and B of the 3D-TMT that yielded the highest accuracy

in classifying examinations as belonging to either an American or Japanese participant. These

features support our earlier intuition that differentiation may be more effective if we focused on

tracking the specific direction of motion. For test A, moving the test sphere in the negative X direc-

tion across greater distances significantly contributed to the country of origin of the participant. A

total of four features related to velocity support the observation that Japanese participants moved

the sphere at greater speeds. For test B, a similar result is observed with respect to emphasis of
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Table 7.3: Features yielding the best classification results for the A and B versions of the 3D-Trail-
Making Test

Test A Test B
DeltaDragPositiveY_23 BoxTimes_1
DeltaDragPositiveZ_12 BoxTimes_25
DeltaDragPositiveZ_18 TimeDragPositiveZ_2
DeltaDragNegativeX_6 TimeDragPositiveZ_21
DeltaDragNegativeX_10 TimeDragNegativeX_24
DeltaDragNegativeX_16 DeltaDragPositiveY_6
DeltaDragNegativeX_17 DeltaDragPositiveZ_4
DeltaDragNegativeX_25 DeltaDragPositiveZ_11
DeltaDragNegativeY_12 VelocitySamplesZ_7
DeltaDragNegativeZ_13 VelocitySamplesZ_8
DeltaDragNegativeZ_14 VelocitySamplesZ_25
DeltaDragNegativeZ_21 Magnitudes_8
VelocitySamplesZ_5
VelocitySamplesZ_9
VelocitySamplesZ_15
VelocitySamplesZ_16

movement velocity, albeit with fewer features needed for classification and the inclusion of timing

data for two boxes.

Table 7.4: A small set of user test data (10 samples) as it is recorded on the text file. The format for
each line is: Action Type, X, Y, Z coordinates of the center “anchor” box, X, Y coordinates of the
finger touch for replay purposes, Cube ID of tapped box (only if Action Type is “Tap”), whether
the tapped box was correct (only if Action Type is “Tap”), and the timestamp of the sample.

Line Action Pos X Pos Y Pos Z Touch X Touch Y Time(s) Cube ID Correct?
...
739 DRAG 325.72 348.95 205.25 600 108 22.80338
740 DRAG 325.23 348.89 205.36 600 107 22.81962
741 DRAG 325.23 349.39 205.36 599 107 22.86997
742 DRAG 327.69 349.19 204.82 779 328 22.13622
743 TAP 327.69 349.19 204.82 779 328 23.15491 Cube (15) False
744 TAP 327.69 349.19 204.82 788 366 23.82257 Cube (7) True
745 DRAG 322.29 344.94 206.12 713 682 24.78589
746 DRAG 311.26 335.84 210.62 725 659 24.80566
747 DRAG 305.86 329.57 214.81 731 647 24.81960
...
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Table 5 shows the detailed accuracy statistics separated by class for both the A and B variation

of the 3D-TMT. Specifically, for the A variation, the test was correctly classified as belonging to

either an American or Japanese participant with an accuracy of 96.154% and an F-Measure of

0.962. For the B variation, the classification had an accuracy of 88.235% and F-Measure of 0.883.

7.5.2.4 Discussion

As previously mentioned, “DeltaDrag” refers to the total distance that the participant moved in

any particular direction between boxes, split into either a positive or negative direction, and further

split between X, Y, or Z direction of movement. For test A, this usage metric became important

features in classifying the nationality of these participants. For test B, time played a slightly larger

role, with the first and last time taken to tap on the correct box being an important feature while

the total time taken in dragging in the X and Z directions being significant features also at the

beginning and end of the examination.

Behavioral Observations. Observations on the participants while they were completing these

tasks have yielded some interesting insights, which are supported by the most significant features

chosen for classification. The Japanese participants visibly focused on completing the test as fast

as possible. Although this did result in the participants moving the test sphere more rapidly, this did

not result in faster time to completion, which is evidenced by the fact that total test completion time

was not a significant feature for classification. However, this did result in a difference in behavior,

which is evident in the classification features since velocity and the magnitude for the velocity

vector were among the most significant features for classification. This may be attributed to a

cultural difference due to the higher proliferation of mobile devices in Japan, and much higher rates

of gaming mobile devices among the population [365]. Japanese participants tended to interpret

this examination as a game, with the implicit objective being the fastest completion of time. This

subtle cultural behavior was evident in the most important features, which in turn resulted in a

feature set that yielded high accuracy and F-measure.

Test Accuracy Differences. A point of consideration are differences in classification features

and accuracy between the tests A and B. We had already anticipated that the features for both
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Table 7.5: Summary of accuracy statistics for both tests A and B of the 3D-Trail-Making Test.
TP/FP Rates, Precision, Recall, and F-Measure shown are the weighted averages between the two
classification labels.
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Test A 50 of 52 (96%) 0.96 0.04 0.96 0.96 0.96
Test B 45 of 51 (88%) 0.88 0.11 0.89 0.88 0.88

tests would be considerably different, since the correct box order across both tests are entirely

different like on the paper-based TMT. The considerable decrease in accuracy for test variation B

can be explained by its increased difficulty, since participants across all forms of this test, paper or

otherwise, frequently take a few moments between each number or letter to think which is the next

correct box or dot in the sequence. We can observe this as most participants think aloud, repeating

numbers and letters in sequence to themselves to remember. On this 3D-TMT version of test B we

noticed that as they were thinking they would frequently move the sphere, often times in random

directions as they would not yet know what box they were looking for. This has a cumulative effect

of a considerably larger number of “random” movements in unpredictable directions in total when

considering all 25 boxes, making participants slightly more difficult to classify based on movement

patterns.

Establishing Behavioral Recognition. Overall, the classification accuracy across both tests A

and B is high, strongly supporting the notion that this new 3D-TMT test, much like its paper-based

counterpart, is sensitive to behavioral patterns. In this case, we can observe that the 3D-TMT is

noticeably sensitive to a participant’s geographic location and nationality. This classification task

would be impossible with the traditional paper-based TMT, since a completed, fully connected set

of dots would yield no insight as to the country of origin of its participant, and the paper’s existing

metric of noting completion time would also provide limited information into country of origin.

Limitations. The two quantitative studies and their respective results also highlighted areas of

improvement. Although both the paper-based TMT and the novel 3D-TMT appear reasonably
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sensitive to geographic location and nationality, utility in broad behavioral recognition should

firmly be established by conducting additional tests with patients with cognitive impairments.

Additionally, we recognize the need for expanding the evaluation to determine whether the type of

data gathered for this experiment may extend to general classification that also includes cognitive

impairment.

7.6 Future Work

We are interested in continuing to explore the sensitivity of the 3D-TMT, testing for behavioral

patterns such as those mentioned in Section 1.3. We seek to determine whether the test is sensitive

in similar ways to the traditional TMT, such as age, level of education, sleepiness, inebriation,

concussions, and Mild Cognitive Impairment among others. We also plan on integrating touch data

into the classification features, including finger movement speed, location, acceleration, curvature,

and motions indicating among others. This will introduce a new dimension of collected data which

should even further increase the rich volumes of behavioral data that this examination can capture.

7.7 Conclusion

The 3-dimensional Trail-Making test is an examination heavily based on the principles of the

established paper-based Trail-Making test with an added focus on collecting large volumes of

behavioral data. We observe the participant’s manipulation of the sphere object as a function of

time with a high enough sample rate as to produce upwards of 2,000 data samples per test, which

usually lasts less than one minute. The result is an ample set of features, 440 in total, and a rich

set of data sensitive to subtle changes in behavior. To demonstrate this, we were able to classify

completed tests as belonging to either Japanese or American participants with an accuracy of up

to 96.154%. We have also begun building our own normative data set for this new examination,

with an improved skewness than that of established paper-based examinations. Future integration

of touch data into the classification algorithm can provide an even higher volume of data likely to

be more sensitive to behavioral patterns.
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8. SUMMARY

8.1 Answers to Research Questions

8.1.1 R1. Can we create a predictive algorithm for estimating cognitive decline using digital

sketch recognition features?

A1. Yes. A combination of existing and novel features were implemented onto various

machine-learning behavior recognition models for training and prediction, and we found the best-

performing F1-score for binary classification of whether participants are in the MCI or non-MCI

group were F1 = 0.73 when building a model only on segmented “Travel” lines and F1 =

0.72 when building a model only on “Search” lines. As discussed in Chapter 6, “Travel” and

“Search” lines are automatically segmented based off of an estimate on what action the participant

is performing. Based on the classification results, it is feasible to conclude that both kinds of lines

yield similar amount of information that is meaningful enough to create classification algorithms

of similar performance.

The second approach for estimating cognitive decline was through directly estimating MoCA

scores based on the same digital sketch data that was analyzed for the binary classification exper-

iment. This approach yielded somewhat positive results with an average root mean squared error

of RMSE = 3.325 for Travel lines, RMSE = 3.315 for Search lines, a mean absolute error of

MAE = 2.415 for Travel lines, and MAE = 2.406 for Search lines. However, we believe that

due to the necessary safety protocols in ensuring only MCI participants were recruited, we were

unable to gather a true normative dataset for estimating MoCA scores directly due to no subject

with a MoCA score under 19 being recruited.

8.1.2 R2. How closely can an automated grader for a complex figure examination mirror a

human grader for ROCFTs?

A2. As discussed in Chapter 5, we have shown the closeness of an automated top-down graph-

based grader in two ways: accuracy and F1-scores of whether a drawn detail exists and drawn
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correctly, and how closely related the scores are to the two expert graders used in this study.

With F1-scores ranging from 0.770 to as high as 0.966 and an average of 0.898, we believe that

the recognition performance is considerably higher than state-of-the-art. Between the two expert

graders, the correlation was p = 0.948, a Spearman’s rank coefficient of ρ = 0.942, and an average

difference in scores of ∆g1,g2 = 1.68. Between our system and grader 1, p = 0.799, ρ = 0.765,

and average ∆auto,g1 = 3.21. Between our system and grader 2, p = 0.829, ρ = 0.802, and average

∆auto,g2 = 2.78.

Additionally, the results mark the first time that a fully automated Rey-Osterrieth Complex Fig-

ure grader can assess all 18 details, whereas previous efforts have only been able to automatically

grade a small subset of the shapes.

8.1.3 R3. How well can we differentiate between participants of different nationalities from

a novel cognitive examination?

A3. We believe that our novel neuropsychological examination based on TMT can yield

sensitivity to cultural background in the same way that the original paper-and-pencil test is. We

are able to differentiate between participants with an accuracy and F1-score of 0.96 for Test A,

and accuracy and F1-score of 0.88 for Test B, both of which are touch-based 3-dimensional exams

with boxes placed in numerical order for Test A, and alternating alphanumerical order for Test B

similar to the original TMT. This means that we were able to differentiate between participants

from Japan and the United States with a high accuracy.

8.2 List of Contributions

• A digital Rey-Osterrieth Complex Figure Examination grader that is the first to fully auto-

mate the grading process of all 18 details.

• A 3-stage complex figure recognizer that is able to accurately discern specific lines or sets

of lines based on a set of heuristics.

• A set of heuristics for sub-shape recognition that can be easily adapted to the other 6 complex

figure examinations
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• A template-matching algorithm that iterates on point-cloud system by reducing gestures to

a empirically-defined n × n point-density matrix. Such iteration differs from the existing

“Dollar family” of recognizers from which it is based by being able to provide a more

accurate distortion metric rather than classifying the input gesture into generalized types

of shapes.

• A set of features applied to Trail-Making Test digital sketch data that can perform as well in

determining subject MCI as current state-of-the-art

• Novel sketch recognition features aimed at classifying participants based on whether or not

they may have MCI

• An improved method over state-of-the-art for segmenting Trail-Making-Test sketches based

on stop-and-go motion associated with searching for the next dot in a sequence and traveling

to the next dot.

• A novel 3-dimensional touch-based neuropsychological examination based on the existing

Trail-Making Test

• A set of novel behavioral features specific to determining whether touch input belongs

to that of a Japanese or American test subject as they complete the novel touch-based

neuropsychological examination

• Promising classification results that may yield intuitive insights into behavioral differences

between Japanese and American test subjects when completing the novel neuropsychological

examination
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9. FUTURE WORK

The presented work served as a strong foundation in the implementation of digitizing neuropsy-

chological examinations, automating or enhancing existing assessment methods, and introduces

new examinations only possible in a digital domain. However, we believe there are several areas

in which the presented work will be improved upon further development.

9.1 More Comprehensive Normative Data

Normative data presented by Tombaugh et al. [31] and Boone et al. [81] for the TMT and

ROCF respectively provide a larger corpus of data from which to draw conclusions and normative

data of cognitively healthy or neurodivergent behavior. We endeavored to gain a representative

sample of the population as equally proportional as possible of the conditions and populations we

wished to classify. However, more data from as many demographics and age groups as possible

is always able to improve the existing recognition techniques, especially for the automated TMT

classifier as it is based on machine-learning data.

9.2 Expansion to other Complex-Figure Tests

Auto ReyO is able to produce an accurate automated grader for the Rey-Osterrieth Complex

Figure test. However, as explained in Chapter 5, six other complex figure tests are in frequent use

as recognized by the Compendium of Neuropsychological Examinations [2]. The vast majority of

the 18 details of the six other complex figures share most geometric properties in common, given

that they are mostly combinations of straight lines, crosses, circles, triangles, and rectangles in a

similar fashion as the ROCF. However, it is important to note that a few shapes and line types do

not appear in the ROCF such as curved lines, tear-drop shapes, star shapes, etc. as can be seen in

Figure 5.5. These are small in number but can be feasibly implemented with similar techniques as

those as described in Chapter 5.
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9.3 Exploration of UI/UX Studies for Both Clinicians and Patients

Every effort was made for the three presented works to provide participants with an intuitive

and easy-to-use interface for proctors and subjects. Comprehensive user studies that explored

the user experience on a UI level, however, proved to be out of scope for this dissertation. In

future work we hope to conduct usability studies and informal interviews to determine key areas

of improvement for both clinicians who proctor tests and patients who take them.

9.4 Sensitivity of Novel Examinations to Cognitive Impairment

Chapter 7 outlined the sensitivity of the novel neuropsychological examination to two different

cultural backgrounds of the participants who took part in the study. However, since this was

conceived and implemented as a neuropsychological examination, we wish to produce a study

that collects data from participants who have MCI as well as participants who do not, such that we

can determine whether the test is sensitive to various degrees of cognitive decline.

9.5 Data Visualization and Reporting for Both Clinicians and Patients

Reporting classification and analysis results of sketch information needs to be done intuitively

such that clinicians are able to interpret the results in a way that is domain-appropriate. As such, we

seek to produce a user study in which different visualizations of results are provided to clinicians to

make a determination in how best to communicate this novel way of analyzing neuropsychological

test data.
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10. CONCLUSION

This dissertation explored the various ways in which digital sketch recognition and its asso-

ciated techniques can be used to facilitate the practice of clinical neuropsychology. We sought to

produce three projects that examined how the testing process can be improved in three major ways:

grading tests in the same way that a clinician grades them, grading tests in a novel way based on

machine-learning classification algorithms, and an entirely new examination only possible with

modern touch tablets.

By these accounts the aforementioned research projects were successful. We were able to

produce the first fully automated Rey-Osterrieth Complex Figure test based on a top-down graph-

based digital sketch recognition pipeline. We produced a per-line examination of Trail-Making

Tests that yielded comparable results with state-of-the-art based on much more granular examina-

tion, and we were able to provide a new examination that was sensitive to participant nationality

in the same way a Trail-Making Test can be sensitive to different cultural backgrounds.

While the methods and presented projects contain within them much room for improvement,

they still represent a strong contribution to research endeavors related to digitizing clinical neu-

ropsychology. More specifically we are able to provide a strong foundation from which clini-

cians can automate and standardize the grading process of examinations that would otherwise be

time-consuming and subjective, can provide the clinician with key new insights into a subject’s

cognitive state with analysis at a level of granularity not previously feasible, and the emergence

of novel neuropsychological examinations that can be deployed on digital spaces. These exciting

developments can further advance the practice of neuropsychology from the page into the digital

domain and unlock a level of behavioral analysis not previously available.
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