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ABSTRACT

In many scientific studies and real life scenes, one of the essential questions is “Are there

any signals in the datasets?”. For example in genetics, scientists are interested in genes that are

differentially expressed with respected to certain diseases. In fund investment, we want to identify

funds administered by skilled instead of just “lucky" managers. These and many other applications

could be formulated as a multiple hypothesis testing problem, where we consider a set of statistical

inferences simultaneously. Motivated by those real world applications, many research problems

arise in multiple testing and remain to be addressed.

This dissertation contains two projects addressing different challenges arising from bioinfor-

matics.

The first project considers a covariate adaptive family-wise error rate (FWER)-controlling pro-

cedure for genome-wide association studies. With the increasing availability of functional ge-

nomics data, it is possible to increase the detection power by leveraging these genomic func-

tional annotations in genome-wide association studies. Previous efforts to accommodate covari-

ates in multiple testing focus on the false discovery rate control while covariate-adaptive FWER-

controlling procedures remain under-developed. Here we propose a novel covariate-adaptive FWER-

controlling procedure that incorporates external covariates which are potentially informative of

either the statistical power or the prior null probability. An efficient algorithm is developed to im-

plement the proposed method. We prove its asymptotic validity and obtain the rate of convergence

through a perturbation-type argument. Our numerical studies show that the new procedure is more

powerful than competing methods and maintains robustness across different settings. We apply the

proposed approach to the UK Biobank data and analyze 27 traits with 9 million single-nucleotide

polymorphisms tested for associations. Seventy-five genomic annotations are used as covariates.

Our approach detects more genome-wide significant loci than other methods in 21 out of the 27

traits.

One fundamental statistical task in microbiome data analysis is differential abundance analysis,
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which aims to identify microbial taxa whose abundance covaries with a variable of interest. Al-

though the main interest is on the change in the absolute abundance, i.e., the number of microbial

cells per unit area/volume at the ecological site such as the human gut, the data from a sequenc-

ing experiment reflects only the taxa relative abundances in a sample. Thus, microbiome data are

compositional in nature. Analysis of such compositional data is challenging since the change in

the absolute abundance of one taxon will lead to changes in the relative abundances of other taxa,

making false positive control difficult. In the second project, we present a simple, yet robust and

highly scalable approach to tackle the compositional effects in differential abundance analysis.

The method only requires the application of established statistical tools. It fits linear regression

models on the centered log-ratio transformed data, identifies a bias term due to the transforma-

tion and compositional effect, and corrects the bias using the mode of the regression coefficients.

Due to the algorithmic simplicity, our method is 100-1000 times faster than the state-of-the-art

method ANCOM-BC. Under mild assumptions, we prove its asymptotic FDR control property,

making it the first differential abundance method that enjoys a theoretical FDR control guarantee.

The proposed method is very flexible and can be extended to mixed-effect models for the analy-

sis of correlated microbiome data. Using comprehensive simulations and real data applications,

we demonstrate that our method has overall the best performance in terms of FDR control and

power among the competitors. We implemented the proposed method in the R package LinDA

(https://github.com/zhouhj1994/LinDA).
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1. INTRODUCTION

1.1 Multiple hypothesis testing1

Multiple testing arises when we face a large number of hypotheses and aim to discover sig-

nals while controlling specific error measures. Table 1.1 lists the possible outcomes when testing

multiple hypotheses. For a single hypothesis test, we usually control the type I error rate, i.e., the

probability of rejecting a true null hypothesis. When the number of hypotheses is large, controlling

the type I error rate for each hypothesis at the usual nominal level (say 5%) could lead to a large

number of false positives. For example, if there are 10000 true null hypotheses, then around 500

p-values will be smaller than 0.05 according to the law of large numbers. Therefore, we need more

stringent error measures. The family-wise error rate (FWER) and the false discovery rate (FDR)

are two commonly used error measures employed in a wide range of scientific studies. The FWER

is the probability of making one false discovery, while the FDR is the expected proportion of false

positives:

FWER: P(V ≥ 1) FDR: E{V/(R ∨ 1)}.

The FWER provides stringent control of type I errors and is preferable if (i) the overall conclusion

from various individual inferences is likely to be erroneous when at least one of them is, or (ii)

the existence of a single false claim would cause significant loss. In contrast, the FDR control

procedure provides less stringent control of type I errors, and it generally delivers higher power at

the cost of an increased number of type I errors. Consider the problem of simultaneously testing

m hypotheses. We reject the hypotheses whose p-values are less than a cutoff t∗. For many FWER

and FDR controlling procedures, the t∗ that controls either one of them at level α is obtained by

1Reprinted with permission from “Covariate Adaptive Family-wise Error Rate Control for Genome-Wide Associ-
ation Studies” by Huijuan Zhou, et al., 2020. Biometrika forthcoming, Copyright 2020 by Oxford University Press.
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Table 1.1: Possible outcomes when testing multiple hypotheses.

Not rejected Rejected Total
True nulls U V m0

True alternatives T S m1

Total m−R R m

solving the following constraint optimization problem

maximizet∈[0,1]R(t) s.t. M(t) ≤ α, (1.1)

whereR(t) denotes the total number of rejections given the threshold t andM(t) is a (conservative)

estimate of the FWER or FDR. The most fundamental procedure for controlling the FWER is the

Bonferroni method. It corresponds to the choice of M(t) = mt, which is the union bound on the

FWER under the assumption that the null p-values are uniformly distributed (or super-uniform) on

[0, 1]:

P(V ≥ 1) = P{∪m0
i=1(pi ≤ t)} ≤

m0∑
i=1

t ≤ mt,

t∗ = max{t : mt ≤ α} = α/m,

where without loss of generality, we assume the first m0 null hypotheses are true. The classical

Benjamini–Hochberg (BH) procedure for controlling the FDR can also be formulated using (1.1)

withM(t) = mt/R(t) being a conservative estimate of the FDR (Benjamini and Hochberg, 1995):

E

{
m0∑
i=1

I(pi ≤ t)

}
≤

m0∑
i=1

t ≤ mt,

t∗ = max

{
t :

mt∑m
i=1 I(pi ≤ t)

≤ α

}
≡ max

{
p(i), i ∈ {1, ...,m} :

mp(i)

i
≤ α

}
,

where p(1) ≤ ... ≤ p(m) are the order statistics of p1, ..., pm.

Formulation (1.1) assumes that the hypotheses for different features are exchangeable. How-
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ever, in many scientific applications, there are informative covariates for each hypothesis that could

provide information on prior null probabilities or distributional characteristics of signals. In Chap-

ter 2, we will introduce a novel covariate adaptive FWER controlling procedure which could in-

corporate multi-dimensional covariates so as to improve the statistical power.

1.2 Real world applications of multiple testing

Multiple testing plays an important role in many scientific studies and real world problems.

For example in finance, we want to identify skilled fund managers by testing alphas of all funds in

the population (Barras et al., 2010; Lan and Du, 2019). In brain imaging studies, we want to find

areas of the brain that differ between two groups of subjects with respect to a special characteristic

of interest such as the diffusion of water molecules (Schwartzman et al., 2008; Leek and Storey,

2008). In astronomy, a recurrent statistical problem is to decide whether the observed astrophysical

data (e.g., an observed power spectrum of of galaxies or clusters) are consistent with the predictions

of a theoretical model (Miller et al., 2001). Similar example can be found in climatology (Ventura

et al., 2004).

In genomic studies, a central and persistent problem is identifying genomic features associ-

ated with clinical outcomes, which was discussed in great many multiple testing literatures (Reiner

et al., 2003; Roeder and Wasserman, 2009; Fan et al., 2012; Zhang and Chen, 2020). It often

involves simultaneously testing a large number of hypotheses, each associated with a particular

genomic feature. Examples include testing the association between single-nucleotide polymor-

phisms (SNPs) and heritable diseases in genome-wide association studies (GWASs), examining the

association between epigenetic variations and phenotypes in epigenome-wide association studies,

detecting the relationship between human microbiome abundances and diseases in microbiome-

wide association studies. In these applications, the number of genomic features often ranges from

hundreds to tens of thousands, which calls for multiple testing procedures to account for the multi-

plicity. The two projects discussed in this dissertation were motivated by two specific applications

arising in bioinformatics. The first project is about adaptive multiple testing with side information,

which focuses on leveraging different types of covariates (prior) information to improve statisti-
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cal power in GWASs while controlling the FWER. The second project addresses a fundamental

statistical problem for microbiome data analysis: differential abundance analysis of compositional

data. The difficulty lies in that the observed data reflects only the relative abundances thus careful

treatments for the data are needed to avoid type I error inflation.

1.3 Overall structure

We developed a novel multiple hypothesis testing method for each of the two projects. Chapter

2 and 3 are devoted to the detailed discussions on the two methods respectively and both include

the descriptions of the asymptotic properties, simulations and real data analyses. Chapter 4 sum-

marizes the two projects. Lemmas and proofs of the theorems, and additional results of simulations

and real data applications are provided in the appendices.
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2. COVARIATE ADAPTIVE FAMILY-WISE ERROR RATE CONTROL FOR

GENOME-WIDE ASSOCIATION STUDIES

2.1 Introduction

As mentioned in Section 1.1 , the classical multiple testing procedures, such as BH procedure

and Bonferroni procedure, assume that the hypotheses for different features are exchangeable.

However, in many scientific applications, there are informative covariates for each hypothesis that

could reflect the group structure among the hypotheses, or provide information on prior null prob-

abilities or distributional characteristics of signals. These covariates can be roughly divided into

two classes: statistical covariates and external covariates (Ignatiadis et al., 2016). Statistical co-

variates are derived from the data itself and could reflect the power or null probability. For exam-

ple, in meta-analyses where samples are pooled across studies, the loci-specific sample sizes and

population-level frequency can be informative for association analyses by influencing the sampling

variability (Boca and Leek, 2018). External covariates are derived from external sources and are

usually informative of the prior null probability. For example in GWASs, the SNPs in active chro-

matin state are more likely to be significantly associated with the phenotype (GTEx Consortium,

2017). P-values from previous or related studies is also considered useful prior information. It is

thus promising to incorporate these covariates to improve the detection power in GWAS.

Multiple testing procedures that leverage different types of covariates (prior) information have

received considerable attention in the literature especially for the FDR control. Genovese et al.

(2006) pioneered multiple testing procedures with prior information using weighted p-values and

demonstrated that their weighted procedure controls the FWER and FDR while improving power.

Roeder and Wasserman (2009) further explored their p-value weighting procedure by introducing

an optimal weighting scheme for the FWER control. Inspired by the above works, Hu et al. (2010)

developed a group BH procedure by estimating the proportions of null hypotheses for each group

separately. Bourgon et al. (2010) developed a particular weighting method called independent
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filtering, which first filters hypotheses by a criterion independent of the p-values and only tests

hypotheses passing the filter. Ignatiadis et al. (2016) proposed the independent hypothesis weight-

ing for multiple testing with covariate information. The idea is to bin the covariate into several

groups and then apply the weighted BH procedure with piecewise constant weights. A similar

idea has been used in the structure-adaptive BH algorithm introduced in Li and Barber (2019),

where the weight assigned for each p-value is the reciprocal of the estimated null probability of

the corresponding hypothesis. The null probabilities were estimated by utilizing censored p-values

and structural information believed to be present among the hypotheses. Boca and Leek (2018)

employed a similar approach by using the censored p-values and a regression approach to estimate

null probabilities based on informative covariates. The above procedures can all be viewed to some

extent as different variants of the weighted BH or Bonferroni procedure. On the other hand, there

are FDR-controlling procedures designed to find an optimal decision threshold by taking into ac-

count the p-value distribution under the alternatives, mostly based on the local FDR framework.

For example, Sun et al. (2015) developed an local-FDR-based procedure to incorporate spatial

information. Scott et al. (2015) and Tansey et al. (2018) proposed EM-type algorithms to esti-

mate the local FDR by taking into account covariate and spatial information, respectively. Lei and

Fithian (2018) proposed the AdaPT procedure, which iteratively estimates the p-value thresholds

based on a two-group mixture model using the partially masked p-values together with the co-

variates. Zhang and Chen (2020) proposed a more computationally efficient procedure to assign

each p-value a covariate-adaptive threshold. Another related method AdaFDR addressed the local

“bump" and global “slope" structures delivered through the covariates in what they called “enrich-

ment" pattern by modeling a mixture of the generalized linear model and Gaussian mixture for a

threshold function (Zhang et al., 2019). Other relevant works include Ferkingstad et al. (2008),

Zablocki et al. (2014), Dobriban et al. (2015), Wen (2016), Stephens (2017), Xiao et al. (2017),

Lei et al. (2017) and Li and Barber (2017).

Recent developments on covariate-adaptive multiple testing focus on the FDR control, while

methods for the FWER control lag behind. Existing FWER-controlling methods can all be thought
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to be variants of the weighted Bonferroni method, with the weights reflecting only the prior null

probabilities. It has been demonstrated clearly in the FDR literature that incorporating the al-

ternative p-value distribution leads to the optimal rejection region in theory and more power in

practice, see, e.g., Efron (2010). Given the popularity of the FWER control in GWAS, we intro-

duce a new covariate-adaptive FWER-controlling procedure, which takes into account the prior

null probabilities as well as the alternative p-value distribution, making it distinct from the existing

FWER-controlling procedures. To illustrate the idea, suppose we are given a set of p-values pi

together with the external covariates xi. Our method is motivated by the two-group mixture model

pi | xi ∼ π(xi)f0(·) + {1− π(xi)}f1(·)

with π(xi) and f1(·) reflecting the heterogeneity of the probabilities of being null and the distri-

butional characteristics of signals. We construct an objective function to control a conservative

estimate of FWER while maximizing the expected number of true rejections. Specifically, we

formulate the following constrained optimization problem

max
ti

m∑
i=1

{1− π(xi)}F1(ti) s.t.
m∑
i=1

π(xi)F0(ti) ≤ α,

where F0 and F1 are the cumulative distribution functions of f0 and f1 respectively. To establish the

asymptotic FWER control, and the rate of convergence, new theoretical developments are needed.

Existing theoretical analysis techniques developed for the FDR-controlling procedures are not ap-

plicable to the FWER-controlling procedure, since we aim to control a sum instead of a proportion

encountered in the FDR control. The arguments based on the Rademacher complexity in Li and

Barber (2019) do not provide a meaningful bound on the FWER. Employing a perturbation-type

argument, we develop a more delicate analysis for each of the summands, which leads to a useful

bound on the sum and thus the FWER. The main contributions of this project are two-fold:

• We propose a powerful covariate-adaptive FWER-controlling procedure that can incorporate

multi-dimensional covariates and exploit the information from both the null probability and
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the alternative distribution. We prove the asymptotic FWER control of the proposed proce-

dure when the pairs of covariate and p-value across different hypotheses are independent and

derive the exact rate of convergence based on a novel perturbation technique. We emphasize

that our proofs do not rely on the correct specification of the two-group mixture model.

• We develop an efficient algorithm to implement the proposed method and demonstrate its

usefulness in handling big datasets arising from GWAS. In the application to the GWAS

of about 9 million SNPs and 75 covariates, we could complete the analysis in hours. The

proposed method is implemented in the R package CAMT.

The rest of this chapter is organized as follows. Section 2.2 derives the optimal rejection rule

based on the two-group mixture model and introduces a feasible procedure to implement the pro-

posed method, while Section 2.3 discusses the theoretical results on the asymptotic FWER control

of the new method. In Sections 2.4, we evaluate the finite-sample performance of the proposed

method via simulation studies. In Section 2.5, we apply the proposed procedure to the GWAS of

the UK Biobank data. Section 2.6 points out a few future research directions. Technical details

including intermediate lemmas and proofs of the theorems, and additional results of simulations

and real data applications are presented in Appendix A.

2.2 Methodology

2.2.1 The setup

Denote by ‖v‖ the Euclidean norm of a vector v. With some abuse of notation, let ‖A‖ be the

spectral norm of a matrix A. For two symmetric matrices A and B, A � B means that B − A is

positive semidefinite. For a, b ∈ R, write a ∨ b = max(a, b) and a ∧ b = min(a, b). Throughout

the chapter, we use c to denote a positive constant which can be different from line to line. The

notations in this chapter are consistent with the notations in Appendix A.

We consider the problem of covariate-adaptive multiple testing to control the FWER. Suppose

we are given m hypotheses, among which m0 are true nulls. For each hypothesis, we observe a

p-value pi as well as a covariate xi lying in some space X ⊆ Rd which encodes potentially useful
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external information concerning the presence of a signal. Let Hi = 0 if the ith null hypothesis is

true and Hi = 1 otherwise. Denote byM0 the set of all true null hypotheses. We transform the ith

p-value based on a map Ti : [0, 1] → R+ that will be estimated from the covariates and p-values.

The larger Ti(pi) is, the more likely the ith hypothesis is from the alternative. The motivation for

such a transformation will be discussed in the next section. In a nutshell, the optimal Ti is the

likelihood ratio between the ith p-value distributions under the alternative and the null.

2.2.2 Optimal rejection rule

Let f0(·) be the null p-value distribution and f1(·) denote the alternative p-value distribution.

Denote by F0(·) and F1(·) the corresponding cumulative distribution functions. Suppose we reject

the ith hypothesis if pi ≤ ti for some cutoff ti. Before presenting the procedure that inspires

the choice of Ti, it is worth clarifying the definition of the FWER from both the frequentist and

Bayesian perspectives. The key difference between these two viewpoints lies on whether we treat

the indicators {Hi} as fixed or random quantities. From the frequentist perspective, the indicators

{Hi} are deterministic and we have by the union bound,

FWERFreq =P(pi ≤ ti for some i ∈M0) ≤
m∑
i=1

I(Hi = 0)F0(ti).

From a Bayesian’s point of view, it is natural to posit the two-group mixture model

pi | xi ∼ π(xi)f0(·) + {1− π(xi)}f1(·).

In this case, conditional on xi, Hi is assumed to be a Bernoulli random variable with the success

probability 1− π(xi). The Bayesian FWER can be bounded as follows

FWERBay =P(pi ≤ ti for some i ∈M0) ≤
m∑
i=1

P(pi ≤ ti, Hi = 0) =
m∑
i=1

E {π(xi)}F0(ti).

(2.1)
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To motivate our procedure, it is more convenient to adopt the Bayesian viewpoint. But we empha-

size that the proposed procedure indeed provides asymptotic FWER control in the usual frequentist

sense, as shown in Section 2.3.

We aim to find {ti} to maximize the expected number of true rejections given by

E

{
m∑
i=1

I(Hi = 1, pi ≤ ti)

}
=

m∑
i=1

E[{1− π(xi)}]F1(ti)

while controlling the FWER at a desired level α. To achieve both goals, we formulate the following

constraint optimization problem

max
ti

m∑
i=1

{1− π(xi)}F1(ti) s.t.
m∑
i=1

π(xi)F0(ti) ≤ α, (2.2)

where
∑m

i=1 π(xi)F0(ti) serves as a conservative estimate of the Bayesian FWER based on the

derivations in (2.1). The Lagrangian for problem (2.2) is

L(t1, . . . , tm;λ) =
m∑
i=1

{1− π(xi)}F1(ti)− λ

{
m∑
i=1

π(xi)F0(ti)− α

}

with λ > 0. Differentiating the Lagrangian with respect to ti and setting the derivative to be zero

(at the optimal value t∗i ), we obtain

{1− π(xi)}f1(t∗i )

π(xi)f0(t∗i )
= λ.

Motivated by the above observation, we set

Ti(p) =
{1− π(xi)}f1(p)

π(xi)f0(p)
.

10



We note that Ti(p) is related to the local FDR as follows

1

Ti(p) + 1
=

π(xi)f0(p)

π(xi)f0(p) + {1− π(xi)}f1(p)
= P(Hi = 0 | p, xi).

In the following discussions, we suppose f0 is the uniform distribution on [0, 1] and f1 is strictly

decreasing, which is a common assumption in the literature, e.g., Sun and Cai (2007) and Cao et al.

(2013). As Ti is strictly decreasing in this case, we may reduce our attention to the rejection rule

pi ≤ t∗i as Ti(pi) ≥ Ti(t
∗
i ) := τ ∗. The cutoff can then be expressed as

t∗i = f−1
1

{
π(xi)τ

∗

1− π(xi)

}
,

where f−1
1 denotes the inversion of f1. Notice that the expected number of true rejections and

the conservative estimate of the Bayesian FWER in (2.1) are both monotonically decreasing in τ .

Therefore, the solution to (2.2) satisfies that

τ ∗ = min

{
τ > 0 :

m∑
i=1

π(xi)f
−1
1

{
π(xi)τ

1− π(xi)

}
≤ α

}
. (2.3)

In practice, both π and f1 are unknown and need to be replaced by estimates from the data. We

provide detailed discussions about estimating the unknowns in the next section.

2.2.3 A feasible procedure

We describe a feasible procedure based on suitable estimates of π and f1. To avoid overfitting

and facilitate the theoretical analysis, we adopt the idea of censoring p-values as in Storey (2002),

Li and Barber (2019) and Boca and Leek (2018). Under the two-group mixture model, for a

prespecified 0 < γ < 1, we have

I(pi > γ) | xi ∼ π(xi)Bern(1− γ) + {1− π(xi)}Bern{1− F1(γ)},

11



where Bern(1− γ) denotes the Bernoulli distribution with success probability 1− γ. We model f1

using the beta distribution f1(p) = kpk−1 for 0 < k < 1 as it provides reasonably well approxima-

tion to a wide range of alternative distributions as demonstrated in Zhang and Chen (2020). Here

we treat k as fixed and will discuss the choice of data-driven k in Section 2.2.4.

Before presenting our method, it is worth clarifying the rationale behind our procedure. Notice

that π(xi) appears both inside and outside the function f−1
1 in (2.3). To achieve asymptotic FWER

control, we need a conservative estimate for π(xi) outside the function f−1
1 , while for the one

inside f−1
1 , we require it to depend on the covariates to reflect the heterogeneity among signals

while retaining certain form of stability (see more details in Section 2.3). The reason will become

clear by inspecting the proof of Proposition 1. We first observe that

E
{
I(pi > γ)

1− γ
| xi
}

= π(xi) + {1− π(xi)}
1− F1(γ)

1− γ
≥ π(xi).

Therefore, we suggest replacing the π(xi) outside f−1
1 by I(pi > γ)/(1 − γ). To estimate π(xi)

inside f−1
1 , we consider the logistic model

log

{
π(xi)

1− π(xi)

}
= xT

i β.

The quasi log-likelihood function is then

Lm(β) =
m∑
i=1

log
[
π(xi)(1− γ)yiγ1−yi + {1− π(xi)}(1− γk)yiγk(1−yi)

]
,

where π(xi) = (1 + e−x
T
i β)−1 and yi = I(pi > γ). Define the corresponding quasi-maximum

likelihood estimator (MLE) as

β̂ = arg max
β∈B

Lm(β), (2.4)

12



where B is some compact subset of Rd. Let

π̂(xi) = {π̃(xi) ∨ ε1} ∧ ε2,

where π̃(xi) = (1 + e−x
T
i β̂)−1 and 0 < ε1 < ε2 < 1. We have used winsorization to prevent π̂(xi)

from being too close to zero and one. Further denote

τ̂ = min

{
τ ≥ ε :

m∑
i=1

I(pi > γ)

1− γ
f−1

1

{
π̂(xi)τ

1− π̂(xi)

}
≤ α

}

for some ε > 0. It is straightforward to show that τ̂ = τ̃ ∨ ε with

τ̃ = k

[
m∑
i=1

I(pi > γ)

α(1− γ)

{
1− π̂(xi)

π̂(xi)

}1/(1−k)
]1−k

.

Finally, we set

t̂i =

[
{1− π̂(xi)}k

π̂(xi)τ̂

]1/(1−k)

,

and reject the ith hypothesis if

pi ≤ t̂i ∧ γ.

Remark 1 (Connection to the weighted Bonferroni procedure). Suppose ε1 = ε = 0 and ε2 = 1.

Then we have

t̂i =

[
{1− π̃(xi)}k

π̃(xi)τ̃

]1/(1−k)

= αwi,

where

wi = e−
xTi β̂

1−k

{
m∑
i=1

I(pi > γ)

1− γ
e−

xTi β̂

1−k

}−1

.

We reject the ith hypothesis if

pi ≤ αwi ∧ γ.
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In this sense, our procedure can be viewed as a particular type of weighted Bonferroni procedure.

However, different from existing methods, our weight incorporates the information regarding the

alternative p-value distribution, which often leads to more rejections and thus higher power, as

observed in our numerical studies.

2.2.4 EM algorithm

Algorithm 1 below provides the details of our iterative algorithm to solve problem (2.4).

Algorithm 1. EM algorithm for problem (2.4).

Input: {xi, yi}mi=1, γ, k; initializer: β(0).

Output: β̂.

Notation: b0i = (1− γ)yiγ1−yi; b1i = (1− γk)yiγk(1−yi); tol: tolerance level.

Iteration:

E step:

Q
(t)
i = E{I(Hi = 0) | yi, xi, β(t)} = π

(t)
i b0i/{π(t)

i b0i + (1− π(t)
i )b1i},

where π(t)
i = (1 + e−x

T
i β

(t)
)−1.

M step:

β(t+1) = arg maxβ∈B
∑m

i=1{Q
(t)
i log(πi) + (1−Q(t)

i ) log(1− πi)},

where πi = (1 + e−x
T
i β)−1.

Until: |Lm(β(t+1))− Lm(β(t))|/|Lm(β(t))| < tol.

Return: β(t+1) after a sufficient number of iterations.

The theory in Section 2.3 below shows that our procedure controls FWER asymptotically for

any fixed k. However, a suitable choice of k, which produces a beta-distribution closer to the

true f1 (especially on the small p-value region), will improve the statistical power. In practice,

an EM algorithm can be used to estimate the k and β jointly. To be precise, we define the quasi

log-likelihood function,

Lm(β, k) =
m∑
i=1

log
[
π(xi)(1− γ)yiγ1−yi + {1− π(xi)}(1− γk)yiγk(1−yi)

]
.
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Then we estimate (β, k) jointly by the quasi-MLE defined as

(β̂, k̂) = arg max
β∈B,k∈(0,1)

Lm(β, k). (2.5)

We summarize the algorithm for solving problem (2.5) in Algorithm 2.

Algorithm 2. EM algorithm for problem (2.5).

Input: {xi, yi}mi=1, γ; initializer: β(0), k(0).

Output: β̂, k̂.

Notation: b0i = (1− γ)yiγ1−yi; tol: tolerance level.

Iteration:

E step:

Q
(t)
i = E{I(Hi = 0) | yi, xi, β(t), k(t)} = π

(t)
i b0i/{π(t)

i b0i + (1− π(t)
i )b

(t)
1i },

where π(t)
i = (1 + e−x

T
i β

(t)
)−1, b(t)

1i = (1− γk(t))yiγk(t)(1−yi).

M step:

β(t+1) = arg maxβ∈B
∑m

i=1{Q
(t)
i log(πi) + (1−Q(t)

i ) log(1− πi)},

where πi = (1 + e−x
T
i β)−1;

k(t+1) = arg maxk∈(0,1)

∑m
i=1(1−Q(t)

i ){yi log(1− γk) + k(1− yi) log(γ)}.

Until: |Lm(β(t+1), k(t+1))− Lm(β(t), k(t))|/|Lm(β(t), k(t))| < tol.

Return: β(t+1), k(t+1) after a sufficient number of iterations.

2.3 Asymptotic FWER control

In this section, we prove the asymptotic FWER control for the procedure proposed in Section

2.2.3. Throughout this section, we shall adopt the frequentist viewpoint, i.e., we view the indicators

{Hi} as a deterministic sequence.

Let pj→a = (p1, . . . , pj−1, a, pj+1, . . . , pm)T ∈ Rm for a = 0, 1. We define β̂(pj→a) and

t̂i(pj→a) by setting the jth p-value to be equal to a when estimating the corresponding quantities.

We make the following assumption.
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Assumption 1. Denote by F0i the cumulative distribution function for pi with Hi = 0. Suppose

that {pi}i∈M0 are super-uniform, i.e., F0i(t) ≤ t for all t ∈ [0, 1] and i ∈M0.

Assumption 1 is standard in the literature, see e.g., Benjamini and Yekutieli (2001).

Proposition 1. If {pi} ∈ M0 are mutually independent and are independent with the non-null

p-values, then under Assumption 1, we have

FWER ≤ Jm + α ≤ c(Jm,1 + Jm,2) + α,

where

Jm =
m∑
j=1

E
{∣∣t̂j(pj→0)− t̂j(pj→1)

∣∣} ,
Jm,1 =

m∑
j=1

E

 |xT
j {β̂(pj→0)− β̂(pj→1)}|{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

 ,
Jm,2 =

m∑
j=1

E

α−1
∑

i 6=j I(pi > γ)|xT
i {β̂(pj→0)− β̂(pj→1)}|+ α−1[{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

]2

 ,

and ε has been defined in Section 2.2.3.

The above proposition shows that the validity of the asymptotic FWER control relies on the

stability of t̂j , i.e., the smallness of |t̂j(pj→0) − t̂j(pj→1)| which in turn depends on ‖β̂(pj→0) −

β̂(pj→1)‖. Set zi = (xi, yi), where yi = I{pi > γ}. Define

l(β; zi) = log

{
1

1 + e−x
T
i β

(1− γ)yiγ1−yi +
e−x

T
i β

1 + e−x
T
i β

(1− γk)yiγk(1−yi)

}
,

and Pml(β) = m−1
∑m

i=1 l(β; zi). To ensure ‖β̂(pj→0) − β̂(pj→1)‖ to be small, we impose the

following assumptions.

Assumption 2. Suppose zi ∈ Rd+1 are independent and possibly non-identically distributed.
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Assumption 2 is not uncommon in the multiple testing literature, see e.g., Ignatiadis et al.

(2016). We suspect that the results still hold when zi is a sequence of weakly dependent variables

although a rigorous proof is left for future investigation.

Assumption 3. There exists a continuous function of β, denoted by L(β), such that

lim
m→+∞

sup
β∈B
|E {Pml(β)} − L(β)| = 0.

Assumption 4. Suppose L(β) has a unique global maximizer β∗ over the compact space B.

Assumption 4 is needed in our perturbation argument. If the maximizer is not unique, there

seems no guarantee that the difference between β̂(pj→0) and β̂(pj→1) will be small.

Proposition 2. Suppose Assumptions 2–4 are satisfied and further assume sup1≤i≤m E (‖xi‖8) <

∞. Then we have

β̂(pj→0)− β̂(pj→1) = (S∗j + ∆j)
−1(U∗j + Πj),

where S∗j and U∗j are the leading terms such that S∗j = −
∑

i 6=j∇2l(β∗; zi) and sup1≤j≤m ‖U∗j ‖ =

OP(1), and ∆j and Πj are the remainder terms satisfying that

sup
1≤j≤m

‖∆j‖ = oP(m) and sup
1≤j≤m

‖Πj‖ = oP(1).

Given Propositions 1 and 2, we have the following theorem of asymptotic FWER control.

Theorem 1. Suppose the following conditions are satisfied:

(i) Assumptions 1–4 hold;

(ii) for some q ≥ 2 and ε > 0, we have sup1≤i≤m E (‖xi‖4q+ε) <∞;

(iii) we have supβ∈B |E {Pml(β)} − L(β)| = O(m−1/2);

(iv) the function L(β) is twice continuously differentiable;

(v) the global maximizer β∗ is not on the boundary of B;
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(vi) for some c > 0, we have ∇2L(β∗) � −cI , where I denotes the identity matrix;

(vii) for large enough m and some c > 0, we have E {∇2Pml(β∗)} � −cI; and

(viii) the number of true null hypotheses m0 satisfies that lim inf m0/m > 0.

Then

FWER ≤ Jm + α =


o(αm

1−q
4 ) + α, if 2 ≤ q ≤ 2 +

√
5,

O(αm
−q
1+q ) + α, if q > 2 +

√
5.

Theorem 1 derives the bound and its exact order on the FWER. Interestingly, the order of the

bound depends crucially on the tail behavior of the covariates. And it shows an interesting phase

transition depending on the value of q. We briefly explain this result as follows. From Proposition

1, we can see that the FWER is upper bounded by an expression of the form α +
∑m

i=1 ri with

ri ≥ 0. Our argument optimizes the summation
∑m

i=1 ri in the upper bound. Depending on the

value of q, the dominant term in this summation will change, which eventually leads to different

convergence rates. When the covariates have exponential tails, the rate of convergence can be

as close to m−1 as possible. The details of the proof are provided in the appendices. As we

discussed earlier, Assumptions 1–4 enable us to show that the upper bound on the FWER relies

on the smallness of ‖β̂(pj→0) − β̂(pj→1)‖ and to get the expression for β̂(pj→0) − β̂(pj→1). As

our goal is to quantify the exact rate of convergence of the FWER upper bound to the nominal

level α, we further need to quantify the exact difference between β̂(pj→0) and β̂(pj→1). Through

Conditions (iii)–(v) and the strong-concavity Condition (vi), we obtain the concentration inequality

for ‖β̂(pj→a) − β∗‖. Conditions (ii) and (vii) are used for controlling the inverse (S∗j + ∆j)
−1 in

the expression of β̂(pj→0)− β̂(pj→1). Condition (viii) requires the number of true null hypotheses

to be at least some positive proportion of all hypotheses, which is fairly mild. We give one toy

example where all the conditions are satisfied.

Example 1. Suppose all hypotheses are true nulls and (xi, pi) are i.i.d.with xi being 1-dimensional,

xi |= pi and pi ∼ Unif([0, 1]), i.e., the uniform distribution on [0, 1]. Then L(β) = E{Pml(β)} =
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E {l(β; z1)}. If xi follows a distribution symmetric about zero and P(xi 6= 0) > 0, it can be

shown that L′(β) = 0 if β = 0, L′(β) > 0 if β < 0, L′(β) < 0 if β > 0, and L′(β) =

−L′(−β). Thus β∗ = 0 is the unique maximizer. We can further prove that L′′(0) ≤ −c as

long as E(x2
i ) > c′ for some c′ > 0. Other conditions are naturally satisfied. When xi follows a

non-symmetric distribution, we also illustrate its obedience to these conditions. One mandatory

requirement for the distribution of xi is that P(xi > 0) > 0 and P(xi < 0) > 0. In practice, we

could always achieve this by shifting the covariate via subtracting the median (or by standardizing

the covariate). See more details in the appendices.

2.4 Numerical studies

2.4.1 Simulation setups

We conduct comprehensive simulations to evaluate the finite-sample performance of the pro-

posed method and compare it to competing methods. For genome-scale multiple testing, the num-

bers of hypotheses could range from thousands to millions. For demonstration purpose, we start

withm = 10, 000 hypotheses. To study the impact of signal density and strength, we simulate three

levels of signal density (sparse, medium and dense signals) and six levels of signal strength (from

very weak to very strong). To demonstrate the power improvement by using external covariates,

we simulate covariates of varying informativeness (non-informative, moderately informative and

strongly informative). For simplicity, we simulate one covariate xi ∼ N(0, 1) for i = 1, · · · ,m.

Given xi, we denote π(xi) by πi and let

πi =
exp(ηi)

1 + exp(ηi)
, ηi = η0 + kdxi,

where η0 and kd determine the baseline signal density and the informativeness of the covariate,

respectively. We set η0 = 3.5, 2.5 and 1.5, which achieves a signal density of around 3%, 8%, and

18% respectively at the baseline (i.e., no covariate effect), representing sparse, medium and dense

signals. Here kd is set to be 0, 1 and 1.5, representing a non-informative, moderately informative

19



and strongly informative covariate. Based on πi, the underlying truth Hi is simulated from

Hi ∼ Bern(1− πi).

Finally, we simulate independent z-scores using

zi ∼ N(ksHi, 1),

where ks controls the signal strength (effect size), and we use six values equally spaced on [2,

2.8] and we label them as {1, 2, ..., 6}. Z- scores are converted into p-values using the one-sided

formula 1− Φ(zi). P-values together with xi are used as the input for the proposed method.

In addition to the basic setting (denoted as S0), we investigate other settings to study the ro-

bustness of the proposed method. Specifically, we study

• Setup S1. Additional f1 distribution. Instead of simulating normal z-scores under f1, we

simulate z-scores from a non-central gamma distribution with the shape parameter 2. The

scale/non-centrality parameters of the non-central gamma distribution are chosen to match

the variance and mean of the normal distribution under S0.

• Setup S2. Correlated hypotheses. We further investigate the effect of dependency among

hypotheses by simulating correlated multivariate normal z-scores. Four correlation struc-

tures, including two block correlation structures and two AR(1) correlation structures, are

investigated. For the block correlation structure, we divide the 10,000 hypotheses into 500

equal-sized blocks. Within each block, we simulate equal positive correlations (ρ = 0.5)

(S2.1). On top of S2.1, we divide the block into 2 by 2 sub-blocks, and simulate nega-

tive correlations (ρ = −0.5) between the two sub-blocks (S2.2). For AR(1) structure, we

investigate both ρ = 0.75|i−j| (S2.3) and ρ = (−0.75)|i−j| (S2.4).

We present the simulation result for the Setup S0 in the main text and the results for the Setups S1

and S2 in the appendices.
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2.4.2 Competing methods

We compared the proposed covariate-adaptive FWER-controlling procedure (denoted by

CAMT.fwer) to IHW-Bonferroni, weighted Bonferroni and Holm’s step-down methods (Holm,

1979). The covariate-adaptive FWER-controlling procedure, implemented using the CAMT.fwer

function in the R package CAMT, used the model log[π(xi)/{1−π(xi)}] = xT
i β, set f1(p) = kpk−1

and estimated β and k jointly using Algorithm 2. The weighted Bonferroni method rejected the ith

hypothesis if pi < α/(mπi), where πi’s were estimated from CAMT.fwer. The IHW-Bonferroni

method was implemented using the R package IHW, and Holm’s step-down method using the holm

function from the R package mutoss. We also implemented an oracle procedure based on the

proposed optimal rejection rule, where πi’s and f1 were the true null probabilities and alternative

density that generated the data.

Storey et al. (2004) proposed the bootstrap method to estimate the overall null probability π,

which is implemented in the R package qvalue. The method uses censored p-values I{pi > λ}

with λ = 0.05, 0.1, ..., 0.95 to obtain the corresponding estimates of the null probability, πλ, and

returns the best πλ̂. We set γ = λ̂. We evaluated the performance based on the FWER control

(probability of making at least one false positive) and power (true positive rate) with a target FWER

level of 5%. Results were averaged over 1000 simulation runs. In addition, we investigated the

FWER control across different target levels, α = 0.01, 0.05, 0.1, 0.15, 0.2, for cases where there

are no signals and under the Setup S0 with moderate signal density (η0 = 2.5), signal strength

(ks = 2.4) and covariate informativeness (kd = 1).

2.4.3 Simulation results

We showcase the simulation results of Setup S0 in Figure 2.1 and Setups S1–S2 in the ap-

pendices as well as the FWER control across different target levels (see Figures A.4–A.11 in the

appendices). All methods control the FWER around the 5% target level (Figure 2.1A). We addi-

tionally draw the 95% confidence intervals (CIs) of the proposed method CAMT.fwer and observe

that almost all the intervals cover the 5% target level (dashed line) (Figure 2.1A), which sug-
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gests adequate FWER control of CAMT.fwer under finite samples. In terms of power (Figure

2.1B), generally, the five competing methods from the best to the worst are oracle, CAMT.fwer,

IHW-Bonferroni and weighted Bonferroni (the performance of these two methods depends on the

cases), Holm’s step-down methods. The oracle procedure represents the performance upper bound

and dominates other methods.

We now study the impact of the external (prior) information , signal density and strength (Fig-

ure 2.1B). First, we note that the power increases with the signal strength (effect size) for all

methods as expected. Second, as the prior informativeness increases, the performance differ-

ence between methods widens. CAMT.fwer is close to the oracle procedure: it is as powerful

as other methods when the prior is not informative and is substantially more powerful when the

prior is highly informative. Both IHW-Bonferroni and weighted Bonferroni methods improve over

Holm’s step-down method when the prior is informative. Third, the proposed method maintains

high power across different signal densities. In contrast, IHW-Bonferroni method performs better

than weighted Bonferroni method when the signal is sparse and performs worse when the signal is

dense.

Figures A.4–A.5 show the weak and strong FWER control of the competing methods across

different target levels. All the methods including CAMT.fwer control the FWER at the target level.

Figure A.6 compares the power across different target levels at moderate signal density, signal

strength and prior informativeness. CAMT.fwer remains more powerful than other methods. In

fact, as the target level increases, the power difference becomes larger.

We next study the robustness of the proposed method under the Setup S1 (additional f1 distri-

bution, Figure A.7) and Setup S2 (correlated hypotheses, Figures A.8–A.11). The general trend

remains similar to Setup S0, indicating that CAMT.fwer is robust to different f1 distributions and

various correlation structures. Interestingly, as we generate z-scores from non-central gamma dis-

tribution for the alternative in Setup S1, the power of CAMT.fwer is even closer to that of the oracle

procedure (Figure A.7), indicating that the beta distribution can model the alternative p-value dis-

tribution very accurately in this case.
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Figure 2.1: Performance comparison under the basic setting (S0). Family-wise error rates (A)
and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid red,
dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW-Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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2.5 Application to GWAS of UK Biobank data

To demonstrate the use of the proposed procedure in real world applications, we applied

CAMT.fwer to UK Biobank data (Kichaev et al., 2019). We downloaded the data (p-values and

functional annotations) from https://data.broadinstitute.org/alkesgroup/UKBB/

and https://data.broadinstitute.org/alkesgroup/FINDOR/. The genome-wide

association p-values for 9 million SNPs and 27 traits were calculated using BOLT-LMM (Loh et al.,

2018) based on 459K samples. The annotation data consists of 75 coding, conserved, regulatory,

and linkage-disequilibrium-related annotations that have previously been shown to be enriched for

the disease heritability (Kichaev et al., 2019). We compared our method with IHW-Bonferroni,

weighted Bonferroni and Holm’s step-down methods. For the IHW-Bonferroni method, as it can

only deal with one-dimensional covariate, we chose the covariate that had the maximum Spearman

correlation with the p-values out of the 75 covariates for the 27 traits separately. For the weighted

Bonferroni method, we rejected the ith hypothesis if pi < α/(mπi), where πi’s were estimated

from CAMT.fwer. The details of the use of CAMT.fwer are given below.

Appropriate initial values of (β, k) are important for the algorithm to reach convergence in less

iterations and reduce the computation time significantly. To achieve this end, we estimate those

initial values based on small p-values (so the initial beta distribution fits the small p-value region

more accurately). Let πs be the estimate of the proportion of the true null hypotheses based on

Storey’s procedure (R package qvalue). We define the “small p-values" as the first m(1 − πs)

smallest p-values and let u be the maximum value of those small p-values. Note that

f(p | p < u) =
π + (1− π)kpk−1

πu+ (1− π)uk
,

is the conditional density of the mixture model f(p) = π + (1 − π)kpk−1 given that the value is

less than u. We estimate π and k by maximizing the (conditional) log-likelihood function,

(π̃, k̃) = arg max
π∈(0,1),k∈(0,1)

∑
i:pi<u

log
{
π + (1− π)kpk−1

i

}
− n log{πu+ (1− π)uk},
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where n is the number of p-values that are smaller than u. Let β̃ = (log{π̃/(1− π̃)}, 0)T. Then we

set (β̃, k̃) as the initializer in Algorithm 2.

Due to the linkage disequilibrium between SNPs, after getting the rejected SNPs, we used

PLINK’s linkage-disequilibrium-based clumping algorithm with a 5 Mb window and an r2 thresh-

old of 0.01 to form clumps of SNPs. The British population in the 1000 genomes data (1000

Genomes Project Consortium, 2015) was used to calculate the linkage disequilibrium. The re-

jected SNPs belonging to the same clump count for only one significant locus. The numbers of

significant loci at the 5% FWER level detected by the four competing methods are presented in

Table 2.1. We present the numbers of rejections before clumping in the appendices. CAMT.fwer

detected more loci than other methods in 21 out of the 27 traits. Averaged across the traits, our

approach attained 4.20% increase in significant loci detected compared with the Holm’s step-down

method.

2.6 Discussions

To conclude, we point out a few future research directions. First, in the two-group mixture

model, we assume that the success probabilities π(xi) vary with xi while f1 is independent of xi.

This assumption is reasonable in some applications but it can be restrictive when the covariates also

affect the effect sizes. It is thus of interest to develop a procedure by allowing f1 to be dependent

on xi in such scenarios. Second, modeling f1 and π using nonparametric procedures would give

us the flexibility to capture more complicated signal patterns. Finally, extending the method to

accommodate more general structural information such as the phylogenetic tree structure (Xiao

et al., 2017) is an interesting direction.
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Table 2.1: Significant loci detected at the FWER level of 0.05. Improve=(CAMT.fwer −
Holm)/Holm × 100%. The numbers with subscript ∗ are the maximum numbers of rejections
among the four competing methods for the corresponding traits.

Holm IHW weighted Bonferroni CAMT.fwer Improve

Balding Type I 836∗ 836∗ 836∗ 833 -0.4%
BMI 1287 1287 1347 1364∗ 6%
Heel T Score 2104 2104 2144 2146∗ 2%
Height 3463 3460 3555∗ 3550 2.5%
Waist-hip Ratio 909 909 937 952∗ 4.7%
Eosinophil Count 1750 1750 1817∗ 1797 2.7%
Mean Corpular Hemoglobin 1913 1913 1953∗ 1925 0.6%
Red Blood Cell Count 1570 1570 1609 1633∗ 4%
Red Blood Cell Distribution Width 1470 1470 1493∗ 1470 0%
White Blood Cell Count 1393 1393 1430 1462∗ 5%
Auto Immune Traits 179 179 180∗ 138 -22.9%
Cardiovascular Diseases 512 512 529 540∗ 5.5%
Eczema 423 423 426 431∗ 1.9%
Hypothyroidism 373 373 377 424∗ 13.7%
Respiratory and Ear-nose-throat Diseases 228 228 231 236∗ 3.5%
Type 2 Diabetes 156 156 158 160∗ 2.6%
Age at Menarche 634 634 648 652∗ 2.8%
Age at Menopause 200 200 201 203∗ 1.5%
FEV1-FVC Ratio 1537 1537 1575 1599∗ 4%
Forced Vital Capacity (FVC) 867 867 924 947∗ 9.2%
Hair Color 1606 1606 1616 1629∗ 1.4%
Morning Person 204 204 217 229∗ 12.3%
Neuroticism 176 115 189 198∗ 12.5%
Smoking Status 221 159 232 254∗ 14.9%
Sunburn Occasion 232 232 232 237∗ 2.2%
Systolic Blood Pressure 1108 1108 1148 1157∗ 4.4%
Years of Education 383 383 416 447∗ 16.7%
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3. LinDA: LINEAR MODELS FOR DIFFERENTIAL ABUNDANCE ANALYSIS OF

MICROBIOME COMPOSITIONAL DATA

3.1 Introduction

The role of the human microbiome in health and disease has been intensively studied over the

past few years, see, e.g., Fan and Pedersen (2021) and Valdes et al. (2018), for several reviews. Po-

tentially pathogenic or probiotic microorganisms can be identified by analyzing their abundances

in a microbial ecosystem (e.g., the human gut) with respect to some variable of interest such as

disease status. Current prevailing technologies for studying the human microbiome use metage-

nomic sequencing, where either the DNA of a taxonomically informative gene (e.g. 16S rRNA) or

all the genomic DNA in the microbial genome is sequenced. After obtaining the raw sequencing

reads, the reads can be clustered into operational taxonomic units (OTUs), denoised into ampli-

con sequence variants (ASVs), or mapped to a microbial reference database (taxa) using existing

bioinformatics pipelines such as UPARSE, DADA2, and MetaPhlAn (Edgar, 2013; Callahan et al.,

2016; Segata et al., 2012). For simplicity, we use the term taxon (pl. taxa) to represent any tax-

onomic unit (OTU/ASV/taxon) from a bioinformatics pipeline. Therefore, after bioinformatics

processing, we have an abundance table recording the frequencies of detected taxa in the samples,

together with a meta data table capturing the sample-level information. Differential abundance

analysis is then carried out based on the abundance and meta data table.

Ideally, we want to measure the absolute abundance of the microorganisms, i.e., the number

of microorganisms per unit area/volume at the microbial ecosystem, and differential abundance

analysis is performed on the absolute abundance data. In practice, the data from a sequencing ex-

periment only captures the relative abundance (compositional) information since the total sequence

read count, also known as sequencing depth or library size, does not reflect the total microbial load

in the specimen due to the complex chemistry involved in sequencing (Gloor et al., 2017; Tsilimi-

gras and Fodor, 2016). Drawing inferences about the changes on the unknown absolute abundance
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based on the measured relative abundance data is challenging due to missing the total microbial

load information. The increase or decrease in the abundance of some taxa with respect to a variable

of interest automatically results in changes in the relative abundances of all other taxa, a statistical

phenomenon known as compositional effects. Therefore, using the standard statistical techniques

such as two-sample t-test, Wilcoxon rank sum test, and linear regression analysis ignoring the

compositional nature of the data could lead to a large number of false discoveries. We consider

an artificial example for illustration. Suppose we have two samples with three detected taxa. The

absolute taxa abundances for the two samples are (10, 20, 70) and (30, 20, 70). Thus, only the first

taxon is differentially abundant. Now suppose, after sequencing (ignoring the sampling variabil-

ity), the read counts for the two samples are (100, 200, 700) and (3, 2, 7), where the first sample is

more deeply sequenced. Since the total read sum is an experimental artifact, we normalize the data

into relative abundances by dividing by the library size, and the corresponding relative abundances

for the two samples become (0.1, 0.2, 0.7) and (0.25, 0.167, 0.583). Hence, all three taxa appear

differentially abundant while the truth is that only the first is differential.

Based on the relative abundance data alone, it is impossible to tell whether it is the first taxon

that is differential or all the taxa are differential for the previous example. For the problem to

be well defined, one has to make assumptions. One assumption is that the differential signal is

sparse, i.e., only a small proportion of taxa are associated with the variable of interest. This is

the assumption the proposed method is based on. However, we acknowledge that, although many

studies have supported the sparse signal assumption, there are also studies support dense signal

hypotheses, where a large number of taxa are differential with small effect sizes (Xiao et al.,

2018)(Xiao et al., 2018). Therefore, the validity of a method and the definition of true or false

positive depends on the specific assumption one is willing to accept. Here we do not claim that our

method is “correct": all we want to achieve is to provide a statistical tool that could be potentially

useful for pinpointing top candidate taxa for further biological validation.

To address compositional effects in differential analysis, one popular approach is robust nor-

malization. It involves calculating a normalizing factor (scale factor), which is robust to a small
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number of differential taxa and could well capture the sequencing effort for the non-differential

part. Therefore, dividing by such a normalizing factor will bring the abundance of the non-

differential taxa to the same scale while retaining the differences for those differential ones. In

contrast, the naive total sum scaling (TSS) normalization, which divides the counts by the library

size, is not robust as illustrated in the previous example. An ideal normalizing factor for the pre-

vious example would be 900 and 9, which are the sum of the counts of the two non-differentially

abundant taxa. The corresponding normalized data are then (100/900, 200/900, 700/900) and

(3/9, 2/9, 7/9). Thus, only the first taxon is differentially abundant. In reality, however, we do

not know which taxa are non-differential in advance. Assuming the number of differential taxa is

small, different strategies have been used to calculate a robust normalizing factor including TMM,

RLE, CSS, and GMPR (Robinson and Oshlack, 2010; Anders and Huber, 2010; Paulson et al.,

2013; Chen et al., 2018). We list these methods in the Appendix Table B.1.

These normalization techniques can be combined with different statistical procedures in differ-

ential abundance analysis. For example, we can divide the counts by the normalizing factor from

the normalization techniques in Appendix Table B.1 and then apply standard statistical tools based

on the normalized data. The normalizing factor could also be included as an offset in regression

models such as EdgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014), MicrobiomeDDA

(Chen et al., 2018), and MetagenomeSeq (Paulson et al., 2013), where the TMM, RLE, GMPR,

and CSS normalization are the accompanying normalization methods. A variant to the robust nor-

malization approach is to find a reference taxon or a set of reference taxa, which are assumed to be

non-differential with respect to the variable of interest. The data are then normalized by the count

of the reference taxon (or the sum of the counts of the reference taxa). This strategy was used in

RAIDA (Sohn et al., 2015) and DACOMP (Brill et al., 2020).

Another line of methods to tackle the compositional effect uses (log) ratio approach since only

ratios are well defined for compositional data (Aitchison, 1986). The ALDEx2 method by Fernan-

des et al. (2014) uses the centered log-ratio (CLR) transformation, where the counts of a sample

are divided by their geometric mean before taking logarithms. Differential abundance analysis is
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then performed using Wilcoxon rank sum test or t-test based on the CLR transformed data. In

the CLR approach, the geometric mean can also be regarded as a robust normalizing factor. The

ANCOM proposed by Mandal et al. (2015) computes the pairwise ratios of the relative abundances

and identifies the taxa with the most differential ratios. This is based on the observation that the

abundance ratios for those differential taxa to other taxa are all differential assuming distinct ef-

fect sizes while the ratios for those non-differential taxa are mostly non-differential. Therefore,

by analyzing the pattern of the pairwise ratios, one could distinguish the differential taxa from a

background of non-differential taxa with high accuracy. Recently, Lin and Peddada (2020) pro-

posed a bias-corrected version of ANCOM (called ANCOM-BC), which uses a linear regression

framework based on log-transformed taxa count and estimates the unknown bias term due to the

compositional effect through an EM algorithm.

Weiss et al. (2017) and Hawinkel et al. (2019) evaluated several popular methods in differen-

tial abundance analysis (ANCOM-BC not included) and showed that the inflation of the FDR is a

ubiquitous problem, and no method is satisfactory in all aspects. A method that is computationally

efficient, relatively robust and powerful, and flexible enough to allow covariate adjustment and

application to correlated microbiome data is still lacking in the field. In this project, we propose a

linear regression framework for differential abundance analysis (LinDA) to fill the methodological

gap. LinDA involves three simple steps that can be carried out efficiently. First, it runs linear

regressions using the CLR transformed taxa data as the response. Then it identifies a bias term due

to the compositional effect and corrects for the bias using the mode of the regression coefficients

across different taxa. Finally, it computes the p-values based on the bias-corrected regression coef-

ficients and applies the BH procedure to control the FDR. We rigorously prove the asymptotic FDR

control of the proposed method, making it the first procedure that enjoys a theoretical FDR control

guarantee. Our approach is related to ANCOM-BC but differs in several aspects. (i) Our derivation

provides a clear interpretation of the bias term and suggests a simple way to correct it. (ii) Our

procedure does not involve the EM-algorithm and can be 100–1000 times faster than ANCOM-BC

in our numerical studies. (iii) Our method can be directly extended to the mixed-effect models.
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Longitudinal and repeated measurement-based microbiome studies have been increasingly com-

mon (Faust et al., 2015; Lewis et al., 2015) but statistical tools for correlated microbiome data

analysis remain scarce. LinDA can analyze the correlated microbiome data using the classic linear

mixed effects models. Through extensive simulation studies and real data analyses, we show that

the new method outperforms the state-of-the-art approaches in terms of FDR control and power.

The rest of this chapter is organized as follows. Section 3.2 introduces the proposed method,

including the log linear model for differential abundance analysis, its estimation method, and the

testing procedure. The main theoretical result on the asymptotic FDR control of the proposed

method is presented in Section 3.3. The practical performance of the proposed method illustrated

via simulation studies and real data applications can be respectively found in Sections 3.4 and

3.5. The main contributions of this project are summarized in Section 3.6 with some concluding

remarks. Technical details, as well as additional results of simulation and real data applications,

are provided in Appendix B.

3.2 Methodology

3.2.1 Setup

Throughout this chapter, we use C, C1, and C2 to denote positive constants, which can be dif-

ferent from line to line. The notations in this chapter are consistent with the notations in Appendix

B.

As summarized in the introduction, there are two ways to tackle the compositional effects in

differential abundance analysis, namely normalization and log-ratio transformation. In this project,

we adopt the CLR transformation and develop a bias-correction procedure to address the compo-

sitional effects. Denote the absolute abundance and the observed read count of the ith taxon in

the sth sample by Xis and Yis, respectively. For the sth sample, the total read count of all taxa,

Ns =
∑m

i=1 Yis, is determined by the sequencing depth and DNA materials. Given Ns, it is natural
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to model the stratified count data over m taxa through a multinomial distribution as

P (Y1s = y1s, . . . , Yms = yms) =
Ns!∏m
i=1 yis!

m∏
j=1

(
Xjs∑m
i=1 Xis

)yjs
(3.1)

Under (3.1), we have

log

(
Yis∑m
j=1 Yjs

)
= log

(
Xis∑m
j=1 Xjs

)
+ eis, (3.2)

where eis denotes the estimation error, which is expected to diminish as Ns gets large.

3.2.2 OLS estimation

We consider the log linear model on the absolute abundance

log (Xis) = usαi + (1, c>s )βi + εis, (3.3)

where cs = (cs1, ..., csd)
> is the d-dimensional covariates to be adjusted, us is the variable of

interest, and εis is the error term. Our goal is to discover taxa that are differentially abundant with

respect to us. Statistically, we want to simultaneously test the following m hypotheses

H0,i : αi = 0 versus Ha,i : αi 6= 0.

Set εis = εis + eis. Under (3.2) and (3.3), the CLR-transformed data satisfies the following linear

model

Wis : = log

{
Yis

(
∏m

j=1 Yjs)
1/m

}
= log

(
Yis∑m
k=1 Yks

)
− 1

m

m∑
j=1

log

(
Yjs∑m
k=1 Yks

)

= log(Xis)−
1

m

m∑
j=1

log(Xjs) + eis −
1

m

m∑
j=1

ejs

= us (αi − ᾱ) + (1, c>s )
(
βi − β̄

)
+ εis − ε̄s, (3.4)

32



where ᾱ = m−1
∑m

i=1 αi, β̄ = m−1
∑m

i=1 βi, and ε̄s = m−1
∑m

i=1 εis. From (3.4), we can see that

the OLS estimator for α based on the CLR transformed data is biased with the bias term being ᾱ.

Let ᾱi = αi − ᾱ, β̄i = βi − β̄, ε̄is = εis − ε̄s, and σ̄2
i = var(ε̄is). Denote by α̃i, β̃i, and σ̂2

i the

OLS estimators of ᾱi, β̄i, and σ̄2
i , respectively. We then have

(α̃i, β̃
>
i )> =

(
n∑
s=1

zsz
>
s

)−1( n∑
s=1

zsWis

)
, σ̂2

i =
1

n− d− 2

n∑
s=1

{
Wis −

(
α̃i, β̃

>
i

)
zs

}2

,

(3.5)

where zs = (us, 1, c
>
s )>. We respectively let varz(·) and covz(·, ·) denote the variance and covari-

ance computed conditional on z1, ..., zn respectively. It can be shown that

varz(α̃i) = ρ̂n−1σ̄2
i = ρ̂n−1m−1

{
(m− 2)σ2

i +m−1

m∑
i=1

σ2
i

}
,

covz(α̃i, α̃j) = ρ̂n−1m−1

{
−(σ2

i + σ2
j ) +m−1

m∑
i=1

σ2
i

}
, for i 6= j,

where ρ̂ is the (1, 1)th element of (n−1
∑n

s=1 zsz
>
s )−1.

3.2.3 Bias correction

In many applications, it is reasonable to assume that there is only a small portion of differential

taxa, i.e., most αi’s are equal to 0. Under this assumption, as α̃i is an unbiased estimator for

ᾱi = αi − ᾱ, the mode of α̃i is expected to be close to −ᾱ. This observation motivates us to

estimate −ᾱ by

−α̃ =
m̂ode({

√
nα̃i}mi=1)√
n

, where m̂ode({
√
nα̃i}mi=1) = arg max

x∈R

1

mh

m∑
i=1

K

(
x−
√
nα̃i

h

)
.

(3.6)
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In (3.6), K is a non-negative even function with
∫∞
−∞K(y)dy = 1, and h is the bandwidth param-

eter. Under some regular conditions, we have

√
n(α̃− ᾱ) = oP(1)

as m,n → ∞ (see the appendices for the proof). Therefore, one can estimate αi by the bias-

corrected estimator α̂i = α̃i + α̃.

3.2.4 Testing procedure

To construct a statistic for testing H0,i, we need to find a proper estimator for the variance of

α̂i. To this end, we note that

varz(α̂i) = varz(α̃i) + varz(α̃) + 2covz(α̃i, α̃).

Since varz(α̃i) = ρ̂σ̄2
i /n, it dominates varz(α̃) and covz(α̃i, α̃) as n,m → ∞ under mild condi-

tions. Thus, we estimate the variance of α̂i by ρ̂σ̂2
i /n. As shown in the next section, the studentized

statistic Ti :=
√
nα̂i/

√
ρ̂σ̂2

i is asymptotically normal. However, for small sample, we found that

t distribution provides a better approximation to the sampling distribution of Ti. We define the

p-value for testing H0,i as

pi = 2Fn−d−2 (−|Ti|) , (3.7)

where Fn−d−2(·) denotes the cumulative distribution function of t distribution with n−d−2 degrees

of freedom. Based on the above p-values, we can use the BH procedure to control the FDR. Our

algorithm is summarized as the following Algorithm 3.

Algorithm 3. Linear model for differential abundance analysis (LinDA).

1. Step 1: Run OLS based on the CLR transformed observations and calculate α̃i and σ̂2
i as in

(3.5).
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2. Step 2: Compute the bias-corrected estimates α̂i = α̃i + α̃ with α̃ defined in (3.6).

3. Step 3: Calculate the p-values as in (3.7) and run the BH procedure.

Remark 2. Built upon the linear regression framework, our method could be easily extended to

the mixed-effect model:

log(Xis) = usαi + (1, c>s )βi + r>s γi + εis,

where γi is the random effect and rs is the corresponding design. Mixed effects can be used to

analyze correlated microbiome data from studies involving replicates or spatial sampling as well

as family-based and longitudinal microbiome studies. We suggest using the R function lmer to

estimate the parameters for the CLR-transformed data. Denote by α̃i,lmer, σ̂2
i,lmer, and dfi,lmer the esti-

mations for ᾱi, the variance of α̃i,lmer, and the degrees of freedom of α̃i,lmer from the lmer function.

We compute the bias-corrected estimates α̂i,lmer = α̃i,lmer+α̃lmer, where α̃lmer is obtained as the same

procedure used in (3.6). Similarly, we let Ti,lmer = α̂i,lmer/σ̂i,lmer and pi,lmer = 2Fdfi,lmer(−|Ti,lmer|).

The BH procedure on pi,lmer is finally used to control the FDR.

Remark 3. Compared to the existing methods based on either normalization or CLR transforma-

tion, our method is computationally much more efficient and can be easily scaled to problems with

tens of thousands of taxa. Table 3.1 compares the computation time of LinDA and ANCOM-BC

based on simulated datasets. We observe that our method is 100–1000 times faster than ANCOM-

BC. We also tested on a massive dataset of the similar scale of the AmericanGut project (McDonald

et al., 2018) (m = 5000 and n = 10000). ANCOM-BC completed the analysis in 85 minutes com-

pared to 28 seconds for our method (see the column of S0C0 in Table 3.1). Large-scale microbiome

studies have been increasingly common to overcome the large inter-subject variability, making our

method practically useful for the analysis of big microbiome datasets.
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3.3 Asymptotic FDR control

Suppose the target FDR controlling level is q. The BH procedure is equivalent to finding the

smallest t∗ such that F̂DP(t∗) ≤ q, where

F̂DP(t) =
2mFn−d−2(−t)∑m

i=1 I
(√

n|α̂i|/
√
ρ̂σ̂2

i > t
) .

To show the asymptotic FDR control as m,n → ∞, we take a Bayesian perspective by assuming

that the parameters αi’s are independently generated from a common distribution. The key result

is summarized in the following theorem.

Theorem 2. Let ρ be the (1, 1)th element of {E(zsz
>
s )}−1. Suppose the following conditions are

satisfied:

(i) zs’s are i.i.d.; us and csa, a = 1, ..., d, are sub-Gaussian; σmin{E(zsz
>
s )} > C, where σmin(A)

represents the minimum eigenvalue of a matrix A.

(ii) σi’s are i.i.d. and P(C1 < σi < C2) = 1.

(iii) εis/σi ∼i.i.d. E =d N(0, 1) for i = 1, ...,m and s = 1, ..., n.

(iv) αi’s are i.i.d.

(v) zs, σi, εis/σi, and αi for i = 1, ...,m and s = 1, ..., n are mutually independent.

(vi) Denote by fn(·; a) the density function of
√
nαi +

√
aεis for any a > 0. For large enough n,

the density fn(·; ρ) has a unique mode at 0, i.e., arg maxx∈R fn(x; ρ) = 0; for any ε > 0, there

exists a δ > 0 such that minn inf |x|>ε |fn(x; ρ)− fn(0; ρ)| > δ.

(vii) The Fourier transform k(u) =
∫∞
−∞ e

−ıuyK(y)dy is absolutely integrable, where ı =
√
−1 is

the imaginary unit.

(viii) h = o(1) and 1/(mh2) = o(1).

(ix) m = o(eCn).

(x) Let S∞,n(t) = P(|E +
√
nαi/

√
ρσ2

i | > t). There exists t0 such that for large enough n,

2Fn−d−2(−t0)/S∞,n(t0) ≤ q.
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Let

FDRm,n(t) = E


∑

i:αi=0 I
(
|
√
nα̂i|/

√
ρ̂σ̂2

i > t
)

1 ∨
∑m

i=1 I
(
|
√
nα̂i|/

√
ρ̂σ̂2

i > t
)
 .

Under the above conditions, we have

lim sup
m→∞,n→∞

FDRm,n(t∗) ≤ q.

Conditions (i)–(v) help prove the consistency of the variance estimators and the mode of the re-

gression coefficients. By assuming that the errors follow the normal distributions (Condition (iii)),

we can integrate all the relevant covariate information in a single parameter ρ̂, which facilitates the

establishment of the consistency of the kernel density estimation and hence the estimator of mode.

In the simulation studies, we also investigated the scenario of non-normal distribution. We use an

example to illustrate Condition (vi). In particular, we assume that
√
nαi follows a discrete distri-

bution with P{
√
nαi = an,l} = πl for l = 0, 1, where an,0 = 0, an,1 6= 0, πl > 0, and π0 + π1 = 1.

To reflect the sparsity, π0 is set to be 0.8. We choose an,1 = 2 and 5 representing weak and strong

signals, respectively. We consider two cases for the error variance: (i) σi = 1; (ii) σi ∼ IG(a, b),

i.e., σi follows the inverse-gamma distribution with the shape parameter a and scale parameter b.

As seen from Figure 3.1, when the signal strength is weak, the mode of
√
nαi +

√
ρεis slightly

deviates from 0 as the blue curve in the left panel indicates. For strong signals, the mode is exactly

equal to zero. As shown in Parzen (1962), Condition (vii) is fulfilled by many commonly used

kernels such as the Gaussian kernel and the uniform kernel on [−1, 1]. Condition (ix) allows the

number of taxa to be exponentially larger than the sample size. Condition (x) ensures the existence

of a cut-off value to control the FDR at level q. A similar assumption was imposed in Theorem 4

of Storey et al. (2004).
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Figure 3.1: Density of
√
nαi + εis. The panels on the left and right correspond to σi = 1 and

σi ∼ IG(2, 1) respectively, where IG denotes the inverse-gamma distribution. The red curve is
the density of the standard normal distribution. The blue and green curves are the densities of√
nαi + εis with P(

√
nαi = 0) = 0.8 and P(

√
nαi = 2) = 0.2, and P(

√
nαi = 0) = 0.8 and

P(
√
nαi = 5) = 0.2, respectively.

3.4 Numerical studies

3.4.1 Setups

We conducted comprehensive simulations to evaluate the performance of the proposed method

under different setups. We set m = 500 as the baseline for the number of taxa, which is similar to

the number of tests at the species level for a typical microbiome study. We investigated the sample

size n = 50, 200 representing small and large sample size, respectively. More combinations of m

and n were also studied as the variational settings. We simulated two levels of signal density (i.e.,

percentage of differential taxa) γ = 5%, 20%, roughly corresponding to sparse and dense signals.

These differential taxa were randomly drawn from the entire set. Let Hi = 0 if the ith taxon is

differentially abundant and Hi = 1 otherwise. The underlying truth Hi was simulated from

Hi ∼i.i.d. Bernoulli(γ).
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We assume that the baseline absolute abundance X(0)
is follows

log
(
X

(0)
is

)
∼i.i.d. N

(
β

(0)
i , σ2

i

)
,

and generate the absolute abundance Xis based on

log(Xis) ∼i.i.d. N
(
β

(0)
i + usαi + c>s β

−(0)
i , σ2

i

)
,

where β
−(0)
i represents the coefficients of the confounders. Let

πis =
Xis∑m
j=1 Xjs

.

The observed OTUs data were simulated by

(Y1s, . . . , Yms) ∼i.i.d. Multinomial(Ns, π1s, . . . , πms).

To create a power curve, we included six effect sizes labeled as {1, 2, ..., 6} in the figures. We

make the effect sizes have the same signs for differential taxa (i.e., the differential taxa have the

same direction of change), creating a relatively strong compositional effect. Since low-abundance

taxa have much less statistical power, we up-weighted their effects so that the power will not be

dominated by those abundant ones. Specifically, for a randomly drawn differential taxon i, we set

αi = log(2µ)I
(
π̄

(0)
i > 0.005

)
+ log

{
2µ
(

0.005/π̄
(0)
i

) 1
3

}
I
(
π̄

(0)
i ≤ 0.005

)
for n = 50,

αi = log(µ)I
(
π̄

(0)
i > 0.005

)
+ log

{
µ
(

0.005/π̄
(0)
i

) 1
3

}
I
(
π̄

(0)
i ≤ 0.005

)
for n = 200,

where µ is equally spaced on [1.05, 2], π̄(0)
i =

∑n
s=1 π

(0)
is /n and π(0)

is = X
(0)
is /(

∑m
j=1 X

(0)
js ). We

considered three cases for the covariate and confounders:

C0. us ∼i.i.d. Bernoulli(1/2) and no confounder.
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C1. us ∼i.i.d. N(0, 1) and no confounder.

C2. us ∼ Bernoulli({1 + exp(−0.5cs1 − 0.5cs2)}−1) independently, where cs1 and cs2 are con-

founders (cs = (cs1, cs2)>), cs1 independently and identically follows the Rademacher dis-

tribution and cs2 ∼i.i.d. N(0, 1). Let β(1) ∼ N(1, Im) and β(2) ∼ N (2, Im), then β
−(0)
i =

(β
(1)
i , β

(2)
i )>, where β(1)

i and β(2)
i are the ith elements of β(1) and β(2) respectively.

The parameters β(0)
i , σ2

i and Ns were estimated based on a real dataset (COMBO) from the study

of the gut microbiota in a general population (Wu et al., 2011), which consists of 98 samples and

6674 taxa. We only used its 500 most abundant taxa. Since β(0)
i and σ2

i were not directly estimable

using the relative abundance data, we estimated β(0)
i − β

(0)
j and σ2

i + σ2
j based on the pairwise log

ratios, forced some β(0)
i ’s to be zeros to obtain the estimations of β(0)

1 , ..., β
(0)
m , and derived σ2

i from

the values of {σ2
i + σ2

j}i,j . We assume that the library size for each sample follows the negative

binomial distribution

Ns ∼i.i.d. NB(7645, 5.3),

where the mean and dispersion parameters were estimated based on the combo data. The resulting

sparsity (percent of zeros) of the count matrix is around 65%–75%.

In addition to the basic setting (denoted as S0), we investigated other settings to study the

robustness of the proposed method. Specifically, on top of S0 and C0, we studied

S1. Zero inflated absolute abundances. The microbiome data contains excessive zeros and most

of the zeros in the microbiome data can be explained by insufficient sampling (Silverman

et al., 2020) since majority of the taxa are of low-abundance. However, it is also possible

that zeros are due to physical absence of the taxa (Kaul et al., 2017). To study the effect of

zero inflation on differential abundance analysis, we randomly forced 30% of the absolute

abundance data to be 0.

S2. Correlated absolute abundances. Existing differential abundance analysis methods assume

independence among taxa. However, in practice, taxa are interconnected forming networks
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(Kurtz et al., 2015). It is interesting to see if the methods compared are robust to the corre-

lations among the taxa. We simulated block-correlation structure by dividing the 500 taxa

into 25 equal-sized blocks. Within each block, we further divided the block into 2 by 2

sub-blocks and simulated equal positive correlations (0.5) within each sub-block and equal

negative correlations (−0.5) between the two sub-blocks. This mimics the scenario that there

are mutualistic relationships within the group and competitive relationships between groups.

S3. Gamma abundance distribution. Although the log normal distribution has been widely

used for modeling species abundance data, other models such as gamma distribution are

also possible (Connolly et al., 2014). We thus did additional simulation studies using the

gamma distribution. Let X(0)
is ∼i.i.d. Gamma(η

(0)
i , 1) and Xis ∼i.i.d. Gamma(η

(0)
i exp(usαi +

c>s β
−(0)
i ), 1). Similarly, we estimated η

(0)
i from the COMBO data, where we first esti-

mated the baseline proportion π
(0)
i based on the Dirichlet-multinomial distribution using

the R function dirmult and set the over-dispersion parameter θ(0) to be 0.003, then let

η
(0)
i = π

(0)
i (1/θ(0) − 1).

S4. Smaller m. In microbiome data, each taxon can be assigned a taxonomic lineage and taxa

abundances can be aggregated at different taxonomic ranks. Differential abundance analysis

at higher ranks such as family and genus is also routinely performed. At the higher ranks,

the number of taxa is much smaller. We thus studied a small number of taxa (m = 50) to

see if the proposed method is robust to a small m. We randomly chose 50 elements from

β(0) = (β
(0)
1 , ..., β

(0)
500)> and σ2 = (σ2

1, ..., σ
2
500)> in each simulation run. We set Ns ∼

NB(1500, 5.3).

S5. Smaller n. In pilot microbiome studies, the sample sizes are usually small. It is interesting to

study the performance of the methods at a much smaller sample size. We studied n = 20, 30

and used the same effect size as n = 50.

S6. 10-fold difference in library size. When the microbiome samples are not fully randomized

in sequencing, it is likely that samples of the two groups end up in two separate sequencing
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runs leading to very different library sizes for the two groups. Since the presence/absence

of a taxon strongly depends on the library size, the differential library size will confound

the two-sample comparison, especially for those rare taxa (Weiss et al., 2017). To create

differential library sizes, we generated the library size from Ns ∼ NB(5000, 5.3) and Ns ∼

NB(50000, 5.3) for the two groups, respectively.

S7. Mixed-effect model. We considered two scenarios: Pre-treatment and post-treatment com-

parison (S7.1) and Replicate sampling (S7.2). Under S7.1, for n = 50 (200), we simulate

25 (100) subjects and each has paired pre-treatment and post-treatment samples. The aim is

to detect taxa affected by treatment. Under S7.2, each subject is subject to multiple measure-

ments. For n = 50 (200), we simulate 25 (50) subjects with each having 2 (4) replicates.

Specifically, we let

log(Xis) ∼ r>s γi +N(β
(0)
i + usαi + c>s β

−(0)
i , σ2

i ),

where rs has one element equal to 1 and all other elements equal to 0 indicating the subject

ID of sample s and the elements of γi followN(0, τ 2
i ) independently, where we let τ 2

i = aiσ
2
i

with ai ∼ Unif([0, 1]).

3.4.2 Competing methods

We compared our method with ANCOM-BC, ALDEx2, DESeq2, EdgeR, and Metagenome-

Seq. For DESeq2 and EdgeR, we replaced their native normalization methods with GMPR normal-

ization, which was shown to improve the power and false positive control in differential abundance

analysis (Chen et al., 2018). For MetagenomeSeq, there are two implementations, fitZig and

fitFeatureModel, in the R Bioconductor package metagenomeSeq. Currently,

fitFeatureModel is only applicable to binary covariate case (C0). We use MetagenomeSeq

and MetagenomeSeq-2 to denote the fitFeatureModel and fitZig procedures, respectively.

We also compared to the standard non-parametric methods: Wilcoxon rank sum test for case C0

and Spearman correlation test for case C1, both with the GMPR normalized data.
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For the proposed method, we considered two zero-handling approaches. The first approach

adds a pseudo count of 0.5 to all the counts, which is widely used in microbiome data analysis

on the log scale. However, it has been shown to be problematic under certain situations (Brill

et al., 2020). We thus designed a new imputation-based approach, where we imputed the zeros

by Ns/(maxk:Yik=0Nk)(i = 1, · · · ,m). In other words, zeros were treated differently according

to the library size of the sample and zeros in the sample with a larger library size were replaced

with larger fractions. The purpose of the imputation approach is to reduce false positives when

the library size is correlated with the variable of interest. As shown in the simulation studies,

the pseudo-count approach worked sufficiently well in most settings except the setting S6, where

the library size between the groups differed by 10 folds. In contrast, the imputation approach re-

duced the false positive rate extensively for the setting S6 (Appendix Figure B.1). However, it was

slightly less powerful than the pseudo-count approach when the library size was a not confounder

(Appendix Figure B.2). Thus, in the implementation, we used an adaptive approach: we first test

the association between the variable of interest and the library size. If the p-value is smaller than

0.1, we use the imputation approach conservatively; otherwise, we use the pseudo-count approach.

Appendix Figures B.1 and B.2 show that the adaptive method controls the false positives when the

library sizes are very different among groups while retaining the power when the library sizes are

similar.

The proposed LinDA method can be viewed as a three-step procedure: CLR+OLS+BC (BC

stands for bias correction), which can be easily extended to the linear mixed effects model setting

using CLR+LMM+BC (LMM stands for linear mixed-effect model). In the setting S7 (correlated

microbiome data), we compared CLR+LMM+BC to CLR+OLS+BC, CLR+OLS and CLR+LMM

to demonstrate the utility of LinDA for correlated microbiome data analysis.

3.4.3 Simulation results

First, we found that DESeq2, EdgeR and MetagenomeSeq-2 had severe FDR inflation un-

der most settings (Appendix Figure B.3). We thus did not include them in the main comparison

and focused on the comparison between LinDA, ANCOM-BC, ALDEx2, MetagenomeSeq and
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Wilcoxon. Full results of all methods are available at https://github.com/zhouhj1994/

LinDA-manuscript-result. We use S0C0 to denote the setting S0 with covariate design C0

and likewise for other setups.

Figure 3.2 and Appendix Figures B.4 and B.5 show the results of the competing methods under

the log-normal distribution with three covariate designs: binary covariate (S0C0), continuous co-

variate (S0C1), and binary covariate with confounders (S0C2), respectively. Generally speaking,

LinDA and ANCOM-BC outperform other methods in both the FDR control and power. Under C0

and C2 (binary covariate), both methods control the FDR around the target level, and ANCOM-BC

is slightly more powerful than LinDA when the sample size is small. However, under C1 (continu-

ous covariate, Appendix Figure B.4), LinDA controls FDR at the target level at both sample sizes

while ANCOM-BC has slight FDR inflation when the sample size is small. LinDA is also slightly

more powerful than ANCOM-BC at a small sample size. The Wilcoxon rank sum test based on

GMPR normalized data performs well under C0 with slightly inflated FDR at larger effect sizes

and reasonable power across settings. In contrast, for a continuous covariate (C1, Appendix Figure

B.4), Spearman rank correlation test has a large FDR inflation when the signal is dense. When there

are confounders (C2, Appendix Figure B.5), Wilcoxon has severe FDR inflation when the sample

size is large due to its inability to adjust for confounders. ALDEx2 is a conservative method, which

offers the strongest FDR control but is much less powerful. MetagenomeSeq performs well when

the signal is sparse but fails to control the FDR when the signal is dense. We also studied the effect

of zero inflation and the correlations among taxa (S1C0 and S2C0, Appendix Figures B.6 and B.7),

we observed similar patterns and LinDA and ANCOM-BC had overall the best performance.

Since LinDA assumes a log normal distribution of the absolute abundance, it is interesting to

evaluate its performance when the log normal assumption is violated. We thus simulated the abso-

lute abundance data using a gamma distribution (S3C0). Figure 3.3 shows the results. LinDA con-

trols the FDR close to the target level and has the highest power. When the signal is dense (20%),

ANCOM-BC has a noticeable FDR inflation while ALDEx2, MetagenomeSeq and Wilcoxon have

severe FDR inflation when the signal is dense.
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Figure 3.2: Performance comparison (S0C0, log normal distribution for absolute abundances with
a binary covariate). False discovery proportions (A) and true positive rates (B) were averaged over
100 simulation runs. Error bars (A) represent the 95% confidence intervals (CIs) of the method
LinDA and the dashed horizontal line indicates the target FDR level of 0.05.
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Figure 3.3: Performance comparison (S3C0, gamma distribution for absolute abundances with a
binary covariate). False discovery proportions (A) and true positive rates (B) were averaged over
100 simulation runs. Error bars (A) represent the 95% CIs of the method LinDA and the dashed
horizontal line indicates the target FDR level of 0.05.
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With a smaller number of taxa (m = 50, S4C0, Appendix Figure B.8), ANCOM-BC shows

the best FDR and power trade-off. LinDA is the most powerful but it has slight FDR inflation.

MetagenomeSeq and Wilcoxon controls the FDR when the signal is sparse but are less powerful.

When the signal is dense, they could not control the FDR properly. When the sample size is very

small (n = 20, 30, S5C0), LinDA stands out among its competitors: it controls the FDR around

the target level and maintains high power (Appendix Figure B.9). ANCOM-BC and Metagenome-

Seq have large FDR inflation and the inflation seems to increase with a decreasing sample size.

Wilcoxon is much less powerful at small sample sizes and ALDEx2 has virtually no power. Under

the setting S6, where the sequencing depth differs by 10 folds, all methods, except our method

with adaptive zero-handling approach, fail to control the FDR (Appendix Figure B.10). We point

out here that when we implemented ANCOM-BC, we disabled its zero treatment. To further in-

vestigate whether its zero treatment option improves its performance, we also run the procedure

enabling its zero treatment (zero_cut = 0.9, lib_cut = 1000, struc_zero = TRUE), and found the

results were very similar (S6, Appendix Figure B.11).

Finally, we applied LinDA to correlated microbiome data (S7C0), where the competing meth-

ods are not applicable to correlated data. Appendix Figures B.12 and B.13 compare the methods

CLR+LMM+BC (LinDA-LMM), CLR+OLS+BC (LinDA-OLS), CLR+LMM and CLR+OLS for

correlated data. In the setting comparing the pre-treatment and post-treatment samples (S7.1, Ap-

pendix Figure B.12), we could clearly see that ignoring the bias tremendously increases the FDR

level especially under dense signals (LinDA-LMM vs CLR+LMM). In addition, LinDA-LMM is

more powerful than LinDA-OLS due to its ability to exploit the correlation between pre- and post-

treatment samples. Under the replicate sampling setting (S7.2, Appendix Figure B.13), we see that

the LinDA-OLS has significant FDR inflation by treating the replicate samples as independent. In

contrast, LinDA-LMM controls the FDR at the target level.

We summarize the performance comparison in Table 3.2. We can see that LinDA and ANCOM-

BC have overall the best performance among the methods evaluated. However, ANCOM-BC is

computationally more intensive. As shown in Table 3.1, LinDA could be 100-1000 times faster
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Table 3.1: Runtime (in second) comparison under different settings (R version 4.0.3 (2020-10-10);
Platform: x86_64-pc-linux-gnu (64-bit); CPU: E5-2670 v2 @ 2.50GHz; Memory: 67.7 GB). The
result is based on a one time run. The“elapsed" from the R command system.time() was
used.

S0C0 S0C1 S0C2
LinDA ANCOM-BC LinDA ANCOM-BC LinDA ANCOM-BC

m = 500 n = 200 0.454 21.835 0.218 22.057 0.206 64.519
n = 10000 6.844 162.218 4.043 163.552 5.073 216.564

m = 5000 n = 200 1.598 184.972 1.607 162.611 1.615 599.985
n = 10000 28.253 5, 135.393 15.314 5, 157.148 15.494 5, 506.353

Table 3.2: Performance comparison. Three ? represents that the FDR is controlled; two ? repre-
sents that the FDR is slightly inflated; one ? represents large FDR inflation and no ? represents
severe FDR inflation. Three ◦ represents the highest power and no ◦ represents very low or no
power.

LinDA ANCOM-BC ALDEx2 MetagenomeSeq Wilcoxon
S0C0 ? ? ? ◦ ◦◦ ? ? ? ◦ ◦◦ ? ? ?◦ ? ◦ ◦ ? ? ◦◦
S0C1 ? ? ? ◦ ◦◦ ? ? ◦ ◦ ◦ ? ? ?◦ NA ? ◦ ◦◦
S0C2 ? ? ? ◦ ◦◦ ? ? ? ◦ ◦◦ ? ? ? NA ◦◦
S1C0 ? ? ? ◦ ◦◦ ? ? ? ◦ ◦◦ ? ? ?◦ ? ◦ ◦ ? ? ? ◦ ◦
S2C0 ? ? ? ◦ ◦◦ ? ? ? ◦ ◦◦ ? ? ?◦ ? ◦ ◦ ? ? ◦◦
S3C0 ? ? ? ◦ ◦◦ ? ? ◦ ◦ ◦ ? ◦ ◦ ?◦ ? ◦ ◦
S4C0 ? ? ◦ ◦ ◦ ? ? ? ◦ ◦◦ ? ? ?◦ ? ? ? ◦ ◦ ? ? ? ◦ ◦
S5C0 ? ? ? ◦ ◦◦ ? ◦ ◦◦ ? ? ? ◦◦ ? ? ?◦
S6C0 ? ? ◦◦ ◦ ◦ ◦ ? ◦ ◦ ◦ ◦ ◦ ◦

LinDA-LMM LinDA-OLS CLR+LMM CLR+OLS
S7.1C0 ? ? ? ◦ ◦◦ ? ? ? ◦ ◦ ◦ ?◦
S7.2C0 ? ? ? ◦ ◦ ? ◦ ◦◦ ?◦ ◦ ◦ ◦

than ANCOM-BC, making LinDA a highly scalable method.

3.5 Real data applications

3.5.1 Datasets

We applied LinDA and the competing methods to three real datasets with independent samples

from the studies of C. difficile infection (CDI) (Schubert et al., 2014), inflammatory bowel disease

(IBD) (Morgan et al., 2012) and rheumatoid arthritis (RA) (Scher et al., 2013). To demonstrate the

use of LinDA to correlated microbiome samples, we applied LinDA to a dataset from the study

of the smoking effect on the human upper respiratory tract (SMOKE) (Charlson et al., 2010). We
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Table 3.3: Characteristics for four real microbiome datasets. NORA represents new-onset un-
treated rheumatoid arthritis. The second and the third columns list the number of taxa and sample
size of each filtered dataset (prevalence ≥ 10%, library size ≥ 1000).

m n u c
CDI 123 183 CDI/Diarrhea control (94 v.s. 89)
IBD 579 81 Crohn’s disease/Healthy (62 v.s. 19) Antibiotic use (n/y, 48 + 19 v.s. 14 + 0)
RA 438 72 NORA/Healthy (44 v.s. 28)
SMOKE 209 132 Smoke (n/y, 67 v.s. 65) Female/Male (31 + 16 v.s. 36 + 49)

used the microbiome samples from the throat for illustration, where each subject has two samples

from the left and right side of the throat. The CDI and RA datasets were provided by the authors

while the IBD and the SMOKE datasets were downloaded from the Qiita database (Gonzalez

et al., 2018) with the study ID 1460 and 524. All the datasets have binary phenotypes. Antibiotics

use is the confounder for the IBD dataset (p = 0.03 and OR = 0) while sex is the confounder

for the SMOKE dataset (p = 0.02 and OR= 2.26). They will be adjusted in methods that are

capable of covariate adjustment. We excluded samples with less than 1000 read counts, and taxa

which appear in less than 10% samples. The basic characteristics for the four filtered datasets

are summarized in Table 3.3. We compared the detection power as well as their overlap patterns

for LinDA, ANCOM-BC, Aldex2, MetagenomeSeq and Wilcoxon. Specifically, we compared the

number of discoveries at different FDR levels (0.01–0.25) and used Venn diagram to show the

overlap at the target FDR of 0.1. We used winsorization at quantile 0.97 to reduce the impact of

potential outliers as recommended in Chen et al. (2018).

3.5.2 Results

For the CDI dataset, LinDA made the most discoveries at different FDR levels (Figure 3.4).

At 10% FDR, LinDA discovered eight taxa associated with CDI while ANCOM-BC, Aldex2 and

Wilcoxon discovered three and MetagenomeSeq discovered two. As discussed in Schubert et al.

(2014), subjects with CDI were more likely to have the bacterial family Lachnospiraceae and

Erysipelotrichaceae. LinDA found one more taxon belonging to Lachnospiraceae than other meth-

ods. Besides, LinDA and Wilcoxon found one differential taxon belonging to Erysipelotrichaceae
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while the other three methods did not identify any. For the IBD dataset, LinDA detected a similar

number of taxa as ANCOM-BC and more taxa than MetagenomeSeq and Aldex2 at different FDR

levels. Wilcoxon rank sum test detected a large number of taxa associated with the disease status,

but this could be due to the confounding effects of antibiotics use since it could not adjust for co-

variates. From Figure 3.5, we observe that most discoveries by LinDA are shared by ANCOM-BC

or Wilcoxon. For the RA dataset, LinDA detected a similar number of taxa as ANCOM-BC and

more taxa than Wilcoxon, MetegenomeSeq and Aldex2. The differential taxa detected by LinDA

and ANCOM-BC are mostly overlapped. Overall, the results are consistent with the simulation

studies, where LinDA and ANCOM-BC generally performed the best.

Finally, we applied LinDA-LMM to the SMOKE dataset, where each subject has two replicate

samples from the throat. The aim is to identify smoking-associated taxa adjusting for the sex.

To account for the correlation between the replicate samples, we included a subject-level random

intercept in LinDA-LMM. As a comparison, we also applied LinDA-OLS to the right and left

throat samples separately, since LinDA-OLS could not analyze correlated samples. LinDA-OLS

based on the left or right throat samples alone discovered 12 and 15 differential taxa at 10% FDR.

When both left and right samples were used in LinDA-LMM, 21 differential taxa were identified,

covering the majority of the taxa identified based on the left or right throat samples alone (Figure

3.5). In addition, LinDA-LMM detected five taxa, which were missed by analyzing the left or right

samples. Therefore, LinDA-LMM provides a convenient way to analyze correlated microbiome

datasets and enjoys the power improvement by analyzing all samples together.

Our package LinDA provides a function to generate the effect size plot for differential taxa and

volcano plot. Appendix Figures B.15–B.18 display the effect size plots and volcano plots for the

four datasets. At FDR level of 0.1, we observe that, compared to the diarrheal control group, the C.

difficile infection group has two less abundant taxa and six more abundant taxa, while comparing

the Crohn’s disease group with healthy group, and NORA group with healthy group, we find that

most differential taxa are less abundant in the disease group than the healthy group. For SMOKE

dataset, around half differential taxa are less abundant and half are more abundannt in the smkoer
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group compared to the non-smoker group. Therefore, we expect IBD, CDI and RA datasets to have

stronger compositional effects than the SMOKE dataset since the changes are more unbalanced.

Indeed, the effect size plots, where we plot both the debiased and un-debiased coefficients, revealed

larger biases for the IBD, CDI and RA datasets.

3.6 Discussion

Differential abundance analysis is at the core of the statistical analysis of microbiome data.

Microbiome data are compositional in nature and all we know are the relative abundances, mak-

ing the identification of differentially abundant taxa at the ecological site particularly challenging

(Gloor et al., 2017; Tsilimigras and Fodor, 2016). Numerous differential abundance analysis meth-

ods have been proposed focusing on addressing the compositional effects (Robinson et al., 2010;

Love et al., 2014; Chen et al., 2018; Paulson et al., 2013; Sohn et al., 2015; Brill et al., 2020;

Fernandes et al., 2014; Mandal et al., 2015; Lin and Peddada, 2020) through either robust nor-

malization or using ratio approaches. Among all the competing methods, ANCOM-BC is the

state-of-the-art method, it has been demonstrated to be more robust and powerful than the com-

peting methods. However, there are two drawbacks of ANCOM-BC. First, it is computationally

intensive for large-scale microbiome datasets such as the AmericanGut dataset. Due to the huge

inter-subject variation, large-scale microbiome studies have been increasingly popular, resulting in

larger sample sizes. On the other hand, metagenomic sequencing has become increasingly deeper

to have a high resolution view of the microbiome, leading to an unprecedented number of new mi-

crobial features. To meet the analysis need for such large-scale datasets, a computationally efficient

tool is much needed. Secondly, ANCOM-BC is not applicable to correlated/clustered microbiome

datasets such as those from family/longitudinal microbiome studies or studies with paired and re-

peated measurements (Faust et al., 2015; Lewis et al., 2015). Longitudinal microbiome studies,

which enable the study of the trajectory of the microbiome as well as control for potential con-

founders, has been increasingly employed in human microbiome studies. Unfortunately, statistical

tools for longitudinal microbiome studies are scarce. In contrast, LinDA is computationally effi-

cient since it only involves fitting regular linear regression models and could be easily scaled to
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hundreds of thousands of taxa. Moreover, the extension of LinDA to linear mixed effects models

(LMM) is straightforward and we have highly efficient tools such as the R lme4 package (Bates

et al., 2015) for fitting LMM. Therefore, differential abundance analysis of correlated/clustered

microbiome datasets could be easily performed using LinDA. Our framework also gives more in-

sights into the CLR-based approach, which has been widely used in compositional data analysis

(Aitchison, 1986). However, the bias of CLR regression models has not been formally recognized

to our best knowledge. Our framework justifies the use of CLR regression and provides a solution

to correct the bias associated with CLR regression.

In the simulation, we found that Wilcoxon rank sum test on GMPR normalized data performed

fairly well and the power was reasonable in most settings. However, Wilcoxon rank sum test has

limited ability to adjust covariates and it does not provide interpretable effect size estimates. It also

did not perform well when the abundance data followed a gamma distribution (FDR inflation) or

the sample size was small (very low power). When we simulated even stronger compostional effect

by drawing the differential taxa from the top 25% most abundant taxa, we found Wilcoxon rank

sum test began to break down (Appendix Figure B.14). ANCOM-BC was overall robust and pow-

erful but it had inflated type I error at small sample sizes. MetagenomeSeq did not perform well

when the signal was dense and was generally less powerful than ANCOM-BC and LinDA. Inter-

estingly, its FDR control was better when compositional effect was very strong (Appendix Figure

B.14). ALDEx2 was generally the most conservative and less powerful than the other methods.

Type I error inflation was also noted when the abundance data had a gamma distribution. LinDA

was as competitive as ANCOM-BC in most settings. It showed better FDR control than ANCOM-

BC when the sample size was small or the variable of interest was continuous or the absolute

abundances followed gamma distribution. It had slight FDR inflation while ANCOM-BC con-

trolled the FDR when the number of taxa was small. Under strong compostional effect (Appendix

Figure B.14), LinDA showed some FDR inflation but overall achieved the best performance.

When the library size was associated with the variable of interest, all existing methods had

severe type I error inflation. Fortunately, such association is detectable and if we see a significant

53



association, rarefaction should be used for those methods. Although rarefaction controls the effect

of uneven library sizes, it discards a significant portion of the read counts and thus loses a lot of

information in the data. When there are samples with very small sample sizes, the users have to

make a decision as whether to retain more reads or more samples. In LinDA, we implemented a

heuristic imputation method, where the imputed values are proportional to the library sizes. This

procedure makes the imputed data after CLR transformation independent of the library size and

substantially reduces the inflated type I error due to library size confounding.

Our method uses the log linear model, where the coefficients can be interpreted as the log

fold change in response to the one unit change of the covariate. In analysis of biological data,

interpretation is one key factor in selecting relevant tools. As for all model-based approaches,

LinDA has several assumptions. First, LinDA relies on the assumption that there is a mode at 0 for

the regression coefficients (Condition (vi) in Theorem 2). This assumption is easy to be met if the

signal is sparse. In the simulation, we show that when the signal density is around 20%, LinDA is

still very robust. However, when the signal is extremely dense, LinDA could fail. Second, LinDA

assumes a log linear model on the absolute abundance. Although this is a reasonable assumption,

which has been widely adopted in the analysis of abundance data, the interaction between the host

and the microbiome could be more complex than the simple log linear relationship. Analysis of

the residuals from the CLR regression could provide evidence about whether the assumption is

reasonable. If the model assumption is violated, permutation test or transformation of the variables

may be performed. Finally, although LinDA provides asymptotic FDR control, its finite-sample

FDR control is not guaranteed. Based on numerical simulations, we demonstrate that LinDA

performs well under small sample and feature sizes with slight inflation under certain settings.

LinDA uses the relative abundance data and does not model the sampling variability of the read

counts. This could reduce the statistical power especially for those less abundant taxa, whose sam-

pling variability is larger than those abundant taxa. To remedy the power loss, another multinomial

sampling layer could be imposed on top of LinDA. However, the computational complexity will

be increased significantly and breaking the simplicity of LinDA. Another approach is to perform

54



posterior inference of the underlying proportions based on a Bayes approach. Once we obtain the

posterior samples, LinDA can be applied to the posterior samples and results are then aggregated,

similar in the spirit to the multiple imputation method (Carpenter and Kenward, 2012).

Finally, we comment that, besides microbiome data, LinDA could be applied to other sequenc-

ing data such as RNA-Seq data. In fact, there are arguments for treating RNA-Seq data as com-

positional (Quinn et al., 2018). Thus, LinDA could be an alternative for differential expression

analysis if there is strong compositional effect for example, when the highly abundant genes are

differential with the same direction of change.
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4. SUMMARY

Large-scale multiple testing is a fundamental statistical problem in modern biomedical sci-

ences. A powerful multiple testing procedure could tremendously reduce the experimental cost in

the discovery stage. This dissertation has introduced two new multiple testing procedures focusing

on two application areas in bioinformatics.

In Chapter 2, we have discussed a covariate adaptive FWER-controlling procedure, which takes

into account the alternative p-value distribution as well as prior null probabilities simultaneously

to capture as much information from the p-values and covariates as possible. We derive the exact

rate of convergence of the FWER of the proposed method through a novel perturbation-type argu-

ment. Numerical studies show that our procedure controls the FWER in the strong sense and is

more powerful than the competing methods. It maintains the robustness across different settings,

including scenarios of model misspecification and correlated hypotheses. The method is highly

scalable and can be applied to a problem with millions of hypotheses in GWASs.

There are still numbers of open questions in integrating auxiliary data in genomic data anal-

ysis. In our method, we provide a parametric method for incorporating covariates, and a natural

extension is to use more flexible non-parametric models. In addition, we could accommodate

more general structural information such as the phylogenetic tree structure, group structure, order

structure for improving the statistical power.

In Chapter 3, we have presented a new differential abundance analysis method, named LinDA,

as a short for “linear models for differential abundance analysis”, which is surprisingly simple and

only needs to fit regular linear models and linear mixed effects models for independent and cor-

related microbiome data, respectively. With our method, analysis of compositional data becomes

straightforward and highly interpretable. Analysis of independent and correlated microbiome data

are unified in a single framework. Moreover, it is 100-1000 faster than the state-of-the-art method.

We also rigorously prove the asymptotical FDR control of the proposed method, making it the first

method that enjoys theoretical guarantee under some mild assumptions in differential abundance
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analysis. We conduct comprehensive simulations and real data applications to show that LinDA is

powerful, robust, flexible and scalable.

Continuing this work, we plan to further develop statistical tools for microbiome data focusing

on imputation for zeros that are widely existing in count tables. Zeros are problematic for micro-

biome data analysis since log transformation is usually applied for taxa abundance data. We shall

propose a Bayesian approach to infer the underlying true composition, upon which LinDA could

be performed.
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APPENDIX A

APPENDIX FOR CHAPTER 2

The appendix is organized as follows. In Section A.1, we provide more technical details for

Example 1. Section A.2 presents Lemmas 1–2 and their proofs that are useful in the proof of

Proposition 2. Section A.3 presents the proofs of Propositions 1–2. In Section A.4, we provide

other intermediate results for the proof of Theorem 1 together with their proofs. In Section A.5, we

prove Theorem 1. Sections A.6 and A.7 present the additional simulation results and the numbers

of rejections before clumping mentioned in Section 2.5 of the main text, respectively.

A.1 More about Example 1

Suppose all hypotheses are true nulls and (xi, pi) are i.i.d.with xi being 1-dimensional, xi |= pi

and pi ∼ Unif([0, 1]). Then

L(β) = E{Pml(β)} = E {l(β; zi)}

=E
[
(1− γ) log

{
1− γ + (γ − γk) e−xiβ

1 + e−xiβ

}
+ γ log

{
γ − (γ − γk) e−xiβ

1 + e−xiβ

}]

and L′(β) = (γ − γk)2E {g(xi; β)}, where

g(x; β) =
xe−xβ

(1 + e−xβ)2

e−xβ

1+e−xβ{
1− γ + (γ − γk) e−xβ

1+e−xβ

}{
γ − (γ − γk) e−xβ

1+e−xβ

} .
We observe that γ − γk < 0,

1− γk <1− γ + (γ − γk) e−xβ

1 + e−xβ
< 1− γ,

γ <γ − (γ − γk) e−xβ

1 + e−xβ
< γk,

(A.1)
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and

g(x; β) + g(−x; β) =
xe−xβ

(1 + e−xβ)2

e−xβ

1+e−xβ{
1− γ + (γ − γk) e−xβ

1+e−xβ

}{
γ − (γ − γk) e−xβ

1+e−xβ

}
− xexβ

(1 + exβ)2

exβ

1+exβ{
1− γ + (γ − γk) exβ

1+exβ

}{
γ − (γ − γk) exβ

1+exβ

}
=

xexβ

(1 + exβ)2

[
1

1+exβ{
1− γ + (γ − γk) 1

1+exβ

}{
γ − (γ − γk) 1

1+exβ

}
−

exβ

1+exβ{
1− γ + (γ − γk) exβ

1+exβ

}{
γ − (γ − γk) exβ

1+exβ

}]

=
xexβ

(1 + exβ)2

[
exβ

1+exβ{
1− γ + (γ − γk) 1

1+exβ

}{
γexβ − (γ − γk) exβ

1+exβ

}
−

exβ

1+exβ{
1− γ + (γ − γk) exβ

1+exβ

}{
γ − (γ − γk) exβ

1+exβ

}].
Thus if β = 0 then g(x; β) + g(−x; β) = 0, if β > 0 then g(x; β) + g(−x; β) < 0 (as long as

x 6= 0), and if β < 0 then g(x; β) + g(−x; β) > 0 (as long as x 6= 0). Note also that g(0; β) = 0

and g(x; β) + g(−x; β) = −{g(x;−β) + g(−x;−β)}. Therefore, if xi follows a distribution that

is symmetric about zero and P(xi 6= 0) > 0, then we have

L′(β) =(γ − γk)2E{g(xi; β)I(xi > 0) + g(xi; β)I(xi ≤ 0)}

=(γ − γk)2E{g(xi; β)I(xi > 0) + g(−xi; β)I(xi > 0)}

=(γ − γk)2E[{g(xi; β) + g(−xi; β)}I(xi > 0)]
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and hence L′(β) = −L′(−β), and L′(β) = 0 if β = 0, L′(β) > 0 if β < 0 and L′(β) < 0 if β > 0.

Thus β∗ = 0. Let h(x; β) = e−xβ/(1 + e−xβ) and h′(x; β) = −xe−xβ/(1 + e−xβ)2. Then

g(x; β) =
x {h(x; β)}3 exβ

{1− γ + (γ − γk)h(x; β)} {γ − (γ − γk)h(x; β)}
,

g′(x; β)

=

[
3x {h(x; β)}2 h′(x; β)exβ + x2 {h(x; β)}3 exβ

] {
1− γ + (γ − γk)h(x; β)

}{
γ − (γ − γk)h(x; β)

}
{1− γ + (γ − γk)h(x; β)}2 {γ − (γ − γk)h(x; β)}2

−
x {h(x; β)}3 exβ

[
(γ − γk)h′(x; β)

{
2γ − 1− 2(γ − γk)h(x; β)

}]
{1− γ + (γ − γk)h(x; β)}2 {γ − (γ − γk)h(x; β)}2 ,

and

g′(x; 0) =
−x2

16

{
1− γ + (γ − γk)/2

}{
γ − (γ − γk)/2

}
+ x2

32
(γ − γk)(γ + γk − 1)

{1− γ + (γ − γk)/2}2 {γ − (γ − γk)/2}2

=− x2

32
u(γ, k),

where

u(γ, k) =
2
{

1− γ + (γ − γk)/2
}{

γ − (γ − γk)/2
}
− (γ − γk)(γ + γk − 1)

{1− γ + (γ − γk)/2}2 {γ − (γ − γk)/2}2 .

We study u(γ, k) numerically. Let γ range from 0.05 to 0.95. Then the values of min{u(γ, k); k ∈

[0, 1]} are shown in Figure A.1. We point out that the left most point in Figure A.1 is min{u(0.05, k) :

k ∈ [0, 1]} = u(0.05, 0.23) = 4.94. Therefore

L′′(0) =
d

dβ
(γ − γk)2E{g(xi, β)}

∣∣∣
β=0

= −(γ − γk)2u(γ, k)

32
E(x2

i ) ≤ −c

as long as E(x2
i ) > c′ for some c′ > 0. Next, we illustrate the behavior of L′(β) by considering

four cases: (i) xi ∼ N(0, 1); (ii) xi ∼ Gamma(1, 0.5), i.e., Gamma distribution with shape 1

and rate 0.5; (iii) xi = wi − median(w1, ..., wm), where wi ∼ Gamma(1, 0.5); (iv) xi = wi −

median(w1, ..., wm), where wi ∼ Pois(2), i.e., Poisson distribution with parameter 2. Let γ = 0.5,
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Figure A.1: Values of min{u(γ, k); k ∈ [0, 1]} with γ ranging from 0.05 to 0.95.

k = 0.25. When xi follows the standard normal distribution which is symmetric about zero, the

behavior of L′(β) as observed in (i) of Figure A.2 is consistent with our theory. As illustrated by

(ii) of Figure A.2, Condition (v) is violated if P(X ≥ 0) = 1 (or P(X ≤ 0) = 1). Nevertheless,

we can resolve this issue by simply subtracting the observations by the sample median. As we

can see from (iii)–(iv) of Figure A.2, the pattern of the curve of L′(β) is similar to that of the

standard normal distribution. In addition, by standardizing the observations, we can obtain the

similar curves as (iii)–(iv) of Figure A.2.

A.2 Intermediate results for Proposition 2

Lemma 1. Assume that sup1≤i≤m E(‖xi‖2) <∞. Then under Assumptions 2 and 3, we have

sup
β∈B
|Pml(β)− L(β)| → 0, in probability.
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Figure A.2: Curves of L′(β) with γ = 0.5 and k = 0.25 under four different cases. (i) xi ∼
N(0, 1); (ii) xi ∼ Gamma(shape = 1, rate = 0.5); (iii) xi = wi − median(w1, ..., wm), where
wi ∼ Gamma(shape = 1, rate = 0.5); (iv) xi = wi −median(w1, ..., wm), where wi ∼ Pois(2).

Proof. Note that

l{β; (x, 1)} = log
[
(1 + e−x

Tβ)−1(1− γ) +
{

1− (1 + ex
Tβ)−1

}
(1− γk)

]
,

l{β; (x, 0)} = log
[
(1 + e−x

Tβ)−1γ +
{

1− (1 + ex
Tβ)−1

}
γk
]
.

Thus l(β; z) is bounded uniformly over β and z according to (A.1), that is, L1 ≤ l(β; z) ≤ L2,

where L1 = log(1− γk) ∧ log(γ) and L2 = log(1− γ) ∨ log(γk). Note also that for 0 < γ < 1,

‖∇l{β; (x, 1)}‖ =

∥∥∥∥∥ (γk − γ)(1 + e−x
Tβ)−2e−x

Tβx

(γk − γ)(1 + e−xTβ)−1 + (1− γk)

∥∥∥∥∥ ≤ γk − γ
1− γk

‖x‖,

‖∇l{β; (x, 0)}‖ =

∥∥∥∥∥(γ − γk)(1 + e−x
Tβ)−2e−x

Tβx

(γ − γk)(1 + e−xTβ)−1 + γk

∥∥∥∥∥ ≤ γk − γ
γ
‖x‖.
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Thus for any β1, β2 ∈ B, we have

|l(β1; z)− l(β2; z)| ≤ c‖x‖‖β1 − β2‖,

which implies that l(β; z) is c‖x‖-Lipschitz continuous in β. Let {βn}Nn=1 be an ε/(2c) covering

of B, that is, for any β ∈ B, there exists n, such that ‖β − βn‖ ≤ ε/(2c). Then for i = 1, ...,m, we

have

|l(β; zi)− l(βn; zi)| ≤ c‖xi‖‖β − βn‖ ≤
ε

2
‖xi‖,

and hence

l(βn; zi)−
ε

2
‖xi‖ ≤ l(β; zi) ≤ l(βn; zi) +

ε

2
‖xi‖,

and

Pml(β)− E {Pml(β)} ≤Pml(βn) +
ε

2m

m∑
i=1

‖xi‖ −

[
E {Pml(βn)} − ε

2m

m∑
i=1

E (‖xi‖)

]

=Pml(βn)− E {Pml(βn)}+
ε

2m

m∑
i=1

{‖xi‖+ E (‖xi‖)} ,

E [Pml(β)]− Pml(β) ≤E {Pml(βn)}+
ε

2m

m∑
i=1

E(‖xi‖)−

(
Pml(βn)− ε

2m

m∑
i=1

‖xi‖

)

=E {Pml(βn)} − Pml(βn) +
ε

2m

m∑
i=1

{‖xi‖+ E (‖xi‖)} .
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Then we have

sup
β∈B
|Pml(β)− E {Pml(β)}|

≤ max
1≤n≤N

|Pml(βn)− E {Pml(βn)}|+ ε

2m

m∑
i=1

{‖xi‖+ E (‖xi‖)}

= max
1≤n≤N

|Pml(βn)− E {Pml(βn)}|+ ε

2m

m∑
i=1

{‖xi‖ − E (‖xi‖)}+
ε

m

m∑
i=1

E (‖xi‖) = oP(1) +O(ε),

where we have used the fact that l(β; z) is bounded, Assumption 2 (which ensures that xi’s are

independent), the assumption that sup1≤i≤m E(‖xi‖2) < ∞ and the Chebyshev’s inequality. As ε

can be arbitrarily small, under Assumption 3, we have

sup
β∈B
|Pml(β)− L(β)| ≤ sup

β∈B
|Pml(β)− E {Pml(β)} |+ sup

β∈B
|E {Pml(β)} − L(β)| = oP(1).

Lemma 2. Under Assumptions 2–4 and the assumption that sup1≤i≤m E(‖xi‖2) < ∞, we have

β̂ → β∗ in probability. Moreover, for a = 0, 1,

sup
1≤j≤m

∣∣∣β̂(pj→a)− β∗
∣∣∣→ 0, in probability.

Proof. By Assumptions 3 and 4, for every ε > 0, we know that there exists a δ > 0 such that

L(β) < L(β∗)− δ for ‖β − β∗‖ > ε. Therefore

P
(
‖β̂ − β∗‖ > ε

)
≤ P

{
L(β∗)− L(β̂) > δ

}
.

To prove β̂ → β∗ in probability, it suffices to show that L(β∗) − L(β̂) = oP(1). To this end, we
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note that L(β∗) ≥ L(β̂) and

L(β∗)− L(β̂) = L(β∗)− Pml(β∗) + Pml(β∗)− Pml(β̂) + Pml(β̂)− L(β̂)

≤ L(β∗)− Pml(β∗) + sup
β∈B
|Pml(β)− L(β)| = oP(1),

where the inequality follows from the fact that β̂ is the maximizer of Pml(β) and hence Pml(β∗)−

Pml(β̂) ≤ 0 and the last equality follows from Lemma 1. To prove the uniform convergence of

β̂(pj→a), let

Pj→am l(β) =
1

m

∑
i 6=j

l(β; zi) +
1

m
l{β; (xj, a)} = Pml(β) +

1

m
[l{β; (xj, a)} − l(β; zj)] ,

and L = L2 − L1 with L1 and L2 defined in the proof of Lemma 1. We have

sup
1≤j≤m

sup
β∈B

∣∣Pj→am l(β)− Pml(β)
∣∣ ≤ L

m
.

Note that

P
{

sup
1≤j≤m

∣∣∣β̂(pj→a)− β∗
∣∣∣ > ε

}
≤P
[

inf
1≤j≤m

L{β̂(pj→a)} < L(β∗)− δ
]

=P
(

sup
1≤j≤m

[
L(β∗)− L{β̂(pj→a)}

]
> δ

)
.

Then we only need to prove that sup1≤j≤m[L(β∗)−L{β̂(pj→a)}] = oP(1). The proof is completed
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by noting that sup1≤j≤m[L(β∗)− L{β̂(pj→a)}] ≥ 0 and

sup
1≤j≤m

[
L(β∗)− L{β̂(pj→a)}

]
= sup

1≤j≤m

[
L(β∗)− Pml(β∗) + Pml(β∗)− Pj→am l(β∗) + Pj→am l(β∗)− Pj→am l{β̂(pj→a)}

+ Pj→am l{β̂(pj→a)} − Pml{β̂(pj→a)}+ Pml{β̂(pj→a)} − L{β̂(pj→a)}
]

≤L(β∗)− Pml(β∗) +
2L

m
+ sup

β∈B
|Pml(β)− L(β)| = oP(1),

where we have used the fact that β̂(pj→a) is the maximizer of Pj→am l(β) and hence

sup1≤j≤m[Pj→am l(β∗)− Pj→am l{β̂(pj→a)}] ≤ 0 and the result from Lemma 1.

A.3 Proofs of Propositions 1 and 2

Proof of Proposition 1. We recall some notations defined in the main text and give some new defi-

nitions. Let pj→a = (p1, . . . , pj−1, a, pj+1, . . . , pm) ∈ Rm for a = 0, 1, and p−j = (p1, ..., pj−1, pj+1,

..., pm) ∈ Rm−1. We define β̂(pj→a), π̂(xi; pj→a), τ̃(pj→a), τ̂(pj→a) and t̂i(pj→a) by setting the jth

p-value to be equal to a when estimating the corresponding quantities. First, we prove the first

inequality. Observe that

FWER ≤
∑
j∈M0

P
(
pj ≤ t̂j ∧ γ

)
≤
∑
j∈M0

E
{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j

}
+

m∑
i=1

E
{
I(pi > γ)

1− γ
t̂i

}
≤
∑
j∈M0

E
{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j

}
+ α,

where we have used the fact that
∑m

i=1 I(pi > γ)t̂i/(1− γ) ≤ α. Denote by E0 and P0 the expec-

tation and probability under the null. If {pi} ∈ M0 are mutually independent and are independent
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with the non-null p-values, then under Assumption 1, we have

E0

{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j | p−j

}
=E0

{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j | p−j, pj > γ

}
P0(pj > γ)

+ E0

{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j | p−j, pj ≤ γ

}
P0(pj ≤ γ)

=

{
0− 1

1− γ
t̂j(pj→1)

}
{1− F0j(γ)}+

[
F0j{t̂j(pj→0) ∧ γ}

F0j(γ)
− 0

]
F0j(γ)

=F0j{t̂j(pj→0) ∧ γ} − 1− F0j(γ)

1− γ
t̂j(pj→1)

≤t̂j(pj→0) ∧ γ − t̂j(pj→1) ≤ t̂j(pj→0)− t̂j(pj→1),

where the first inequality is due to the assumption that F0j(t) ≤ t. Thus, we have

FWER ≤
∑
j∈M0

E
[
E0

{
I
(
pj ≤ t̂j ∧ γ

)
− I(pj > γ)

1− γ
t̂j | p−j

}]
+ α ≤ Jm + α,

where

Jm =
m∑
j=1

E
{∣∣t̂j(pj→0)− t̂j(pj→1)

∣∣} .
For the second inequality, note that

∣∣∣∣ t̂j(pj→0)− t̂j(pj→1)

k1/(1−k)

∣∣∣∣ =

∣∣∣∣∣
{

1− π̂(xj; pj→0)

π̂(xj; pj→0)τ̂(pj→0)

}1/(1−k)

−
{

1− π̂(xj; pj→1)

π̂(xj; pj→1)τ̂(pj→1)

}1/(1−k)
∣∣∣∣∣

≤

∣∣∣∣∣
{

1− π̂(xj; pj→0)

π̂(xj; pj→0)τ̂(pj→0)

}1/(1−k)

−
{

1− π̂(xj; pj→1)

π̂(xj; pj→1)τ̂(pj→0)

}1/(1−k)
∣∣∣∣∣

+

∣∣∣∣∣
{

1− π̂(xj; pj→1)

π̂(xj; pj→1)τ̂(pj→0)

}1/(1−k)

−
{

1− π̂(xj; pj→1)

π̂(xj; pj→1)τ̂(pj→1)

}1/(1−k)
∣∣∣∣∣

≤c|π̂(xj; pj→0)− π̂(xj; pj→1)|
τ̂(pj→0)1/(1−k)

+ c

∣∣∣∣ 1

τ̂(pj→0)1/(1−k)
− 1

τ̂(pj→1)1/(1−k)

∣∣∣∣ ,
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where the last inequality follows by using the mean-value theorem for the function f(x) = (1/x−

1)1/(1−k) and the fact that π̂ is bounded from below by ε1. Thus we have

Jm ≤ c(Im,1 + Im,2),

where

Im,1 = E

{
m∑
j=1

|π̂(xj; pj→0)− π̂(xj; pj→1)|
τ̂(pj→0)1/(1−k)

}
,

Im,2 = E

{
m∑
j=1

∣∣∣∣ 1

τ̂(pj→0)1/(1−k)
− 1

τ̂(pj→1)1/(1−k)

∣∣∣∣
}
.

Next we derive upper bounds for Im,1 and Im,2. To deal with Im,1, we note that for any 1 ≤ i, j ≤

m,

|π̂(xi; pj→0)− π̂(xi; pj→1)| =
∣∣∣∣{ 1

1 + e−x
T
i β̂(pj→0)

∨ ε1

}
∧ ε2 −

{
1

1 + e−x
T
i β̂(pj→1)

∨ ε1

}
∧ ε2

∣∣∣∣
≤
∣∣∣∣ 1

1 + e−x
T
i β̂(pj→0)

− 1

1 + e−x
T
i β̂(pj→1)

∣∣∣∣
≤ |xT

i {β̂(pj→0)− β̂(pj→1)}|,

where the first inequality is due to the Lipschitz continuity of the function f(x) = (x∨ε1)∧ε2, and

the last inequality follows from an application of the mean-value theorem to the function f(x) =

(1 + e−x)−1. For the ease of notation, set b̂(xi) = [{1− π̂(xi)}/π̂(xi)]
1/(1−k). As ε1 ≤ π̂ ≤ ε2, we

have b1 ≤ b̂ ≤ b2 for some constants b1 and b2 with 0 < b1 ≤ b2. It is straightforward to see that

|π̂(xj; pj→0)− π̂(xj; pj→1)|
τ̂(pj→0)1/(1−k)

≤
|xT
j {β̂(pj→0)− β̂(pj→1)}|{

k1/(1−k)(1− γ)−1α−1
∑

i 6=j I(pi > γ)b̂(xi; pj→0)
}
∨ ε1/(1−k)

≤
|xT
j {β̂(pj→0)− β̂(pj→1)}|{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

,
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For Im,2, we notice that

∣∣∣∣ 1

τ̂(pj→0)1/(1−k)
− 1

τ̂(pj→1)1/(1−k)

∣∣∣∣ ≤
∣∣τ̃(pj→1)1/(1−k) − τ̃(pj→0)1/(1−k)

∣∣
{τ̃(pj→0)1/(1−k) ∨ ε1/(1−k)} {τ̃(pj→1)1/(1−k) ∨ ε1/(1−k)}

=
k1/(1−k)(1− γ)−1α−1

∣∣∣∑i 6=j I(pi > γ){b̂(xi; pj→1)− b̂(xi; pj→0)}+ b̂(xj; pj→1)
∣∣∣

{τ̃(pj→0)1/(1−k) ∨ ε1/(1−k)} {τ̃(pj→1)1/(1−k) ∨ ε1/(1−k)}

≤
cα−1

∑
i 6=j I(pi > γ)|xT

i {β̂(pj→0)− β̂(pj→1)}|+ cα−1[{
cα−1

∑
i 6=j I(pi > γ)

}
∨ ε1/(1−k)

]2 ,

where we used the fact that |b̂(xi; pj→1)− b̂(xi; pj→0)| ≤ c|xT
i {β̂(pj→0)− β̂(pj→1)}| which follows

from the mean-value theorem. Summarizing the above results, we have

Jm ≤ c(Im,1 + Im,2) ≤ c(Jm,1 + Jm,2),

where

Jm,1 =
m∑
j=1

E

 |xT
j {β̂(pj→0)− β̂(pj→1)}|{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

 ,
Jm,2 =

m∑
j=1

E

α−1
∑

i 6=j I(pi > γ)|xT
i {β̂(pj→0)− β̂(pj→1)}|+ α−1[{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

]2

 .

Proof of Proposition 2. We divide the proof into four steps. (i) Calculate the difference between

the two estimating equations (EE) associated with β̂(pj→1) and β̂(pj→0); (ii) Perform Taylor ex-

pansions to extract the leading terms in the EEs; (iii) Deduce an expansion for β̂(pj→0)− β̂(pj→1)

based on the results in steps (i)–(ii); (iv) Derive the order of the remainder terms involved in the

expansion of β̂(pj→0)− β̂(pj→1).
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(i) Recall that we have defined the quasi log-likelihood function

m∑
i=1

log
[
π(xi)(1− γ)yiγ1−yi + {1− π(xi)}(1− γk)yiγk(1−yi)

]
, π(xi) = (1 + e−x

T
i β)−1.

For the purpose of analysis, we use the following notation and expression instead,

m∑
i=1

log
[
qi(β)(1− γ)yiγ1−yi + {1− qi(β)}(1− γk)yiγk(1−yi)

]
, qi(β) = (1 + e−x

T
i β)−1.

The quasi-MLE β̂ satisfies the estimating equation

m∑
i=1

{
(1− γ)yiγ1−yi − (1− γk)yiγk(1−yi)

}
∇qi(β̂)

qi(β̂)(1− γ)yiγ1−yi + {1− qi(β̂)}(1− γk)yiγk(1−yi)
= 0,

where ∇qi(β) = xie
xTi β/(1 + ex

T
i β)2. Taking the difference between the estimating equations

associated with β̂(pj→1) and β̂(pj→0), we obtain

∑
i 6=j

{
(1− γ)yiγ1−yi − (1− γk)yiγk(1−yi)

}
∇qi{β̂(pj→1)}

qi{β̂(pj→1)}(1− γ)yiγ1−yi + [1− qi{β̂(pj→1)}](1− γk)yiγk(1−yi)

−
∑
i 6=j

{
(1− γ)yiγ1−yi − (1− γk)yiγk(1−yi)

}
∇qi{β̂(pj→0)}

qi{β̂(pj→0)}(1− γ)yiγ1−yi + [1− qi{β̂(pj→0)}](1− γk)yiγk(1−yi)

+
(γk − γ)∇qj{β̂(pj→1)}

qj{β̂(pj→1)}(1− γ) + [1− qj{β̂(pj→1)}](1− γk)
− (γ − γk)∇qj{β̂(pj→0)}
qj{β̂(pj→0)}γ + [1− qj{β̂(pj→0)}]γk

= 0.

For the ease of notation, let b0i = (1− γ)yiγ1−yi and b1i = (1− γk)yiγk(1−yi). Further define

Qi{β̂(pj→a)} = qi{β̂(pj→a)}b0i + [1− qi{β̂(pj→a)}]b1i, for a = 0, 1 and i 6= j,

Qj0{β̂(pj→0)} = qj{β̂(pj→0)}γ + [1− qj{β̂(pj→0)}]γk,

Qj1{β̂(pj→1)} = qj{β̂(pj→1)}(1− γ) + [1− qj{β̂(pj→1)}](1− γk).
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Then the above equation can be expressed as

∑
i 6=j

(b0i − b1i)
[
∇qi{β̂(pj→1)}Qi{β̂(pj→0)} − ∇qi{β̂(pj→0)}Qi{β̂(pj→1)}

]
Qi{β̂(pj→1)}Qi{β̂(pj→0)}

+

(γk − γ)
∇qj{β̂(pj→1)}Qj0{β̂(pj→0)}+∇qj{β̂(pj→0)}Qj1{β̂(pj→1)}

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}
= 0.

(A.2)

(ii) We analyze the two terms in (A.2). For the first term, we observe that

∇qi{β̂(pj→1)}Qi{β̂(pj→0)} − ∇qi{β̂(pj→0)}Qi{β̂(pj→1)}

=∇qi{β̂(pj→1)}Qi{β̂(pj→0)} − ∇qi{β̂(pj→1)}Qi{β̂(pj→1)}+∇qi{β̂(pj→1)}Qi{β̂(pj→1)}

− ∇qi{β̂(pj→0)}Qi{β̂(pj→1)}

=∇qi{β̂(pj→1)}
[
Qi{β̂(pj→0)} −Qi{β̂(pj→1)}

]
−Qi{β̂(pj→1)}

[
∇qi{β̂(pj→0)} − ∇qi{β̂(pj→1)}

]
.

By the Taylor expansion, we have

∇qi{β̂(pj→1)} = ∇qi(β∗) +∇2qi(β̃1){β̂(pj→1)− β∗},

Qi{β̂(pj→0)} −Qi{β̂(pj→1)} = (b0i − b1i)
[
qi{β̂(pj→0)} − qi{β̂(pj→1)}

]
=(b0i − b1i)

[
∇qi(β∗)T +

{
∇qi(β̃2)−∇qi(β∗)

}T]
{β̂(pj→0)− β̂(pj→1)}

=(b0i − b1i)
{
∇qi(β∗)T + (β̃2 − β∗)T∇2qi(β̃3)T

}
{β̂(pj→0)− β̂(pj→1)},

where∇2qi(β) = xix
T
i e

xTi β(1−exTi β)/(1+ex
T
i β)3, and β̃1, β̃2 and β̃3 are the corresponding interme-

diate values in the mean value theorem, which may vary with i and j. We suppress the dependence

on i and j for notational simplicity. Note that the mean value theorem does not generally hold for

vector-valued function. Here we are applying the mean value theorem to the scalar-valued function
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ex
T
i β/(1 + ex

T
i β)2. Using similar technique, we have

Qi{β̂(pj→1)} = (b0i − b1i)qi{β̂(pj→1)}+ b1i

=(b0i − b1i)qi(β
∗) + b1i + (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}

=Qi(β
∗) + (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}.

Let φi(β) = ex
T
i β(1 − exTi β)/(1 + ex

T
i β)3. Then ∇2qi(β) = φi(β)xix

T
i and ∇φi(β) = xie

xTi β(1 −

4ex
T
i β + e2xTi β)(1 + ex

T
i β)4. Again by the mean value theorem, we have

∇qi{β̂(pj→0)} − ∇qi{β̂(pj→1)}

=
[
∇2qi(β

∗) +
{
∇2qi(β̄2)−∇2qi(β

∗)
}]
{β̂(pj→0)− β̂(pj→1)}

=
[
∇2qi(β

∗) +
{
φi(β̄2)− φi(β∗)

}
xix

T

i

]
{β̂(pj→0)− β̂(pj→1)}

=
{
∇2qi(β

∗) +∇φi(β̄3)T(β̄2 − β∗)xixT

i

}
{β̂(pj→0)− β̂(pj→1)},

where β̄1, β̄2 and β̄3 are the corresponding intermediate values and dependent on i and j. Using

the above expansions, we deduce that

∇qi{β̂(pj→1)}
[
Qi{β̂(pj→0)} −Qi{β̂(pj→1)}

]
=(b0i − b1i)

[
∇qi(β∗) +∇2qi(β̃1){β̂(pj→1)− β∗}

]{
∇qi(β∗)T + (β̃2 − β∗)T∇2qi(β̃3)T

}
{β̂(pj→0)− β̂(pj→1)}

=(b0i − b1i)∇qi(β∗)∇qi(β∗)T{β̂(pj→0)− β̂(pj→1)}

+ (b0i − b1i)

[
∇qi(β∗)(β̃2 − β∗)T∇2qi(β̃3)T +∇2qi(β̃1){β̂(pj→1)− β∗}{
∇qi(β∗)T + (β̃2 − β∗)T∇2qi(β̃3)T

}]
{β̂(pj→0)− β̂(pj→1)}

=(b0i − b1i)∇qi(β∗)∇qi(β∗)T{β̂(pj→0)− β̂(pj→1)}+R
(1)
ij {β̂(pj→0)− β̂(pj→1)},
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and

Qi{β̂(pj→1)}
[
∇qi{β̂(pj→0)} − ∇qi{β̂(pj→1)}

]
=
[
Qi(β

∗) + (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}
] {
∇2qi(β

∗) +∇φi(β̄3)T(β̄2 − β∗)xixT

i

}
{β̂(pj→0)− β̂(pj→1)}

=Qi(β
∗)∇2qi(β

∗){β̂(pj→0)− β̂(pj→1)}

+

[
Qi(β

∗)∇φi(β̄3)T(β̄2 − β∗)xixT

i + (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}

{
∇2qi(β

∗) +∇φi(β̄3)T(β̄2 − β∗)xixT

i

}]
{β̂(pj→0)− β̂(pj→1)}

=Qi(β
∗)∇2qi(β

∗){β̂(pj→0)− β̂(pj→1)}+R
(2)
ij {β̂(pj→0)− β̂(pj→1)},

where

R
(1)
ij =(b0i − b1i)

[
∇qi(β∗)(β̃2 − β∗)T∇2qi(β̃3)T

+∇2qi(β̃1){β̂(pj→1)− β∗}
{
∇qi(β∗)T + (β̃2 − β∗)T∇2qi(β̃3)T

}]
,

R
(2)
ij =Qi(β

∗)∇φi(β̄3)T(β̄2 − β∗)xixT

i

+ (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}
{
∇2qi(β

∗) +∇φi(β̄3)T(β̄2 − β∗)xixT

i

}
.

To deal with the second term of (A.2), we observe that

∇qj{β̂(pj→1)}Qj0{β̂(pj→0)}

=
[
∇qj(β∗) +∇2qj(β̌1){β̂(pj→1)− β∗}

] [
Qj0(β∗) + (γ − γk)∇qj(β̌2)T{β̂(pj→0)− β∗}

]
=∇qj(β∗)Qj0(β∗) + (γ − γk)∇qj(β∗)∇qj(β̌2)T{β̂(pj→0)− β∗}

+∇2qj(β̌1){β̂(pj→1)− β∗}
[
Qj0(β∗) + (γ − γk)∇qj(β̌2)T{β̂(pj→0)− β∗}

]
=∇qj(β∗)Qj0(β∗) +R

(3)
j ,
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and

∇qj{β̂(pj→0)}Qj1{β̂(pj→1)}

=
[
∇qj(β∗) +∇2qj(β̌3){β̂(pj→0)− β∗}

] [
Qj1(β∗) + (γk − γ)∇qj(β̌4)T{β̂(pj→1)− β∗}

]
=∇qj(β∗)Qj1(β∗) + (γk − γ)∇qj(β∗)∇qj(β̌4)T{β̂(pj→1)− β∗}

+∇2qj(β̌3){β̂(pj→0)− β∗}
[
Qj1(β∗) + (γk − γ)∇qj(β̌4)T{β̂(pj→1)− β∗}

]
=∇qj(β∗)Qj1(β∗) +R

(4)
j ,

where

R
(3)
j =(γ − γk)∇qj(β∗)∇qj(β̌2)T{β̂(pj→0)− β∗}

+∇2qj(β̌1){β̂(pj→1)− β∗}
[
Qj0(β∗) + (γ − γk)∇qj(β̌2)T{β̂(pj→0)− β∗}

]
,

R
(4)
j =(γk − γ)∇qj(β∗)∇qj(β̌4)T{β̂(pj→1)− β∗}

+∇2qj(β̌3){β̂(pj→0)− β∗}
[
Qj1(β∗) + (γk − γ)∇qj(β̌4)T{β̂(pj→1)− β∗}

]
,

and β̌1, β̌2, β̌3, β̌4 are the corresponding intermediate values in the mean value theorem which vary

with i and j.

(iii) Let v⊗2 = vvT for a vector v. Plugging the equations we obtain in step (ii) into (A.2), we

get

∑
i 6=j

(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)} {β̂(pj→0)− β̂(pj→1)}
Qi{β̂(pj→1)}Qi{β̂(pj→0)}

+
∑
i 6=j

(b0i − b1i)(R
(1)
ij −R

(2)
ij ){β̂(pj→0)− β̂(pj→1)}

Qi{β̂(pj→1)}Qi{β̂(pj→0)}

+ (γk − γ)
∇qj(β∗)Qj0(β∗) +∇qj(β∗)Qj1(β∗)

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}
+ (γk − γ)

R
(3)
j +R

(4)
j

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}
= 0.

(A.3)
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Let

Sj =
∑
i 6=j

(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)}
Qi{β̂(pj→1)}Qi{β̂(pj→0)}

,

S̃j =
∑
i 6=j

(b0i − b1i)(R
(1)
ij −R

(2)
ij )

Qi{β̂(pj→1)}Qi{β̂(pj→0)}
,

Uj = (γk − γ)
∇qj(β∗)Qj0(β∗) +∇qj(β∗)Qj1(β∗)

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}
,

Ũj = (γk − γ)
R

(3)
j +R

(4)
j

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}
.

Then (A.3) can be written compactly as

(Sj + S̃j){β̂(pj→0)− β̂(pj→1)}+ Uj + Ũj = 0.

Further define

S∗j =
∑
i 6=j

(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)}
Qi(β∗)2

,

U∗j = (γk − γ)
∇qj(β∗)Qj0(β∗) +∇qj(β∗)Qj1(β∗)

Qj1(β∗)Qj0(β∗)
.

Note that

Qi{β̂(pj→1)} = Qi(β
∗) + (b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗},

Qi{β̂(pj→0)} = Qi(β
∗) + (b0i − b1i)∇qi(β̄0)T{β̂(pj→0)− β∗},

Qj1{β̂(pj→1)} = Qj1(β∗) + (γk − γ)∇qj(β̌4)T{β̂(pj→1)− β∗},

Qj0{β̂(pj→0)} = Qj0(β∗) + (γ − γk)∇qj(β̌2)T{β̂(pj→0)− β∗},

where β̄0 is the corresponding intermediate value that depends on i and j, and β̄1, β̌4, β̌2 have been
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defined before. Thus we obtain

R
(5)
ij :=Qi(β

∗)2 −Qi{β̂(pj→1)}Qi{β̂(pj→0)}

=−Qi(β
∗)(b0i − b1i)∇qi(β̄0)T{β̂(pj→0)− β∗} −Qi(β

∗)(b0i − b1i)∇qi(β̄1)T{β̂(pj→1)− β∗}

− (b0i − b1i)
2∇qi(β̄1)T{β̂(pj→1)− β∗}∇qi(β̄0)T{β̂(pj→0)− β∗},

and

R
(6)
j :=Qj1(β∗)Qj0(β∗)−Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}

=−Qj1(β∗)(γ − γk)∇qj(β̌2)T{β̂(pj→0)− β∗}+Qj0(β∗)(γ − γk)∇qj(β̌4)T{β̂(pj→1)− β∗}

+ (γ − γk)2∇qj(β̌4)T{β̂(pj→1)− β∗}∇qj(β̌2)T{β̂(pj→0)− β∗}.

It implies that

Sj − S∗j =
∑
i 6=j

(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)}R(5)
ij

Qi{β̂(pj→1)}Qi{β̂(pj→0)}Qi(β∗)2
,

Uj − U∗j = (γk − γ)
∇qj(β∗)Qj0(β∗) +∇qj(β∗)Qj1(β∗)

Qj1{β̂(pj→1)}Qj0{β̂(pj→0)}Qj1(β∗)Qj0(β∗)
R

(6)
j .

Combining the above arguments, we obtain

(S∗j + ∆j){β̂(pj→0)− β̂(pj→1)}+ U∗j + Πj = 0,

where ∆j = Sj − S∗j + S̃j and Πj = Uj − U∗j + Ũj , and ∆j,Πj are smaller order terms.

(iv) Recall that qi(β) = (1 + e−x
T
i β)−1, b0i = (1 − γ)yiγ1−yi , b1i = (1 − γk)yiγk(1−yi) and
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Qi(β) = qi(β)b0i + {1− qi(β)}b1i. We have uniformly over i, j and β ∈ B,

|b0i − b1i| = γk − γ,

min{1− γk, γ} ≤ Qi(β) ≤ max{1− γ, γk},

γ ≤ Qj0(β) = qj(β)γ + {1− qj(β)}γk ≤ γk,

1− γk ≤ Qj1(β) = qj(β)(1− γ) + {1− qj(β)}(1− γk) ≤ 1− γ,

and

‖∇qi(β)‖ =

∥∥∥∥∥ xie
xTi β

(1 + ex
T
i β)2

∥∥∥∥∥ ≤ c‖xi‖,

‖∇2qi(β)‖ =

∥∥∥∥∥xixT
i e

xTi β(1− exTi β)

(1 + ex
T
i β)3

∥∥∥∥∥ ≤ c‖xi‖2,

‖∇φi(β)‖ =

∥∥∥∥∥xiex
T
i β(1− 4ex

T
i β + e2xTi β)

(1 + ex
T
i β)4

∥∥∥∥∥ ≤ c‖xi‖.

Then we have

‖Sj − S∗j ‖ ≤
∑
i 6=j

∥∥∥∥∥(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)}R(5)
ij

Qi{β̂(pj→1)}Qi{β̂(pj→0)}Qi(β∗)2

∥∥∥∥∥ ≤ c
∑
i 6=j

‖xi‖2 · |R(5)
ij |,

and

‖S̃j‖ ≤
∑
i 6=j

∥∥∥∥∥ (b0i − b1i)(R
(1)
ij −R

(2)
ij )

Qi{β̂(pj→1)}Qi{β̂(pj→0)}

∥∥∥∥∥ ≤ c
∑
i 6=j

(
‖R(1)

ij ‖+ ‖R(2)
ij ‖
)
,

where

|R(5)
ij | ≤ c‖xi‖

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}
+ c‖xi‖2‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖,

‖R(1)
ij ‖ ≤ c‖xi‖3

{
‖β̃2 − β∗‖+ ‖β̂(pj→1)− β∗‖

}
+ c‖xi‖4‖β̃2 − β∗‖‖β̂(pj→1)− β∗‖,

‖R(2)
ij ‖ ≤ c‖xi‖3

{
‖β̄2 − β∗‖+ ‖β̂(pj→1)− β∗‖

}
+ c‖xi‖4‖β̄2 − β∗‖‖β̂(pj→1)− β∗‖.
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Similarly, we have

‖Uj − U∗j ‖ ≤ c‖xj‖‖R(6)
j ‖ and ‖Ũj‖ ≤ c

(
‖R(3)

j ‖+ ‖R(4)
j ‖
)
,

where

‖R(6)
j ‖ ≤ c‖xj‖

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}
+ c‖xj‖2‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖,

‖R(3)
j ‖ ≤ c‖xj‖2

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}
+ c‖xj‖3‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖,

‖R(4)
j ‖ ≤ c‖xj‖2

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}
+ c‖xj‖3‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖.

As we assume that sup1≤i≤m E(‖xi‖8) < ∞, then by Kolmogorov’s strong law of large numbers,

we know that sup1≤j≤m
∑

i 6=j ‖xi‖3 = OP(m) and sup1≤j≤m
∑

i 6=j ‖xi‖4 = OP(m). Combining

the above inequalities with the result from Lemma 2 that sup1≤j≤m |β̂(pj→a) − β∗| = oP(1) , we

deduce that

S∗j =
∑
i 6=j

(b0i − b1i) {(b0i − b1i)∇qi(β∗)⊗2 −Qi(β
∗)∇2qi(β

∗)}
Qi(β∗)2

= −
∑
i 6=j

∇2l(β∗; zi),

sup
1≤j≤m

‖U∗j ‖ = sup
1≤j≤m

∥∥∥∥(γk − γ)
∇qj(β∗)Qj0(β∗) +∇qj(β∗)Qj1(β∗)

Qj1(β∗)Qj0(β∗)

∥∥∥∥ ≤ c sup
1≤j≤m

‖xj‖ = OP(1),

(A.4)
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and

sup
1≤j≤m

‖∆j‖ ≤ sup
1≤j≤m

(
‖Sj − S∗j ‖+ ‖S̃j‖

)
≤ c sup

1≤j≤m

∑
i 6=j

(
‖xi‖2 · |R(5)

ij |+ ‖R
(1)
ij ‖+ ‖R(2)

ij ‖
)

≤c sup
1≤j≤m

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}∑
i 6=j

‖xi‖3

+ c sup
1≤j≤m

‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖
∑
i 6=j

‖xi‖4

=oP(m),

(A.5)

sup
1≤j≤m

‖Πj‖ ≤ sup
1≤j≤m

(
‖Uj − U∗j ‖+ ‖Ũj‖

)
≤ c sup

1≤j≤m

(
‖xj‖‖R(6)

j ‖+ ‖R(3)
j ‖+ ‖R(4)

j ‖
)

≤c sup
1≤j≤m

{
‖β̂(pj→1)− β∗‖+ ‖β̂(pj→0)− β∗‖

}
‖xj‖2

+ c sup
1≤j≤m

‖β̂(pj→1)− β∗‖‖β̂(pj→0)− β∗‖‖xj‖3

=oP(1).

(A.6)

A.4 Other intermediate results

Lemma 3. For a sequence of independent random variables {Wi}mi=1, if sup1≤i≤m E(|Wi|q+ε) <

∞ for some q ≥ 1 and any ε > 0, then we have

1

m
sup

1≤i≤m
E
{
|Wi|u+1I(|Wi| ≤ m)

}
→ 0,

for any 0 < u ≤ q.

Proof. Since sup1≤i≤m E(|Wi|q+ε) < ∞ implies sup1≤i≤m E(|Wi|u+ε) < ∞ for any u < q, we

only need to show

1

m
sup

1≤i≤m
E
{
|Wi|q+1I(|Wi| ≤ m)

}
→ 0.
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Let Fi(w) be the distribution function of Wi. It shows that

E
{
|Wi|q+1I(|Wi| ≤ m)

}
=

∫
|w|≤m

|w|q+1dFi(w)

=(q + 1)

∫
|w|≤m

∫ |w|
0

sqds dFi(w)
Fubini
= (q + 1)

∫ m

0

∫
s<|w|≤m

dFi(w) sqds

=(q + 1)

∫ m

0

{P (|Wi| > s)− P (|Wi| > m)} sqds

≤(q + 1)

∫ m

0

P (|Wi| > s) sqds ≤ (q + 1)

∫ m

0

E
(
|Wi|q+ε

sq+ε

)
sqds

=(q + 1)E(|Wi|q+ε)
m1−ε

1− ε
,

which directly implies the desired result.

Lemma 4. Consider a sequence of independent random variables {Wi}mi=1 with E(Wi) = 0 and

sup1≤i≤m E(|Wi|q+ε) <∞ for some q ≥ 2 and any ε > 0. Then for every t > 0, we have

P

(∣∣∣∣∣
m∑
i=1

Wi

∣∣∣∣∣ > mt

)
= o(m1−q).

Furthermore, we have

P

(
sup

1≤j≤m

∣∣∣∣∣∑
i 6=j

Wi

∣∣∣∣∣ > mt

)
= o(m1−q).

If Wi’s are not necessarily mean-zero, we get sup1≤j≤m
∑

i 6=jWi = OP(m).

Remark 4. As seen from the proof, we can replace the condition that sup1≤i≤m E(|Wi|q+ε) < ∞

for some q ≥ 2 and any ε > 0 in Lemma 4 by a weaker condition that sup1≤i≤m E(|Wi|q) <∞ for

some q ≥ 2 and {|Wi|q}mi=1 are uniformly integrable.

Proof. Let Wm,i = WiI(|Wi| ≤ m) and W ′
m,i = Wm,i − E(Wm,i). Further define Tm =

∑m
i=1Wi,
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T̂m =
∑m

i=1 Wm,i and T ′m =
∑m

i=1W
′
m,i. Note that

mq−1P (|Tm| > mt) = mq−1P
(
|Tm − T̂m + T̂m − T ′m + T ′m| > mt

)
≤mq−1

{
P
(
|Tm − T̂m| > mt/3

)
+ P

(
|T̂m − T ′m| > mt/3

)
+ P (|T ′m| > mt/3)

}
.

We show the first term in the above inequality converges to 0 by proving P(Tm 6= T̂m) = o(m1−q).

To see this, note that

mq−1P
(
Tm 6= T̂m

)
≤ mq−1P

{
m⋃
i=1

(Wi 6= Wm,i)

}

≤mq−1

m∑
i=1

P (Wi 6= Wm,i) = mq−1

m∑
i=1

P (|Wi| > m)

≤mq−1

m∑
i=1

E
(
|Wi|q+ε

mq+ε

)
≤
m sup1≤i≤m E(|Wi|q+ε)

m1+ε
→ 0.

To prove mq−1P(|T̂m − T ′m| > mt/3)→ 0, we note that

sup
1≤i≤m

|E(Wm,i)| = sup
1≤i≤m

|E {WiI(|Wi| ≤ m)}| = sup
1≤i≤m

|E {WiI(|Wi| > m)}|

≤ sup
1≤i≤m

E
{
|Wi|1+ε

mε
I(|Wi| > m)

}
≤

sup1≤i≤m E(|Wi|1+ε)

mε
→ 0,

and

|T̂m − T ′m| =

∣∣∣∣∣
m∑
i=1

E(Wm,i)

∣∣∣∣∣ ≤ m sup
1≤i≤m

|E(Wm,i)| .

Hence P(|T̂m−T ′m| > mt/3) = 0 as long asm is large enough. Therefore, to show P (|Tm| > mt) =
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o(m1−q), we only need to prove mq−1P (|T ′m| > mt)→ 0. Note that

mq−1P (|T ′m| > mt) ≤ mq−1E(|T ′m|2q)
m2qt2q

≤ c

mq+1t2q

[
m∑
i=1

E(|W ′
m,i|2q) +

{
m∑
i=1

E(|W ′
m,i|2)

}q]
,

where the last inequality follows from Rosenthal’s inequality. For the first term, we have

c

mq+1t2q

m∑
i=1

E(|W ′
m,i|2q) ≤

2q−1c

m2t2q

m∑
i=1

E(|W ′
m,i|q+1)

≤ 2q−1c

m2t2q

m∑
i=1

E
[
{|Wm,i|+ |E(Wm,i)|}q+1]→ 0,

where we have used the result of Lemma 3 and the fact that sup1≤i≤m |E(Wm,i)| → 0. For the

second term, we deduce that

c

mq+1t2q

{
m∑
i=1

E(|W ′
m,i|2)

}q

≤ c

mq+1t2q

{
m∑
i=1

E(|Wm,i|2)

}q

≤ c

mq+1t2q

{
m sup

1≤i≤m
E(|Wi|2)

}q
→ 0.

Thus we have proved that P (|Tm| > mt) = o(m1−q). Furthermore, we have

P

(
sup

1≤j≤m

∣∣∣∣∣∑
i 6=j

Wi

∣∣∣∣∣ > mt

)
≤P (|Tm| > mt/2) + P

(
sup

1≤j≤m
|Wj| > mt/2

)

≤o(m1−q) +
m∑
i=1

E(|Wi|q)
(mt/2)q

= o(m1−q),

which indicates that sup1≤j≤m
∑

i 6=jWi = oP(m). If Wi’s are not necessarily mean-zero, then

∣∣∣∣∣ sup
1≤j≤m

∑
i 6=j

Wi

∣∣∣∣∣ =

∣∣∣∣∣ sup
1≤j≤m

∑
i 6=j

{Wi − E(Wi) + E(Wi)}

∣∣∣∣∣
≤

∣∣∣∣∣ sup
1≤j≤m

∑
i 6=j

{Wi − E(Wi)}

∣∣∣∣∣+

∣∣∣∣∣ sup
1≤j≤m

∑
i 6=j

E(Wi)

∣∣∣∣∣ ≤ oP(m) +
m∑
i=1

E(|Wi|) = OP(m).
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Proposition 3. Assume that sup1≤i≤m E(‖xi‖q
′+ε) <∞ for some q′ and any ε > 0. Then we have

sup
1≤j≤m

P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > t

}
= o(m1−q), if q′ = 2q,

sup
1≤j≤m

P

{∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ > t

}
= o(m1−q), if q′ = 3q,

sup
1≤j≤m

P

{∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ > t

}
= o(m1−q), if q′ = 4q,

where q ≥ 2.

Proof. Let ‖A‖F be Frobenius norm of a matrix A. Recall that S∗j = −
∑

i 6=j∇2l(β∗; zi) =∑
i 6=j h(β∗; zi)xix

T
i for some function h, where h(β; z) is uniformly bounded over β and z . For

any t > 0,

P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > t

}
≤ P

{∥∥∥∥S∗jm − E
(
S∗j
m

)∥∥∥∥
F

> t

}
≤

d∑
u=1

d∑
v=1

P

{∣∣∣∣S∗j (u, v)

m
− E

(
S∗j (u, v)

m

)∣∣∣∣2 > t2

d2

}

=
d∑

u=1

d∑
v=1

P
{∣∣∣∣S∗j (u, v)

m
− E

(
S∗j (u, v)

m

)∣∣∣∣ > t

d

}

=
d∑

u=1

d∑
v=1

P

[∣∣∣∣∣ 1

m

∑
i 6=j

h(β∗; zi)xi(u)xi(v)− 1

m

∑
i 6=j

E {h(β∗; zi)xi(u)xi(v)}

∣∣∣∣∣ > t

d

]
,

where S∗j (u, v) is the (u, v)th element of the matrix S∗j . For q ≥ 2 and any ε > 0, by Hölder

inequality, we have

sup
1≤i≤m

E
{
|h(β∗; zi)xi(u)xi(v)|q+ε

}
≤c sup

1≤i≤m
E
{
|xi(u)|2(q+ε)

} 1
2 E
{
|xi(v)|2(q+ε)

} 1
2

≤c sup
1≤i≤m

E
{
‖xi‖2(q+ε)

}
.

Then proof is completed by applying the result of Lemma 4.
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Lemma 5. If Assumption 2 holds and sup1≤i≤m E(‖xi‖2) <∞, then

E
[
sup
β∈B
|Pml(β)− E {Pml(β)}|

]
= O(m−

1
2 ).

Proof. Let ei be i.i.d Rademacher variables. By symmetrization argument, we have

E
[
sup
β∈B
|Pml(β)− E {Pml(β)}|

]
≤ 2√

m
E

[
E

{
sup
β∈B

∣∣∣∣∣ 1√
m

m∑
i=1

eil(β; zi)

∣∣∣∣∣ | z1, ..., zm

}]
.

Define Em,β =
∑m

i=1 eil(β; zi)/
√
m. Then

E [exp{λ(Em,β1 − Em,β2)} | z1, ..., zm] =
m∏
i=1

E
(

exp

[
λ√
m
ei {l(β1; zi)− l(β2; zi)}

]
| z1, ..., zm

)

≤
m∏
i=1

exp

[
λ2

2m
{l(β1; zi)− l(β2; zi)}2

]
= exp

[
λ2

2

1

m

m∑
i=1

{l(β1; zi)− l(β2; zi)}2

]

≤ exp

(
λ2

2

1

m

m∑
i=1

c‖xi‖2‖β1 − β2‖2

)
= exp

(
λ2

2
‖β1 − β2‖2ρ2

m

)
,

where ρ2
m =

∑m
i=1 c‖xi‖2/m. Define

N(B, ‖ · ‖, ε) = inf
{
N : there exists a set {βi}Ni=1,

such that for any β ∈ B, there exists an i, s.t. ‖β − βi‖ ≤ ε
}

and diam(B) = sup{‖β1 − β2‖ : β1, β2 ∈ B}. By Dudley’s entropy integral, we have

E
(

sup
β∈B
|Em,β| | z1, ..., zm

)
≤ 4
√

2

∫ diam(B)ρm
2

0

√
log

{
N

(
B, ‖ · ‖, ε

ρm

)}
dε,

Set u = 2ε/{diam(B)ρm} and note that logN(B, ‖ · ‖, ε) ≤ d log{1 + 2diam(B)/ε}. We deduce
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that

E
[
sup
β∈B
|Pml(β)− E {Pml(β)}|

]
≤ 8
√

2√
m

E

[∫ diam(B)ρm
2

0

√
log

{
N

(
B, ‖ · ‖, ε

ρm

)}
dε

]

=
8
√

2√
m

E

[∫ 1

0

√
log

{
N

(
B, ‖ · ‖, diam(B)u

2

)}
diam(B)ρm

2
du

]

≤4
√

2√
m

diam(B)E

{
ρm

∫ 1

0

√
d log

(
1 +

4

u

)
du

}
= cm−

1
2E(ρm) = O(m−

1
2 ).

Lemma 6. For two functions f and g defined on the same spaceW , we have

∣∣∣∣ sup
w∈W

f(w)− sup
w∈W

g(w)

∣∣∣∣ ≤ sup
w∈W
|f(w)− g(w)| .

Proof. Note that

sup
w∈W

f(w)− sup
w∈W

g(w) = sup
w∈W

inf
w′∈W

{f(w)− g(w′)}

≤ sup
w∈W
{f(w)− g(w)} ≤ sup

w∈W
|f(w)− g(w)| ,

and similarly,

sup
w∈W

g(w)− sup
w∈W

f(w) ≤ sup
w∈W
|f(w)− g(w)| ,

which completes the proof.

Proposition 4. Suppose the following conditions are satisfied:

(i) Assumptions 2–4 hold;

(ii) we have sup1≤i≤m E(‖xi‖2) <∞;

(iii) for some ν > 0, we have supβ∈B |E {Pml(β)} − L(β)| = O(m−ν);

(iv) the function L(β) is twice continuously differentiable;
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(v) the global maximizerβ∗ is not on the boundary of B; and

(vi) for some c > 0, we have ∇2L(β∗) � −cI , where I is the identity matrix.

Then for t = O(m−ω) with 0 < ω < (ν/2) ∧ (1/4), we have for a = 0, 1,

P
{

sup
1≤j≤m

‖β̂(pj→a)− β∗‖ > t

}
≤ exp[−c{t4 + o(t4)}m].

Proof. Under Assumption 4 and Conditions (iv)–(vi), we know that there exists δ such that for all

‖β − β∗‖ ≤ δ, we have52L(β) � −cI for some constant c > 0. Under Condition (v) and by the

Taylor expansion, we have

L(β) =L(β∗) + (β − β∗)T52 L(β̃)(β − β∗)/2

≤L(β∗)− c‖β − β∗‖2.

Then for small enough t with t ≤ δ, we have

L(β∗)− sup
β:‖β−β∗‖>t

L(β) =L(β∗)−max

{
sup

β:‖β−β∗‖≥δ
L(β), sup

β:t<‖β−β∗‖<δ
L(β)

}

≥L(β∗)−max
{
L(β∗)− c,L(β∗)− ct2

}
≥min{c, ct2} = ct2.

For any β ∈ B and z1, z2 ∈ Rd × {0, 1}, |l(β; z1)− l(β; z2)| ≤ L. Applying the result of Lemma
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6, we have

∣∣∣∣∣ sup
β∈B

∣∣∣∣ 1

m

{∑
i 6=j

l(β; zi) + l(β; zj)

}
− E {Pml(β)}

∣∣∣∣
− sup

β∈B

∣∣∣∣ 1

m

{∑
i 6=j

l(β; zi) + l(β; z′j)

}
− E {Pml(β)}

∣∣∣∣
∣∣∣∣∣

≤ sup
β∈B

∣∣∣∣∣
∣∣∣∣ 1

m

{∑
i 6=j

l(β; zi) + l(β; zj)

}
− E {Pml(β)}

∣∣∣∣− ∣∣∣∣ 1

m

{∑
i 6=j

l(β; zi) + l(β; z′j)

}
− E {Pml(β)}

∣∣∣∣
∣∣∣∣∣

≤ sup
β∈B

∣∣∣∣ l(β; zj)

m
−
l(β; z′j)

m

∣∣∣∣ ≤ L

m
,

which means that supβ∈B |Pml(β)− E{Pml(β)}| is L/m-bounded difference function. Note that

P(‖β̂ − β∗‖ > t)

≤P

{
sup

β:‖β−β∗‖>t
Pml(β) > Pml(β∗)

}

≤P

(
sup

β:‖β−β∗‖>t
[Pml(β)− E {Pml(β)}] + sup

β:‖β−β∗‖>t
E {Pml(β)}

> Pml(β∗)− E {Pml(β∗)}+ E {Pml(β∗)}

)

=P

(
sup

β:‖β−β∗‖>t
[Pml(β)− E {Pml(β)}]− [Pml(β∗)− E {Pml(β∗)}]

> E {Pml(β∗)} − sup
β:‖β−β∗‖>t

E {Pml(β)}

)

≤P

[
2 sup
β∈B
|Pml(β)− E {Pml(β)}| > E {Pml(β∗)} − sup

β:‖β−β∗‖>t
E {Pml(β)}

]
,
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and

E {Pml(β∗)} − sup
β:‖β−β∗‖>t

E {Pml(β)}

=E {Pml(β∗)} − L(β∗) + L(β∗)− sup
β:‖β−β∗‖>t

L(β) + sup
β:‖β−β∗‖>t

L(β)− sup
β:‖β−β∗‖>t

E {Pml(β)}

≥ − |E {Pml(β∗)} − L(β∗)|+ L(β∗)− sup
β:‖β−β∗‖>t

L(β)− sup
β:‖β−β∗‖>t

|E {Pml(β)} − L(β)|

≥L(β∗)− sup
β:‖β−β∗‖>t

L(β)− 2 sup
β∈B
|E {Pml(β)} − L(β)|

≥ct2 − 2 sup
β∈B
|E {Pml(β)} − L(β)| ,

where we have applied the result of Lemma 6 in the first inequality. We deduce that

P(‖β̂ − β∗‖ > t)

≤P
[
sup
β∈B
|Pml(β)− E {Pml(β)}| > ct2 − sup

β∈B
|E {Pml(β)} − L(β)|

]
=P

(
sup
β∈B
|Pml(β)− E {Pml(β)}| − E

[
sup
β∈B
|Pml(β)− E {Pml(β)}|

]

> ct2 − sup
β∈B
|E {Pml(β)} − L(β)| − E

[
sup
β∈B
|Pml(β)− E {Pml(β)}|

])

≤ exp

[
−2
{
ct2 +O(m−ν) +O(m−

1
2 )
}2

m/L2

]
= exp[−c{t4 + o(t4)}m],

where we have used the Condition (iii) that supβ∈B |E{Pml(β)} − L(β)| = O(m−ν), the result of

Lemma 5, the condition that t = O(m−ω) with 0 < ω < (ν/2) ∧ (1/4), and the McDiarmid’s
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inequality. Recall that sup1≤j≤m supβ∈B |Pj→am l(β)− Pml(β)| ≤ L/m. Then we have

P{ sup
1≤j≤m

‖β̂(pj→a)− β∗‖ > t}

≤P

[ ⋃
1≤j≤m

{
sup

β:‖β−β∗‖>t
Pj→am l(β) > Pj→am l(β∗)

}]

≤P

( ⋃
1≤j≤m

[
sup
β∈B

∣∣Pj→am l(β)− E
{
Pj→am l(β)

}∣∣ > ct2 − sup
β∈B

∣∣E{Pj→am l(β)
}
− L(β)

∣∣])

=P

( ⋃
1≤j≤m

[
sup
β∈B

∣∣Pj→am l(β)− Pml(β) + Pml(β)− E {Pml(β)}+ E {Pml(β)} − E
{
Pj→am l(β)

}∣∣
> ct2 − sup

β∈B

∣∣E{Pj→am l(β)
}
− E {Pml(β)}+ E {Pml(β)} − L(β)

∣∣ ])

≤P

( ⋃
1≤j≤m

[
sup
β∈B
|Pml(β)− E {Pml(β)}|+ 2L

m
> ct2 − sup

β∈B
|E {Pml(β)} − L(β)| − L

m

])

=P

(
sup
β∈B
|Pml(β)− E {Pml(β)}| − E

[
sup
β∈B
|Pml(β)− E {Pml(β)}|

]

> ct2 − sup
β∈B
|E {Pml(β)} − L(β)| − 3L

m
− E

[
sup
β∈B
|Pml(β)− E {Pml(β)}|

])

≤ exp

[
−2
{
ct2 +O(m−ν) +O(m−1) +O(m−

1
2 )
}2

m/L2

]
= exp[−c{t4 + o(t4)}m].

Lemma 7. Denote by B(m, p) the binomial distribution withm Bernoulli trials and success proba-

bility p. Consider two sequences of independent Bernoulli random variables {Vi}mi=1 and {Ui}mi=1,

where Vi ∼ B(1, pi) independently and Ui ∼i.i.d B(1, p) with pi ≥ p for i = 1, ...,m. Let

W1 =
∑m

i=1 Vi and W2 =
∑m

i=1 Ui. Suppose f is non-decreasing and W1 and W2 belong to

the domain of f almost surely. Then we have

E {f(W1)} ≥ E {f(W2)} .

Proof. Suppose there are n pi’s such that pi 6= p. Without loss of generality, we assume pi > p for
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i = 1, ..., n and pi = p for i = n + 1, ...,m. Then the conclusion is obviously true if n = 0. We

use the induction argument. Suppose the conclusion is true if n = s. Consider the case n = s+ 1.

Let T =
∑s

i=1 B(1, pi) + B(m− s− 1, p), where B(1, pi)’s and B(m− s− 1, p) are independent

with each other. We note that

E {f(W1)} − E {f(W2)} = E

{
f

(
m∑
i=1

Vi

)}
− E

{
f

(
m∑
i=1

Ui

)}

=E

[
f

{
s∑
i=1

B(1, pi) + B(1, ps+1) + B(m− s− 1, p)

}]

− E

[
f

{
s∑
i=1

B(1, pi) + B(1, p) + B(m− s− 1, p)

}]

+ E

[
f

{
s∑
i=1

B(1, pi) + B(1, p) + B(m− s− 1, p)

}]
− E [f {B(m, p)}]

=ps+1E {f(T + 1)}+ (1− ps+1)E {f(T )} − pE {f(T + 1)} − (1− p)E {f(T )}

+ E

[
f

{
s∑
i=1

B(1, pi) + B(1, p) + B(m− s− 1, p)

}]
− E [f {B(m, p)}]

= (ps+1 − p) [E {f(T + 1)} − E {f(T )}]

+ E

[
f

{
s∑
i=1

B(1, pi) + B(m− s, p)

}]
− E [f {B(m, p)}] ≥ 0,

where the first term in the last equation is greater or equal to zero as f is non-decreasing and

ps+1 > p, and the second term is greater or equal to zero by the induction hypothesis.

Lemma 8. For a matrix A with ‖A‖ < ∞, let σmin (A) = inf‖w‖=1 ‖Aw‖. For two matrices

A,B ∈ Rn1×n2 and any ε > 0, there exists δ such that |σmin(A) − σmin(B)| ≤ ε as long as

‖A−B‖ ≤ δ.

Proof. Let A = UΣV T be the singular value decomposition of the matrix A. Then

inf
‖w‖=1

‖Aw‖ = inf
‖w‖=1

‖UΣV Tw‖ = inf
‖V w‖=1

‖UΣw‖ = inf
‖w‖=1

‖Σw‖ = σmin (A) .

Define the function A(w) = ‖Aw‖, which is continuous. This can be easily proved by noting that
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∣∣‖Aw1‖ − ‖Aw2‖
∣∣ ≤ ‖A‖‖w1 − w2‖. Thus inf‖w‖=1 ‖Aw‖ = min‖w‖=1 ‖Aw‖. Let σmin(A) = a

and σmin(B) = b. Further set wa = arg min‖w‖=1 ‖Aw‖ and wb = arg min‖w‖=1 ‖Bw‖. For any

ε > 0 and ‖A−B‖ ≤ ε, we have

a ≤ ‖Awb‖ = ‖(A−B +B)wb‖ ≤ ‖A−B‖‖wb‖+ ‖Bwb‖ ≤ ε+ b,

and similarly b ≤ ε+ a, which leads to |a− b| ≤ ε.

A.5 Proof of Theorem 1

Proof. By Proposition 1 and the Cauchy-Schwarz inequality, we have

Jm,1 =
m∑
j=1

E

 |xT
j {β̂(pj→0)− β̂(pj→1)}|{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)


≤

m∑
j=1

(
E
[∣∣∣xT

j {β̂(pj→0)− β̂(pj→1)}
∣∣∣2])1/2

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


1/2

≤
m∑
j=1

{
E(‖xj‖4)

} 1
4

[
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


1
2

,
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and

Jm,2 =
m∑
j=1

E

α−1
∑

i 6=j I(pi > γ)|xT
i {β̂(pj→0)− β̂(pj→1)}|+ α−1[{

cα−1
∑

i 6=j I(pi > γ)
}
∨ ε1/(1−k)

]2


≤α−1

m∑
j=1

E

[∑
i 6=j

I(pi > γ)
∣∣∣xT

i {β̂(pj→0)− β̂(pj→1)}
∣∣∣]2


1/2

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−4


1/2

+ α−1

m∑
j=1

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


≤α−1

m∑
j=1

m

E

{ 1

m

∑
i 6=j

I(pi > γ)‖xi‖

}4
1/4 [

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}]1/4

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−4


1/2

+ α−1

m∑
j=1

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


≤α−1

m∑
j=1

m

{
1

m

m∑
i=1

E(‖xi‖4)

}1/4 [
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}]1/4

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−4


1/2

+ α−1

m∑
j=1

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2
 .

To get the last inequality, we note that for a sequence of random variables {Wi}mi=1 and N ≥ 1,

E


(

1

m

m∑
i=1

‖Wi‖

)N
 ≤ E

(
1

m

m∑
i=1

‖Wi‖N
)

=
1

m

m∑
i=1

E
(
‖Wi‖N

)
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by Jensen’s inequality. Note that

[{
cα−1

∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−N
≤

[{
cα−1

∑
i∈M0,i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−N

≤

[{
cα−1

∑
i,j∈M0,i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−N
.

Under Assumption 1, we have P(pi > γ) ≥ 1 − γ for i ∈ M0. Consider m0 − 1 independent

random variables ui’s which follow uniform distribution on [0, 1]. Set ε1/(1−k) ≤ cα−1, then

{cα−1
∑m0−1

i=1 I(ui > γ) ≥ ε1/(1−k)} = {
∑m0−1

i=1 I(ui > γ) ≥ 1}. Let µ = 1 − γ. Then by the

result of Lemma 7, for any positive integer N , we have

sup
1≤j≤m

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−N ≤ E

[{cα−1

m0−1∑
i=1

I(ui > γ)

}
∨ ε1/(1−k)

]−N
=(1− µ)m0−1ε−N/(1−k) + cαN

m0−1∑
i=1

(
m0 − 1

i

)
µi(1− µ)m0−1−ii−N .

We notice that

m0−1∑
i=1

(
m0 − 1

i

)
µi(1− µ)m0−1−ii−N =

m0−2∑
j=0

(
m0 − 1

j + 1

)
µj+1(1− µ)m0−1−(j+1)(j + 1)−N

=

m0−2∑
j=0

(
m0 − 2

j

)
m0 − 1

j + 1
µj+1(1− µ)m0−2−j(j + 1)−N

=(m0 − 1)µ

m0−2∑
j=0

(
m0 − 2

j

)
µj(1− µ)m0−2−j(j + 1)−(N+1)

=(m0 − 1)µE
{

(W + 1)−(N+1)
}

= O(m−N0 ),

where W ∼ B(m0 − 2, µ) and we have used the result from Cribari-Neto et al. (2000, A note

on inverse moments of binomial variates). As (1 − µ)m0−1 = o(αNm−N0 ) and m0 = cm from
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Condition (viii), it follows that

sup
1≤j≤m

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−N = O(αNm−N0 ) = O(αNm−N).

Since B is compact,
∥∥∥β̂(pj→a)− β∗

∥∥∥ ≤ c for a = 0, 1. Thus we get

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥N}
=E

[∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥N I

{∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥ ≤ K/m

}]
+ E

[∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥N I

{∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥ > K/m

}]
≤
(
Km−1

)N
+ E

[∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥N I

{∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥ > K/m

}]
≤
(
Km−1

)N
+ cP

{∥∥∥β̂(pj→0)− β̂(pj→1)
∥∥∥ > K/m

}
.

Recall that S∗j = −
∑

i 6=j∇2l(β∗; zi) =
∑

i 6=j h(β∗; zi)xix
T
i with h(β; z) being uniformly bounded

over β and z. Under Condition (vii) , we have σmin[−E{
∑m

i=1∇2l(β∗; zi)/m}] > c as m → ∞.

Then we have

inf
1≤j≤m

σmin

{
E
(
S∗j
m

)}
= inf

1≤j≤m
σmin

[
E
{
−
∑m

i=1∇2l(β∗; zi)

m
+
h(β∗; zj)xjx

T
j

m

}]
> c

asm→∞, where we have used Condition (ii) and Lemma 8. Let {λi}4
i=1 be four positive numbers

such that λ1 = o(1), λ2 = O(m−ω) with 0 < ω < 1/4, λ3 = o(1) and λ4 = o(1). If ‖S∗j /m −

E(S∗j /m)‖ ≤ λ1, ‖β̂(pj→a)− β∗‖ ≤ λ2 for a = 0, 1, |
∑

i 6=j ‖xi‖3/m− E(
∑

i 6=j ‖xi‖3/m)| ≤ λ3

and |
∑

i 6=j ‖xi‖4/m−E(
∑

i 6=j ‖xi‖4/m)| ≤ λ4 for any j = 1, ...,m, then by (A.5) and Condition

(ii), we have

sup
1≤j≤m

∥∥∥∥S∗j + ∆j

m
− E

(
S∗j
m

)∥∥∥∥ ≤ c
(
λ1 + λ2 + λ2

2

)
,
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which leads to that sup1≤j≤m ‖{(S∗j + ∆j)/m}−1‖ = sup1≤j≤m[σmin{(S∗j + ∆j)/m}]−1 < c as

m→∞ by Lemma 8. And by (A.4) and (A.6), for j = 1, ...,m, we have

∥∥U∗j + Πj

∥∥ ≤ c(‖xj‖+ λ2‖xj‖2 + λ2
2‖xj‖3).

Applying the result from Proposition 2, we have

sup
1≤j≤m

P
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥ > K/m
}

= sup
1≤j≤m

P
{∥∥(S∗j + ∆j)

−1(U∗j + Πj)
∥∥ > K/m

}
≤ sup

1≤j≤m

[
P

{∥∥(S∗j + ∆j)
−1(U∗j + Πj)

∥∥ > K/m,

∥∥∥∥S∗jm − E
(
S∗j
m

)∥∥∥∥ ≤ λ1, ‖β̂(pj→a)− β∗‖ ≤ λ2,∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ ≤ λ3,

∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ ≤ λ4

}

+ P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > λ1

}
+ P

{
‖β̂(pj→a)− β∗‖ > λ2

}
+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ > λ3

}

+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ > λ4

}]

≤ sup
1≤j≤m

[
P
(
‖xj‖+ λ2‖xj‖2 + λ2

2‖xj‖3 > cK
)

+ P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > λ1

}

+ P
{
‖β̂(pj→a)− β∗‖ > λ2

}
+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ > λ3

}

+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ > λ4

}]
.
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Thus we conclude that

sup
1≤j≤m

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}

≤ sup
1≤j≤m

[
c
(
Km−1

)4
+ P

(
‖xj‖+ λ2‖xj‖2 + λ2

2‖xj‖3 > cK
)

+ P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > λ1

}
+ P

{
‖β̂(pj→a)− β∗‖ > λ2

}
+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ > λ3

}

+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ > λ4

}]
.

As seen from above, there are six terms to be considered. From the result of Proposition 4, we know

that P{supj ‖β̂(pj→a)−β∗‖ > λ2} ≤ exp[−c{λ4
2 +o(λ4

2)}m], which implies that the convergence

rate of P{‖β̂(pj→0)− β̂(pj→1)‖ > K/m} is not determined by the term P{‖β̂(pj→a)−β∗‖ > λ2}.

We thus focus on the other five terms. Let K = mκ with 0 < κ < 1. Applying the result of

Proposition 3, we have

sup
1≤j≤m

[
P
{∥∥∥∥S∗jm − E

(
S∗j
m

)∥∥∥∥ > λ1

}
+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖3

m
− E

(∑
i 6=j ‖xi‖3

m

)∣∣∣∣∣ > λ3

}

+ P

{∣∣∣∣∣
∑

i 6=j ‖xi‖4

m
− E

(∑
i 6=j ‖xi‖4

m

)∣∣∣∣∣ > λ4

}]
= o(m1−q).
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Note that

sup
1≤j≤m

{
c
(
Km−1

)4
+ P

(
‖xj‖+ λ2‖xj‖2 + λ2

2‖xj‖3 > cK
)

+ o(m1−q)
}

≤ sup
1≤j≤m

{
c
(
Km−1

)4
+ cE

(
‖xj‖4q

)
K−4q + cE

(
‖xj‖4q

)
(λ2K

−1)2q

+ cE
(
‖xj‖4q

) (
λ2

2K
−1
) 4q

3 + o(m1−q)

}
≤c
{(
Km−1

)4
+K−4q +

(
λ2K

−1
)2q

+
(
λ2

2K
−1
) 4q

3

}
+ o(m1−q)

=O
(
m4(κ−1) +m−4κq +m−2ωq−2κq +m−

8
3
ωq− 4

3
κq
)

+ o(m1−q), (A.7)

where 0 < κ < 1 and 0 < ω < 1/4. Let

η(κ, ω, q) = max

{
v1 = 4(κ− 1), v2 = −4κq, v3 = −2ωq − 2κq, v4 = −8

3
ωq − 4

3
κq

}
.

Finding the order of (A.7) is equivalent to solving the following problem

min
0<κ<1,0<ω<1/4

η(κ, ω, q), q ≥ 2. (A.8)

We notice that the three lines v2, v3, v4 intersect at point (ω,−4ωq) for any ω and q, and lines v1, v2

intersect at point (1/(1 + q),−4q/(1 + q)). Observe that η(κ, ω2, q) ≤ η(κ, ω1, q) if ω2 ≥ ω1

for any κ and q. Thus we let ω = 1/4 − ε, where ε is an arbitrarily small positive number. If

2 ≤ q ≤ 3, then 1/(1 + q) > ω and hence the solution to (A.8) is obtained when v1 = v4. If

q > 3, then 1/(1 + q) < ω as ε can be arbitrarily small, and hence the solution is obtained when

v1 = v2. The idea is illustrated in Figure A.3, where we set ω = 1/4 − 0.001. Therefore, for

2 ≤ q ≤ 3, the solution to (A.8) is obtained when 4(κ − 1) = −8ωq/3 − 4κq/3. In this case,

κ = (3− 2ωq)/(3 + q) and 4(κ− 1) = −4(2ω + 1)q/(3 + q). Thus we have

sup
1≤j≤m

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}
≤ max

{
O
(
m
−4(2ω+1)q

3+q

)
, o
(
m1−q)} = o(m1−q).
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Figure A.3: Illustration of the linear programming problem (A.8) with ω = 1/4 − 0.001. The
black, blue, green and red lines represent v1, v2, v3 and v4 in (A.8) respectively. From left to right,
the three panels correspond to q = 2, 3, 4 respectively.

For q > 3, the solution is obtained when 4(κ − 1) = −4κq. In this case, κ = 1/(1 + q) and

4(κ− 1) = −4q/(1 + q). Hence we get

sup
1≤j≤m

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}
≤max

{
O
(
m
−4q
1+q

)
, o
(
m1−q)}

=


o(m1−q), if 3 < q ≤ 2 +

√
5,

O
(
m
−4q
1+q

)
, if q > 2 +

√
5.

Summarizing the above results, we have

Jm,1 ≤
m∑
j=1

{
E
(
‖xj‖4

)} 1
4

[
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

E

[{α−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


1
2

≤
m∑
j=1

{
E
(
‖xj‖4

)} 1
4

[
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

O(αm−1)

≤
[

sup
1≤j≤m

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

O(α),
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and

Jm,2 ≤α−1

m∑
j=1

m

{
1

m

m∑
i=1

E
(
‖xi‖4

)}1/4 [
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}]1/4

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−4


1/2

+ α−1

m∑
j=1

E

[{cα−1
∑
i 6=j

I(pi > γ)

}
∨ ε1/(1−k)

]−2


≤α−1

m∑
j=1

m

[
E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

O(α2m−2) + α−1

m∑
j=1

O(α2m−2)

≤
[

sup
1≤j≤m

E
{∥∥∥β̂(pj→0)− β̂(pj→1)

∥∥∥4
}] 1

4

O(α) +O(αm−1),

where we have used Condition (ii) to obtain that sup1≤i≤m E(‖xi‖4) <∞. Finally, we obtain

FWER ≤ Jm + α =


o(αm

1−q
4 ) + α, if 2 ≤ q ≤ 2 +

√
5,

O(αm
−q
1+q ) + α, if q > 2 +

√
5.

A.6 Additional simulation results

Figures A.4–A.6 show the FWER control across different target levels. Figures A.7–A.11

present the results of Setups S1–S2.

A.7 Addition result for Application to GWAS of UK Biobank data Section

We present the numbers of rejections before clumping mentioned in Section 2.5 of the main

text.
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Figure A.4: FWER control at various target levels (0.01 - 0.20) under the complete null (no signal
was simulated). Family-wise error rates were averaged over 1,000 simulation runs. The solid red,
dotted green, dot-dashed blue and long-dashed orange lines represent CAMT.fwer, IHW- Bon-
ferroni, weighted Bonferroni and Holm’s step-down methods respectively. The gray diagonal
line represents the target FWER levels and the error bars represent the 95% CIs of the method
CAMT.fwer.
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Figure A.5: FWER control at various target levels (0.01 - 0.20) under Setup S0 with moderate
signal density, signal strength and covariate informativeness. Family-wise error rates were aver-
aged over 1,000 simulation runs. The solid red, dotted green, dot-dashed blue and long-dashed
orange lines represent CAMT.fwer, IHW- Bonferroni, weighted Bonferroni and Holm’s step-down
methods respectively. The gray diagonal line represents the target FWER levels and the error bars
represent the 95% CIs of the method CAMT.fwer.
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Table A.1: Significant SNPs detected at the FWER level of 0.05. Improve=(CAMT.fwer −
Holm)/Holm× 100%.

Traits Holm IHW weighted Bonferroni CAMT.fwer Improve

Balding Type I 28, 752 28, 752 29, 021 30, 441 5.9%
BMI 54, 965 54, 965 60, 171 64, 057 16.5%
Heel T Score 108, 112 108, 112 113, 962 117, 136 8.3%
Height 256, 353 256, 051 273, 020 278, 034 8.5%
Waist-hip Ratio 35, 984 35, 983 37, 720 39, 625 10.1%
Eosinophil Count 66, 384 66, 384 70, 495 71, 623 7.9%
Mean Corpular Hemoglobin 92, 048 92, 048 95, 790 96, 142 4.4%
Red Blood Cell Count 70, 919 70, 919 74, 565 78, 061 10.1%
Red Blood Cell Distribution Width 69, 583 69, 583 73, 162 74, 427 7.0%
White Blood Cell Count 55, 881 55, 881 62, 483 65, 453 17.1%
Auto Immune Traits 7, 571 7, 571 7, 774 7, 336 −3.1%
Cardiovascular Diseases 12, 531 12, 531 13, 776 14, 859 18.6%
Eczema 13, 099 13, 099 13, 513 14, 683 12.1%
Hypothyroidism 12, 681 12, 681 13, 043 14, 651 15.5%
Respiratory and Ear-nose-throat Diseases 7, 588 7, 588 7, 750 8, 709 14.8%
Type 2 Diabetes 2, 459 2, 459 2, 524 2, 684 9.2%
Age at Menarche 25, 549 25, 549 26, 519 27, 391 7.2%
Age at Menopause 6, 109 6, 109 6, 211 8, 675 42.0%
FEV1-FVC Ratio 50, 529 50, 529 55, 659 58, 503 15.8%
Forced Vital Capacity (FVC) 33, 549 33, 549 36, 674 38, 985 16.2%
Hair Color 57, 608 57, 608 58, 326 60, 391 4.8%
Morning Person 8, 154 8, 154 8, 681 9, 559 17.2%
Neuroticism 5, 513 6, 186 6, 073 6, 955 26.2%
Smoking Status 6, 297 6, 623 6, 857 8, 016 27.3%
Sunburn Occasion 10, 076 10, 076 10, 150 11, 000 9.2%
Systolic Blood Pressure 46, 063 46, 063 51, 157 54, 749 18.9%
Years of Education 13, 927 13, 927 15, 632 16, 933 21.6%
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Figure A.6: FWER control at various target levels (0.01 - 0.20) under Setup S0 with moderate
signal density, signal strength and covariate informativeness. True positive rates were averaged
over 1,000 simulation runs. The dashed gray, solid red, dotted green, dot-dashed blue and long-
dashed orange lines represent the oracle, CAMT.fwer, IHW- Bonferroni, weighted Bonferroni and
Holm’s step-down methods respectively.

110



●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Non−informative Prior Moderate Prior Strong Prior

S
parse S

ignal
M

edium
 S

ignal
D

ense S
ignal

2 4 6 2 4 6 2 4 6

0.02

0.04

0.06

0.02

0.04

0.06

0.02

0.04

0.06

Effect Size

Fa
m

ily
−

W
is

e 
E

rr
or

 R
at

e

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Non−informative Prior Moderate Prior Strong Prior

S
parse S

ignal
M

edium
 S

ignal
D

ense S
ignal

2 4 6 2 4 6 2 4 6

0.04

0.06

0.08

0.10

0.04

0.06

0.08

0.10

0.04

0.06

0.08

0.10

Effect Size

Tr
ue

 P
os

iti
ve

 R
at

e

B

Figure A.7: Performance comparison under additional f1 distribution (S1). Family-wise error rates
(A) and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid
red, dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW- Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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Figure A.8: Performance comparison under correlated hypotheses (S2.1). Family-wise error rates
(A) and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid
red, dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW- Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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Figure A.9: Performance comparison under correlated hypotheses (S2.2). Family-wise error rates
(A) and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid
red, dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW- Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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Figure A.10: Performance comparison under correlated hypotheses (S2.3). Family-wise error rates
(A) and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid
red, dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW- Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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Figure A.11: Performance comparison under correlated hypotheses (S2.4). Family-wise error rates
(A) and true positive rates (B) were averaged over 1000 simulation runs. The dashed gray, solid
red, dotted green, dot-dashed blue and long-dashed orange lines represent the oracle, CAMT.fwer,
IHW- Bonferroni, weighted Bonferroni and Holm’s step-down methods respectively. The error
bars (A) represent the 95% CIs of the method CAMT.fwer and the dashed horizontal line indicates
the target FWER level of 0.05.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Normalization approaches

Table B.1: Some robust normalization methods.

Method Description

Trimmed mean of M-values

(TMM, Robinson and Osh-

lack, 2010)

TMM (in log scale) is the weighted mean of the log-ratios be-

tween the relative abundances and a referenced relative abun-

dance after excluding the most abundant taxa and the taxa with

the largest log-fold changes.

DESeq normalization (RLE,

Anders and Huber, 2010)

In RLE, the normalizing factor is the median of the ratios be-

tween the counts and the geometric mean of the counts of all

samples.

Cumulative-sum scaling

(CSS, Paulson et al., 2013)

In CSS, counts are divided by the cumulative sum of counts, up

to a quantile determined using a data-driven approach.

Geometric mean of pairwise

ratios (GMPR, Chen et al.,

2018)

GMPR is the geometric mean of the medians of the ratios be-

tween the pairs of counts of two samples, which reverses the

order of the two steps in the RLE.

B.2 Technical details

In the following, we use FX(·) to denote the cumulative distribution function of a random

variable X . Denote by oPm (OPm), oPn (OPn) and oP (OP) the corresponding rates of convergence

as m → ∞, n → ∞ and m,n → ∞ simultaneously, respectively. We first introduce some useful
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lemmas before proving Theorem 2.

Lemma 9. Under Condition (i) in Theorem 2, we have

|ρ̂− ρ| = oPn(1).

Lemma 10. Under Conditions (i),(ii),(iii),(v) and (ix) in Theorem 2, we have

max
i
|σ̂2
i − σ2

i | = oP(1).

Lemma 11. Under Conditions (i)–(viii) in Theorem 2, we have

√
n(α̃− ᾱ) = oP(1).

Lemma 12. Suppose Conditions (i)–(ix) in Theorem 2 are satisfied. Let m0 be the number of true

null hypotheses and

Vm,n(t) =
∑
i:αi=0

I
(
|
√
nα̂i|/

√
ρ̂σ̂2

i > t

)
,

Sm,n(t) =
m∑
i=1

I
(
|
√
nα̂i|/

√
ρ̂σ̂2

i > t

)
,

S∞,n(t) = P
(∣∣∣E +

√
nαi/

√
ρσ2

i

∣∣∣ > t

)
.

Then for any 0 < t0 <∞,

sup
0<t<t0

∣∣m−1Sm,n(t)− S∞,n(t)
∣∣ = oP(1),

sup
0<t<t0

∣∣m−1
0 Vm,n(t)− 2Fn−d−2(−t)

∣∣ = oP(1).

Proof of Lemma 9. From Condition (i), we know that each element of E(zsz
>
s ) is finite and

det{E(zsz
>
s )} > C. We have ρ̂ = det(B̂)/det(Â) and ρ = det(B)/det(A), where A = E(zsz

>
s ),
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Â = n−1
∑n

s=1 zsz
>
s , and B and B̂ are the principal submatrices obtained by deleting the first

row and first column of A and Â respectively. Thus we have that |det(B̂)− det(B)| = oP(1) and

|det(Â) − det(A)| = oP(1) using the law of large numbers. The Slutsky’s theorem thus implies

that |ρ̂− ρ| = oPn(1).

Proof of Lemma 10. Throughout the proof, we shall assume that εis/σi is C-sub-Gaussian, which

is indeed weaker than Condition (iii). For any λ > 0, we have

E[eλεis | σi] = E
[
eλσi(εis/σi) | σi

]
≤ eλ

2σ2
iC

2/2,

E[eλε̄is | {σi}] = E
[
eλ{(m−1)m−1εis−m−1

∑
j 6=i εjs} | {σi}

]
≤ eλ

2(maxi σ
2
i )C2/2.

Thus ε̄is conditional on {σi} is sub-Gaussian by Condition (ii). Let θ̄i = (ᾱi, β̄
>
i )> and θ̃i =

(α̃i, β̃
>
i )>. Note that

θ̃i =θ̄i +

(
n∑
s=1

zsz
>
s

)−1( n∑
s=1

zsε̄is

)
,

σ̂2
i =

1

n− d− 2

n∑
s=1

(
Wis − z>s θ̃i

)2

=
1

n− d− 2

n∑
s=1

(
Wis − z>s θ̄i + z>s θ̄i − z>s θ̃i

)2

=
1

n− d− 2

n∑
s=1

ε̄2
is +

2

n− d− 2
(θ̄i − θ̃i)

>
n∑
s=1

zsε̄is +
1

n− d− 2
(θ̄i − θ̃i)

>

(
n∑
s=1

zsz
>
s

)
(θ̄i − θ̃i)

=
1

n− d− 2

n∑
s=1

ε̄2
is −

1

n− d− 2

(
n∑
s=1

zsε̄is

)>( n∑
s=1

zsz
>
s

)−1( n∑
s=1

zsε̄is

)
,

and for any δ > 0,

P
(∣∣σ̂2

i − σ̄2
i

∣∣ > δ
)
≤P

(∣∣∣∣∣ 1

n− d− 2

n∑
s=1

ε̄2
is − σ̄2

i

∣∣∣∣∣ > δ

2

)

+ P


(

n∑
s=1

zsε̄is

)>( n∑
s=1

zsz
>
s

)−1( n∑
s=1

zsε̄is

)
>

(n− d− 2)δ

2

 .
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For the first term, we have

P

(∣∣∣∣∣ 1

n− d− 2

n∑
s=1

ε̄2
is − σ̄2

i

∣∣∣∣∣ > δ

2

)
≤P

{∣∣∣∣∣ 1n
n∑
s=1

ε̄2
is − σ̄2

i

∣∣∣∣∣ > (n− d− 2)δ

4n

}

+ P
(

d+ 2

n− d− 2
σ̄2
i >

δ

4

)
.

For the second term, we deduce that

P


(

n∑
s=1

zsε̄is

)>( n∑
s=1

zsz
>
s

)−1( n∑
s=1

zsε̄is

)
>

(n− d− 2)δ

2


≤P

{(
1

n

n∑
s=1

zsε̄is

)>(
1

n

n∑
s=1

zsz
>
s

)−1(
1

n

n∑
s=1

zsε̄is

)
>

(n− d− 2)δ

2n
,∥∥∥∥∥ 1

n

n∑
s=1

zsz
>
s − E(zsz

>
s )

∥∥∥∥∥ ≤ δ1

}
+ P

{∥∥∥∥∥ 1

n

n∑
s=1

zsz
>
s − E(zsz

>
s )

∥∥∥∥∥ > δ1

}

≤P

{∥∥∥∥∥ 1

n

n∑
s=1

zsε̄is

∥∥∥∥∥ >
√
C(n− d− 2)δ

n

}
+ P

{∥∥∥∥∥ 1

n

n∑
s=1

zsz
>
s − E(zsz

>
s )

∥∥∥∥∥ > δ1

}
,

with δ1 > 0 being a small enough constant. Here we have used the condition σmin{E(zsz
>
s )} > C

and Lemma S8 of Zhou et al. (2020, Covariate Adaptive Family-wise Error Rate Control for

Genome-Wide Association Studies) to get the last inequality. We conclude that |σ̂2
i − σ̄2

i | has an

exponential tail of the orderO(e−C1n) by using the Chernoff technique and the fact that the product

of two sub-Gaussian variables is sub-exponential (Vershynin, 2018, High-dimensional probability:

An introduction with applications in data science). Thus by the union bound and Condition (ix),

we have maxi |σ̂2
i − σ̄2

i | = oP(1). Observing that

|σ̄2
i − σ2

i | =

∣∣∣∣∣ 1

m

{
(m− 2)σ2

i +m−1

m∑
i=1

σ2
i

}
− σ2

i

∣∣∣∣∣ =

∣∣∣∣∣−2

m
σ2
i −

1

m2

m∑
i=1

σ2
i

∣∣∣∣∣ = oPm(1),

we obtain the desired result that maxi |σ̂2
i − σ2

i | = oP(1).

119



Proof of Lemma 11. We have

√
nα̃i =

√
nᾱi +

√
nη̂>n−1

n∑
s=1

zsε̄is =
√
nαi −

√
nᾱ + Ui − U,

where

Ui = η̂>
1√
n

n∑
s=1

zsεis, U = η̂>
1√
n

n∑
s=1

zs

(
1

m

m∑
i=1

εis

)
,

and η̂ is the first row of (n−1
∑n

s=1 zsz
>
s )−1. We first prove that U = oP(1). Using similar

arguments as in the proof of Lemma 9, we have |η̂ − η| = oPn(1), where η is the first row of

{E(zsz
>
s )}−1. Under Conditions (i), (iii), and (v), zs(

∑m
i=1 εis)/

√
m are conditionally i.i.d. given

σ1, . . . , σm. Thus,

E

{
zs

(
1√
m

m∑
i=1

εis

) ∣∣∣∣ σ1, ..., σm

}
= 0,

E

(zs � zs)

(
1√
m

m∑
i=1

εis

)2 ∣∣∣∣ σ1, . . . , σm

 =
E(zs � zs)

m

m∑
i=1

σ2
i ,

where � denotes the Hadamard product (element-wise product). The above implies that

1√
n

n∑
s=1

zs

(
1√
m

m∑
i=1

εis

)
= OPn(1)

whenever
∑m

i=1 σ
2
i /m < ∞. Using Conditions (ii), we have P(

∑m
i=1 σ

2
i /m < ∞) = 1. Thus

U = OP(m−1/2). Recall that

m̂ode({Xi}mi=1) = arg max
x∈R

1

mh

m∑
i=1

K

(
x−Xi

h

)
.

It is not hard to see that m̂ode({Xi+a}mi=1) = m̂ode({Xi}mi=1)+a, for any a, which may be related
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to m but is independent of i. Then we have

m̂ode({
√
nα̃i}mi=1) = m̂ode({

√
nαi −

√
nᾱ + Ui − U}mi=1) = m̂ode({

√
nαi + Ui}mi=1)−

√
nᾱ− U.

Therefore, we only need to show that M̃ := m̂ode({
√
nαi + Ui}mi=1) = oP(1). To this end, let

fm,h(x) =
1

mh

m∑
i=1

K

(
x− (

√
nαi + Ui)

h

)
.

Given Condition (vi), we have that for large enough n,

|fn(M̃ ; ρ)− fn(0; ρ)| ≤ |fn(M̃ ; ρ)− fm,h(M̃)|+ |fm,h(M̃)− fn(0; ρ)|

=|fn(M̃ ; ρ)− fm,h(M̃)|+
∣∣∣∣sup
x∈R

fm,h(x)− sup
x∈R

fn(x; ρ)

∣∣∣∣ ≤ 2 sup
x∈R
|fm,h(x)− fn(x; ρ)|,

and then it boils down to show that

sup
x∈R
|fm,h(x)− fn(x; ρ)| = oP(1).

We first note that

fn(x; a) =

∫ ∫
1√
au
φ

(
x− v√
au

)
dFσi(u)dF√nαi(v)

for any a > 0, where φ(·) denotes the density function of the standard normal distribution. Thus

fn(x; a) is uniformly continuous and bounded uniformly over n and a > C. In other words,

for any ε > 0, there exists a δ > 0 such that supn,a>C,|x1−x2|<δ |fn(x1; a) − fn(x2; a)| < ε and

supn,a>C,x∈R fn(x; a) < ∞. Besides, supn,x∈R |fn(x; ρ̂) − fn(x; ρ)| can be made arbitrarily small
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as long as |ρ̂− ρ| is small enough and ρ > C > 0. Thus we have

P
{

sup
x∈R
|fm,h(x)− fn(x; ρ)| > δ

}
≤P
{

sup
x∈R
|fm,h(x)− fn(x; ρ)| > δ, |ρ̂− ρ| ≤ δ1

}
+ P (|ρ̂− ρ| > δ1)

≤P
{

sup
x∈R
|fm,h(x)− fn(x; ρ̂)| > δ/2, |ρ̂− ρ| ≤ δ1

}
+ P (|ρ̂− ρ| > δ1)

=

∫
|u−ρ|≤δ1

P
{

sup
x∈R
|fm,h(x)− fn(x; ρ̂)| > δ/2 | ρ̂ = u

}
dFρ̂(u) + P (|ρ̂− ρ| > δ1)

for any δ > 0 and small enough δ1 > 0. Because |ρ̂ − ρ| = oPn(1) as shown in Lemma 9, our

goal narrows down to proving that for any δ > 0 and ε > 0, there exists a ξ > 0 such that for large

enough m,

sup
n,|ρ̂−ρ|≤ξ

P
{

sup
x∈R
|fm,h(x)− fn(x; ρ̂)| > δ | ρ̂

}
< ε,

or sufficiently,

sup
n,|ρ̂−ρ|≤ξ,x∈R

|E{fm,h(x) | ρ̂} − fn(x; ρ̂)| < ε,

sup
n,|ρ̂−ρ|≤ξ

E
[
sup
x∈R
|fm,h(x)− E{fm,h(x) | ρ̂}|2 | ρ̂

]
< ε.
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Let ξ and ν > 0 be small enough constants. Observe that

sup
n,|ρ̂−ρ|≤ξ,x∈R

|E{fm,h(x) | ρ̂} − fn(x; ρ̂)|

= sup
n,|ρ̂−ρ|≤ξ,x∈R

∣∣∣∣∫ ∞
−∞

1

h
K

(
x− y
h

)
fn(y; ρ̂)dy − fn(x; ρ̂)

∣∣∣∣
= sup

n,|ρ̂−ρ|≤ξ,x∈R

∣∣∣∣∫ ∞
−∞

1

h
K
(y
h

)
{fn(x− y; ρ̂)− fn(x; ρ̂)} dy

∣∣∣∣
= sup

n,|ρ̂−ρ|≤ξ,x∈R

∣∣∣∣∫
|y|≤ν

1

h
K
(y
h

)
{fn(x− y; ρ̂)− fn(x; ρ̂)} dy

∣∣∣∣
+ sup

n,|ρ̂−ρ|≤ξ,x∈R

∣∣∣∣∫
|y|>ν

1

h
K
(y
h

)
{fn(x− y; ρ̂)− fn(x; ρ̂)} dy

∣∣∣∣
≤ sup

n,|ρ̂−ρ|≤ξ,x∈R,|y|≤ν
|fn(x− y; ρ̂)− fn(x; ρ̂)|

∫
|u|≤ν/h

K(u)du

+ sup
n,|ρ̂−ρ|≤ξ,x∈R

fn(x; ρ̂)

∫
|u|>ν/h

K(u)du < ε,

where we have used the condition that
∫∞
−∞K(y)dy = 1 to get the second equality, and we also

used the result that fn(x; a) is uniformly continuous and bounded uniformly over n in the above

derivations. Note that Ui’s have the same distribution as
√
ρ̂εis and are independent given ρ̂. Let

Xi =
√
nαi + Ui. Define

ϕm(u) = m−1

m∑
i=1

eıuXi .

By the inverse Fourier transformation, we have

K(y) = (2π)−1

∫ ∞
−∞

k(u)eıuydu.
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Plugging this expression into the definition of fm,h, we have

fm,h(x) =
1

mh

m∑
i=1

K

(
x−Xi

h

)
= (2πmh)−1

m∑
i=1

∫ ∞
−∞

k(u)eıu
x−Xi
h du

=(2πm)−1

m∑
i=1

∫ ∞
−∞

k(hu)eıu(x−Xi)du = (2π)−1

∫ ∞
−∞

e−ıuxk(hu)ϕm(u)du,

where the last equality follows as k(u) is even. Using this result, we obtain

sup
x∈R
|fm,h(x)− E{fm,h(x) | ρ̂}| ≤ (2π)−1

∫ ∞
−∞
|k(hu)||ϕm(u)− E{ϕm(u) | ρ̂}|du.

Thus we have

sup
n,|ρ̂−ρ|≤ξ

E
[
sup
x∈R
|fm,h(x)− E{fm,h(x) | ρ̂}|2 | ρ̂

]
≤ sup

n,|ρ̂−ρ|≤ξ
E

([
(2π)−1

∫ ∞
−∞
|k(hu)||ϕm(u)− E{ϕm(u) | ρ̂}|du

]2

| ρ̂

)

≤ sup
n,|ρ̂−ρ|≤ξ

(2π)−2

∫ ∞
−∞
|k(hu)|du

∫ ∞
−∞
|k(hu)|E

[
|ϕm(u)− E{ϕm(u) | ρ̂}|2 | ρ̂

]
du

= sup
n,|ρ̂−ρ|≤ξ

(2π)−2m−1

∫ ∞
−∞
|k(hu)|du

∫ ∞
−∞
|k(hu)|E

[
|eıuXi − E{eıuXi | ρ̂}|2 | ρ̂

]
du

≤π−2m−1h−2

{∫ ∞
−∞
|k(u)|du

}2

→ 0

as a result of Conditions (vii) and (viii), which completes the proof.

Proof of Lemma 12. Let

S−m,n(t) =
m∑
i=1

I
(√

nα̂i/
√
ρ̂σ̂2

i < −t
)
.

The goal is to show

sup
0<t<t0

∣∣∣∣ 1

m
S−m,n(t)− P

(
E +
√
nαi/

√
ρσ2

i < −t
)∣∣∣∣ = oP(1).
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Recall in the proof of Lemma 11, we have

√
nα̂i =

√
n(α̃i + α̃) =

√
nαi +

√
n(α̃− ᾱ) + Ui − U,

where Ui/
√
ρ̂σ2

i ∼i.i.d. N(0, 1), U = oP(1) and
√
n(α̃− ᾱ) = oP(1). Then

1

m
S−m,n(t) =

1

m

m∑
i=1

I

{
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t σ̂i

σi
+
U −
√
n(α̃− ᾱ)√
ρ̂σ2

i

}
,

and

P
{

sup
0<t<t0

∣∣∣∣ 1

m
S−m,n(t)− P

(
E + αi/

√
ρσ2

i /n < −t
)∣∣∣∣ > δ

}
≤P

[
sup

0<t<t0

∣∣∣∣∣ 1

m

m∑
i=1

I

{
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t σ̂i

σi
+
U −
√
n(α̃− ᾱ)√
ρ̂σ2

i

}

− P
(
E + αi/

√
ρσ2

i /n < −t
) ∣∣∣∣∣ > δ,

sup
i

∣∣∣∣ σ̂iσi − 1

∣∣∣∣ ≤ δ1, sup
i

∣∣∣∣∣U −
√
n(α̃− ᾱ)√
ρ̂σ2

i

∣∣∣∣∣ ≤ δ2

]

+ P
(

sup
i

∣∣∣∣ σ̂iσi − 1

∣∣∣∣ > δ1

)
+ P

{
sup
i

∣∣∣∣∣U −
√
n(α̃− ᾱ)√
ρ̂σ2

i

∣∣∣∣∣ > δ2

}

≤P

{
sup

0<t<t0

∣∣∣∣∣ 1

m

m∑
i=1

I

(
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t− tδ1 − δ2

)
− P

(
E +

αi√
ρσ2

i /n
< −t

)∣∣∣∣∣ > δ

}

+ P

{
sup

0<t<t0

∣∣∣∣∣ 1

m

m∑
i=1

I

(
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t+ tδ1 + δ2

)
− P

(
E +

αi√
ρσ2

i /n
< −t

)∣∣∣∣∣ > δ

}

+ o(1)

for any positive constants δ, δ1 and δ2, where in the last step, we have used the fact that ρ > C,

σi > C and the results from Lemmas 9–11. Thus we only need to show that for any δ > 0 and
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ε > 0, there exist ξ > 0, δ1 6= 0 and δ2 6= 0 such that for large enough m,

sup
n,|ρ̂−ρ|<ξ

P

{
sup

0<t<t0

∣∣∣∣∣ 1

m

m∑
i=1

I

(
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t+ tδ1 + δ2

)

− P

(
E +

αi√
ρσ2

i /n
< −t

)∣∣∣∣∣ > δ

∣∣∣∣ ρ̂
}
< ε,

or sufficiently,

sup
n,|ρ̂−ρ|<ξ

P

{
sup

0<t<t0

∣∣∣∣∣ 1

m

m∑
i=1

I

(
Ui√
ρ̂σ2

i

+
αi√
ρ̂σ2

i /n
< −t+ tδ1 + δ2

)

− P

(
E +

αi√
ρ̂σ2

i /n
< −t+ tδ1 + δ2

∣∣∣∣ ρ̂
)∣∣∣∣∣ > δ

∣∣∣∣ ρ̂
}
< ε,

sup
n,|ρ̂−ρ|<ξ,0<t<t0

∣∣∣∣∣P
(
E +

αi√
ρ̂σ2

i /n
< −t+ tδ1 + δ2

∣∣∣∣ ρ̂
)
− P

(
E +

αi√
ρ̂σ2

i /n
< −t

∣∣∣∣ ρ̂
)∣∣∣∣∣ < ε,

sup
n,|ρ̂−ρ|<ξ,0<t<t0

∣∣∣∣∣P
(
E +

αi√
ρ̂σ2

i /n
< −t

∣∣∣∣ ρ̂
)
− P

(
E +

αi√
ρσ2

i /n
< −t

)∣∣∣∣∣ < ε,

where the first result holds due to the Glivenko–Cantelli theorem (Corollary 4.15, Wainwright,

2019, High-dimensional statistics: A non-asymptotic viewpoint). We note that the cumulative

distribution function of E + αi/
√
aσ2

i /n for any a > 0, denoted by Gn(·; a), can be expressed as

Gn(x; a) =

∫ ∞
−∞

Φ (x− u) dF
αi/
√
aσ2
i /n

(u) =

∫ ∞
−∞

Φ

(
x−

√
ρ

a
u

)
dF

αi/
√
ρσ2
i /n

(u),

where Φ(·) represents the cumulative distribution function of the standard normal distribution.

Thus Gn(x; a) is uniformly continuous uniformly over n and a > 0. In other words, for any ε > 0,

there exists a δ > 0 such that supn,a>0,|x1−x2|<δ |Gn(x1; a) − Gn(x2; a)| < ε, which verifies the

second result. In addition, supn,|ρ̂−ρ|<ξ,|x|<t0 |Gn(x; ρ̂)−Gn(x; ρ)| can be made arbitrarily small as

long as ξ is small enough, which confirms the third result.
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Proof of Theorem 2. Observe that

∣∣∣∣F̂DP(t)− 2Fn−d−2(−t)
S∞,n(t)

∣∣∣∣ =

∣∣∣∣2Fn−d−2(−t)
{

1

Sm,n(t)/m
− 1

S∞,n(t)

}∣∣∣∣ .
Combing with Lemma 12 and Condition (x), we deduce that there exists some t0 such that t∗ < t0

for large enough n, and

sup
0<t<t0

∣∣∣∣ Vm,n(t)

1 ∨ Sm,n(t)
− m0

m

2Fn−d−2(−t)
S∞,n(t)

∣∣∣∣
= sup

0<t<t0

∣∣∣∣ Vm,n(t)

1 ∨ Sm,n(t)
− 2Fn−d−2(−t)
{1 ∨ Sm,n(t)}/m0

+
2Fn−d−2(−t)

{1 ∨ Sm,n(t)}/m0

− m0

m

2Fn−d−2(−t)
S∞,n(t)

∣∣∣∣
≤ sup

0<t<t0

∣∣∣∣m−1
0 Vm,n(t)− 2Fn−d−2(−t)
{1 ∨ Sm,n(t)}/m0

∣∣∣∣+ sup
0<t<t0

∣∣∣∣2m0Fn−d−2(−t)
m

[
1

{1 ∨ Sm,n(t)}/m
− 1

S∞,n(t)

]∣∣∣∣
=oP(1),

and

sup
0<t<t0

∣∣∣∣F̂DP(t)− 2Fn−d−2(−t)
S∞,n(t)

∣∣∣∣ = sup
0<t<t0

∣∣∣∣2Fn−d−2(−t)
{

1

Sm,n(t)/m
− 1

S∞,n(t)

}∣∣∣∣ = oP(1).

Therefore, we have

Vm,n(t∗)

1 ∨ Sm,n(t∗)
≤ Vm,n(t∗)

1 ∨ Sm,n(t∗)
− m0

m

2Fn−d−2(−t∗)
S∞,n(t∗)

+
2Fn−d−2(−t∗)
S∞,n(t∗)

− F̂DP(t∗) + F̂DP(t∗)

≤q + oP(1).

The conclusion follows by using Lemma 8.3 of Cao et al. (2020, Optimal false discovery rate

control for large scale multiple testing with auxiliary information).

B.3 Additional simulation results

Figures B.1 and B.2 compare the proposed method LinDA with different zero-handling ap-

proaches under settings S6C0 and S0C0. Figure B.3 shows the results of methods DESeq2, EdgeR
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and MetagenomeSeq-2 under setting S0C0. Figure B.11 compares the ANCOM-BC disabling and

enabling zero treatment for setting S6C0. Figures B.4–B.10 and B.12–B.13 show the results of set-

tings S0C1, S0C2, S1C0, S2C0, S4C0, S5C0, S6C0, and S7.1C0 and S7.2C0 respectively. Figure

B.14 shows the results under S0C0 with stronger compositional effects.

B.4 Additional results of real data applications

Figures B.15–B.18 show the effect size plots and volcano plots for the four datasets (CDI, IBD,

RA and SMOKE) respectively.
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Figure B.1: Performance of LinDA with different zero-handling approaches (S6C0, 10-fold dif-
ference in library size). False discovery proportions (A) and true positive rates (B) were averaged
over 100 simulation runs. The dashed horizontal line (A) indicates the target FDR level of 0.05.
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Figure B.2: Performance of LinDA with different zero-handling approaches (S0C0, log normal
distribution for absolute abundances with a binary covariate). False discovery proportions (A) and
true positive rates (B) were averaged over 100 simulation runs. The dashed horizontal line (A)
indicates the target FDR level of 0.05.
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Figure B.3: Performance of DESeq2, EdgeR and MetagenomeSeq-2 (S0C0, log normal distri-
bution for absolute abundances with a binary covariate). False discovery proportions (A) and true
positive rates (B) were averaged over 100 simulation runs. The dashed horizontal line (A) indicates
the target FDR level of 0.05.
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Figure B.4: Performance comparison (S0C1, log normal distribution for absolute abundances with
a continuous covariate). False discovery proportions (A) and true positive rates (B) were averaged
over 100 simulation runs. Error bars (A) represent the 95% CIs of the method LinDA and the
dashed horizontal line indicates the target FDR level of 0.05.
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Figure B.5: Performance comparison (S0C2, log normal distribution for absolute abundances with
a binary variable of interest and two confounders). False discovery proportions (A) and true posi-
tive rates (B) were averaged over 100 simulation runs. Error bars (A) represent the 95% CIs of the
method LinDA and the dashed horizontal line indicates the target FDR level of 0.05.
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Figure B.6: Performance comparison (S1C0, zero inflated absolute abundances). False discovery
proportions (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A)
represent the 95% CIs of the method LinDA and the dashed horizontal line indicates the target
FDR level of 0.05.
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Figure B.7: Performance comparison (S2C0, correlated absolute abundances). False discovery
proportions (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A)
represent the 95% CIs of the method LinDA and the dashed horizontal line indicates the target
FDR level of 0.05.
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Figure B.8: Performance comparison (S4C0, smaller m). False discovery proportions (A) and true
positive rates (B) were averaged over 1000 simulation runs. Error bars (A) represent the 95% CIs
of the method LinDA and the dashed horizontal line indicates the target FDR level of 0.05.
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Figure B.9: Performance comparison (S5C0, smaller n). False discovery proportions (A) and true
positive rates (B) were averaged over 100 simulation runs. Error bars (A) represent the 95% CIs
of the method LinDA and the dashed horizontal line indicates the target FDR level of 0.05.
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Figure B.10: Performance comparison (S6C0, 10-fold difference in library size). False discovery
proportions (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A)
represent the 95% CIs of the method LinDA and the dashed horizontal line indicates the target
FDR level of 0.05.
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Figure B.11: Performance of ANCOM-BC disabling (ANCOM-BC-1) and enabling (ANCOM-
BC-2) zero treatment (S6C0, 10-fold difference in library size). False discovery proportions (A)
and true positive rates (B) were averaged over 100 simulation runs. The dashed horizontal line (A)
indicates the target FDR level of 0.05.
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Figure B.12: Performance comparison (S7.1C0, pre-treatment and post-treatment comparison).
False discovery proportions (A) and true positive rates (B) were averaged over 100 simulation
runs. The dashed horizontal line (A) indicates the target FDR level of 0.05.
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Figure B.13: Performance comparison (S7.2C0, replicate sampling). False discovery proportions
(A) and true positive rates (B) were averaged over 100 simulation runs. The dashed horizontal line
(A) indicates the target FDR level of 0.05.
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Figure B.14: Performance comparison (S0C0 with strong compositional effects). False discovery
proportions (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A)
represent the 95% CIs of the method LinDA and the dashed horizontal line indicates the target
FDR level of 0.05.
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Figure B.15: Effect size plot and volcano plot for CDI dataset. The “Debiased" points represent the
bias-corrected regression coefficients, and “Non-debiased" points represent the original (biased)
regression coefficients. The error bars represent the 95% CIs of the “Debiased" points.
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Figure B.16: Effect size plot and volcano plot for IBD dataset. The “Debiased" points represent the
bias-corrected regression coefficients, and “Non-debiased" points represent the original (biased)
regression coefficients. The error bars represent the 95% CIs of the “Debiased" points.
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Figure B.17: Effect size plot and volcano plot for RA dataset. The “Debiased" points represent the
bias-corrected regression coefficients, and “Non-debiased" points represent the original (biased)
regression coefficients. The error bars represent the 95% CIs of the “Debiased" points.
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Figure B.18: Effect size plot and volcano plot for SMOKE dataset. The “Debiased" points rep-
resent the bias-corrected regression coefficients, and “Non-debiased" points represent the original
(biased) regression coefficients. The error bars represent the 95% CIs of the “Debiased" points.
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