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 ABSTRACT 

 

The coronavirus (COVID-19) has caused a huge negative influence on the global. The 

virus continues to spread and has sickened more than 90,201,652 people until January 

2021 and caused 1,937,091 deaths in the world. So far, social distancing was given as an 

effective way to control the coronavirus. Governments issue restrictions on traveling, 

institutions cancel gatherings, and citizens socially distance themselves to limit the spread 

of the virus. The thesis's main focus is to explore the spatiotemporal patterns under the 

COVID-19 pandemic. Additionally, we conducted both spatiotemporal modeling analysis 

and spatiotemporal clustering analysis in Texas to identify some potential variables which 

are associated with the increase of confirmed cases. My thesis will help local governments 

locate the medical facilities and improve the social distancing recommendations regarding 

the COVID-19 outbreak. For instance, governments can use our results to locate risk areas 

and enforce guidelines to limit interaction in those areas and provide additional medical 

facilities. 
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1. INTRODUCTION  

The coronavirus (COVID-19) has caused a huge negative influence on the global. The 

virus continues to spread and has sickened more than 90,201,652 people up until January 

2021 and caused 1,937,091 deaths worldwide. Governments issued restrictions on 

traveling, institutions cancelled gatherings, and citizens socially distanced themselves to 

limit the increase of confirmed cases. COVID-19 has dragged down the global economy 

and travel around the world is restricted. Research has indicated that some spatial factors 

and locations are determined as a vital role in the early outbreak [1]. Although some 

timely efforts have been done such as restrictions on food, drink, non-essential travel, 

and social distancing, and some studies have been conducted on reducing the increase of 

confirmed cases, we found few works focused on the spatial and temporal variations of 

explanatory factors simultaneously. To analyze the relative importance of different 

factors in their influence of the evolution of the ongoing pandemic, researchers need to 

adopt an interdisciplinary approach. Spatiotemporal analysis should be firstly considered 

to handle COVID-19 related variables since these factors are changing over both 

spatially and temporally[2]. 

Many of unknowns affecting the spread of COVID-19 are spatially autocorrelated and 

thus the research should have ability to handle some spatial variables from different 

fields to interpret the outbreak and spread of COVID-19[3]. Researches across the world 

have shown that factors such as weather[4], human mobility[5], social vulnerability[6], 

and environmental conditions[7] may influence the severity of COVID-19. Until now, 

research concerning spatial analysis of potential factors affecting the spread of COVID-
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19 has been conducted using Geographically Weighted Regression[8][9] and Multiscale 

Geographically Weighted Regression. However, these methods did not incorporate 

temporal analysis, which may lead to erroneous estimates since they cannot capture 

temporal variation as the epidemic progresses. The goal of our study is to explore the 

associations between time-dependent variables such as mobility, weather, demographic 

variables and the outbreak of COVID-19. 

Our study can be separated into two main parts: exploration using extended GWR 

models and spatiotemporal clustering analysis. 

1.1. Exploration using Extended GWR Models 

Studies have explored demographic factors by using Geographically Weighted 

Regression [8][9]. For example, Karaye et al. (2020) [6] explored how social 

vulnerability influenced the COVID-19, and Pierre et al. (2021) explored the reduction 

in mobility and COVID-19 transmission. However, these studies only considered the 

spatial variations or added temporal information after finishing exploring the spatial 

variations[2], few studies handled spatial and temporal variations simultaneously when 

exploring COVID-19 related variables. Our experiment compared the performance of 

Geographically Temporally Weighted Regression[11] and Spatiotemporal Weighted 

Regression[12], and then applied the better model to explore the spatiotemporal 

variations of explanatory simultaneously. The result of the first part indicates Social 

Vulnerability Index (SVI), Population density, and Climate are associated with the 

increase of confirmed cases, and population density is the most important factor included 

in the model to drive the spread of COVID-19. With the advantage of extended GWR 
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including GTWR and STWR on handling spatial and temporal variations 

simultaneously, we took Texas as a study area and analyzed the effect of different 

variables on county level. We found population density is the main driving factor in the 

majority of counties in Texas, especially for the middle and northeast of Texas; 

Meanwhile, our results indicate that people are easily infected in a low wind speed, low 

temperature, and high SVI environment in the majority of counties in Texas. 

1.2. Spatiotemporal Clustering Analysis 

In this section, our focus switched to spatiotemporal clustering analysis. Studies have 

explored the pattern of COVID-19 related data by using time series clustering. For 

example, Huang et al.[13] applied K-means time series clustering on home dwell time 

records from Safe Graph [14], which reflects the pattern of length of time people stay in 

their home. However, clustering time series by K-means with Euclidean distance may 

cause misalignment because the time lag for each time series is different. K-means with 

dynamic time warping (DTW) on clustering time series can be treated as a good way to 

eliminate this misalignment, but clustering with K-means with DTW may cause a 

random result[15] (Details in Section 3). In order to eliminate the misalignment, Bathwal 

et al. [15] proposed a novel time series clustering method based on magnitude-

differences (dm) over the available time-differences (dt)[16], and applied it to COVID-

19 death time series. However, we found that the clustering result is easily affected by 

the size of the bin, and the random choice of the bin range may cause a misleading 

result. Another drawback for this clustering method is that the final result is hard to be 

interpretable. Therefore, inspired by a geo-referenced time series co-clustering method 
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[17] which can map locations and timestamps to the location and time step cluster 

simultaneously, we proposed a novel feature-based deep geo-referenced time series 

clustering method (DGTSC). The objective of our method is not only clustering the 

location, but also clustering the time period globally. The result from DGTSC will 

indicate which counties are clustered during which time period simultaneously. We 

applied DGTSC on the mobility data of Texas from the Bureau of Transportation 

Statistics[18] during COVID-19, and combined the policy changes and holidays to make 

the results interpretable. 
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2. EXPLORATION USING EXTENDED GWR MODELS 

Recent studies have found that spatial regression is an effective strategy to model 

phenomena such as the outbreaks of COVID-19, and to better understand it [1]. Therefore, 

we firstly choose spatial regression as our basic methodology to analyze the relationship 

between COVID-19 and some potential driving factors, and then we improve the 

methodology and performance step by step based on the simple global spatial regression 

in single spatial analysis. In general, two strategies are commonly used: one is global 

regression, and the other is local regression. The famous and popular model under the 

global regression strategy is ordinary least square (OLS) regression, which has the general 

form of: 

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽 + 𝜀𝑖 

where 𝑦𝑖 is the regression point at location 𝑖, 𝛽0 is the intercept, 𝑥𝑖 is the observation at 

location 𝑖, 𝛽 accounts for the influence and importance of observation 𝑥𝑖 on regression 

points 𝑦𝑖, and 𝜀𝑖 is the residual. 

However, when doing geographic spatial analysis, geographic features cannot meet the 

assumptions and requirements of OLS regression due to geographic features being 

spatially autocorrelated, and the modeling process is non-stationary. Thus, 

geographically weighted regression (GWR) [8][9]  was proposed to handle geographic 

features. GWR has achieved a great success in COVID-19 spatial analysis with its 

excellent performance on handling spatial variation, Maiti et al. (2021) [2] explored 

some COVID-19 related driven factors in the United States, but along with the arise of 

time-dependent data, the limit of GWR on handling temporal information is gradually 
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being discovered, for example, GWR can account for the population variation of some 

counties on spatial in a specific year, but it cannot well-handled the variation of the data 

on temporal from a year to another year. Considering some potential factors affecting the 

spread of COVID-19 are time-sensitive variables such as weather and mobility, a novel 

method should be applied to handle the spatial and temporal information simultaneously. 

So, we switched from GWR which can only handle spatial variation to GTWR and 

STWR, which are proposed by Huang et al.[11], Fotheringham el al. [21]and Xiang Que 

et al.[12], and compared their performance on handling COVID-19 related data. 

2.1. Geographically Weighted Regression 

Geographically Weighted Regression (GWR) is a spatial regression strategy[8][9], 

which can estimate parameters locally. the form of GWR model is: 

𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖)

𝑘

𝑋𝑖𝑘 + 𝜀𝑖 

where (𝑢𝑖 , 𝑣𝑖) is defined as the coordinates of location 𝑖, 𝛽0(𝑢𝑖, 𝑣𝑖) is defined as 

intercept of GWR, and 𝛽𝑘(𝑢𝑖, 𝑣𝑖) is the coefficient estimated at 𝑖, 𝑋𝑖𝑘 is the 𝑘𝑡ℎ 

observation at 𝑖. Unlike the global regression, GWR allows the parameter to be 

estimated locally on a spatial basis and thus handles local spatial variation well. In the 

GWR model, 𝛽𝑘(·) is estimated by using least square estimation: 

𝛽̂(·) = [𝑋𝑇𝑊(·)𝑋]−1𝑋𝑇𝑊(·)𝑌 

where 𝑊(·) is a 𝑛 × 𝑛 weight matrix for location 𝑖, whose diagonal elements represents 

the level of influence of observation points on location 𝑖. According to Tobler’s first 

law[19], the observation close to location 𝑖 will influence much more on location 𝑖 than 
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the observation which is farther from 𝑖. Therefore, if the observation is close to location 

𝑖, the weight will be greater. Two strategies are commonly used to construct the 

weighted matrix: one is the fixed kernel and the other is the adaptive kernel. The 

difference between fixed kernel and adaptive kernel is: distance is fixed in fixed kernel 

but an adaptive kernel means the number of neighbors is fixed but distance varies. 

GWR[8] used Gaussian decay-based function to construct the weight matrix: 

𝑊𝑖𝑗 = exp⁡(−
𝑑𝑖𝑗
2

ℎ2
) 

where ℎ denotes as bandwidth, and 𝑑𝑖𝑗 represents the spatial Euclidean distance between 

location 𝑖 (𝑢𝑖, 𝑣𝑖) to location 𝑗 (𝑢𝑗 , 𝑣𝑗), which can be expressed as: 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 

from the above equation, we can see if 𝑖 = 𝑗, the distance will be 0, and the weight will 

be unity. If the spatial distance increases, the weight will meet a decrease. Another 

popular and commonly used function in GWR is Bi-square kernel function, given a 

specific bandwidth ℎ, and the weight matrix is: 

𝑤𝑖(𝑢𝑖, 𝑣𝑖) = {[1 − (
𝑑𝑖𝑗
2

ℎ2
)]2, |𝑑𝑖𝑗| < ℎ

0, |𝑑𝑖𝑗| > ℎ
 

where 𝑑𝑖𝑗 is defined as the distance from location 𝑖 (𝑢𝑖, 𝑣𝑖) to the location 𝑗 (𝑢𝑗 , 𝑣𝑗), and 

ℎ is the optimal bandwidth. The choice of the optimal bandwidth is also important after 

the determination of weight matrix, there are three commonly used criterions in GWR 

model: 
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1. Cross-validation (CV) criterion: 

Given a specific bandwidth ℎ and remove the 𝑖𝑡ℎ observation, then estimate the 

parameter using the rest (𝑛 − 1) observations and get the result 𝑌̂(−𝑖)(ℎ) on 𝑋𝑖.  

𝐶𝑉(ℎ) = ⁡
1

ℎ
∑ (𝑌𝑖 − 𝑌̂(−𝑖)(ℎ))

2
𝑛

𝑖=1
 

The optimal bandwidth will be: 

ℎ0 = 𝑎𝑟𝑔min
ℎ>0

𝐶𝑉(ℎ) 

2. Generalized cross-validation (GCV) criterion: 

Assume 𝑌(ℎ) = (𝑌1(ℎ), ⁡𝑌2(ℎ),… , 𝑌𝑁(ℎ)) = 𝐿(ℎ)𝑌, and GCV can be expressed as: 

𝐺𝐶𝑉(ℎ) =
𝑛

(𝑛 − 𝑡𝑟(𝐿(ℎ)))2
∑ (𝑌𝑖 − 𝑌̂𝑖(ℎ))

2
𝑛

𝑖=1
 

The optimal bandwidth ℎ0 will be: 

ℎ0 = ⁡𝑎𝑟𝑔min
ℎ>0

𝐺𝐶𝑉(ℎ) 

3. Corrected Akaike Information (AIC) Criterion: 

Let 𝑌̂(ℎ) = 𝐿(ℎ)𝑌, and 𝜀̂ = 𝑌𝑇(𝐼𝑛 − 𝐿(ℎ))
𝑇
(𝐼𝑛 − 𝐿(ℎ))𝑌, AIC can be expressed as: 

𝐴𝐼𝐶𝑐(ℎ) = log (
1

𝑛
𝜀̂𝑇𝜀̂) +⁡

𝑛 + 𝑡𝑟(𝐿(ℎ))

𝑛 − 2 − 𝑡𝑟(𝐿(ℎ))
 

and the optimal ℎ0 will be: 

ℎ0 = ⁡𝑎𝑟𝑔min
ℎ>0

𝐴𝐼𝐶𝑐(ℎ) 

2.2. Geographically Temporally Weighted Regression 

GWR can be used as a local variation modeling technique to explore the potential factors 

affecting spread of COVID-19 to some extent. However, for some COVID-19 related 

data such as confirmed cases, deaths and weather, the temporal effect is also important, 

and thus the limit of GWR on handling temporal effects is obvious. In order to not only 
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account for spatial variations, but also account for temporal variations. We explored the 

existing spatiotemporal methodologies, and found some works [11] [21] extended the 

traditional GWR into a Geographically Temporal Weighted Regression model which 

captures both spatial and temporal variations. In the case study given in the GTWR, its 

performance on modeling spatiotemporal house price exceeded that of GWR with a 

higher 𝑅2 with an optimal balanced parameter. The main difference between GWR and 

GTWR is: the weight matrix in GTWR is determined not only by spatial distance but 

also by temporal distance between two locations. Unlike the format of input in GWR 

(𝑥, 𝑦), which only includes the coordinate of location 𝑖, GTWR added the timestep 𝑡 and 

changed the form as (𝑥, 𝑦, 𝑡), where (𝑥, 𝑦) represents the latitude and longitude of 

location 𝑖, and 𝑡 represents the time stage. Therefore, the GTWR extended from GWR 

can be expressed as: 

𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖, 𝑡𝑖) +∑𝛽𝑘(𝑢𝑖, 𝑣𝑖, 𝑡𝑖)𝑋𝑖𝑘 + 𝜀𝑖
𝑘

 

where (𝑢𝑖 , 𝑣𝑖) represents the latitude and longitude of location 𝑖,  𝑘 represents the 𝑘𝑡ℎ 

observations in location 𝑖, and 𝑡𝑖 represents the time stage. Similarly, 𝛽 in GTWR can be 

estimated by using ordinary least square which can be expressed as: 

𝛽̂(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) = [𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖)𝑋]
−1𝑋𝑇𝑊(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖)𝑌 

In order to balance the temporal and spatial weights, 𝜇 and 𝜆 are introduced, and the 

spatiotemporal distance in GTWR can be expressed as: 

(𝑑𝑖𝑗
𝑆𝑇)2 = 𝜆 [(𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
] + 𝜇(𝑡𝑖 − 𝑡𝑗)

2
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where (𝑢𝑖 , 𝑣𝑖) (𝑢𝑗 , 𝑣𝑗) represents the coordinate of location 𝑖 and 𝑗, 𝑡𝑖 and 𝑡𝑗 are observed 

time stages at location 𝑖 and 𝑗, 𝜆 and 𝜇 are the parameter to balance the distance between 

spatial distance and temporal distance. If we define: 𝜏 =
𝜇

𝜆
 , the above equation can be 

rewrite as: 

(𝑑𝑖𝑗
𝑆𝑇)2

𝜆
= [(𝑢𝑖 − 𝑢𝑗)

2
+ (𝑣𝑖 − 𝑣𝑗)

2
] + 𝜏(𝑡𝑖 − 𝑡𝑗)

2
 

𝜆 and 𝜇 can be determined by cross-validation in terms of 𝑅2.  

2.3. Spatiotemporal Weighted Regression 

Although GTWR can handle the temporal and spatial variations to some extent, another 

existing spatiotemporal regression methodology called spatiotemporal weighted 

regression was first proposed by Xiang Que et al. (2020), points out the concept in 

GTWR on treating temporal distance as time interval is inappropriate[12], and STWR 

proposed a novel method to balance the temporal and spatial variation, besides, STWR 

designed a novel temporal kernel function. In GTWR models, which proposed by Huang 

et al.[11] and improved by Fotheringham. [21], time interval 𝑡1 − 𝑡2 is used to account 

for temporal variation, and Gaussian and Bi-square kernel functions from GWR are used 

directly to construct the weight matrix in GTWR. However, STWR points that these two 

strategies are not reasonable. Firstly, instead of using time interval 𝑡1 − 𝑡2 in GTWR, 

STWR used the value variation during a time interval in order to make the temporal 

distance be more reasonable, which can be expressed as ∆𝑡 =
(𝑦1−𝑦2)/𝑦2

𝑡1−𝑡2
. Take the 

confirmed case from COVID-19 as an example, if the confirmed case variation is too 

small, the observation at this time may have a relative low influence. Secondly, unlike 
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the temporal kernel function in GTWR which still used Gaussian function, STWR 

designed a novel temporal kernel function: 

𝑤𝑖𝑗∆𝑡
𝑡 =

{
 
 

 
 

[
 
 
 
 

2

1 + exp(−
|(𝑦𝑗(𝑡) − 𝑦𝑗(𝑡−𝑞))/𝑦𝑗(𝑡−𝑞)|

∆𝑡/𝑏𝑇
)
]
 
 
 
 

− 1, 𝑖𝑓⁡0 < ∆𝑡 < 𝑏𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑦𝑗(𝑡) − 𝑦𝑗(𝑡−𝑞) is the difference of value between observation and regression 

location 𝑖. 𝑦𝑗(𝑡) − 𝑦𝑗(𝑡−𝑞)/𝑦𝑗(𝑡−𝑞) is the change rate. The faster value change, the bigger 

weight is and the larger impact is. The spatial kernel function is the same as that in 

GTWR: Gaussian kernel function and Bi-square kernel function. Finally, the novel 

spatiotemporal kernel function can be expressed as: 

𝑤𝑖𝑗𝑆𝑇
𝑡 = (1 − 𝛼)𝑘𝑠(𝑑𝑠𝑖𝑗𝑏𝑆𝑇) + 𝛼𝑘𝑇(𝑑𝑖𝑗𝑏𝑇), 0 ≤ 𝛼 ≤ 1 

where 𝑘𝑠 and 𝑘𝑇 are is the spatial and temporal kernel function, 𝑏 is the bandwidth and 

𝛼 is a parameter to adjust the spatial and temporal weight. The bandwidth and parameter 

estimation can be obtained by using Cross Validation and AIC. Therefore, Xiang Que et 

al. (2020) purports to develop a novel strategy in STWR which aims to account for 

temporal variations more perfectly and construct the kernel function to optimize spatial 

and temporal effects simultaneously. 

2.4. Datasets 

2.4.1. Data Collection, Selection and Preprocessing 

We collected the weather, health, demographic which contains 213 variables, and 

COVID-19 confirmed case data. We matched these variables by their corresponding 

Federal Information Processing Standard (FIPS). In the process of selection of variables, 
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we did the collinearity test through computing Variance Inflation Factors (VIF) of 213 

variables, and assume a high collinearity will be met if VIF value is higher than 10. For 

example, we found the VIF value of Social Vulnerability Index and some demographic 

variables such as unemployment and poverty are higher than 10, which means they have 

a high collinearity, this is caused by the calculation of SVI which considers 

socioeconomic status such as income and unemployed rate. We filtered the redundant 

variables step by step in order to ensure the multicollinearity was entirely eliminated.  

Finally, we chose population density, wind speed, temperature, humidity and SVI as our 

independent variables (Table 1: VIF Value). 

 

 VIF 

Confirmed Case 3.981 

Population Density 4.043 

Wind Speed 1.554 

Temperature 3.090 

Humidity 2.398 

SVI 1.065 

Table 1: VIF Value 

 

In order to improve the efficiency of computation in models, we did a Z-score 

normalization on filtered variables, whose result is standardized by mean and standard 

deviation of input variables. The processes of variables were conducted in Python 3.6. 
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2.4.2. COVID-19 

COVID-19 U.S. confirmed case data from New York Times are the cumulative number 

of confirmed cases and daily confirmed cases in the form of time series. 

2.4.3. Demographic Variables 

Demographic Variable contains population density data, we used the population density 

in each county as one of our potential factors which helps the spread of COVID-19. 

2.4.4. Weather 

Weather includes temperature, wind speed and humidity data. Over 9000 stations' data 

are available. We used temperature, wind speed, and humidity. Each county is paired 

with the nearest weather station. Most stations are within 50 km of the county center, 

and virtually all are within 100 km of the county center. 

2.4.5. Social Vulnerability Index (SVI) 

The SVI is calculated by 14 social factors such as socioeconomic factors, household and 

transportation factors. SVI can help governments to understand which county is easily 

affected by some disasters such as flood or pandemic. For example, if the SVI of a 

county is higher, which means this county may easily be affected by some disasters. 

2.5. Comparison and Result Analysis 

We compared the performance of OLS, GTWR, STWR on handling Texas weather, 

population, and SVI data respectively, and the result indicates that STWR outperforms 

when compared with OLS and GTWR, with a higher 𝑅2 = 0.865, lower 

𝑅𝑜𝑜𝑡⁡𝑆𝑢𝑚⁡𝑆𝑞𝑢𝑎𝑟𝑒⁡(𝑅𝑆𝑆) = 16.63, lower 𝐴𝐼𝐶 = 22.535, and 𝐴𝐼𝐶𝑐 = 32.004.  
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Comparison: 

Model R2 Adj R2 RSS AIC AICc 

OLS 0.454 0.443 288.86 1688.734 1688.832 

GTWR 0.812 0.805 94.74 528.998 598.933 

STWR 0.865 0.861 16.63 22.535 32.004 

Table 2: Result of OLS, GTWR& STWR 

 

2.5.1. GTWR Coefficient Estimation and Optimal Parameter 

Optimal Parameter: 

Parameter Value 

Optimal Bandwidth 3.56 

Lambda 0.80 

Adaptive FALSE 

Kernel bi-square 

Table 3: Optimal Parameter in GTWR 

 

 

Figure 1: Balanced Parameter 
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In the GTWR, we chose Cross-Validation as the criterion and Bi-square as kernel 

function. The optimal spatiotemporal bandwidth is 3.56, and the optimal balance 

parameter between spatial and temporal effects is 𝜆 = 0.8 with the highest 𝑅2 =

0.812.(Figure 1: Balanced Parameter) 

Coefficient Estimation: 

 Min Median Max 

Intercept -6.820 -0.043 1.149 

Wind Speed -2.136 0.002 0.450 

Humidity -2.319 -0.017 0.451 

Temperature -2.239 -0.011 1.195 

SVI -0.154 0.081 2.142 

Population Density -0.796 0.846 4.621 

Table 4: Coefficient Estimation in GTWR 

 

The parameters in (Table 4: Coefficient Estimation in GTWR) are generated from 

GTWR on modeling weather, population density and SVI with optimal parameters 

mentioned above. From the estimation of coefficients in GTWR, we found although 

these variables have been proved to be the driven factors affecting the spread of COVID-

19, when compared with each other, population density will be the dominant factor 

which caused the increase of confirmed cases. The work of GTWR was conducted in R 

4.0.2. 

 



 

16 

 

2.5.2. STWR Coefficient Estimation and Optimal Parameter 

Optimal Parameter: 

Parameter Value 

Optimal Bandwidth 8.90 

Alpha 0.20 

Adaptive FALSE 

Kernel bi-square 

Table 5: Optimal Parameter in STWR 

 

In the STWR, the optimal bandwidth is 8.90 which calculated by Cross-Validation, and 

the balance factor 𝛼 = 0.2. We set adaptive be false, and used the same spatial kernel 

function as that in GTWR. 

Coefficient Estimation: 

 Min Median Max 

Intercept -0.498 -0.136 0.832 

Wind Speed -0.113 0.007 0.124 

Humidity -0.324 0.019 0.149 

Temperature -0.406 -0.087 0.159 

SVI -0.003 0.066 0.290 

Population Density 0.637 0.929 4.564 

Table 6: Coefficient Estimation in STWR 
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From the (Table 6: Coefficient Estimation in STWR), we can see that weather and SVI 

can affect the spread of COVID-19 to some extent, but population density is still the 

dominant factor affecting the spread of COVID-19 in STWR. This work was conducted 

in Python 3.6. 

2.5.3. Visualization on the Map 

We finally chose STWR to model the spatial and temporal variations simultaneously 

since it has a better performance when compared with OLS and GTWR even if STWR 

cost much time than GTWR.  

Firstly, we generated the local 𝑅2 (Figure 2: Local R2) by using STWR, and found the 

𝑅2 of the majority of counties are higher than 0.8, which means the confirmed case can 

be explained by weather, SVI, and population density very well in most counties of 

Texas. Then, we displayed the estimation of coefficients of each county on the map 

(Figure 3: Coefficient of Intercept to Figure 8: Coefficient of SVI) so that we can see the 

influence of these variables on affecting the spread of COVID-19 on different locations. 

 

Figure 2: Local R2 
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Figure 3: Coefficient of Intercept 

 

 

 

 

Figure 4: Coefficient of Population Density 
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Figure 5: Coefficient of Wind Speed 

 

 

 

 

Figure 6: Coefficient of Humidity 
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Figure 7: Coefficient of Temperature 

 

 

 

 

Figure 8: Coefficient of SVI 
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2.6. Conclusion 

(Figure 3: Coefficient of Intercept to Figure 8: Coefficient of SVI) shows us the 

estimation of coefficients in Texas on county level. Although some studies have been 

done which provide the foundation that increase of confirmed cases is associated with 

the temperature, wind speed, humidity[22], SVI[23], and population density[24]. Few 

studies explored spatial and temporal variations simultaneously and revealed which 

factor is the most influential to affect the spread of COVID-19. In the first part of our 

study, we explored these factors and found population density is the main driving factor 

in the majority of counties in Texas, especially in the middle and northeast of Texas, to 

help the increase of confirmed cases. Besides, we found wind speed and humidity will 

also be associated with the increase of confirmed cases in some scatter counties. 

Although the spread of COVID-19 is fastened by low temperature in majority of 

counties, high temperature in some counties is evident to help the spread of COVID-19 

such as Blanco County (FIPS: 48031), Lavaca County (FIPS: 45285) and Jim Hogg 

County (FIPS: 48247). Meanwhile, our results indicated that people are easily infected 

in a low wind speed, high humidity, low temperature and high SVI environment in most 

counties of Texas. 
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3. SPATIOTEMPORAL CLUSTERING ANALYSIS 

3.1. Introduction to Time Series Clustering 

Time-series data are increasing with the improvement of data storage[25]. Extracting 

and analyzing patterns from time series data is important[26][27] since we can learn 

some useful knowledge which is hidden in the data[28]. Clustering has been widely used 

in spatiotemporal data mining which aims to group similar data [29]. Therefore, it is 

necessary to cluster spatiotemporal COVID-19 related data so that we can learn some 

hidden knowledge. Time series clustering is to find patterns in time series. In general, 

there are three common ways to cluster time series[25]: Whole time series clustering 

means clustering on the whole raw time series without doing any transformation on 

original time series, subsequence clustering will cluster the subsequences generated from 

original time series, and point clustering is based on the time-point values. [25] 

Furthermore, there are two common approaches for clustering time series: shaped-based 

and feature-based. In a shape-based approach, time clustering algorithm will cluster the 

time series if their shapes are similar. With a feature-based approach, we need to extract 

features from original time series and then apply K-means, DBSCAN or some clustering 

algorithms on these features. 

3.2. Literature Review 

Recent studies have explored the COVID-19 related data by using time series clustering, 

for example, Huang et al.[13] applied K-means on home dwell time records from Safe 

Graph [14]. However, we found it may generate a misleading result if the time lag 

between two times-series is different when we applied this strategy on mobility datasets 
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from BTS. Dynamic Time Warping (DTW) is an algorithm to match two time series as 

possible and thus eliminate the time lags between two time series (Figure 9: Dynamic 

Time Warping), which can be treated as a good way to eliminate this misalignment. 

domain[30].  

 

Figure 9: Dynamic Time Warping (Image by Esmaeil Alizadeh[31]) 

 

However, the result of clustering geo-referenced time series by using K-means + 

Euclidean distance or DTW distance seemed random. (Figure 10: Clustered by using K-

means + DTW).  

 
Figure 10: Clustered by using K-means + DTW 
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Bathwal et al. (2020) also mentioned this problem in their work and proposed a novel 

method based on dmdt [16], which is a concept of transferring from time series into 

image. (Figure 11: The novel method [15] based on dmdt). Take the time-series 

generated by death during COVID-19 in a county as an example, dmdt will generate the 

difference of magnitude and the difference of time firstly in the form of [𝑑𝑚, 𝑑𝑡], and 

then the bin range will be set manually. Meanwhile, an image with size 8 × 8 will be 

created according to the bin size to receive the patterns generated by dmdt, thus the color 

for each bin represents the number of features located in that bin (pixel). In the last step, 

a new 4 × 4 image will be transformed after a max-pooling, and this 4 × 4 image will be 

flattened into a  1 × 16 vector to do clustering. 

 

 

Figure 11: The novel method [15] based on dmdt [16] 

 

We applied the method based on dmdt on mobility datasets, and we tried both max-

pooling and average-pooling when doing image transformation. Although our result 

(Figure 12: Max-pooling dmdt and Figure 13: Average Pooling dmdt) seems good, there 

are some drawbacks for this method: 1. It is hard to find the optimal bin, if we change 
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the range of the bin, the result will be different. 2. The result of the cluster only tells us 

how many features are located in each bin, which is hard to make results interpretable. 

 

Figure 12: Max-pooling dmdt 

 

Figure 13: Average Pooling dmdt 
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3.3. Deep Geo-referenced Time Series Clustering 

Based on the previous research and literature review, we designed a novel feature-based 

time series clustering method (Figure 14: Deep Geo-referenced Time Series Clustering). 

We designed three stages in this network. The first stage denoises and splits the original 

time series into subsequences, the second stage finds the effective latent representation 

for temporal clustering by minimizing mean square error, and the last stage does 

temporal clustering. To be more specific, in the first stage, consider a temporal sequence 

𝑇: 𝑥1, 𝑥2, … , 𝑥𝑛, we firstly did a 7-day moving average to reduce the impact of some 

outliers and noise in original time series 𝑇, and another reason we choose 7 days is 

because we want to explore weekly pattern, the result is a new transformed time series 

and we defined it as 𝑇𝑀𝐴. Secondly, we added a sliding window with adjusting 

parameters 𝑤𝑖𝑑𝑡ℎ⁡and 𝑠𝑡𝑒𝑝𝑠⁡, the result is a set of subsequences which extracted from 

𝑇𝑀𝐴. The set of subsequences can be expressed as: 𝑇𝑀𝐴 = {𝑇𝑀𝐴
1 , 𝑇𝑀𝐴

2 , … , 𝑇𝑀𝐴
𝑁 }, where 𝑁 

is the number of subsequences. For example, if we set the timesteps be 128, and we set 

𝑤𝑖𝑑𝑡ℎ⁡ = ⁡8 and 𝑠𝑡𝑒𝑝𝑠⁡ = ⁡8, there will be 
128

8
= 16 subsequences. In the second stage, 

our goal is to find an informative latent representation by making use of a temporal 

autoencoder. The first two layers will be a 1D convolutional layer with max pooling 

layer, which can capture the short-term features. The next two layers will be 

Bidirectional-Long Short-Term Memory to learn temporal changes in two directions of 

time, which casts the original subsequence into a much smaller latent space. Finally, the 

features in latent space which retains most of the relevant information will be assigned to 
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a clustering algorithm. In this process, our objective is to minimize loss so that latent 

representations can retain more useful information.  

 

Figure 14: Deep Geo-referenced Time Series Clustering 

 

3.4. Result and Analysis 

We chose K-means as a clustering algorithm and applied DGTSC on the mobility time 

series for 254 counties in Texas. Mobility datasets are from the Bureau of Transportation 

Statistics[18], which provides trips by distance for each county. The mobility data can 

reflect the travel distance of the people in a specific county. The parameter of the 

network is: 𝑖𝑛𝑝𝑢𝑡⁡𝑠𝑖𝑧𝑒⁡ = ⁡8 and output will be 2-dimensional latent representations. 

Then, we chose 𝐾 = 4 by applying elbow method (Figure 15: Elbow Method to find 

best K=4), and (Figure 16: Cluster of Latent Representations)is the plot of the result of 

clustering 2-dimensional latent representations. In this plot, 𝑋 and 𝑌 are both represent 

the mobility level, if 𝑋 is greater, which means the mobility level will be at a higher 

level. So, from this plot, we can see there are four mobility levels: yellow cluster is the 
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highest mobility level in the right top corner and the dark blue cluster is the second 

mobility level, green is the third mobility level and purple cluster is the lowest mobility 

level in the left bottom corner.  

 

Figure 15: Elbow Method to find best K=4 

 

 

Figure 16: Cluster of Latent Representations  

 

The result of deep geo-referenced time series clustering can also be displayed as a 

heatmap (Figure 17: Cluster Heatmap), where 𝑋 represents 254 counties in Texas and 𝑌 

represents 33 weeks we explored from Jan 1st, 2020 to the beginning of September 2020. 
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In the heatmap, orange is the highest mobility level and we define it as 𝑀1, yellow is the 

second mobility level and we define it as 𝑀2, blue is the third mobility level and we 

define it as 𝑀3, and green is the lowest mobility level and we define it as 𝑀4. From the 

heat map we can see a clear mobility pattern change that Texas had suffered, from initial 

mobility level 𝑀2 to the last mobility level 𝑀3. We plot the heatmap on the map, and the 

change of clusters from Jan 1st 2020 to September 2020 from Figure 18: Mar 12nd, 

Mobility Level to Figure 31: Sep 17th, Mobility Level can be obtained. In these figures, 

yellow represents the highest mobility level and we defined it as 𝑀1, purple is the second 

mobility level 𝑀2, green is the third mobility level 𝑀3, and grey green is the lowest 

mobility level 𝑀4, and we combined the policy and holiday to make the cluster be 

interpretable. 

 

Figure 17: Cluster Heatmap 
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Date: 3.12 ~ 3.20 

 

Figure 18: Mar 12nd, Mobility Level 

 

 

Figure 19: Mar 20th, Mobility Level 

From Mar 12th to Mar 20th, we can see a jump on mobility level from 𝑀1 to 𝑀3 in the 

majority of counties in Texas, which means the mobility level meets a decrease. 
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According to the policy, we found the policy that state of emergency was announced on 

Mar 13th appears associated with this decrease. 

Date: 3.20 ~ 3.28 

 

Figure 20: Mar 20th, Mobility Level 

 

Figure 21: Mar 28th, Mobility Level 

From Mar 20th to Mar 28th, we can see a decrease on mobility level from 𝑀3 to 𝑀4 in the 

majority of counties in Texas. According to the policy, we found the policy that food, 
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drink and non-essential travel restrictions was announced on Mar 16th and appears 

associated with this decrease. 

Date: 3.28 ~ 4.5  

 

Figure 22: Mar 28th, Mobility Level 

 

Figure 23: Apr 5th, Mobility Level 

From Mar 28th to Apr 5th, we can see a continuous decrease on mobility level from 𝑀3 to 

𝑀4 in some counties located in the west of Texas . According to the policy, we found the 
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policy that shelter in place was announced on Mar 24th appears associated with this 

decrease. 

Date: 4.28 ~ 5.14 

 

Figure 24: Apr 28th, Mobility Level 

 

Figure 25: May 14th, Mobility Level 

From Apr 28th to May 14th, we can see a sudden increase on mobility level from 𝑀4 to 

𝑀3 in some counties located in the middle and east of Texas . According to the policy, 
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we found the policy that a stop shelter in place was announced on Apr 30th appears 

associated with this decrease. 

Date: 5.6 ~ 5.24 

 

Figure 26: May 6th, Mobility Level 

 

 

Figure 27: Mar 24th, Mobility Level 

From May 5th to May 24th, we can see a continuous increase on mobility level from 𝑀4 

to 𝑀3 in some counties located in the west of Texas . According to the policy, we found 
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the policy that mandate face mask use by all individuals in public was announced on 

May 8th appears associated with this decrease. 

Date: 6.23 ~ 7.1 

 

Figure 28: Jun 23rd, Mobility Level 

 

 

Figure 29: Jul 1st, Mobility Level 
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From Jun 23th to Jul 1st, we can see a decrease on mobility level from 𝑀2 to 𝑀3 in some 

counties of Texas . According to the policy, we found the policy that stops reopen in 

Texas and Florida was announced on Jun 26th appears associated with this decrease. 

Date: 9.1~9.17 

 

Figure 30: Sep 1st, Mobility Level 

 

 

Figure 31: Sep 17th, Mobility Level 
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From Sep 1st to Sep 17th , we can see a increase on mobility level from 𝑀2 to 𝑀1 in some 

counties located in the west of Texas . According to the holiday, we found Sep 6th is 

labor day appears associated with this increase. 
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4. CONCLUSIONS AND FUTURE WORK 

4.1. Conclusion 

We make use of two strategies: modeling analysis and clustering analysis to explore the 

potential driven factors affecting the increase of confirmed cases. The first part of our 

work indicates that population density, weather, and SVI are associated with the increase 

of confirmed cases, and population density was the most influential factor included in 

the model affecting the increase of confirmed cases. We take Texas as a study area and 

found the spread of COVID-19 is mainly affected by population density in the majority 

of counties in Texas, especially for the counties located in the northeast of Texas. 

Meanwhile, a county with high SVI, low temperature, high wind speed will also help the 

spread of COVID-19. In the second part, our result indicates that the mobility level is 

affected by the announced policy and holidays to some extent. According to the pattern 

of mobility, we found that the mobility response to a policy will first show in the middle 

and east of Texas, and then spread to some counties located in west Texas. Besides, the 

mobility response of some counties located in northwest Texas was not affected like that 

in the middle and east of Texas. 

4.2. Future Work 

Although we have explored some potential driving factors and some hidden information 

in mobility by GTWR, STWR and time series clustering, we still have some work to do 

in the future: 

1. For modeling analysis, we make use of Extended GWR models, but the pattern of 

these variables for Texas is not enough, we will continue to extend from Texas to the 
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whole United States in the future work. 

2. For time series clustering, we also need to explore the mobility pattern of the whole 

United states. Another work needs to be done is we should try some different datasets 

and to see whether the patterns are similar so that make the result be more reliable. 

Besides, our network still needs to be improved, we should combine the autoencoder 

part with the clustering part and optimize them simultaneously, which may improve 

the accuracy of clustering.  

3. Although many time series clustering strategies have been proposed, geo-referenced 

time series is different from the common time series such audio time series since Geo-

referenced time series have a strong autocorrelation that we cannot ignore[19]. So, 

another future work we should do is to incorporate spatial autocorrelation into time 

series clustering networks. 
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