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ABSTRACT

In this dissertation, we construct and investigate a family
!

rGω | ω P t0, 1, 2uN
)

of groups that

generalize the famous Grigorchuk’s overgroup. Our work is spitted into three parts: (i) study of

growth, (ii) study of topological and algebraic properties of the closure of the family
!

rGω
)

in the

space M8 of marked 8-generated groups, and (iii) developing the technical tools of dynamic origin

for study the spectral problems associated with the groups rGω.

In the first part, we show, if ω is eventually constant, then rGω is of polynomial growth, and if ω is

not eventually constant, then rGω is of intermediate growth. In the case of non-eventually constant

ω, we give a universal lower bound for the growth rate and an upper bound for homogeneous

sequences.

The second part contains the observation that this family is not closed, and the closure is the

union of the (countable) set of isolated points and a Cantor set. The cluster points are constructed

using branch-type algorithms and are closely related to the Lamplighter groups. Finally, we show

that the generalized overgroups that are of intermediate growth are infinitely presented.

The final part is dedicated to studying the Schur complements and multi-dimensional ratio-

nal maps associated with the generalized overgroups. First, we compute the Schur complements

and multi-dimensional rational maps associated with some groups, including the generalized over-

groups. These rational maps can be realized as two-dimensional and do belong to a two-parametric

family of maps. The two-parametric maps have the integrability property of being semi-conjugate

to the Chebyshev map. We show that any random iterations of two-parametric maps, viewed as

maps on projective space, are algebraically stable in a rational variety.
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1. INTRODUCTION∗

The growth rate of groups is a long studied area [Šva55, Mil68, Gri91] and it was known that

growth rates of groups can vary from polynomial growth through intermediate growth to expo-

nential growth. First group of intermediate growth (the growth which is neither polynomial nor

exponential), known as the first Grigorchuk’s torsion group G, was constructed by Rostislav Grig-

orchuk in 1980 [Gri80] as a finitely generated infinite torsion group and later [Gri83] it was shown

that it has intermediate growth.

At the same time, in [Gri83, Gri84b] (also see [Gri85]) an uncountable family of groups
!

Gω | ω P Ω “ t0, 1, 2uN
)

, known as generalized Grigorchuk’s groups were constructed. They

consist of groups of intermediate growth when sequence ω is not virtually constant and of polyno-

mial growth when sequence ω is virtually constant [Gri84b].

Since the construction of the first Grigorchuk group, there was an expansion of the area of study

and new groups of intermediate growth were introduced [Gri84a, KP13, BE14, BGN15, Nek18].

The group rG known as the Grigorchuk’s overgroup [BG00a] is an infinite finitely generated group

of intermediate growth which shares many properties with first Grigorchuk’s group [BG02]. In

contrast, the Grigorchuk’s overgroup has an element of infinite order [BG00a].

Grigorchuk’s space Mk of marked groups with kpě 2q generators was introduced in 1984

[Gri84b]. It is a totally disconnected, compact metric space with complicated structure of isolated

points as shown by Y. de Cornulier, L. Guyot and W. Pitsch [dCGP07] and non-trivial perfect

kernel that is homeomorphic to a Cantor set. The space also was studied in [Cha00, CG05, BK20]

and other articles.

The space of marked groups was used by Grigorchuck to show the family tGωuωPΩ consists of

∗Part of this chapter is reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by
Supun T. Samarakoon, 2020. Algebra and Discrete Mathematics, 30(1), 97–117, Copyright [2020] by Algebra and
Discrete Mathematics (under open access policy), “Generalized Grigorchuk’s Overgroups as Points in the Space of
Marked 8-Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020]
by World Scientific Publishing Co., Inc., and “Integrable and Chaotic Systems Associated With Fractal Groups” by
Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by MDPI (under
open access policy).
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infinitely presented groups (when ω is not virtually constant). Also, a modification of the construc-

tion lead him to show in [Gri84b], that the family is closed and perfect subset of M4 and hence is

homeomorphic to a Cantor set.

The further investigations showed usefulness of spaces Mk, k ě 2 for study of group properties

such as (non-elementary) amenability and for constructions in group theory, in particular to study

of IRS (invariant random subgroups) on a free group and other groups [Bow15, BGN15].

In 1957, M. Day asked whether all amenable groups are elementary amenable [Day57]. It

was answered negatively, by the construction of groups of intermediate growth [Gri84b]. Next

examples negating Day’s problem came from theory of self-similar groups. One such group is

the Basilica group [GZ02], which is amenable but not sub-exponentially amenable [BV05]. Most

recent examples of non-elementary amenable groups are topological full groups associated with

minimal Cantor system, which were used to construct finitely generated simple non-elementary

amenable groups [JM13].

In 1996, Stepin observed that constructions similar to the one in [Gri84b], can lead to new

families of non-elementary amenable groups [Ste96]. Namely, if one finds suitable Cantor set of

groups containing a countable dense subset of (perhaps elementary) amenable groups and a co-

meager set consisting of non-elementary groups, then standard argument based on Baire category

insures that there is a co-meager set of non-elementary amenable groups. (See [WW17] for non-

constructive proof of existence of non-elementary amenable groups using set theoretic approach.)

The groups G and rG belong to an important class of groups called self-similar groups. Self-

similar groups were used to solve several outstanding problems in different areas of mathemat-

ics. They provide an elegant contribution to the general Burnside problem [Gri80], to the J. Mil-

nor problem on growth [Gri83, Gri84b], to the von Neumann - Day problem on non-elementary

amenability [Gri84b, Gri98], to the Atiyah problem in L2-Betti numbers [GLSZ00], etc. Self-

similar groups have applications in many areas of mathematics such as dynamical systems, oper-

ator algebras, random walks, spectral theory of groups and graphs, geometry and topology, com-

puter science, and many more (see the surveys [GNS00, BGN03, Gri05, GN07, Gri11, Gri14,

2



GNŠ15, GLN17] and the monograph [Nek05]).

Multi-dimensional rational maps appear in the study of spectral properties of graphs and unitary

representations of groups (including representations of Koopman type). The spectral theory of such

objects is closely related to the theory of joint spectrum of a pencil of operators in a Hilbert (or

more generally in a Banach) space and is implicitly considered in [BG00b] and explicitly outlined

in [Yan09].

These multi-dimensional rational maps are very special and quite degenerate as claimed by

N. Sibony and M. Lyubich, respectively. Nevertheless, they are interesting and useful, as, on the

one hand, they are responsible for the associated spectral problems, on the other hand, they give

a lot of material for people working in dynamics, being quite different from the maps that were

considered before.

Some of them demonstrate features of integrability, which means that they semiconjugate to

lower-dimensional maps, while the others do not seem to have integrability features and their

dynamics (at least on an experimental level) demonstrate the chaotic behavior.

In this dissertation, we construct a family of groups called generalized overgroups and explore

many properties of them. The construction of these groups, discussed in Section 2.5, closely

follows the construction of tGωuωPΩ. Chapter 2 contains some basic preliminaries that are used

throughout the dissertation. The study of generalized overgroups are divided into three parts,

which are discussed in Chapter 3, 4, and 5. Most of the results discussed here are published in

three articles [Sam20], [Sam22] and [GS21].

Chapter 3, extracted from the article [Sam20], discusses the growth of the generalized over-

groups. There, we give the description on the growth rate of generalized overgroups (see The-

orem 3.1) and give upper and lower bounds for some subclass of groups (see Theorem 3.2 and

Proposition 3.4).

Chapter 4 is devoted to study the structure of the set consisting of generalized overgroups as a

subset of the space of marked groups of 8-generators. The set is not closed and the closure of it is

the union of a Cantor set and the set of isolated points (see Theorem 4.2). The cluster points not in

3



the above set are constructed in Section 4.2.2 and their properties are discussed (see Theorem 4.3).

Material of this chapter is published in the article [Sam22].

Chapter 5, the final chapter, consists of the results from the article [GS21], written in collab-

oration with Rostislav Grigorchuk, and some results obtained under the guidance of Nguyen-Bac

Dang, Rostislav Grigorchuk, and Mikhail Lyubich. There, we discuss the method of Schur com-

plements, which can be used to compute spectra of groups. In Section 5.4, the computations of

the Schur complements and associated rational maps, for the groups discussed in this text, are

given. Integrability properties of these rational maps and related 2-parametric maps are presented

in Section 5.5 (see Theorem 5.2 and 5.3).

At the end of the dissertation, there is a short appendix, where some computation are presented.

These are used in the preceding chapters, but does not fall in line with the flow of the main text.
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2. PRELIMINARIES∗

In this chapter, we will introduce some preliminary notions and facts, which will be used in the

rest of the text.

2.1 Growth of Groups

Let G be a finitely generated group and let S be a finite symmetric (i.e., s´1 P S if s P S) set,

not containing the identity of G, that generates G. Now consider the alphabet (i.e., a collection

of letters) S and let W be a word over the alphabet S (by a word over an alphabet, we mean a

freely reduced element of the free group generated by the alphabet). The number of letters in W

is denoted by |W | and for s P S, the number of occurrences of s in W is denoted by |W |s. For

g P G, the length of g, denoted by |g|, is defined by,

|g| “ min t|W | : g “ W in Gu .

Definition 2.1. Let G be a group generated by a finite symmetric set S. The growth function of G

with respect to S (also known as the volume growth function), γG,S : N0 Ñ N, is defined by,

γG,Spnq “ |BG,Spnq|,

where BG,Spnq “ tg P G : |g| ď nu.

Observe that the setBG,Spnq is the ball of radius n and center 1 (the identity inG) in the Cayley

graph, CaypG,Sq, which is defined in Section 2.2.

There is a partial order relation ĺ for growth functions defined by f ĺ g if and only if there

∗Part of this chapter is reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by
Supun T. Samarakoon, 2020. Algebra and Discrete Mathematics, 30(1), 97–117, Copyright [2020] by Algebra and
Discrete Mathematics (under open access policy), “Generalized Grigorchuk’s Overgroups as Points in the Space of
Marked 8-Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020]
by World Scientific Publishing Co., Inc., and “Integrable and Chaotic Systems Associated With Fractal Groups” by
Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by MDPI (under
open access policy).
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are constants A and B such that fpnq ď AgpBnq for all n. We define an equivalence relation »

by, f » g if and only if f ĺ g and g ĺ f . The equivalence class of γG,Spnq is known as the

growth rate of the group G. The growth rate of a group does not depend on the generating set. So

we denote the growth rate of a group G, by γGpnq. Growth rate can be polynomial, exponential,

or intermediate if γG,Spnq » nd for some positive integer d, γG,Spnq » en, or nd ň γG,Spnq ň en

for all positive integers d, respectively. Growth above polynomial is called super-polynomial and

growth below exponential is called sub-exponential.

The growth exponent λG,S of a group G generated by S, is given by λG,S “ lim
n
pγG,Spnqq

1{n,

and λG,S ě 1 for any finitely generated group G. Note that 1{λG,S is the radius of convergence of

the generating function of tγG,Spnqu. An easy exercise shows that, for finitely generated, infinite

group G with generating set S,

lim
n
pγG,Spnqq

1{n
“ lim

n

`

γ1G,Spnq
˘1{n

, (2.1)

by looking at the radii of convergence of generating functions of tγG,Spnqu and
 

γ1G,Spnq
(

, where

γ1G,Spnq “ |BG,SpnqzBG,Spn´ 1q| “ γG,Spnq ´ γG,Spn´ 1q is the spherical growth function of G

with respect to the generating set S. For finite indexed subgroup H of G,

γH,Spnq ď γG,Spnq ď γH,Spn`Nq,

where γH,Spnq “ |BG,Spnq XH| and N is the maximum of lengths of right coset representatives

of H in G. Thus for an infinite group G, we get,

lim
n
pγH,Spnqq

1{n
“ lim

n

`

γ1H,Spnq
˘1{n

“ lim
n
pγG,Spnqq

1{n . (2.2)

Here γ1H,Spnq “ |pBG,SpnqzBG,Spn´ 1qq XH|. It is known that λG,S ą 1 ðñ G has exponen-

tial growth [Gri84b].
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2.2 Graphs Associated With Groups

A graph is an ordered pair pV,Eq, consisting a set V of vertices and a set E of edges, together

with two maps i, t : E Ñ V . For an edge e P E, the vertex ipeq is called the initial vertex and the

vertex tpeq is called the terminal vertex of e. In the case of ipeq “ tpeq, we say the edge e is a

loop. So, our definition of a graph, is called as a directed multi-graph or an oriented multi-graph, in

graph theory. Depending on the situation, graph can be non-oriented (if the edges are independent

of the orientation, i.e., instead of the two maps i, t, the graph has only one map from E to the set

of unordered pairs of V ) and labeled (if edges are colored by elements of a certain alphabet). We

only consider connected locally finite graphs (the later means that each vertex is incident to a finite

number of edges). The degree dpuq of the vertex u is the number of edges incident to it (where

each edge from or to u contributes 1 to the degree and each loop contributes 2 to the degree). A

graph is of uniformly bounded degree if there is a constant C such that dpvq ď C for all v P V , and

is a regular graph if all vertices have the same degree.

There is a rich source of examples of graphs coming from groups, such as the Cayley graphs

and the Schreier graphs.

Definition 2.2. Let G be a group generated by a set S (usually, we assume |S| ă 8, which makes

G finitely generated). The left Cayley graph, denoted by CaylpG,Sq, is the graph with the vertex

set G and the edge set tpg, sgq | g P G and s P S Y S´1u, where g is the initial vertex and sg is the

terminal vertex of the edge pg, sgq.

Similarly, one can define the right Cayley graph, CayrpG,Sq. There is a natural graph isomor-

phism (i.e., a bijection between set of vertices, preserving edge adjacencies and directions) between

the left and right Cayley graphs. They are vertex transitive, i.e., the group AutpCaypG,Sqq of auto-

morphisms acts transitively on the set of vertices. This is due to that fact that the right translations

by elements of G on the vertex set induce automorphisms of CaylpG,Sq. When speaking about

Cayley graph, we usually keep in mind the left Cayley graph. Depending on the situation, Cayley

graphs are considered as labeled (the edge pg, sgq has the label s), or unlabeled (if labels do not
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play a role). Cayley graphs can also be converted into undirected graphs by identification of pairs

pg, sgq, psg, s´1psgqq “ psg, gq of mutually inverse edges. Examples of Cayley graphs are pre-

sented in Figure 2.1. Non-oriented Cayley graph CaypG,Sq is d-regular with d “ 2|SzS2|` |S2|,

where S2 Ă S is the set of generators whose order is two (involutions).

(a) (b)

(c) (d)

Figure 2.1: Cayley graphs of (a) Z2, (b) free group of rank 2, (c) group of intermediate growth G,
(d) surface group of genus 2.

Definition 2.3. Let G be a group generated by a set S and let H be a subgroup of G. The

left Schreier graph (also known as the left Schreier coset graph), denoted by SchlpG,H, Sq, is
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the graph with the vertex set G{H “ tgH | g P Gu, the set of left cosets, and the edge set

tpgH, sgHq | g P G and s P S Y S´1u, where gH is the initial vertex and sgH is the terminal

vertex of the edge pgH, sgHq.

Again, one can consider a right version of the definition, oriented or non-oriented, labeled or

unlabeled versions of the Schreier graph (see [NP20, DDMN10, BDN17] for applications).

Given a set X , on which the group G acts, and a distinguished point x0 P X , there is an

associated graph called the orbital graph, in which the vertex set is Gx0, the orbit of x0, the edge

set is tpx, sxq | x P Gx0 and s P Su, where the initial and terminal vertices of the edge px, sxq are

x, sx, respectively. Note that the Schreier graph SchpG,H, Sq is an orbital graph with respect to

the action on G{H by left multiplication. Conversely, every orbital graph of a transitive action

(any action can be converted in to a transitive action by restricting the space to a single orbit) can

be identified with the Schreier graph SchpG,Gx0 , Sq. Therefore, the orbital graphs and Schreier

graphs are the same.

Cayley graph CaypG,Sq is isomorphic to the Schreier graph SchpG,H, Sq when the subgroup

H “ t1u is the trivial subgroup. Non-oriented Schreier graphs are also d-regular with d given

by the same expression as of Cayley graphs, but in contrast with Cayley graphs, they may have a

trivial group of automorphism. Examples of Schreier graphs are presented in the Figure 2.2.

Schreier graphs have much more applications in mathematics being able to provide a

geometrical-combinatorial representation of many objects and situations. In particular, they are

used to approximate fractals, Julia sets, study the dynamics of groups of iterated monodromy,

Hanoi Tower Game on d pegs for d ě 3, etc.

2.3 Groups Acting on Binary Rooted Tree Td

Let X “ tx1, . . . , xdu be an alphabet over d symbols x1, . . . , xd. We denote the free monoid

generated by X (i.e., the set of finite words over the alphabet X with concatenation operation) by

X˚, where the empty word is denote by /0. Let XN denote the set of infinite words over X .

The d-regular rooted tree Td is the labeled infinite graph with vertex set X˚, distinguished

vertex /0 called the root, and the edge set E, where two vertices u, v are connected by an edge in E

9
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Figure 2.2: Schreier graphs of (a) G (finite), (b) G (infinite and bi-infinite), (c) Hanoi group Hp3q,
(d) Basilica.
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Figure 2.3: Labeled binary rooted tree T2

if and only if u “ xv or v “ xu for some x P X . Figure 2.3 represents the binary rooted tree T2,

geometrically. We may abuse the notation and write v P Td to indicate a vertex v. For each n ě 0,

the set of vertices of Td whose label has n letters is called the level n of Td.

The boundary of Td, denoted by BTd, is the set of infinite words XN. It is a topological space

under the (Tychonoff) product induced by the discrete space X . Thus, the BTd is homeomorphic to

a Cantor set. The boundary BTd is a measure space together with the Bernoulli measure µ induced

by the distribution on X . In this text, we restrict µ to be the uniform Bernoulli measure.

A bijective map on vertex set of Td is said to be an automorphism of Td if it preserves the

tree structure. In other words, g is an automorphism of Td if g fixes the root (i.e., gp /0q “ /0) and

preserves the edge adjacencies (i.e., u, v are adjacent in Td if and only if gpuq, gpvq are adjacent

in Td). Thus, automorphisms preserve each level of Td and permute vertices within each level.

This is called the permutation action of the automorphism on levels of Td. The collection of

automorphisms of Td, denoted by AutpTdq, is a group under composition operation. Subgroups of

AutpTdq are called the groups acting on Td.

For g P AutpTdq, v P Td, there is a unique element in AutpTdq, denoted by g|v, such that
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gpvuq “ gpvqg|vpuq, for all u P T2. The element g|v is called the section of g at v. Some basic

properties of sections are given below.

Proposition 2.1. Let f, g P AutpTdq and v, u P Td. Then

1. pfgq|v “ f |gpvqg|v,

2. g|uv “ pg|uq|v.

Proof. Let f, g P AutpTdq and v, u P Td. First note that pfgqpvwq “ fpgpvwqq “ fpgpvqg|vpwqq “

fpgpvqqf |gpvqpg|vpwqq “ pfgqpvqpf |gpvqg|vqpwq and pfgqpvwq “ pfgqpvqpfgq|vpwq, and therefore

pfgqpvqpf |gpvqg|vqpwq “ pfgqpvqpfgq|vpwq for all w P Td. Since w P Td is arbitrary, we obtain the

first assertion.

Now note that gpuvwq “ gpuvqg|uvpwq “ gpuqg|upvqg|uvpwq and gpuvwq “ gpuqg|upvwq “

gpuqg|upvqpg|uq|vpwq, and therefore gpuqg|upvqg|uvpwq “ gpuqg|upvqpg|uq|vpwq for all w P Td.

Since w P Td is arbitrary, we obtain the second assertion.

Let σ : BTd Ñ BTd be the shift map. Then, σ is a measure preserving transformation. The

group of automorphisms AutpTdq acts on BTd in a canonical way by, g ¨ ξ “ gpxqg|x ¨ σξ, where

x is the first symbol of ξ P BTd. It can be seen that this action is an action by homeomorphisms.

Note that,

σg ¨ xξ “ g|x ¨ σxξ, (2.3)

for x P X and ξ P BTd, since σg ¨ xξ “ σgpxqg|x ¨ ξ “ g|x ¨ ξ “ g|x ¨ σxξ.

Any automorphism is uniquely identified by its sections at vertices of level 1 and the permuta-

tion action on level 1. This identification is called the wreath recursion and induces an isomorphism

of groups given by,

AutpTdq – pAutpTdqqd ¸ Sd

g Ø ppg|xqxPX ; τgqq , (2.4)
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where τg is the permutation on level 1 of Td by g and the action of Sd on pAutpTdqqd is by permu-

tation of coordinates.

For V Ă X˚, define stabilizer of V , denoted by StabpV q, to be the subgroup of automorphisms

that fix all the vertices in V . If V is singleton, say V “ tvu, we denote Stabptvuq by Stabpvq. The

level stabilizer

Stabpnq “
č

vP level n of Td
Stabpvq

contains automorphisms that fix all the vertices in the n-th level. If an automorphism fixes a vertex

v, then it fix all the vertices in the ray /0 ´ v (by the ray u ´ v, we mean the sequence of distinct

vertices starting with u, ending with v, and each consecutive pair of vertices are adjacent). In

particular, in the case of T2, it fixes a vertex of level 1 on ray /0 ´ v. Since there are only two

vertices on level 1, fixing one vertex forces the other vertex to be fixed. So, any automorphism of

T2 that fix one non-root vertex is in Stabp1q. Also, an automorphism that fixes n-th level fixes all

the levels above n.

Since the automorphisms in Stabp1q fix the vertices of level 1, the wreath recursions (2.4)

translates into,

ψ : Stabp1q – pAutpTdqqd

g ÞÑ pg|xqxPX . (2.5)

The map ψ is called the natural embedding. If g P Stabp2q, then g|x P Stabp1q for

each x P X . Thus, by applying ψ to g|x1 , . . . , g|xd , and using Proposition 2.1, we obtain

pg|x1xqxPX , . . . , pg|xdxqxPX , respectively. We may abuse the notation and write ψ2pgq “ ψ˝ψpgq “

pg|xyqx,yPX , which is an isomorphism from Stabp2q to pAutpTdqqd
2

. Applying the above argument

inductively, we obtain

ψn : Stabpnq – pAutpTdqqd
n

g ÞÑ pg|i1i2...inqi1,i2,...,inPX . (2.6)
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Here the dn-tuple pg|i1i2...inqi1,i2,...,inPX is called the decomposition of g into the depth n. We may

omit ψ, ψn and write g “ pg|xqxPX and g “ pg|i1i2...inqi1,i2,...,inPX , respectively, if there are no

ambiguity.

Now consider the case where d “ 2. It is the convention to use the alphabet t0, 1u (i.e., x1 “ 0

and x2 “ 1). Let V18 “ t1n : n P Nu and let g P StabpV18q. Note that 1n`m “ gp1n`mq “

gp1n1mq “ gp1nqg|1np1
mq “ 1ng|1np1

mq and so g|1np1mq “ 1m, for each n,m P N. Therefore

g|1n P StabpV18q for each n P N. By applying ψ, we obtain g “ pg|0, g|1q “ pg|0, pg|10, g|11qq “

. . .. This induces an isomorphism

StabpV18q – pAutpTdqqN

g ÞÑ tg|1n0unPN . (2.7)

We write g “ tg|1n0unPN to indicate the above isomorphism. In this case, since g|1k P StabpV18q,

we have

g|1k “ tpg|1kq |1n0unPN

“ tg|1k`n0unPN , (2.8)

using Proposition 2.1.

Now let us define an important class of groups, called self-similar groups.

Definition 2.4. A group G acting on the d-regular rooted tree Td is said to be self-similar if for all

g P G and x P X the section g|x coming from wreath recursion (2.4) belongs to G.

An alternative way to define self-similar groups is via Mealy automata (also known as the

transducers or the sequential machines. See [BGN03] for more on automata).

Examples of self-similar groups that appear in this text are the first Grigorchuk group G and

the Grigorchuk’s overgroup rG (see Section 2.5).

Definition 2.5. Let G be a self-similar group.
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1. G is said to be contracting if there is a finite subset N of G such that g|v P N , for all g P G

and for all sufficiently large v.

2. For a contracting group G, the smallest such set N is called the nucleus of G.

3. Suppose G is contracting with the nucleus N . Let n P N and g P G be such that g P Stabpnq

and g|v P N for all vertices of level n. Then the collection of sections of g at level n is called

the level n nucleus of g.

The families of groups tGωuωPΩ and
!

rGω
)

ωPΩ
, that are of main focus in this text (see Sec-

tion 2.5), are not necessarily self-similar (in fact, they are almost surely non-self-similar under the

uniform Bernoulli measure on Ω). But they have self-similar type properties, which motivate the

next definition.

Definition 2.6. Let tGnunPN be a countable collection of groups acting on Td.

1. The collection tGnunPN is said to be self-similar if for each n P N and for each g P Gn, the

sections of g at level k are in Gn`k, for each k P N.

2. Self-similar collection tGnunPN is said to be contracting if there is a collection of finite

subsets tNnunPN with the same size (i.e., |Nn| is independent of n) satisfying the property

that for all n P N and for all g P Gn, all the sections of g at level k are in Nn`k, for all

sufficiently large k.

3. For a contracting collection tGnunPN, the smallest such collection tNnunPN is called the

nucleus of tGnunPN.

4. Suppose tGnunPN is contracting with the nucleus tNnunPN. Let n P N and g P Gn. If there is

a k P N such that g P Stabpkq and g|v P Nn`k for all vertices of level k, then the collection

of sections of g at level k is called the level k nucleus of g.

We will use Definition 2.4, Definition 2.5 when talking about the groups G, rG and Definition 2.6

when talking about groups Gω, rGω.
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2.4 Space of Marked Groups

The space of marked groups with k generators Mk, introduced in [Gri84b] is the space con-

sisting of tuples pG,Sq, where G is a k´generated group and S is an ordered set of k elements

generating it. Two points pG1, S1q and pG2, S2q are identified if the canonical map S1 Ñ S2 pre-

serving order, extends to a group isomorphism G1 Ñ G2. In geometrical view point, this means

the Cayley graphs CaypG1, S1q and CaypG2, S2q are order isomorphic.

The space Mk is a metric space together with the Cayley metric d given by,

dppG1, S1q, pG2, S2qq “ 2´n,

where n is the largest integer such that the balls of radius n centered at identity of the Cayley

graphs CaypG1, S1q and CaypG2, S2q are order isomorphic. It was shown in [Gri84b] that Mk is

a compact totally disconnected metric space.

Let pG,Sq be a point of Mk. Any element in G can be attached to the ordered set S, to obtain

a point in Mk`1. We will use this fact in this text by viewing some 3-generated group as points

of M4 and 4-generated groups as points in M8. A canonical way to attache an element to the

generating set is to attach the identity as the k ` 1-th generator. Thus, every point of Mk can be

thought of as a point of Mn, for all n not less than k. In fact, this is an embedding of Mk into

Mn. Therefore, one may consider the space M “
ď

kPN

Mk, of finitely generated marked groups,

on which we are not concentrating on, since it does not play a role in this text.

2.5 Generalized Grigorchuk’s Group Gω and Generalized Grigorchuk’s Overgroup rGω

Let Ω “ t0, 1, 2uN, the set of sequences of three symbols 0, 1, 2, and define Ω0,Ω1,Ω2 to be the

subsets of Ω, where Ω0 the set of all sequences with all three symbols occurring infinitely often,

Ω1 the set of all sequences with exactly two symbols occurring infinitely often, and Ω2 the set of

all eventually constant sequences. Let σ : Ω Ñ Ω be the left shift. i.e., pσωqn “ ωn`1. Denote

h´1gh, the conjugate of g by h, by gh, and g´1h´1gh, the commutator of g, h, by rg, hs, for any

group elements g, h.
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First, let us define two groups Γ and rΓ. Let S “ ta, b, c, du, rS “
!

a, b, c, d,ra,rb,rc, rd
)

be two

sets of symbols and let R, rR be the collections of relations on S, rS, respectively, where

R “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

s2 “ 1 for all s P S

rs, ts “ 1 for all s, t P Sz tau

bcd “ 1

, rR “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

s2 “ 1 for all s P rS

rs, ts “ 1 for all s, t P rSz tau

bcd “ 1

srs “ ra for all s P tb, c, du

. (2.9)

Now define Γ “ xS | Ry and rΓ “
A

rS | rR
E

. The relations in R, rR are called simple reductions

of Γ, rΓ, respectively. Note that xSz tau | Ry – Z2
2,
A

rSz tau | rR
E

– Z3
2, and the element a is not

related to any other element. Therefore, Γ – Z ˚f Z2
2 and rΓ – Z ˚f Z3

2, where the component

Z corresponds to the free group generated by the element a. Here, ˚f stands for the free product.

Thus, any element in Γ, rΓ can be written in the reduced form

paq ˚ a ˚ a . . . a ˚ a ˚ paq, (2.10)

using simple reductions (2.9), where first and last a can be omitted and ˚’s represent letters in

Sz tau , rSz tau, respectively.

Now lets consider automorphism group of binary rooted tree. Let 1 be the identity in AutpT2q

and let P P AutpT2q, such that P p0uq “ 1u and P p1uq “ 0u for each u P X˚. Thus, P is defined

by the wreath recursion P “ p1, 1; τq, where τ is the permutation in S2.

For ω “ tωnunPN P Ω, define bω, cω, dω,rbω,rcω, rdω P StabpV18q to be the elements identified

with sequences tBω
nu , tC

ω
n u , tD

ω
nu ,

!

rBω
n

)

,
!

rCω
n

)

,
!

rDω
n

)

, respectively, where,

Bω
n “

$

’

’

&

’

’

%

P ωn “ 0 or 1

1 ωn “ 2

, rBω
n “

$

’

’

&

’

’

%

1 ωn “ 0 or 1

P ωn “ 2

,
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Cω
n “

$

’

’

&

’

’

%

P ωn “ 0 or 2

1 ωn “ 1

, rCω
n “

$

’

’

&

’

’

%

1 ωn “ 0 or 2

P ωn “ 1

,

Dω
n “

$

’

’

&

’

’

%

P ωn “ 1 or 2

1 ωn “ 0

, rDω
n “

$

’

’

&

’

’

%

1 ωn “ 1 or 2

P ωn “ 0

. (2.11)

Also define aω,raω P AutpT2q by aω “ P and raω “ tP unPN. Note that aω,raω does not depend on

ω and so we may drop the subscript and write a,ra, respectively. Define Sω “ taω, bω, cω, dωu and

rSω “
!

aω, bω, cω, dω,raω,rbω,rcω, rdω

)

. Now lets look at some properties of these automorphisms.

Proposition 2.2. The element P is an involution. Furthermore,

1. s2 “ 1 for all s P rSω.

2. bωcωdω “ 1.

3. rs, ts “ 1 for all s, t P rSωz taωu.

4. srs “ ra for all s P Sz taωu.

Proof. Note that P 2p0uq “ P pP p0uqq “ P p1uq “ 0u and P 2p1uq “ P pP p1uqq “ P p0uq “ 1u

for any u P X˚. Thus P 2 “ 1. Since P ‰ 1, P is an involution.

To prove the first assertion, let s P rSω. If s “ aω we are done as aω “ P is an involution.

Suppose s ‰ aω. Then s “ tsnu, where sn P t1, P u for all n. Therefore s2 “ tsnu ˆ tsnu “

ts2
nu “ t1u “ 1, which completes the proof of assertion one.

Observe that for each n, two of Bω
n , C

ω
n , and Dω

n are P ’s and the other is a 1. Thus Bω
nC

ω
nD

ω
n “

1 for each n. Therefore, bωcωdω “ tBω
nu ˆ tC

ω
n u ˆ tD

ω
nu “ tB

ω
nC

ω
nD

ω
nu “ t1u “ 1, which proves

the second assertion.

Now let s, t P rSωz taωu. Then s “ tsnu and t “ ttnu, where sn, tn P t1, P u for all n. Since

sn, tn commute for each n, s and t commute, which proves the third assertion.
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Finally, to prove the last assertion, let s P Sz taωu. Then s “ tsnu, where sn P t1, P u for all

n, and so rs “ trsnu. Note that if sn “ P , then rsn “ 1 and if sn “ 1, then rsn “ P . So, snrsn “ P .

Therefore, srs “ tsnu ˆ trsnu “ tsnrsnu “ tP unPN “ ra. This completes the proof.

The above proposition shows that the sets Sω and rSω satisfy the simple reductions presented in

(2.9). The next proposition summarizes the properties of the sections of the elements of rSω.

Proposition 2.3. For each g P AutpT2q, the wreath recursion of the conjugate gP of g by P (which

is the same as ga or gaω ) is given by,

gP “ pg|1, g|0; τgq,

where the wreath recursion of g is pg|0, g|1; τgq. The natural embedding of the elements in rSω and

their conjugates by P are;

bω “ pB
ω
0 , bσωq, cω “ pC

ω
0 , cσωq, dω “ pD

ω
0 , dσωq, raω “ pP,raσωq,

rbω “ p rB
ω
0 ,
rbσωq, rcω “ p rC

ω
0 ,rcσωq,

rdω “ p rD
ω
0 ,

rdσωq,

baωω “ pbσω, B
ω
0 q, caωω “ pcσω, C

ω
0 q, daωω “ pdσω, D

ω
0 q, raaωω “ praσω, P q,

rbaωω “ prbσω, rB
ω
0 q, rcaωω “ prcσω, rC

ω
0 q,

rdaωω “ prdσω, rD
ω
0 q. (2.12)

Proof. Let g “ pg|0, g|1; τgq and consider its conjugate by the involution P . Then, gP “ P´1gP “

PgP “ p1, 1; τqpg|0, g|1; τgqp1, 1; τq “ pg|1, g|0; ττgqp1, 1; τq “ pg|1, g|0; ττgτq “ pg|1, g|0; τgq,

using the permutation action and the fact that S2 is abelian.

To prove (2.12), we will show bω “ pBω
0 , bσωq, which consequently shows baωω “ pbσω, B

ω
0 q

using the first assertion of the proposition. The rest follow similarly, and so we omit their proofs.

Since bω “ tBω
nunPN, its section at 0 is bω|0 “ Bω

0 , and its section at 1 is bω|1 “ tBω
nu
8

n“1 “

tBσω
n unPN “ bσω, by (2.8). Hence we get the result.

Now we are ready to define the groups that are of interest for this text.

19



Definition 2.7. The generalized Grigorchuk’s group Gω (introduced in [Gri84b]) is the group gen-

erated by Sω “ taω, bω, cω, dωu. The group rGω generated by rSω “
!

aω, bω, cω, dω,raω,rbω,rcω, rdω

)

,

is called the generalized overgroup.

By looking at the generating sets, we can observe that Gω ď rGω. Using Proposition 2.2,

it can be seen that the group Gω is generated by taω, bω, cωu, and the group rGω is generated by

taω, bω, cω,raωu. By Proposition 2.2, we observe that the elements in Sω, rSω satisfy the simple

reductions (2.9), for all ω. Therefore, the canonical maps S Ñ Sω : s ÞÑ sω and rS Ñ rSω : s ÞÑ sω

extend to surjective homomorphisms π : Γ Ñ Gω and rπ : rΓ Ñ rGω, respectively. As a consequence

of this, the elements in Gω and rGω have the reduced form (2.10).

When the sequence ω “ p012q8, the generalized Grigorchuk group becomes the first Grig-

orchuk group [Gri80], which will be denoted by G, and the generalized overgroup becomes the

Grigorchuk’s overgroup [BG00a], which we will denote by rG. It is customary to write the gener-

ators of these groups without the subscript p012q8 and they have the following wreath recursion

realization:

b “ pa, cq, c “ pa, dq, d “ p1, bq, ra “ pa,raq,

rb “ p1,rcq, rc “ p1, rdq, rd “ pa,rbq.

For a subgroup G of AutpT2q, denote the n-th level stabilizer of G by StabGpnq. So,

StabGpnq “ Stabpnq X G. Let rHω :“ rH
p1q
ω :“ Stab

rGωp1q. An element g P rGω, belongs to

the first level stabilizer if τg, the permutation action of g on the level 1, is trivial. Write g in the

reduced form (2.10). Note that, if the number of aω’s in the reduced form is even, then τg becomes

trivial and if the number of aω’s is odd, then τg is non trivial. Therefore, g P rHω if and only if g

has even number of aω’s in its reduced form.

Now suppose g P rHω. Then, the reduced form of g has even number of aω’s, so, we can

gather each sub-word of the form aω ˚ aω and rewrite as ˚aω . This shows that the subgroup rHω

is generated by
!

sω, s
aω
ω : sω P rSωz taωu

)

, and by (2.12), we observe the natural embedding maps
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rHω to rGσω ˆ rGσω. Also note that the elements in rHω can be written in the form,

p˚
aωq ˚ ˚

aω ˚ ˚
aω . . . ˚ ˚aω ˚ p˚aωq, (2.13)

where ˚’s represent elements in rSωz taωu, and the first and the last ˚aω may be omitted.

Following the natural embedding ψ : rHω Ñ rGσω ˆ rGσω described above, we will construct

natural substitution rules (which will also be called as the natural embedding) that depends on the

sequence ω, denoted by rψω, on words of Γ and rΓ with even number of a’s in it. First, let us define

rΘ Ă rΓ, containing all reduced words W P rΓ, with even number of a’s in its reduced form. By

a simple parity argument, we can see that rΘ is in fact a subgroup of rΓ. Similarly, we can define

Θ, the subgroup of Γ, containing words with even number of a’s in its reduced form. Similarly to

(2.13), the elements in Θ, rΘ has the form

p˚
a
q ˚ ˚

a
˚ . . . ˚ ˚a ˚ p˚aq, (2.14)

where ˚’s represent elements in Sz tau , rSz tau, respectively. Here, first and last ˚a may be omitted.

Then, Θ and rΘ are the subgroups generated by the sets ts, sa : s P Sz tauu and
!

s, sa : s P rSz tau
)

,

respectively. First define rψω on
!

s, sa : s P rSz tau
)

Yt1u, similar to (2.12), by rψωp1q “ p1, 1q and

rψωpbq “ pB
ω
0 , bq,

rψωpcq “ pC
ω
0 , cq,

rψωpdq “ pD
ω
0 , dq,

rψωpraq “ pa,raq,

rψωprbq “ p rB
ω
0 ,
rbq, rψωprcq “ p rC

ω
0 ,rcq,

rψωprdq “ p rD
ω
0 ,

rdq,

rψωpb
a
q “ pb, Bω

0 q,
rψωpc

a
q “ pc, Cω

0 q,
rψωpd

a
q “ pd,Dω

0 q,
rψωpra

a
q “ pra, aq,

rψωprb
a
q “ prb, rBω

0 q,
rψωprc

a
q “ prc, rCω

0 q,
rψωprd

a
q “ prd, rDω

0 q, (2.15)

by replacing P ’s by a’s. Now, we extend the definition of rψω to a map rΘ Ñ rΓ ˆ rΓ, by rewriting

W P rΘ in the form (2.14), then applying the substitution rule (2.14), and reducing it. Thus, given

W P rΘ, we obtain rψωpW q “ pW0,W1q, where W0,W1 are the reductions of xW0,xW1, and xW0,xW1

are the words obtained by applying (2.14) to W .
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We can also extend the map rψω to tuples of words by coordinate wise evaluation. That is,

rψωpW1,W2, . . . ,Wkq “

´

rψωpW1q, rψωpW2q, . . . , rψωpWkq

¯

. Now apply rψσn´1ω ˝ . . . ˝ rψσω ˝ rψω

to decompose W into 2n reduced words tWi1...inu, if no indeterminacy occurs. We may drop the

subscript ω in rψω for convenience. rψσn´1ω ˝ . . .˝ rψσω ˝ rψωpW q will be called the application of rψ, n

times, to the word W . We will omit writing the natural substitution rule and write W “ pW0,W1q,

W “ tWi1...inu instead of rψωpW q “ pW0,W1q, rψσn´1ω ˝ . . . ˝ rψσω ˝ rψωpW q “ tWi1...inu, respec-

tively, if there are no ambiguity.

If W “ pW0,W1q and W 1 “ pW 1
0,W

1
1q, then WW 1

“ pW
W 1

0
0 ,W

W 1
1

1 q, and using (2.14) and

(2.15), we get W a “ pW1,W0q. Therefore, for any W 1 P rΓ (not necessarily in rΘ),

WW 1

“

$

’

’

&

’

’

%

pW
W 1

0
0 ,W

W 1
1

1 q if W 1 P rΘ and W 1 “ pW 1
0,W

1
1q

pW
W 1

0
1 ,W

W 1
1

0 q if W 1 R rΘ and aW 1 “ pW 1
0,W

1
1q

. (2.16)

Now, let us examine the relation of lengths of words and their decompositions.

Proposition 2.4. Let W P rΘ and let xW0,xW1 P rΓ be the words (not necessarily reduced) obtained

by applying (2.15) to W . Then,

∣∣∣xW0

∣∣∣, ∣∣∣xW1

∣∣∣ ď |W |` 1

2
and

∣∣∣xW0

∣∣∣` ∣∣∣xW1

∣∣∣ ď |W |` 1. (2.17)

In tha case of W can be decomposed into the depth n, we have,

|Wi1...in | ď
|W |

2n
` 1´

1

2n
, (2.18)

where W “ tWi1...inu.

Proof. Let W P rΘ and rewrite W in the form (2.14). Note that each ˚ and ˚a in (2.14) of W ,

contributes either a letter or no letters (if the corresponding coordinate is 1) to each of xW0 and xW1.

Suppose there are k number of ˚’s in W . Then
∣∣∣xW0

∣∣∣, ∣∣∣xW1

∣∣∣ ď k. If W starts and ends with a ˚, i.e.,

W “ ˚˚a˚˚a . . .˚˚a˚, then |W | “ 2k´1. IfW “ p˚aq˚˚a˚˚a . . .˚˚a˚ orW “ ˚˚a˚˚a . . .˚˚a˚p˚aq,
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then |W | “ 2k. IfW “ p˚aq˚˚a ˚˚a . . .˚˚a ˚p˚aq, then |W | “ 2k`1. In either case, |W |`1 ě 2k,

and therefore we obtain (2.17). Note that, |Wi| ď
∣∣∣xWi

∣∣∣ ď |W |` 1

2
“

|W |
2
` 1´

1

2
, and using this

inductively, we obtain (2.18).

In fact, we can give a better upper bound,

∣∣∣xW0

∣∣∣` ∣∣∣xW1

∣∣∣ ď |W |` 1´ α, (2.19)

where α is the number of letters in W , whose first coordinate of the natural embedding is 1. As a

direct corollary of Proposition 2.4, we obtain:

Corollary 2.1. For g P rHω,

|g|0|, |g|1| ď
|g|` 1

2
, and |g|0|` |g|1| ď |g|` 1. (2.20)
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3. ON GROWTH OF GENERALIZED GRIGORCHUK’S OVERGROUPS∗

This chapter is extracted from the article [Sam20].

3.1 Introduction

The growth rate γGpnq of the first Grigorchuk group G was first shown to be bounded below by

e
?
n and bounded above by enβ , where β “ log32 31 « 0.991 [Gri83, Gri84b]. In 1998, Laurent

Bartholdi [Bar98] and in 2001, Roman Muchnik and Igor Pak [MP01] independently refined the

upper bound to γGpnq ĺ en
α
, where α “ log p2q{ log p2{ηq « 0.767 and η is the real root of the

polynomial x3 ` x2 ` x ´ 2. Recent work of Anna Erschler and Tianyi Zheng [EZ20] showed

γGpnq ľ en
pα´εq for any positive ε. The Grigorchuk’s overgroup rG is of intermediate growth

[BG02] and as a corollary to Proposition 3.4 and Theorem 3.22, the growth rate γ
rGpnq of rG satisfies,

exp

ˆ

n

log2`ε n

˙

ĺ γ
rGpnq ĺ exp

ˆ

n logplog nq

log n

˙

for any ε ą 0.

First introduced technique for getting an upper bound for G uses the strong contraction property

[Gri84b] (also known as sum contraction property), which says that there is a finite index subgroup

H of G such that any element g P H can be uniquely decomposed into some elements, whose sum

of lengths in not larger than C|g| ` D, where 0 ă C ă 1 and D are constants independent of g

[Gri84b]. Later this technique was developed and many variants were introduced [Bar03, Fra20].

In 2004, to get a lower bound for certain class of groups of intermediate growth, Anna Erschler

introduced a method for partial description of the Poisson boundary [Ers04]. This idea was used

to get the current known best lower bound for the growth of G [EZ20]. We will be using a version

of strong contraction property in this text.

The growth rates of the family
!

rGω, ω P Ω
)

of generalized Grigorchuk’s overgroups are given

by the theorem below.

Theorem 3.1. Let ω P Ω. Then rGω is of polynomial growth if ω is virtually constant and rGω is of

∗Reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by Supun T. Samarakoon,
2020. Algebra and Discrete Mathematics, 30(1), 97–117, Copyright [2020] by Algebra and Discrete Mathematics
(under open access policy).
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intermediate growth if ω is not virtually constant.

Recall that Ω0,Ω1 be subsets of Ω, where Ω0 is the set consisting of all sequences containing

0, 1 and 2 infinitely often, Ω1 is the set consisting of sequences containing exactly two symbols

infinitely often. Define Ω˚0 to be the subset of Ω0 containing sequences ω “ tωnu, such that there is

an integerM “Mpωqwith the property that for all k ě 1, the set tωk, ωk`1, . . . , ωk`M´1u contains

all three symbols 0,1 and 2. Similarly, define Ω˚1 to be the subset of Ω1 containing sequences

ω “ tωnu, such that there is an integer M “ Mpωq with the property that for all k ě 1, the set

tωk, ωk`1, . . . , ωk`M´1u contains at least two symbols. Let Ω˚ “ Ω˚0 Y Ω˚1 . Sequences in Ω˚ are

called homogeneous sequences.

Theorem 3.2. Let ω P Ω˚. Then

γ
rGωpnq ĺ exp

ˆ

n logplog nq

log n

˙

.

Theorem 3.2 provides an upper bound for growth of rGω only for homogeneous sequences. In

fact, it is impossible to give a unifying upper bound for growth of rGω, for all ω P Ω0 Y Ω1. This

follows from Theorem 7.1 of [Gri84b], together with the fact that Gω Ă rGω. However, it is possible

to provide a unifying lower bound for the growth of groups rGω for all ω P Ω0 Y Ω1 by a function

of type exp

"ˆ

n

log2`ε
pnq

˙*

for arbitrary ε ą 0 (see Proposition 3.4).

We prove Theorem 3.1 in Section 3.2 and Theorem 3.2 in Section 3.3.

3.2 Growth of Generalized Overgroups rGω

Proposition 3.1. rGω has subexponential growth for each ω P Ω1 Y Ω2.

Before proceeding to the proof, we start with three lemmas.

Lemma 3.1. A non-decreasing semi-multiplicative function γpnq with argument a natural number,

can be extended to a non-decreasing semi-multiplicative function γpxq, with argument a non-

negative real number.

Proof. See Lemma 3.1 of [Gri84b].
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Lemma 3.2. For any ω P Ω, rλω ď rλσω.

Proof. Denote rBωpnq “ B
rGω ,rSωpnq and rHωpnq “ rHω X rBωpnq. Any element g P rBωpnq is either

in rHω or is of the form g “ ag1, where g1 P rHω and |g1| ď |g| ` 1 ď n` 1. Thus,

rγωpnq “ | rBωpnq| ď | rHωpnq| ` | rHωpn` 1q| ď 2| rHωpn` 1q|.

For each g P rHω, g|0, g|1 P rGσω satisfy (2.20) and so,

| rHωpnq| ď | rBσωp
n` 1

2
q|

2
“

ˆ

rγσωp
n` 1

2
q

˙2

.

Therefore,

rγωpnq ď 2

ˆ

rγσωp
n` 2

2
q

˙2

.

Consequently,

rλω “ lim
n
prγωpnqq

1{n

ď lim
n

˜

2

ˆ

rγσωp
n` 2

2
q

˙2
¸1{n

“ lim
n

ˆ

rγσωp
n` 2

2
q

˙2{n

“ rλσω.

Let Ω1,2 contains all the sequences of Ω having at most two symbols.

Lemma 3.3. For any ω P Ω1,2, rGω “ Gω.

Proof. First note that raω P Gω ùñ raωbω,raωcω,raωdω P Gω ùñ rbω,rcω, rdω P Gω ùñ rGω Ă

Gω ùñ rGω “ Gω. To prove Lemma 3.3, we only need to show that raω P Gω. For definiteness we

may assume ω consists only of symbols 0, 1. Then by (2.11), bω “ tP, P, P, ...u “ raω. Therefore

raω P Gω and thus the result is true.
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Proof of Proposition 3.1. Let ω P Ω1 Y Ω2. Then there exists N P N such that σNω P Ω1,2. Then

by Lemma 3.3, rGσNω “ GσNω. Therefore rλσNω “ λσNω. For any ω, Gω is of intermediate growth

if ω P Ω1 and of polynomial growth if ω P Ω2 [Gri84b]. Thus λσNω “ 1. So by Lemma 3.2,

rλω ď rλσNω “ 1. Thus rGω is of subexponential growth.

Proposition 3.2. rGω has intermediate growth for ω P Ω1.

Proof. By Proposition 3.1, rGω is of subexponential growth. Since Gω Ă rGω and Gω is of super-

polynomial growth [Gri84b], rGω is of super-polynomial growth. Hence rGω is of intermediate

growth.

Proposition 3.3. rGω has polynomial growth for ω P Ω2.

Proof. Since ω P Ω2, there is a natural number N such that ωn “ ωN for all n ě N , where

ω “ tωnu. Then rGσN´1ω “ xa,ray – D8, the infinite Dihedral group. Let G be the subgroup of

AutpT2q containing elements g such that g|v P xa,ray for all v in level N ´ 1 of T2. Then rGω Ă G.

Let G0 be the subgroup of G containing automorphisms fixing all vertices in the first N ´ 1 levels

of T2. Note that G0 Ÿ G and rG : G0s ď 22N´1. But G0 – xa,ray2
N´1

– D2N´1

8 . Thus G0 is

virtually abelian and of polynomial growth. Since rG : G0s ă 8,G is of polynomial growth.

rGω Ă G implies that rGω is of polynomial growth.

Theorem 3.3. rGω has intermediate growth for ω P Ω0.

We will, from now on, consider rSω “
!

aω, bω, cω, dω,raω,rbω,rcω, rdω

)

as the generating set of

rGω. A reduced word W satisfying g “ W in rGω and |g| “ |W | is called a minimal representation

of g. For any ε ą 0 define F εpnq “ F ε
ωpnq to be the set of length n elements g in rGω such that for

any minimal representation W of g over alphabet rSω,

|W |
˚
ą p1{2´ εqn, for some ˚ P rSωz tau . (3.1)

So for any minimal representation of elements in F εpnq, its reduced form (2.10) has most of ˚s as

the same letter. Now define Dεpnq “ Dε
ωpnq to be the complement of F εpnq in rBωpnqz rBωpn´ 1q,
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the sphere of radius n. Thus if g P Dεpnq, then g has a minimal representation W satisfying,

|W |
˚
ď p1{2´ εqn, for all ˚ P rSωz tau . (3.2)

For any δ ą 0 define rF δpn1q to be the set of words W 1 over the alphabet rSωz tau of length n1 such

that,

|W 1|
˚
ą p1´ δqn1, for some ˚ P rSωz tau . (3.3)

Therefore, each word in rF δpn1q has mostly equal letters.

Lemma 3.4. Let 0 ă ε ă 1{2 and let W be a minimal representation of an element in F εpnq. Let

W 1 be the word obtained by deleting all letters a from W . Then W 1 P rF δpn1q where

n´ 1

2
ď n1 ď

n` 1

2
, (3.4)

δ “ 2ε`
p1´ 2εq

n´ 1
. (3.5)

Proof. Since W is a reduced word, by (2.10), we observe that, 2|W |a ´ 1 ď |W | ď 2|W |a ` 1.

Thus
|W |´ 1

2
ď |W |a ď

|W |` 1

2
, and so

|W |´ 1

2
ď |W |´ |W |a ď

|W |` 1

2
. So we get (3.4).

By (3.1), |W 1|
˚
“ |W |

˚
ą p1{2 ´ εqn ě p1{2 ´ εqp2n1 ´ 1q “

ˆ

1´ 2ε´
p1´ 2εq

2n1

˙

n1 ě
ˆ

1´ 2ε´
p1´ 2εq

n´ 1

˙

n1 “ p1´ δqn1, from (3.5).

Lemma 3.5. If δ ă 1, then lim
k
| rF δpkq|1{k ď p1´ δq´1pδ{6q´δ.

Proof. Any word W P rF δpkq can be constructed by choosing a letter ˚ out of
!

b, c, d,rb,rc, rd,ra
)

,

which satisfies (3.3). So, W contains the letter ˚ at least k ´ tδku times and possibly t times more,

where 0 ď t ď tδku. The rest of the positions of W can be filled by the other six letters with

frequencies i1, . . . , i6, where
ř

ij “ tδku´ t. Therefore, we have,

∣∣∣ rF δ
pkq

∣∣∣ ď7` 7

tδku
ÿ

t“0

ÿ

ř

ij“tδku´t

k!

pk ´ tδku` tq!i1! . . . i6!
.
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Let pδk ´ tq˚ :“ 6

Z

tδk ´ tu

6

^

be the largest integer not greater than tδk ´ tu, that is divisible by

6. Since i1, . . . , i6 are non negative integers, we have,

i1! . . . i6! ě

Zř

ij
6

^

!6 “

Z

tδku´ t

6

^

!6 “

Z

tδk ´ tu

6

^

!6 “

ˆ

pδk ´ tq˚
6

˙

!6.

Since the number of ways to choose non negative integers i1, . . . , i6 such that
ř

ij “ tδku ´ t is
`

tδku´t`5
5

˘

, we get,

∣∣∣ rF δ
pkq

∣∣∣ ď7` 7

tδku
ÿ

t“0

ˆ

tδku´ t` 5

5

˙

k!

pk ´ tδku` tq!
´

pδk´tq˚
6

¯

!6

ď7` 7

ˆ

tδku` 5

5

˙ tδku
ÿ

t“0

k!

pk ´ tδku` tq!
´

pδk´tq˚
6

¯

!6

ďptδku` 5q5
tδku
ÿ

t“0

k!

pk ´ tδku` tq!
´

pδk´tq˚
6

¯

!6

ďptδku` 5q5
tδku
ÿ

t“0

e
?
kkke´kepk´tδku`tqepδk´tq˚

pk ´ tδku` tqpk´tδku`tq
´

pδk´tq˚
6

¯pδk´tq˚
.

Here we used the Stirling’s formula
nn

en
ď n! ď e

?
n
nn

en
. Since 0 ď ptδku´ tq ´ pδk ´ tq˚ ď 6,

∣∣∣ rF δ
pkq

∣∣∣ ďeptδku` 5q5
tδku
ÿ

t“0

?
kkptδku´tq´pδk´tq˚epδk´tq˚´ptδku´tq

´

1´ tδku

k
` t

k

¯pk´tδku`tq ´
pδk´tq˚

6k

¯pδk´tq˚

ďeptδku` 5q5
tδku
ÿ

t“0

?
kk6

´

1´ tδku

k
` t

k

¯pk´tδku`tq ´
pδk´tq˚

6k

¯pδk´tq˚

ďek6
ptδku` 5q5

?
kp1´ δq´k

tδku
ÿ

t“0

ˆ

pδk ´ tq˚
6k

˙´pδk´tq˚

.
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Note that the real valued function, ξ ÞÑ ξ´ξ for ξ ą 0, is an increasing function on the interval

p0, e´1q. Since δ{6 ă 1{6 ă e´1, we get,

ˆ

pδk ´ xq˚
6k

˙´

´

pδk´xq˚
6k

¯

ď

ˆ

δ

6

˙´p δ6q

.

Therefore,

∣∣∣ rF δ
pkq

∣∣∣ ďek6
ptδku` 5q5

?
kp1´ δq´kptδku` 1q

ˆ

δ

6

˙´p δ6q6k

.

Hence,

lim
k

∣∣∣ rF δ
pkq

∣∣∣1{k ď p1´ δq´1
pδ{6q´δ.

Corollary 3.1. Let ε ă 1{2. Then, lim
n
|F εpnq|1{n ď p1´ 2εq´1{2pε{3q´ε.

Proof. If n is even, then minimal representations of at most two elements in F εpnq give the same

word in rF δpn{2q. So,

|F ε
pnq| ď 2| rF δ

pn{2q|.

If n is odd, then for each element in F εpnq, we can assign a unique word in rF δppn ´ 1q{2q or

rF δppn` 1q{2q, and so,

|F ε
pnq| ď | rF δ

ppn´ 1q{2q| ` | rF δ
ppn` 1q{2q|.

Note that,

lim
n
| rF δ
pn{2q|1{n ď lim

n

`

p1´ δq´1
pδ{6q´δ

˘1{2
,

lim
n
| rF δ
ppn´ 1q{2q|1{n ď lim

n

`

p1´ δq´1
pδ{6q´δ

˘1{2
,

lim
n
| rF δ
ppn` 1q{2q|1{n ď lim

n

`

p1´ δq´1
pδ{6q´δ

˘1{2
,
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and thus,

lim
n
|F ε
pnq|1{n ď lim

n

`

p1´ δq´1
pδ{6q´δ

˘1{2
.

Since δ “ 2ε`
p1´ 2εq

n´ 1
, lim

n
δ “ 2ε and therefore,

lim
n

`

p1´ δq´1
pδ{6q´δ

˘´1{2
“ p1´ 2εq´1{2

pε{3q´ε.

Hence we get the desired result.

For each s ě 1, let rH
psq
ω :“

!

g P rGω | gpvq “ v for v in level s
)

and denote the canonical

generators of rGσsω by a, bs, cs, ds,ra,rbs,rcs, rds. We assign above symbols, when s “ 0, to the

generators of rGω. Using the map rψ, we get the following;

ωs “ 0 ùñ bs´1 “ pa, bsq cs´1 “ pa, csq ds´1 “ p1, dsq ra “ pa,raq

rbs´1 “ p1,rbsq rcs´1 “ p1,rcsq rds´1 “ pa, rdsq,

ωs “ 1 ùñ bs´1 “ pa, bsq cs´1 “ p1, csq ds´1 “ pa, dsq ra “ pa,raq

rbs´1 “ p1,rbsq rcs´1 “ pa,rcsq rds´1 “ p1, rdsq,

ωs “ 2 ùñ bs´1 “ p1, bsq cs´1 “ pa, csq ds´1 “ pa, dsq ra “ pa,raq

rbs´1 “ pa,rbsq rcs´1 “ p1,rcsq rds´1 “ p1, rdsq. (3.6)

Let W be a minimal representation of an element in rH
psq
ω . Then there are W̃0, W̃1 such that

W “ pW̃0, W̃1q using substitutions in (3.6). Let W0,W1 be obtained by doing simple reductions

on W̃0, W̃1. Let α1 denote the number of such simple reductions. So W0,W1 are minimal repre-

sentations of words in rH
ps´1q

σ1ω and by (2.17),

|W0|` |W1| ď
∣∣∣ĂW0

∣∣∣` ∣∣∣ĂW1

∣∣∣´ α1 ď |W |` 1´ α1. (3.7)
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Now there are W̃00, W̃01, W̃10, W̃11 such that W0 “ pW̃00, W̃01q, W1 “ pW̃10, W̃11q using substitu-

tions in (3.6). Let W00,W01, W10,W11 be obtained by doing simple reductions on W̃00, W̃01, W̃10,

W̃11. Let α2 denote the number of such simple reductions. So W00,W01,W10,W11 are minimal

representations of elements in rH
ps´2q

σ2ω and applying (3.7), we get,

|W00|` |W01|` |W10|` |W11| ď |W0|` 1` |W1|` 1´ α2

ď |W |` 22
´ 1´ pα1 ` α2q.

Proceeding this manner we get tWi1i2...isuijPt0,1u minimal representations of elements in rH
ps´sq
σsω “

rGσsω. Denote by αs the number of simple reductions done to obtain tWi1i2...isuijPt0,1u from
!

W̃i1i2...is

)

ijPt0,1u
. Then by applying (3.7) repeatedly, we get,

ÿ

i1,i2,...,is

|Wi1i2...is| ď |W |` 2s ´ 1´
s´1
ÿ

1

αi. (3.8)

LetX0 :“ |W |d0`|W |rb0`|W |rc0 , Y0 :“ |W |c0`|W |rb0`|W | rd0 andZ0 :“ |W |b0`|W |rc0`|W | rd0 .

Also for j “ 1, 2, . . . s, let

Xj “
ÿ

´

|Wi1i2...ij |dj ` |Wi1i2...ij |rbj
` |Wi1i2...ij |rcj

¯

,

Yj “
ÿ

´

|Wi1i2...ij |cj ` |Wi1i2...ij |rbj
` |Wi1i2...ij | rdj

¯

,

Zj “
ÿ

´

|Wi1i2...ij |bj ` |Wi1i2...ij |rcj ` |Wi1i2...ij | rdj

¯

.

Lemma 3.6. Let ε ą 0, nε P N such that nεε ą 5{2. Let n ě nε. Let s P N such that ωs is the

first time that the third symbol appears in ω. Let W be a minimal representation of an element in

Dεpnq X rH
psq
ω . Then,

ÿ

i1,i2,...,is

|Wi1i2...is | ď

´

1´
ε

5

¯

n` 2s ´ 1.

Proof. For definiteness, suppose the sequence ω begins with the symbol 0, first 1 appears in the

t-th position, and first 2 appears in the s-th position. That is, ω1 “ . . . “ ωt´1 “ 0, ωt “ 1, ωm ‰ 2
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for every m ă s, and ωs “ 2. First note that each simple reduction decreases Yi, Zi by at most 2.

Thus,

Yt´1 ě Y0 ´ 2
t´1
ÿ

1

αi ě Y0 ´ 2
s´1
ÿ

1

αi and Zs´1 ě Z0 ´ 2
s´1
ÿ

1

αi. (3.9)

Since ω1 “ 0 there are X0 of letters in W , with 1 in their first coordinate when written using (3.6).

Thus we modify (3.8), as done in (2.19) to be,

ÿ

i1,i2,...,is

|Wi1i2...is | ď n` 2s ´ 1´
s´1
ÿ

1

αi ´X0.

Similarly, since ωt “ 1 and ωs “ 2, we get,

ÿ

i1,i2,...,is

|Wi1i2...is | ď n` 2s ´ 1´
s´1
ÿ

1

αi ´X0 ´ Yt´1 ´ Zs´1. (3.10)

Now let us show that X0`Yt´1`Zs´1`
řs´1

1 αi ą nε{5. To the contrary assume X0`Yt´1`

Zs´1 `
řs´1

1 αi ď nε{5. Therefore,
řs´1

1 αi ď nε{5 and by (3.9) and (3.10),we get,

X0 ` Y0 ` Z0 ď X0 `

˜

Yt´1 ` 2
s´1
ÿ

1

αi

¸

`

˜

Zs´1 ` 2
s´1
ÿ

1

αi

¸

ď

˜

X0 ` Yt´1 ` Zs´1 `

s´1
ÿ

1

αi

¸

` 3

˜

s´1
ÿ

1

αi

¸

ď
4

5
nε.

But n “ |W | ď |W |a` |W |ra`X0` Y0`Z0 ď
n`1

2
` n

2
´nε` 4

5
nε, since |W |

ra ď p1{2´ εqn by

(3.2). Thus nε ď 5{2, which is a contradiction. SoX0`Yt´1`Zs´1`
řs´1

1 αi ą nε{5. Therefore,

ÿ

i1,i2,...,is

|Wi1i2...is | ď

´

1´
ε

5

¯

n` 2s ´ 1.

Proof of Theorem 3.3. Take a fixed 0 ă ε ă 1{2. Suppose first that there are positive integers k, s,
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such that there exists an infinite set N0 Ă N where,

∣∣∣ rHpsq

σkω
X F ε

σkωpnq
∣∣∣ ě ∣∣∣ rHpsq

σkω
XDε

σkωpnq
∣∣∣, (3.11)

for all n P N0. By Lemma 3.2 and (2.2),

rλω ď rλσkω

“ lim
n
|rγσkωpnq|

1{n

“ lim
n
|γ1

rG
σkω

,rS
σkω

pnq|1{n

“ lim
nPN0

|γ1
rG
σkω

,rS
σkω

pnq|1{n

“ lim
nPN0

´∣∣∣ rHpsq

σkω
X F ε

σkωpnq
∣∣∣` ∣∣∣ rHpsq

σkω
XDε

σkωpnq
∣∣∣¯1{n

.

Using (3.11), we get,

rλω ď lim
nPN0

´

2
∣∣∣ rHpsq

σkω
X F ε

σkωpnq
∣∣∣¯1{n

“ lim
nPN0

´∣∣∣ rHpsq

σkω
X F ε

σkωpnq
∣∣∣¯1{n

ď lim
nPN0

|F ε
σkωpnq|1{n

ď lim
n
|F ε

σkωpnq|1{n.

Using Corollary 3.1 we get,

rλω ď p1´ 2εq´1{2
pε{3q´ε. (3.12)

Now suppose that for every k, s P N, there exists an Npk, sq such that for all n ě Npk, sq,

∣∣∣ rHpsq

σkω
X F ε

σkωpnq
∣∣∣ ă ∣∣∣ rHpsq

σkω
XDε

σkωpnq
∣∣∣. (3.13)

As before, let rH
psq
ω pnq :“ rBωpnq X rH

psq
ω and rH

psq

σkω
pnq :“ rBσkωpnq X rH

psq

σkω
. Let ω “
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ω1 . . . ωs1ωs1`1 . . . ωs1`s2ωs1`s2`1 . . . ωs1`s2`s3 . . . where s1 is the first time third symbol appears

in ω, s2 is the first time third symbol appears in σs1ω, and so on.

Since rrGω : rH
ps1q
ω s ď 22s1´1 “: K1, there is a fixed Schreier system of representatives of the

right cosets of rGω modulo rH
ps1q
ω with Schreier representatives of length less than K1. So for any

g P rBωpnq, there are h P rH
ps1q
ω , l a Schreier representative such that g “ hl and since |l| ď K1, we

have |h| ď n`K1. Therefore,

∣∣∣ rBωpnq
∣∣∣ ď K1

∣∣∣ rHps1q
ω pn`K1q

∣∣∣. (3.14)

Let N1 “ max tnε, Np0, s1qu, where nε is defined in Lemma 3.6 and Np0, s1q is defined in (3.13).

Note that,

∣∣∣ rHps1q
ω pn`K1q

∣∣∣ “ 1`
n`K1
ÿ

k“1

∣∣∣ rHps1q
ω pn`K1q X

´

rBωpkqz rBωpk ´ 1q
¯
∣∣∣

ď N1

∣∣∣ rBωpN1q

∣∣∣` n`K1
ÿ

k“N1

∣∣∣ rHps1q
ω pn`K1q X

´

rBωpkqz rBωpk ´ 1q
¯
∣∣∣.

From (3.13), for k ě N1,

∣∣∣ rHps1q
ω pn`K1q X

´

rBωpkqz rBωpk ´ 1q
¯
∣∣∣

“

∣∣∣ rHps1q
ω pn`K1q X F ε

pkq
∣∣∣` ∣∣∣ rHps1q

ω pn`K1q XDε
pkq

∣∣∣
ď2

∣∣∣ rHps1q
ω pn`K1q XDε

pkq
∣∣∣.

Therefore,

∣∣∣ rHps1q
ω pn`K1q

∣∣∣ ď N1

∣∣∣ rBωpN1q

∣∣∣` 2
n`K1
ÿ

k“N1

∣∣∣ rHps1q
ω pn`K1q XDε

pkq
∣∣∣.
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Now using Lemma 3.6,

∣∣∣ rHps1q
ω pn`K1q

∣∣∣ ď N1

∣∣∣ rBωpN1q

∣∣∣` 2
ÿ

j1,...,j2s1

∣∣∣ rBσs1ωpj1q

∣∣∣ . . . ∣∣∣ rBσs1ωpj2s1 q

∣∣∣, (3.15)

where
2s1
ÿ

i“1

ji ď
´

1´
ε

5

¯

pn`K1q ` 2s1 ´ 1.

Note that,

rλσs1ω “ lim
j
| rBσs1ωpjq|

1{j,

and therefore, for each δ ą 0, there exists an J “ Jpδq such that for j ě J ,

| rBσs1´1ωpjq| ď prλσs1ω ` δq
j.

Thus for all j

| rBσs1´1ωpjq| ď | rBσs1´1ωpJq|prλσs1ω ` δq
j,

which implies,

∣∣∣ rBσs1ωpj1q
∣∣∣ . . . ∣∣∣ rBσs1ωpj2s1 q

∣∣∣ ď ∣∣∣ rBσs1´1ωpJq
∣∣∣2s1 prλσs1ω ` δqř2s1

i“1 ji

ď

∣∣∣ rBσs1´1ωpJq
∣∣∣2s1 prλσs1ω ` δqp1´ ε

5qpn`K1q`2s1´1. (3.16)

The number of summands in the right hand side of (3.15) is,

ˆ

`

1´ ε
5

˘

pn`K1q ` 2s1 ´ 1` 2s1

2s1

˙

ď

ˆ

n`K1 ` 2s1`1 ´ 1

2s1

˙

ďpn`K1 ` 2s1`1
´ 1q2

s1 . (3.17)

Now by (3.14), (3.15), (3.16) and (3.17) we get,

∣∣∣ rBωpnq
∣∣∣ ď K1N1

∣∣∣ rBωpN1q

∣∣∣
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`

ˆ

2K1pn`K1 ` 2s1`1
´ 1q2

s1

∣∣∣ rBσs1´1ωpJq
∣∣∣2s1

ˆprλσs1ω ` δq
p1´ ε

5qpn`K1q`2s1´1
¯

.

Therefore,

rλω “ lim
n

∣∣∣ rBωpnq
∣∣∣1{n ď ´

rλσs1ω ` δ
¯p1´ ε

5q
.

Since δ is arbitrary,

rλω ď
´

rλσs1ω

¯p1´ ε
5q
.

In the same way, still under the assumption (3.13), and replacing ω by

ω, σs1ω, σs1`s2ω, σs1`s2`s3ω, . . ., we get,

rλω ď
´

rλσs1ω

¯p1´ ε
5q

rλσs1ω ď
´

rλσs1`s2ω

¯p1´ ε
5q

rλσs1`s2ω ď
´

rλσs1`s2`s3ω

¯p1´ ε
5q

...

Thus for each k P N,

rλω ď
´

rλσs1`...`skω

¯p1´ ε
5q
k

. (3.18)

But the growth index λ of a group with 8 generators of order 2 cannot exceed 9. Since k may be

chosen arbitrarily large, it follows from (3.18) that rλω “ 1. If there exists an ε ą 0 satisfying

(3.13), then rλω “ 1. If not, then for all ε ą 0 we have (3.11). Thus by (3.12) and

lim
εÑ0
p1´ 2εq´1{2

pε{3q´ε “ 1,

we get rλω “ 1 in all cases. Since rλω “ 1, rGω has subexponential growth.

We know Gω Ă rGω and by [Gri84b], Gω is of intermediate growth. Therefore rGω is of interme-
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diate growth.

Note that the Theorem 3.1 follows directly from Proposition 3.2, Proposition 3.3, and Theo-

rem 3.3.

3.3 Growth bounds for Generalized Overgroups

Proposition 3.4. Let ω P Ω0 Y Ω1. Then for each ε ą 0,

γ
rGωpnq ľ exp

"ˆ

n

log2`ε
pnq

˙*

.

Proof. Let ω P Ω0 Y Ω1. We may assume ω has infinitely many 0’s and 2’s. Then, by (2.11), bω

as a sequence of P ’s and I’s contains both symbols infinitely often. By Theorem 2 of [Ers04] the

group generated by elements a, bω,ra has growth bounded below by exp

"ˆ

n

log2`ε
pnq

˙*

. Since

rGω contains the elements a, bω,ra, we get the required result.

Theorem 3.21. Let ω P Ω˚1 . Then,

γ
rGωpnq ĺ exp

"ˆ

n log plog pnq

log pnq

˙*

.

Proof. Since ω P Ω˚1 , there is an N such that σNω contains exactly two symbols, say i, j. Then by

Lemma 3.3, rGσNω “ GσNω. By theorem 3 of [Ers04], we get,

γ
rGσnωpnq ĺ exp

"ˆ

n log plog pnq

log pnq

˙*

,

and therefore,

γ
rGωpnq «

´

γ
rGσnωpnq

¯2N

ĺ

ˆ

exp

"ˆ

n log plog pnq

log pnq

˙*˙2N

« exp

"ˆ

n log plog pnq

log pnq

˙*

.
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While Theorem 3.3 states that rGω has intermediate growth for all ω P Ω0, for homogeneous

sequences from Ω˚0 , we can actually provide an explicit upper bound on growth.

Theorem 3.22. Let ω P Ω˚0 . Then,

γ
rGωpnq ď exp

"ˆ

n log plog pnq

log pnq

˙*

.

Proof. The proof follows similarly as of the proof of Theorem 3 of [Ers04] by replacing Lemma

6.2 (1) of [Ers04] by Lemma 3.6.

Theorem 3.21 together with Theorem 3.22 implies Theorem 3.2.
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4. GENERALIZED GRIGORCHUK’S OVERGROUPS IN THE SPACE OF MARKED

GROUPS∗

This chapter is extracted from the article [Sam22].

4.1 Introduction

Recall that Ω2 Ă Ω “ t0, 1, 2uN is the set consisting of virtually constant sequences. If

ω P ΩzΩ2, then Gω has intermediate growth [Gri84b]. In [Gri84b] it was shown that the closure of

the set Z “ tGω | ω P ΩzΩ2u in M4, denoted by Z , is a closed set without isolated points (hence

homeomorphic to a Cantor set) and ZzZ is a countable set consisting of virtually metabelian

groups, with one such group Gαω (defined using an algorithm α for the word problem) for each

ω P Ω2. So,

Z “ Z Y tGαω | ω P Ω2u “ Cantor set.

The Grigorchuk’s overgroup rG is important, in particular, because as is shown by Y. Voro-

bets (private communication), it constitutes a big part of the topological full group rrpΛ, T qss

associated with substitutional dynamical system pΛ, T q generated by Lysënok’s substitution

σ : a ÞÑ aca, b ÞÑ d, c ÞÑ b, d ÞÑ c, which was initially used to describe a presentation of G

[Lys85], where T denotes the shift map in the space Λ “ ta, b, c, duZ.

In this chapter we describe the structure of the closure of the set X “

!

rGω | ω P Ω
)

in M8,

which happens to be much more complicated than in the case of classical Grigorchuk groups (see

Figure 4.1).

Constructions in this chapter are based on algorithms α and βij for i, j, distinct elements of

t0, 1, 2u, which will be defined in Section 4.2.1. The algorithm α is a branch type algorithm,

similar to the one introduced in [Gri84b]. Algorithms βij were introduced in order to construct

‘new’ class of modified overgroups (see Section 4.2.2). We hope that the methods introduced

∗Reprinted with permission from “Generalized Grigorchuk’s Overgroups as Points in the Space of Marked 8-
Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020] by World
Scientific Publishing Co., Inc.
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X0

X1

X2

Xα
1

Xα
2

X β
2

Figure 4.1: Structure of topological closure of X “ X0 Y X1 Y X2 in M8

here will contribute to the study in the direction of constructing new example of non-elementary

amenable groups.

Recall that Ω0,Ω1 Ă Ω, where Ω0 is the set of all sequences with all three symbols occurring

infinitely often and Ω1 “ ΩzpΩ0 Y Ω2q is the set of all sequences with exactly two symbols

occurring infinitely often. We use the word “oracle” to represent a sequence in Ω.

Using algorithms α and βij for i, j P t0, 1, 2u, we define modified overgroups rGαω and rGβijω (see

Section 4.2.2) as those for which the word problem is decidable by the corresponding algorithm,

assuming that the oracle ω is known. We define the following subsets of M8:

X “

!

prGω, rSωq
)

ωPΩ
; union of all shaded regions in Figure 4.1,

Xi “

!

prGω, rSωq
)

ωPΩi
; for i “ 0, 1, 2,

X α
i “

!

prGαω , rSαω q
)

ωPΩi
; for i “ 1, 2,

X β
2 “

!

prGβω , rSβωq | β P tβ01, β12, β20u

)

ωPΩ2

,

Y “X0 Y X α
1 Y X α

2 ; middle cylinder in Figure 4.1, (4.1)
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where rSω, rS
α
ω , and rSβω are the natural generating sets for corresponding groups. In the following

text, the topological closure and the set of limit points (or cluster points) of a set V will be denoted

by V , V7, respectively.

Theorem 4.1. The sets X0,X1,X2,X α
1 ,X α

2 , and X β
2 are mutually disjoint subsets of M8. In any

set other than X β
2 , different corresponding oracles ω give rise to different groups. In X β

2 , there are

two different groups for each corresponding oracle ω.

Theorem 4.2.

1. X “ X7 \ X2, where the set X2 consists of the set of isolated points of X .

2. X7,Y are homeomorphic to a Cantor set.

3. Furthermore, we have following relations:

(a) Y “ pX0q7 “ pX α
1 q7 “ pX α

2 q7.

(b) X7 “ Y Y X1 Y X β
2 “ pX1q7 “ pX β

2 q7 “ pX2q7.

It is worth to mention that the limit groups that appear in [Gri84b] are of the lamplighter type

and one of them (building block) is a 2-extension of the lamplighter group L “ Z2 o Z [BG14]. In

our situation the lamplighter group also plays an important role and the building blocks constitute

the group L as well as L2 :“ Z2
2 o Z and their direct products.

Theorem 4.3. Let ti, j, ku “ t0, 1, 2u.

1. Let ω P Ω2 and let N be the smallest index such that only i appears in ω after N . Then rGαω is

commensurable to prGαi8q2
N

, which is virtually pL2q
2N . Therefore rGαω is elementary amenable

and of exponential growth.

2. Let ω P Ω2 and let N be the smallest index such that only i appears in ω after N . Then

rGβijω is commensurable to prGβiji8 q2
N

, which is virtually pLq2N . Therefore rGβijω is elementary

amenable and of exponential growth.
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3. Let ω P Ω1 and let N be the smallest index such that no k appears in ω after N . Then rGαω is

commensurable to prGασNωq2
N

. rGασNω contains L as a subgroup and is an extension of a non

elementary amenable group by an abelian group. Therefore rGαω is non elementary amenable

and of exponential growth.

It is known that the groups in X2 have polynomial growth and the groups in X0 and X1 have

intermediate growth (see Chapter 3). As a consequence of Theorem 4.3, we have;

Corollary 4.1. Groups in the set X0 Y X1 are of intermediate growth, groups in the set X2 are of

polynomial growth, and groups in X α
1 Y X α

2 Y X β
2 are of exponential growth.

If G is a finitely presented group in Mk with finite set of relations R, such that Gn Ñ G

for some sequence tGnu
8

n“1 in Mk, then G maps onto Gn for sufficiently large n. This can be

obtained by considering the ball of radius n centered at identity of the Cayley graph of G, where

n{2 is larger than the maximum of lengths of relations in R. In particular, the growth rate of G

is not less than the growth growth rate of Gn. By Theorem 4.2 3, for ω non virtually constant,

rGω is a limit point of X β
2 and so there is a sequence tGnu of groups of exponential growth (by

Corollary 4.1) in X β
2 converging to rGω. Therefore, by the contra-positive of above argument, we

get following corollary:

Corollary 4.2. rGω is infinitely presented for ω P ΩzΩ2.

The Cantor-Bendixson rank is an invariant of topological spaces. It is the least ordinal at which

the removal of isolated points makes no change to the space. If the topological space is Polish

(complete, metrizable and separable), then the Cantor-Bendixson rank is countable [Kec95]. As a

consequence of Theorem 4.2, the Cantor-Bendixson rank of X is one.

4.2 Modified Overgroups

4.2.1 Algorithms for the Word Problem

First we define inductively the algorithm α, which solves the word problem for rGω, when

ω P Ω0. Given any reduced word W P Γ, if it has even number of ‘a’s (i.e. W P Θ), use rψ
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to get two reduced words W0,W1. If W R Θ, terminate the process. Now suppose we have

2n reduced words tWi1...inu Ă Γ. If at least one of them is not in Θ, terminate the process. If

all the words are in Θ, use rψ to obtain 2n`1 reduced words
 

Wi1...in`1

(

. Follow this process N

times, where N “ rlog2 |W |s, to obtain 2N reduced words tWi1i2...iN u. Then by (2.18), we get

|Wi1i2...iN | ď
|W |
2N
` 1 ´ 1

2N
ď 1, and thus the level N nucleus is achieved. The algorithm α gives

positive result if all words Wi1i2...iN are the empty word. That is the level N nucleus of W consists

of empty words.

Let ti, j, ku “ t0, 1, 2u (we will use this notation of i, j, k throughout rest of the text). Induc-

tively define algorithm βij which solves the word problem for rGω, when ω P Ω1 and i, j occur

in ω infinitely often. Let N0 be the largest index such that ωN0 “ k. Given any reduced word

W P Γ, similarly to above, if W R Θ, end the process. And if W P Θ, use rψ to get two reduced

words W0,W1. Follow this process N times, where N “ max tN0, rlog2 |W |su, to obtain 2N re-

duced words tWi1i2...iN u, if such words exist. Note that N ě N0 guarantees that σNω does not

contain symbol k in it. By (2.18), |Wi1i2...iN | ď
|W |
2N
` 1 ´ 1

2N
ď 1 and so the level N nucleus is

achieved. The algorithm gives positive result if all words Wi1i2...iN are either empty word or eij ,

where e01 “
rb, e12 “

rd and e20 “ rc. That is the level N nucleus of W consists of empty words and

‘eij’s.

4.2.2 Modified Overgroups

Here we will introduce new collection of groups using the algorithms described above, named

modified overgroups, similar to modified Grigorchuk groups Gαω introduced in [Gri84b]. (The

notation used in [Gri84b] is rGω, which is already taken to overgroups in this text.)

Let ω P Ω. Define Nα
ω to be the subgroup of Γ consisting of all the words of Γ that yield a

positive result when the algorithm α is applied. Since any conjugate of the empty word is the empty

word, using (2.16) multiple times we obtain that Nα
ω is normal in Γ. Define modified overgroup

rGαω “ Γ{Nα
ω . Let πα : Γ Ñ rGαω be the canonical epimorphism. We denote the generating set of rGαω

by rSαω “
!

aαω, b
α
ω, c

α
ω, d

α
ω,ra

α
ω,
rbαω,rc

α
ω,

rdαω

)

.

Now let ω P Ω1YΩ2 with at most finitely many ‘k’s. Define Nβij
ω to be the subgroup of Γ con-
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sisting of all the words of Γ that yield a positive result when the algorithm βij is applied. Note that

by choosingW “ eij in (2.16), we obtain that any conjugate of eij has nuclei consisting of only the

empty words and eij’s, at sufficiently large level. This together with (2.16) yield, Nβij
ω is normal in

Γ. Define modified overgroup rGβijω “ Γ{N
βij
ω . Let πβij : Γ Ñ rGβijω be the canonical epimorphism.

We denote the generating set of rGβijω by rS
βij
ω “

!

a
βij
ω , b

βij
ω , c

βij
ω , d

βij
ω ,ra

βij
ω ,rb

βij
ω ,rc

βij
ω , rd

βij
ω

)

.

Proposition 4.1.

1. If ω P Ω0, then rGαω “ rGω and if ω P Ω1YΩ2, then rGαω surjects onto rGω with non trivial kernel.

2. If ω P Ω1, then rGβijω “ rGω and if ω P Ω2, then rGβijω surjects onto rGω with non trivial kernel.

Proof. 1. Consider surjections π : Γ Ñ rGω and πα : Γ Ñ rGαω . By definition of rGαω , we obtain that

kerpπαq Ă kerpπq. Thus rGαω surjects onto rGω.

Let ω P Ω0. Then for any n, each element in rGσnω of length one will never be the identity.

Therefore, kerpπαq “ kerpπq, and so the modified overgroup rGαω is isomorphic to the generalized

overgroup rGω.

Now let ω P Ω1 Y Ω2. Then for some N , σNω contains at most two symbols. Say σNω does

not contain 2. Thus rbσnω “ 1 in rGσnω for n ě N . Note that, W p01q P Γ constructed in (4.6) is in

kerpπq, but not in kerpπαq, since level n nucleus of W p01q consists of ‘1’s and ‘rb’s, for sufficiently

large n. Therefore, rGαω surjects onto rGω with non trivial kernel.

2. Now consider surjections, π and πβij . By the definition of rGβijω , we get kerpπβijq Ă kerpπq,

and thus rGβijω surjects onto rGω.

Let ω P Ω1 with finitely many ‘k’s. Then each element in rGσnω of length one will never be the

identity, unless it is eij . Therefore, kerpπβijq “ kerpπq , and so rGβijω is isomorphic to rGω.

Now let ω P Ω2. Without loss of generality, suppose i “ 0, j “ 1. Then for some N , σNω

contains only one symbol. Say σNω contain only 0’s. Thus rcσnω “ 1 in rGσnω for n ě N . Note

that, W p02q P Γ constructed in (4.6), has only ‘1’s and ‘rc’s in its level n nucleus, for sufficiently

large n. So W p02q P kerpπq. Recall that eij “ e01 “
rb, and therefore W p02q R kerpπβijq. Hence

rGβijω surjects onto rGω with non trivial kernel.
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The following proposition is useful in comparing two groups.

Proposition 4.2. Let r P N and let ω, η P Ω such that ωt “ ηt for each t ď N , where N ą

log2 p2rq.

1. If ω, η have all three symbols after the N -th position, then the balls of radius r of Cayley

graphs of rGω, rGη are identical.

2. If ω has all three symbols after the N -th position, then the balls of radius r of Cayley graphs

of rGω, rGαη are identical.

3. The balls of radius r of Cayley graphs of rGαω , rGαη are identical.

4. If ω, η have exactly the same two symbols, say ti, ju, after the N -th position, then the balls

of radius r of Cayley graphs of rGω, rGη are identical.

5. If ω has only i, j and η has no k, after the N -th position, then the balls of radius r of Cayley

graphs of rGω, rGβijη are identical.

6. If ω, η has no k, after the N -th position, then the balls of radius r of Cayley graphs of

rGβijω , rGβijη are identical.

Proof. 1. We will say two words W,X over alphabets of generators of rGω, rGη, are equal if their

corresponding letters match. LetW,X be equal words of length at most 2r. SupposeW “ 1 in rGω.

Thus we can decompose W into two words tW0,W1u, four words tW00,W01,W10,W11u, . . ., 2N

words tWi1i2...iN u, where all these words represents identity in corresponding groups. By (2.18),

|Wi1i2...iN | ď
|W |
2N
` 1 ´ 1

2N
ă 2. This, together with the fact that ω has all three symbols, implies

Wi1i2...iN “ 1 as a word. Also note that all the words Wi1i2...iN are described by first N symbols of

ω. Since first N symbols of ω and η are equal, X “ 1 in rGη. Therefore we proved 1. The same

argument works for 2 and 3.

4. Since ω, η only have i, j after N -th position, the only length one element which represents

identity is eij . Therefore the proof in 1 with a slight modification works. The argument of 4 works

for 5 and 6.
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The modified overgroups behave nicely under limits.

Corollary 4.3. Let
 

ωpnq
(

be a sequence in Ω that converges to ω P Ω. Then rGα
ωpnq

converges to

rGαω . Additionally, if there is an N such that no k appears after the N -th position of each of
 

ωpnq
(

,

then rGβij
ωpnq

converges to rGβijω .

Proof. Since ωpnq Ñ ω, for sufficiently large n, ω, ωpnq satisfy the hypothesis of Proposition 4.2.

By Proposition 4.2 3, balls of arbitrary radius k of Cayley graphs of rGα
ωpnq

and rGαω , are identical for

sufficiently large n. Therefore, rGα
ωpnq

Ñ rGαω .

Now suppose there is an N such that no k appears after the N -th position of each of
 

ωpnq
(

.

Then by a similar argument, using Proposition 4.2 6, we get rGβij
ωpnq

Ñ rGβijω .

4.2.3 Modified Overgroups for Some ω P Ω

Now we will look at the modified overgroups and see what their structures are. In fact we will

prove Theorem 4.3 using propositions that are provided in this section. First we will introduce

some words in Γ and substitution rules on words in Γ which will be used throughout this section.

Let ω P Ω be a sequence with at most two symbols. Let y P Sz tau be such that for each n P N,

the decomposition of y into depth n using (2.15), has nucleus

p1, 1, . . . , 1, yq. (4.2)

Since ω has at most two symbols, such y exists. For n P Z, define vnpyq “ vn by

vn “

$

’

’

&

’

’

%

yparaq
n

;n ě 0

yparaq
´n´1a ;n ă 0

. (4.3)

For any W P Γ,
`

yW
˘2
“ py2qW “ 1 since y is an involution. So, v2

n “ 1 for all n P Z.

Note that van “ v´n´1, since if n ě 0, v´n´1 “ yparaq
na “

`

yparaq
n˘a

“ van and if n ă 0, van “
´

yparaq
´n´1a

¯a

“ yparaq
´n´1

“ v´n´1. A direct calculation shows that vparaqn “ vn`1.
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Let n ě 0. Then v2n “ yparaq
2n
“ ypra

a
raqn . Thus, rψpv2nq “ p1

praaqn , yparaq
n
q “ p1, vnq. Now let

n ă 0. Then v2n “ yparaq
´2n´1a “ ypra

a
raq´n´1

raa , and therefore rψpv2nq “ p1
praaq´n´1

ra, yparaq
´n´1aq “

p1, vnq. Whence for even n we have vn “ p1, vn{2q via rψ. A similar calculation shows that

vn “ pv´pn`1q{2, 1q when n is odd. We summarize the above discussion as the next proposition.

Proposition 4.3.

1. v2
n “ 1 for n P Z.

2. van “ v´n´1 for n P Z.

3. vn “ p1, vn{2q for even n.

4. vn “ pv´pn`1q{2, 1q for odd n.

5. ara acts on vn by conjugation and vparaqn “ vn`1.

Note that by applying rψ to vn, we obtain vm in one coordinate, for some m P Z such that

|m| ă |n| , if n ‰ 0, 1. This fact will be used in next proposition, which has more properties of

tvnu.

Proposition 4.4. Let n,m be distinct integers. Then,

1. vn achieves a nucleus at some level. Furthermore, each nucleus of vn has all coordinates

equal to 1, except for one coordinate, which is equal to y. Therefore, vn ‰ 1 and vnvm “

vmvn in rGαω .

2. For each level, nuclei of vn and vm, if exist, are different. So, vn ‰ vm in rGαω .

Proof. 1. We use induction on |n|. Note that v0 “ y “ p1, yq “ p1, 1, 1, yq, v´1 “ pv0, 1q “

py, 1q “ p1, y, 1, 1q and v1 “ pv´1, 1q “ py, 1, 1, 1q, which proves the base cases. Let |n| ą 1.

Suppose the statement in 1 is true for |i| ă |n|. By Proposition 4.3 3 and 4, vn “ p1, vn{2q or

vn “ pv´pn`1q{2, 1q. Since |n| ą 1, we have |n{2|, | ´ pn` 1q{2| ă |n|. Thus by the induction
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hypothesis, we obtain the desired result. Since y, 1 commute, we get vnvm “ vmvn in rGαω . Having

a non trivial nucleus guarantees vn ‰ 1 in rGαω .

2. First note that, v0, v1, and v´1 have distinct nuclei in each level. We will use induction on

|n| ` |m|. Let |n| ` |m| ą 1. Suppose the statement is true for i, j if |i| ` |j| ă |n| ` |m|. If n,m

are of different parity, it is clear from Proposition 4.3 3 and 4, that nuclei of vn, vm are different.

If they are of same parity, apply Proposition 4.3 3 and 4. Then we obtain vi, vj from which the

induction hypothesis can be applied. Thus by induction we get the desired result. Having different

nuclei of same level guarantees vn ‰ vm in rGαω .

Given y, y1 P Sz tau of the form (4.2), following the proof of Proposition 4.4 1 together with

the fact that y, y1 commutes with each other gives the following corollary.

Corollary 4.4. Let y, y1 P Sz tau of the form (4.2). Then for each n,m P Z we have the equality

vnpyqvmpy
1q “ vmpy

1qvnpyq.

Now we will introduce two substitution rules ξ0, ξ1:

ξ0 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

a ÞÑ ra

ra ÞÑ araa

y ÞÑ aya

ξ1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

a ÞÑ araa

ra ÞÑ ra

y ÞÑ y

(4.4)

Note that ξ1pparaq
nq “ paraq2n, ξ1pparaq

naq “ paraq2n`1a, ξ0pparaq
nq “ aparaq2na and ξ0pparaq

naq “

aparaq2n`1. Then ξ1pvnq “ v2n “ p1, vnq and ξ0pvnq “ v´2n´1 “ pvn, 1q. Now we will recursively

construct words V pyqi1i2...in “ Vi1i2...in , for i1, i2, . . . , in P t0, 1u, by,

VH “ v0

Vi1i2...in “ ξi1pVi2...inq. (4.5)

It is easy to see that Vi1i2...in “ vr for some r P Z and has a nucleus of depth n with y

in i1i2 . . . in-th coordinate and empty word in other coordinates (see Figure 4.2). Now we will
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V∅ = v0

V1 = v0

V11 = v0

V111 = v0 V011 = v−1

V01 = v−1

V101 = v−2 V001 = v1

V0 = v−1

V10 = v−2

V110 = v−4 V010 = v3

V00 = v1

V100 = v2 V000 = v−3

Figure 4.2: Vi1i2...in values of first 3 levels

introduce some propositions, which describe the group structure of modified groups for ω “ 08

and ω P t0, 1uN.

Proposition 4.5. rGα08 is virtually L2 of index 2.

Proof. Let rG :“ rGα08 and let G :“ rG08 . We will drop the subscript 08 and superscript α, of

each generator, for the convenience. Note that in G we have b “ c “ rd “ ra and d “ rb “ rc “ 1.

Therefore G is isomorphic to the infinite dihedral group D8 generated by a and b. Also note that

d,rb,rc have nuclei of the form (4.2). Let φ be the surjection from rG to G described in Proposition

4.1 1.

Lemma 4.1. Kerpφq “
AA

d,rb,rc
EE

“

A

vnpdq, vnprbq, vnprcq | n P Z
E

–
À

Z Z2
2. Here xx¨yy

denotes the normal closure.

Proof. The inclusion
A

vnpdq, vnprbq, vnprcq | n P Z
E

ď

AA

d,rb,rc
EE

ď Kerpφq is trivial since d “

rb “ rc “ 1 in G. To show the other inclusion, let g P Kerpφq and let W be a reduced word

representing g in rG. Since g P Kerpφq, W “ 1 in G. But a word is the identity in G if and

only if its nucleus of some level contains only 1, d,rb,rc. Say, W has a nucleus of level n with

only 1, d,rb,rc. We can construct a word W 1 using V pdqi1i2...in , V prbqi1i2...in and V prcqi1i2...in so that

the level n nucleus of W 1 is the same as the level n nucleus of W . Thus g “ W “ W 1 in rG
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and since W 1 represents a group element in
A

vnpdq, vnprbq, vnprcq | n P Z
E

, we obtain Kerpφq ď
A

vnpdq, vnprbq, vnprcq | n P Z
E

. Therefore we get the equality of three groups.

Note that d “ rbrc and vnpdq “ vnprbqvnprcq for each n. Thus,
A

vnpdq, vnprbq, vnprcq | n P Z
E

“
A

vnprbq, vnprcq | n P Z
E

. Since rb,rc commute and are distinct,
!

vnprbq, vnprcq | n P Z
)

consists of

mutually commutative distinct elements, by Corollary 4.4.

Now we will show that there are no linear dependencies in
!

vnprbq, vnprcq | n P Z
)

. To the

contrary, suppose there is a relation involving vniprbq, i “ 1, 2, . . . , r and vmjprcq, j “ 1, 2, . . . , s.

By commutativity, using the fact that all these elements are involutions, we can assume that this

relation has a form

W “

r
ź

i“1

vnip
rbq

s
ź

j“1

vmjprcq.

Let N be the level where all of the involved elements are decomposed to their nuclei. Then by

Proposition 4.41 the nucleus of each of vniprbq will have exactly one position holding rb, and the

nuclei of all other vni1 p
rbq for i1 ‰ i must have empty word at that position (otherwise, since there

is only one position equal to rb in the nucleus, we would obtain that vniprbq “ vni1 p
rbq, contradict-

ing to Proposition 4.4 1). Similar argument can be made for elements vmjprcq. Therefore, the

decomposition of W at level N will contain a nontrivial coordinate holding one of rb,rc, or rbrc “ d

for each vniprbq and vmjprcq in W and, hence, W cannot represent the trivial element in rG. This

contradicts the assumption of having linear dependency. Thus
A

vnpdq, vnprbq, vnprcq | n P Z
E

“
A

vnprbq, vnprcq | n P Z
E

–
À

Z Z2
2. This completes the proof of lemma.

Note that the generator of xaray acts on Kerpφq by shifting its generators. Also note that

Kerpφq and xaray intersects trivially, since ara is of infinite order and all elements of Kerpφq are

involutions. So, Kerpφq ¸ xaray is isomorphic to L2 “ Z2
2 o Z.

Conjugating the generators of Kerpφq ¸ xaray by generators of rG, we see that Kerpφq ¸ xaray

is normal in rG. The quotient rG{Kerpφq – D8 maps onto the quotient rG{ pKerpφq ¸ xarayq.

The kernel of the homomorphism from rG{Kerpφq to rG{ pKerpφq ¸ xarayq is generated by the

image of ara in rG{Kerpφq. So Kerpφq ¸ xaray has index two in rG, and therefore rG is virtually
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Kerpφq ¸ xaray – L2 with index two.

Proposition 4.6. rGβiji8 is virtually L with index two.

Proof. For simplicity, we will prove this for i “ 0, j “ 1 and ω “ 08. We will show rGβijω – Gαω .

Here Gαω is the group defined in Section 6 of [Gri84b], which is denoted by rG in [Gri84b]. So, Gαω “

Γ1{N 1 where Γ1 is the subgroup of Γ generated by ta, b, c, du, and N 1 is the normal subgroup of Γ1

consisting all the words that yield positive result when the algorithm α is applied. Let π1 : Γ1 Ñ Gαω
be the canonical epimorphism.

Note that in rGβijω , rb “ 1 and so ra “ b,rc “ d, rd “ c. Now define f : Γ Ñ Γ1 by,

f :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

s ÞÑ s for s P ta, b, c, du

rb ÞÑ 1

ra ÞÑ b

rc ÞÑ d

rd ÞÑ c

.

Then f is a surjective homomorphism. Since rψ agrees on ordered sets rS
βij
ω and ta, b, c, d, b, 1, d, cu,

W P kerpπβijq if and only if fpW q P kerpπ1q. Thus f : Γ Ñ Γ1 induces a well defined monomor-

phism f̂ : rGβijω Ñ Gαω . f being a surjection implies that f̂ is a surjection, and therefore f̂ is an

isomorphism. This completes the proof, since Gαω is virtually L with index two by Theorem 2 of

[BG14].

Proposition 4.7. Let ω P t0, 1uN. Then rGαω contains L as a subgroup and is an extension of rGω by
À

Z Z2.

Proof. Let ω P t0, 1uN. Let rG :“ rGαω “
A

a, b, c, d,ra,rb,rc, rd
E

and let G :“ rGω. We will drop

the subscript ω and superscript α, of generators for the convenience. Note that in G we have

b “ ra and rb “ 1 and therefore rb has nuclei of the form (4.2). Let φ be the surjection from rG

to G described in Proposition 4.1 1. Then by a similar argument as in the proof of Lemma 4.1,
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Kerpφq “
AA

rb
EE

“

A

vnprbq | n P Z
E

–
À

Z Z2. Hence rG is an extension of G by
À

Z Z2.

Also since Kerpφq X xaray “ x1y and ara acts on Kerpφq by shifting (by Proposition 4.3 5),

Kerpφq ¸ xaray – L is a subgroups of rG.

Proof of Theorem 4.3. Note that for any ω P Ω, rGω is commensurable to prGσNωq2
N . This, together

with Proposition 4.5, 4.6 and 4.7, proves the result.

4.3 Closure and Cluster Points of rGω in M8

Recall the notation introduced in (4.1).

X “

!

prGω, rSωq
)

ωPΩ

Xi “

!

prGω, rSωq
)

ωPΩi
; for i “ 0, 1, 2

X α
i “

!

prGαω , rSαω q
)

ωPΩi
; for i “ 1, 2

X β
2 “

!

prGβω , rSβωq | β P tβ01, β12, β20u

)

ωPΩ2

Y “X0 Y X α
1 Y X α

2

Then X is the disjoint union of X0,X1,X2. In order to prove the Theorem 4.1 we use the following

propositions.

Proposition 4.8. Generalized overgroups and modified overgroups corresponding to different or-

acles ω, are different in M8.

Proof. Recall that two points pG1, S1q, pG2, S2q P M8 are equal if and only if the canonical map

S1 Ñ S2 that preserves the order, extends to an isomorphism G1 Ñ G2. Thus by restricting S1, S2

to ordered sets of r elements S 11, S
1
2, respectively, give rise to equal points pxS 11y , S

1
1q, pxS

1
2y , S

1
2q P

Mr.

Note that the classical Grigorchuk’s groups and their modifications can be obtained by re-

stricting corresponding generating sets of generalized overgroups and modified overgroups. By
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[Gri84b], different oracles ω give rise to different classical Grigorchuk’s groups and their modifi-

cations in M4. Therefore by above argument, we get the result.

Form the above proposition we can see that the sets X0, pX1YX α
1 q, pX2YX α

2 YX β
2 q are disjoint.

This, together with Corollary 4.1, yields,

Corollary 4.5. X0,X1,X2,X α
1 , pX α

2 Y X β
2 q are disjoint.

Now let us prove X α
2 ,X β

2 are disjoint.

Proposition 4.9. X α
2 ,X β

2 are disjoint. In fact, for ω P Ω2 with infinitely many i’s, the groups

rGαω , rG
βij
ω and rGβikω are different.

Let ω contain finitely many ‘k’s. We will construct a word W pijq such that its nucleus consists

only of ‘1’s and ‘eij’s, with not all ‘1’s. For ease of writing let us assume ω contains finitely many

‘2’s. We will construct the word W p01q. Recall that e01 “
rb. Let ω “ ω1ω2 . . . ωn2tη, where

ωn ‰ 2 and η P t0, 1uN. Now for r “ 0, 1, . . . , n, define

Xr “

$

’

’

&

’

’

%

b ;ωr ‰ 2

rb ;ωr “ 2

,

Yr “ X
X
...Xar
n´1

n ,

Zr “ prbYrq
2,

W p01q “ pZ1q
2t . (4.6)

The decomposed diagram of W p01q of depth n ` t is given in the Figure 4.3 and thus its

level n ` t nucleus consists of only 1,rb. Using similar constructions, we can construct words

W p02q,W p12q.

Proof of Proposition 4.9. Suppose ω “ ω1ω2 . . . ωn2tη, where ωn ‰ 2 and η P t0, 1uN. Let W “

W p01q defined as above. Then W represents the identity element in rGβ01ω but not the identity in rGαω
and rGβ02ω . Similarly using the word W p02q, we can show rGαω ‰ rGβ02ω .
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W = (Z1)2
t

1
(Z2)2

t

1
. . .

(Zn)2
t

...
...

...
...

b̃ b̃. . .

Figure 4.3: Decomposition of W p01q in to the depth n` t

Proof of Theorem 4.1. Directly from Proposition 4.8, 4.9 and Corollary 4.5.

Now we will prove Theorem 4.2. We will use few lemmas in order to do this.

Lemma 4.2. Let ω, ωpnq P Ω for all n P N and ωpnq Ñ ω. Suppose G “ lim rGωpnq exists and

G ‰ rGωpnq , for all n. Then G “ rGω, rGαω or rGβijω . Moreover G P Y Y X1 Y X β
2 and so G R X2.

Proof. First let ω P Ω0. Let r P N and let N ą log2p2rq. Since ωpnq Ñ ω and ω P Ω0, for

sufficiently large n, we may assume ωpnq has all three symbols after the N -th position and ωpnq, ω

agrees till the N -th position. Using Proposition 4.2 1, and letting r Ñ 8, we get G “ rGω.

Now let ω P Ω1. Let N0 be the smallest index such that only two symbols appear after N0-th

position. Suppose for each N ě N0, there are infinitely many ‘n’s such that ωpnq contains all

three symbols after N -th position. Then by Proposition 4.2 2, there is a subsequence
 

ωpntq
(

tě1
of

 

ωpnq
(

, such that rGωpntq Ñ rGαω as t Ñ 8. Since the subsequential limits and limit of the sequence

agree, we get G “ rGαω . Now suppose there is N ě N0 such that for all but finitely many n,
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ωpnq contains at most two symbols after the N -th position. Since ωpnq Ñ ω, we may assume ωpnq

contains exactly the same two symbols as of ω, for sufficiently large n. Then by Proposition 4.2 4,

we obtain G “ rGω.

Finally let ω P Ω2. Let N0 be the smallest index such that only one symbol, say i, appear

after the N0-th position. Suppose for each N ě N0, there are infinitely many ‘n’s such that

ωpnq contains all three symbols after the N -th position. Then by Proposition 4.2 2, there is a

subsequence of
 

ωpnq
(

, which converges to rGαω . Thus, G “ rGαω . Now suppose for each N ě N0,

there are infinitely many ‘n’s such that ωpnq contains exactly two symbols, say i, j, after the N -th

position. Then by Proposition 4.2 5, there is a subsequence of
 

ωpnq
(

, which converges to rGβijω .

Thus, G “ rGβijω . If neither of above is true, then there is N ě N0 such that for all but finitely many

n, ωpnq contains exactly one symbol. Since ωpnq Ñ ω, that symbol has to be i. Thus for sufficiently

large n, ωpnq “ ω. This impossible since G ‰ rGωpnq .

From above, we can conclude that G P Y Y X1 Y X β
2 and G R X2.

Proof of Theorem 4.2 1. To the contrary, suppose there is an η P Ω2 such that rGη P X2 is a limit

point. Then there exists a sequence tGωpnqu converging to rGη. Since Ω is compact, by passing

to a subsequence, if necessary, we may assume ωpnq Ñ ω, for some ω P Ω. By Lemma 4.2,

rGη “ lim rGωpnq R X2, which is a contradiction.

Proof of Theorem 4.2 3 (a). LetG P Y7 “ pX0YX α
1 YX α

2 q7. By Proposition 4.1 1, rGω “ rGαω . Then

there exists
 

ωpnq
(

Ă Ω such that rGα
ωpnq

Ñ G. By compactness of Ω we may assume ωpnq Ñ ω for

some ω P Ω. Then G “ rGαω by Corollary 4.3. This together with Corollary 4.3 implies that

ωpnq Ñ ω ðñ

´

rGαωpnq Ñ rGαω
¯

.

Therefore Y – Ω and X0 – Ω0,X α
1 – Ω1,X α

2 – Ω2. Thus, Y is homeomorphic to a Cantor set

and Y “ pX0q7 “ pX α
1 q7 “ pX α

2 q7.

Proof of Theorem 4.2 3 (b). First we will show X7 Ă Y Y X1 Y X β
2 . Let G be a limit point of

X . Thus there exists a sequence tGωpnqu converging to G. Since Ω is compact, we may assume
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ωpnq Ñ ω, for some ω P Ω. Then by Lemma 4.2, G P YYX1YX β
2 . Therefore X7 Ă YYX1YX β

2 .

Now we will show YYX1YX β
2 Ă pX1q7. Let ω P Ω and choose ωpnq “ ω1ω2 . . . ωnp012qpijq8,

for each n. Then using Proposition 4.2 2, we get rGωpnq Ñ rGαω . So Y Ă pX1q7. Now let ω P Ω1YΩ2

with finitely many k’s. Choose ωpnq “ ω1ω2 . . . ωnpijq
8, for each n. Using Proposition 4.2 5, we

get rGωpnq Ñ rGβijω . So X1 Y X β
2 Ă pX1q7. Therefore Y Y X1 Y X β

2 Ă pX1q7.

Using a similar argument by choosing ωpnq “ ω1ω2 . . . ωnp012qpiq8 and again choosing ωpnq “

ω1ω2 . . . ωnpijqpiq
8, we can show Y Y X1 Y X β

2 Ă pX2q7.

Since X1 and X2 are subsets of X , we get X7 “ pX1q7 “ pX2q7 “ Y Y X1 Y X β
2 . Corollary 4.3

together with Proposition 4.1 implies that pX1q7 “ pX β
2 q7 and so we get the desired result.

Now we will complete the proof of Theorem 4.2.

Proof of Theorem 4.2 2. We already proved Y is homeomorphic to a Cantor set. Now let us prove

that X7 is also homeomorphic to a Cantor set. Note that the set X7 is a perfect set. (That is a closed

set with all its point being limit points). The space M8 is a totally disconnected compact metric

space. Let us recall that any non empty, totally disconnected, compact, perfect metric space is

homeomorphic to the Cantor set. Therefore, X7 is homeomorphic to the Cantor set.
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5. SCHUR COMPLEMENT METHOD AND ASSOCIATED RATIONAL MAPS∗

This chapter consists of some results from the article [GS21] and some results obtained under

the guidance of Nguyen-Bac Dang, Rostislav Grigorchuk, and Mikhail Lyubich.

5.1 Introduction

The study of spectra of graphs and groups has applications in graph theory, quantum chemistry,

signal processing, ect. The spectrum of a group is defined to be the spectrum of the Markov

operator operator associated with the Cayley graph of the group. The Markov operator M of a

d-regular non-oriented graph pV,Eq acts on the Hilbert space `2pV q and is defined by

pMfqpxq “
1

d

ÿ

y„x

fpyq,

for f P `2pV q, where x „ y is the adjacency relation. In the case of the Cayley graph of the group

G, the Markov operator is given by,

pMfqpgq “
1

|S Y S´1|
ÿ

sPSYS´1

fpsgq,

for f P `2pGq and g P G.

The operator L “ I´M where I is the identity operator is called the discrete Laplace operator.

Operators M and L can be defined also for non-regular graphs as it is done for instance in [MW89,

Chu97]. The Markov operator M is a self-adjoint operator with the norm ‖M‖ ď 1 and its

spectrum is contained in r´1, 1s. The name “Markov” comes from the fact that M is the Markov

operator associated with the random walk on the graph pV,Eq in which a transition u Ñ v occurs

with probability 1{d, if u and v are adjacent vertices.

A more general concept called weighted Markov operator is used when the graph is weighted,

∗Part of this chapter is reprinted with permission from “Integrable and Chaotic Systems Associated With Fractal
Groups” by Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by
MDPI (under open access policy).
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in the sense that there is a weight function on the set of edges. Given a symmetric probability

distribution on the generators of a group, the weighted Markov operator is associated with the

random walk on the (left) Cayley graph. This give rise to the concept called joint spectrum of

pencil of operators of contracting self-similar groups (see [BG00b, Yan09] for more on this).

The Schur complement method, discussed in Section 5.3, is a useful tool in linear algebra,

networks, differential operators, applied mathematics [Cot74]. In particular, it can be used to

compute the spectra and joint spectra of some self-similar groups, as seen in [GN07]. Schur

complements can be used to construct multi-dimensional maps called Schur transformations (also

known as Schur renormalization transformations), which happen to be rational maps, in some

situations. The dynamical properties of these maps are closely related to the spectral problem of

corresponding groups [DGL21].

In Section 5.4, we calculate Schur complements, Schur transformations, and associated 2-

dimensional rational maps for the first Grigorchuk group G, the overgroup rG, the generalized

Grigorchuk groups Gω, and generalized overgroups rGω. The 2-dimensional rational maps for G

and rG are given in (5.18) and (5.26), respectively.

For generalized groups Gω and rGω, we obtain 2-dimensional rational maps F0, F1, F2 given

in (5.32), associated with Gω, and rF0, rF1, rF2 given in (5.36), associated with rGω. Note that these

maps depend on three parameters in the case of Gω and on seven parameters in the case of rGω. We

are particularly interested in studying random dynamics of F0, F1, F2 and rF0, rF1, rF2. Dynamical

pictures representing a Julia set basin of attraction for random iteration of these maps are shown in

Figure 5.1.

There is a 2-parametric family of maps tFα,β | α, β P C and α ‰ 0u, where Fα,β : C2 Ñ C2 is

given by,

Fα,βpx, vq “

ˆ

αx2

pv ` βq2 ´ α2
, v ´

pv ` βqx2

pv ` βq2 ´ α2

˙

. (5.1)

The condition α ‰ 0, enables Fα,β to be a dominant map (i.e., the image of the map is not con-

tained in an algebraic curve). The 2-parametric maps conjugates to the maps in (5.18), (5.26) (see

Proposition 5.2), and semi-conjugate to a lower-dimensional map as seen in the next theorem:
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(a) (b)

(c) (d)

Figure 5.1: Dynamical pictures of Fωn´1 ˝ . . . ˝ Fω0 for (a) ω “ p012q8 and py, z, uq “ p1, 2, 3q,
(b) ω “ p01q8 and py, z, uq “ p1, 2, 3q, (c) a random ω and py, z, uq “ p1, 2, 3q, and (d) a random
ω and py, z, uq “ p1, 3, 3q.

Theorem 5.1. For any α ‰ 0 and β, the 2-parametric map Fα,β , given by (5.1), is semi-conjugate

to the map t : z ÞÑ 2z2´ 1 (i.e., there is a rational map fs : C2 99K C satisfying fs ˝Fα,β “ t ˝ fs).

The map t is called the Chebyshev map or the Ulam - von Neumann map.

A map f on a rational variety (see Appendix B.2) X is said to be algebraically stable if no

algebraic curve is contracted via iterates of f to an indeterminacy point of f . That is, for each

algebraic curve C on X and for each n P N, if fnpCq :“ f ˝ . . . ˝ fpCq is a point, then that point

is not an indeterminacy point of f . This concept can be extended to a sequence of maps tfku. We

say tfku is algebraically stable if no algebraic curve is contracted to an indeterminacy point via

the ordered iterates of tfku (i.e., fn ˝ . . . ˝ f1pCq is not an indeterminacy point, for n P N and for

any algebraic curve C). We have an algebraic stability condition on any sequence of 2-parametric

maps.
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Theorem 5.2. There is a rational varietyX , obtained by blowing up two points of P2, such that for

each sequence tfnu of two-parametric maps, where fn “ Fαn,βn is of the form (5.1), the sequence
!

pfn

)

of lifted maps to X , is algebraically stable.

As a direct corollary of Theorem 5.2, we obtain the following algebraic stability condition for

iterated rational maps on generalized groups.

Theorem 5.3. Let ω P Ω “ t0, 1, 2uN be arbitrary and let X be the rational variety as in Theo-

rem 5.2. Then,

1. The sequence
!

pFωn

)

of lifted maps, which corresponds to the group Gω, is algebraically

stable, if y ` z, y ` u, z ` u are non-zero,

2. The sequence
"

p

rFωn

*

of lifted maps, which corresponds to the group Gω, is algebraically

stable, if y ` z ` q ` t, y ` u` q ` s, z ` u` q ` r are non-zero,

We will prove Theorem 5.2 and Theorem 5.3 in Section 5.5.

5.2 Self-similar Representations and Matrix Recursions

In order to define a self-similar representation, we will need a few preliminary definitions.

Definition 5.1. Let H be an infinite dimensional Hilbert space. A map

ψ : H Ñ Hd
“ H ‘ . . .‘H

is called a d-fold similarity (or simply, a d-similarity) if it is an isomorphism of Hilbert spaces.

Definition 5.2. The Cuntz algebra Od is the universal C˚-algebra given by the presentation

Od – xa1, . . . , ad | a1a
˚
1 ` . . .` ada

˚
d “ 1, a˚i ai “ 1, i “ 1, . . . , dy . (5.2)

Note that multiplying the relation
ř

j aja
˚
j “ 1 by a˚i on the left and by ai on the right, we get,

ř

j‰ipa
˚
j aiq

˚pa˚j aiq “ 0. This is a sum of positive elements and so a˚j ai “ 0 if j ‰ i. Therefore,
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the Cuntz algebra Od is equipped with the set of relations,

#

ÿ

j

aja
˚
j “ 1, a˚i ai “ 1, a˚j ai “ 0, for 1 ď i, j ď d and i ‰ j

+

, (5.3)

which we call the Cuntz relations.

There is a one to one correspondence between the collection of the ˚-representations of the

Cuntz algebra Od to BpHq and the collection of the d-similarities on H , where BpHq denotes the

space of bounded linear operators on H , as seen by the next theorem.

Theorem 5.4 (Proposition 3.1 of [GN07]). Let H be an infinite dimensional separable Hilbert

space. Then, there is a bijective correspondence between ˚-representations ρ : Od Ñ BpHq and

d-similarities ψ : H Ñ Hd.

Given a ˚-representation ρ : Od Ñ BpHq, the corresponding d-similarity ψρ : H Ñ Hd is

given by, ψρphq “ pρpa˚1qphq, . . . , ρpa
˚
dqphqq, where a1, . . . , ad are generators of Od.

Conversely, given a d-similarity ψ : H Ñ Hd, the corresponding ˚-representation ρψ : Od Ñ

BpHq can be described by,

ρψpaiqphq “ ψ´1
p0, . . . , 0, h, 0, . . . , 0q, (5.4)

for h P H , where h in the right hand side is at the i-th coordinate of Hd.

The main example that we consider is the Hilbert space L2pBTd, µq of square integrable func-

tions on the boundary of Td, with respect to uniform Bernoulli measure µ. Then, there is a natural

d-similarity indexed by the d symbols of the alphabet X , given by

ψ : L2
pBTd, µq Ñ

à

xPX

L2
pBTd, µq,

pψfqxpξq “
1
?
d
fpxξq,

for f P L2pBTd, µq, ξ P BTd, and x P X . This arise from the self-similarity property of BTd.
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By Theorem 5.4, we obtain the corresponding ˚-representation to the above d-similarity,

ρ : Od Ñ BpL2pBTd, µqq given by,

pρpaxqfqpξq “

$

’

’

&

’

’

%

?
dfpσξq if ξ “ xσξ

0 if ξ ‰ xσξ

, (5.5)

where, σ is the shift operator on BTd.

Now, we are ready to define self-similar representations.

Definition 5.3. Let G be a self-similar group acting on the d-regular rooted tree Td. A unitary

representation π : GÑ BpL2pBTd, µqq is said to be self-similar if

πpgq ˝ ρpaxq “ ρpagxq ˝ πpg|xq, (5.6)

for g P G and x P X . Here, ρ is the representation given in (5.5).

Let κ : GÑ BpL2pBTd, µqq be the Koopman representation given by

pκpgqfqpξq “ fpg´1ξq. (5.7)

Then κ is a unitary representation. Note that,

pκpgq ˝ ρpaxqfqpξq “ pρpaxqfqpg
´1ξq

“

$

’

’

&

’

’

%

?
dfpσg´1ξq ; if g´1ξ “ xσg´1ξ

0 ; otherwise

“

$

’

’

&

’

’

%

?
dfpσg´1ξq ; if ξ “ gpxqg|xσg

´1ξ

0 ; otherwise
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“

$

’

’

&

’

’

%

?
dfpg|´1

x ηq ; if ξ “ gpxqη

0 ; otherwise

“

$

’

’

&

’

’

%

?
dpκpg|xqfqpηq ; if ξ “ gpxqη

0 ; otherwise

“ pρpagxq ˝ κpg|xqfqpξq,

by using (2.3) and Proposition 2.1, and therefore Koopman representation is self-similar.

Remark 5.1. The right hand side of (5.7) is usually written with a normalizing factor
b

dg˚µ
dµ

,

square root of the Radon-Nikodym derivative of the pullback measure g˚µ. The pullback measure

is given by g˚µpAq “ µpg´1Aq for A Ă BTd. But in our case, this normalizing factor is 1 since the

action of AutpTdq on Td is uniform measure preserving.

Now let us define the matrix recursions.

Definition 5.4. Let A be an algebra. A matrix recursion on A is a homomorphism

ϕ : AÑMdpAq,

where MdpAq is the algebra of dˆ d matrices over A.

Given a d-similarity ψ : H Ñ Hd, there is a natural matrix recursion ϕ on the algebra of

bounded operators BpHq. Let M P BpHq. Then, ψ ˝M ˝ ψ´1 P BpHdq, and so it is associated

with the matrix, denoted by ϕpMq, whose columns are obtained by the transposes of ψ ˝M ˝ ψ´1

images under basic elements of Hd. Note that,

cTj phq “ pψ ˝M ˝ ψ´1
qp0, . . . , 0, h, 0, . . . , 0q

“ pψ ˝Mqpρψpajqhq ;by (5.4)

“ ψpM ˝ ρψpajqhq
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“ pρψpa
˚
1q ˝M ˝ ρψpajqh, . . . , ρψpa

˚
dq ˝M ˝ ρψpajqhq, ;by Theorem 5.4

where cTj is the transpose of the j-th column of the matrix ϕpMq. Here, the h in the top line appears

in the j-th position. Therefore, the matrix recursion of M is,

ϕpMq “ pρψpa
˚
i q ˝M ˝ ρψpajqqi,j . (5.8)

We will write M instead of ϕpMq if there are no ambiguities.

Any self-similar representation of a self-similar group acting on d-regular tree, naturally leads

to a matrix recursion on the group algebra, using the idea discussed above. Let G be a self-similar

group acting on Td and let π : G Ñ BpL2pBTd, µqq be a self-similar representation. Consider the

natural d-similarity ψ : L2pBTd, µq Ñ
À

xPX L
2pBTd, µq. Let g P G. Then,

ρpa˚yq ˝ πpgq ˝ ρpaxq “ ρpa˚yq ˝ ρpagpxqq ˝ πpg|xq

“

$

’

’

&

’

’

%

πpg|xq if gpxq “ y

0 otherwise
,

for x, y P X , using (5.6) and (5.3). Here, ρ is the representation of Cuntz algebra corresponding to

the d-similarity ψ. Therefore, using (5.8) we obtain the matrix recursion ϕpgq of g given by,

ϕpgqy,x “

$

’

’

&

’

’

%

πpg|xq if gpxq “ y

0 otherwise
, (5.9)

where ϕpgqy,x is the entry in y-th row and x-th column of the matrix ϕpgq.

In the case of Koopman representation (i.e., π “ κ), by identifying κpgq with g, we define a

matrix recursion using (5.9), given by

ϕpgq “ pgy,xqy,xPX , where
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gy,x “

$

’

’

&

’

’

%

g|x if gpxq “ y

0 otherwise
. (5.10)

We define a matrix recursion ϕ on the group algebra CrGs, by extending (5.10) to CrGs linearly.

We may write g in place of ϕpgq if there will be no ambiguity.

Now consider the case of d “ 2. Then, by (5.10), we obtain the matrix recursions on elements

of AutpT2q, introduced in Section 2.5 as follows:

1 “

¨

˚

˝

1 0

0 1

˛

‹

‚

, a “

¨

˚

˝

0 1

1 0

˛

‹

‚

, ra “

¨

˚

˝

a 0

0 ra

˛

‹

‚

,

b “

¨

˚

˝

a 0

0 c

˛

‹

‚

, c “

¨

˚

˝

a 0

0 d

˛

‹

‚

, d “

¨

˚

˝

1 0

0 b

˛

‹

‚

,

rb “

¨

˚

˝

1 0

0 rc

˛

‹

‚

, rc “

¨

˚

˝

1 0

0 rd

˛

‹

‚

, rd “

¨

˚

˝

a 0

0 rb

˛

‹

‚

,

bω “

¨

˚

˝

Bω
0 0

0 bσω

˛

‹

‚

, cω “

¨

˚

˝

Cω
0 0

0 cσω

˛

‹

‚

, dω “

¨

˚

˝

Dω
0 0

0 dσω

˛

‹

‚

,

rbω “

¨

˚

˝

rBω
0 0

0 rbσω

˛

‹

‚

, rcω “

¨

˚

˝

rCω
0 0

0 rcσω

˛

‹

‚

, rdω “

¨

˚

˝

rDω
0 0

0 rdσω

˛

‹

‚

, (5.11)

Here, ω P Ω, and Bω
0 , C

ω
0 , D

ω
0 ,

rBω
0 ,

rCω
0 ,

rDω
0 are defined in (2.11).

5.3 Schur Complements

Let H be a Hilbert space that can be decomposed into a direct sum of two non-trivial Hilbert

spaces H1 and H2. That is, H “ H1 ‘ H2, where Hi ‰ t0u for i “ 1, 2. Let M P BpHq be a
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bounded operator. Then M has the metrix representation

M “

¨

˚

˝

A B

C D

˛

‹

‚

(5.12)

that arise from the above decomposition, where

A : H1 Ñ H1, B : H2 Ñ H1, C : H1 Ñ H2, D : H2 Ñ H2,

are bounded operators.

First and second Schur complements, denoted by S1 and S2, are partially defined maps given

by,

S1 : BpHq Ñ BpH1q S2 : BpHq Ñ BpH2q

M ÞÑ A´BD´1C, M ÞÑ D ´ CA´1B,

for any M P BpHq. Here, A,B,C, and D are operators given by the matrix representation (5.12)

ofM . Note that S1pMq is defined whenD is invertible, and S2pMq is defined whenA is invertible.

Invertibility of M is closely related with the invertibility of Schur complements, as can be seen by

the next proposition.

Proposition 5.1 ([GN07]). Let M be a bounded operator with matrix representation given by

(5.12). If D is invertible, then M is invertible if and only if S1pMq is invertible and

M´1
“

¨

˚

˝

S´1
1 ´S´1

1 BD´1

´D´1CS´1
1 D´1CS´1

1 BD´1 `D´1

˛

‹

‚

,

where S1 “ S1pMq.

A similar statement holds for S2pMq when A is invertible. The above expression for M´1 is
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called the Frobenius formula. In the case dimH ă 8, the determinant |M | of matrix M satisfies

|M | “ |S1pMq||D|,

which is known as the Schur formula.

There is nothing special in decomposition of H into a direct sum of two subspaces. If

H “ H1 ‘ . . .‘Hd and

M “

¨

˚

˚

˚

˚

˝

M11 . . . M1,d

... . . . ...

Md1 . . . Mdd

˛

‹

‹

‹

‹

‚

for Mij : Hi Ñ Hj and H “ H1 ‘H
K
1 , where HK

1 “ H2 ‘ . . .‘Hd, then we are back in the case

d “ 2. By change of the order of the summands (putting Hi on the first place) one can define the

i-th Schur complement SipMq, for each i “ 1, . . . , d.

If dimH “ 8 and ψ : H Ñ Hd is a d-similarity, then SipMq “ pρψpa˚i qM
´1ρψpaiqq

´1, where

ρψ is the representation of Cuntz algebra that corresponds to the d-similarity ψ (see Proposition 5.4

in [GN07]). Therefore, for each d ě 2, one can define S˚H the semigroup generated by the Schur

complements Si, 1 ď i ď d with the operation of composition. We will call S˚H the Schur semi-

group. For a general element of this semigroup, we get the following expression,

Si1 ˝ . . . ˝ SikpMq “
`

ρψpaik . . . ai1q
˚M´1ρψpai1 . . . aikq

˘´1

(see Corollary 5.5 in [GN07]).

The Schur semigroup S˚H consists of partially defined transformations on the infinite dimen-

sional space BpHq. Let L Ă BpHq be a finite dimensional subspace which is invariant with

respect to S˚H . The restriction of each Schur complement gives rise to a CdimpLq Ñ CdimpLq map

called Schur map or Schur transformation. The semigroup generated by Schur transformations

is denoted by S˚L. We are particularly interested in the case where the Schur transformations are

rational maps. We will examine such examples in Section 5.4.
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5.4 Computation of Schur Complements, Schur Transformations, and Associated Rational

Maps

In this section, we will compute Schur complements, Schur transformations and rational maps

associated with the Grigorchuk group G, the overgroup rG, generalized Grigorchuk groups Gω,

and generalized overgroups rGω. For G and rG, we will consider the finite dimensional subspaces

generated by the natural generators of the group together with the identity. We will see that these

subspaces are invariant with respect to the Schur semigroups. In contrast, for the groups Gω and

rGω, these corresponding subspaces are not invariant. But there is a natural way to define Schur

transformations, which can be seen in Section 5.4.3.

5.4.1 For the Grigorchuk Group G

Recall that the Grigorchuk group G is generated by a, b, c, d. Let M “ xa` yb` zc` ud` v1

be an element of the group algebra CrGs. Using the matrix recursions (5.11), we identify,

M “

¨

˚

˝

py ` zqa` pu` vq1 x

x ub` yc` zd` v1

˛

‹

‚

. (5.13)

First, we will calculate the first Schur complement S1pMq, which is defined when D “ v1 `

ub ` yc ` zd is invertible. Since the group generated by t1, b, c, du is isomorphic to Z2
2 (via the

identification 1, b, c, d with p0, 0q, p1, 0q, p0, 1q, p1, 1q, respectively), by (A.6) and (A.2), we obtain

that D is invertible if and only if

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq ‰ 0, (5.14)

and if the condition in (5.14) is satisfied, then by (A.7),

D´1
“

1

4

ˆ

1

v ` u` y ` z
`

1

v ´ u` y ´ z
`

1

v ` u´ y ´ z
`

1

v ´ u´ y ` z

˙

1

`
1

4

ˆ

1

pv ` u` y ` zq
´

1

v ´ u` y ´ z
`

1

v ` u´ y ´ z
´

1

v ´ u´ y ` z

˙

b
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`
1

4

ˆ

1

pv ` u` y ` zq
`

1

v ´ u` y ´ z
´

1

v ` u´ y ´ z
´

1

v ´ u´ y ` z

˙

c

`
1

4

ˆ

1

pv ` u` y ` zq
´

1

v ´ u` y ´ z
´

1

v ` u´ y ´ z
`

1

v ´ u´ y ` z

˙

d.

Therefore, the first Schur complement

S1pMq “A´BD
´1C

“py ` zqa` pv ` uq1´ x2D´1

“py ` zqa

`

ˆ

v ` u´ x2 2uyz ´ vp´v2 ` u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

˙

1

´ x2 2vyz ´ upv2 ´ u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
b,

´ x2 2vuz ´ ypv2 ` u2 ´ y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
c,

´ x2 2vuy ´ zpv2 ` u2 ` y2 ´ z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
d.

This leads to the Schur transformation SG1 : C5 Ñ C5 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y ` z

´x2 2vyz ´ upv2 ´ u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

´x2 2vuz ´ ypv2 ` u2 ´ y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

´x2 2vuy ´ zpv2 ` u2 ` y2 ´ z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

v ` u´ x2 2uyz ´ vp´v2 ` u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(5.15)

Now, we will calculate the second Schur complement S2pMq which is defined when A “

py ` zqa` pu` vq1 is invertible. Since the group generated by t1, au is isomorphic to Z2 (via the

identification 1, a with 0, 1, respectively), by (A.4) and (A.2), we obtain that A is invertible if and
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only if

pv ` u` y ` zqpv ` u´ y ´ zq ‰ 0, (5.16)

and if the condition in (5.16) is satisfied, then A´1 is given by,

A´1
“

1

2

ˆ

1

v ` u` y ` z
`

1

v ` u´ y ´ z

˙

1`
1

2

ˆ

1

v ` u` y ` z
´

1

v ` u´ y ´ z

˙

a

“
v ` u

pv ` u` y ` zqpv ` u´ y ´ zq
1´

y ` z

pv ` u` y ` zqpv ` u´ y ´ zq
a.

Therefore, the second Schur complement

S2pMq “v1` ub` yc` zd´ x2A´1

“
x2py ` zq

pv ` u` y ` zqpv ` u´ y ´ zq
a` ub` yc` zd

`

ˆ

v ´
x2pv ` uq

pv ` u` y ` zqpv ` u´ y ´ zq

˙

1.

This leads to the Schur transformation SG2 : C5 Ñ C5 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x2py ` zq

pv ` u` y ` zqpv ` u´ y ´ zq

u

y

z

v ´
x2pv ` uq

pv ` u` y ` zqpv ` u´ y ´ zq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.17)

The map SG2 fixes second, third and fourth coordinates when y “ z “ u “ 1, and so we may

restrict the map to the first and the fifth coordinates. Therefore, we get the C2 Ñ C2 map given by

¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

2x2

pv ` 3qpv ´ 1q

v ´
x2pv ` 1q

pv ` 3qpv ´ 1q

˛

‹

‹

‚

.
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By the change of coordinates px, vq Ñ p´x,´1´ yq, we obtain the C2 Ñ C2 map

F :

¨

˚

˝

x

y

˛

‹

‚

ÞÑ

¨

˚

˚

˝

2x2

4´ y2

y `
x2y

4´ y2

˛

‹

‹

‚

. (5.18)

When y “ z “ u “ 1, the second, third and fourth coordinates of the map SG1 are equal and the

common value is
x2

pv ` 3qpv ´ 1q
. By re-normalization (i.e., multiplying by pv`3qpv´1q

x2
) we obtain

a map which fixes second, third and fourth coordinates. So we may restrict it to the first and the

fifth coordinates and get C2 Ñ C2 map

¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

2pv ` 3qpv ´ 1q

x2

´2´ v ` pv ` 1q
pv ` 3qpv ´ 1q

x2

˛

‹

‹

‚

.

By the change of coordinates px, vq Ñ p´x,´1´ yq, we obtain C2 Ñ C2 map

G :

¨

˚

˝

x

y

˛

‹

‚

ÞÑ

¨

˚

˚

˝

2p4´ y2q

x2

´y ´
yp4´ y2q

x2

˛

‹

‹

‚

. (5.19)

The map F demonstrates features of an integrable map as it has two almost transversal fam-

ilies of horizontal hyperbolas Fθ “ tpx, yq : 4 ` x2 ´ y2 ´ 4θx “ 0u and vertical hyperbolas

Hη “ tpx, yq : 4´ x2 ` y2 ´ 4ηy “ 0u, shown in Figure 5.2. The first family tFθu is invariant as

a family and F´1pFθq “ Fθ1 \ Fθ2 , where θ1, θ2 are preimages of θ under the Chebyshev map

t : z ÞÑ 2z2 ´ 1, and the family tHηu consists of invariant curves.

The set K shown in Figure 5.3a (we will call this set the “cross”) is of special interest for

us as it represents the joint spectrum of several families of operators associated with the element

mpx, yq “ ´xa` b` c` d´ py ` 1q1 of the group algebra RrGs [BG00b, GN07, DG17]. It can

be foliated by the hyperbolas Fθ,´1 ď θ ď 1 as shown in Figure 5.3b (or by hyperbolas Hη,´1 ď

η ď 1 shown in Figure 5.3c). The F -preimages of the border line x ` y “ 2 constitutes a dense
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Figure 5.2: Foliation of R2 by (a) horizontal hyperbolas Fθ where, maroon, red and black cor-
responds to θ ă ´1, θ P r´1, 1s and θ ą 1, respectively, and (b) vertical hyperbola Hη where,
purple, blue and black corresponds to η ă ´1, η P r´1, 1s and η ą 1, respectively.

family of curves for K (the same is true for G-preimages) and K is completely invariant set for F

or G (i.e., F´1pKq Ă K and F pKq Ă K, so F pKq “ K).

The map F is comprehensively investigated in [DGL21] (its close relative is studied in [GY17]

and [GY20] from a different point of view) and serves as a basis for the integrability theory devel-

oped there. The map G happens to be more complicated and its study is ongoing.

5.4.2 For the Overgroup rG

Recall that the overgroup rG is generated by the elements a, b, c, d,ra,rb,rc, rd. Let M “ xa `

yb` zc` ud` qra` rrb` src` trd` v1 be an element of the group algebra CrrGs. Using the matrix

recursions (5.11), we identify,

M “

¨

˚

˝

py ` z ` q ` tqa` pu` r ` s` vq1 x

x ub` yc` zd` qra` trb` rrc` srd` v1

˛

‹

‚

.

(5.20)

Now, let us calculate S1pMq, which is defined for invertible D “ ub ` yc ` zd ` qra ` trb `
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Figure 5.3: (a) The “cross” K, (b) foliation of the cross by real slices of horizontal hyperbolas Fθ

(θ P r´1, 1s), and (c) foliation of the cross by real slices of vertical hyperbolas Hη (η P r´1, 1s).

rrc ` srd ` v1. The group generated by t1, b, c, d,ra,rb,rc, rdu is isomorphic to Z3
2 (via the identifica-

tion 1, b, c, d,ra,rb,rc, rd with p0, 0, 0q, p1, 0, 0q, p0, 1, 0q, p1, 1, 0q, p1, 1, 1q, p0, 1, 1q, p1, 0, 1q, p0, 0, 1q,

respectively). Define

D̂000 “ v ` u` y ` s` z ` r ` t` q,

D̂100 “ v ´ u` y ` s´ z ´ r ` t´ q,

D̂010 “ v ` u´ y ` s´ z ` r ´ t´ q,

D̂001 “ v ` u` y ´ s` z ´ r ´ t´ q,

D̂110 “ v ´ u´ y ` s` z ´ r ´ t` q,

D̂101 “ v ´ u` y ´ s´ z ` r ´ t` q,

D̂011 “ v ` u´ y ´ s´ z ´ r ` t` q,

D̂111 “ v ´ u´ y ´ s` z ` r ` t´ q. (5.21)

By (A.8) and (A.2), we obtain that D is invertible if and only if

ź

i,j,kPt0,1u

D̂ijk ‰ 0, (5.22)
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and by (A.9),

D´1
“

1

8

ˆ

1

D̂000

`
1

D̂100

`
1

D̂010

`
1

D̂001

`
1

D̂110

`
1

D̂101

`
1

D̂011

`
1

D̂111

˙

1

`
1

8

ˆ

1

D̂000

´
1

D̂100

`
1

D̂010

`
1

D̂001

´
1

D̂110

´
1

D̂101

`
1

D̂011

´
1

D̂111

˙

b

`
1

8

ˆ

1

D̂000

`
1

D̂100

´
1

D̂010

`
1

D̂001

´
1

D̂110

`
1

D̂101

´
1

D̂011

´
1

D̂111

˙

c

`
1

8

ˆ

1

D̂000

`
1

D̂100

`
1

D̂010

´
1

D̂001

`
1

D̂110

´
1

D̂101

´
1

D̂011

´
1

D̂111

˙

rd

`
1

8

ˆ

1

D̂000

´
1

D̂100

´
1

D̂010

`
1

D̂001

`
1

D̂110

´
1

D̂101

´
1

D̂011

`
1

D̂111

˙

d

`
1

8

ˆ

1

D̂000

´
1

D̂100

`
1

D̂010

´
1

D̂001

´
1

D̂110

`
1

D̂101

´
1

D̂011

`
1

D̂111

˙

rc

`
1

8

ˆ

1

D̂000

`
1

D̂100

´
1

D̂010

´
1

D̂001

´
1

D̂110

´
1

D̂101

`
1

D̂011

`
1

D̂111

˙

rb

`
1

8

ˆ

1

D̂000

´
1

D̂100

´
1

D̂010

´
1

D̂001

`
1

D̂110

`
1

D̂101

`
1

D̂011

´
1

D̂111

˙

ra. (5.23)

Therefore, the first Schur complement

S1pMq “A´BD
´1C

“py ` z ` q ` tqa` pu` r ` s` vq1´ x2D´1

“py ` z ` q ` tqa

`

ˆ

pu` r ` s` vq

´
x2

8

ˆ

1

D̂000

`
1

D̂100

`
1

D̂010

`
1

D̂001

`
1

D̂110

`
1

D̂101

`
1

D̂011

`
1

D̂111

˙˙

1

´
x2

8

ˆ

1

D̂000

´
1

D̂100

`
1

D̂010

`
1

D̂001

´
1

D̂110

´
1

D̂101

`
1

D̂011

´
1

D̂111

˙

b

´
x2

8

ˆ

1

D̂000

`
1

D̂100

´
1

D̂010

`
1

D̂001

´
1

D̂110

`
1

D̂101

´
1

D̂011

´
1

D̂111

˙

c

´
x2

8

ˆ

1

D̂000

`
1

D̂100

`
1

D̂010

´
1

D̂001

`
1

D̂110

´
1

D̂101

´
1

D̂011

´
1

D̂111

˙

rd

´
x2

8

ˆ

1

D̂000

´
1

D̂100

´
1

D̂010

`
1

D̂001

`
1

D̂110

´
1

D̂101

´
1

D̂011

`
1

D̂111

˙

d
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´
x2

8

ˆ

1

D̂000

´
1

D̂100

`
1

D̂010

´
1

D̂001

´
1

D̂110

`
1

D̂101

´
1

D̂011

`
1

D̂111

˙

rc

´
x2

8

ˆ

1

D̂000

`
1

D̂100

´
1

D̂010

´
1

D̂001

´
1

D̂110

´
1

D̂101

`
1

D̂011

`
1

D̂111

˙

rb

´
x2

8

ˆ

1

D̂000

´
1

D̂100

´
1

D̂010

´
1

D̂001

`
1

D̂110

`
1

D̂101

`
1

D̂011

´
1

D̂111

˙

ra.

This gives the Schur transformation S rG
1 : C9 Ñ C9 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

q

r

s

t

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y ` z ` q ` t

´x2

8

´

1

D̂000
´ 1

D̂100
` 1

D̂010
` 1

D̂001
´ 1

D̂110
´ 1

D̂101
` 1

D̂011
´ 1

D̂111

¯

´x2

8

´

1

D̂000
` 1

D̂100
´ 1

D̂010
` 1

D̂001
´ 1

D̂110
` 1

D̂101
´ 1

D̂011
´ 1

D̂111

¯

´x2

8

´

1

D̂000
´ 1

D̂100
´ 1

D̂010
` 1

D̂001
` 1

D̂110
´ 1

D̂101
´ 1

D̂011
` 1

D̂111

¯

´x2

8

´

1

D̂000
´ 1

D̂100
´ 1

D̂010
´ 1

D̂001
` 1

D̂110
` 1

D̂101
` 1

D̂011
´ 1

D̂111

¯

´x2

8

´

1

D̂000
` 1

D̂100
´ 1

D̂010
´ 1

D̂001
´ 1

D̂110
´ 1

D̂101
` 1

D̂011
` 1

D̂111

¯

´x2

8

´

1

D̂000
´ 1

D̂100
` 1

D̂010
´ 1

D̂001
´ 1

D̂110
` 1

D̂101
´ 1

D̂011
` 1

D̂111

¯

´x2

8

´

1

D̂000
` 1

D̂100
` 1

D̂010
´ 1

D̂001
` 1

D̂110
´ 1

D̂101
´ 1

D̂011
´ 1

D̂111

¯

ˆ

pu` r ` s` vq

´x2

8

´

1

D̂000
` 1

D̂100
` 1

D̂010
` 1

D̂001
` 1

D̂110
` 1

D̂101
` 1

D̂011
` 1

D̂111

¯

˙

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Finally, we will calculate S2pMq when A “ py ` z ` q ` tqa` pu` r ` s` vq1 is invertible.

Since the group generated by elements 1, a is isomorphic to Z2 (via the identification 1, a with 0, 1,

respectively), by (A.4) and (A.2), we obtain, A is invertible if and only if

pv ` u` r ` s` y ` z ` q ` tqpv ` u` r ` s´ y ´ z ´ q ´ tq ‰ 0, (5.24)

and if the condition in (5.24) is satisfied, then A´1 is given by,

A´1
“

1

2

ˆ

1

D̂000

`
1

D̂010

˙

1`
1

2

ˆ

1

D̂000

´
1

D̂010

˙

a
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using the notation from (5.21). Therefore, the second Schur complement

S2pMq “D ´ CA
´1B

“ub` yc` zd` qra` trb` rrc` srd` v1´ x2A´1

“´
x2

2

ˆ

1

D̂000

´
1

D̂010

˙

a` ub` yc` zd` qra` trb` rrc` srd

`

ˆ

v ´
x2

2

ˆ

1

D̂000

`
1

D̂010

˙˙

1.

Then by substituting from (5.21), we obtain the Schur transformation S rG
2 : C9 Ñ C9 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

q

r

s

t

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x2py`z`q`tq
pv`u`r`s`y`z`q`tqpv`u`r`s´y´z´q´tq

u

y

z

q

t

r

s

v ´ x2pv`u`r`sq
pv`u`r`s`y`z`q`tqpv`u`r`s´y´z´q´tq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.25)

Note that, choosing y “ z “ u and r “ s “ t converts S rG
2 to a 2-dimensional map. For

simplicity, we choose all the variables, except the first and the last, to be 1. Then we get the

C2 Ñ C2 map
¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

4x2

pv ` 7qpv ´ 1q

v ´
x2pv ` 3q

pv ` 7qpv ´ 1q

˛

‹

‹

‚

.
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By the change of coordinates px, vq Ñ p´x,´3´ yq, we obtain the C2 Ñ C2 map

rF :

¨

˚

˝

x

y

˛

‹

‚

ÞÑ

¨

˚

˚

˝

2x2

16´ y2

y `
x2y

16´ y2

˛

‹

‹

‚

. (5.26)

5.4.3 For the Generalized Grigorchuk Groups and Generalized Overgroups

Recall that the generalized Grigorchuk group Gω is generated by aω, bω, cω, dω. Let M “

xaω`ybω`zcω`udω`v1 be an element of the group algebra CrGωs. Using the matrix recursions

(5.11) and (2.11), we identify,

M “

¨

˚

˝

ppω ` qωqaσω ` prω ` vq1 x

x ybσω ` zcσω ` udσω ` v1

˛

‹

‚

, (5.27)

where

ppω, qω, rωq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

py, z, uq ;ω0 “ 0

pu, y, zq ;ω0 “ 1

pz, u, yq ;ω0 “ 2

. (5.28)

Here ω0 is the first symbol of the sequence ω. Note that ppω, qω, rωq is determined by ω0 and so we

may write ppω0 , qω0 , rω0q in place of ppω, qω, rωq.

First, we will calculate the first Schur complement S1pMq, which is defined when D “ v1 `

ybσω ` zcσω ` udσω is invertible. Note that D is invertible if and only if the condition (5.14) is

satisfied, in which case we obtain,

D´1
“

1

4

ˆ

1

v ` u` y ` z
`

1

v ´ y ` z ´ u
`

1

v ` y ´ z ´ u
`

1

v ´ y ´ z ` u

˙

1

`
1

4

ˆ

1

v ` u` y ` z
´

1

v ´ y ` z ´ u
`

1

v ` y ´ z ´ u
´

1

v ´ y ´ z ` u

˙

bσω

`
1

4

ˆ

1

v ` u` y ` z
`

1

v ´ y ` z ´ u
´

1

v ` y ´ z ´ u
´

1

v ´ y ´ z ` u

˙

cσω
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`
1

4

ˆ

1

v ` u` y ` z
´

1

v ´ y ` z ´ u
´

1

v ` y ´ z ´ u
`

1

v ´ y ´ z ` u

˙

dσω.

Therefore, the first Schur complement

S1pMq “ppω ` qωqaσω

`

ˆ

v ` rω ´ x
2 2uyz ´ vp´v2 ` u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq

˙

1

´ x2 2vzu´ ypv2 ´ y2 ` u2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
bσω,

´ x2 2vyu´ zpv2 ` u2 ` y2 ´ z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
cσω,

´ x2 2vyz ´ upv2 ´ u2 ` y2 ` z2q

pv ` u` y ` zqpv ´ u` y ´ zqpv ` u´ y ´ zqpv ´ u´ y ` zq
dσω.

Note that the Schur complement can be viewed as a map from the linear span of

taω, bω, cω, dω, 1u to the linear span of taσω, bσω, cσω, dσω, 1u. So, we can define the first Schur

transformation SGω1 : C5 Ñ C5 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pω ` qω

´x2 2vzu´ypv2´y2`u2`z2q
pv`u`y`zqpv´u`y´zqpv`u´y´zqpv´u´y`zq

´x2 2vyu´zpv2`u2`y2´z2q
pv`u`y`zqpv´u`y´zqpv`u´y´zqpv´u´y`zq

´x2 2vyz´upv2´u2`y2`z2q
pv`u`y`zqpv´u`y´zqpv`u´y´zqpv´u´y`zq

v ` rω ´ x
2 2uyz´vp´v2`u2`y2`z2q
pv`u`y`zqpv´u`y´zqpv`u´y´zqpv´u´y`zq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.29)

Now, we will calculate the second Schur complement S2pMq which is defined when A “

ppω ` qωqaσω ` prω ` vq1 is invertible. By a similar calculation, we obtain that A is invertible if

and only if

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq ‰ 0, (5.30)
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and if the condition in (5.30) is satisfied, then A´1 is given by,

A´1
“

v ` rω
pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

1´
pω ` qω

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq
aσω.

Therefore, the second Schur complement

S2pMq “
x2ppω ` qωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq
aσω ` ybσω ` zcσω ` udσω

`

ˆ

v ´
x2pv ` rωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

˙

1.

This leads to the Schur transformation SGω2 : C5 Ñ C5 given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x2ppω ` qωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

y

z

u

v ´
x2pv ` rωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (5.31)

Observe that SGω2 fixes the second, third, and fourth coordinates. Thus, by restricting to first

and fifth coordinates, we obtain a C2 Ñ C2 map

Fω0 :

¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

x2ppω ` qωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

v ´
x2pv ` rωq

pv ` rω ` pω ` qωqpv ` rω ´ pω ´ qωq

˛

‹

‹

‚

, (5.32)

where

pαω, βωq “ ppω ` qω, rωq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

py ` z, uq ;ω0 “ 0

py ` u, zq ;ω0 “ 1

pz ` u, yq ;ω0 “ 2

. (5.33)
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Now let us consider the generalized overgroup rGω, generated by aω, bω, cω, dω,raω,rbω,rcω, rdω.

Let M “ xaω ` ybω ` zcω ` udω ` qraω ` rrbω ` srcω ` trdω ` v1 be an element of the group

algebra CrrGωs. By a similar calculation as of above, we obtain the second Schur transformation

S
rGω
2 : C9 Ñ C9 given by,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x

y

z

u

q

r

s

t

v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x2αω
pv ` βω ` αωqpv ` βω ´ αωq

y

z

u

q

r

s

t

v ´
x2pv ` βωq

pv ` βω ` αωqpv ` βω ´ αωq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (5.34)

where

pαω, βωq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

py ` z ` q ` t, u` r ` sq ;ω0 “ 0

py ` u` q ` s, z ` r ` tq ;ω0 “ 1

pz ` u` q ` r, y ` r ` sq ;ω0 “ 2

. (5.35)

By restricting to the first and last coordinates, we obtain a C2 Ñ C2 map given by

rFω0 :

¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

x2αω
pv ` βω ` αωqpv ` βω ´ αωq

v ´
x2pv ` βωq

pv ` βω ` αωqpv ` βω ´ αωq

˛

‹

‹

‚

. (5.36)

We omit the calculation of the first Schur transformation as it is more complicated to be written

down.

81



5.5 Two-Parametric Maps and Rational Maps Associated with Gω, rGω

We have calculated the rational maps associated to Gω and rGω to be (5.32) and (5.36), re-

spectively, in Section 5.4.3. If their corresponding αω ‰ 0, then they are of the form (5.1). Let

f “ Fα,β , where Fα,β is given by (5.1). Thus, α, β P C and α ‰ 0. Our first observation is, the

map f and the maps F, rF given in (5.18), (5.26) are closely related.

Proposition 5.2. The map f is conjugate to the map

¨

˚

˝

x

v

˛

‹

‚

ÞÑ

¨

˚

˚

˝

γx2

γ2 ´ v2

v `
x2v

γ2 ´ v2

˛

‹

‹

‚

,

for any non-zero γ. In particular, f is conjugate to F and rF .

Proof. First, consider the map h : px, vq ÞÑ p´x,´v ´ βq. Then, h is an involution and therefore

is invertible. By conjugating f by h, we obtain

fhpx, vq “ h´1
˝ f ˝ hpx, vq

“ h ˝ f ˝ hpx, vq

“ h ˝ fp´x,´v ´ βq

“ h

ˆ

αx2

v2 ´ α2
,´v ´ β `

x2v

v2 ´ α2

˙

“

ˆ

´
αx2

v2 ´ α2
, v ` β ´

x2v

v2 ´ α2
´ β

˙

“

ˆ

αx2

α2 ´ v2
, v `

x2v

α2 ´ v2

˙

.

Now let g be the multiplication by α{γ map, i.e., g : px, vq ÞÑ

ˆ

α

γ
x,
α

γ
v

˙

. Then, g is invertible

and the inverse is the multiplication by γ{α map. Therefore,

fh˝gpx, vq “ g´1
˝ fh ˝ gpx, vq
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“ g´1
˝ fh

ˆ

α

γ
x,
α

γ
v

˙

“ g´1

ˆ

αx2

γ2 ´ v2
,
α

γ
v `

αx2v

γpγ2 ´ v2q

˙

“

ˆ

γx2

γ2 ´ v2
, v `

x2v

γ2 ´ v2

˙

,

which proves the result. Choosing γ “ 2 and γ “ 4, we obtain that f is conjugate to F and rF ,

respectively.

Proof of Theorem 5.1. We know that the map f is conjugate to F , using Proposition 5.2. By

Theorem 5.1.(i) of [DGL21], F is semi-conjugate to t, the Chebyshev map, via the map px, vq ÞÑ
4´ v2 ` x2

4x
. Thus, f is semi-conjugate to the Chebyshev map.

Now let us view f as a map on P2. So, in homogeneous coordinates, the map f becomes

f “
“

αx2w : vppv ` βwq2 ´ pαwq2q ´ pv ` βwqx2 : ppv ` βwq2 ´ pαwq2qw
‰

. (5.37)

We will denote the three polynomials in the coordinates of f as f0, f1, f2. So f “ rf0 : f1 : f2s.

First we will look at the indeterminacy points (the points for which the function is not defined, i.e.,

f0, f1, f2 are all simultaneously zero) and fixed points of f .

Proposition 5.3. The map f is of algebraic degree 3 and topological degree 2.

1. It has five indeterminacy points: Two points P “ r0 : ´pβ ` αq : 1s,Q “ r0 : ´pβ ´ αq : 1s

on vertical line and three points I0 “ r1 : 0 : 0s, I1 “ r1 : 1 : 0s, I2 “ r´1 : 1 : 0s at infinity.

2. The point (except indeterminacy points) on the vertical line tx “ 0u and the point

r´α : ´β : 1s are all the fixed points for f .

Proof. By observation, we see f is of algebraic degree 3 and topological degree 2.

First, let us calculate indeterminacy points, i.e., points of which all three of f0, f1, f2 are zero.

Letting f0 “ 0, we obtain x “ 0 or w “ 0. That is, all the indeterminacies lie on the vertical line

tx “ 0u or on the line at infinity tw “ 0u.
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To find the indeterminacies of vertical line, let x “ 0. Then, the points making f1 “ f2 “ 0

satisfy pv`βwq2´pαwq2 “ 0 and therefore v “ ´pβ`αqw or v “ ´pβ´αqw. Thus, we obtain

the points P “ r0 : ´pβ ` αq : 1s and Q “ r0 : ´pβ ´ αq : 1s.

To find the indeterminacies at infinity, let w “ 0. Then, f2 “ 0 and f1 “ vpv2 ´ x2q. By

making f1 “ 0, we obtain v “ 0, v “ x, or v “ ´x. Thus, we obtain the points I0 “ r1 : 0 : 0s,

I1 “ r1 : 1 : 0s, and I2 “ r´1 : 1 : 0s. This completes the proof of assertion 1.

Now, let us calculate the fixed points. Suppose f “ rf0 : f1 : f2s “ λ rx : v : ws, for some

λ P C. First, note that if w “ 0, then x “ 0 and v “ 1, which is the point at infinity on vertical

line. Suppose w ‰ 0. By f2 “ λw, we get λ “ pv ` βwq2 ´ pαwq2. Using f1 “ λv, we obtain

pv ` βwqx2 “ 0. Thus, x “ 0 or v “ ´βw.

It is clear from (5.37) that tx “ 0u is an invariant line of fixed points. So, suppose x ‰ 0. By

v “ ´βw, we get λ “ ´pαwq2. Finally, using f0 “ λx, we obtain αx2w “ ´α2xw2. Since we

have α ‰ 0, x ‰ 0, and w ‰ 0, we conclude x “ ´αw, giving the fixed point r´α : ´β : 1s. This

completes the proof.

The map has following properties, which we will use to study the dynamics of f .

Proposition 5.4.

1. The point I0 “ r1 : 0 : 0s is not in the image of f .

2. The only points that map to the vertical line are the points on the vertical line and the points

on the line at infinity. Moreover, the line at infinity maps to the point r0 : 1 : 0s.

Proof. Suppose a point rx : v : ws is mapped to a point at infinity. Then f2 rx : v : ws “ 0. Thus,

w “ 0, in which case f rx : v : ws “ r0 : 1 : 0s, or ppv ` βwq2 ´ pαwq2q “ 0, in which case

f1 “ ˘f0, that consequently makes f rx : v : ws “ r˘1 : 1 : 0s. Therefore, no point is mapped to

the point I0.

To show the second assertion, suppose a point rx : v : ws is mapped to the vertical line. Then,

f0 rx : v : ws “ 0 and so we get x “ 0 or w “ 0. Therefore, the point rx : v : ws is either on the
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vertical line, or on the line at infinity. In the case of w “ 0, we have f2 rx : v : ws “ 0 and so the

image is r0 : 1 : 0s. This completes the proof.

Next step is to study the contracting curves (curves that are collapsed to a point via the map)

of the map f . To do it, let us look at the jacobian jpfq and its determinant |jpfq|. The jacobian is

given by

jpfq “

¨

˚

˚

˚

˚

˝

2αxw 0 αx2

´2xpv ` βwq pv ` βwqp3v ` βwq ´ α2w2 ´ x2 2pβpv ` βwq ´ α2wqv ´ βx2

0 2wpv ` βwq 3pβpv ` βwq ´ α2wqw ` pv ` βwqv

˛

‹

‹

‹

‹

‚

,

(5.38)

and therefore the determinant is,

|jpfq| “ 6αxwpv ` pβ ´ αqwqpv ` pβ ` αqwq
`

pv ` βwq2 ´ α2w2
´ x2

˘

. (5.39)

Equating the determinant of the jacobian to zero, we obtain the curves; the vertical line tx “ 0u, the

line at infinity tw “ 0u, the line L1 “ tv ` pβ ` αqw “ 0u passing through I0 and P , the line L “

tv ` pβ ´ αqw “ 0u passing through I0 and Q, and the conic C “ tpv ` βwq2 ´ α2w2 ´ x2 “ 0u

passing through points I1, I2, P , and Q. The Figure 5.4 represents the fixed points, the indetermi-

nacy points, and contracting curves of f , graphically. By Proposition 5.3 assertion 2, we observe

that the vertical line tx “ 0u is not a contracting curve. The dynamics of the above contracting

curves can be summarize as follows:

Proposition 5.5. The map f collapses;

1. The line at infinity tw “ 0u z tI0, I1, I2u to the fixed point r0 : 1 : 0s.

2. The line L1z tI0, P u to the indeterminacy point I1.

3. The line Lz tI0, Qu to the indeterminacy point I2.

4. The conic Cz tI1, I2, P,Qu to the point rα : ´β : 1s.

85



I0

I1

I2

P

Q

L′

L

C

Figure 5.4: Curves L1, L, and C that are contracting to a point via f .

Proof. The first assertion is directly obtained from the second assertion of Proposition 5.4. Con-

sider a point rx : v : ws on L1. Then, v ` βw “ ´αw. Thus, f1 “ αx2w “ f0 and f2 “ 0.

Therefore, f rx : v : ws “ r1 : 1 : 0s “ I1. This proves the second assertion. The third assertion

follows similarly.

To prove the last assertion, take a point rx : v : ws on C. So, pv ` βwq2 ´ α2w2 “ x2. Using

it, we obtain, f1 “ ´βx
2w, and f2 “ x2w. Therefore, f rx : v : ws “ rαx2w : ´βx2w : x2ws “

rα : ´β : 1s. This completes the proof.

Proposition 5.5 shows that there are algebraic curves that collapse to points of indetermina-

cies. In order to avoid this complication, let us blow-up P2 at the indeterminacy points I1, I2 (see

Appendix B.2). Let this space, BLI1,I2pP2q, be denoted by X , and let πX be the blow-down map.

Denote the lift of f to X , by pf . We will examine the dynamics of pf on E1, E2, the exceptional
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divisors at I1, I2, respectively (see figure 5.5).

I0

I1

I2

P

Q

E1

E2

X

πX

P2

I0

I1

I2

P

Q

Figure 5.5: Blow up X of P2 at indeterminacy points I1 and I2.

Proposition 5.6.

1. The lifted map pf is regular on E1, and its image pfpE1q is the strict transform of the line

tx “ α,w “ 1u Y tr0 : 1 : 0su.

2. The strict transform of L1z tI0, P u is mapped to E1, which avoids indeterminacies.

3. The lifted map pf is regular on E2, and its image pfpE2q is the strict transform of the line

tx “ α,w “ 1u Y tr0 : 1 : 0su.

4. The strict transform of Lz tI0, Qu is mapped to E2, which avoids indeterminacies.

Proof. First, consider the point I1 and the exceptional divisor E1. Let R “ rx : v : ws be an arbi-

trary point in P2 not in the vertical line tx “ 0u. So, x ‰ 0. There are two ways to choose a local

coordinate system pe, lq such that the equation of the exceptional divisor E1 is te “ 0u:

1. pe, lq “
´w

x
,
v ´ x

w

¯

, assuming w ‰ 0, in which case πXpe, lq “ r1 : 1` le : es.
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2. pe, lq “
ˆ

v ´ x

x
,

w

v ´ x

˙

, assuming x ‰ v, in which case πXpe, lq “ r1 : 1` e : les.

Suppose w ‰ 0 and so we can choose the fist option, pe, lq “
´w

x
,
v ´ x

w

¯

. Then, using the fact

that πXpe, lq “ r1 : 1` le : es, we obtain,

f ˝ πX : pe, lq ÞÑ
“

α : 2l ` β ` ep3l2 ` 4βl ` β2
´ α2

q ` le2
ppl ` βq2 ´ α2

: p1` βe` leq2 ´ pαeq2
‰

. (5.40)

On the exceptional divisor E1 (i.e., when e “ 0), the image is rα : β ` 2l : 1s, which parameterize

the line tx “ α,w “ 1u, and therefore the lift map pf is regular on E1z tl “ 8u. In order to take

care of l “ 8, which corresponds to w “ 0, let us consider the second coordinate chart pe, lq “
ˆ

v ´ x

x
,

w

v ´ x

˙

. Then, πXpe, lq “ r1 : 1` e : les and

f ˝ πX : pe, lq ÞÑ
“

αl : 2` βl ` pp1` βlq2 ´ pαlq2qe2
` p3` 4βl ` pβ2

´ α2
ql2qe

: lpp1` e` βleq2 ´ pαleq2
‰

.

To obtain E1, we make e “ 0, and obtain rαl : βl ` 2 : ls. We are concerned with the case of

w “ 0, which corresponds to l “ 0, and thus we get the point r0 : 1 : 0s. This completes the proof

of regularity of pf onE1. The pf image ofE1 is the strict transform of tx “ α,w “ 1uYtr0 : 1 : 0su,

which proves the first assertion.

Using (5.40) and the first coordinate chart,pe, lq “
´w

x
,
v ´ x

w

¯

, the lifted map pf is given by,

pf : pe, lq ÞÑ

ˆ

p1` βe` leq2 ´ pαeq2

α
,
p2` leql ` p1` leqpβ ´ αq

1` epl ` β ´ αq

˙

, (5.41)

for pe, lq such that the point rx : v : ws P P2 corresponding to pe, lq does not lie on the vertical line

tx “ 0u nor on the line at infinity, and the image of rx : v : ws does not lie on the vertical line (that

is f0 rx : v : ws ‰ 0).

Let rx : v : ws be on the line L1. Then, v “ ´pα ` βq, w “ 1, and therefore the cor-
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responding point in X is pe, lq “
ˆ

1

x
,´pα ` β ` xq

˙

. Using (5.41), we obtain the image

pfpe, lq “

ˆ

0,
x2 ´ 2αpα ` βq

2α

˙

, which is a point ofE1. Therefor, the image of the strict transform

of L1, does not hit indeterminacies, and hence we are done with the second assertion.

Now, consider the point I2 and the exceptional divisorE2. Similar to above, letR “ rx : v : ws,

where x ‰ 0. The two ways to pick the coordinate chart are;

1. pe, lq “
´w

x
,
v ` x

w

¯

, assuming w ‰ 0, in which case πXpe, lq “ r1 : le´ 1 : es.

2. pe, lq “
ˆ

v ` x

x
,

w

v ` x

˙

, assuming x` v ‰ 0, in which case πXpe, lq “ r1 : e´ 1 : les.

Suppose w ‰ 0 and so we can choose the first option, pe, lq “
´w

x
,
v ` x

w

¯

. Then, using the fact

that πXpe, lq “ r1 : le´ 1 : es, we obtain,

f ˝ πX : pe, lq ÞÑ
“

α : 2l ` β ´ ep3l2 ` 4βl ` β2
´ α2

q ` le2
ppl ` βq2 ´ α2

: p1´ βe´ leq2 ´ pαeq2
‰

. (5.42)

On the exceptional divisor E2 (i.e., when e “ 0), the image is rα : β ` 2l : 1s, which parameterize

the line tx “ α,w “ 1u, and therefore the lift map pf is regular on E2z tl “ 8u. In order to take

care of l “ 8, which corresponds to w “ 0, let us consider the second coordinate chart pe, lq “
ˆ

v ` x

x
,

w

v ` x

˙

. Then, πXpe, lq “ r1 : e´ 1 : les and

f ˝ πX : pe, lq ÞÑ
“

αl : 2` βl ` pp1` βlq2 ´ pαlq2qe2
´ p3` 4βl ` pβ2

´ α2
ql2qe

: lpp1´ e´ βleq2 ´ pαleq2
‰

.

To obtain E2, we make e “ 0, and obtain rαl : βl ` 2 : ls. We are concerned with the case of

w “ 0, which corresponds to l “ 0, and thus we get the point r0 : 1 : 0s. Thus pf is regular on E2.

The pf image of E2 is the strict transform of tx “ α,w “ 1u Y tr0 : 1 : 0su, which proves the third

assertion.
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Using (5.42) and the first coordinate chart,pe, lq “
´w

x
,
v ` x

w

¯

, the lifted map pf is given by,

pf : pe, lq ÞÑ

ˆ

p1´ βe´ leq2 ´ pαeq2

α
,
p2´ leql ` p1´ leqpβ ` αq

1´ epl ` β ` αq

˙

, (5.43)

for pe, lq such that the point rx : v : ws P P2 corresponding to pe, lq does not lie on the vertical line

tx “ 0u nor on the line at infinity, and the image of rx : v : ws does not lie on the vertical line (that

is f0 rx : v : ws ‰ 0).

Now let rx : v : ws be on the line L. Then, v “ ´pβ ´ αq, w “ 1, and therefore the

corresponding point in X is pe, lq “
ˆ

1

x
,´pβ ´ x´ αq

˙

. Using (5.43), we obtain the image

pfpe, lq “

ˆ

0,
´x2 ` 2αpα ´ βq

2α

˙

, which is a point of E2. Therefor, the image of the strict trans-

form of L, does not hit indeterminacies. This completes the last assertion.

Now let us examine the images of the map pf . If pe, lq is not in E1 Y E2, then the image pfpe, lq

is the strict transform of the point f rx : v : ws, where rx : v : ws is the strict transform of pe, lq.

Note that the preimage of the line at infinity is the union of L1, L, and the line at infinity, and by

Proposition 5.4 and Proposition 5.6 we obtain that the image pfpe, lq does not hit the indeterminacies

on the line at infinity. Similarly, we can show pfpe, lq does not hit indeterminacies on vertical line.

If pe, lq P E1 Y E2, then by above proposition, the pf image does not hit the strict transforms of I0

and the vertical line (excluding the point r0 : 1 : 0s). So, we obtain the next corollary:

Corollary 5.1. The map pf avoids the strict transform of the indeterminacy point I0, and no points

not in the strict transform of the vertical line tx “ 0, w “ 1u are mapped to the strict transform of

the vertical line tx “ 0, w “ 1u.

Now we are ready to prove the algebraic stability.

Proof of Theorem 5.2. Let X “ BLI1,I2pP2q be the blow up of P2 at points I1, I2. We will show

the sequence
!

pfn

)

of functions on X is algebraically stable. To prove it, we need to show that no

algebraic curve collapse to an indeterminacy point. Let us denote the lines L1, L corresponding to

map fn, by L1n, Ln, respectively.
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First, note that the points I0, I1, I2 are common indeterminacy points for all fn, and the other

indeterminacies occur on the vertical line tx “ 0u. By Corollary 5.1, the strict transform of the

point I0 is not in the image of any map pfn, and therefore no curve will ever collapse to the strict

transform of I0, under any iteration.

Points not in the strict transform of the vertical line tx “ 0, w “ 1u will never map to the strict

transform of tx “ 0, w “ 1u, by Corollary 5.1. Therefore, no curve will collapse to a point on

tx “ 0, w “ 1u. In particular, no algebraic curve will collapse to an indeterminacy point on the

vertical line.

Therefore,
!

pfn

)

avoids indeterminacies on the vertical line and on I0. Note that the images of

points not on lines L1n and Ln do not collapse to I1 and I2, and by Proposition 5.6, the strict trans-

forms of L1n and Ln hit no indeterminacies. Therefore, the sequence of maps
!

pfn

)

is algebraically

stable.

Proof of Theorem 5.3. The rational maps (5.32), (5.36) associated to Gω, rGω, are of the form (5.1)

if their corresponding αω ‰ 0. The condition αω ‰ 0 becomes y ` z, y ` u, z ` u are non-zero, in

the case of Gω, by (5.33) and y ` z ` q ` t, y ` u` q ` s, z ` u` q ` r are non-zero, in the case

of rGω, by (5.35). Now the result follows directly from Theorem 5.2.
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tion of Atiyah. C. R. Acad. Sci. Paris Sér. I Math., 331(9):663–668, 2000.

[GN07] Rostislav Grigorchuk and Volodymyr Nekrashevych. Self-similar groups, operator

algebras and Schur complement. J. Mod. Dyn., 1(3):323–370, 2007.

[GNS00] R. I. Grigorchuk, V. V. Nekrashevych, and V. I. Sushchanskiı̆. Automata, dynami-

cal systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon.

Gruppy):134–214, 2000.

[GNŠ15] Rostislav Grigorchuk, Volodymyr Nekrashevych, and Zoran Šunić. From self-similar
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APPENDIX A

CALCULATING INVERSES IN GROUP ALGEBRA

A.1 For Finite Abelian Groups

Let G be an abelian group. Then all irreducible representations of G are one dimensional. Let

Ĝ denote the complete set of all irreducible representations of G. It is known that the map

CrGs Ñ
à

ρPĜ

C

φ “
ÿ

gPG

φgg ÞÑ φ̂ “
´

φ̂ρ

¯

ρPĜ
,

where φ̂ρ “
ř

gPG φgρpgq, is an isomorphism of algebras. In order to calculate φ´1, suppose

φψ “ 1. Then applying the above map, we get φ̂ρψ̂ρ “ 1 for all ρ P Ĝ. Thus for all ρ P Ĝ,

ψ̂ρ “ 1{φ̂ρ. (A.1)

This shows that the necessary and sufficient condition for φ to be invertible is φ̂ρ ‰ 0 for all ρ P Ĝ.

In other words,
ź

ρPĜ

φ̂ρ ‰ 0. (A.2)

Now we will restrict our calculations to the situations where G “ Zn2 for n P N. Note that each

irreducible representation of Zn2 is of the form ρi1i2...in . Here ρi1i2...in is defined by

ρi1i2...inpejq “ p´1qij , (A.3)

where ej is the n-tuple in G with all but j-th entry are 0. In this case we denote the coefficient of

pi1, i2, . . . , inq in φ by φi1i2...in and φ̂ρi1i2...in by φ̂i1i2...in .
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A.2 The Group Z2 of Order Two

First consider n “ 1. That is, the group Z2. Let φ “
ř

gPZ2
φgg P CrZ2s. Using (A.3) we get,

φ̂0 “ φ0 ` φ1,

φ̂1 “ φ0 ´ φ1. (A.4)

Suppose ψ “
ř

gPZ2
ψgg is the inverse of φ. Then, by (A.3) and (A.1), we obtain

ψ0 ` ψ1 “ 1{φ̂0,

ψ0 ´ ψ1 “ 1{φ̂1,

and solving these equations gives,

ψ0 “
1

2

´

1{φ̂0 ` 1{φ̂1

¯

,

ψ1 “
1

2

´

1{φ̂0 ´ 1{φ̂1

¯

. (A.5)

A.3 The Klein Group Z2
2

Now consider n “ 2. That is, the group Z2
2. Let φ “

ř

gPZ2
2
φgg P CrZ2

2s. Using (A.3) we get,

φ̂00 “ φ00 ` φ10 ` φ01 ` φ11,

φ̂10 “ φ00 ´ φ10 ` φ01 ´ φ11,

φ̂01 “ φ00 ` φ10 ´ φ01 ´ φ11,

φ̂11 “ φ00 ´ φ10 ´ φ01 ` φ11. (A.6)

Suppose ψ “
ř

gPZ2
2
ψgg is the inverse of φ. Then, by (A.3) and (A.1), we obtain

ψ00 “
1

4

´

1{φ̂00 ` 1{φ̂10 ` 1{φ̂01 ` 1{φ̂11

¯

,
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ψ10 “
1

4

´

1{φ̂00 ´ 1{φ̂10 ` 1{φ̂01 ´ 1{φ̂11

¯

,

ψ01 “
1

4

´

1{φ̂00 ` 1{φ̂10 ´ 1{φ̂01 ´ 1{φ̂11

¯

,

ψ11 “
1

4

´

1{φ̂00 ´ 1{φ̂10 ´ 1{φ̂01 ` 1{φ̂11

¯

. (A.7)

A.4 The Group Z3
2

Finally consider n “ 3. That is, the group Z3
2. Let φ “

ř

gPZ3
2
φgg P CrZ3

2s. Using (A.3) we

get,

φ̂000 “ φ000 ` φ100 ` φ010 ` φ001 ` φ110 ` φ101 ` φ011 ` φ111,

φ̂100 “ φ000 ´ φ100 ` φ010 ` φ001 ´ φ110 ´ φ101 ` φ011 ´ φ111,

φ̂010 “ φ000 ` φ100 ´ φ010 ` φ001 ´ φ110 ` φ101 ´ φ011 ´ φ111,

φ̂001 “ φ000 ` φ100 ` φ010 ´ φ001 ` φ110 ´ φ101 ´ φ011 ´ φ111,

φ̂110 “ φ000 ´ φ100 ´ φ010 ` φ001 ` φ110 ´ φ101 ´ φ011 ` φ111,

φ̂101 “ φ000 ´ φ100 ` φ010 ´ φ001 ´ φ110 ` φ101 ´ φ011 ` φ111,

φ̂011 “ φ000 ` φ100 ´ φ010 ´ φ001 ´ φ110 ´ φ101 ` φ011 ` φ111,

φ̂111 “ φ000 ´ φ100 ´ φ010 ´ φ001 ` φ110 ` φ101 ` φ011 ´ φ111. (A.8)

Suppose ψ “
ř

gPZ3
2
ψgg is the inverse of φ. Then, by (A.3) and (A.1), we obtain

ψ000 “
1

8

´

1{φ̂000 ` 1{φ̂100 ` 1{φ̂010 ` 1{φ̂001 ` 1{φ̂110 ` 1{φ̂101 ` 1{φ̂011 ` 1{φ̂111

¯

,

ψ100 “
1

8

´

1{φ̂000 ´ 1{φ̂100 ` 1{φ̂010 ` 1{φ̂001 ´ 1{φ̂110 ´ 1{φ̂101 ` 1{φ̂011 ´ 1{φ̂111

¯

,

ψ010 “
1

8

´

1{φ̂000 ` 1{φ̂100 ´ 1{φ̂010 ` 1{φ̂001 ´ 1{φ̂110 ` 1{φ̂101 ´ 1{φ̂011 ´ 1{φ̂111

¯

,

ψ001 “
1

8

´

1{φ̂000 ` 1{φ̂100 ` 1{φ̂010 ´ 1{φ̂001 ` 1{φ̂110 ´ 1{φ̂101 ´ 1{φ̂011 ´ 1{φ̂111

¯

,

ψ110 “
1

8

´

1{φ̂000 ´ 1{φ̂100 ´ 1{φ̂010 ` 1{φ̂001 ` 1{φ̂110 ´ 1{φ̂101 ´ 1{φ̂011 ` 1{φ̂111

¯

,

ψ101 “
1

8

´

1{φ̂000 ´ 1{φ̂100 ` 1{φ̂010 ´ 1{φ̂001 ´ 1{φ̂110 ` 1{φ̂101 ´ 1{φ̂011 ` 1{φ̂111

¯

,
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ψ011 “
1

8

´

1{φ̂000 ` 1{φ̂100 ´ 1{φ̂010 ´ 1{φ̂001 ´ 1{φ̂110 ´ 1{φ̂101 ` 1{φ̂011 ` 1{φ̂111

¯

,

ψ111 “
1

8

´

1{φ̂000 ´ 1{φ̂100 ´ 1{φ̂010 ´ 1{φ̂001 ` 1{φ̂110 ` 1{φ̂101 ` 1{φ̂011 ´ 1{φ̂111

¯

. (A.9)
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APPENDIX B

COMPLEX DYNAMICS

Let P2 be the 2-dimensional complex projective space and let rx : v : ws be a generic point on

it. Thus, r0 : 0 : 0s is an undefined point and rλx : λv : λws “ rx : v : ws, for any λ P Cz t0u. For a

self map f on P2, denote the coordinate functions of f by f0, f1, and f2. That is, f “ rf0 : f1 : f2s.

B.1 Rational Maps

Consider a self map f on P2 given by polynomial functions f0, f1, and f2. The points which

are not in the domain of f are called the indeterminacy points. Thus, the indeterminacy points are

the points for which f0, f1, and f2 are simultaneously zero. Observe that the set of indeterminacies

is a Zariski closed set (i.e., an algebraic subset of the ambient space). This idea can be generalized

to any projective surface as below.

Definition B.1. Let X, Y be two smooth projective surfaces and let U, V be Zariski open subsets

of them,respectively. A map f : U Ñ V is said to be a rational map if it is given by polynomials in

some coordinate system. We denote this by f : X 99K Y .

In the case of U “ X , i.e., there are no indeterminacies in X , then the rational map is said to

be regular. A non-regular rational map can be restricted to a subsurface to obtain a regular rational

map of the subspace.

B.2 Blow-ups

There are situation where a map has an indeterminacy and it is useful to remove (or get rid of)

this indeterminacy, or there is a curve with a singularity that we wish to remove. The technique

of blow-up comes handy in these situations. We will define blow-ups for C2 and then it naturally

extends to P2.

Let p “ px0, v0q P C2. The blow-up of C2 at point p, denoted by BLppC2q, is the space

obtained by attaching a projective line to C2 at the point p, which represents the tangent direction
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(a) Blow-up of a point. (b) Strict transform of a curve.

Figure B.1: Blow-up

at p. Thus, BLppC2q “ tppx, vq, rλ : µsq P C2 ˆ P | λpx´ x0q “ µpy ´ y0qu. The projective line

that is attached to the surface is called the exceptional divisor and the space BLppC2q is called the

rational variety. The point ppx, vq, rλ : µsq in BLppC2q is identified with the point px, vq in C2.

This identification, π, is called the blow-down map, where it collapses the exceptional divisor to

the point p. The Figure B.1 (a) represents the blow-up graphically.

For a curve C in C2, the blow-up of C is called the strict transform of C. Thus, the strict

transform of C is given by π´1pCz tpuq. The Figure B.1 (b) represents a curve (in blue color)

with a singularity at the point that is blown-up and its strict transform (in red color). It shows how

blow-up can be used to deal with singularities, graphically. See the appendix of [DGL21] and the

book [GH78] for more on blow-ups.
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