OPTIMIZATION OF VLSI ARCHITECTURE FOR MATRIX-VECTOR MULTIPLICATION
AND PARK TRANSFORMATION WITH APPLICATION TO POWER SYSTEM
SIMULATION

A Thesis

by
NAGA SHIVA SAI PAVAN KUMAR DEVARASETTI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
Chair of Committee, Weiping Shi
Co-Chairs of Committee, PR Kumar
Committee Members, Vivek Sarin
Head of Department, Aniruddha Datta
May 2021

Major Subject: Computer Engineering

Copyright 2021 NAGA SHIVA SAI PAVAN KUMAR DEVARASETTI

ABSTRACT

Contemporary Power systems with renewable generators, power electronics possess new chal-
lenges to the system operators. The significant increase of variable energy resources in the power
grid leads to a stressed grid with much higher variabilities at the operational stage. Such variabil-
ities together with today’s lack of accurate simulation capabilities lead to significant uncertainties
in predicting the dynamics across the grid.

Hence, Fast simulation tools are required for transient analysis such as the electro-magnetic
transient program (EMTP). Electromagnetic transient (EMT) simulation is the most powerful tool
which could handle various detailed device models and capture high-speed dynamic behavior in the
power system. However, due to the enormous complexity of the power systems, these simulators
tend to be slow in simulating real-time data. In order to accelerate these computations, we can
take the advantage of GPUs and FPGAs. But still, the ‘real-time’ simulation is not fast enough to
simulate the true real-time of a large system. To overcome this limitation, a custom chip (ASIC)
for simulating power systems is necessary.

Matrix Multiplication is one of the most fundamental basic operations in the current complex
digital circuits and is vastly used in the image, signal processing applications[1]. In EMTP sim-
ulation, Matrix-Vector Multiplication is used in solving network equations and the input to these
are current(l) from different buses of a large system. These vectors tend to be periodic with a
fundamental frequency of 60 Hz along with other higher-order harmonics. When sampled with a
relatively higher frequency rate, the consecutive samples of the inputs tend to be close and it is in-
efficient to compute the matrix operation again and again at every time step. Instead, In this thesis,
we aim to propose an architecture based on the higher-order difference which takes variation with
respect to the previous sample to compute the actual result.

Park Transformation and Inverse Park Transformation are the interfaces between non-network
and network part. They convert state variables from DQO coordinate to three-phase coordinate

and vice versa. Linear interpolation is a method of curve fitting using polynomials to construct

i

new data points within the range of a discrete set of known data points. In this thesis, we propose
a ROM architecture combined with linear interpolation technique to compute the high precision

sinusoid values.

1l

DEDICATION

To my parents, younger brother and grandparents for their unconditional love, support and

sacrifice.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor and committee chair Dr. Weiping
Shi for his continuous guidance, untiring support and immense knowledge and for keeping me
motivated throughout the last two years. I appreciate the trust he had in me before accepting me to
his research group. The many discussions I have had with him have proven to be instrumental in
completing my research work.

I would like to thank Dr. P. R. Kumar and Dr. Vivek Sarin for serving on my committee.

I would like to thank Zhang Lu and Zhixing Li, PhD scholars for taking their time in conducting
meetings, collaborating with me in making progress.

I would also like to thank my friend Ram Chander Bhaskara, RA from Aerospace Department
for lending his Zybo Z7-20 board on which a part of this thesis work has been carried out.

Last but not least, I would like to thank my friends here at College Station who always sup-
ported me and kept me smiling during the time of distress. Without their unconditional support,
this wouldn’t have been possible.

Special thanks to Dr. Vipin Kizheppatt, Assistant Professor BITS Goa, India for his playlist
on Reconfigurable Embedded Systems with Xilinx Zynq APSoC in YouTube and Dr Christopher
Batten, Associate Professor, Cornell University for his free tutorial on Synopsys/Cadence ASIC

Tools using NanGate 45nm process.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

All work conducted for the thesis (or) dissertation was completed by the student, under the

advisement of Weiping Shi of the Department of Electrical and Computer Engineering.
Funding Sources

Graduate study was partly supported through a scholarship from the ECE department at Texas

AM University.

vi

EMT
DAE
ODE
CPU
GPU
FPGA
ASIC
SVD
HiLap
RTL
HDL
ARM
ROM
SoC
DSP
DRC
EDA
VLSI

IC

NOMENCLATURE

Electromagnetic Transients
Differential- Algebraic Equation
Ordinary-Differential Equation
Central Processing Unit

Graphic Processing Unit

Field - Programmable Gate Array
Application - Specific Integrated Circuit
Singular Value Decomposition
Hierarchical Low-rank Approximation
Register Transfer Level

Hardware Description Language
Advanced RISC Machine

Read Only Memory

System on Chip

Digital Signal Processing

Design Rule Check

Electronic Design Automation

Very Large Scale Integration

Integrated Circuits

Vil

TABLE OF CONTENTS

Page

AB ST R ACT o il
DEDICATION . . .ottt e v
ACKNOWLEDGMENTS .. v
CONTRIBUTORS AND FUNDING SOURCES ...t vi
NOMENCLATUREo e vii
TABLE OF CONTENTS ...ttt e viii
LIST OF FIGURES X
1. INTRODUCTION. ...ttt e 1
R 016 04 1T 5T) 1 1

1.2 Network EQUAtiONSoooviiiiiiii e 2

1.3 Park Transformation and Inverse Park Transformation 3

LA OUINE ..ot 4

2. PREVIOUS WORK 5
2.1 Matrix Vector MUltiplicationcooiiiiiuiiiniee i eeees 5
2.2 Park and Inverse park transformation 6

3. NUMBER REPRESENTATION ...ttt 8
3.1 Radix Number SySteImoooiiiiiiiiiii e 8
3.2 Signed Number Representationoouuuiiiiieiiiiiiiiiieeeeiiiiiiiaaeeeaaes 9

3.3 Fixed Point Representationooeeeeiiiiiiiine ettt eiiiiiaeeeeaans 10
3.4 Floating Point Representationoeeuuiuiiieeeeeeeiiiiiieeeeeeeeiiiiaaeeaanns 11

3.5 Fixed vs Floating Point format e 12

4. MATRIX VECTOR MULTIPLICATION. ...ttt 14
4.1 Efficient Hardware for computing Network Solutioncoooveiiiaan. 14
4.1.1 Higher Order Differenceoooiiiiiiiiiiiiiiiii i 14

4.1.2 Bitreduction SChemMEiiii i e 18

4.2 Matrix vector multipliCationooouuuuiiiii i 21
4.2.1 Previous WOTK ... 24

4.2.2 Comparison between two architectures for matrix vector multiplication...... 26

4.2.3 Matrix vector multiplication using higher order difference 26
424 Storing U and V ... 27

4.2.5 Computing A2z, using SUDLIACIOTSoout ittt aeanns 28
4.2.6 Computing v;. A%z, and >, u;.(v;A%z;) then using multipliers and adders 29
4.277 Computing A%y, using addersoovviiiriiieiiiiiieiieeieaaan. 30
4.2.8 FINal CIrCULLttt e 31

4.2.9 RTL Simulation Results.............ouuiiiiiiiiiiieee 32
4.2.10 Comparison between Floating and Fixed Point implementation................ 32

4.3 FPGA Implementationueeiuuee ettt et e et ie e e ie e e eiae e eeainaeas 34
4.3.1 Integrating and Simulating the circuit on FPGAo. 34
4.3.2 System ATrChIfECIUIEuutttttet e 37

4.3.3 Matrix Multiplication Peripheral ... 40
4.3.4 Block Diagram.........coouuuuiiiiiiiiiiii e 41

4.3.5 ARM Programmingoeeeeettiiiiiiieeeeeeetiiiaeeeeeeeiiiiaaaeeaaans 42
4.3.6 ReSUILS ..ttt e 43

4.4 ASIC Implementation..........ouueutitiittittitt ittt eeeeeeaeaaaann. 45
4.4.1 Synthesizing the RTL code to netlist using Synopsys Design Compiler 45
4.4.2 Comparison between different order of differentiation after implementation . 51

4.4.3 Place and Route using Cadence Innovuscooiiiiiiiiiiiiiiiinnnnna.. 51

5. PARK AND INVERSE PARK TRANSFORMATIONcccoiiiiiiiiiiiiiiiiiiieeeannn. 60
5.1 Interface between network and non - network part................ooiiiiiiiiiiiiian. 60
5.2 Linear Interpolationooiiiuuuiiie ettt 61
5.3 Linear Interpolation for computing sinusoid valuesoovviiiiiiiiinenena., 62
S3. 1 Previous WOrk. ... 62

5.3.2 Proposed methodoooiiiiiiiiiiiiiiii i 64

5.3.3 SKIpPINg ROWS. ..ot 65

5.3.4 SKIipping COIUMDSttt ettt et es 67

5.4 VLSIImplementation of ROM 69
541 Block DIagrame........oooeiieiiiiiii 70

5.4.2 Circuit Design - column and row decoders...................ooooiiiiiii.t. 72

5.4.3 Circuit Design - cOlumMn mMuXooeiiiiiiiinneiiiiiiiiiee e eiannn. 74

6. CONCLUSION . ..ottt e, 75
REFERENCES ... e 76

1X

LIST OF FIGURES

FIGURE Page
R 1V BN o 2
1.2 Matrix vector multipliCationcoviiiiuiin ettt iiiiee e e e eeeaanns 3
2.1 Matrix Multiplicationooiiiiiiiiiiii i e 6
3.1 Floating point NOAtIONoeutt ettt e et ettt e e e e e ettt e e e e e e eeeiiaaeeeaaans 11
4.1 X7 WaVETOTM. ..o 17
4.2 TAXT WAVETOITIL ...ttt ettt 17
4.3 Matrix Vector MUultipliCationcoouuuuuiiiiii it 21
4.4 Histogram for U matriX elementsoooiiiiiiiiiiiiiniiiiiiiiiieeeeeeeennnn. 22
4.5 Histogram for V matrix elementsooouiiiiiiiiiiiiii i 22
4.6 Current(I) at 12 different bUuSESooviiiiiii i e 23
4.7 Voltage(V) at 12 different busesoovuuiiiiiiiiiiiiii i 23
4.8 Matrix Vector Multiplication using Karra’s approach.....................oooooi.. 24
4.9 Circuit Design for Matrix Vector Multiplication using Karra’s approach 24
4.10 Processing EIementooouuuiiiiiiiiii e 25
4.11 Matrix vector multiplication using Khatri’s approach.....................oooin 25
4.12 Circuit Design using Khatri’s approach ... 26
4.13 Storing U and V ... 27
4.14 SRAMtostore Uand V ..ot 28
4.15 Computing A%z, using SUDLTACTOTS\t'viei sttt ettt et et 29
4.16 Computing v;A?zy, and >, u;.(v; A%z;) then using multipliers and adders 29
4.17 Computing A2y, using adders.o.oiiiii i 30

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

FInal CirCuito e e 31
Comparison of hardware reSOUICES.ttt ettt ettt eeeiannns 31
RTL Simulation Results ... e 32
Comparison between Matlab and Verilog. ... 33
Absolute Error between Floating and Fixed Point implementation..................... 33
Relative Error between Floating and Fixed Point implementation 34
Zynq Zybo Z7-20D0Ardooiii e 35
SOC - Zybo ZT7-20D0Ardovviiiiiiiiii e 35
FPGA Implementation flow ..ot i 36
System Architecture 1 — Processor intervention isneededooe.... 37
System Architecture 2 — Only one operation at @ timeuiveeeeeeeennnnn... 38
System Architecture 3 — Two operations happen concurrently 39
Communication through DMA 40
ENCOINg ... et e 41
Block Diagram ...t e 42
ARM PrOgrammingeeeeettiiiie ettt ettt e ettt e e e e e iiaaeeeeaas 42
FPGA Simulation Result e 43
FPGA utilization Resultsouuuiiii e 43
FPGA 1outing reSults.ot e 44
FPGA timing reSultsooiiiiiii e e 44
FPGA Power consumption re€SUILSoouuuuuiiieeeeeiiiiiiiieeeeeeiiiiinaaeeeanns 45
Block diagram of the entire design in the Design Compiler 48
Detailed circuit diagram for the entire design in the Design Compiler................. 49
Slack paths when clock period is setto Sns. ..., 50
Slack paths when clock period is Sett0 7nS.oovviiiiinee e 50

X1

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

4.51

4.52

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

Area and Standard cell consumption before Place and Route 51
Initial loor PlannINgcooiiiii e 52
Power planning e 53
Clock tree Planmingueeeit ittt e et 54
Standard cell placement.ooouiiii i e 55
Place and ROULEuueiee 56
Place and Route terminal resultooo i 57
Area consumption after place and route ... 57
DRC VErfICAtIONuuititit it 58
Timing check after place and route. ... 59
High level diagramoooiiiiiii e 60
Linear Interpolation for two random points............oveeiiiiiiiiiineiiiineeineeann. 61
Linear Interpolation for a sinusoid waveformoiiiiiiiiiii 62
Linear Interpolation for computing sinusoid values using three ROM structure....... 63
Linear Interpolation for computing sinusoid values using two ROM structure 63
Proposed methodooiiiiii i e 64
Absolute error b/w Original and interpolated signalcoooiiiiit 65
SKIPPEA TOWS v vttt ettt ettt ettt et e e e et es 66
Absolute Error after skipping rows near 0=0 ... 67
SKIPPING COIUMNS ...\ttt ettt et ettt et e et e 68
High-level implementation details of the ROM ..., 69
IMprovement i e 70
High-level implementation details of the ROM ..., 71
Represents a1 ..o oo e 71
Represents a 0 ... e 72

Xii

5.16 Pre - decoder using standard cells ... 72

5.17 Decoder using standard Cellsooiiiiiiiiiiii e 73
5.18 Decoder using dynamic lOZIC..........iiiiiiiiii e 73
5.19 Pre - decoder using dynamic lOZICcouuuniiiiiiiiiiiii i 74
5.20 Column mux - Desi@n 1ooouiii e 74

Xiil

1. INTRODUCTION

1.1 Introduction

In power system, EMT is a powerful tool that can perform high speed electromagnetic tran-
sients and various issues ranging from nanoseconds to seconds. Initially, EMT has been used for
transmission line switching studies. But EMT simulation has become more and more powerful and
essential as the power systems became complicated.

In the current state, EMT has developed to handle extremely variety of models of generators,
transmission line, transformers and other elements in the power system. It can solve any network
consisting of interconnections of resistance, inductance , capacitance and other elements. Due to
its fast simulation, it is highly demanded in many designs and studies like HVDC converter control,
lightning overvoltage computation etc.,

EMT simulation consists of 10 steps as follows:

1. Initialization.

[\

. Flux to Voltage.

. Pre — calculate generator stage.

~ W

. Solve electrical.
. Park(D2A).

. Network Solution.

~N N W

. Update Inistory-
8. Inverse Park(A2D).
9. Update Current.

10. Solve Mechanical and Control Elements.[2]

In our thesis we aim to present an optimized VLSI architecture to implement matrix - vector

multiplication as part of solving network equations, Park(D2A) and Inverse Park(A2D) transfor-

mation.

Initialization

Flux to Voltage
+

Pre-calculate generator state

'

Solve Electrical

e e s s e

Park(D2A)
338

Update hsor | |
$ 8 I
Inverse Park(A2D) / Our focus
- in this thesis
Update Current
'

Solve Mechanical
!

Solve Control Elements

Initialization
Generator part
Network part

Control Element part

Figure 1.1: EMT steps

1.2 Network Equations

In EMT simulations, the network equations has to be solved at every time step and that causes
huge computation burden on the large — scale systems. There are three general approaches to solve
it.

1. Dense inversion and matrix — vector products.

2. Direct sparse solver.

3. Direct dense solver.

These methods are inherently sequential and are not a good option for hardware implementa-
tion. The paper [3] [4] describes a highly parallel approach to solve the linear system equations
based on hierarchial low — rank approximation.

The proposed approach in the papers, [3] [4] first partitions the network hierarchically, cal-

culates the inverse of G (sparse network conductance matrix) offline and approximates the result

2

using low rank approximation by truncated SVD (singular value decomposition). After this, the
values are loaded into the system and matrix — vector multiplication is performed online to compute
the nodal voltage vector v(t). This method takes O(N logN) time when compared to the traditional
matrix — vector multiplication, which takes O(N?) time.

In our thesis, we implement the architecture on FPGA and ASIC both to solve low rank ap-

proximated matrix - vector multiplication as part of solving the network equations [3].

Y1 Ugg Ugp Ugg e Uy X1

Y- Upyp Uz Uz o Uy Vip Via Vi3 Vg SIEI ST %

¥Ys Us; U3y Usg .. Us, Var Va2 Va3 Vi e Vg Xs

Va = Ugp Up Uy Ua, x V31 Vi Vi3 Vi e V3 X X
Vit Vi2 Vi3 Vg Vin

Y Upg Upg Ups e Up, X,

Figure 1.2: Matrix vector multiplication

1.3 Park Transformation and Inverse Park Transformation

Park Transformation and Inverse Park Transformation are the interface between non-network
and network part.

Park transformation converts the state variables from DQO coordinate in the generator side
to the three phase coordinates in the network, whereas inverse park transformation reverts the
conversion back to the DQO coordinates through matrix — vector multiplication as shown below.

Park Transformation:

L,(t) sin(0 + 3m) —sin(0) 1) [I4(t)
L(t) | = | sin(@ — gm) sin(@+5m) 1 I,(t) (1.1)

I.(t) sin(0 + gm) sin(0 —gm) 1 0

Inverse Park Transformation:

eq(t) sin(0 + 3m) sin(@ — gm) —sin(d — gm) Va(t)
eq(t) | = —sin(6) sin(6 + 5 sin(f — 3 Vi (t) (1.2)
’ 0.5 0.5 0.5 V(1)

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 aims to discuss about previous imple-
mentations of the required subject. Chapter 2 talks about representation of numbers using Fixed
Point and Floating Point. Chapter 3 focuses on explaining the higher order difference technique
to reduce the hardware resources for matrix vector multiplication. Chapter 4 discusses about im-
plementation of park and inverse park transformation and finally in chapter 5, we produce the

results.

2. PREVIOUS WORK

2.1 Matrix Vector Multiplication

The algebra routine of Matrix-Vector Multiplication is essential in numerous scientific usages
such as linear system solvers and LU Factorization. It is essential not only in theory, but also in
applied sciences and engineering. In literature, many researchers have worked on this routine by
exploiting different platforms.

In the work [5], new methods were explored to accomplish high performance on a floating-
point DSP. This device possessed two elements capable to hurry the matrix multiplication a software-
managed memory hierarchy, and a direct memory access (DMA) which brings block copies from
central memory to into the memory hierarchy. Whereas, Z. Jovanoviii and V. Milutinoviii [6] pro-
posed an implementation of FPGA architecture for Floating-Point Matrix Multiplication. It uses
the block matrix multiplication algorithm that sends backs the product blocks to the CPU instanta-
neously to facilitate the placement and routing on the chip. The objective was to achieve maximium
clock frequency and minimize the resource utilization. In [7] authors have proposed an architecture
which is based on streaming approach which exploits the parallelism available in FPGA. In stream
computing, the data is arranged into streams which are a group of data like arrays. This method
maps well to the FPGA logic. In addition to these, Distributed Arithmetic and systolic architecture
based approach have been explored and implemented in [8].

Our approach is this thesis is based on implementation explored in [9]. In this approach, in
order to optimize the FPGA architecture resource usage, the data from input matrices U and V
have been read from memory for exactly once. By simultaneously reading one column of matrix
U and one row of matrix V, and performing all multiply operations based on those values , optimal
data re-use is achieved. Data read in this sequence allows one partial product term of every element

to be computed in output matrix C per clock cycle.

AN Ve ~ e

."’. | i hY e —— \ /
M Y e U :Vn: Us, Vin| Pi1 P12z - P
I
N, |
Uy Uy e Uy Vaip Voo e [Von| P21 P2 o Uy
Lo Lo
Lo I
Lo I
X Lo | -
Lo |
I Lo
[
| I
! I
Lo I
————————————— I o
| Umg Uy o Up | Vel Ve e (Vi Pt Py
‘-\ /.f \.\. . ./_; _\\--

Figure 2.1: Matrix Multiplication

2.2 Park and Inverse park transformation

In the paper [10], a phase to sinusoid amplitude converter based on first order polynomial
approximation of the sine function has been proposed. In [11], a non-uniform based piecewise
linear approximation with one bit error correction has been proposed to compute sinusoid values.
We discussed the advantages and drawbacks of these methods more in the section 5.

Embedded read-only-memory (ROM) is required in various situations when designing ASIC
[12]. The on-chip ROM is usually applied to store fixed information such as micro-code etc. The
micro-code ROM is a key component in the microprocessors, which is in generates the control
signals for CPU execution. Our Implementation is based on the approach described in [13].

There are two basic ROM cell structures using silicon-gate transistors for ROM design, they
are the NOR-gate type or parallel ROM cell structure, and the NAND-gate type or serial ROM
cell structure [14] [15]. The parallel ROM cell structure consists of MOS transistors in parallel in
which ROM data are generally fixed by a contact mask. The cell structure has the advantage of
high-speed operation, but comes at a cost of low bit density. The serial ROM cell structure however
on the other hand consists of serial MOS transistors and each memory cell state is determined by
an enhancement or depletion mode MOS transistor. The cell structure has the disadvantage of

relatively low-speed operation but the high packing density [16]. In our design, we chose to go for

NOR structure as speed is our top priority.

The design of the address decoders has a huge impact on the speed and power consumption
of the memory. In our design, we have both row and column decoders which can be designed
using either standard cells, NOR structure or NAND structure. Another component in our design

is column mux, which is implemented as tree decoder that uses a binary reduction scheme [17].

3. NUMBER REPRESENTATION

In this chapter, we talk about conventional number format in computer systems. Differences

between Fixed Point, Floating Point [18] and tradeoffs when it comes to VLSI implementation.
3.1 Radix Number System

A conventional radix number P can be represented as follows

(By_1bn_s...b1bo)» 3.1)

with r being radix. Hence, P = b,_1.w,_1 + b,_2.w,_s... + by.wy with w; being the weight of

position of i. If r is a fixed radix number,

n—1
P =by_1.rno1 + byaFnae + boro = > by (3.2)
=0

(3

To include fractional part, let us take ‘. As radix point and include integer part in the left,

fractional part in the right

(b 1bn—2-..b1bob_1...b_p), (3.3)
Now,
n—1
P = Z b1 (3.4)

For example, in decimal system, r=10and b; €0 ... 9

P =73.210
=b;.r'+bg. 1 +b_; . 17!
=7x101+3x100+2x 10-1

=73.2

In Hexadecimal system, r =16 and b; € 0...15

P=2A16
=b. rt +bg. 1°
=2x16+10x1
=42

Similarly, in binary system, r =2 and b; € 0,1

P=1010.112=b;. ' +by. 1 +b_; . r?
=1x22+0x22+1x2'+0x2°+1x27 +1x2-2
=8+2+05+0.25
=10.75

In Computer Systems, we use 1s and Os to represent all the arithmetic numbers and all our

discussions in the upcoming chapters is based on binary system.
3.2 Signed Number Representation

The above discussion on the number system only talks about representing positive numbers.
However, all the scientific calculations don’t necessarily be confined to positive numbers. We need
a notation to describe negative integers. The general convention is leftmost bit(MSB) describes
sign of a number in which bit 0 is for positive and 1 is for negative.

However, the user has to determine, if a number is signed or unsigned. For a signed number,
then left most bit represents the sign and rest of the binary string represent the actual magnitude
of a number. Whereas for an unsigned number, all the string makeup the actual magnitude of a
number.

For example, a string of bits 01010 can be considered as 10(unsigned) or +10(signed) binary
and a string of bits 11010 can be considered as 26(unsigned) or -10(signed) binary.

Thus, with 5 bits of a string, we can represent from O to 31 by declaring a number unsigned.
Whereas using signed keyword, we can represent from -15 to + 15 only.

Although this is a simple method to represent numbers, computer systems adopt a different

system to represent negative numbers called signed-complement system.

Two methods in signed-complement system[19].
(1) 1’s complement
(2) 2’s complement
As an example, consider we have eight bits to represent a number.
Binary equivalent of +10 is 00001010. However, to represent -10, we can employ three meth-
ods.
Signed magnitude form: 10001010
Signed 1’s — complement form: 11110101
Signed 2’s — complement form: 11110110
I’s complement for a negative number is obtained by logically reversing all the bits of its positive
equivalent. +10 is 00001010 and reversing all the bits yield 11110101.
2’s complement is obtained by adding 1 to 1’s complement.
In computer arithmetic, 1’s complement is seldom used for arithmetic operations.
Adding and subtracting numbers in 2’s complement is much easier and doesn’t require additional

hardware circuitry to take care of sign bit.
3.3 Fixed Point Representation

As discussed in section Radix number system, we use a fixed radix point to distinguish between
integer and fractional point.
Consider a system in which 7 bits are used to represent integer part and 8 bits are for fractional
part, MSB 1 bit for sign.
Now, 15.375 in fixed point 2’s complement number is as follows:
P =15.3754
=00001111.01100000,
-15.375 in 2’s complement can be obtained by taking 1’s complement of 15.375, reversing the bits
and adding 1 to the result.
P =-15.3759
=11110000.10100000,

10

3.4 Floating Point Representation

The floating-point notation is more flexible. Any number, P can be written as following:

is normalized representation of P. This representation is achieved by choosing the exponent ‘m’
such a way that the binary points float to the position after the first non-zero bit. This is simply the
binary format of scientific notation.
To store a number in 32-bit number, we can reserve 1 bit for sign, 8 bits for the exponent and 23
bits for the fractional part of the number. The leading digit 1 is not stored and it is often called as
‘hidden bit’.

The fractional part is also referred with another name called ‘Mantissa’.

The exponent term has something called bias term, which is 127 for 8-bit exponent field. This
bias ensures both positive and negative exponent values can be fit in the field.

Hence, the range for exponent field is -126 < m < 127.

n 0

‘ Sign bit ‘ Expcpent ‘ Mantissa

Biased form

Figure 3.1: Floating point notation

This 32-bit representation of a decimal number is standardized as IEEE 754 notation.

For example, consider a number 263.3 and we need to represent this in 32-bit floating point
representation.

Integer part 263: 100000111

Fractional part 0.3: 01001100110011...

11

Hence 263.3 is 100000111. 01001100110011...

Now, we need to shift the radix point to first ‘1’ i.e., left shift the number by 8.

263.3 becomes 1.0000011101001100110011... x 28 which is scientific notation.

Now, sign bit is 0, because the number is a positive number.

Mantissa field is 23 bits: 0000011101001100110011

Exponent field is 8 bits: bias + 8 = 127 + 8 = 135: 10000111

So, 263.3 in IEEE 754 floating point representation is - 1 10000111 0000011101001100110011.

3.5 Fixed vs Floating Point format

Choosing one among Fixed and Floating point comes with its own benefits and tradeoffs. In
general, floating point format is preferred when precision is of utmost importance whereas fixed
point is chosen when area and timing in a VLSI chip is critical.

The exponentiation inherent in floating point format assures a much higher precision and larger
dynamic range. Thus, both largest and smallest numbers can be represented using this format
which is very essential and important for scientific computation.

The largest number that can be represented using IEEE 754 floating point notation is (1 —272%)
x 2128 and smallest number is 1.0 x 27126,

Whereas 32 - bit fixed point notation with 16 - bit for fractional , the largest number that can
be represented is (1 — 271¢) x 216 and smallest number is 2716,

Thus, floating point format can fit a given number with much higher precision. However, the
disadvantage for a floating-point number is that arithmetic operations are more costly and often
takes more time. The reasons are as follows:

(1) When addition or subtraction operation needs to be performed, all the exponents have to
be into account. Aligning the bits to common radix point is very costly requiring more hardware
resources.

(2) During multiplication operation of two floating numbers, in addition to multiplying man-

tissas, exponents have to be added too.

In our application, we chose to implement our circuit in fixed point as we target an architecture

12

with lowest area and power consumption possible at the cost of precision.

13

4. MATRIX VECTOR MULTIPLICATION

4.1 Efficient Hardware for computing Network Solution

With increased number of buses on a network, the matrix — vector operation becomes a big
bottleneck with increased time complexity. In order to meet the latency requirements, it is required
to instantiate multiple arithmetic units to perform all the computations simultaneously resulting in
increased die area size. Since our application is targeted towards custom VLSI architecture with
smallest chip area possible, it is essential to come up with efficient algorithms[20] to solve the
problem. Below sections will discuss the proposed approaches to compute the matrix operation

effectively.
4.1.1 Higher Order Difference

Multiplication operation is one of the most timing critical and area consuming component in a
matrix vector computation. The more the number of bits it takes to represent a number, the larger
the area it consumes to compute the multiplication operation. Thus, it is important to cut down
the number of input bits the MAC(multiply and accumulate) module consumes. Reducing the bits
in the integer part of a fixed point number reduces the upper bound whereas trimming down the
fractional part compromises the precision. This higher order difference approach that we are about
to discuss can solve this problem effectively without much sacrifice in the precision.

The algorithm is as follows:

Let us assume X,,Xp, ... be a series of input vectors each of dimension n x 1.

Also, let y,,ys, ... be a series of output vectors each of dimension m x 1, where y, = M. x;

Here, M is a matrix of dimension m X n.

Now, Iteration 1:

Yo = M.zq 4.1)

14

In this step, store both y, and x,.

Yy = M.y
=Y, + M.(xb — $a) “4.2)

= Ya + Da

where, p, = M.(X, — x,)
compute M.(x; - X,) and use the previous stored result y,, to calculate yj,.
In this step, delete y,, X, and store yy, pa, Xp — X, and Xp.

Iteration 3:

Ye = M.z,
= M.xy + M.(x, — xp)
= M.xy+ M.(xp — x4) + M.((x. — 23) — (2 — 24)) (4.3)
=Yy + o + M.((z. — xp) — (Tp — 24))

=Y+ Do

where p, = M.(X. - Xp)

Now at this stage, we have already computed M.x; as y, and M.(x;, — X,) as pq.
All we need to do is calculate M.((x, — Xp) — (X — X))

In this step, delete y,, X, and store y., py, X¢ - Xp and X...

Iteration 4:

Yo = M.xy
= M.ae+ M.(z4—z.)
= M.x.+ M. (v, —) + M.((xg —) — (20 — T3)) (4.4)
=Y+ o+ M((2a — 7c) — (Tc — 1))

= Ye + Pe

15

where p. = M.(X4 — X.)

The above sequence can be written as y; = y;_1 + p;—1 + M.((X; — X;_1) — (X;_1 — X;_2)), Where
pi—1 = M.(Xi—1 — X;-2).

Thus,

Vi = Y1 + Ay + M.((x; — i) — (521 — 2i-2))
= Y1+ Ay + M.Ax, (4.5)

= Yold + AYora + AQyi

Hence, for every iteration, instead of computing the actual result, we can compute M. A%x; and
add the product to the previous stored results. All we need is initial values, yo and Ay, which can
be loaded as part of initialization sequence.

The Equation 4.5, can be generalized to any order of differentiation as follows:

E—1
Yi = Yi1 T (Z Ajyi—l) + Akyi- (4.6)
j=1
k—1
Yi = Yi-1+ (Z Ay 1)+ M.AFz;. 4.7)
j=1

where k is the order of differentiation.

Now, why does this approach work to our application and how does it help in reducing the
hardware resources?

The key here is that the input vectors in the network are current(I) with fundamental frequency
60Hz along with harmonics of small magnitude. As we are simulating a power system with high
frequency sampling rate, the variation in the consecutive samples is minuscule and we can use this

advantage to reduce the multiplication area size and thus number of standard cells required.

16

Plot of ‘X'

1500 T T

1000 T ah 1

500 b

Magnitude
=]

-600 7

-1000 [— ~—

-1500 : : '
0 500 1000 1500 2000 2500 3000

Time (Sample num)

Figure 4.1: ° X’ waveform

For example, Fig 4.1 shows the waveform of a sample sine wave with magnitude 1000.

Plot of 'AX’ WAL IcITA

X1
3r Y 3.857 b

Magnitude

4L . . 1
0 500 1000 1500
Time(Sample num)

Figure 4.2: * AX’ waveform

17

Fig 4.2., shows the magnitude of Ax.

If we need 10 bits (integer) + 32 (fractional) + 1 (sign) = 43 bits to store ‘X’. We need only
2bits (integer) + 32 (fractional) + 1 (sign) = 35 bits to store Ax.

Another question, how do we know the value of k (In Eq 4.6), the order of the differentiation?

It depends on factors like amplitude of a signal, the number of bits we dedicate to represent the
fractional part, frequency of the signal and sampling frequency etc.,

The next sub section will talk about this in detail on how to decide the required differentiation

order.
4.1.2 Bit reduction scheme

In this sub-section, we derive a general formula to calculate the number of bits that can be
reduced using the above stated approach.

For this, consider a sine wave, with frequency f , with max possible amplitude A, sampled at
frequency f;. Let p be the number of bits, we use to represent the fractional part.

Any two consecutive samples of the signal can be written as:

= Asin Wni
x(n) = Asin(2 7)

3 (4.8)

z(n+1) = Asin(2r(n + 1)fi)

s

x lies within the interval, [-A, A] and can be represented using p + log,A bits

Now,

2(n+ 1) — o(n) = Asin(2r(n +1)1) — Asin(2enL)

fs fs
Ax(n) = (Acos(27rfi)sin(27mfi) + Asin(ZWfi)cos(Qﬂni)) — Asin(anfi)
= A(cos(Zw%) - 1)sin(27rn£) + Asin(Zw%)cos(Qﬂné)
= A27T£cos(27m£)
4.9)

18

(when f;, > f, cos 27 é) ~ 1 and sin(27w %) ~ 2T %)
AX lies within the interval, [-A 27 %, A2rm f—fs] and can be represented using p + logs(A 271 %)

=logs(A) +p + loga (27 %) bits.

Similarly, A%x, the double differentiation of x lies within the interval [-A (27 fi)2, A Q2r fi)2]

and can be represented using logo(A) + p + 2. loga (27 %) bits.

Thus, given a signal x(n) of frequency ‘f> with sampling frequency f, its k'* order difference
signal AFx lies within the interval [-A (27 fi)k A Qr fi)k] can be represented using logy(A) + p

+ k. logo (27 %) bits, (logo(27 f—fs) is a negative number).

From the above derivation, we can conclude that as the order of the differentiation is increased,
the range of the number becomes smaller and it needs fewer bits to represent.

let us assume that m is a real number whose value is greater than 1.

Going back to Eq 4.7,

k—1
i =vicr + O ANyiy) + mA. (4.10)

j=1
The value of the y; changes, only when Im.AFx;| > 0.

We know that, the smallest positive fractional number that can be represented using p bits is

277,
Hence,
m.A*x;. > 27P 4.11)
m.A(27rfi)k > 2P (4.12)

AQ2r=)k > 2P (4.13)

< —;; ;(lgif) (4.14)
!
By choosing the order of differentiation k, as described in the Eq 4.13, we can say for sure
that by applying the higher order difference technique to y = m.x, the relative error of calculating
output y(n) doesn’t get worsen.
Extending this hypothesis to the matrix vector multiplication y = M.x, let us assume we have a

vector x whose elements are current(I) with Amplitudes A1,A; ... A, with frequency f.

Now, the order of the differentiation k has to be chosen as described in Eq 4.15

p+logaAr p+loga Ay p+log A,
logz(%%) ’ loya@ﬂ%) 7 loyz(%f—;)

kE < min{ (4.15)

The above derivation is applicable only to a pure sinusoid repeating signal, but the theory can
be extended to the power systems which consists of complex waveforms. As we all know, input
variables current(I) in a power system are of fundamental frequency 60 Hz and can be approxi-
mated into linear combination of sine and cosines of increasing harmonics using Fourier series.

So, let us assume that x is current(I) vector and each element v’ has fundamental frequency f,;
with Amplitude A,; and higher order harmonic frequencies f,2,f, 3. . . f,x with amplitudes A,2,A.3. .. Ay

respectively. Using Fourier series, the signal be can approximated as follows.

x(m) = Ay + nz:l Akcos(%# +6,) (4.16)
Extending 4.12 here, we get
= f
> (A @r=t)i) > 277 (4.17)
ot fs
= f
> (Ag(2m2)2y > 277 (4.18)
ot fs
- f
Z(Am(QW%)k“) > 97 (4.19)
n=1 S

20

solve for ki, ks ... k,, in the above equations and the order of differentiation is

4.2 Matrix vector multiplication

To give some context on the matrices X, y, U, and V, the column vector X’ represents a series
of samples of current (I) from different 'n’ buses of a large power system. whereas 'y’ represents
voltage (v) at different 'm’ buses of the same power system due to current (I). U and V are the low

rank approximated matrices which are derived from conductance matrix G~* [3].

Ymx1 Umnxr Visn Xnx1

Figure 4.3: Matrix Vector Multiplication

The implementation example shown in the following section assumes ‘m’ value to be 12 (di-
mension of y vector), ‘n’ value 12 (dimension of x vector), r value as 6, time step 20us and the
order of differentiation to be 2.

In the simulation, the time step has chosen to be 20us i.e., sampling rate is SOKHz. Simulation
results have shown that we need 1 bit for sign, 16 bits to represent integer part and 32 bits to

represent the fractional part of input signal current(I).

21

histogram for U - log scale
1200 ‘og' T i T

1000

800

count

600

400

200

0
102 10710 108 10°® 10 102 10°
u

Figure 4.4: Histogram for U matrix elements

Also, all the values of matrix U and V are found to have magnitude <1. Hence, we take 32 bits

to represent. 31 bits for fractional and 1 bit for sign.

histogram for V - log scale
1200 ‘og T = T

1000

800

count

600 [

400 [

2001

0
1072 10710 10°8 108 104 102 100
v

Figure 4.5: Histogram for V matrix elements

Current(I) at 12 different buses as shown in the Figure 4.6 has been taken as an example for

22

rest of the thesis.

200

. | 1 | | |

600 1000 1200
Time(in samples)

Figure 4.6: Current(I) at 12 different buses

o 200 400 500 BO 1000 1200
Time(in samples)

Figure 4.7: Voltage(V) at 12 different buses

23

4.2.1 Previous Work

In the approach mentioned in [21], the matrix - vector multiplication is achieved through sys-

tolic array architecture as shown in the below figures.

Y1
Y2

Y3

———— e —
s \\
[|
Uy Ugy Uyr
[—
| 1E, |
Uy; U u
21 U r |
I IE, |
| U3 Uy CER
— I x I
- |
|
I
I
| | upyu u IEm |
\ ml m2 e mr]
~ /
— -

Figure 4.8: Matrix Vector Multiplication using Karra’s approach

—_——_——,— e —— — — —

> Y1i¥2 - ¥Ym

Xp o XoXq
PE PE PE PE PE PE
Vip 0 0 Upq 0 0
V12 Vo1 0 U Uz 0
Vi3 Vi 0 Uq3 Us, 0
V23 u23
v u
Vln rl ulr mo
VZn VrZ uzr uml
Vr3 Umz
Vm Umr

Figure 4.9: Circuit Design for Matrix Vector Multiplication using Karra’s approach

24

:
1

b e e e

Figure 4.10: Processing Element

In the approach mentioned in [9], to optimize the the data from input matrices U and V have
been read from memory for exactly once. By simultaneously reading one column of matrix U and
one row of matrix V, and performing all multiply operations based on those values , optimal data
re-use is achieved. Data read in this sequence allows one partial product term of every element to

be computed in output matrix C per clock cycle.

I R
Y1 000 - N
£g T \ Ve '-_—_-‘\ X
Y, [U1} U1p Uy, [A L
L | Vi1 Vo Vin _ X,
u u L
| 21| 22 | ir
Y3 I o Vor Vo Von <
[| 3
1Uzq) Usp Uz
| | \ |
_ | | I | X X
= [[
| | | |
| | | 1 1
[[IV V v [
u | (1 Y2 o Ymo
| 1 | \ /
Y, \ - E‘l m2 . T_r,l) \‘_7 P V4
'm) AN d X,
A= S
- =
L SN
1= clock 2M clock " clock
cycle cycle cycle

Figure 4.11: Matrix vector multiplication using Khatri’s approach

25

a8 48 + logzn
- :

X l J : \
1 32 32 N J1
a8 . PN sl LY N

4’{ % (X Va1 Vo - Vi X Uz Yz Uy S _I / B

48 + log,n + log.r

48 As s log,n

X l
2 48 N 32

LWy Vsl
4'['—N \>_</ V12 V22 r2

48 + logzn J

»{ =% X 4 UzqUs;5 ..Uy B ! —>
\1-/' NS ’ \j_/ 48 +logn + log,r

32
‘- 1" 2n - 48+ log,n + logar

Figure 4.12: Circuit Design using Khatri’s approach

4.2.2 Comparison between two architectures for matrix vector multiplication

Let q be the number of bits we use to represent U and V.

Let p be the number of bits we use to represent X.

Compute y = U(XV.x) | Multipliers | Adders SRAM Flipflops Latency
cells

Karra’s method (m+r) (m+r) g*r*(m+n) | p*(m+r) (m+n+r)

Khatri’s method (m-+n) (m+n) g*r¥*(m+n) | p*(m+n) r

For our network solution, we have chosen Khatri’s method and improved upon its architecture

as it offers low latency.

4.2.3 Matrix vector multiplication using higher order difference

Ya = 2o Ui(viTa)

Yo =D iy wi(vimy)

Subtracting the above two equations, we get
Yo - Ya = 2oy i(0i(26 — Za))

Vb, Yo — Yas Xp, Xp — X Vectors are stored as initial conditions in the flipflops.

26

Now Eq 4.26, can be written as follows

Uk = Yk—1 + (Uk—1 — Yr—2) + Doieg Wi(vi((2g — Tpo1) — (Tp1 — Tp—2)))

Y = Yold + Dyora + A%y (4.21)
Ay = ui(uiay) (4.22)
=1

The above two equations can be implemented as follows:
We divide the hardware design into four parts:
(1) Storing U and V in SRAM memory.
(ii) computing A2z}, using subtractors.
(iii) computing v; A%z, and then >, u;.(v;A%z;) using multipliers and adders.

(iv) computing yj, using adders.

4.2.4 Storing U and V

____________ Y - ~
/ Al AY _/__‘ JRp—— ™
(Ui U e Ui (77 .

|V11I Vi ‘Vlnl
u,, u u | |
21 Uz 1r I
IV21: Voo }Vzm
|
| L
| o
. I		
Iy		
_____________ |Vr1l er | Y
. !uml U umr! '__ T /
N %
[(3 (7 [
(! I (! (!
SRAM 1 SRAM 2 SRAM m SRAMmM+1 SRAM m+2 SRAM M +n

Figure 4.13: Storing U and V

27

To store U and V, we need m+n SRAM memory modules. m of them stores each row of U

matrix and n of them store columns of V.

Each SRAM module stores ‘r’ values each of 32 — bit. The following diagrams shows the cell

arrangements.
SRAM
8 bits 8 bits 8 bits 8 bits
A— I N N — I
B
e I I $IN
A S NS A
IH‘.
A
“"‘.
T 'm
0gar]
.(,.xl
[l T [31:24] [23:16] [15:8] [7:01
alo]

Figure 4.14: SRAM to store U and V

4.2.5 Computing A%z, using subtractors

AN’z = (zh, — 2p_1) — (Tp_1 — 7k — 2)

For this computation, we need

n, 48- bit flipflops to store x vector and n, 41 — bit flipflops to store Ax vector. n, 48- bit
subtractors to compute (X; — Xx—1) and n, 41- bit subtractors to compute (X; — Xg_1) — (Xp—1 —

Xk—2)-

28

43
43) !. N * 34
—_— — '\
Xn EI - AX,, : A2

a8 a1
-OL-03
) P 4’®_\‘_{

48 AX, a1 A%,

) v) ‘

24
L4
AX, Ay

Figure 4.15: Computing Az, using subtractors

4.2.6 Computing v, Az, and >, u;.(v;Ax;) then using multipliers and adders

ﬂz—"‘rﬂ\?'_(f)“—\— Vi1 Va1 - Vg
X
1

.34
A
34 32
Al Va2 Vaz - Viz
X
2
34
bl
34 32
X .\ Vin Vo o Vi
A% Q

hY
32
| U1g Ugz Uy
hY
32
*’Q(Uz3Up; ..Uy,

bl
32
.Q< L'Imlum2 "'umr

34 + log.n

34 + log.n

-

A%y,

A
t-:

34 +log;n

4

A%y,

P
-

-

ﬂE

n

P
-

Figure 4.16: Computing v;A%z), and >, u;.(v;A*z;) then using multipliers and adders

29

First, a row in V matrix and A?x vector are multiplied and added resulting in an intermediate
element. This intermediate element is multiplied with all the elements in the column of U matrix

to get the partial sum of A?y.

[.E=> (vz) (4.23)
=1

A% i =uil B (4.24)

=) AYpartia (4.25)

4.2.7 Computing A%y, using adders

ﬂfvl,i?D L2 I

\ Y1
34 + log,n + Iog2 a1+ Iogzn + Iogzr 48 + log;n + log,r
A yzlf ~ ‘ ‘5{\!2) Y2
o\ 3 r
34 + logan + log,r 41 + logzn + loggr 48 + logzn + log,r
pey {14
y”/ Ayn / \ Jn
— lvl : T >
34+ Iog2n+lcng2 41+ log,n + Iogzr 48 + log,n + log,r

Figure 4.17: Computing A%y, using adders

Y = Yold + AYora + A%y

For computation we need

m, 48 + logon + logor - bit flipflops to store y,;; vector and n, 41 + logon + logsr bit flipflops to
store Ay,;q vector.

m, 41 + logon + log,r bit adder to compute Ay,q + A%y, and n, 48 + logan + logyr bit adders

30

to compute y.

4.2.8 Final Circuit

34 + log;n

AEVICEDT Ay, A:DW Vi

34 + log;n + logr 41 +log,n + log,r 48 + logzn + logar

Uz

a8 a1 34
as Y oa 32
- O
Xy Axy A%y

34 + logzn

32

34 + logzn + log3] 41 +log,n +Tog,r 48 + logzn + log,r

34 +log;n
g Ly oo S
32- Y = Y, " Yn

- . 34 + logan + logar 41 + log,n + log,r 48 + log,n + log,r

Figure 4.18: Final Circuit

Previous work | Transistor | Using higher order Transistor | Improvement

count difference (k = 2) count

To compute V.x n, 48 * 32 multipliers 55.296n n, 34 * 32 multipliers 41.168n 2516%
To compute TVx 1, 48 bit adders 1,440n 1, 34 bit adders 1,020n Additional cost
To compute A2 N/A N/A 1, 41 bit subtractors 1.230n Additional cost
To compute Ax N/A N/A 1, 48 bit subtractors 1.440n Additional cost
To store previous, x value N/A N/A n, 48 bit D Flip-Flops 1,728n Additional cost
To store previous, Ax value N/A N/A n, 41 bit D Flip-Flops 1.476n Additional cost
For computing m, 48 * 32 55,296m m, 34 * 32 multipliers 41,168m 25.16%
U.(ZVE) multipliers
To compute y m, 48 bit adders 1.440m m, 48 bit adders 1,440m ~
To store prev y values, Ay m, 48 bit D Flip-Flops 1.728m m, 48 bit D Flip-Flops 3,204m -85.41%
To store U and V (m + n)r SRAM cells 32 * 72(m+n)r (m + n)r SRAM cells 32 # 7 2(m+n)r —~

Total transistor count for 1,415,577 Total transistor count for 1177377 16.87%

m=12,n=12andr=6 m=12,n=12andr=6

Figure 4.19: Comparison of hardware resources

31

4.2.9 RTL Simulation Results

[pavand96]@hera3 ~/Fall_2020/svd_mult_opt> (12:43:23 82/13/21)

i L /simv

Chronologic V(5 simulator copyright 1991-2828

Contains Synopsys proprietary ir -

Compiler version Q-2020.83-5P1-1 Full6d; Runtime version Q-2028.83-5P1-1 Fulled; Feb 1
875419, 29131, ©.849364, 1.414589, 8.039646, -7.2696 @3558 :

.049904, 1.434192,

.85045@, 1.454095,

.851001, 1.474238,

=

T OO E O N
w o

.949199,

oo

.841896,
.842475,
.043060,
.043651

[
(e i)

B2 oW
]
i

)
0

0

0

)

0

0

)

0.

0.045466,

0.046085, -8.870231,
0.046711, -8.147105,
0.047343, 224718,
)
)
0
0
)
0
0
)
0

58664

859294, 1.

.85993@, 1

.868572, :

.851971, -8. .842982, 1.45
; .843390, 1

200000000000 0000000000 O N

8

a

a

a.
a.
a.
a.
a.
a.
a.
a.
a.
a.
a.
a.
a.
a.
a

a

a.
a.
a.

.053360,

Figure 4.20: RTL Simulation Results

4.2.10 Comparison between Floating and Fixed Point implementation

The following plots are Voltage (V), Absolute Error and Relative Error for a particular bus

during our simulation.

32

0.2

. MATUAB Floating Point
ok
. —/\Yerilog Fixed Point
02F 1\ [) \ J
\ llJ,,\\,, A / \ \
04} \ [\\/'\\ B Va L
S \ | \ \ T
Tosl || ﬂ \ /
g7 | \ \ /
£ ‘. a \ A/
« 081 | \ N
@ \ \ \
\ \/ \
-1 | ’\ \
||
12f |\
|
\
J
14 \
16 R N R s
0 200 400 600 800 1000 1200
Samples

Figure 4.21: Comparison between Matlab and Verilog

0.02

0.015 -

0.01

0.005 |

-0.005 |

Absolute Error

-0.01
0.015
0.02

-0.025
1}

Figure 4.22: Absolute Error between Floating and Fixed Point implementation

200 400 600 800
Samples

33

1000

1200

Relative Error

0 200 400 600 800 1000 1200
Samples

Figure 4.23: Relative Error between Floating and Fixed Point implementation

Relative error spikes up, when the Voltage(V) approaches 0, which is expected.
4.3 FPGA Implementation
4.3.1 Integrating and Simulating the circuit on FPGA

The FPGA prototyping of the hardware has been done on the Zynq platform[22], Zybo Z7-20
board[23].

The defining features of Zynq:

1. Processing System (PS): Dual — core ARM cortex — A9 CPU

2. Programmable logic (PL) — Consists of LUTs, BRAM and Flipflops.

3. Advanced Extensible Interface (AXI) : Low latency and High bandwidth between PS and

PL.

34

. [sp micro] -

I @

g ! q e’
EEELTEETITY 4 8)

ZYBOF

JNJPS

Figure 4.24: Zynq Zybo Z7-20 board

The Xilinx FPGA supports three types of AXI interfaces
(1) AXI — Lite interface
(i1) AXT — full interface

(iii) AXI — stream interface

Processing
System

Figure 4.25: SOC - Zybo Z7-20 board

35

System Design
Software/Hardware
Partitioning

[Simulation }

Figure 4.26: FPGA Implementation flow

Prototyping on FPGA[24] can be divided into two parts
IP block design (Xilinx Vivado)

IP block creation

AXTI interfacing.

IP integration

HDL wrapper

Generate Bitstream

ARM programming (Xilinx SDK)
* ARM programming
* Launching on hardware

For our thesis, we perform the simulation in four steps

36

1. First, we store the instructions and data in the form of micro codes in the DDR3 memory

available on the FPGA board.

2. With the help of Zynq Processor, we configure the DMA controller, the starting address and
length of the transfer.
3. we take back the results to the DDR3 memory.

4. Print the results on the terminal.

4.3.2 System Architecture

In the following section, we discuss in detail different types of system architectures we explored
for this thesis and which one suits the best for faster operation[25].
In the System Architecture 1 as shown in fig 5.4, the processor takes the control of the system

bus, requests the data from the Memory and sends the data to the peripheral.

System bus

Processor

—

Peripheral

Figure 4.27: System Architecture 1 — Processor intervention is needed

As a whole, two memory transfer operations are required in this architecture -
* Memory to the Processor (Processor is the master and memory is the slave)
* Processor to the peripheral. (Processor is the master and peripheral is the slave)

There are two disadvantages in this architecture:

37

* It requires the intervention of the processor for every memory access.

* Both memory transfer operations cannot happen at the same time as we share the system

bus.

In the second architecture 2, we add DMA controller (DMA stands for direct memory access)
to take control of the memory transfers.

With DMA controller at our disposal, the CPU initiates the transaction and the length of the
transfer. The controller then sends the data to the peripheral accordingly without any further inter-
vention from the CPU.

Two memory operations are required -

* Memory to the DMA controller (Memory is the slave and DMA controller is the master)

* DMA controller to the peripheral. (DMA controller is the master and peripheral is the slave)

Since all the transfers happens through the system bus, either one of the memory operations
must happen at time, limiting the throughput. This resource allocation of the system bus to memory

and the processor is usually done by inbuilt ‘Arbitration logic’.

Gnt System bus
Processor y

Y

controller

Peripheral

Figure 4.28: System Architecture 2 — Only one operation at a time

38

Although this architecture eliminates the processor intervention for every transfer, it still limits
the throughput as arbitration logic for the data transfer is necessary.

In the System Architecture 3, the communication between the memory and DMA controller
happens through the system bus. But the transfer between the DMA controller and peripheral hap-

pens through AXI stream protocol which is direct point to point based maximizing the throughput.

System bus

Processor

]

controller

Peripheral

Figure 4.29: System Architecture 3 — Two operations happen concurrently

39

axi_

dma_0

S s_AXILLITE
=+ S_AXIS_S2MM
s_axi_lite_aclk

AX14 Lite protocol. To configure the
DMA by processor.

m_axi_mm2s_aclk
m_axi_s2mm_aclk
AXl4 stream protocol. Read interface

axi_resetn
to the peripheral.

M_AXI_MM2S + {if
M_AXI_S2MM - f
M_AXIS_MM2S + E

mm2s_prmry_reset_out_n
s2mm_prmry_reset_out_n
mm2s_introut
s2mm_introut

Processor

AXI Direct Memory Access

AX14 full protocol. Read interface to
the memory.

AX14 full protocol. Write interface to
the memory.

AXI4 stream protocol. Write
interface to the peripheral.

System bus

Figure 4.30: Communication through DMA

4.3.3 Matrix Multiplication Peripheral

DMA

controller

Peripheral

Since our FPGA is a 32-bit machine and has very little PL fabric logic resources, we used only

32-bit bus to load the inputs into our peripheral from the processing system (PS).

As discussed in the circuit diagram of the multiplication peripheral in the previous section, we

have taken M = 12, N = 12 and r = 6 for this example. Hence, we have to load current(I) for 12

different buses of 48 bits each.

40

Encode type Which field Bus no. Data field

M % ¥ ¥

[o2] L 1|
[31:30] [21:20] [19:16] [15:0]

Encode type
}'

[20]
[31:30]

Encode type Which field Bus no. Data field
_\a * ’/. ’/,
[1] L 1]

[31:30] [21:20] [19:16] [15:0]

Figure 4.31: Encoding

When the databus[31:30] is encoded 00, we do nothing.

When the databus[31:30] is encoded 01, we use it to load the data input.

When the databus[31:30] is encoded 10, we execute the matrix multiplication.

When the databus [31:30] is encoded 11, we pass the voltage(v) to the processing system.

As the current (I) input is of 48 bits, we use which field [21:20] to describe which part of the data
we are loading.

Databus [19:16] describe the bus no. from 1 to 12.
4.3.4 Block Diagram

After custom matrix vector multiplication IP is generated, we connect the entire system like a
block diagram as shown in the Fig 5.9. CPU , Global reset, DMA and required interconnect IPs

are provided by the Xilinx in the Vivado tool itself.

41

processing system_0

b= COR
[I}4 5.%a_+e0_pro cTRe D Fixen_o

ZYNG

ZYNQT Processng System

rst_ps7_0_50M

Procemsor Sysem Reael

Figure 4.32: Block Diagram

4.3.5 ARM Programming

B-EH@l®-8-GEBiw

2 Project xporer £

& simu
5 smu b

8 svd_mult vz pltform 0

44 Torget Connectons

2> QEMU TefGabCl

£

t
lient

2P S -0~

enlv

P

o

=]

g oo

g system.haf 8 *helloworide 53 |[4 xparametersh
®* Copyright () 2009 - 2014 Xilinx, Inc reserved.[]

(1 systemmss.

ALl rig
"+ helloworld.c: simple test application

his applic: configures UART 16550 to baud rate 9600.
* PS7 UART (Zyna) is not initialized by this application, since
com/bsp, configures it to baud

ate 115200

UART TYPE BAUD RATE |

Configurable only in H4 design
o igured by bootron/bsp)

#include <stdio.h>
#include "platfors.h”
"xil printf.h"

#include
#include "xil_io.
#include "xaxidma.ht'

]

< int main()
init_platforn();

long long int a[12](16];

afo][3] = -149369
afo][4] = -1486059058;
a[o][s] = -1478442129;

{82 Problems 52 « B Console i

[sDKLog 52
Titems
Descrption Resource

Path Location

> i Infos (1 item)

Figure 4.33: ARM programming

In the software part, we do the following steps

* We store all the instructions and the data in an array.

42

mro
mFo
mFo
Fo
mFo
mFo
Fo

+ Checking for hwspec changes in the project svd_mult_vc

Quick Acces] || g || B

3 Outlne 33 15 Docume keTo

S =n
- EARE o % ¥
u ddon
H platormh
H xiprntth

parametersh

e

g

BR-0o

: Registering command handlers for SK TCF service
s

ct.bat -interactive C:\Users\nokur\svd\svd. sdk\temp_xs
T server has started successfully.

T server: xa

+ Processing command Line option -hwspec C:/Users/nokur/svd/svd. sdk/svd_mult_ves
: Successfully done setting XSCT server connection channel

Successfully done setting SDK

workspace

platforn_o.

* Initiate two different DMA transfers one for sending the data and the other for receiving the

data.

* Print the obtained results on the terminal via printf.

4.3.6 Results

The following figure shows voltage (V) for a particular bus during our FPGA simulation.

hera.ecetamu.edu Bl pavand36@hera. ece.tamu.edu .. COME (USB Serial Port (COME)

16.6 5
16.800768

168.9180872
11.836471
11.156842

Figure 4.34: FPGA Simulation Result

& Slice LUTs Slice Registers F7 Muxes F& Muxes Slice LUT as Logic LUT as Memory Block RAM DSPs Bonded I0B PHY_CONTROL BUFIO

b ! (53200) (106400) (26600) (13300) (13300) (53200) (17400) Tile (140) (220) (125)) (16)

v design_1_wrapper 10134 9652 80 16 3668 9518 616 9652 2 96 130 1
v design_1_i (design_1 10134 9652 80 16 3668 9518 616 2 96 0 0 0

> axi_dma_0 (d 1255 1764 0 o 619 1165 90 2 0 0 0 0

> axi_smc (o 2290 3038 0 0 967 1824 466 0 0 0 0 0

» [1] axi_stream_matrix_mu_ m_matrix_mu_0_ 6185 4360 20 16 1963 6185 0 0 96 0 0 0

> processing_system7_0 S 0 0 0 0 0 0 0 0 0 0 0 0

> ps7_0_axi_periph 389 448 0 0 194 330 59 0 0 0 0 0

>[I rst_ps7_0_50M (desig 16 33] 0 14 15 1 0 0 0 0 0

Figure 4.35: FPGA utilization Results

Our multiplication IP peripheral consume 6185 LUTs, 4369 FFs and 96 DSPs.

Each DSP does (25 x 18 multiplication operation).

43

- el
T COTT
SR

i

EOOECETED
ECEED
CCrL]

CCair

L

" s e Mo R

ing results

FPGA rout

Figure 4.36

Timing

4 Design Timing Summary

I

M4

General Information

Pulse Width

Hold

Setup

Timer Settings

14
a
v
o]
©
w
£
o}
@
o
5
o
B
s

Worst Hold Slack (WHS):
Total Hold Slack (THS).

F

Worst Negative Slack (WNS)

Design Timing Summary

0.000 ns

Total Pulse Width Negative Slack (TPWS):

0.000 ns

0

0.000 ns

0

Total Negative Slack (TNS):

Clock Summary

Number of Failing Endpoints Number of Failing Endpoints

Number of Failing Endpoints

Check Timing

10785

Total Number of Endpoints

29105

Total Number of Endpoints

29105

Total Number of Endpoints:

Intra-Clock Paths
Inter-Clock Paths
Other Path Groups

All user specified timing constraints are met.

User Ignored Paths

Timing Summary - impl_1 (saved)

Its

FPGA timing resu

Figure 4.37

44

Settings

- Power analysis from Implemented netlist Activity derived from constraints On-Chip Power
Summary (1.55 W, Margin: N/A) files, simulation files orvectorless analysis
Power Supply Dynamic: 1412W (91%)
« Utilization Details Total On-Chip Power: 1.55W
Hierarchical (1.412 W) Design Power Budget: Not Specified Clocks: D.oosw (%)
Clocks (0.0 Power Budget Margin: NiA Signals: 0.002W (=1%)
v Signals) Junction Temperature: 42.9°C 1% Logic: 0.002W (=1%)
Data (0.002 W) Thermal Margin: 42 1°C(3.5'W) M BRAM: =0.001W |
Clock Enable Effective 3JA: 11.5°CW D3P =0.001W (=1%)
Power supplied to off-chip devices: 0W M Ps7: 1.400W (95%)
Confidence level: Medium
Lt Device Static 0138 W

Launch Power Constraint Advisor to find and fix
invalid switching activity

Figure 4.38: FPGA Power consumption results

4.4 ASIC Implementation

The simulation and ASIC implementation[26] of the circuit is divided into three stages.
1. RTL Design using hardware description language(Verilog[27]).
2. Synthesizing the RTL code to netlist using Synopsys Design Compiler.

3. Place and Route using Cadence Innovus.
4.4.1 Synthesizing the RTL code to netlist using Synopsys Design Compiler

NanGate FreePDK standard library and Synopsys tools have been used to perform the design
flow. The details are as follows:

1. Synopsys Library Compiler[28]: Library files(.lib) contain abstract logical and timing views
of standard cells necessary for synthesis. Library Compiler converts a library file (.1ib) format file
to database format (.db) which is suitable for synopsys tools.

2. Synopsys Design Compiler[29] [30]: Design Compiler first converts a synthesizable RTL
code to technology independent format called GTECH. Upon providing with standard cells, it
takes the GTECH format and gives gate level design optimized for the specific technology node in
terms of area, power and delay.

NanGate FreePDK 45[31] [32] is an open-source standard library kit held by US based multina-

tional corporations for exploring EDA flows. It contains tech files, design rules for 45nm process.

45

The OCL kit provides three different models as follows:

1. NLDM (Non - Linear Delay Model): This is a voltage source-based model which character-
izes input — output delay and output transition times with sensitivity to input transition time, side
input states and output load.

2. ECSM (Effective Current Source Model): This is a current based model which considers the
non — linear transistor switching behaviors, allowing the accurate modelling of interconnections.

3. CCS (Composite Current Source): A model similar to ECSM model in which dynamic
current is calculated using transient analysis and leakage power is the leakage current measured
using simple DC analysis.

These models are characterized into five different corners as follows [33]:

* Typical

¢ Slow

¢ Fast

* Low Temperature

* Worst case low temperature

In the .1ib[34] file, the following attributes are present

* Voltage unit

¢ Current unit

* Leakage power unit

* Leakage power unit

* Leakage power unit

* Input threshold at rise and fall time.

46

* Output threshold for rise and fall time.

¢ Slew rate.

For each cell (AND, NAND, OR etc.,) following attributes are defined:

Voltage unit

¢ Current unit

* Leakage power unit

* Leakage power unit

* Leakage power unit

* Input threshold at rise and fall time.

* QOutput threshold for rise and fall time.

e Slew rate.

e Area of cell

 Capacitance

* Rise and fall capacitance

Direction of the pin etc.,

Synthesis steps:

1. Loading the Design: The design is provided in the form of High-level Description language
- Verilog or VHDL file. The analyze command reads the HDL file checks for syntax and synthe-
sizable logic. The elaborate command converts the design to a synopsys internal generic library

called gtech.

47

2. Loading Technology Libraries: Next step is to load technology libraries(.lib) from Nangate
FreePDK and Synopsys designware libraries. Synopsys designware library is a building block IP
and collection of reusable arithmetic modules tightly integrated to Synopsys synthesis environ-

ment.

Figure 4.39: Block diagram of the entire design in the Design Compiler

3. Creating virtual clock: create_clock clk -name ideal_clockl -period 6. This command
creates a virtual clock that will be connected to all the flip flops required for our design.

4. Setting the operating conditions: Operating conditions are the process, voltage and temper-
ature variations on which the design operates. WCCOM(class) is the condition window on which
our design operates.

5. Ungrouping the cells: It is important to flatten the design by eliminating hierarchical bound-
aries. The tool will be able to perform better and achieve better PPA results.

6. Check Design: check_design command checks if there are no obvious errors in RTL code.

7. Compile Command: This command performs the actual optimization by converting the RTL
to technology optimized netlist.

8. Writing down the output: We output the result in two different file formats: .ddc and Verilog.

48

—

il

|
E... !
Il
i
!

|||I|| =l H

Figure 4.40: Detailed circuit diagram for the entire design in the Design Compiler

49

Path Slack

Number of Paths.

-0.8908
Slack

Figure 4.41: Slack paths when clock period is set to 5ns.

Path Slack

Figure 4.42: Slack paths when clock period is set to 7ns.

This matrix multiplication peripheral has been synthesized for clock of time period 7.2ns.

50

Figure 4.43

high-fanout ne

elllibrary.db)

A fanout number

: Area and Standard cell consumption before Place and Route

4.4.2 Comparison between different order of differentiation after implementation

ence withk =2

Method Area(in um?) | Improvement | clock time(in | latency (in
ns) clock cycles)

Previous work 178,200 - 7.7 6

Higher Order Differ- || 164,566 7.65% 7.45 7

ence with k =1

Higher Order Differ- || 152,708 14.30% 7.2 8

Area is in proportion to the standard cell count.

4.4.3 Place and Route using Cadence Innovus

In this section, we will explain the detailed steps to perform the backend placing and routing

using cadence Innovus[35], an industry leading tool for place and route.

Needed files:

1. Gate level netlist which is generated using Design compiler.

2. NanGate FreePDK LEF files necessary for place and route.

51

3. Multi-mode multi-corner(MMMC) file for timing analysis.

The LEF [34] file is the abstract view of standard cells. It gives the idea about the pin position,
PR boundary and metal layer information of the cell.

Multi-mode multi-corner file specified what corner to use for timing analysis. A corner is a
characterization of standard cell with specific assumptions about process, temperature and volt-

age(V). For this placement and routing, we choose typical corner(average PVT).

Figure 4.44: Initial floor planning

Sub steps: 1. The first step is to input the tool with netlist, setting up the design name, timing

analysis, reading the technology .lef for layer information and standard cell.

52

2. Second step is to do floor planning. In this design, we chose aspect ratio to be 1.0 and
cell utilization to be 70%. Aspect ratio is the ratio of width and height of the entire chip and cell
utilization is the percentage of the actual chip used for standard cells.

3. The next step is power routing. We create a grid of power and ground wires on top metal

layers and connect this grid down to M1 power rails in each row.

Figure 4.45: Power planning

4. Fourth step is to create a power ring around the chip. This ensures that all the standard cell
get power and ground easily. We will use M6 and M7 to put the power ring across the chip.

5. The next step is to place standard cells using place_design command.

53

6. Sixth step is to optimize the clock tree routing using ccopt_design command.

Figure 4.46: Clock tree planning

7. Final step is signal routing.

54

Figure 4.47: Standard cell placement

55

|| | .| |- . - ,_ .|, .|
i c & ;
3 S3ES3 HE L H HEH HH = “..
SRERN || Y = B HENE -] EREENENRY
: FHEH -+ i HERE H 1 I SENEEZT
T -] 4 B =B E X | 3 LB = 1 B - o E =
ERUNE 4114 | LT LR FHNERERNEE YN as
f ANER e 1 i HF Eassas | | H HH
FIREEAEN b L - gk AEENY il 1110 AL
-l 4 E < -l d ! - SCRE EEQMEEANST
a9 3 - H a d 1 1 -4 Ef L 28t d a2 . B
J-1:H H L 1 o i A=REEOE 3 I
4 B ne | iNNE =EZERE b H
LecaRe® i B x . RREED oM A HEERSIIEAD W i
az i L} g [N1 1y | O N (100
A LET B 4 am HE % Eamy -
f== = L AN ESNE e K
UREON B T B 443 | &
{4y 14 BE L} = - aup -
| i H d] e = T ha N E
a8 - EXE] L ; JF
fisn] -} |} famp SENNOEN
H H T ! p NERY
= |- L ENER k) - |] *EEED nER 2
[y 5] HE . ng ERNARE
S 11 == BAEpEE = = H-HH B £= 3
- 5k ni 2 | b . FEN(IRgHRE
14 e = =5 28 §E R 2 -1 -k
HA r 4] - i EEERR
34 H EEEAARNN s | 14 L.} 1EB
: HIH H HA =4 tanpnE BEm
A == B I 2 b H] ERTS 1 3] | E
L0 H f | | -1 =
JEE® E 5 d U f " 11 2
H s EdNE| BEED - e H H1E
EECRRER L 2 H & Z=ES = L B
SHENERS BERNN 3 Exan ¥ e : L -
- H 2 = i El [pur-n 1
L c¥ R Bl H T 4+
1 EREED 1F 4+ -
3 E=s 2kl H gqe ER +
EEE IR BIAERE I i 1 H
-Id: |} .44 REEHNER 1 el 1 B i3 B
= =5 g g =i B d £l 1l
L s ArE L1 | 1 Hid
f d -1
T [an H H | q -
1ULE ; | A1 i THHT ; i
s B g REE A E
EL BA
aedllaym d i T EE giE
HES ED S = -1 H .
sa=qn ! Al e} 1 T1EEIH B |
LT " BEEnt 1 SRi=dli ESER 5
[: E ! 1 L ERE T HNERH i
] 7 T 1] i L
M =wh o L cdi -1 1 =
SERELIRE B dSRE tufl? H 3 5 = RE i
nsageLd B S5:f il rant : H
- ES E w2 H1 RN E = B n
H - | s Lot 4 e Annn 1
E) i BRI ArFEs el TRIENSEREE SERE
= o y U T 1N -1]
rn ! 9 b i L EETEd 4 =
TTEHE f FHHERE [} EaE
E (| H T A =1 EdRE
EEE A A : E H
i ‘I3 EAT & f 3 - ESIREd
OREEN A | E¥ EN=ERRER
Lk Lk 1 A LT H HHF LEHE
i 14}]] yEs ¥
He] L1 L1 LT L HE
HLHT T g 5 FAES] sl
=t f -0 = H -
—H 3 1 1 1 g
R X B =9
ATNRIEES - ¥ H
L B Tl
1 i NEE
1 =1 FI E - Ilﬂ. T FENpy S
L i N 1 I]
- Hgm 1} ' - 1 H- S H -]
LT 3 2] ERRdE: EER FTT
S =] k4 ; 24 EllE = SOEE LR 21 LA
ngng H:4 1 F F M F Rizidfdas i1 HHH
1 I 1 REL 1 ' H ‘H tErd-H 1 H1 HF
1 Had 1 f e E ¥ J1HH H H-
e —ft- M H 2 L] = BE i L] 401
2 s S

Place and Route

Figure 4.48

56

metall

#

[# metal2
metal3
metald
[# metald
metalé
[# metal?
-
#

#Increased memory =
#Total memory = 1591
#Peak memory

#

#Cpu time = 00:15:13
#Elapsed time = 00:15:14
#Increased memory
#Total memory = 1411.81 (MB)
#Peak memory = 1920.85 (MB)
#lumber of 22
#Total number of
#lumber of fails = @
#Total number of fails
#Complete globalDetailRoute on Sat Feb 27 00:
#
End globalDetailRoute (date=82/27 @8 129, total ¢ 13, real=08:15:14, peak res=1710.7M, current mem=1411.1M)
#Default setup view is reset to analysis_default.
#routeDesign: cpu time = 0@:16:09, elapsed time = 80:16:11, memory = 1386.90 (MB), peak = 1920.05 (MB)

*=% Summary of all messages that are not suppressed in this session:
Count Summary

IMPEXT- 1 node not set. Use the com..

IMPC The command %s is obsolete and will be r

IMPESI-3014 The RC is incomplete for net

sage Summary: 4 wa), @

#% End routeDesign (date=02/27 5 C| :16:89, real=0:16:11, peak res=1718.7M, current mem=1
@
innovus 18> |

Figure 4.49: Place and Route terminal result

report_area
Hinst Mame \ Inst Count Total Area

i stream_matrix_mult
add_0_root_add_B_root_add_1[11].a2/add_8 axi_stream_matr
add_18_root_add_@_root_add_1[11].a2/add _stream_matrix_mult_DWO1_add_
add_1_root_add_@_root_add_1[11].a2/add_| axi_stream_matrix_mult_DWel_add_25
add_2[8].a3/add_ i _stream matrix mult DWe1l add_41
add 2[10].a3/ xi_stream matrix mult DWe1 add
i_stream_matrix mult_DWe1l_add_37
i stream_matrix_mult_DWel_add
xi_stream matrix mult_DWOl_ add
i stream_matr ult_DWel_add_46
axi_stream_matrix_mult DW@1_add_45
_stream_matrix_mult_DWe1_add_44
axi_stream_matrix_mult DW@1_add_43
stream_matr ult_DWel_add_42
.a3/add_822 axi_stream_matrix_mult DWe1l_add_ 40
EEVEL LR i_stream_matrix_mult_DWe1_add_39
add_2_root_add_B_root_add_1[11].a2/add_| axi_stream_matrix_mult_DWe1_add_29
add_3[0].ad/add_ i _stream matrix_mult DW@1 add_
add_3[10].a4/add_: tream_matr ult DW@1 add_13
add_3[11].ad/add i_stream_matrix_mult_DW@1_add_12
add_3[1].a4/add i_stream matrix_mult_DWel_add
add_3[2].a4/add_| xi_stream_matrix_mult DWe1l add_21

RGN . -
RSN IR . e
PRt

s

[N

NN N N
[)
[v- Y- v Yoy

e
~
R R R AN RN N RN R R RN AR R NN
~

i
[Npw RN

£ ROy

3
[SRSR SR Ne

s
i

Figure 4.50: Area consumption after place and route

57

VERIFY Sub-Area: {36: .B80 434.168 289.440}

VERIFY ee-u.. Sub-Area : . B Viols.

VERIFY ceve-. Sub-Area: .B8@ 5B85.210 289.448} 28
VERIFY vees.. Sub-Area : 28 complete B Viols.

VERIFY vve... Sub-Area: {0.880 289.448 72.36@ 361.800} 29 49
VERIFY Sub-Area : 29 complete © Viols.

VERIFY Sub-Area: {72.36@ 289.440 144.728 361.800@} 3@ of 49
VERIFY Sub-Area : complete @ Viols.

VERIFY Sub-Area: {144.720 289.449 217.880 361.808} 31 of 49
VERIFY weeu-- Sub-Area : 31 complete 8 Viols.

VERIFY ceran. Sub-Area: {217.080 289.440 289. 1.808} 32 of 49
VERIFY vesea-- Sub-Area 2 complete @ Viols.

VERIFY veren. Sub-Area: 39.448 289.440 361.8 1.800} of 49
VERIFY vees.. Sub-Area : 33 complete @ Viols.

VERIFY Sub-Area: {361.88@ 289.448 434.: 1.800} 34 of 49
VERIFY Sub-Area : 34 complete @ Viols.

VERIFY Sub-Area: {434.160 289.448 505.218 361.308} of 49
VERIFY Sub-Area : 35 complete © Viols.

VERIFY vve... Sub-Area: {0.880 361.808 72.36@ 434.160} 36 of 49
VERIFY ceea.. Sub-Area :

VERIFY cve... Sub-Area: {72.360 361.88@ 144.720 434.160} 37 of 49
VERIFY cees.. Sub-Area : complete @ Viols.

VERIFY vee--- Sub-Area: {144.720 361.8060 217.080 434.168} 38 of 49
VERIFY Sub-Area : 38 complete © Viols.

VERIFY Sub-Area: {217.880 361.800 289.448 434.168} 39 of 49
VERIFY Sub-Area : complete 8 Viols.

VERIFY Sub-Area: {289.448 361.800 361.880 434.168} 48 of 49
VERIFY vesvs-- Sub-Area : 48 complete @ Vieols.

VERIFY vve... Sub-Area: {361.800 361.800 434.168 434.160} 41 of 49
VERIFY veee-- Sub-Area : 41 complete @ Viols.

VERIFY Sub-Area: {434.160 361.800 505.218 434.168} 42 of 49
VERIFY Sub-Area : 42 complete © Viols.

VERIFY Sub-Area: {0.800 434.160 72.360 504.568} 43 of 49
VERIFY Sub-Area : 43 complete 8 Viols.

VERIFY Sub-Area: {72.368 434.160 144.72@ 584.568} 44 of 49
VERIFY Sub-Area : 44 complete @ Viols.

VERIFY vve... Sub-Area: {144.728 434.160 217.080@ 584.560} 45 of 49
VERIFY we-.-- Sub-Area : 45 complete 8@ Viols.

VERIFY cee--- Sub-Area: {217.880 434.160 289. 504. H of 49
VERIFY DRC Sub-Area : 46 complete © Viols.

VERIFY DRC Sub-Area: {289.448 434.168 361.E 504. r of 49
VERIFY DRC Sub-Area : 47 complete © Viols.

VERIFY DRC Sub-Area: {361.880 434.160 434.: 504. r 48 of 49
VERIFY DRC Sub-Area : 48 complete @ Viols.

VERIFY DRC Sub-Area: {434.160 434.160 585.218 504. H of 49
VERIFY DRC Sub-Area : 49 complete © Viols.

Verification Complete : & Viols.

End Verify DRC (CPU: @:00:20.7 ELAPSED TIME: 20.00 MEM: ©.0M)

innovus 26> I

Figure 4.51: DRC verification

58

Total number of fetched objects 93
JAAE_INFO: Total number of nets for which stage creation was skipped for all v

(
: MET Setup Check with Pin y_diff_diff_reg[461]/CK
4611/D () checked with edge of 'ideal_

(v) tri red by ing edge of 'ideal_

}
jAnalysis View efault
[Other End Arrival Time
- Setup

Phase Shift
Required Time

Network Latency (Prop) ©.811
npoint Arrival Time 0.811

Delay | Ar
| Time

u13347
ul3eal

| X > CLKBUF_X3
U19955 0AI222 X1
U19954 INV X1
U20625 A o> IN 0AT211 X1
mult_2[6].m2/mult_811/FE_OFC3891_inputl_to_r v CLKBUF_X3
94
mult_2[6].m2/mult_: 2 \ XNOR2_X1

Figure 4.52: Timing check after place and route

59

5. PARK AND INVERSE PARK TRANSFORMATION

5.1 Interface between network and non - network part

As discussed in the introduction, Park transformation converts the state variables from DQO
coordinate in the generator side to the three phase coordinates in the network, whereas inverse

park transformation reverts the conversion back to the DQO coordinates.

Input vector

ROM ﬂ
6 sin 8 Matrix
;2 P.or P — Qutput vector
Scaled angle iorey :V'\
Matrix vector

Multiplication

Figure 5.1: High level diagram

Park Transformation:

I,(t) sin(@+ir) —sin(0) 1)\ [ILa(t)
Lt) | = | sin(@ —gm) sin(0+37) 1 I,(t) (6.1
I.(t) sin(f + +m) sin(f —sm) 1 0

Inverse Park Transformation:

eq(t) sin(f + 7)) sin(0 — i) —sin(0 —) Va(t)
e,(t) | = —sin(0) sin(0 + 3 sin(0 — 3 Vi(t) (5.2)
€ 0.5 0.5 0.5 Ve(t)

60

As Eq 5.1 and 5.2 describe, the matrix is in terms of angle § between a and q axes. This matrix
has to be computed at every time step as © changes. The sinusoidal values of angles ranging from

0 to 7/2 has to be stored in memory like a lookup table.
5.2 Linear Interpolation

Linear Interpolation is a special case of polynomial interpretation. Given two known points
(X0, Yo) and (X1, y1) on the xy plane, its linear interpolant is a straight line connecting the two

points and the equation can be derived as follows:

Y1 —*

Yo ——+

Xp X4

Figure 5.2: Linear Interpolation for two random points

Equation of slopes:

Y=Y _ Y1~ %
r — 29 1 — X

(5.3)

solving for y, we get

Y1 — Yo
X1 — Zo

Y =yo + (v — x0) (5.4)

61

5.3 Linear Interpolation for computing sinusoid values

Linear Interpolation 2,

08|
06
04 &

02F -

02}
041 @
06}

08

Figure 5.3: Linear Interpolation for a sinusoid waveform

The objective is to take 2*, (where k is a whole number) number of sinusoid samples and
linearly interpolate them (as shown in the figure 5.2) such that the difference between two adjacent
interpolated values should be close to 2732, Upon simulating in matlab with different values of k,
we concluded that k = 15 works best for our application.

In conclusion, we need 2'® = (32768) samples of sine wave (from angle 0 to 7/2) with each

value being 32 bits to meet the required accuracy for park transformation and its inverse.

5.3.1 Previous work

In the paper [11], authors have proposed a non-uniform based piecewise linear approximation
with one bit error correction to compute sinsuoid values. ROM3 as shown in the below figure

consumes large area when we extend this architecture for our application needs.

62

z[7:0]

slope

z[15:8] ROM 1

z[17:0] ,(::) _, e

z[15:8] Vo
—*| XOR ROM 2

[16]

H
x[31:0] compressed

z[15:0] sin(x) -y
ROM 3

Figure 5.4: Linear Interpolation for computing sinusoid values using three ROM structure

In the paper [10], authors have proposed a phase to sinusoid amplitude converter based on first
order polynomial approximation of the sine function.
In this architecture, they use two ROM structures, one for storing the sinusoid values sampled

at "N’ points and one to store difference between two consecutive samples.

x[14:0]

—{ ROM 1

Scaled angle (x) .
210 x[29:15] sin(x)
Yo
e

ROM 2

Figure 5.5: Linear Interpolation for computing sinusoid values using two ROM structure

For this method, we need 32768(2'%) rows in ROM1 each of width 32 bits , 32768(2'%) rows in
ROM?2 each of width 13 bits, one adder (32 - bit) and one multiplier(15 x 14).

63

5.3.2 Proposed method

Now, given an angle(x) in 32 bits, the two MSB bits x[31:30] can be used to represent the

quadrant, x[29:15] to address the ROM and LSB 15 bits x[14:0] for linear interpolation.

Fig 5.2 shows the architecture we propose in this thesis.

X = X[29:15]

yo = lookup table(x[29:15])

X1 =x[29:15] + 1

y1 = lookup table(x[29:15] + 1)

Scaled angle (x)
31:0

x[14:0]

%[29:15]

ROM

—_

Two requests in queue
x[29:15] and
¥[29:15] + 1'b1

_j’D Yo ‘ |
j.é aé) ({-}—- sin(x)
¥1-

i
Y1 0

Figure 5.6: Proposed method

64

o | | £ AE0RAH

0 7 4 8 8 10 12
%108

Figure 5.7: Absolute error b/w Original and interpolated signal

Thus, to compute the required value y, we need two accesses to the lookup table, one for yq

and another for y;, two 32-bit adders and one multiplier (15 x 14).
5.3.3 Skipping Rows

As shown in the Fig 5.6, the absolute error is a monotonically increasing function i.e., Error(f =
7/2) > Error(= 0). This is because the value of the sinusoid approaches to ‘1’ as 6 approaches to
7/2. The absolute error is directly proportional to the actual magnitude in this case. (Our emphasis
here is to make absolute error as low as possible rather than the relative error).

As the absolute error between the actual value and interpolated value is less when 6 is near 0,
we can take advantage to skip few more rows in the beginning.

The total 32768 rows can be divided into two groups:

Group 1 : consists of 4096 (0 — 4095) values.

Group 2 : consists of remaining 28,672 (4096 — 32,768) values.

65

a[14

8 bits

8 bits

8 hits

8 bits

t
|

t
|

r-.

i
|1

~ |]]
| I
Il
IR

[31:24]

[23:16]

[15:8]

4094

32767

Figure 5.8: Skipped rows

ROM

I block is present

[Thlock is skipped

All the even numbered rows are skipped
until row 4096.

From 4096 — 28672, all the rows are
present

In the Group 1, instead of storing all the 4096 values, we can store only half of them i.e., 2048

values by skipping the odd numbered rows(1,3 ... 2047). Group 2 stays as it is.

In our memory, we store the values in the block of 8 bits as shown in the fig 5.6 However, this

comes at a cost of complicated decoder, i.e., when (x < 4094 and x is even), row(x) and row(x + 1)

should have the same word_en signal.

66

0 2 4 6 8 10 12
%108

Figure 5.9: Absolute Error after skipping rows near 6=0

5.3.4 Skipping Columns

As shown in the figure 5.9, yellow rectangles capture all the ‘1111_1111" pattern and green
and red rectangles capture the repetitive patterns. Instead of storing these values separately, we can
store one value and share it among all the rows.

This comes at a cost of another complication in the decoder design requiring OR gates to share

the word_en signal for rows having the same pattern.

67

sine mem[32721]
sine_mem[32722
sine_mem[32723]
sine_mem[32724]
sine_mem[32725]
sine_mem[32726]
sine mem[32727]
sine_mem[32728]
sine_mem[32729]
sine_mem[3273@]
sine_mem[32731]
sine_mem[32732]
sine_mem[32733]
sine_mem[32734]
sine_mem[32735]
sine_mem[32736]
sine_mem[32737]
sine_mem[32738]
sine_mem[32739]
sine_mem[32748]
sine mem[22741]
sine_mem[32742]
sine_mem[32743]
sine_mem| 32744]
sine_mem[32745]
sine_mem[32746]
sine_mem[32747]
sine _mem[32748]
sine_mem[32749]
sine_mem[3275@]
sine_mem[32751)
sine_mem[32752]
sine_mem[32753]
sine _mem[32754]
sine mem[32755]
sine_mem[32756]
sine_mem[32757]
sine_mem[32758]
sine_mem[32759]
sine_mem[32768]
sine_mem[32761]
sine _mem[32762]
sine_mem[3276
sine_mem[32
sine_mem[32766]
sine_mem[32767]

32'b1111 1111 1111 1111 1181 8181 elle 16811:
1181_©111 8811 _eiel;

1181 _1eee 1111 e111;
1181_1616_1818_1116;

1181 1188 Plel_1611;
1181_1181_1111_1111;

1181 1111 1881 18e8;

1110 @881 eelp 1696;

1118 8818 1818 _1118;

111e_elee eele_lele;

1118 8181 _1@el 1184
1118_08111_eees_o1ea;
1118_1868 9118 _P81a;

1118 _1e81 1811 8111;

1119 _1el]l eeoe 8eale;

1112 1166 8100 _8e1a;
111e_1181_8111_1ee1;
1116_1116_1818_e116;

1118 1111 1188 _1681;
1111_@eesd 1118 _e8ll;

1111 eeal 1111 eale;

1111 @818 1111 _1ee8;
1111_8811_1111_8el1;

1111 8168 1118 e1e1;

1111 @181_11ee_1161;
1111_8118_1818_1611;
1111_e111_e111_1111;

1111 1688 alee 1818;

1111 1881 eeod |1818;

1111 1861 1lee seal;
1111_1610_e118_1161;
1111_1811_e@el_pepa;

1111 1811 1e1le_1801;

1111 _11e@ (@1l l1e8ea;

1111 _11ea (1811 1118;

1111 1181 6e11_1661;
1111_11e1[1e1e_1ele;

1111 1119 e@el_pele;
1111_1118_8111_aaes;

1111 1118 1188 _818a;
1111_1111 eeee _1118;

1111 1111 elee 1118;
1111_1111_166e_aloe;

_ _ 1111 1111 1811 88sl;
1111_1111|{1111_1111[1111_1111_1181_e811;
'.1111_1111I1111_1111 1111_1111_1118_11886;
1111_1111!1111_1111 1111_1111_1111_1611;

[}

had b Ll L A Ll

bl g

Ll

(¥
Fud Pud Pd Fod B B Pod Pd Bd Bad Bad B B

AR s

Lad Led g R
Pd B B B

L L
Pk Fud P

b e el Rl
Fod Pud B b

Rk Lk L
Fud Pud Pud Bad B Bl B Bad B Fod

(WU WY TR P R Y WY P W P)

Rd L
Pud Pl Bl B Pod Pod Bd Pd B B

(LR F R F

Liad
P

Figure 5.10: Skipping columns

68

5.4 VLSI Implementation of ROM

A[14:10]
4/ Column Decoder \

Row
Decoder

T

A[9:0]
—»\ Column Mux /
A[14:10]

T
| 1/0 circuitry |

Figure 5.11: High-level implementation details of the ROM

As shown in the above figure, all the 32768 sinusoid values are divided into 32 blocks of
ROM each containing 1023 rows. Each block contains all the information pertained to each bit of
required 32-bit value.

This particular way of dividing the ROM into 1024 rows and 1024 columns ensures minimum

area required and also capacitance of the wires will be kept lower.

69

Implementation | Bit cells for Max. Precision |Improvement | Latency | Throughput

type ROM (core Absolute (in bit cells) (in clock | (in samples/sec)
logic) Error cycles) ~clock Sns
Zhang’s 79,616 (each ~ ~107(2'%) ~103(2°16) ~ 2x 108
Approach sine value is 16
bit only)
Langlois and D. 1,474,560 ~10719(2-32) ~1019(232) ~ 2 2x 108
Al-Khalili —
Approach
Our 724,616 ~10719(2-32) ~10-19(2-32) 50.39% 3 108
Implementation

Figure 5.12: Improvement

The improvement however comes at a cost as complicated decoder is required to design and

also takes two clock cycles to get the required ROM data.
5.4.1 Block Diagram

The following diagrams Fig 5.10, Fig 5.11 and Fig 5.12 talk about cell arrangements in each
block of the entire ROM.

70

eng en; eny eng enap
Vvdd Vvdd vdd vdd Vdd

B | .]

2 v I " A
CHERE
ERERE

Y T Y Y Y

0 1 2 3 31

Figure 5.13: High-level implementation details of the ROM

The word lines WLy, WL, ... WL;g23 come from the row decoder, whereas eng, en; ...

come from the column decoder.

The presence of a transistor represents a ‘1°, and absence represents a ‘0’.

column line

| }J row select line

Figure 5.14: Represents a ’1’

71

€N3o

column line

row select line

Figure 5.15: Represents a ’0’

5.4.2 Circuit Design - column and row decoders

The decoding logic can be divided into two parts — pre decoder and post decoder.

Since many gates share the exact same inputs and thus are redundant, the decoder area can be
improved by factoring out the common gates. This technique is called pre - decoding[36].

Either of the two — designs, can be used for decoder. Decoders using standard cells consume
lower dynamic power but more area whereas decoder using dynamic logic consume lower area but

higher dynamic power[37].

0 7

O
ne
>
L c—

Figure 5.16: Pre - decoder using standard cells

72

)

] 16

J WLyg3

>8 | 358) >16 | pre - decoders
7T T

4 -
% =
ZEEB

af9] —m w

m W]

Figure 5.17: Decoder using standard cells

P _C O _C
| ’_l_L ’_l_L ’_l_L W
— N N N °
e ’_l_L ’_l_L ’_l_L "
8 8 16
— _C _C _C
| s | s B B el
. and W23
’ 3->8 3->8 4->16
Pre -
decoders FEZ S

a[g]
a[g8]
a[7]

Figure 5.18: Decoder using dynamic logic

73

53—

3
o
R

B
B
1,

gnd

RENNEN

Figure 5.19: Pre - decoder using dynamic logic

5.4.3 Circuit Design - column mux

\
]
L_T—

To I/O circuitry

Figure 5.20: Column mux - Design 1

74

6. CONCLUSION

In the first problem statement of our thesis, we proposed optimized architecture to implement
low rank based matrix vector multiplication for solving network equations. In a power system sim-
ulation, one of the input to the matrix vector operation is current(I) with a fundamental frequency
60 Hz. Through a mathematical proof and experimentation, we have shown when the current(I) is
sampled at a high frequency, instead of computing the actual result at each time step we can use
higher order differences to solve the problem using less hardware resources at a cost of slightly
increased relative error. The entire flow has been prototyped on Zybo Z7-20 board using Xilinx
hardware software co-design tool. Also, using the start-of-the art CAD tools combined with 45nm
FREEPDK kit we implemented the low rank based matrix vector multiplication and presented the
synthesized and routed results.

For the second problem statement, we proposed a custom ROM architecture along with linear
interpolation technique to compute high precision sinusoid values as part of park transformation
and inverse - park transformation design. We also presented two more techniques in the row and

column dimension to further reduce the transistor count.

75

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

P. Kamranfar, S. A. Shahabi, G. Vazhbakht, and Z. Navabi, “Configurable systolic matrix
multiplication,” in 2014 27th International Conference on VLSI Design and 2014 13th Inter-
national Conference on Embedded Systems, pp. 336-341, 2014.

L. Zhang, M. Wu, Z. Li, P. R. Kumar, L. Xie, and W. Shi, “VIsi architecture for exciter,
governor, and stabilizer in fast power system emt simulation,” in 2018 IEEE Texas Power

and Energy Conference (TPEC), pp. 1-6, 2018.

L. Zhang, B. Wang, X. Zheng, W. Shi, P. R. Kumar, and L. Xie, “A hierarchical low-rank
approximation based network solver for emt simulation,” IEEE Transactions on Power De-

livery, vol. 36, no. 1, pp. 280-288, 2021.

L. Zhang, B. Wang, D. Wu, L. Xie, P. R. Kumar, and W. Shi, “Fast electromagnetic tran-
sient simulation based on hierarchical low-rank approximation,” in 2019 IEEE Power Energy

Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5, 2019.

R. Wunderlich, M. Piischel, and J. C. Hoe, “Accelerating blocked matrix-matrix multiplica-
tion using a software-managed memory hierarchy with dma,” in High Performance Extreme

Computing (HPEC), 2005.

Z. Jovanovié and V. Milutinovié, “Fpga accelerator for floating-point matrix multiplication,”

IET Computers & Digital Techniques, vol. 6, no. 4, pp. 249-256, 2012.

I. Sayahi, M. Machhout, and R. Tourki, “Fpga implementation of matrix-vector multiplication

using xilinx system generator,” in 2018 International Conference on Advanced Systems and

Electric Technologies (ICASET), pp. 290 — —295, 2018.

A. Amira and F. Bensaali, “An fpga based parameterizable system for matrix product imple-

mentation,” in IEEE workshop on signal processing systems, pp. 75-79, IEEE, 2002.

76

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. J. Campbell and S. P. Khatri, “Resource and delay efficient matrix multiplication using
newer fpga devices,” in Proceedings of the 16th ACM Great Lakes symposium on VLSI,
pp- 308-311, 2006.

J. Langlois and D. Al-Khalili, “Piecewise continuous linear interpolation of the sine function
for direct digital frequency synthesis,” in IEEE MTT-S International Microwave Symposium

Digest, 2003, vol. 1, pp. A65-A68, IEEE, 2003.

R. Zhang, G. Chen, J. Zhang, G. Chen, and J. Yu, “A new ddfs based on unequal length piece-
wise linear approximation with one bit error correction,” in 2014 12th IEEE International

Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, IEEE, 2014.

E. Bertagnolli, F. Hofmann, J. Willer, R. Mary, F. Lau, P. von Basse, M. Bollu, R. Thewes,
U. Kollmer, U. Zimmermann, et al., “Ros: An extremely high density mask rom technol-

ogy based on vertical transistor cells,” in 1996 Symposium on VLSI Technology. Digest of

Technical Papers, pp. 58-59, IEEE, 1996.

W. Cui and S. Wu, “Design of small area and low power consumption mask rom,” in 2007
IEEE International Conference on Integrated Circuit Design and Technology, pp. 1-4, IEEE,
2007.

C.-R. Chang, J.-S. Wang, and C.-H. Yang, “Low-power and high-speed rom modules for asic
applications,” IEEE Journal of solid-state circuits, vol. 36, no. 10, pp. 1516-1523, 2001.

C.-R. Chang and J.-S. Wang, “A new high-speed/low-power dynamic cmos logic and its
application to the design of an aoi-type rom,” in /999 IEEE International Symposium on

Circuits and Systems (ISCAS), vol. 1, pp. 254-257, IEEE, 1999.

S. Kamuro, Y. Masaki, K. Sano, and S. Kimura, “A 256k rom fabricated using n-well cmos

process technology,” IEEE Journal of Solid-State Circuits, vol. 17, no. 4, pp. 723726, 1982.

C. Melear, “Integrated memory elements on microcontroller devices,” in Proceedings of

WESCON’94, pp. 507-514, IEEE, 1994.

77

[18] “Fixed point vs float point” https://www.math.drexel.edu/~tolya/300_

float .pdf. Accessed: 2021-03-03.
[19] M. Lu et al., Arithmetic and logic in computer systems, vol. 169. Wiley Online Library, 2004.

[20] K. K. Parhi, VLSI digital signal processing systems: design and implementation. John Wiley
& Sons, 2007.

[21] M. C. Karra, M. Bekakos, 1. Milovanovic, and E. Milovanovic, “Fpga implementation of a
unidirectional systolic array generator for matrix-vector multiplication,” in 2007 IEEE Inter-

national Conference on Signal Processing and Communications, pp. 153—-156, IEEE, 2007.

[22] “Zybo z7 reference manual” https://reference.digilentinc.com/

reference/programmable-logic/zybo-z7/reference-manual. Accessed:

2021-03-03.

[23] “Zybo z7 technical reference manual.” https://www.xilinx.com/support/
documentation/user_guides/ug585-Z2yng—-7000-TRM.pdf. Accessed: 2021-

03-03.

[24] “Fpga tutorial.” http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/
Lec09%20Rapid%20Prototyping%20 (I)%20-%20Integration%200f%

20ARM%20and%20FPGA . pdf. Accessed: 2021-03-03.

[25] “Dma system level design.” https://www.youtube.com/watch?v=
5MCk jKhn1DM&11st=PLXHMvqUANAFOviUOJ8HSPpOE911LJInzX1&index=20.

Accessed: 2021-03-03.

[26] “Asic design tutorial.” https://cornell-ece5745.github.io/

eceb5745-tutb5-asic—-tools/. Accessed: 2021-03-03.

[27] “Ieee standard for systemverilog—unified hardware design, specification, and verification lan-

guage,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1-1315, 2018.

78

https://www.math.drexel.edu/~tolya/300_float.pdf
https://www.math.drexel.edu/~tolya/300_float.pdf
https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/reference-manual
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
https://www.youtube.com/watch?v=5MCkjKhn1DM&list=PLXHMvqUANAFOviU0J8HSp0E91lLJInzX1&index=20
https://www.youtube.com/watch?v=5MCkjKhn1DM&list=PLXHMvqUANAFOviU0J8HSp0E91lLJInzX1&index=20
https://cornell-ece5745.github.io/ece5745-tut5-asic-tools/
https://cornell-ece5745.github.io/ece5745-tut5-asic-tools/

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

“Library compiler tutorial.” https://personal.utdallas.edu/~Xiangyu.Xu/

1c/. Accessed: 2021-03-03.

“Design vision.” https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/design-compiler—graphical.html. Accessed: 2021-

03-03.

“Prime time.” https://www.synopsys.com/content/dam/synopsys/
implementation&signoff/datasheets/primetime—-ds.pdf. Accessed:
2021-03-03.

“Open cell library.” https://si2.org/open-cell-1library/. Accessed: 2021-03-
03.

“Freepdk45.” https://www.eda.ncsu.edu/wiki/FreePDK45:Contents. Ac-

cessed: 2021-03-03.

“Thesis reference.” https://repository.library.fresnostate.edu/
bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?

sequence=1. Accessed: 2021-03-03.

“Lef def lib.” http://www.signoffsemi.com/lef-def-1ib/. Accessed: 2021-

03-03.

“Thesis reference.” https://www.cadence.com/en_
US/home/tools/digital-design-and-signoff/
soc-implementation—-and-floorplanning/innovus—implementation—-system.

html. Accessed: 2021-03-03.

N. H. Weste and K. Eshraghian, “Principles of cmos vlsi design: a systems perspective,’

NASA STI/Recon Technical Report A, vol. 85, p. 47028, 1985.

“Cadence documentation.” https://www.cadence.com/en_US/
home/tools/custom—ic—-analog-rf-design/circuit—-design/

virtuoso—analog-design—-environment.html. Accessed: 2021-03-03.

79

https://personal.utdallas.edu/~Xiangyu.Xu/lc/
https://personal.utdallas.edu/~Xiangyu.Xu/lc/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/primetime-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/primetime-ds.pdf
https://si2.org/open-cell-library/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
http://www.signoffsemi.com/lef-def-lib/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	Introduction
	Network Equations
	Park Transformation and Inverse Park Transformation
	Outline

	PREVIOUS WORK
	Matrix Vector Multiplication
	Park and Inverse park transformation

	NUMBER REPRESENTATION
	Radix Number System
	Signed Number Representation
	Fixed Point Representation
	Floating Point Representation
	Fixed vs Floating Point format

	MATRIX VECTOR MULTIPLICATION
	Efficient Hardware for computing Network Solution
	Higher Order Difference
	Bit reduction scheme

	Matrix vector multiplication
	Previous Work
	Comparison between two architectures for matrix vector multiplication
	Matrix vector multiplication using higher order difference
	Storing U and V
	Computing 2xk using subtractors
	Computing vi.2xk and i=1r ui.(vi2xk) then using multipliers and adders
	Computing 2yk using adders
	Final Circuit
	RTL Simulation Results
	Comparison between Floating and Fixed Point implementation

	FPGA Implementation
	Integrating and Simulating the circuit on FPGA
	System Architecture
	Matrix Multiplication Peripheral
	Block Diagram
	ARM Programming
	Results

	ASIC Implementation
	Synthesizing the RTL code to netlist using Synopsys Design Compiler
	Comparison between different order of differentiation after implementation
	Place and Route using Cadence Innovus

	PARK AND INVERSE PARK TRANSFORMATION
	Interface between network and non - network part
	Linear Interpolation
	Linear Interpolation for computing sinusoid values
	Previous work
	Proposed method
	Skipping Rows
	Skipping Columns

	VLSI Implementation of ROM
	Block Diagram
	Circuit Design - column and row decoders
	Circuit Design - column mux

	CONCLUSION
	REFERENCES

