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ABSTRACT

In this dissertation, we construct and investigate a family {(jw | we{0,1, Q}N} of groups that
generalize the famous Grigorchuk’s overgroup. Our work is spitted into three parts: (i) study of
growth, (ii) study of topological and algebraic properties of the closure of the family {(jw} in the
space M of marked 8-generated groups, and (iii) developing the technical tools of dynamic origin
for study the spectral problems associated with the groups Go.

In the first part, we show, if w is eventually constant, then G”w is of polynomial growth, and if w is
not eventually constant, then QNM is of intermediate growth. In the case of non-eventually constant
w, we give a universal lower bound for the growth rate and an upper bound for homogeneous
sequences.

The second part contains the observation that this family is not closed, and the closure is the
union of the (countable) set of isolated points and a Cantor set. The cluster points are constructed
using branch-type algorithms and are closely related to the Lamplighter groups. Finally, we show
that the generalized overgroups that are of intermediate growth are infinitely presented.

The final part is dedicated to studying the Schur complements and multi-dimensional ratio-
nal maps associated with the generalized overgroups. First, we compute the Schur complements
and multi-dimensional rational maps associated with some groups, including the generalized over-
groups. These rational maps can be realized as two-dimensional and do belong to a two-parametric
family of maps. The two-parametric maps have the integrability property of being semi-conjugate
to the Chebyshev map. We show that any random iterations of two-parametric maps, viewed as

maps on projective space, are algebraically stable in a rational variety.
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1. INTRODUCTION*

The growth rate of groups is a long studied area [Sva55, Mil68, Gri91] and it was known that
growth rates of groups can vary from polynomial growth through intermediate growth to expo-
nential growth. First group of intermediate growth (the growth which is neither polynomial nor
exponential), known as the first Grigorchuk’s torsion group G, was constructed by Rostislav Grig-
orchuk in 1980 [Gri80] as a finitely generated infinite torsion group and later [Gri83] it was shown
that it has intermediate growth.

At the same time, in [Gri83, Gri84b] (also see [Gri85]) an uncountable family of groups
{gw |weQ={0,1, Q}N}, known as generalized Grigorchuk’s groups were constructed. They
consist of groups of intermediate growth when sequence w is not virtually constant and of polyno-
mial growth when sequence w is virtually constant [Gri84b].

Since the construction of the first Grigorchuk group, there was an expansion of the area of study
and new groups of intermediate growth were introduced [Gri84a, KP13, BE14, BGN15, Nek18].
The group G known as the Grigorchuk’s overgroup [BG00a] is an infinite finitely generated group
of intermediate growth which shares many properties with first Grigorchuk’s group [BG02]. In
contrast, the Grigorchuk’s overgroup has an element of infinite order [BG0Oa].

Grigorchuk’s space M, of marked groups with k(> 2) generators was introduced in 1984
[Gri84b]. It is a totally disconnected, compact metric space with complicated structure of isolated
points as shown by Y. de Cornulier, L. Guyot and W. Pitsch [dCGPO7] and non-trivial perfect
kernel that is homeomorphic to a Cantor set. The space also was studied in [Cha00, CG05, BK20]
and other articles.

The space of marked groups was used by Grigorchuck to show the family {G,} ., consists of

*Part of this chapter is reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by
Supun T. Samarakoon, 2020. Algebra and Discrete Mathematics, 30(1), 97-117, Copyright [2020] by Algebra and
Discrete Mathematics (under open access policy), “Generalized Grigorchuk’s Overgroups as Points in the Space of
Marked 8-Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020]
by World Scientific Publishing Co., Inc., and “Integrable and Chaotic Systems Associated With Fractal Groups” by
Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by MDPI (under
open access policy).



infinitely presented groups (when w is not virtually constant). Also, a modification of the construc-
tion lead him to show in [Gri84b], that the family is closed and perfect subset of M, and hence is
homeomorphic to a Cantor set.

The further investigations showed usefulness of spaces M, & > 2 for study of group properties
such as (non-elementary) amenability and for constructions in group theory, in particular to study
of IRS (invariant random subgroups) on a free group and other groups [Bow15, BGN15].

In 1957, M. Day asked whether all amenable groups are elementary amenable [Day57]. It
was answered negatively, by the construction of groups of intermediate growth [Gri84b]. Next
examples negating Day’s problem came from theory of self-similar groups. One such group is
the Basilica group [GZ02], which is amenable but not sub-exponentially amenable [BV05]. Most
recent examples of non-elementary amenable groups are topological full groups associated with
minimal Cantor system, which were used to construct finitely generated simple non-elementary
amenable groups [JM13].

In 1996, Stepin observed that constructions similar to the one in [Gri84b], can lead to new
families of non-elementary amenable groups [Ste96]. Namely, if one finds suitable Cantor set of
groups containing a countable dense subset of (perhaps elementary) amenable groups and a co-
meager set consisting of non-elementary groups, then standard argument based on Baire category
insures that there is a co-meager set of non-elementary amenable groups. (See [WW17] for non-
constructive proof of existence of non-elementary amenable groups using set theoretic approach.)

The groups G and G belong to an important class of groups called self-similar groups. Self-
similar groups were used to solve several outstanding problems in different areas of mathemat-
ics. They provide an elegant contribution to the general Burnside problem [Gri80], to the J. Mil-
nor problem on growth [Gri83, Gri84b], to the von Neumann - Day problem on non-elementary
amenability [Gri84b, Gri98], to the Atiyah problem in L?-Betti numbers [GLSZ00], etc. Self-
similar groups have applications in many areas of mathematics such as dynamical systems, oper-
ator algebras, random walks, spectral theory of groups and graphs, geometry and topology, com-

puter science, and many more (see the surveys [GNS00, BGNO3, Gri05, GNO7, Grill, Gril4,



GNS15, GLN17] and the monograph [Nek05]).

Multi-dimensional rational maps appear in the study of spectral properties of graphs and unitary
representations of groups (including representations of Koopman type). The spectral theory of such
objects is closely related to the theory of joint spectrum of a pencil of operators in a Hilbert (or
more generally in a Banach) space and is implicitly considered in [BGOOb] and explicitly outlined
in [Yan09].

These multi-dimensional rational maps are very special and quite degenerate as claimed by
N. Sibony and M. Lyubich, respectively. Nevertheless, they are interesting and useful, as, on the
one hand, they are responsible for the associated spectral problems, on the other hand, they give
a lot of material for people working in dynamics, being quite different from the maps that were
considered before.

Some of them demonstrate features of integrability, which means that they semiconjugate to
lower-dimensional maps, while the others do not seem to have integrability features and their
dynamics (at least on an experimental level) demonstrate the chaotic behavior.

In this dissertation, we construct a family of groups called generalized overgroups and explore
many properties of them. The construction of these groups, discussed in Section 2.5, closely

follows the construction of {G,} Chapter 2 contains some basic preliminaries that are used

we
throughout the dissertation. The study of generalized overgroups are divided into three parts,
which are discussed in Chapter 3, 4, and 5. Most of the results discussed here are published in
three articles [Sam20], [Sam22] and [GS21].

Chapter 3, extracted from the article [Sam20], discusses the growth of the generalized over-
groups. There, we give the description on the growth rate of generalized overgroups (see The-
orem 3.1) and give upper and lower bounds for some subclass of groups (see Theorem 3.2 and
Proposition 3.4).

Chapter 4 is devoted to study the structure of the set consisting of generalized overgroups as a

subset of the space of marked groups of 8-generators. The set is not closed and the closure of it is

the union of a Cantor set and the set of isolated points (see Theorem 4.2). The cluster points not in



the above set are constructed in Section 4.2.2 and their properties are discussed (see Theorem 4.3).
Material of this chapter is published in the article [Sam22].

Chapter 5, the final chapter, consists of the results from the article [GS21], written in collab-
oration with Rostislav Grigorchuk, and some results obtained under the guidance of Nguyen-Bac
Dang, Rostislav Grigorchuk, and Mikhail Lyubich. There, we discuss the method of Schur com-
plements, which can be used to compute spectra of groups. In Section 5.4, the computations of
the Schur complements and associated rational maps, for the groups discussed in this text, are
given. Integrability properties of these rational maps and related 2-parametric maps are presented
in Section 5.5 (see Theorem 5.2 and 5.3).

At the end of the dissertation, there is a short appendix, where some computation are presented.

These are used in the preceding chapters, but does not fall in line with the flow of the main text.



2. PRELIMINARIES*

In this chapter, we will introduce some preliminary notions and facts, which will be used in the

rest of the text.
2.1 Growth of Groups

Let G be a finitely generated group and let S be a finite symmetric (i.e., s~ € S if s € S) set,
not containing the identity of G, that generates G. Now consider the alphabet (i.e., a collection
of letters) S and let W be a word over the alphabet S' (by a word over an alphabet, we mean a
freely reduced element of the free group generated by the alphabet). The number of letters in W
is denoted by |W| and for s € .S, the number of occurrences of s in IV is denoted by |W|_. For

g € G, the length of g, denoted by |g

, 1s defined by,

lg| = min {|W|: g = Win G} .

Definition 2.1. Let G be a group generated by a finite symmetric set S. The growth function of G

with respect to S (also known as the volume growth function), vg.s: No — N, is defined by,

Ya,5(n) = |Bas(n)l,

where Bg s(n) = {g € G: |g| <n}.

Observe that the set B g(n) is the ball of radius n and center 1 (the identity in ) in the Cayley
graph, Cay(G, S), which is defined in Section 2.2.

There is a partial order relation < for growth functions defined by f < g if and only if there

*Part of this chapter is reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by
Supun T. Samarakoon, 2020. Algebra and Discrete Mathematics, 30(1), 97-117, Copyright [2020] by Algebra and
Discrete Mathematics (under open access policy), “Generalized Grigorchuk’s Overgroups as Points in the Space of
Marked 8-Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020]
by World Scientific Publishing Co., Inc., and “Integrable and Chaotic Systems Associated With Fractal Groups” by
Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by MDPI (under
open access policy).



are constants A and B such that f(n) < Ag(Bn) for all n. We define an equivalence relation ~
by, f ~ gif and only if f < g and g < f. The equivalence class of v g(n) is known as the
growth rate of the group GG. The growth rate of a group does not depend on the generating set. So
we denote the growth rate of a group G, by v¢(n). Growth rate can be polynomial, exponential,
or intermediate if g 5(n) ~ n? for some positive integer d, yg.5(n) ~ ", or n < yg5(n) < "
for all positive integers d, respectively. Growth above polynomial is called super-polynomial and
growth below exponential is called sub-exponential.

The growth exponent \¢, s of a group G generated by S, is given by \g g = liTan (7@75(71))1/ ",
and A\g ¢ > 1 for any finitely generated group G. Note that 1/)\¢ ¢ is the radius of convergence of
the generating function of {7 s(n)}. An easy exercise shows that, for finitely generated, infinite

group GG with generating set .S,

lim (76,5(n))"" = lim (7,5(m)) """ 2.1)

by looking at the radii of convergence of generating functions of {7¢.(n)} and {7, ¢(n)}, where
Ya.5(n) = |Ba,s(n)\Ba,s(n — 1)| = ya,5(n) — va,s(n — 1) is the spherical growth function of G

with respect to the generating set S. For finite indexed subgroup H of G,

Yu,s(n) < vg,s(n) < yms(n+ N),

where vy s(n) = |Bg.s(n) n H| and N is the maximum of lengths of right coset representatives

of H in G. Thus for an infinite group G, we get,

1/

lim (yp1,5(n))"" = lim (vj,5(n)) " = lim (yg,5(n)) """ (2.2)

Here vy g(n) = |(Bg,s(n)\Bg,s(n — 1)) n H|. It is known that A\g,s > 1 <= G has exponen-

tial growth [Gri84b].



2.2 Graphs Associated With Groups

A graph is an ordered pair (V, F), consisting a set | of vertices and a set F of edges, together
with two maps i,¢: £ — V. For an edge e € F, the vertex i(e) is called the initial vertex and the
vertex t(e) is called the terminal vertex of e. In the case of i(e) = t(e), we say the edge e is a
loop. So, our definition of a graph, is called as a directed multi-graph or an oriented multi-graph, in
graph theory. Depending on the situation, graph can be non-oriented (if the edges are independent
of the orientation, i.e., instead of the two maps 7, ¢, the graph has only one map from E to the set
of unordered pairs of V') and labeled (if edges are colored by elements of a certain alphabet). We
only consider connected locally finite graphs (the later means that each vertex is incident to a finite
number of edges). The degree d(u) of the vertex u is the number of edges incident to it (where
each edge from or to u contributes 1 to the degree and each loop contributes 2 to the degree). A
graph is of uniformly bounded degree if there is a constant C' such that d(v) < C forall v € V, and
is a regular graph if all vertices have the same degree.

There is a rich source of examples of graphs coming from groups, such as the Cayley graphs

and the Schreier graphs.

Definition 2.2. Let G be a group generated by a set S (usually, we assume |S| < oo, which makes
G finitely generated). The left Cayley graph, denoted by Cay,(G, S), is the graph with the vertex
set G and the edge set {(g,s9) | g € G and s € S U S™'}, where g is the initial vertex and sg is the

terminal vertex of the edge (g, sg).

Similarly, one can define the right Cayley graph, Cay, (G, S). There is a natural graph isomor-
phism (i.e., a bijection between set of vertices, preserving edge adjacencies and directions) between
the left and right Cayley graphs. They are vertex transitive, i.e., the group Aut(Cay(G, S)) of auto-
morphisms acts transitively on the set of vertices. This is due to that fact that the right translations
by elements of GG on the vertex set induce automorphisms of Cay,(G,.S). When speaking about
Cayley graph, we usually keep in mind the left Cayley graph. Depending on the situation, Cayley

graphs are considered as labeled (the edge (g, sg) has the label s), or unlabeled (if labels do not



play a role). Cayley graphs can also be converted into undirected graphs by identification of pairs
(9,59), (9,5 *(sg)) = (sg,g) of mutually inverse edges. Examples of Cayley graphs are pre-
sented in Figure 2.1. Non-oriented Cayley graph Cay(G, S) is d-regular with d = 2|S\Sy| + [Ss|,

where S5 < S is the set of generators whose order is two (involutions).

(a)

W
N
|

A \/' ey
SEAY

v
1 !‘-"{},; vy
)

oK

47

(©)

Figure 2.1: Cayley graphs of (a) Z2, (b) free group of rank 2, (¢) group of intermediate growth G,
(d) surface group of genus 2.

Definition 2.3. Let G be a group generated by a set S and let H be a subgroup of G. The

left Schreier graph (also known as the left Schreier coset graph), denoted by Sch,(G, H,S), is

8



the graph with the vertex set G/H = {gH | g € G}, the set of left cosets, and the edge set
{(gH,sgH) | g€ G and s € S U S™'}, where gH is the initial vertex and sgH is the terminal

vertex of the edge (¢H, sgH ).

Again, one can consider a right version of the definition, oriented or non-oriented, labeled or
unlabeled versions of the Schreier graph (see [NP20, DDMN10, BDN17] for applications).

Given a set X, on which the group G acts, and a distinguished point xy € X, there is an
associated graph called the orbital graph, in which the vertex set is Gz, the orbit of z, the edge
setis {(x, sz) | € Gz and s € S}, where the initial and terminal vertices of the edge (z, sz) are
x, sx, respectively. Note that the Schreier graph Sch(G, H, S) is an orbital graph with respect to
the action on G/H by left multiplication. Conversely, every orbital graph of a transitive action
(any action can be converted in to a transitive action by restricting the space to a single orbit) can
be identified with the Schreier graph Sch(G, G.,, S). Therefore, the orbital graphs and Schreier
graphs are the same.

Cayley graph Cay(G, S) is isomorphic to the Schreier graph Sch(G, H, S) when the subgroup
H = {1} is the trivial subgroup. Non-oriented Schreier graphs are also d-regular with d given
by the same expression as of Cayley graphs, but in contrast with Cayley graphs, they may have a
trivial group of automorphism. Examples of Schreier graphs are presented in the Figure 2.2.

Schreier graphs have much more applications in mathematics being able to provide a
geometrical-combinatorial representation of many objects and situations. In particular, they are
used to approximate fractals, Julia sets, study the dynamics of groups of iterated monodromy,

Hanoi Tower Game on d pegs for d > 3, etc.
2.3 Groups Acting on Binary Rooted Tree 7,

Let X = {x1,...,24} be an alphabet over d symbols z1, ..., z,. We denote the free monoid
generated by X (i.e., the set of finite words over the alphabet X with concatenation operation) by
X*, where the empty word is denote by 0. Let X denote the set of infinite words over X .

The d-regular rooted tree T; is the labeled infinite graph with vertex set X*, distinguished

vertex ( called the root, and the edge set £/, where two vertices u, v are connected by an edge in £

9



Figure 2.2: Schreier graphs of (a) G (finite), (b) G (infinite and bi-infinite), (¢) Hanoi group H ®3),
(d) Basilica.

10



00 01 10 11

000 001 010 011 100 101 110 111

Figure 2.3: Labeled binary rooted tree 7

if and only if u = zv or v = zu for some x € X. Figure 2.3 represents the binary rooted tree Ts,
geometrically. We may abuse the notation and write v € 7T to indicate a vertex v. For each n > 0,
the set of vertices of 7; whose label has n letters is called the level n of 7.

The boundary of T;, denoted by 073, is the set of infinite words X . It is a topological space
under the (Tychonoff) product induced by the discrete space X . Thus, the 07; is homeomorphic to
a Cantor set. The boundary 07 is a measure space together with the Bernoulli measure x induced
by the distribution on X. In this text, we restrict i to be the uniform Bernoulli measure.

A bijective map on vertex set of 7 is said to be an automorphism of T; if it preserves the
tree structure. In other words, ¢ is an automorphism of 7; if g fixes the root (i.e., g(@) = 0) and
preserves the edge adjacencies (i.e., u, v are adjacent in 7Ty if and only if g(u), g(v) are adjacent
in 73). Thus, automorphisms preserve each level of 7; and permute vertices within each level.
This is called the permutation action of the automorphism on levels of 7;. The collection of
automorphisms of 73, denoted by Aut(7y), is a group under composition operation. Subgroups of

Aut(7;) are called the groups acting on Ty.

For g € Aut(7;),v € Ty, there is a unique element in Aut(7;), denoted by ¢|,, such that

11



g(vu) = g(v)gl,(u), for all u € Ty. The element g|, is called the section of g at v. Some basic

properties of sections are given below.

Proposition 2.1. Let f, g € Aut(7Ty) and v,u € Ty. Then

L (f9)lo = flow9

(%4

2. g|uv = <g|u)|v

Proof. Let f, g € Aut(T;) and v, u € T;. First note that ( fg)(vw) = f(g(vw)) = f(g(v)g|.(w)) =
F(9()) flow) (glo(w)) = (f9)(0)(flgw9lo)(w) and (fg)(vw) = (fg)(v)(fg)|s(w), and therefore
(f9) () (flgwgle)(w) = (f9)(v)(fg)]o(w) for all w € Ty. Since w & Ty is arbitrary, we obtain the
first assertion.

Now note that g(uvw) = g(uv)glw(w) = g(u)glu(v)glw(w) and g(uvw) = g(u)gl.(vw) =
9(u)glu(v)(glu)|o(w), and therefore g(u)glu(v)gluw(w) = g(u)glu(v)(glu)ls(w) for all w € Tq.

Since w € 7y is arbitrary, we obtain the second assertion. U]

Let o: 075 — 074 be the shift map. Then, o is a measure preserving transformation. The
group of automorphisms Aut(7;) acts on 07, in a canonical way by, g - £ = g(z)g|, - 0§, where
x is the first symbol of £ € 07;. It can be seen that this action is an action by homeomorphisms.

Note that,

0g - 1€ = gls - 01, (2.3)

forz e X and § € 07y, since 0g - € = og(x)gls - € = glo - € = gls - 02E.
Any automorphism is uniquely identified by its sections at vertices of level 1 and the permuta-
tion action on level 1. This identification is called the wreath recursion and induces an isomorphism

of groups given by,

Aut(Ty) = (Aut(79))" x Sy

9 < ((9le)aex;79)) (2.4)

12



where 7, is the permutation on level 1 of 73 by g and the action of Sy on (Aut(73))? is by permu-
tation of coordinates.

For V' < X*, define stabilizer of V', denoted by Stab(1'), to be the subgroup of automorphisms
that fix all the vertices in V. If V' is singleton, say V' = {v}, we denote Stab({v}) by Stab(v). The
level stabilizer

Stab(n) = ﬂ Stab(v)

veE level n of Ty

contains automorphisms that fix all the vertices in the n-th level. If an automorphism fixes a vertex
v, then it fix all the vertices in the ray @ — v (by the ray © — v, we mean the sequence of distinct
vertices starting with u, ending with v, and each consecutive pair of vertices are adjacent). In
particular, in the case of 7s, it fixes a vertex of level 1 on ray @ — v. Since there are only two
vertices on level 1, fixing one vertex forces the other vertex to be fixed. So, any automorphism of
7> that fix one non-root vertex is in Stab(1). Also, an automorphism that fixes n-th level fixes all
the levels above n.

Since the automorphisms in Stab(1) fix the vertices of level 1, the wreath recursions (2.4)

translates into,

¢ Stab(1) = (Aut(75))

g (9g]z)zex- (2.5)

The map ¢ is called the natural embedding. 1f g € Stab(2), then g¢|, € Stab(1l) for
each x € X. Thus, by applying ¢ to ¢lu,,...,d|s,, and using Proposition 2.1, we obtain
(gleyz)zexs - - -5 (luye)zex» respectively. We may abuse the notation and write 1/%(g) = 1 ot(g) =
(9lzy)zyex, which is an isomorphism from Stab(2) to (Aut(%))dQ. Applying the above argument

inductively, we obtain

Y™ Stab(n) = (Aut(7y)"

g = (g|i1i2...in)i1,i2 ineX (26)

-----
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Here the d"-tuple (9|i4,..i,)  1s called the decomposition of g into the depth n. We may

11,825-005 in€

,,,,,

ambiguity.
Now consider the case where d = 2. It is the convention to use the alphabet {0, 1} (i.e., 21 = 0
and zo = 1). Let Vio = {1": ne N} and let g € Stab(Vj=). Note that 1"t = ¢g(1"*™) =

g(1"1™) = g(1™)g|1~»(1™) = 1™g|1»(1™) and so g[1~(1™) = 1™, for each n,m € N. Therefore

glin € Stab(Vi») for each n € N. By applying ), we obtain g = (glo, 9/1) = (9lo, (9|10, 9]11)) =

.... This induces an isomorphism

Stab(Vie) = (Aut(7T;)"

9 = {glro}nen - 2.7)

We write g = {g|1n0},,. to indicate the above isomorphism. In this case, since g|;» € Stab(V),

we have

glir = {(glix) |1"0}neN

= {91540} pen » (2.8)

using Proposition 2.1.

Now let us define an important class of groups, called self-similar groups.

Definition 2.4. A group G acting on the d-regular rooted tree Ty is said to be self-similar if for all

g € G and x € X the section g|, coming from wreath recursion (2.4) belongs to G.

An alternative way to define self-similar groups is via Mealy automata (also known as the
transducers or the sequential machines. See [BGNO3] for more on automata).
Examples of self-similar groups that appear in this text are the first Grigorchuk group ¢ and

the Grigorchuk’s overgroup G (see Section 2.5).

Definition 2.5. Let G be a self-similar group.

14



1. G is said to be contracting if there is a finite subset N of G such that g|, € N, forall g € G

and for all sufficiently large v.
2. For a contracting group G, the smallest such set N is called the nucleus of G.

3. Suppose G is contracting with the nucleus N. Let n € N and g € G be such that g € Stab(n)
and g|, € N for all vertices of level n. Then the collection of sections of g at level n is called

the level n nucleus of g.

The families of groups {gW}wEQ and {QNw} , that are of main focus in this text (see Sec-
weN

tion 2.5), are not necessarily self-similar (in fact, they are almost surely non-self-similar under the

uniform Bernoulli measure on (2). But they have self-similar type properties, which motivate the

next definition.

Definition 2.6. Let {G,,} _\ be a countable collection of groups acting on T.

neN

1. The collection {G,,}, .y is said to be self-similar if for each n € N and for each g € G, the

sections of g at level k are in G, ,, for each k € N.

2. Self-similar collection {G,}, . is said to be contracting if there is a collection of finite

subsets {N,} _y with the same size (i.e., |N,| is independent of n) satisfying the property
that for all n € N and for all g € G, all the sections of g at level k are in N, y, for all

sufficiently large k.

3. For a contracting collection {G,}, . the smallest such collection {N,}, _y is called the

nucleus of {G,}

neN*

4. Suppose {G,,}, .y is contracting with the nucleus {N,}, . Let n € Nand g € G,,. If there is
a k € N such that g € Stab(k) and g|, € N, for all vertices of level k, then the collection

of sections of g at level k is called the level k nucleus of g.

We will use Definition 2.4, Definition 2.5 when talking about the groups G, G and Definition 2.6

when talking about groups G,,, G-
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2.4 Space of Marked Groups

The space of marked groups with £ generators My, introduced in [Gri84b] is the space con-
sisting of tuples (G, S), where G is a k—generated group and S is an ordered set of k& elements
generating it. Two points (G1,.51) and (G4, So) are identified if the canonical map S; — S, pre-
serving order, extends to a group isomorphism G; — G5. In geometrical view point, this means
the Cayley graphs Cay(G4, .S1) and Cay(Gly, Sy) are order isomorphic.

The space M, is a metric space together with the Cayley metric d given by,
d((G1,51), (Ga, S2)) =277,

where n is the largest integer such that the balls of radius n centered at identity of the Cayley
graphs Cay(G1, S1) and Cay(Gs, Sy) are order isomorphic. It was shown in [Gri84b] that My is
a compact totally disconnected metric space.

Let (G, S) be a point of M. Any element in G can be attached to the ordered set S, to obtain
a point in M, ;. We will use this fact in this text by viewing some 3-generated group as points
of M, and 4-generated groups as points in Mg. A canonical way to attache an element to the
generating set is to attach the identity as the &£ + 1-th generator. Thus, every point of M}, can be
thought of as a point of M,,, for all n not less than k. In fact, this is an embedding of M} into
M,,. Therefore, one may consider the space M = U M, of finitely generated marked groups,

keN
on which we are not concentrating on, since it does not play a role in this text.

2.5 Generalized Grigorchuk’s Group G, and Generalized Grigorchuk’s Overgroup Go

Let Q = {0, 1, Z}N, the set of sequences of three symbols 0, 1, 2, and define {2y, {21, {25 to be the
subsets of {2, where () the set of all sequences with all three symbols occurring infinitely often,
(), the set of all sequences with exactly two symbols occurring infinitely often, and €2, the set of
all eventually constant sequences. Let o: Q — () be the left shift. i.e., (ow), = w,41. Denote
h~1gh, the conjugate of g by h, by ¢", and g~*h~'gh, the commutator of g, h, by [g, h], for any

group elements g, h.
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First, let us define two groups I' and [. Let S = {a,b,c,d}, S = {a, b, c, d,a,Z, c, d} be two

sets of symbols and let R, R be the collections of relations on S , S, respectively, where

(

( =1 forall s € S
s2=1 forall se S N
N [s,t] =1 forall s,te S\ {a}
R=11[s,t] =1 foralls,teS\{a}, 1= . 29
bed = 1
bed = 1
) sS=a for all s € {b, ¢, d}

\

Now define I' = (S | Ry and I = <§ ] ]§> The relations in R, R are called simple reductions
of T, T, respectively. Note that (S\ {a} | R) =~ Z2, <§\ {a} | }~2> ~ 73, and the element a is not
related to any other element. Therefore, I' = Z = Z% and I’ =~ 7 « ¥ Zg, where the component
Z corresponds to the free group generated by the element a. Here, #; stands for the free product.

Thus, any element in I, I can be written in the reduced form
(a)*axa...axax(a), (2.10)

using simple reductions (2.9), where first and last @ can be omitted and #’s represent letters in
S\ {a}, S\ {a}, respectively.

Now lets consider automorphism group of binary rooted tree. Let 1 be the identity in Aut(73)
and let P € Aut(7z), such that P(Ou) = 1u and P(1u) = Ou for each u € X*. Thus, P is defined
by the wreath recursion P = (1, 1; 7), where 7 is the permutation in Ss.

For w = {wy},y € €2, define b, ¢y, dw,gw, Cors Jw € Stab(Vi=) to be the elements identified

with sequences { BY} , {C¥} , {D¥}, {é;‘j } : {CN’;“ } , {IN?ﬁ } respectively, where,

P w,=0o0rl 1 w,=0orl
BY = , BY = ,

1 w,=2 P w,=2
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P w,=00r2 - 1 w,=00r2
Ch =+ Ch = o :
1 w,=1 P w,=1
> :
P w,=1lor?2 - 1 w,=1or2
D¥ = { DY = < (2.11)
1 w,=0 P w,=0
\ \

Also define a,,, @, € Aut(73) by a, = P and @, = {P}, . Note that a,,, @, does not depend on
w and so we may drop the subscript and write a, @, respectively. Define S,, = {a,,, b,,, ¢.,, d,,} and

~

S, = {aw, by, Coy dyyy Qs Zw, Cowrs c?w} Now lets look at some properties of these automorphisms.
Proposition 2.2. The element P is an involution. Furthermore,

1. s> =1forallse S,

2. byc,d, = 1.

3. [s,t] = 1foralls,t € S\ {ay}.

4. ss=aforall se S\ {ay}.

Proof. Note that P?(0u) = P(P(0u)) = P(1u) = Ou and P?(1u) = P(P(1u)) = P(0u) = lu
for any u € X*. Thus P? = 1. Since P # 1, P is an involution.

To prove the first assertion, let s € §w. If s = a, we are done as a,, = P is an involution.
Suppose s # a,. Then s = {s,}, where s, € {1, P} for all n. Therefore s> = {s,} x {s,} =
{s2} = {1} = 1, which completes the proof of assertion one.

Observe that for each n, two of By, C%, and Dy are P’s and the otheris a 1. Thus BYCY Dy =
1 for each n. Therefore, b,c,d, = {B*} x {C¥} x {D¥} = {BYC¥D¥} = {1} = 1, which proves
the second assertion.

Now let s,¢ € S\ {a.,}. Then s = {s,} and ¢t = {t,,}, where s,,t, € {1, P} for all n. Since

Sn, t, commute for each n, s and ¢ commute, which proves the third assertion.
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Finally, to prove the last assertion, let s € S\ {a,}. Then s = {s,}, where s,, € {1, P} for all
n, and so § = {3, }. Note that if s, = P, then 5, = 1 and if s, = 1, then 5,, = P. So, 5,5, = P.

Therefore, s5 = {s,} x {S,} = {sn5S,} = {P} _ = a. This completes the proof. O

neN

The above proposition shows that the sets .S, and §w satisfy the simple reductions presented in

(2.9). The next proposition summarizes the properties of the sections of the elements of S,.

Proposition 2.3. For each g € Aut(73), the wreath recursion of the conjugate g© of g by P (which

is the same as g* or g°“) is given by,

gf):: (g‘l7g’0;7b)7

where the wreath recursion of g is (9o, g|1; 74). The natural embedding of the elements in S., and

their conjugates by P are;

bo = (Biibow), o= (C8cow),  do=(D§don), b= (P,
bo = (B, bow)y %= (C5.%),  du=(D§,dy),

0 = (bouwr BY), 2 = (o, C),  d2 = (dow, DY), &% = (fow, P),

0 = (bown B), 0 = (G CF), A% = (o, DY) (2.12)

Proof. Let g = (glo, g1; 7,) and consider its conjugate by the involution P. Then, g* = P~'gP =
PgP = (L, 1;7)(glo, 9l1579) (1, 1;7) = (gh gloi 779) (1, 1:7) = (gh gloi 7747) = (gl1, glos 79),
using the permutation action and the fact that S, is abelian.

To prove (2.12), we will show b, = (BY, b ), which consequently shows b% = (b, Bf)
using the first assertion of the proposition. The rest follow similarly, and so we omit their proofs.

o0

its section at 0 is b,|o = B, and its section at 1 is b,|; = {BY},_; =

Since b, = {B¥}

neN?

{BZ“}, ey = bow, by (2.8). Hence we get the result. N

Now we are ready to define the groups that are of interest for this text.
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Definition 2.7. The generalized Grigorchuk’s group G, (introduced in [Gri84b]) is the group gen-
erated by S,, = {ay, by, c,,d,}. The group G, generated by S, = {aw, by, Cos dw,aw,gw, Cos Jw}

is called the generalized overgroup.

By looking at the generating sets, we can observe that G, < Go. Using Proposition 2.2,
it can be seen that the group G, is generated by {a., by, c,}, and the group QNW is generated by
{a,, by, cy,,a,}. By Proposition 2.2, we observe that the elements in S, S, satisfy the simple
reductions (2.9), for all w. Therefore, the canonical maps S — S,: s — s, and S - §w; S Sy
extend to surjective homomorphisms 7: I' — G, and 7: I' > G, respectively. As a consequence
of this, the elements in G,, and éw have the reduced form (2.10).

When the sequence w = (012)®, the generalized Grigorchuk group becomes the first Grig-
orchuk group [Gri80], which will be denoted by G, and the generalized overgroup becomes the
Grigorchuk’s overgroup [BG00a], which we will denote by G. Itis customary to write the gener-
ators of these groups without the subscript (012)* and they have the following wreath recursion

realization:

b= (a,c), ¢ = (a,d), d=(1,b), a = (a,a),

~

b=(1,), T=(1,d), d = (a,b).

For a subgroup G of Aut(7:), denote the n-th level stabilizer of G by Stabg(n). So,
Stabg(n) = Stab(n) n G. Let H,, := HY = Stabg (1). An element g € G.., belongs to
the first level stabilizer if 7,, the permutation action of g on the level 1, is trivial. Write g in the
reduced form (2.10). Note that, if the number of a,,’s in the reduced form is even, then 7, becomes
trivial and if the number of a,,’s is odd, then 7, is non trivial. Therefore, g € ﬁ[w if and only if ¢
has even number of a,,’s in its reduced form.

Now suppose g € }N[w. Then, the reduced form of ¢ has even number of a,’s, so, we can
gather each sub-word of the form a,, * a,, and rewrite as *“. This shows that the subgroup ]:lw

is generated by {sw, 8% 5, € gw\ {aw}}, and by (2.12), we observe the natural embedding maps
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I;Tw to (jw X gNW Also note that the elements in ﬁ]w can be written in the form,
(*a“’) x 500 5 50w R £0w 5 (*a‘”), (213)

where «’s represent elements in S\ {a,,}, and the first and the last +* may be omitted.

Following the natural embedding ): ﬁw — QNW X GM described above, we will construct
natural substitution rules (which will also be called as the natural embedding) that depends on the
sequence w, denoted by Jw, on words of I and I" with even number of «’s in it. First, let us define
O c f, containing all reduced words W e IN“, with even number of a’s in its reduced form. By
a simple parity argument, we can see that O is in fact a subgroup of . Similarly, we can define
©, the subgroup of I', containing words with even number of a’s in its reduced form. Similarly to

(2.13), the elements in O, © has the form
(57) s o sww® w (5, (2.14)

where +’s represent elements in S\ {a}, S\ {a}, respectively. Here, first and last +* may be omitted.
Then, © and © are the subgroups generated by the sets {s, s*: s € S\ {a}} and {s, st s e 8\ {a}},
respectively. First define 1, on {s, s7: s € S\ {a}} U {1}, similar to (2.12), by ¢,(1) = (1,1) and
Gu®) = (B5.b),  du(c) = (C3.0),  duld) = (DFd), (@) = (a,0),
bu®) = (B, 9@ =(C5.0),  du(d) = (D5, d),
Po(b) = (0,B5),  tu(c) = (c.CY),  du(d) = (d, D),  vu(@) = (@ a),

~

¢W<ba) = <b7 ét&)? 2/}w(5a> = (a 6%))7 ¢w<da) = (dv DS)? (2.15)

by replacing P’s by a’s. Now, we extend the definition of 1;“, to a map © T xT, by rewriting
W € © in the form (2.14), then applying the substitution rule (2.14), and reducing it. Thus, given
W € ©, we obtain JW(W) = (Wy, W1), where Wy, Wi are the reductions of Wo, I//[\/l, and I//[\/O, I//I\/l

are the words obtained by applying (2.14) to W.
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We can also extend the map @Zw to tuples of words by coordinate wise evaluation. That is,
GolWi, Wayo o W) = (Gu(12), Gu(Wa), .. Gu(Wi)). Now apply fon1, 0 ... © s © dhy
to decompose W into 2" reduced words {W;, ; }, if no indeterminacy occurs. We may drop the
subscript w in Jw for convenience. zzgnflw 0...0 {an o JW(W) will be called the application of 1Z n
times, to the word W. We will omit writing the natural substitution rule and write W = (W, W),
W = {W;, . }instead of th,(W) = (Wo, W), Ypn-1s, © . .. 0 e 0 (W) = {Wi, ;. }, respec-
tively, if there are no ambiguity.

IfW = (Wo,W;) and W’ = (W, W/), then WW' = (W,"°, W', and using (2.14) and
(2.15), we get W* = (Wy, Wy). Therefore, for any W' € r (not necessarily in é),

C oy i W e @ and W = (W, W)
— | (2.16)

W Wy it W ¢ © and aW' = (W), WY)

Now, let us examine the relation of lengths of words and their decompositions.

Proposition 2.4. Let W € O and let WO, Wl e T be the words (not necessarily reduced) obtained

by applying (2.15) to W. Then,

[W|+1
2

i

)V’Vl( < and ‘m’ 4 ‘Wl, < |W|+ 1. 2.17)

In tha case of W can be decomposed into the depth n, we have,

1
i,

(Wi in| < on T T o

(2.18)

where W = {W;, . }.

Proof. Let W € © and rewrite W in the form (2.14). Note that each = and ** in (2.14) of W,
contributes either a letter or no letters (if the corresponding coordinate is 1) to each of WO and I//I\/l.

Wy | < k. If W starts and ends with a =, i.e.,

)

Suppose there are k£ number of =’s in 1. Then ’I//[\/O

W o= wx%x% % then |W| =2k —1. If W = (5%)sxsx® | xx®or W = sx®sx® | xax (),
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then |W| = 2k. If W = (5%)# %% % «x%x(«), then |WW| = 2k + 1. In either case, |IW|+1 > 2k,

. = Wi+1 w 1 . .
and therefore we obtain (2.17). Note that, |W;| < ‘Wz < | |2+ = | 5 | +1— 3 and using this
inductively, we obtain (2.18). [

In fact, we can give a better upper bound,
W[ + || < 1wl +1-a, 2.19)

where « is the number of letters in I/, whose first coordinate of the natural embedding is 1. As a

direct corollary of Proposition 2.4, we obtain:

Corollary 2.1. For g € ﬁw,

lg| +1
2 b

9ol lg]1] < and |glo| + |g|1] < |g| + 1. (2.20)
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3. ON GROWTH OF GENERALIZED GRIGORCHUK’S OVERGROUPS*

This chapter is extracted from the article [Sam20].
3.1 Introduction

The growth rate g (n) of the first Grigorchuk group G was first shown to be bounded below by
eV™ and bounded above by e"ﬁ, where 0 = logs, 31 ~ 0.991 [Gri83, Gri84b]. In 1998, Laurent
Bartholdi [Bar98] and in 2001, Roman Muchnik and Igor Pak [MPO1] independently refined the
upper bound to yg(n) < e, where o = log (2)/log (2/n) ~ 0.767 and ) is the real root of the
polynomial 2 + 2% + x — 2. Recent work of Anna Erschler and Tianyi Zheng [EZ20] showed
vg(n) > e for any positive e. The Grigorchuk’s overgroup G is of intermediate growth

[BGO02] and as a corollary to Proposition 3.4 and Theorem 3.2”, the growth rate yg(n) of QN satisfies,
nlog(logn)

n
e <7(n)<e —————— | forany € > 0.
P (1og2+€n> 1) = P ( log n ) v
First introduced technique for getting an upper bound for G uses the strong contraction property

[Gri84b] (also known as sum contraction property), which says that there is a finite index subgroup
H of G such that any element g € H can be uniquely decomposed into some elements, whose sum
of lengths in not larger than C'|g| + D, where 0 < C' < 1 and D are constants independent of g
[Gri84b]. Later this technique was developed and many variants were introduced [Bar03, Fra20].
In 2004, to get a lower bound for certain class of groups of intermediate growth, Anna Erschler
introduced a method for partial description of the Poisson boundary [Ers04]. This idea was used
to get the current known best lower bound for the growth of G [EZ20]. We will be using a version
of strong contraction property in this text.

The growth rates of the family {@w, w e Q} of generalized Grigorchuk’s overgroups are given

by the theorem below.

Theorem 3.1. Let w € ). Then G, is of polynomial growth if w is virtually constant and G., is of

*Reprinted with permission from “On Growth of Generalized Grigorchuk’s Overgroups” by Supun T. Samarakoon,
2020. Algebra and Discrete Mathematics, 30(1), 97-117, Copyright [2020] by Algebra and Discrete Mathematics
(under open access policy).
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intermediate growth if w is not virtually constant.

Recall that €2, 2 be subsets of €2, where () is the set consisting of all sequences containing
0,1 and 2 infinitely often, €2 is the set consisting of sequences containing exactly two symbols
infinitely often. Define (2 to be the subset of (2 containing sequences w = {w,}, such that there is
an integer M = M (w) with the property that for all & > 1, the set {wx, W1, - - -, Wk ar—1} CONtains
all three symbols 0,1 and 2. Similarly, define 2] to be the subset of {2; containing sequences
w = {wy}, such that there is an integer M = M (w) with the property that for all £ > 1, the set
{wk, W1, - -, wrra—1} contains at least two symbols. Let Q* = Qf U QF. Sequences in Q* are

called homogeneous sequences.

Theorem 3.2. Let w € Q*. Then

nlog(log n)) |

Y5, (n) < exp < log 11

Theorem 3.2 provides an upper bound for growth of QNUJ only for homogeneous sequences. In
fact, it is impossible to give a unifying upper bound for growth of G, forall w € Qo U Q. This
follows from Theorem 7.1 of [Gri84b], together with the fact that G, < (jw. However, it is possible
to provide a unifying lower bound for the growth of groups §w for all w € €y U €21 by a function

of type exp{ (ﬁ) } for arbitrary € > 0 (see Proposition 3.4).

We prove Theorem 3.1 in Section 3.2 and Theorem 3.2 in Section 3.3.
3.2 Growth of Generalized Overgroups Go
Proposition 3.1. G., has subexponential growth for each w € {2, U €),.
Before proceeding to the proof, we start with three lemmas.

Lemma 3.1. A non-decreasing semi-multiplicative function ~y(n) with argument a natural number,
can be extended to a non-decreasing semi-multiplicative function ~(x), with argument a non-

negative real number.

Proof. See Lemma 3.1 of [Gri84b]. OJ
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Lemma 3.2. For any w € (, Xw < X(m.

Proof. Denote B, (n) = Bs 5 (n)and H,(n) = H, n B,(n). Any element g € B,,(n) is either

in H,, or is of the form g = ag/, where ¢’ € H,, and |¢'| < |g| + 1 < n + 1. Thus,
Yu(n) = [Bu(n)| < [Ho(n)| + |Ho(n + 1] < 2|Hy(n + 1),

For each g € H,, glo, gl1 € Gy satisfy (2.20) and so,

)] < B = (3eu™50))

Therefore,

Consequently,

Let €2, » contains all the sequences of 2 having at most two symbols.
Lemma 3.3. For any w € ) , C?w =G,.

Proof. First note that a,, € G, = a,b,,aycy,,a,d, € G, = Ewgij g, — C?w c
G, — (jw = G,. To prove Lemma 3.3, we only need to show that a,, € G,. For definiteness we
may assume w consists only of symbols 0, 1. Then by (2.11), b, = {P, P, P, ...} = a,,. Therefore

a,, € G, and thus the result is true. l
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Proof of Proposition 3.1. Letw € Q; U €. Then there exists N € N such that cVw € 5. Then
by Lemma 3.3, QNUNW = G,n~,. Therefore X,,Nw = A\,~,. Forany w, G, is of intermediate growth
if w € €y and of polynomial growth if w € 5 [Gri84b]. Thus A\,~, = 1. So by Lemma 3.2,

Xw < X,,Nw = 1. Thus G,, is of subexponential growth. 0
Proposition 3.2. Gw has intermediate growth for w € €.

Proof. By Proposition 3.1, G., is of subexponential growth. Since G, < G. and G, is of super-
polynomial growth [Gri84b], Q~w is of super-polynomial growth. Hence C:w is of intermediate

growth. 0
Proposition 3.3. CL has polynomial growth for w € €),.

Proof. Since w € €),, there is a natural number N such that w, = wy for all n > N, where
w = {wy,}. Then Gon-1, = {a,a)y =~ D, the infinite Dihedral group. Let G be the subgroup of
Aut(73) containing elements ¢ such that g|, € (a, @) for all v in level N — 1 of 75. Then G,, = G.
Let GG be the subgroup of G containing automorphisms fixing all vertices in the first N — 1 levels

21\]71

of 73. Note that Gy < G and [G : Go] < 22"~ But Gy =~ {a,d) ~ D2, Thus Gy is

virtually abelian and of polynomial growth. Since [G : Gy| < o0, G is of polynomial growth.

Gw < G implies that (jw is of polynomial growth. [
Theorem 3.3. G, has intermediate growth for w € €.

We will, from now on, consider §w = {aw, by, Cu, dy, &W,Ew, Cors Jw} as the generating set of
G... A reduced word W satisfying g = W in G,, and |g| = |W| is called a minimal representation
of g. For any ¢ > 0 define F¢(n) = F<(n) to be the set of length n elements g in G, such that for

any minimal representation W of g over alphabet S.,
W\, > (1/2—¢€)n, forsome € S\ {a}. 3.1)

So for any minimal representation of elements in F*(n), its reduced form (2.10) has most of s as

the same letter. Now define D(n) = D¢ (n) to be the complement of F¢(n) in B.,(n)\By(n —1),
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the sphere of radius n. Thus if g € D¢(n), then ¢ has a minimal representation IV satisfying,
(W, < (1/2—€)n, forall «e S,\ {a}. (3.2)

For any & > 0 define F%(n/) to be the set of words W’ over the alphabet S\ {a} of length n’ such
that,

W'|, > (1—6)n’, forsome *e S,\{a}. (3.3)
Therefore, each word in F?(r’) has mostly equal letters.

Lemma 34. Let 0 < € < 1/2 and let W be a minimal representation of an element in F*(n). Let

W' be the word obtained by deleting all letters a from W. Then W' € F %(n') where

— << (3.4)
1-2

5 — 94 (L229) (3.5)
n—1

Proof. Since W is a reduced word, by (2.10), we observe that, 2|V | — 1 < |[W| < 2|W|, + 1.

-1 1 -1 1
Thus Wi < W, < |W|2+ , and so W < W= W], < W1+ . So we get (3.4).
1—2¢
By G.1), [W/|, = W], > (1/2—e)n > (1/2— e)(2n' — 1) = <1 e ! o )) o>
1-2
(1 e ! 1€>> n' = (1— ), from (3.5). 0
n_

Lemma 3.5. If§ < 1, then @fﬁ(z@)wk < (1-6)745/6)°.

Proof. Any word W € F %(k) can be constructed by choosing a letter * out of {b, c,d, E, c, J, 5},
which satisfies (3.3). So, IV contains the letter = at least k — |0k | times and possibly ¢ times more,

where 0 < ¢ < |dk|. The rest of the positions of W can be filled by the other six letters with

frequencies iy, . . ., i, Where >, i; = |0k| — t. Therefore, we have,
~ [0k] .
J'"‘S(k‘)‘<7+7 - _
’ tz(l)zijzzlc;kj_t (k_ [(SkJ +t)!Z1!...Z6!



ok —t
Let (0k — ), := 6 {%| be the largest integer not greater than |0k — ¢|, that is divisible by

6. Since 7, . . . , 7 are non negative integers, we have,
TRUUR WIS P3N P Gl Tk [ Ut (U LSRN 1T
6 6 6 6
Since the number of ways to choose non negative integers i1, . .., i such that >,i; = |0k| — t is
([6kj;t+5)’ we get,

6
15k
ok !

<7+ 7(l I+ 5)

5 )& (k—|0k] + ) (%)16
<(|6k| + 5)° VTR

t=o (k — |0k]| +¢)! <T>

155

en/Tekk ek o k=1k]+1) o (3h—1)

k)%
0 (k — |0k| + t)(—10k1+0) (@)

<(|0k| + 5)°

t

n

Here we used the Stirling’s formula " <nl< e\/ﬁn—. Since 0 < (|0k| — ) — (0k — t), < 6,
ern er

ok

,_
—

R (k1) =6k =) o (5k—1)s— (15K ]—1)

\ﬁé(k)\ <e(|ok] + 5)°

()T ()
|0k] \/Ekﬁ
5
<e(|ok] +5)° )] k] (=IRTH0) ( (5p—pyy \ OF D)
=0 <1 -+ %) (T*>
|6k| —(6k—t)4
Ok —1).
<ek®(|0k| + 5)*Vk(1 — 8)* ((G—k)) |
t=0
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Note that the real valued function, ¢ — £~¢ for & > 0, is an increasing function on the interval

(0,e71). Since /6 < 1/6 < e, we get,

(U5) ()

Therefore,

()

\ﬁé(k)\ <ekS(|0k] + 5)°VE(1 — 8) " (|6k] + 1) (g)

Hence,

< (1-6)715/6)7°.

‘1/]6

w0

Corollary 3.1. Let € < 1/2. Then, lim|F<(n)|"/™ < (1 — 2¢)~/2(¢/3).
Proof. If n is even, then minimal representations of at most two elements in F¢(n) give the same
word in F°(n/2). So,

F(n)] < 2/F°(n/2)].

If n is odd, then for each element in F¢(n), we can assign a unique word in F°((n — 1)/2) or

F3((n+1)/2), and so,
F )l < |F((n = 1)/2)] + |F((n + 1)/2)].

Note that,

1/2

@yﬁ(n/z)wﬂ <lim ((1-8)7(8/6)7") ",

1/2

T P ((n — 1)/2)] " < lim (1 = 6)7'(6/6))
1/2

ol F2((n + 1)/2)] 7 < Jim (1 - 6)7(6/6) )",
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and thus,
1/2

Tin| F<(n) | < lim ((1 - 6)7(6/6)~")

1-2
Since § = 2¢ + ( €>, lim 6 = 2¢ and therefore,
n — n
lim ((1—6)71(5/6)70) "% = (1 — 2¢)7/2(¢/3) ™.
Hence we get the desired result. [
For each s > 1, let A = {g € G, | g(v) = v for v in level s} and denote the canonical

generators of C:Usw by a, b, cs, ds,a,ES,ES, 075 We assign above symbols, when s = 0, to the

generators of G- Using the map 1; we get the following;

ws =0 = by 1 =(a,bs) cs1=1(a,¢c5) ds1=(1,ds) a=(a,a)

ws=1= bs—l = (0,7 bs) Cs—1 = (1708) ds—l = (aads) a= (aaa)

bs—l = (lybs) E,s—l = (aags) ds—l = (Lds)a

W =2 = bs—l = (17b5) Cs—1 = (CL,CS) ds—l = (aads) a= ((I,a)

bs—l = (G, bs) Es—l = (1753) ds—l = (Lds) (36)

Let W be a minimal representation of an element in PNLSS). Then there are WO, W1 such that
W = (Wo, Wl) using substitutions in (3.6). Let W, W; be obtained by doing simple reductions
on Wo, Wl. Let a; denote the number of such simple reductions. So W, W, are minimal repre-

sentations of words in ﬁfj;l) and by (2.17),
!Wo\+\W1|<(%‘+’%‘—al<]W\+1—a1. (3.7)
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Now there are Woo, Wor, Wio, Wi; such that W, = (Woo, Wm), Wy = (Wm, WH) using substitu-
tions in (3.6). Let Wy, Wo1, Wig, W11 be obtained by doing simple reductions on Woo, Wor, Wios
Wll. Let s denote the number of such simple reductions. So Wy, Wo1, Wig, W11 are minimal

)

representations of elements in ﬁgﬁf and applying (3.7), we get,

|W00| + |W01| + |W10| + |W11‘ < |W0| + 1+ |W1‘ +1—an

S| WI+22-1— (a1 + a).

Proceeding this manner we get {W,;,. . }z‘je{o 1y minimal representations of elements in H f,i;s) -

~

G,s,,. Denote by «a the number of simple reductions done to obtain {m1i2-..is}ije{o 1} from

{ 7 Zmz} 01 Then by applying (3.7) repeatedly, we get,
ijE 0,1

s—1
<Wl+2°—1-) o (3.8)
1

> Wi,

11,82, 5Ls

Let X, := |W|d0+|W|EO+|W|EmY0 = |VV|CO—l—|V[/v|go—i-|V[/v|J0 and 7, := |W|b0+|W|50+|W|JO.

Also for j =1,2,...s,let

X; = 2 <|m1i2...1j|dj + [Wisiy...q; |gj + |W/z’1i2...ij|5j>7
Y; = Z <|VVi1ig...ij’cj + [ Wiyiy...q; |gj + |m1i2...z'j|gj>>

Zj = Z <|M/i1i2---ij|bj + |VVi1i2---ij|5j + |VVZ1ZQZ]|JJ>

Lemma 3.6. Let € > 0,n. € N such that n.e > 5/2. Let n > n.. Let s € N such that w; is the
first time that the third symbol appears in w. Let W be a minimal representation of an element in
D(n) ~ HY. Then,

Z (Wiiy..is| < (1 — g) n+ 2% — 1.

01,2y sis
Proof. For definiteness, suppose the sequence w begins with the symbol 0, first 1 appears in the

t-th position, and first 2 appears in the s-th position. Thatis,w; = ... =w;_ 1 =0, w; = 1, w,, # 2
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for every m < s, and ws = 2. First note that each simple reduction decreases Y;, Z; by at most 2.
Thus,
t—1 s—1 s—1
i1 2Y-2) 0;2Y—2) a; and Zoy>Zo-2) (3.9)
1 1 1
Since w; = 0 there are X of letters in 1/, with 1 in their first coordinate when written using (3.6).
Thus we modify (3.8), as done in (2.19) to be,

s—1

<n+2t1f2aﬁxo.
1

> Wi,

11,0250 00s
Similarly, since w; = 1 and w,; = 2, we get,

s—1
<n+25—1—2ai—X0—Yt_1—Zs_1. (3.10)
1

> Wi,

11,82,500s

Now let us show that Xy +Y;_1+ Z,_1 + Zi_l a; > ne/5. To the contrary assume Xy + Y;_1 +

Zo 1+ 35" oy < ne/5. Therefore, 35" o < ne/5 and by (3.9) and (3.10),we get,

s—1 s—1
X0+Y()+Z() <X0+ <Y;5_1+2ZOQ> + (Zs—1+22ai>
1 1
s—1 s—1
< (X() + Y;t—l + Zs—l + Z OZZ‘> +3 (2 Oéi>
1

1
4
< ZNeE.
d
Butn = |[W| < |W|, + |[Wlz + Xo + Yo + Zo < 2 + 2 —ne + 2ne, since [W|, < (1/2—¢€)n by
+

(3.2). Thus ne < 5/2, which is a contradiction. So Xo+Y; 1+ Z, 1 +Zf71 a; > ne/5. Therefore,

> Wi,

11,825, is

€
< 1——) $95 1.
( 5)"

O

Proof of Theorem 3.3. Take a fixed 0 < € < 1/2. Suppose first that there are positive integers k, s,
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such that there exists an infinite set Ny < N where,

e

okw

A Feu(0)| = |HS)

okw

for all n € Ny. By Lemma 3.2 and (2.2),

Ao < Agky

= lim [F, ke, (n) [/

_ 1 s N 1/n
- hTILH |’7ggkw’sakw(n>’

= lim <‘ﬁ(§s) m}"jkw(n)‘ - ’ﬁﬁL N D,

neNg

Using (3.11), we get,

)1/71
)1/71

>0
€
VAN

Tim <2)ﬁ[c(f?w N Fer, (1)

nEN()

= lim <‘[§(§i)w N For,(n)

neNg

ETE 1
< T |7, (n) "

< Tim| P, ()"

Using Corollary 3.1 we get,
Ao < (1—26)72(e/3) .

A DS (n)], (3.11)

(3.12)

Now suppose that for every k, s € N, there exists an N (k, s) such that for all n > N(k, s),

)

okw

As before, let Y (n) := Bu(n) n HY and I?[éi)w(n)
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~

Bgry(n) N I;'[ES . Letw =
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W1 Wy Wy 41 - - - Wsy455Wsy +89+1 - - - Wsy 459455 - - - Where 81 18 the first time third symbol appears
in w, sy is the first time third symbol appears in ®'w, and so on.

Since [G,, : HSY] < 2271 =: K, there is a fixed Schreier system of representatives of the
right cosets of G., modulo HEY with Schreier representatives of length less than K. So for any
g € B,(n), there are h € HEY . 1 a Schreier representative such that g = Al and since Il < K3, we

have |h| < n + K. Therefore,
’éw(n)) < Kl(ﬁgﬂ(n + i)l (3.14)

Let N; = max {n., N(0, s1)}, where n. is defined in Lemma 3.6 and N (0, s1) is defined in (3.13).

Note that,
- n+Ki - - -
‘H(E)Sl)<n+ K)|l=1+ Z Hu(}sl)(n + Ki) n <Bw(k‘)\Bw</€ — 1))‘
k=1
- n+ Ky - - -
< Ni|BuoN)| + Y [HE o+ ) o (Buk)\ Bk - 1)) .

k=N

From (3.13), for k > Ny,

Therefore,

n+ K
’HLSI)(TL + Kl)‘ < Nl‘Bw<N1>‘ + 2 Z

k=N1

HS) (n + Ky) o D(k)|.
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Now using Lemma 3.6,

‘ﬁfn(wr Kl)‘ < Nl‘f?w(Nl)’ Y ‘éaslw(jl)‘,_,‘Easlw(jgsl) 7

J1yeees j231

where Z]Z (1 — —) (n+ Kyp)+2° —1.

Note that

nglw = hm ‘Egﬂw(j)‘l/j;
J
and therefore, for each 0 > 0, there exists an J = J(d) such that for j > J,
|§051*1w(j)| < (/N\oslw + é)j'
Thus for all 5
[Boi-10()] < | Byor-1()| (Ao + 6Y,
which implies,

251

Brali) (orr + 82

< ‘Easlflw(‘])

251
(

(Aosre + )

‘B Sl ]2§1

£)(n+K1)+21-1

< ‘Basl_lw(J)

The number of summands in the right hand side of (3.15) is,

((1—%) (n+ Kip) 4+ 2% —1+281) <<n+K1+251“—1)
251 h 281

<(n+ Kl +251+1 _ 1)251.

Now by (3.14), (3.15), (3.16) and (3.17) we get,

‘éw(n)) < KiN| Bu (V)
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~ 251

+ <2K1(n + Ky 4+ 25— D)2 B, ()

X(Xaslw + 5)(175)("+K1)+23171> ‘

Therefore,

Since ¢ is arbitrary,

In the same way, still under the assumption (3.13), and

w, oM w, g%ty ghtstssy, o we get,

N - (1-5)
Ao'slw < <A051+52w> °

N N (1-%)
)\0'51 +520 < >\0'51 +s2+s53,

Thus for each k£ € N,
)(1—§)k

>\w < <>\031+“‘+Skw

But the growth index A of a group with 8 generators of order 2 cannot exceed

replacing w by

(3.18)

9. Since k£ may be

chosen arbitrarily large, it follows from (3.18) that XW = 1. If there exists an ¢ > 0 satisfying

(3.13), then Xw = 1. If not, then for all ¢ > 0 we have (3.11). Thus by (3.12) and

lim (1 — 2€)"Y2(e/3)~¢ = 1,

e—0

we get XW = 1 in all cases. Since Xw =1, Q~w has subexponential growth.

We know G, © QNw and by [Gri84b], G,, is of intermediate growth. Therefore QNW is of interme-
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diate growth. O

Note that the Theorem 3.1 follows directly from Proposition 3.2, Proposition 3.3, and Theo-

rem 3.3.
3.3 Growth bounds for Generalized Overgroups

Proposition 3.4. Let w € Qg U Q4. Then for each ¢ > 0,

o) =0 (i ) )

Proof. Let w € 0y U ;. We may assume w has infinitely many 0’s and 2’s. Then, by (2.11), b,

as a sequence of P’s and I’s contains both symbols infinitely often. By Theorem 2 of [Ers04] the

group generated by elements a, b,,, a@ has growth bounded below by exp{ (%) } Since
og” " (n

G., contains the elements a, by, a, we get the required result. [

Theorem 3.2. Let w € QF. Then,

Vg, (n) < exp{ (%W) }

Proof. Since w € QF, there is an N such that ¢"w contains exactly two symbols, say 4, j. Then by

Lemma 3.3, Q,Nw = G,n~,. By theorem 3 of [Ers04], we get,

Vo (n) < eXp{ (%(f)(m) }

and therefore,

oN

16, () ~ (7, ()
(= { ("500)})
o ()
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O]

While Theorem 3.3 states that QNw has intermediate growth for all w € €}y, for homogeneous

sequences from 2§, we can actually provide an explicit upper bound on growth.

Theorem 3.2". Let w € Uf. Then,

75, (n) < exp{ <%€f><n)) }

Proof. The proof follows similarly as of the proof of Theorem 3 of [Ers04] by replacing Lemma

6.2 (1) of [Ers04] by Lemma 3.6. [

Theorem 3.2’ together with Theorem 3.2” implies Theorem 3.2.
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4. GENERALIZED GRIGORCHUK’S OVERGROUPS IN THE SPACE OF MARKED
GROUPS*

This chapter is extracted from the article [Sam22].
4.1 Introduction

Recall that Q2 < Q = {0, 1, Q}N is the set consisting of virtually constant sequences. If
w € 2\, then G, has intermediate growth [Gri84b]. In [Gri84b] it was shown that the closure of
the set Z = {G,, | w e Q\Qy} in My, denoted by Z, is a closed set without isolated points (hence
homeomorphic to a Cantor set) and Z\Z is a countable set consisting of virtually metabelian
groups, with one such group G (defined using an algorithm « for the word problem) for each
w € y. So,

Z=Zu{G”|we Qy} = Cantor set.

The Grigorchuk’s overgroup G is important, in particular, because as is shown by Y. Voro-
bets (private communication), it constitutes a big part of the topological full group [[(A,T)]]
associated with substitutional dynamical system (A,7") generated by Lysénok’s substitution
o:a— aca, b—d, c— b, d— ¢, which was initially used to describe a presentation of G
[Lys85], where T denotes the shift map in the space A = {a, b, ¢, d}”.

In this chapter we describe the structure of the closure of the set X = {QNW |we Q} in Mg,
which happens to be much more complicated than in the case of classical Grigorchuk groups (see
Figure 4.1).

Constructions in this chapter are based on algorithms « and 3;; for 4, j, distinct elements of
{0, 1,2}, which will be defined in Section 4.2.1. The algorithm « is a branch type algorithm,
similar to the one introduced in [Gri84b]. Algorithms 3;; were introduced in order to construct

‘new’ class of modified overgroups (see Section 4.2.2). We hope that the methods introduced

*Reprinted with permission from “Generalized Grigorchuk’s Overgroups as Points in the Space of Marked 8-
Generated Groups” by Supun T. Samarakoon, Journal of Algebra and Its Applications, Copyright [2020] by World
Scientific Publishing Co., Inc.
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Figure 4.1: Structure of topological closure of X = Xy u A} U X5 in Mg

here will contribute to the study in the direction of constructing new example of non-elementary
amenable groups.

Recall that €2y, Q; < €2, where (2 is the set of all sequences with all three symbols occurring
infinitely often and ; = Q\(Qy U 2) is the set of all sequences with exactly two symbols
occurring infinitely often. We use the word “oracle” to represent a sequence in 2.

Using algorithms « and f3;; for 4, j € {0, 1, 2}, we define modified overgroups Qwo‘j and G" (see
Section 4.2.2) as those for which the word problem is decidable by the corresponding algorithm,

assuming that the oracle w is known. We define the following subsets of Ms:

, Sy } ; union of all shaded regions in Figure 4.1,

x={(@

X {Qw, w} fori=0,1,2,
{ G, 5% }we L fori=12

) ={(G2.50) | B < (. Bras o} |

Y =4, u & U A ; middle cylinder in Figure 4.1, 4.1
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where §w, gfj, and §f are the natural generating sets for corresponding groups. In the following
text, the topological closure and the set of limit points (or cluster points) of a set V' will be denoted

by V, V;, respectively.

Theorem 4.1. The sets Xy, X1, Xo, X[, Xs¥, and Xzﬂ are mutually disjoint subsets of Ms. In any
set other than XZB , different corresponding oracles w give rise to different groups. In X. b there are

two different groups for each corresponding oracle w.

Theorem 4.2.
1. X = Xy 1 Xo, where the set X consists of the set of isolated points of X.
2. Xy, Y are homeomorphic to a Cantor set.

3. Furthermore, we have following relations:

(a) Y = (Xo); = (A7); = (X5

(b) Xy =Y UuXiuXy =(X);= () = (%)

It is worth to mention that the limit groups that appear in [Gri84b] are of the lamplighter type
and one of them (building block) is a 2-extension of the lamplighter group £ = Zy { Z [BG14]. In
our situation the lamplighter group also plays an important role and the building blocks constitute

the group £ as well as £, := Z2 1 Z and their direct products.
Theorem 4.3. Ler {i, j, k} = {0,1,2}.

1. Letw € )y and let N be the smallest index such that only i appears in w after N. Then Qij is

2

commensurable to (G%)2", which is virtually (£5)*" . Therefore G is elementary amenable

and of exponential growth.

2. Let w € Q)5 and let N be the smallest index such that only i appears in w after N. Then
GLY is commensurable to (QNQBO? V2", which is virtually (£)2". Therefore Go is elementary

amenable and of exponential growth.
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3. Let w € )y and let N be the smallest index such that no k appears in w after N. Then 53 is

commensurable to (QO_O‘NW)2 . G2y, contains L as a subgroup and is an extension of a non
elementary amenable group by an abelian group. Therefore G is non elementary amenable

and of exponential growth.

It is known that the groups in X5 have polynomial growth and the groups in X, and &’ have

intermediate growth (see Chapter 3). As a consequence of Theorem 4.3, we have;

Corollary 4.1. Groups in the set Xy U X are of intermediate growth, groups in the set X, are of

polynomial growth, and groups in X{* U X5 U Xf are of exponential growth.

If G is a finitely presented group in M, with finite set of relations R, such that G,, — G
for some sequence {G,}_, in My, then G maps onto G,, for sufficiently large n. This can be
obtained by considering the ball of radius n centered at identity of the Cayley graph of G, where
n/2 is larger than the maximum of lengths of relations in R. In particular, the growth rate of G
is not less than the growth growth rate of GG,,. By Theorem 4.2 3, for w non virtually constant,
QNW is a limit point of Xf and so there is a sequence {G,} of groups of exponential growth (by
Corollary 4.1) in Xf converging to éw. Therefore, by the contra-positive of above argument, we

get following corollary:
Corollary 4.2. ’gL is infinitely presented for w € Q\Q.

The Cantor-Bendixson rank is an invariant of topological spaces. It is the least ordinal at which
the removal of isolated points makes no change to the space. If the topological space is Polish
(complete, metrizable and separable), then the Cantor-Bendixson rank is countable [Kec95]. As a

consequence of Theorem 4.2, the Cantor-Bendixson rank of X is one.
4.2 Modified Overgroups
4.2.1 Algorithms for the Word Problem

First we define inductively the algorithm «, which solves the word problem for G., when

w € €y. Given any reduced word W € T, if it has even number of ‘a’s (i.e. W € ©), use @Z
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to get two reduced words Wy, W;. If W ¢ O, terminate the process. Now suppose we have
2" reduced words {W;, ; } < I'. If at least one of them is not in O, terminate the process. If

all the words are in O, use zz to obtain 2"*! reduced words {W, } Follow this process N

1efnt1

times, where N = [log, |IW[], to obtain 2% reduced words {W;;, ..}. Then by (2.18), we get

Witigin| < BEN' +1-— QLN < 1, and thus the level N nucleus is achieved. The algorithm « gives

positive result if all words W are the empty word. That is the level N nucleus of W consists

Lig. N
of empty words.

Let {7, j,k} = {0,1,2} (we will use this notation of i, j, k throughout rest of the text). Induc-
tively define algorithm (3;; which solves the word problem for QNW, when w € €y and 7, 7 occur
in w infinitely often. Let [V, be the largest index such that wy, = k. Given any reduced word
W e T, similarly to above, if W ¢ O, end the process. And if W € O, use J to get two reduced
words Wy, W;. Follow this process N times, where N = max { Ny, [log, |IW]|}, to obtain 2V re-
duced words {W;,;, i}, if such words exist. Note that N > N, guarantees that oNw does not
(W]

contain symbol £ in it. By (2.18), |Wi,i,. x| < v +1— QLN < 1 and so the level N nucleus is

achieved. The algorithm gives positive result if all words W; are either empty word or e;;,

182...01N
where ¢y = g, e1p = d and ego = ¢. That is the level IV nucleus of W consists of empty words and
‘Gij,S.

4.2.2 Modified Overgroups

Here we will introduce new collection of groups using the algorithms described above, named
modified overgroups, similar to modified Grigorchuk groups G2 introduced in [Gri84b]. (The
notation used in [Gri84b] is QZ, which is already taken to overgroups in this text.)

Let w € €. Define NS to be the subgroup of I' consisting of all the words of I' that yield a
positive result when the algorithm « is applied. Since any conjugate of the empty word is the empty
word, using (2.16) multiple times we obtain that N is normal in I'. Define modified overgroup
Qij =T/N2 Letnm*: T — waj be the canonical epimorphism. We denote the generating set of Gg
by 5 = {ag,bg,cg,dg,ag,zg,a’g,cig}.

Now let w € 27 U (25 with at most finitely many ‘k’s. Define NS to be the subgroup of I' con-
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sisting of all the words of I" that yield a positive result when the algorithm £3;; is applied. Note that
by choosing W = ¢;; in (2.16), we obtain that any conjugate of ¢;; has nuclei consisting of only the
empty words and e;;’s, at sufficiently large level. This together with (2.16) yield, NJ¥ is normal in
I'. Define modified overgroup Go” = I'/ NG9, Let 7% : T' — GL7 be the canonical epimorphism.

We denote the generating set of G, by Shi = {aﬁ” b P qbe qle pPi ol gl }
Proposition 4.1.
1. Ifw € )y, then gfj = QNW and if w € 1 LUy, then gNg surjects onto QNw with non trivial kernel.
2. If w € Qy, then G =G, and if w e Qy, then Ghis surjects onto G., with non trivial kernel.

Proof. 1. Consider surjections 7: [' — (jw and 7*: I’ — (jg. By definition of waj, we obtain that
ker(7®) < ker(r). Thus G surjects onto G,

Let w € y. Then for any n, each element in QNU% of length one will never be the identity.
Therefore, ker(m®) = ker(), and so the modified overgroup G2 is isomorphic to the generalized
overgroup G

Now let w € Q1 U y. Then for some N, o™¥w contains at most two symbols. Say o"w does
not contain 2. Thus Egnw = 1in Cz,nw for n = N. Note that, W (01) € I" constructed in (4.6) is in
ker (), but not in ker(7®), since level n nucleus of W (01) consists of ‘1’s and ‘b’s, for sufficiently
large n. Therefore, QNﬁ surjects onto G., with non trivial kernel.

2. Now consider surjections, 7 and %, By the definition of G/, we get ker(7%4) < ker(r),
and thus QNE] surjects onto G..

Let w € 2; with finitely many ‘k’s. Then each element in Gone, OF length one will never be the
identity, unless it is e;;. Therefore, ker(774) = ker(r) , and so GL¥ is isomorphic to G,..

Now let w € 5. Without loss of generality, suppose i = 0,7 = 1. Then for some N, cVw
contains only one symbol. Say ¢¥w contain only 0’s. Thus ¢,»,, = 1 in Gyney forn > N. Note
that, W (02) € T constructed in (4.6), has only ‘1’s and ‘s in its level n nucleus, for sufficiently
large n. So W (02) € ker(m). Recall that e;; = eg; = b, and therefore W (02) ¢ ker(7%/). Hence

N[j”' surjects onto §7w with non trivial kernel. -
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The following proposition is useful in comparing two groups.

Proposition 4.2. Let r € N and let w,n € § such that w, = n, for eacht < N, where N >
log, (2r).

1. If w,n have all three symbols after the N-th position, then the balls of radius r of Cayley

graphs of g), QNn are identical.

2. If w has all three symbols after the N -th position, then the balls of radius r of Cayley graphs

of QNM, 5; are identical.
3. The balls of radius r of Cayley graphs of QNﬁ, QN;‘,‘ are identical.

4. If w,n have exactly the same two symbols, say {i, j}, after the N-th position, then the balls

of radius r of Cayley graphs of QNW, C:n are identical.

5. If w has only i, j and 1 has no k, after the N-th position, then the balls of radius r of Cayley

graphs of G.,. ngf Y are identical.

6. If w,n has no k, after the N-th position, then the balls of radius r of Cayley graphs of

5B8i; 5Bij . .
w”, Gy are identical.

Proof. 1. We will say two words W, X over alphabets of generators of QNW, (jn, are equal if their

corresponding letters match. Let I/, X be equal words of length at most 2r. Suppose W = 1in Go.

Thus we can decompose W into two words {W;, W, }, four words {Wyo, Wor, Wig, Wii}, ..., 2V

words {W; i, i}, where all these words represents identity in corresponding groups. By (2.18),
W]

Witin.in| < v +1— %N < 2. This, together with the fact that w has all three symbols, implies

Wiiis..in = 1 as a word. Also note that all the words ; are described by first NV symbols of

192...0N
w. Since first N symbols of w and 7 are equal, X = 1in @7. Therefore we proved 1. The same
argument works for 2 and 3.

4. Since w, n only have 7, j after N-th position, the only length one element which represents

identity is e;;. Therefore the proof in 1 with a slight modification works. The argument of 4 works

for 5 and 6. [
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The modified overgroups behave nicely under limits.

Corollary 4.3. Let {w(”)} be a sequence in () that converges to w € §). Then ég(n) converges to
waj Additionally, if there is an N such that no k appears after the N-th position of each of {w(") },

then gf «, converges to G.," .

Proof. Since w™ — w, for sufficiently large n, w,w™ satisfy the hypothesis of Proposition 4.2.
By Proposition 4.2 3, balls of arbitrary radius & of Cayley graphs of (jj(n) and &g, are identical for
sufficiently large n. Therefore, (jg(m — ngj.

Now suppose there is an N such that no k appears after the N-th position of each of {w(”)}.
G G, -

Then by a similar argument, using Proposition 4.2 6, we get G,

4.2.3 Modified Overgroups for Some w € (2

Now we will look at the modified overgroups and see what their structures are. In fact we will
prove Theorem 4.3 using propositions that are provided in this section. First we will introduce
some words in [' and substitution rules on words in [' which will be used throughout this section.

Let w € €2 be a sequence with at most two symbols. Let y € S\ {a} be such that for each n € N,

the decomposition of y into depth n using (2.15), has nucleus
(1,1,...,1,y). (4.2)
Since w has at most two symbols, such y exists. For n € Z, define v, (y) = v, by

ylad)" n =0
v, — . 4.3)

y(aa)%*la n<0

For any W € T, (yW)2 = (y») = 1 since y is an involution. So, v2 = 1 forall n € Z.
Note that v® = v_,_;, since if n > 0, v_,_; = yl@@"* = (y(aa)n)a — % and if n < 0, v =

<y(aa)_n_1“> — @ — 4| A direct calculation shows that v’ = v, ;.
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Let n > 0. Then vy, = y @@ = 4@ " Thus, {(vy,) = (1@0" 3@") = (1 v,). Now let

727171(1

n < 0. Then vy, = 3@ = @ @718 and therefore 1(vy,) = (1) " 71a yad) " lay

(1,v,). Whence for even n we have v, = (1,v,/) via @Z A similar calculation shows that

Un = (U_(n+1)/2, 1) When n is odd. We summarize the above discussion as the next proposition.
Proposition 4.3.
1. v> =1fornelZ.

=VU_p_1forneZ.

3 e

3. vy = (1,vy2) for even n.

4. vy = (V_(nt1)2, 1) for odd n.

5. ad acts on v, by conjugation and v = v, 1.

Note that by applying QZ to v,, we obtain v,, in one coordinate, for some m € Z such that

Im| < |n|, if n # 0,1. This fact will be used in next proposition, which has more properties of

{vn}.
Proposition 4.4. Let n, m be distinct integers. Then,

1. v, achieves a nucleus at some level. Furthermore, each nucleus of v, has all coordinates
equal to 1, except for one coordinate, which is equal to y. Therefore, v, # 1 and v,v,, =

U U i GE.
2. For each level, nuclei of v,, and v,,, if exist, are different. So, v,, # vy, in G.

Proof. 1. We use induction on |n|. Note that vy = y = (1,y) = (1,1,1,y),v_1 = (vo,1) =
(y,1) = (1,y,1,1) and v; = (v_1,1) = (y,1,1,1), which proves the base cases. Let |n| > 1.
Suppose the statement in 1 is true for |i| < [n|. By Proposition 4.3 3 and 4, v, = (1,v,),) or

Un = (V_(n41)/2,1). Since |n| > 1, we have |n/2[,| — (n + 1)/2| < |n|. Thus by the induction
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hypothesis, we obtain the desired result. Since y, 1 commute, we get v,,v,, = U, 0, In (jj}. Having
a non trivial nucleus guarantees v,, # 1 in 53.

2. First note that, vy, v1, and v_; have distinct nuclei in each level. We will use induction on
In| + |m/|. Let |n| + |m| > 1. Suppose the statement is true for 7, j if |i| + [j| < |n| + |m|. If n,m
are of different parity, it is clear from Proposition 4.3 3 and 4, that nuclei of v, v, are different.
If they are of same parity, apply Proposition 4.3 3 and 4. Then we obtain v;, v; from which the
induction hypothesis can be applied. Thus by induction we get the desired result. Having different

nuclei of same level guarantees v,, # v, in GJ. O

Given y,y’ € S\ {a} of the form (4.2), following the proof of Proposition 4.4 1 together with

the fact that y, ' commutes with each other gives the following corollary.

Corollary 4.4. Let y,y' € S\{a} of the form (4.2). Then for each n,m € Z we have the equality

Un(Y)0m(Y') = v (Y )on(y).

Now we will introduce two substitution rules &g, &;:

( (
a— a a — aaa
S =1X3— ada Si=1%0—73 4.4)
Yy — aya y—y
\ \

Note that & ((a@)™) = (aq)**, & ((ad)"a) = (aq)**a, & ((aa)™) = a(at)*a and & ((aa)"a) =
a(ad)? . Then & (v,) = v, = (1,v,) and & (v,,) = v_9,1 = (v, 1). Now we will recursively

construct words V (y); iy...in = Viyig..ins fOU 41,49, ... i, € {0, 1}, by,

V@Z’UO

Visigein = &ir (Vig..iin)- (4.5)

It is easy to see that V; = v, for some r € Z and has a nucleus of depth n with y

122...%n

in 7175 . . . 7,-th coordinate and empty word in other coordinates (see Figure 4.2). Now we will
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Vi11 = vo Voi1r =v-1 Vior =v_2 Voo1 = v1 Viio =v_4 Voo = v3 Vioo = v2 Vooo = v—_3

Vo =vo

Figure 4.2: V; ;, i, values of first 3 levels

introduce some propositions, which describe the group structure of modified groups for w = 0%

and w € {0, 1}".
Proposition 4.5. C?g%o is virtually Lo of index 2.

Proof. Let G = QNS‘OO and let G := Goe. We will drop the subscript 0° and superscript «, of
each generator, for the convenience. Note that in G we have b = ¢ = d=Gdandd =b=7¢=1.
Therefore G is isomorphic to the infinite dihedral group D, generated by a and b. Also note that
d, 3, ¢ have nuclei of the form (4.2). Let ¢ be the surjection from 5 to GG described in Proposition

4.11.

Lemma 4.1. Ker(¢) = <<d,g,5>> = <vn(d),vn(g),vn(5’) | HEZ> ~ @, Z3. Here {())

denotes the normal closure.

Proof. The inclusion <vn(d), va(B), vn(2) | n € Z> < <<d7 b, E>> < Ker(¢) is trivial since d =
b = ¢ = 1in G. To show the other inclusion, let g € Ker(¢) and let W be a reduced word
representing ¢ in G. Since g € K er(¢), W = 1in G. But a word is the identity in G if and
only if its nucleus of some level contains only 1, d, 5, ¢. Say, W has a nucleus of level n with
only 1,d, 3, ¢. We can construct a word W’ using V' (d);,4,..,,, V(g)immin and V' (€);,4,..4, so that

the level n nucleus of W’ is the same as the level n nucleus of W. Thus ¢ = W = W’ in QN
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~.

and since W' represents a group element in <vn(d), Un(0),v,(C) | n € Z>, we obtain Ker(¢) <
<vn(d), va(B), vn(2) | n € Z>. Therefore we get the equality of three groups.
Mmmmdz%mmM@:%®%®ﬁmmmlmw<%wwm»%®pmz>:
<vn(3)7 v, (C) | n e Z>. Since b, & commute and are distinct, {vn (), va(2) | ne Z} consists of
mutually commutative distinct elements, by Corollary 4.4.
Now we will show that there are no linear dependencies in {vn(g), v, (C) | n e Z}. To the
contrary, suppose there is a relation involving v, (g),z =1,2,...,rand v,,,(0),j = 1,2,...,s.

By commutativity, using the fact that all these elements are involutions, we can assume that this

relation has a form
S

W= [va.®) ] [vm, @.
i=1 j=1
Let N be the level where all of the involved elements are decomposed to their nuclei. Then by
Proposition 4.41 the nucleus of each of v, (3) will have exactly one position holding b, and the

~.

nuclei of all other v, ,(b) for i’ # i must have empty word at that position (otherwise, since there
is only one position equal to b in the nucleus, we would obtain that Un, () = VUn, (b), contradict-
ing to Proposition 4.4 1). Similar argument can be made for elements v,,,(¢). Therefore, the
decomposition of 1 at level N will contain a nontrivial coordinate holding one of 5, % orbe=d
for each v, (b) and Up,; (€) in W and, hence, W cannot represent the trivial element in G. This

contradicts the assumption of having linear dependency. Thus <vn(d), Un(0),0,(3) | m € Z> =
<vn (), va(2) | n e Z> ~ @, Z3. This completes the proof of lemma. O

Note that the generator of (ad) acts on Ker(¢) by shifting its generators. Also note that
Ker(¢) and {aa) intersects trivially, since aa is of infinite order and all elements of Ker(¢) are
involutions. So, Ker(¢) x (ad)y is isomorphic to Ly = Z31 Z.

Conjugating the generators of Ker(¢) x {ad) by generators of G, we see that Ker(¢) x (ad)
is normal in G. The quotient G/Ker(¢) =~ D, maps onto the quotient G/ (Ker(¢) x {ad)).
The kernel of the homomorphism from G/Ker(¢) to G/ (Ker(¢) x {ad)) is generated by the

image of ad in G/Ker(¢). So Ker(¢) x {ad) has index two in G, and therefore G is virtually
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Ker(¢) x {aa) = L, with index two. O
Proposition 4.6. g“foéj is virtually L with index two.

Proof. For simplicity, we will prove this for i = 0,j = 1 and w = 0*. We will show Gl ~ ge.
Here G, is the group defined in Section 6 of [Gri84b], which is denoted by C7 in [Gri84b]. So, G =
I[V/N' where I is the subgroup of I' generated by {a, b, ¢, d}, and N’ is the normal subgroup of I
consisting all the words that yield positive result when the algorithm « is applied. Let 7': IV — G2
be the canonical epimorphism.

Note that in (jﬁ”‘,E: landsoa =b,¢ = d,élvz c. Now define f: I' — I" by,

rs — s forse{a,b,cd}
bo— 1
f:ya — b
¢ — d
d — ¢

\

Then f is a surjective homomorphism. Since zZ agrees on ordered sets gf” and {a,b,c,d,b,1,d,c},
W € ker(nP) if and only if f(W) € ker(n’). Thus f: I' — I" induces a well defined monomor-
phism f : ngj — G&. f being a surjection implies that f is a surjection, and therefore f is an
isomorphism. This completes the proof, since G¢ is virtually £ with index two by Theorem 2 of

[BG14]. U

Proposition 4.7. Let w € {0, l}N. Then 53 contains L as a subgroup and is an extension of Go by

D, Zs.
Proof. Letw € {0,1}". Let G := §* = <a,b, e, d,a,E,a@ and let G = G.,. We will drop
the subscript w and superscript «, of generators for the convenience. Note that in G' we have

b =dand b = 1 and therefore b has nuclei of the form (4.2). Let ¢ be the surjection from QN

to (G described in Proposition 4.1 1. Then by a similar argument as in the proof of Lemma 4.1,
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Ker(¢) = <<E>> = <vn(5) |ne Z> ~ @, Z,. Hence G is an extension of G by @D, Zs.
Also since Ker(¢) n {(aa) = (1) and aa acts on Ker(¢) by shifting (by Proposition 4.3 5),
Ker(¢) x {ad) ~ L is a subgroups of G. O

Proof of Theorem 4.3. Note that for any w € 2, QNLu 18 commensurable to (gNon>2N. This, together

with Proposition 4.5, 4.6 and 4.7, proves the result. O

4.3 Closure and Cluster Points of §w in Mg

Recall the notation introduced in (4.1).

UJEQZ'
X@:{(&gﬁa)} ;fori=1,2
weQi

Xzﬂ = {(g~g;§5) | Be {/3017512,520} }

wEQQ

Y= u&’u Ay

Then X is the disjoint union of Xj, X, Xs. In order to prove the Theorem 4.1 we use the following

propositions.

Proposition 4.8. Generalized overgroups and modified overgroups corresponding to different or-

acles w, are different in Mag.

Proof. Recall that two points (G, S1), (G2, S2) € Mg are equal if and only if the canonical map
S1 — 95 that preserves the order, extends to an isomorphism (G; — (5. Thus by restricting S7, So
to ordered sets of r elements S7, S5, respectively, give rise to equal points ({S]),S]), ((S5),S%) €
M,.

Note that the classical Grigorchuk’s groups and their modifications can be obtained by re-

stricting corresponding generating sets of generalized overgroups and modified overgroups. By
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[Gri84b], different oracles w give rise to different classical Grigorchuk’s groups and their modifi-

cations in M. Therefore by above argument, we get the result. [

Form the above proposition we can see that the sets Xy, (X, UX®), (XU XU XY are disjoint.

This, together with Corollary 4.1, yields,
Corollary 4.5. X, Xy, Xy, X2, (X U X)) are disjoint.
Now let us prove A7, Xf are disjoint.

Proposition 4.9. X* XQ’B are disjoint. In fact, for w € $2y with infinitely many i’s, the groups

~ ~

(O ggij and ggzk are different.

Let w contain finitely many ‘k’s. We will construct a word W (i7) such that its nucleus consists
only of ‘1’s and ‘e;;’s, with not all ‘1’s. For ease of writing let us assume w contains finitely many
‘2’s. We will construct the word W (01). Recall that ey = b Letw = Wiws . . . wy2'n, where

wy, #2andn e {O,l}N. Now forr = 0,1,...,n, define

b w, #2
Xv" = )
b jWp = 2
XY
Y, = Xam
Z, = (bY,)?,
W (01) = (Z,)?. (4.6)

The decomposed diagram of W (01) of depth n + ¢ is given in the Figure 4.3 and thus its
level n + t nucleus consists of only 1,5. Using similar constructions, we can construct words

W(02), W(12).

Proof of Proposition 4.9. Suppose w = wyws . . . wn2'n, where w, # 2 and n € {0,1}". Let W =
W (01) defined as above. Then W represents the identity element in QNEOI but not the identity in Qj‘j‘

and G%2_ Similarly using the word W (02), we can show G # G, O
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W = (21)?'

(Z2)?"

Figure 4.3: Decomposition of 1 (01) in to the depth n + ¢

Proof of Theorem 4.1. Directly from Proposition 4.8, 4.9 and Corollary 4.5. [
Now we will prove Theorem 4.2. We will use few lemmas in order to do this.

Lemma 4.2. Let w,w™ € Q forall n € N and w™ — w. Suppose G = lim éw(m exists and

G # §w<n>,f0r alln. Then G = Q~w, C:fj or G Moreover G € Y U X v /'\?2/8 and so G ¢ Xs.

Proof. First let w € Q. Let r € N and let N > log,(2r). Since w™ — w and w € €, for
sufficiently large n, we may assume w™ has all three symbols after the N-th position and w™, w
agrees till the /NV-th position. Using Proposition 4.2 1, and letting » — o0, we get G = Go.

Now let w € €);. Let N, be the smallest index such that only two symbols appear after Ny-th
position. Suppose for each N > N, there are infinitely many ‘n’s such that w(™ contains all
three symbols after /V-th position. Then by Proposition 4.2 2, there is a subsequence {w(”t) } o1 of

{w(")}, such that g~w<nt> — Q}j as t — 0. Since the subsequential limits and limit of the sequence

agree, we get G = 53. Now suppose there is N > N; such that for all but finitely many n,
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w(™ contains at most two symbols after the N-th position. Since w™ — w, we may assume w™
contains exactly the same two symbols as of w, for sufficiently large n. Then by Proposition 4.2 4,
we obtain G = C:w.

Finally let w € €2;. Let N, be the smallest index such that only one symbol, say ¢, appear
after the NNy-th position. Suppose for each N > N, there are infinitely many ‘n’s such that
w™ contains all three symbols after the N-th position. Then by Proposition 4.2 2, there is a
subsequence of {w(")}, which converges to afj. Thus, G = 63. Now suppose for each N > N,
there are infinitely many ‘n’s such that w(™ contains exactly two symbols, say i, j, after the N-th
position. Then by Proposition 4.2 5, there is a subsequence of {w(”)}, which converges to Gl
Thus, G = G.”. If neither of above is true, then there is N > Ny such that for all but finitely many
n, w™ contains exactly one symbol. Since w™ — w, that symbol has to be i. Thus for sufficiently
large n, w™ = w. This impossible since G # gw(n).

From above, we can conclude that G e Y u X U XQ’B and G ¢ As. ]

Proof of Theorem 4.2 1. To the contrary, suppose there is an 1 € {25 such that @7 e X, is a limit
point. Then there exists a sequence {G )} converging to QNU. Since (2 is compact, by passing
to a subsequence, if necessary, we may assume w™ — ), for some w € Q. By Lemma 4.2,

Gn = lim §w<n) ¢ X5, which is a contradiction. [

Proof of Theorem 4.2 3 (a). Let G € Yy = (XyuX> U XS);. By Proposition 4.1 1, G,, = G2. Then
there exists {w™} < Q such that QNS‘(,L) — G. By compactness of © we may assume w™ — w for

some w € ). Then G = 53 by Corollary 4.3. This together with Corollary 4.3 implies that
W™ S e (g”g(n) = 53) .
Therefore Y =~ Q and X = Qy, A =, Ay = Qy. Thus, Y is homeomorphic to a Cantor set

and Y = (Ap); = (X); = (AX9);. -

Proof of Theorem 4.2 3 (b). First we will show X; < YV U X} U XQ’B . Let GG be a limit point of

X. Thus there exists a sequence {G,_ ) } converging to GG. Since {2 is compact, we may assume
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w™ — w, for some w € €. Then by Lemma4.2, Ge Yu X, U Xf. Therefore Xy < Y U X} U Xzﬁ.

Now we will show YU X; UX) < (X));. Letw € Q and choose w™ = wiw, . . . w, (012)(i§)%,
for each n. Then using Proposition 4.2 2, we get g:,(n) — Q~fj. SoY < (&) Now letw € Oy Uy
with finitely many k’s. Choose w(™ = wyws . ..w,(ij)®, for each n. Using Proposition 4.2 5, we
get Q~w<n) ~ GP.So X v Xf < (X1);. Therefore Y U X} U Xf < (X))

Using a similar argument by choosing w™ = wiws . . . w,(012)(7)* and again choosing w(™ =
Wiy ... wy(i7)(1)*, we can show Y U X U XY < (Xy)s.

Since X and & are subsets of X', we get X = (X)); = (As)y =Y u Xy U XJ. Corollary 4.3

together with Proposition 4.1 implies that (X ); = (X} ); and so we get the desired result. O
Now we will complete the proof of Theorem 4.2.

Proof of Theorem 4.2 2. We already proved ) is homeomorphic to a Cantor set. Now let us prove
that X} is also homeomorphic to a Cantor set. Note that the set A} is a perfect set. (That is a closed
set with all its point being limit points). The space Msy is a totally disconnected compact metric
space. Let us recall that any non empty, totally disconnected, compact, perfect metric space is

homeomorphic to the Cantor set. Therefore, &} is homeomorphic to the Cantor set. O]
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5. SCHUR COMPLEMENT METHOD AND ASSOCIATED RATIONAL MAPS*

This chapter consists of some results from the article [GS21] and some results obtained under

the guidance of Nguyen-Bac Dang, Rostislav Grigorchuk, and Mikhail Lyubich.
5.1 Introduction

The study of spectra of graphs and groups has applications in graph theory, quantum chemistry,
signal processing, ect. The spectrum of a group is defined to be the spectrum of the Markov
operator operator associated with the Cayley graph of the group. The Markov operator M of a

d-regular non-oriented graph (V, E)) acts on the Hilbert space ¢*(V') and is defined by

(M) =5 3 1),

y~z

for f € (%(V'), where x ~ y is the adjacency relation. In the case of the Cayley graph of the group

G, the Markov operator is given by,

for f € (*(G) and g € G.

The operator L. = [ — M where [ is the identity operator is called the discrete Laplace operator.
Operators M and L can be defined also for non-regular graphs as it is done for instance in [MW89,
Chu97]. The Markov operator M is a self-adjoint operator with the norm ||[M| < 1 and its
spectrum is contained in [—1, 1]. The name “Markov” comes from the fact that M is the Markov
operator associated with the random walk on the graph (V) E') in which a transition u — v occurs
with probability 1/d, if u and v are adjacent vertices.

A more general concept called weighted Markov operator is used when the graph is weighted,

*Part of this chapter is reprinted with permission from “Integrable and Chaotic Systems Associated With Fractal
Groups” by Rostislav Grigorchuk and Supun T. Samarakoon, Feb 2021. Entropy, 23(2):237, Copyright [2021] by
MDPI (under open access policy).
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in the sense that there is a weight function on the set of edges. Given a symmetric probability
distribution on the generators of a group, the weighted Markov operator is associated with the
random walk on the (left) Cayley graph. This give rise to the concept called joint spectrum of
pencil of operators of contracting self-similar groups (see [BGOOb, Yan09] for more on this).

The Schur complement method, discussed in Section 5.3, is a useful tool in linear algebra,
networks, differential operators, applied mathematics [Cot74]. In particular, it can be used to
compute the spectra and joint spectra of some self-similar groups, as seen in [GNO7]. Schur
complements can be used to construct multi-dimensional maps called Schur transformations (also
known as Schur renormalization transformations), which happen to be rational maps, in some
situations. The dynamical properties of these maps are closely related to the spectral problem of
corresponding groups [DGL21].

In Section 5.4, we calculate Schur complements, Schur transformations, and associated 2-
dimensional rational maps for the first Grigorchuk group G, the overgroup G, the generalized
Grigorchuk groups G, and generalized overgroups ’g”w. The 2-dimensional rational maps for
and QN are given in (5.18) and (5.26), respectively.

For generalized groups G, and C:w, we obtain 2-dimensional rational maps Fy, Fi, 5 given
in (5.32), associated with G,,, and ﬁo, F 1 ]52 given in (5.36), associated with QNM. Note that these
maps depend on three parameters in the case of G,, and on seven parameters in the case of G.. We
are particularly interested in studying random dynamics of Fy, F7, F5 and ﬁ’o, ﬁ’l, b, Dynamical
pictures representing a Julia set basin of attraction for random iteration of these maps are shown in
Figure 5.1.

There is a 2-parametric family of maps {F, 5 | o, 8 € C and o # 0}, where F, 5: C* — C? is

given by,

az? (v + B)z? ) | 5.1)

Fa ) = y VT

o0 = (et Gt e
The condition o« # 0, enables I, g to be a dominant map (i.e., the image of the map is not con-
tained in an algebraic curve). The 2-parametric maps conjugates to the maps in (5.18), (5.26) (see

Proposition 5.2), and semi-conjugate to a lower-dimensional map as seen in the next theorem:
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(b)

(d)

Figure 5.1: Dynamical pictures of F,,, _, o...o F,, for (a) w = (012)* and (y, z,u) = (1,2, 3),

(b) w = (01)* and (y, z,u) = (1,2, 3), (¢) arandom w and (y, z,u) = (1,2, 3), and (d) a random
wand (y, z,u) = (1,3, 3).

Theorem 5.1. For any o # 0 and (3, the 2-parametric map I, g, given by (5.1), is semi-conjugate
tothemapt: z — 22% —1 (i.e., there is a rational map fs: C* --» C satisfying fso Fo 5 = to fs).

The map t is called the Chebyshev map or the Ulam - von Neumann map.

A map f on a rational variety (see Appendix B.2) X is said to be algebraically stable if no
algebraic curve is contracted via iterates of f to an indeterminacy point of f. That is, for each
algebraic curve C' on X and for each n € N, if f*(C) := fo...o f(C) is a point, then that point
is not an indeterminacy point of f. This concept can be extended to a sequence of maps { f;.}. We
say {fx} is algebraically stable if no algebraic curve is contracted to an indeterminacy point via
the ordered iterates of { fi} (i.e., f, o ... o f1(C) is not an indeterminacy point, for n € N and for
any algebraic curve C'). We have an algebraic stability condition on any sequence of 2-parametric

maps.

60



Theorem 5.2. There is a rational variety X, obtained by blowing up two points of P2, such that for
each sequence { f,,} of two-parametric maps, where f,, = F,,, 3, is of the form (5.1), the sequence

{fn} of lifted maps to X, is algebraically stable.

As a direct corollary of Theorem 5.2, we obtain the following algebraic stability condition for

iterated rational maps on generalized groups.

Theorem 5.3. Ler w € Q = {0, 1, Z}N be arbitrary and let X be the rational variety as in Theo-

rem 5.2. Then,

1. The sequence {ﬁwn} of lifted maps, which corresponds to the group G, is algebraically

stable, if y + z,y + u, 2 + u are non-zero,

~

2. The sequence {ﬁwn} of lifted maps, which corresponds to the group G, is algebraically

stable, ify+ 2z +q+t,y+u+q+ s,z +u+ q+ r are non-zero,

We will prove Theorem 5.2 and Theorem 5.3 in Section 5.5.
5.2 Self-similar Representations and Matrix Recursions

In order to define a self-similar representation, we will need a few preliminary definitions.

Definition 5.1. Let H be an infinite dimensional Hilbert space. A map
v:H—->H'-=H®..®H

is called a d-fold similarity (or simply, a d-similarity) if it is an isomorphism of Hilbert spaces.

Definition 5.2. The Cuntz algebra Oy is the universal C*-algebra given by the presentation
Ogq ={ay,...,aq | a1al + ... +aga; = 1,aja; =1,i=1,...,d). (5.2)

Note that multiplying the relation ) ; aja; = 1by a7 on the left and by a; on the right, we get,

2jziaai)*(aja;) = 0. This is a sum of positive elements and so aja; = 0 if j # i. Therefore,
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the Cuntz algebra O, is equipped with the set of relations,

{Zaja;f = l.afa;=1,a5a; =0, for1 <i,j < dandi +# j} , (5.3)
J
which we call the Cuntz relations.

There is a one to one correspondence between the collection of the =-representations of the
Cuntz algebra O, to B(H ) and the collection of the d-similarities on H, where B(H ) denotes the

space of bounded linear operators on /, as seen by the next theorem.

Theorem 5.4 (Proposition 3.1 of [GNO7]). Let H be an infinite dimensional separable Hilbert
space. Then, there is a bijective correspondence between x-representations p: Oy — B(H) and
d-similarities : H — H?.

Given a #-representation p: Oy — B(H), the corresponding d-similarity v,: H — H% is
given by, Y,(h) = (p(af)(h),...,p(a})(h)), where ay, ..., aq are generators of O,.

Conversely, given a d-similarity 1: H — HY, the corresponding =-representation py: Oy —

B(H) can be described by,

py(ai)(h) = ¢~1(0,...,0,h,0,...,0), (5.4)

for h € H, where h in the right hand side is at the i-th coordinate of H.

The main example that we consider is the Hilbert space L?(07g, 1) of square integrable func-
tions on the boundary of 7, with respect to uniform Bernoulli measure . Then, there is a natural

d-similarity indexed by the d symbols of the alphabet X, given by

Vi L*(0Ta, 1) — @ L*(0Ta, ),

reX

L e,

for f € L*(0Tg, 1), £ € 0Ty, and z € X. This arise from the self-similarity property of 07;.
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By Theorem 5.4, we obtain the corresponding =*-representation to the above d-similarity,

p: Og — B(L*(0Tg, 1)) given by,

VAf(o€) if€ = zot
(p(az)f)(&) = : (5.5)
0 if & # xo&

where, o is the shift operator on 07;.

Now, we are ready to define self-similar representations.
Definition 5.3. Let G be a self-similar group acting on the d-regular rooted tree T;. A unitary

representation 7: G — B(L*(0Tg, 1)) is said to be self-similar if

m(g) o plaz) = plage) o 7(gl), (5.6)

for g e G and v € X. Here, p is the representation given in (5.5).

Let k: G — B(L*(0Tq4, 1)) be the Koopman representation given by

(k(9)1)(€) = f(g7'). (5.7)

Then « is a unitary representation. Note that,

(k(g) © plaz) f)(€) = (p(az)f)(g~"€)

Vdf(og™'€) ;ifg7'¢ = zog7'¢

0 ; otherwise

Vdf(og &) ;if& = g(x)gl.og7¢

0 ; otherwise
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-

) Vdf(glz'n) ;if € = g(x)n

0 ; otherwise
\
:

Vd(r(gla) f)(m) ;if € = gla)n

0 ; otherwise

\

= (p(agz) o k(glz) f)(E),

by using (2.3) and Proposition 2.1, and therefore Koopman representation is self-similar.

Remark 5.1. The right hand side of (5.7) is usually written with a normalizing factor 4 /dg—z’i,
square root of the Radon-Nikodym derivative of the pullback measure g, x. The pullback measure
is given by g.u(A) = u(g~tA) for A = 0T;. But in our case, this normalizing factor is 1 since the

action of Aut(7;) on 7y is uniform measure preserving.
Now let us define the matrix recursions.

Definition 5.4. Let A be an algebra. A matrix recursion on A is a homomorphism
p: A— My(A),

where My(A) is the algebra of d x d matrices over A.

Given a d-similarity ¢: H — HY, there is a natural matrix recursion ¢ on the algebra of
bounded operators B(H). Let M € B(H). Then, 1) o M o ¢~' € B(H?), and so it is associated
with the matrix, denoted by (M ), whose columns are obtained by the transposes of 1) o M o ¢!

images under basic elements of H¢. Note that,

= (¢ o M)(py(a;)h) by (5.4)
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= (pyp(a}) o M o py(a;)h, ..., pyla;) o M o py(aj)h), ;by Theorem 5.4

where CJT is the transpose of the j-th column of the matrix ¢ (M ). Here, the & in the top line appears

in the j-th position. Therefore, the matrix recursion of M is,

p(M) = (py(aj) o Mo py(ay)), ; - (5.8)

We will write M instead of ¢ (M) if there are no ambiguities.

Any self-similar representation of a self-similar group acting on d-regular tree, naturally leads
to a matrix recursion on the group algebra, using the idea discussed above. Let G be a self-similar
group acting on 7 and let m: G — B(L?(07g, 1)) be a self-similar representation. Consider the

natural d-similarity ¢ : L*(07g, 1) — @, L*(0Ta, ). Let g € G. Then,

*

play) o m(g) o plas) = play) o plage)) o m(gle)

m(gl.) ifg(z) =y

0 otherwise

for x,y € X, using (5.6) and (5.3). Here, p is the representation of Cuntz algebra corresponding to

the d-similarity 1. Therefore, using (5.8) we obtain the matrix recursion ¢(g) of g given by,

m(gl.) ifg(z) =y
So(g)y,x = s (59)

0 otherwise

where ¢(g),., is the entry in y-th row and z-th column of the matrix ¢(g).
In the case of Koopman representation (i.e., 7 = k), by identifying x(g) with g, we define a

matrix recursion using (5.9), given by

90(9) = (gy,x)y,xex, where
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gl. ifg(z) =1y
Gy = . (5.10)

0 otherwise

We define a matrix recursion ¢ on the group algebra C[G], by extending (5.10) to C|G] linearly.
We may write ¢ in place of (g) if there will be no ambiguity.
Now consider the case of d = 2. Then, by (5.10), we obtain the matrix recursions on elements

of Aut(7z), introduced in Section 2.5 as follows:

10 0 1 a0
1= ) a = ) a = )
0 1 1 0 0 a
a 0 a 0 1 0
b = ) c = ) d = )
0 c 0 d 0 b
~ 10 1 0 ~ a 0
b - 9 E: ~ 9 d = ~ 9
0 ¢ 0 d 0 b
BY 0 cY 0 D¢ 0
bw = ° , Cw = ’ ; dw = ’ )
0 by 0 coo 0 dyo
- B¢ 0 Cy 0 N Dg 0
= " | A= " L de=| " | G
O baw O 80'w 0 daw

Here, w € ), and By, Cy, Dy, Eff, (75", f)g; are defined in (2.11).
5.3 Schur Complements

Let H be a Hilbert space that can be decomposed into a direct sum of two non-trivial Hilbert

spaces Hy and Hs. Thatis, H = H; @ H,, where H; # {0} fori = 1,2. Let M € B(H) be a
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bounded operator. Then M has the metrix representation
A B
M = (5.12)
C

that arise from the above decomposition, where
AIH1—>H1, BZH2—>H1, CZH1—>H2, DIH2—>H2,

are bounded operators.
First and second Schur complements, denoted by S; and S, are partially defined maps given

by,

Syt B(H) — B(H,) Syt B(H) — B(H,)

M — A—BD™'C, M~ D—CA'B,

for any M € B(H). Here, A, B, C, and D are operators given by the matrix representation (5.12)
of M. Note that Sy (M) is defined when D is invertible, and So(M ) is defined when A is invertible.
Invertibility of M is closely related with the invertibility of Schur complements, as can be seen by

the next proposition.

Proposition 5.1 ([GNO7]). Let M be a bounded operator with matrix representation given by

(5.12). If D is invertible, then M is invertible if and only if S1(M) is invertible and

. S ~S;'BD™!

Y

~-D-'CcS;t DCS;'BD'+ D!
where S1 = S1(M).

A similar statement holds for Sy(M) when A is invertible. The above expression for M~ is
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called the Frobenius formula. In the case dim H < oo, the determinant | M | of matrix M satisfies
| M| = [Sy(M)||D],

which is known as the Schur formula.
There is nothing special in decomposition of H into a direct sum of two subspaces. If

H=H &®...® H;and
M11 Ml,d

Mdl . Mdd

for M;;: H; — H;and H = H, ® Hi", where H{- = Hy @ ... ® H,, then we are back in the case
d = 2. By change of the order of the summands (putting H; on the first place) one can define the
i-th Schur complement S;(M), foreachi = 1,...,d.

If dim H = co and ¢: H — H%is a d-similarity, then S;(M) = (py(af) M 1py(a;)) =, where
py 1s the representation of Cuntz algebra that corresponds to the d-similarity 1 (see Proposition 5.4
in [GNO7]). Therefore, for each d > 2, one can define 873, the semigroup generated by the Schur
complements S;, 1 < @ < d with the operation of composition. We will call 83, the Schur semi-

group. For a general element of this semigroup, we get the following expression,
. -1
Silo...oSi (M) = (p¢(azka“) M lpw(ail...aik))

(see Corollary 5.5 in [GNO7]).

The Schur semigroup 87; consists of partially defined transformations on the infinite dimen-
sional space B(H). Let L. ¢ B(H) be a finite dimensional subspace which is invariant with
respect to 8%. The restriction of each Schur complement gives rise to a CH™(2) — Cdm(L) map
called Schur map or Schur transformation. The semigroup generated by Schur transformations
is denoted by 87. We are particularly interested in the case where the Schur transformations are

rational maps. We will examine such examples in Section 5.4.
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5.4 Computation of Schur Complements, Schur Transformations, and Associated Rational

Maps

In this section, we will compute Schur complements, Schur transformations and rational maps
associated with the Grigorchuk group G, the overgroup g, generalized Grigorchuk groups G,
and generalized overgroups é’w. For G and QN , we will consider the finite dimensional subspaces
generated by the natural generators of the group together with the identity. We will see that these
subspaces are invariant with respect to the Schur semigroups. In contrast, for the groups G, and
gl,, these corresponding subspaces are not invariant. But there is a natural way to define Schur

transformations, which can be seen in Section 5.4.3.
5.4.1 For the Grigorchuk Group G

Recall that the Grigorchuk group G is generated by a, b, ¢, d. Let M = xa + yb+ zc + ud + vl
be an element of the group algebra C[G]. Using the matrix recursions (5.11), we identify,

V- (y+2)a+ (u+v)l x | (5.13)

x ub + yc + zd + vl

First, we will calculate the first Schur complement S; (M ), which is defined when D = v1 +
ub + yc + zd is invertible. Since the group generated by {1,b, ¢, d} is isomorphic to Z3 (via the
identification 1, b, ¢, d with (0,0), (1,0), (0, 1), (1, 1), respectively), by (A.6) and (A.2), we obtain

that D is invertible if and only if

(v+tu+y+2)v—ut+y—z)v+tu—y—2)(v—u—y+z) #0, (5.14)

and if the condition in (5.14) is satisfied, then by (A.7),

1 1 1 1
=—( + + + )1
4 v+u+y+z v—u+y—2 vH+u—y—2 v—u—yYy-+=z

1 1 N 1 1 b
1 (v+u+y+z) v—u+y—z vHu—y—z v—u—y-+z
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1 1 1 1 1
+ = + - - c
A\(v+tu+y+z2) v—ut+y—z vHu—y—z V—u—Y+=2

1 1 1 1 1
+2 = - + d.
A\(v+u+y+z) v—ut+y—z vVvHu—y—z V—uU—Y+2

Therefore, the first Schur complement

Si(M) =A— BD™'C

=(y+2)a+ (v+u)l—2*D!

=(y + 2)a
+(v+u—x2 2uyz — v(—v? + u? + y? + 2?) )1
w+u+y+2)v—u+y—2)v+u—y—2)(v—u—y+2)
2 2uyz — u(v? —u? + y? + 2%) b
wt+u+y+z)v—ut+ty—2)v+u—y—z2)v—u—y+z)’
2 2vuz — y(v? + u? — y? + 2?) .

wt+u+y+z2)v—ut+ty—2)v+u—y—z2)v—u—y+z)’

5 2vuy — z(v: + u? 4+ y? — 2?) p
_l‘ .

(v+ut+y+z2)v—u+y—2)v+u—y—z)(v—u—y+2)

This leads to the Schur transformation SY: C> — C° given by

y+z

* o 20yz — u(v? —u? + y? + 2%)
y (v+ut+y+z2)v—u+y—2)v+u—y—z)(v—u—y+2)

o 2vuz — y(v? + u? — y? + 2%)
S wtu+ty+2)v—ut+ty—2)v+u—y—2)(v—u—y+2z2)
u ) 2uuy — z(v? + u? + y* — 2?)

—x

w+ut+y+2)v—u+y—2)v+u—y—2z)(v—u—y+2)
v ) 2uyz — v(—v? + u? + y? + 2?)
v+u—x

(v+ut+y+z2)v—u+y—2)v+u—y—z)(v—u—y+2)
(5.15)

Now, we will calculate the second Schur complement Sy(M/) which is defined when A =
(y + z)a + (u + v)1 is invertible. Since the group generated by {1, a} is isomorphic to Z, (via the

identification 1, a with 0, 1, respectively), by (A.4) and (A.2), we obtain that A is invertible if and
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only if
w+u+y+2)(v+u—y—=z) #0, (5.16)

and if the condition in (5.16) is satisfied, then A~! is given by,

4 1 1 1 1 1 1
Al =2 + 1+ = - a
2\v+u+y+z v+u—y—=z 2\v+u+y+z v+u—y—=z
B v+u 1 y+z a
S (wtuty+r2)(vtu—y—2) (vt+u+y+z)v+u—y—z)

Therefore, the second Schur complement

So(M) =v1 + ub + yc + zd — 2*A™*

2
= vy +2) a+ub+yc+ zd
w+tu+y+2)(v+u—y—2)

! (U_ (U+U+y$:(zv)(zlfu—y—2)>l'

This leads to the Schur transformation S5 : C° — C® given by

2 (y + 2)
z wt+u+ty+2)(v+u—y—2)
Y u
;|- y . (5.17)
u z
y . 22(v + u)

(v+u+y+2)v+u—y—2)

The map SQQ fixes second, third and fourth coordinates when y = z = v = 1, and so we may

restrict the map to the first and the fifth coordinates. Therefore, we get the C> — C? map given by

222
o) | wrae-D
v _ o+l
(v+3)(v—1)
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By the change of coordinates (z,v) — (—x, —1 — y), we obtain the C* — C* map

F: — . (5.18)

When iy = z = u = 1, the second, third and fourth coordinates of the map SY are equal and the
2
common value is ——— . By re-normalization (i.e., multiplying by
(v+3)(v—1)

a map which fixes second, third and fourth coordinates. So we may restrict it to the first and the

%) we obtain

fifth coordinates and get C* — C? map

2(v+3)(v—1)

T x2

(v+3)(v—1)

v —2—v+(v+1)
Xz

By the change of coordinates (z,v) — (—x, —1 — y), we obtain C* — C? map

2(4 —y?)
A 2
G- — v . (5.19)

y(4 —y?)
y —y- L

The map F' demonstrates features of an integrable map as it has two almost transversal fam-
ilies of horizontal hyperbolas Fy = {(z,y): 4 + 2% — y* — 40z = 0} and vertical hyperbolas
H, = {(x,y): 4 — 2* + y* — 4ny = 0}, shown in Figure 5.2. The first family {F} is invariant as
a family and F'~1(Fp) = Fp, U Fp,, where 0y, 0, are preimages of 6 under the Chebyshev map
t: 2+ 227 — 1, and the family {#,,} consists of invariant curves.

The set K shown in Figure 5.3a (we will call this set the “cross”) is of special interest for
us as it represents the joint spectrum of several families of operators associated with the element
m(z,y) = —xa + b+ ¢+ d— (y+ 1)1 of the group algebra R[G] [BGOOb, GN07, DG17]. It can
be foliated by the hyperbolas Fy, —1 < 6 < 1 as shown in Figure 5.3b (or by hyperbolas H,, —1 <

1 < 1 shown in Figure 5.3c). The F'-preimages of the border line x + y = 2 constitutes a dense
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o

(b)

Figure 5.2: Foliation of R? by (a) horizontal hyperbolas Fy where, maroon, red and black cor-
responds to § < —1,0 € [—1,1] and # > 1, respectively, and (b) vertical hyperbola #, where,
purple, blue and black corresponds to n < —1,17 € [—1,1] and n > 1, respectively.

family of curves for C (the same is true for G-preimages) and K is completely invariant set for F’
or G (ie., F1(K) € Kand F(K) c K, so F(K) = K).

The map F'is comprehensively investigated in [DGL21] (its close relative is studied in [GY 17]
and [GY20] from a different point of view) and serves as a basis for the integrability theory devel-

oped there. The map G happens to be more complicated and its study is ongoing.
5.4.2 For the Overgroup G

Recall that the overgroup QN is generated by the elements a, b, ¢, d, a, E, c, d. Let M = za +
yb + zc + ud + qi + rb + s¢ + td + v1 be an element of the group algebra C[g] Using the matrix

recursions (5.11), we identify,

\ (y+z4+qg+tha+ (u+r+s+v)l T

x ub + ye + zd + qi + th + & + sd + vl
(5.20)

Now, let us calculate S;(M ), which is defined for invertible D = ub + yc + zd + qa + th +
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(a)

Figure 5.3: (a) The “cross” K, (b) foliation of the cross by real slices of horizontal hyperbolas Fy
(0 € [-1,1]), and (c) foliation of the cross by real slices of vertical hyperbolas H, (n € [—1, 1]).

&+ sd + v1. The group generated by {1,b,¢,d, a,0,7%, J} is isomorphic to Z3 (via the identifica-
tion 1,b, ¢, d, d, b, & d with (0,0,0), (1,0,0), (0,1,0), (1,1,0),(1,1,1), (0,1,1), (1,0,1), (0,0, 1),

respectively). Define

D000=v+u+y+s+z+r+t+q,
Dloozv—u+y+s—z—7’+t—q,
Dypo=v+u—y+s—z+r—t—gq,
Doy =v+u+y—s+z—r—t—gq,
Dijgy=v—u—y+s+z—r—t+gq,
Dipp=v—u+y—s—z+r—t+gq,
Doy =v+u—y—s—z—r+t+q,

Dimphw=v—u—y—s+z+r+t—aq. (5.21)
By (A.8) and (A.2), we obtain that D is invertible if and only if

[l D0, (5.22)

1,5,ke{0,1}
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and by (A.9),

0
1 ( 1 1 1 1 )
+ - = — = ~ - — = — — — — — b
8 \Doo Do Dowo Door Dio Diow Do Din
1 ( 1 1 1 1 1 1 1 1 )
+ = ~ = — = = — = = — = — — C
8 \Doo Do Dowo Dot 1mo  Dion Donn Din
1 1 1 1 1 1 1 1 1 ~
o — | d
8\ Do Dioo Dowo Door  Diwo Diow Do Din
1 1 1 1 1 1 1 1 1
+ - —~ — = — = + = + = — = — = + — d
8\ Do Dioo Dowo Dot  Diwo Diow Do Din
1 ( 1 1 1 1 1 1 1 1 ) -
+ = ~ — = + — — = — = + — — — + — C
8\ Do Dioo Dowo Do Diwo Diow Do Din
1 ( 1 1 1 1 1 1 1 1 )~
b —+ — )]
8\ Do Dioo Dowo Do Diwo Diow Do Din
1 1 1 1 1 1 1 1 1 -
+ — ( - — = - = — = + — + = + — — — ) a. (5.23)
8\ Do Dioo Dowo Do  Diwo Diow Do Din

Therefore, the first Schur complement

S,(M) =A— BD'C
=(y+z+q+t)a+ (u+r+s+v)l —22D7!
=(y+z+q+t)a

+(m+r+s+m

x2 ( 1 1 1 ) )
e —— e ——+ —+ = 1
8 \Doo Do Dowo Dot Diwo D Doin Din

332( o1 1 1 1 111 )

- — = — = + — + — — = — — + — — — b

8 000 Dioo  Dowo  Door Do Din Donn  Din
.732( 1 1 1 1 1 1 1 1 )

et — = ¢
8 000 Dioo  Dowo  Door Do Din Donn Din
2 1 1 1 1 1 1 1 1 ~

e — —)d
8 000 Dioo  Dowo  Door Do Din Donn Din
2 1 1 1 1 1 1 1 1

e —— —— ———+ — | d
8 \Dooo Do Doo Dot Dio Din Don Din
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x? 1 1 1 1 1 1 1 -
— g = — = + = — = — = + = — = = C
000 Dico Dowo  Door  Diwo Dim Donn  Din
x? ( 1 n 1 1 1 1 1 1 1 ) fg
8 000 Dico Dowo Dot Diwo Dim  Donn  Din
x? 1 1 1 1 1 1 1 1 -
- — = — = — = — = + = + —= + = = a
8 \Dooo Diw Dowo Dot Do Din  Doin  Din
This gives the Schur transformation SY : C° — C° given by
y+z+qg+t
x _z? 11 1 111 11
8\ Dooo D1oo Do10 Doo1 D110 D101 Do11 D111
Y Ca? ( 1 11 11 111 )
8\ Dooo D100 Do10 Doo1 D110 D101 Do11 D111
z _a? ( (S WS S | 111 1 >
8\ Dooo D100 Do1o Doo1 D110 D101 Do11 D111
u a2 ( 11 11 1 1 11 )
8\ Dooo D100 Do1o Doo1 D110 D101 Do11 D111
q | a2 ( 1 11111 1 1 )
8\ Dooo D100 Do10 Doo1 D110 D101 Do11 D111
r a2 ( 11 111 11 1 )
8\ Dooo D100 Do1o Doo1 D110 D101 Do11 D111
§ 22 ( 1 1 11 1111 )
. 8\ Dooo D1oo Do10 Doo1 D110 Dio1 Do11 D111
((u +7r+s+v)
v
a2 < 1 1 1 1 1 1 1 1 )
8 \ Dooo D1oo Do10 Doo1 D110 D101 Do11 D111

Finally, we will calculate Sy(M) when A = (y + 2+ g + t)a + (u + r + s + v)1 is invertible.

Since the group generated by elements 1, @ is isomorphic to Z, (via the identification 1, a with 0, 1,

respectively), by (A.4) and (A.2), we obtain, A is invertible if and only if

(v+ut+r+s+y+z+q+t)v+ut+r+s—y—z—q—1t)#0,

and if the condition in (5.24) is satisfied, then A~! is given by,

1/ 1 1
Alz—( + =
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using the notation from (5.21). Therefore, the second Schur complement

So(M) =D - CA™'B

—ub+yc+ zd + qid + th+ 1+ sd + vl — 22 A7

x? 1 1 - o~ L~
=—— | — — = a+ub+yc+ zd+ qa +tb+rc+ sd
2 \Dooo  Doro

(=% (57 500))
+lv—— | = + — 1.
2 \ Do Do1o

Then by substituting from (5.21), we obtain the Schur transformation 525 : C? — C? given by

22 (y+z+q+t)

x (vtutr+sty+z+qg+t)(vtutr+s—y—z—q—t)
Y u

z y

u Z

T t

S T

t ]

v v — 22 (v+u+rts)

(v+utr+s+y+z+q+t)(vtutr+s—y—z—q—t)

Note that, choosing y = z = wand r = s = t converts S5 to a 2-dimensional map. For

simplicity, we choose all the variables, except the first and the last, to be 1. Then we get the

C? — C? map

422
7 (v+T7)(v—1)
v __Pw+3)
(v+7)(v—1)
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By the change of coordinates (z,v) — (—x, —3 — y), we obtain the C* — C* map

2z
~ x 16 — 1,2
P — 0 Y (5.26)
%y
y
y+16—y2

5.4.3 For the Generalized Grigorchuk Groups and Generalized Overgroups

Recall that the generalized Grigorchuk group G, is generated by a, b, cy,d,. Let M =
xay, + yb, + zc, + ud,, +v1 be an element of the group algebra C[G,,]. Using the matrix recursions

(5.11) and (2.11), we identify,

o + Qu)tg, + (ry, +v)1 T
[ et adan + e+ 0) | 527

T Ybow + 2Cou, + udy,, + v1

where

-

(y,z,u) yWo = 0
(pw7Qwarw> = 3 (u7y’ z) TWy = 1- (528)

(Z,U,y) 7w0:2

\

Here wj is the first symbol of the sequence w. Note that (p,,, q.,, 7,) is determined by wy and so we
may write (D, Guos Two) 10 place of (pu, Gu, r'w)-

First, we will calculate the first Schur complement S; (M ), which is defined when D = vl +
Ybyw + 2Cou + ud,,, is invertible. Note that D is invertible if and only if the condition (5.14) is

satisfied, in which case we obtain,

1 1 1 1 1
D™ == + + + 1
4 \v+u+y+2z v—y+z—u v+y—z—u v—y—z+u

1 1 1 N 1 1 b
4\v+u+y+z v—y+z—u v+y—z—-u v—y—z+u) °°

1 1 n 1 1 1
n - - Cow
4 \v+u+y+z v—y+z—u v+y—z—u Vv—Y—z+u

78



1 1 1 1 N 1
4 \v+u+y+z v—y+z—u v+y—z—u Vv—Y—z+u

Therefore, the first Schur complement

Sl(M) :(pw + Qw)aow
2uyz — v(—v? + u? + y* + 2?)

) do

+(U+7“w—$2

) 2uzu — y(v? — y? + u? + 2?) ;
+ut+y+2)v—ut+y—2)vt+tu—y—2)(v—u—y+z)
9 2uyu — z(v? + u? + y* — 2?)

CG’W?

wtu+y+2)v—ut+y—z)v+tu—y—2)(v—u—y+=z)
20yz — u(v? —u? + y? + 2%)

2
— Ay
v v+tu+y+2)v—ut+y—z)v+tu—y—2)(v—u—y+z)

(v~|—u+y+z)(v—u+y—z)(v+u—y—z)(v—u—y+z))1

Note that the Schur complement can be viewed as a map from the linear span of

{ay, by, Cy,d,, 1} to the linear span of {G,y, byw, Cow, dyw, 1}. S0, we can define the first Schur

transformation S : C®> — CP given by

x Pt Qu
2 2vzu—y(v?—y?+u+22)
y (Ut uty+z) (v—uty—2)(viu—y—2)(v—u—y+z)
5 . 2 2vyu—z(vi+u?+y%—22)
(v+uty+z)(v—uty—=z)(v+u—y—z)(v—u—y+z)
u 22 2vyz—u(v?—u?+y?+22)

(vtuty+z)(v—uty—z)(v+u—y—z)(v—u—y+z)

2uyz—v(—v2+ul+y?+22)

v V+ Ty — (U+u+y+z)(v uty—z)(v+u—y—z)(v—u—y+2)

(5.29)

Now, we will calculate the second Schur complement S5()) which is defined when A =

(Pw + qu)aow + (1, + v)1 is invertible. By a similar calculation, we obtain that A is invertible if

and only if

(V4 71y +Pu+ )0+ 1y — Py — qu) # 0,
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and if the condition in (5.30) is satisfied, then A~ is given by,

AL = U+ Ty 1— Pw + qu
(U+Tw +pw+Qw)(U+Tw_pw_Qw) (U+rw +pw+Qw)(U+rw_pw_Qw

)aw.

Therefore, the second Schur complement

2 (P + Q)
(U + Tw +pw + QW)<U +rw — Pw — QUJ)

So(M) = Ogw + Yboyw + 2Co0 + Udyy,

(- 22(v +1,) .
(U+Tw+pw+QM)(U+Tw_pw_Qw> .

This leads to the Schur transformation S5~ : C> — C® given by

2% (po + )
X (W+7 4+ po+ )+ Ty — Pu— @)
Y Y
o s | (5.31)
u u
; Y 22(v +r1,)

<U+rw +pw+Qw)(U+rw_pw_Qw)

Observe that Sg‘“ fixes the second, third, and fourth coordinates. Thus, by restricting to first

and fifth coordinates, we obtain a C* — C? map

2% (o + qu)
xXr _ _
Fwo : . (U + Ty + Dw + qL;)(U + Ty — Do Qw) ’ (5.32)
v . x*(v +r,)
(U'i'rw +pw+Qw)(U+Tw_pw_Qw)
where )
(y + Z,U) yWo = 0
(awaﬁw) = (pw + Qwarw) = 9 (y + u,z) swo =1 (5.33)
(Z + U,y) yWo = 2

\
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Now let us consider the generalized overgroup QNW, generated by a,,, b, ¢y, dy, aw,Zw, Coss Jw.
Let M = za, + yb, + zc, + ud, + qa, + rzw + 8¢, + td; + v1 be an element of the group
algebra (C[C:w]. By a similar calculation as of above, we obtain the second Schur transformation

525“: C? — C? given by,

2

r%ay,

x (v+ By + ay)(v+ B, — ay)

Y Y

z z

u u

qg |~ q ; (5.34)
r r

s s

t t

; . (v + By)

(v+ By + aw)(v+ Puw — ay)

where )

(y+z+qg+t,u+r+s) ;w=0
(w, Bo) = (y+u+q+s,z2+r+t) jwy=1- (5.35)

(z+u+qg+ry+r—+s) jw =2

\

By restricting to the first and last coordinates, we obtain a C> — C? map given by

22,
~ | * (v + Bo + ay)(v + B, — ay)
Foi | AP (5.36)
v —

(v+ Bu + ay)(v+ B, — ay)

We omit the calculation of the first Schur transformation as it is more complicated to be written

down.
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5.5 Two-Parametric Maps and Rational Maps Associated with G _,, wa

We have calculated the rational maps associated to G, and QNw to be (5.32) and (5.36), re-

spectively, in Section 5.4.3. If their corresponding «,, # 0, then they are of the form (5.1). Let

f = F, s, where F, 3 is given by (5.1). Thus, a, 8 € C and o # 0. Our first observation is, the

map f and the maps F), F given in (5.18), (5.26) are closely related.

Proposition 5.2. The map f is conjugate to the map

ya’
x 2 _ 42
> /y 9 y
v T~v
vt o
Y —v

for any non-zero . In particular, f is conjugate to F' and F.

Proof. First, consider the map h: (x,v) — (—x,—v — (). Then, h is an involution and therefore

is invertible. By conjugating f by h, we obtain

fh($’v) =h7'o fo h([E,’U)

= ho foh(x,v)

Now let g be the multiplication by /v map, i.e., g: (z,v) — (gx, ¥
fy

v
and the inverse is the multiplication by y/« map. Therefore,

fro9(x,v) = g~ o Mo g(x,v)
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= gil O fh <g$’ gv)
T

—gl( ax? a . az?v )
V=vy (= ?)

2 2

T v
= i , U+ )
(72—1}2 72—02)

which proves the result. Choosing v = 2 and 7 = 4, we obtain that f is conjugate to [’ and F,

respectively. L

Proof of Theorem 5.1. We know that the map f is conjugate to F', using Proposition 5.2. By

Theorem 5.1.(i) of [DGL21], F' is semi-conjugate to ¢, the Chebyshev map, via the map (z,v) —
4 — %+ 2?

1 . Thus, f is semi-conjugate to the Chebyshev map. [
x

Now let us view f as a map on 2. So, in homogeneous coordinates, the map f becomes
f=laz?w :v((v+ pw)® — (aw)?) — (v + Bw)z? : ((v + Pw)® — (aw)*)w] . (5.37)

We will denote the three polynomials in the coordinates of f as fo, f1, fo- So f = [fo: f1: f2].
First we will look at the indeterminacy points (the points for which the function is not defined, i.e.,

fo, f1, fo are all simultaneously zero) and fixed points of f.
Proposition 5.3. The map f is of algebraic degree 3 and topological degree 2.

1. It has five indeterminacy points: Twopoints P = [0 : —(f+ «) : 1], @ = [0: —(f — a) : 1]

on vertical line and three points Iy = [1:0:0], [; = [1:1:0], Iy = [—1 : 1 : 0] at infinity.

2. The point (except indeterminacy points) on the vertical line {x =0} and the point

[« : =3 : 1] are all the fixed points for f.

Proof. By observation, we see f is of algebraic degree 3 and topological degree 2.
First, let us calculate indeterminacy points, i.e., points of which all three of fy, f1, f> are zero.
Letting fo = 0, we obtain x = 0 or w = 0. That is, all the indeterminacies lie on the vertical line

{x = 0} or on the line at infinity {w = 0}.
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To find the indeterminacies of vertical line, let z = 0. Then, the points making f; = fo = 0
satisfy (v + Sw)? — (aw)? = 0 and therefore v = —(3 + a)w or v = —( — )w. Thus, we obtain
the points P = [0: —(f+a):1]and Q@ = [0: —(8 — ) : 1].

To find the indeterminacies at infinity, let w = 0. Then, f, = 0 and f; = v(v? — 2%). By
making f; = 0, we obtain v = 0, v = x, or v = —z. Thus, we obtain the points Io = [1: 0 : 0],
I =[1:1:0],and Iy = [—1: 1 : 0]. This completes the proof of assertion 1.

Now, let us calculate the fixed points. Suppose f = [fo: f1: fo] = Az :v:w], for some
A € C. First, note that if w = 0, then x = 0 and v = 1, which is the point at infinity on vertical
line. Suppose w # 0. By fo = \w, we get A = (v + Sw)? — (aw)?. Using f; = A\v, we obtain
(v + Bw)z? = 0. Thus, z = 0 or v = —fw.

It is clear from (5.37) that {x = 0} is an invariant line of fixed points. So, suppose = # 0. By
v = —pBw, we get \ = —(aw)?. Finally, using fo = Az, we obtain ax’w = —a?zw?. Since we
have a # 0, x # 0, and w # 0, we conclude = = —aw, giving the fixed point [—a : —f : 1]. This

completes the proof. O
The map has following properties, which we will use to study the dynamics of f.

Proposition 5.4.
1. The point Iy = [1 : 0 : 0] is not in the image of f.

2. The only points that map to the vertical line are the points on the vertical line and the points

on the line at infinity. Moreover, the line at infinity maps to the point [0 : 1 : 0].

Proof. Suppose a point [z : v : w] is mapped to a point at infinity. Then f5 [z : v : w] = 0. Thus,
w = 0, in which case f[z:v:w] = [0:1:0], or ((v + Bw)? — (aw)?) = 0, in which case
fi = % fo, that consequently makes f [z : v : w] = [£1: 1: 0]. Therefore, no point is mapped to
the point /.

To show the second assertion, suppose a point [z : v : w] is mapped to the vertical line. Then,

folr :v:w] = 0and so we get x = 0 or w = 0. Therefore, the point [z : v : w] is either on the
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vertical line, or on the line at infinity. In the case of w = 0, we have f5 [« : v : w] = 0 and so the

image is [0 : 1 : 0]. This completes the proof. O

Next step is to study the contracting curves (curves that are collapsed to a point via the map)

of the map f. To do it, let us look at the jacobian j(f) and its determinant |j(f)|. The jacobian is

given by
2w 0 ax?
J(f) = |-2z(v + pw) (v+ Bw)(3v + pw) — a*w? — 2> 2(B(v + Bw) — a?w)v — B |,
0 2w(v + fw) 3(B(v + pw) — ?w)w + (v + fw)v
(5.38)
and therefore the determinant is,
l7(f)] = 6azw(v + (8 — a)w)(v + (6 + a)w) ((v + Bw)? — o*w® — :c2) ) (5.39)

Equating the determinant of the jacobian to zero, we obtain the curves; the vertical line {x = 0}, the
line at infinity {w = 0}, the line L' = {v + (8 + o)w = 0} passing through I, and P, the line L =
{v+ (8 — a)w = 0} passing through I and @, and the conic C' = {(v + fw)? — o*w? — 2* = 0}
passing through points I, I5, P, and (). The Figure 5.4 represents the fixed points, the indetermi-
nacy points, and contracting curves of f, graphically. By Proposition 5.3 assertion 2, we observe
that the vertical line {z = 0} is not a contracting curve. The dynamics of the above contracting

curves can be summarize as follows:
Proposition 5.5. The map f collapses;
1. The line at infinity {w = 0} \ {1y, I1, I} to the fixed point [0 : 1 : 0].
2. The line L'\ {Iy, P} to the indeterminacy point I.
3. The line L\ {Iy, Q} to the indeterminacy point I.
4. The conic C\ {11, I, P, Q} to the point [a : =3 : 1].
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Figure 5.4: Curves L', L, and C' that are contracting to a point via f.

Proof. The first assertion is directly obtained from the second assertion of Proposition 5.4. Con-
sider a point [z : v : w] on L. Then, v + fw = —aw. Thus, f; = az’w = fyand fo = 0
Therefore, f [z :v:w]| = [1:1:0] = I;. This proves the second assertion. The third assertion
follows similarly.

To prove the last assertion, take a point [z : v : w] on C. So, (v + fw)? — a*w? = z*. Using

2

it, we obtain, f; = —fBz%w, and fo = x?w. Therefore, f [z : v : w] = [az’w : — 2w : 22

w] =

[ : —f : 1]. This completes the proof. O

Proposition 5.5 shows that there are algebraic curves that collapse to points of indetermina-
cies. In order to avoid this complication, let us blow-up P? at the indeterminacy points I, I, (see
Appendix B.2). Let this space, BLy, 1,(P?), be denoted by X, and let wx be the blow-down map.

Denote the lift of f to X, by f We will examine the dynamics of f on Ey, E5, the exceptional

86



divisors at Iy, I, respectively (see figure 5.5).

I()

X P2

Figure 5.5: Blow up X of IP? at indeterminacy points /; and 5.

Proposition 5.6.

1. The lifted map ]? is regular on Ey, and its image f(El) is the strict transform of the line

{r=a,w=1}u{[0:1:0]}.
2. The strict transform of L'\ {1y, P} is mapped to Ey, which avoids indeterminacies.

3. The lifted map f is regular on Fs, and its image ]?(Eg) is the strict transform of the line

{r=a,w=1}u{[0:1:0]}.
4. The strict transform of L\ {1y, Q} is mapped to Es, which avoids indeterminacies.

Proof. First, consider the point /; and the exceptional divisor E;. Let R = [z : v : w] be an arbi-
trary point in P? not in the vertical line {x = 0}. So, x # 0. There are two ways to choose a local

coordinate system (e, [) such that the equation of the exceptional divisor F is {¢ = 0}:

w v—2

1. (e,l):<

: >, assuming w # 0, in which case mx(e,l) = [1: 1+ le: e].
T w
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2. (e,l) = <U — a:, v ), assuming = # v, in which case mx(e,l) = [1: 1+ e : le].
xr v—x
) wov—x )
Suppose w # 0 and so we can choose the fist option, (e,[) = (—, > Then, using the fact
xrw

that mx (e,l) = [1: 1+ le : e], we obtain,

fomx: (e,l) > [a: 2+ B+ eBl*+ 48l + 5% — o®) + 1e*((L + B)* — &

(14 Be+1le)* — (ae)?].  (5.40)

On the exceptional divisor F; (i.e., when e = 0), the image is [« : 8 + 21 : 1], which parameterize
the line {z = a, w = 1}, and therefore the lift map f is regular on E1\ {l = oo}. In order to take
care of [ = oo, which corresponds to w = 0, let us consider the second coordinate chart (e,l) =

(U_:E, 2 >.Then,7rx(e,l) =[1:1+e:le]and

T V—XT

fomx: (1) —[al: 2+ Bl+ (14 Bl)* — (al)®)e® + (3+ 4Bl + (8% — o*)P)e

D (14 e+ Ble)® — (ale)?] .

To obtain F;, we make e = 0, and obtain [l : 5] + 2 : []. We are concerned with the case of
w = 0, which corresponds to [ = 0, and thus we get the point [0 : 1 : 0]. This completes the proof
of regularity of f on ;. The f image of Ej is the strict transform of {r =a,w=1}u{[0:1:0]},

which proves the first assertion.

Using (5.40) and the first coordinate chart,(e, [) = <%, v ; a;), the lifted map fis given by,
~ 1 2 — 2 (2 1 —
Fled) - (1+ Be+le)* — (ae) ’( +le)l+ (1 +1le)(f—a) | (5.41)
a l+e(l+8—a)

for (e, ) such that the point [x : v : w] € P? corresponding to (e, [) does not lie on the vertical line
{z = 0} nor on the line at infinity, and the image of [z : v : w] does not lie on the vertical line (that
is fo [z :v:w] #0).

Let [z :v:w] be on the line L'. Then, v = —(a + (), w = 1, and therefore the cor-
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1
responding point in X is (e,l) = (—, —(a+ B+ :L’)) Using (5.41), we obtain the image
x

~ B 2 — 2a(a + )
fle,l) = (0, 50,

of L/, does not hit indeterminacies, and hence we are done with the second assertion.

> , which is a point of E;. Therefor, the image of the strict transform

Now, consider the point /5 and the exceptional divisor E,. Similar to above, let R = [z : v : w],

where x # 0. The two ways to pick the coordinate chart are;

w v+x

1. (e,l):<

: >, assuming w # 0, in which case mx(e,l) = [1:le—1:¢].
T ow

2. (e,l) = (v ; 967 fo), assuming = + v # 0, in which case mx(e,l) = [1: e —1: le].

w v+x

Suppose w # 0 and so we can choose the first option, (e,l) = ( ) Then, using the fact

r w
that mx (e,l) = [1 : le — 1 : e], we obtain,

fomx:(e,l) = [a: 20+ B—e(31° + 4Bl + 8% — a?) + 1e*((I + B)* — ®

(1= PBe—le)* — (ae)?]. (5.42)

On the exceptional divisor F (i.e., when e = 0), the image is [« : 8 + 21 : 1], which parameterize
the line {z = o, w = 1}, and therefore the lift map f is regular on E,\ {I = o0}. In order to take

care of [ = oo, which corresponds to w = 0, let us consider the second coordinate chart (e,l) =

v+ w
. Then, A)=1l:e—1:1 d
( " ,U+x> en, mx(e,l) =[1:¢€ e] an

fomx:(e,l) = [al: 2+ Bl+ ((1+ B1)* — (ad)?)e® — (3+ 4Bl + (87 — ®)*)e

D U(1—e— Ble)* — (ale)?].

To obtain Fs, we make e = 0, and obtain [l : 5] + 2 : []. We are concerned with the case of
w = 0, which corresponds to [ = 0, and thus we get the point [0 : 1 : 0]. Thus fis regular on Fs.
The f image of E; is the strict transform of {r = a,w =1} U {[0:1:0]}, which proves the third

assertion.
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w v+x

Using (5.42) and the first coordinate chart,(e, [) = ( >, the lifted map fis given by,

x w

~ (1—Be—1le)*> — (ae)> (2—1le)l+ (1—1le)(B+ )
f.(e,l)'—>< o ’ l—e(l+ 8+ ) )’ (543)

for (e, 1) such that the point [x : v : w] € P? corresponding to (e, ) does not lie on the vertical line
{x = 0} nor on the line at infinity, and the image of [z : v : w] does not lie on the vertical line (that
is fo [z :v:w] #0).

Now let [z : v : w]| be on the line L. Then, v = —(8 — a), w = 1, and therefore the

1
corresponding point in X is (e,l) = (—, —(B—x— a)). Using (5.43), we obtain the image
a

~ B —12 4+ 2a(a — )
f(e> l) - (07 20

form of L, does not hit indeterminacies. This completes the last assertion. O]

), which is a point of F5. Therefor, the image of the strict trans-

Now let us examine the images of the map f. If (e,1) is not in £y U Fj, then the image f(e, )
is the strict transform of the point f [z : v : w], where [z : v : w] is the strict transform of (e, [).
Note that the preimage of the line at infinity is the union of L', L, and the line at infinity, and by

~

Proposition 5.4 and Proposition 5.6 we obtain that the image f (e, [) does not hit the indeterminacies
on the line at infinity. Similarly, we can show J?(e, [) does not hit indeterminacies on vertical line.
If (e,l) € E1 U Es, then by above proposition, the fimage does not hit the strict transforms of 1,

and the vertical line (excluding the point [0 : 1 : 0]). So, we obtain the next corollary:

Corollary 5.1. The map f avoids the strict transform of the indeterminacy point I, and no points
not in the strict transform of the vertical line {x = 0,w = 1} are mapped to the strict transform of

the vertical line {x = 0,w = 1}.
Now we are ready to prove the algebraic stability.

Proof of Theorem 5.2. Let X = BLy, 1,(P?) be the blow up of P? at points I, I,. We will show
the sequence {fn} of functions on X is algebraically stable. To prove it, we need to show that no
algebraic curve collapse to an indeterminacy point. Let us denote the lines L', L corresponding to

map f,, by L!, L,, respectively.
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First, note that the points Iy, I, I, are common indeterminacy points for all f,,, and the other
indeterminacies occur on the vertical line {z = 0}. By Corollary 5.1, the strict transform of the
point [ is not in the image of any map fn, and therefore no curve will ever collapse to the strict
transform of /y, under any iteration.

Points not in the strict transform of the vertical line {z = 0, w = 1} will never map to the strict
transform of {x = 0,w = 1}, by Corollary 5.1. Therefore, no curve will collapse to a point on
{r = 0,w = 1}. In particular, no algebraic curve will collapse to an indeterminacy point on the
vertical line.

Therefore, {ﬁl} avoids indeterminacies on the vertical line and on /j. Note that the images of
points not on lines L/, and L,, do not collapse to /; and /5, and by Proposition 5.6, the strict trans-
forms of L/ and L, hit no indeterminacies. Therefore, the sequence of maps {fn} is algebraically

stable. O]

Proof of Theorem 5.3. The rational maps (5.32), (5.36) associated to G, QNW, are of the form (5.1)
if their corresponding o, # 0. The condition o, # 0 becomes y + 2, y + u, z + u are non-zero, in
the case of G, by (5.33)andy + 2 + ¢+ ¢,y + u+ q + s, z + u + ¢ + r are non-zero, in the case

of G, by (5.35). Now the result follows directly from Theorem 5.2. [
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APPENDIX A

CALCULATING INVERSES IN GROUP ALGEBRA

A.1 For Finite Abelian Groups

Let G be an abelian group. Then all irreducible representations of G are one dimensional. Let

G denote the complete set of all irreducible representations of G. It is known that the map

ClG] - PC

peG

6= 0= b=(d) .

geG

where ng = >, G dyp(g), is an isomorphism of algebras. In order to calculate ¢!, suppose

¢ = 1. Then applying the above map, we get qug/}p =1forallpe G. Thus for all pE G,

by = 1/0p. (A.1)

This shows that the necessary and sufficient condition for ¢ to be invertible is qu # Oforall p e G.

In other words,

[]é #0. (A2)

peG
Now we will restrict our calculations to the situations where G = Z7 for n € N. Note that each

irreducible representation of Z7 is of the form p;,;, ;.. Here p; i, ., is defined by
Piria.in(€j) = (1), (A.3)

where ¢, is the n-tuple in G with all but j-th entry are 0. In this case we denote the coefficient of

(2.17 i27 cee 7in> in 925 by ¢i1i2~-in and pril@mq:n by ¢1112ln
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A.2 The Group Z; of Order Two

First consider n = 1. That is, the group Z. Let ¢ = 3 ., ¢,9 € C[Zs]. Using (A.3) we get,

ng = ¢o + ¢1,
b1 = o — b1 (A.4)

Suppose ¢ = > ez, Vg9 18 the inverse of ¢. Then, by (A.3) and (A.1), we obtain

Yo + U1 = 1/,
Yo — 1 = 1/,
and solving these equations gives,
1
Yo =
P =

(1/¢20 + 1/&1) .
(1/60 — 1/1). (A5)

N — N

A.3 The Klein Group Z3
Now consider n = 2. That is, the group Z2. Let ¢ = dezg b49 € C|Z3]. Using (A.3) we get,
Poo = Poo + P10 + do1 + du1,
d10 = Poo — P10 + do1 — Bu1,

€Z§01 = Qoo + P10 — Po1 — P11,
qu = ¢oo — P10 — Po1 + P11- (A.6)

Suppose 1) = >’ gez2 1,44 is the inverse of ¢. Then, by (A.3) and (A.1), we obtain

S

Yoo = (1/¢§00 + 1/h10 + 1/o1 + 1/@11) ;
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o = i (1/€ZA500 — 1/b10 + 1/o1 — 1/&11) :
o1 = i (Véoo + 1/¢210 - 1/¢201 - 1/&11) )
Y = i (1/€ZA500 — 1/b10 — 1/¢o1 + 1/&11) :

A4 The Group Z3

(A.7)

Finally consider n = 3. That is, the group Z3. Let ¢ = Y] gez3 P99 € C[Z3]. Using (A.3) we

get,

Cgooo = Pooo + 100 + Po10 + Poor + G110 + G101 + Po11 + P111,
45100 = Pooo — P100 + Po10 + Poo1 — P110 — G101 + Po11 — P11,
45010 = Po0o + P100 — Po10 + Poo1 — P110 + G101 — Po11 — P111,
45001 = Pooo + P100 + Po10 — Poo1 + P110 — G101 — Po11 — P111,
45110 = Po0o — P100 — Po10 + Poo1 + P110 — G101 — Po11 + P11,
<5101 = Pooo — ®100 + Po10 — Poor — P110 + Y101 — Po11 + P111,
<5011 = Pooo + 100 — Po10 — Poor — P110 — Y101 + Po11 + P111,

111 = Pooo — P100 — Po10 — Poo1 + G110 + G101 + Po11 — D111

Suppose 1) = >’ gez3 149 is the inverse of ¢. Then, by (A.3) and (A.1), we obtain

o = 5 (16000 + /100 + 1doso + 1door + 1/uso + 1/duon +1/duns +1 /b
in = 5 (110000 = /100 + doro + door = 1/uso = 1/duon +1/dons — 1/
oo = 5 (16000 + /100 = 1doso + 1door = 1/uso + 1/duon — 1/duss — 1/
uor = 5 (1/9w0 + 1/duo0 + 1/doro = 1/oos + 1/rso = 1/dror = 1/dons = 1/
10 = 5 (16000 = /100 = 1doso + 1door + 1/rso = 1/dron = 1/duss +1/bun
ior = 5 (1900 = 1/dron + 1/dor0 = 1/oos = 1/uso + 1/dror = 1/dows + 1/

100

N—r' N T N~ N~ 1

Y

Y

Y

Y

Y

?

(A.8)



1/}011 =
%11 =

(1/%00 + 1/€2A5100 — 1/@010 — 1/&001 — 1/&110 — 1/¢A5101 + 1/§ZA5011 + 1/QA5111>
1 A ) A A A A )
( /P00 — 1/d100 — 1/Po10 — 1/doo1 + 1/P110 + 1/¢2101 + 1/éon — 1/¢2111> . (A9

0| — ool —
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APPENDIX B

COMPLEX DYNAMICS

Let P? be the 2-dimensional complex projective space and let [z : v : w] be a generic point on
it. Thus, [0 : 0 : 0] is an undefined point and [A\x : Av : Aw] = [z : v : w], forany A € C\ {0}. Fora

self map f on P2, denote the coordinate functions of f by fo, fi, and fo. Thatis, f = [fo : f1 : fo]-
B.1 Rational Maps

Consider a self map f on P? given by polynomial functions fy, fi, and f». The points which
are not in the domain of f are called the indeterminacy points. Thus, the indeterminacy points are
the points for which fy, f1, and f; are simultaneously zero. Observe that the set of indeterminacies
is a Zariski closed set (i.e., an algebraic subset of the ambient space). This idea can be generalized

to any projective surface as below.

Definition B.1. Let XY be two smooth projective surfaces and let U,V be Zariski open subsets
of them,respectively. Amap f: U — V is said to be a rational map if it is given by polynomials in

some coordinate system. We denote this by f: X --+ Y.

In the case of U = X, i.e., there are no indeterminacies in X, then the rational map is said to
be regular. A non-regular rational map can be restricted to a subsurface to obtain a regular rational

map of the subspace.
B.2 Blow-ups

There are situation where a map has an indeterminacy and it is useful to remove (or get rid of)
this indeterminacy, or there is a curve with a singularity that we wish to remove. The technique
of blow-up comes handy in these situations. We will define blow-ups for C? and then it naturally
extends to P2,

Let p = (xg,v0) € C?. The blow-up of C? at point p, denoted by BL,(C?), is the space

obtained by attaching a projective line to C? at the point p, which represents the tangent direction
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(a) Blow-up of a point. (b) Strict transform of a curve.

Figure B.1: Blow-up

at p. Thus, BL,(C?) = {((z,v), [\ : u]) € C* x P | Nz — z0) = u(y — yo)}. The projective line
that is attached to the surface is called the exceptional divisor and the space BL,(C?) is called the
rational variety. The point ((z,v), [\ : u]) in BL,(C?) is identified with the point (z,v) in C%.
This identification, 7, is called the blow-down map, where it collapses the exceptional divisor to
the point p. The Figure B.1 (a) represents the blow-up graphically.

For a curve C in C?, the blow-up of C' is called the strict transform of C. Thus, the strict
transform of C' is given by W The Figure B.1 (b) represents a curve (in blue color)
with a singularity at the point that is blown-up and its strict transform (in red color). It shows how

blow-up can be used to deal with singularities, graphically. See the appendix of [DGL21] and the

book [GH78] for more on blow-ups.
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