
OPTIMIZATION OF VLSI ARCHITECTURE FOR MATRIX-VECTOR MULTIPLICATION

AND PARK TRANSFORMATION WITH APPLICATION TO POWER SYSTEM

SIMULATION

A Thesis

by

NAGA SHIVA SAI PAVAN KUMAR DEVARASETTI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Weiping Shi
Co-Chairs of Committee, PR Kumar
Committee Members, Vivek Sarin
Head of Department, Aniruddha Datta

May 2021

Major Subject: Computer Engineering

Copyright 2021 NAGA SHIVA SAI PAVAN KUMAR DEVARASETTI

ABSTRACT

Contemporary Power systems with renewable generators, power electronics possess new chal-

lenges to the system operators. The significant increase of variable energy resources in the power

grid leads to a stressed grid with much higher variabilities at the operational stage. Such variabil-

ities together with today’s lack of accurate simulation capabilities lead to significant uncertainties

in predicting the dynamics across the grid.

Hence, Fast simulation tools are required for transient analysis such as the electro-magnetic

transient program (EMTP). Electromagnetic transient (EMT) simulation is the most powerful tool

which could handle various detailed device models and capture high-speed dynamic behavior in the

power system. However, due to the enormous complexity of the power systems, these simulators

tend to be slow in simulating real-time data. In order to accelerate these computations, we can

take the advantage of GPUs and FPGAs. But still, the ‘real-time’ simulation is not fast enough to

simulate the true real-time of a large system. To overcome this limitation, a custom chip (ASIC)

for simulating power systems is necessary.

Matrix Multiplication is one of the most fundamental basic operations in the current complex

digital circuits and is vastly used in the image, signal processing applications[1]. In EMTP sim-

ulation, Matrix-Vector Multiplication is used in solving network equations and the input to these

are current(I) from different buses of a large system. These vectors tend to be periodic with a

fundamental frequency of 60 Hz along with other higher-order harmonics. When sampled with a

relatively higher frequency rate, the consecutive samples of the inputs tend to be close and it is in-

efficient to compute the matrix operation again and again at every time step. Instead, In this thesis,

we aim to propose an architecture based on the higher-order difference which takes variation with

respect to the previous sample to compute the actual result.

Park Transformation and Inverse Park Transformation are the interfaces between non-network

and network part. They convert state variables from DQ0 coordinate to three-phase coordinate

and vice versa. Linear interpolation is a method of curve fitting using polynomials to construct

ii

new data points within the range of a discrete set of known data points. In this thesis, we propose

a ROM architecture combined with linear interpolation technique to compute the high precision

sinusoid values.

iii

DEDICATION

To my parents, younger brother and grandparents for their unconditional love, support and

sacrifice.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor and committee chair Dr. Weiping

Shi for his continuous guidance, untiring support and immense knowledge and for keeping me

motivated throughout the last two years. I appreciate the trust he had in me before accepting me to

his research group. The many discussions I have had with him have proven to be instrumental in

completing my research work.

I would like to thank Dr. P. R. Kumar and Dr. Vivek Sarin for serving on my committee.

I would like to thank Zhang Lu and Zhixing Li, PhD scholars for taking their time in conducting

meetings, collaborating with me in making progress.

I would also like to thank my friend Ram Chander Bhaskara, RA from Aerospace Department

for lending his Zybo Z7-20 board on which a part of this thesis work has been carried out.

Last but not least, I would like to thank my friends here at College Station who always sup-

ported me and kept me smiling during the time of distress. Without their unconditional support,

this wouldn’t have been possible.

Special thanks to Dr. Vipin Kizheppatt, Assistant Professor BITS Goa, India for his playlist

on Reconfigurable Embedded Systems with Xilinx Zynq APSoC in YouTube and Dr Christopher

Batten, Associate Professor, Cornell University for his free tutorial on Synopsys/Cadence ASIC

Tools using NanGate 45nm process.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

All work conducted for the thesis (or) dissertation was completed by the student, under the

advisement of Weiping Shi of the Department of Electrical and Computer Engineering.

Funding Sources

Graduate study was partly supported through a scholarship from the ECE department at Texas

AM University.

vi

NOMENCLATURE

EMT Electromagnetic Transients

DAE Differential- Algebraic Equation

ODE Ordinary-Differential Equation

CPU Central Processing Unit

GPU Graphic Processing Unit

FPGA Field - Programmable Gate Array

ASIC Application - Specific Integrated Circuit

SVD Singular Value Decomposition

HiLap Hierarchical Low-rank Approximation

RTL Register Transfer Level

HDL Hardware Description Language

ARM Advanced RISC Machine

ROM Read Only Memory

SoC System on Chip

DSP Digital Signal Processing

DRC Design Rule Check

EDA Electronic Design Automation

VLSI Very Large Scale Integration

IC Integrated Circuits

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

1. INTRODUCTION. 1

1.1 Introduction. 1
1.2 Network Equations . 2
1.3 Park Transformation and Inverse Park Transformation . 3
1.4 Outline . 4

2. PREVIOUS WORK . 5

2.1 Matrix Vector Multiplication . 5
2.2 Park and Inverse park transformation . 6

3. NUMBER REPRESENTATION . 8

3.1 Radix Number System . 8
3.2 Signed Number Representation . 9
3.3 Fixed Point Representation . 10
3.4 Floating Point Representation . 11
3.5 Fixed vs Floating Point format . 12

4. MATRIX VECTOR MULTIPLICATION. 14

4.1 Efficient Hardware for computing Network Solution . 14
4.1.1 Higher Order Difference . 14
4.1.2 Bit reduction scheme . 18

4.2 Matrix vector multiplication . 21
4.2.1 Previous Work . 24

viii

4.2.2 Comparison between two architectures for matrix vector multiplication 26
4.2.3 Matrix vector multiplication using higher order difference . 26
4.2.4 Storing U and V . 27
4.2.5 Computing ∆2xk using subtractors . 28
4.2.6 Computing vi.∆

2xk and
∑r

i=1 ui.(vi∆
2xk) then using multipliers and adders 29

4.2.7 Computing ∆2yk using adders . 30
4.2.8 Final Circuit . 31
4.2.9 RTL Simulation Results . 32
4.2.10 Comparison between Floating and Fixed Point implementation 32

4.3 FPGA Implementation . 34
4.3.1 Integrating and Simulating the circuit on FPGA . 34
4.3.2 System Architecture . 37
4.3.3 Matrix Multiplication Peripheral . 40
4.3.4 Block Diagram. 41
4.3.5 ARM Programming . 42
4.3.6 Results . 43

4.4 ASIC Implementation . 45
4.4.1 Synthesizing the RTL code to netlist using Synopsys Design Compiler 45
4.4.2 Comparison between different order of differentiation after implementation . 51
4.4.3 Place and Route using Cadence Innovus . 51

5. PARK AND INVERSE PARK TRANSFORMATION . 60

5.1 Interface between network and non - network part . 60
5.2 Linear Interpolation . 61
5.3 Linear Interpolation for computing sinusoid values . 62

5.3.1 Previous work. 62
5.3.2 Proposed method . 64
5.3.3 Skipping Rows. 65
5.3.4 Skipping Columns . 67

5.4 VLSI Implementation of ROM .. 69
5.4.1 Block Diagram. 70
5.4.2 Circuit Design - column and row decoders. 72
5.4.3 Circuit Design - column mux . 74

6. CONCLUSION. 75

REFERENCES . 76

ix

LIST OF FIGURES

FIGURE Page

1.1 EMT steps . 2

1.2 Matrix vector multiplication . 3

2.1 Matrix Multiplication . 6

3.1 Floating point notation . 11

4.1 ’X’ waveform. 17

4.2 ’∆X’ waveform . 17

4.3 Matrix Vector Multiplication . 21

4.4 Histogram for U matrix elements . 22

4.5 Histogram for V matrix elements . 22

4.6 Current(I) at 12 different buses . 23

4.7 Voltage(V) at 12 different buses . 23

4.8 Matrix Vector Multiplication using Karra’s approach . 24

4.9 Circuit Design for Matrix Vector Multiplication using Karra’s approach 24

4.10 Processing Element . 25

4.11 Matrix vector multiplication using Khatri’s approach . 25

4.12 Circuit Design using Khatri’s approach . 26

4.13 Storing U and V . 27

4.14 SRAM to store U and V . 28

4.15 Computing ∆2xk using subtractors . 29

4.16 Computing vi∆
2xk and

∑r
i=1 ui.(vi∆

2xk) then using multipliers and adders 29

4.17 Computing ∆2yk using adders. 30

x

4.18 Final Circuit . 31

4.19 Comparison of hardware resources. 31

4.20 RTL Simulation Results . 32

4.21 Comparison between Matlab and Verilog . 33

4.22 Absolute Error between Floating and Fixed Point implementation. 33

4.23 Relative Error between Floating and Fixed Point implementation . 34

4.24 Zynq Zybo Z7-20 board . 35

4.25 SOC - Zybo Z7-20 board . 35

4.26 FPGA Implementation flow . 36

4.27 System Architecture 1 – Processor intervention is needed . 37

4.28 System Architecture 2 – Only one operation at a time . 38

4.29 System Architecture 3 – Two operations happen concurrently . 39

4.30 Communication through DMA .. 40

4.31 Encoding. 41

4.32 Block Diagram . 42

4.33 ARM programming . 42

4.34 FPGA Simulation Result . 43

4.35 FPGA utilization Results . 43

4.36 FPGA routing results. 44

4.37 FPGA timing results . 44

4.38 FPGA Power consumption results . 45

4.39 Block diagram of the entire design in the Design Compiler . 48

4.40 Detailed circuit diagram for the entire design in the Design Compiler 49

4.41 Slack paths when clock period is set to 5ns. 50

4.42 Slack paths when clock period is set to 7ns. 50

xi

4.43 Area and Standard cell consumption before Place and Route . 51

4.44 Initial floor planning . 52

4.45 Power planning . 53

4.46 Clock tree planning . 54

4.47 Standard cell placement. 55

4.48 Place and Route . 56

4.49 Place and Route terminal result . 57

4.50 Area consumption after place and route . 57

4.51 DRC verification . 58

4.52 Timing check after place and route. 59

5.1 High level diagram . 60

5.2 Linear Interpolation for two random points . 61

5.3 Linear Interpolation for a sinusoid waveform . 62

5.4 Linear Interpolation for computing sinusoid values using three ROM structure 63

5.5 Linear Interpolation for computing sinusoid values using two ROM structure 63

5.6 Proposed method . 64

5.7 Absolute error b/w Original and interpolated signal . 65

5.8 Skipped rows . 66

5.9 Absolute Error after skipping rows near θ=0 . 67

5.10 Skipping columns . 68

5.11 High-level implementation details of the ROM .. 69

5.12 Improvement . 70

5.13 High-level implementation details of the ROM .. 71

5.14 Represents a ’1’ . 71

5.15 Represents a ’0’ . 72

xii

5.16 Pre - decoder using standard cells . 72

5.17 Decoder using standard cells . 73

5.18 Decoder using dynamic logic . 73

5.19 Pre - decoder using dynamic logic . 74

5.20 Column mux - Design 1 . 74

xiii

1. INTRODUCTION

1.1 Introduction

In power system, EMT is a powerful tool that can perform high speed electromagnetic tran-

sients and various issues ranging from nanoseconds to seconds. Initially, EMT has been used for

transmission line switching studies. But EMT simulation has become more and more powerful and

essential as the power systems became complicated.

In the current state, EMT has developed to handle extremely variety of models of generators,

transmission line, transformers and other elements in the power system. It can solve any network

consisting of interconnections of resistance, inductance , capacitance and other elements. Due to

its fast simulation, it is highly demanded in many designs and studies like HVDC converter control,

lightning overvoltage computation etc.,

EMT simulation consists of 10 steps as follows:

1. Initialization.

2. Flux to Voltage.

3. Pre – calculate generator stage.

4. Solve electrical.

5. Park(D2A).

6. Network Solution.

7. Update Ihistory.

8. Inverse Park(A2D).

9. Update Current.

10. Solve Mechanical and Control Elements.[2]

In our thesis we aim to present an optimized VLSI architecture to implement matrix - vector

multiplication as part of solving network equations, Park(D2A) and Inverse Park(A2D) transfor-

1

mation.

Figure 1.1: EMT steps

1.2 Network Equations

In EMT simulations, the network equations has to be solved at every time step and that causes

huge computation burden on the large – scale systems. There are three general approaches to solve

it.

1. Dense inversion and matrix – vector products.

2. Direct sparse solver.

3. Direct dense solver.

These methods are inherently sequential and are not a good option for hardware implementa-

tion. The paper [3] [4] describes a highly parallel approach to solve the linear system equations

based on hierarchial low – rank approximation.

The proposed approach in the papers, [3] [4] first partitions the network hierarchically, cal-

culates the inverse of G (sparse network conductance matrix) offline and approximates the result

2

using low rank approximation by truncated SVD (singular value decomposition). After this, the

values are loaded into the system and matrix – vector multiplication is performed online to compute

the nodal voltage vector v(t). This method takes O(N logN) time when compared to the traditional

matrix – vector multiplication, which takes O(N2) time.

In our thesis, we implement the architecture on FPGA and ASIC both to solve low rank ap-

proximated matrix - vector multiplication as part of solving the network equations [3].

Figure 1.2: Matrix vector multiplication

1.3 Park Transformation and Inverse Park Transformation

Park Transformation and Inverse Park Transformation are the interface between non-network

and network part.

Park transformation converts the state variables from DQ0 coordinate in the generator side

to the three phase coordinates in the network, whereas inverse park transformation reverts the

conversion back to the DQ0 coordinates through matrix – vector multiplication as shown below.

Park Transformation:

3


Ia(t)

Ib(t)

Ic(t)

 =


sin(θ + 1

2
π) −sin(θ) 1

sin(θ − 1
6
π) sin(θ + 1

3
π) 1

sin(θ + 1
6
π) sin(θ − 1

3
π) 1



Id(t)

Iq(t)

0

 (1.1)

Inverse Park Transformation:


ed(t)

eq(t)

ε

 =


sin(θ + 1

2
π) sin(θ − 1

6
π) −sin(θ − 1

6
π)

−sin(θ) sin(θ + 1
3

sin(θ − 1
3

0.5 0.5 0.5



Va(t)

Vb(t)

Vc(t)

 (1.2)

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 aims to discuss about previous imple-

mentations of the required subject. Chapter 2 talks about representation of numbers using Fixed

Point and Floating Point. Chapter 3 focuses on explaining the higher order difference technique

to reduce the hardware resources for matrix vector multiplication. Chapter 4 discusses about im-

plementation of park and inverse park transformation and finally in chapter 5, we produce the

results.

4

2. PREVIOUS WORK

2.1 Matrix Vector Multiplication

The algebra routine of Matrix-Vector Multiplication is essential in numerous scientific usages

such as linear system solvers and LU Factorization. It is essential not only in theory, but also in

applied sciences and engineering. In literature, many researchers have worked on this routine by

exploiting different platforms.

In the work [5], new methods were explored to accomplish high performance on a floating-

point DSP. This device possessed two elements capable to hurry the matrix multiplication a software-

managed memory hierarchy, and a direct memory access (DMA) which brings block copies from

central memory to into the memory hierarchy. Whereas, Ž. Jovanoviü and V. Milutinoviü [6] pro-

posed an implementation of FPGA architecture for Floating-Point Matrix Multiplication. It uses

the block matrix multiplication algorithm that sends backs the product blocks to the CPU instanta-

neously to facilitate the placement and routing on the chip. The objective was to achieve maximium

clock frequency and minimize the resource utilization. In [7] authors have proposed an architecture

which is based on streaming approach which exploits the parallelism available in FPGA. In stream

computing, the data is arranged into streams which are a group of data like arrays. This method

maps well to the FPGA logic. In addition to these, Distributed Arithmetic and systolic architecture

based approach have been explored and implemented in [8].

Our approach is this thesis is based on implementation explored in [9]. In this approach, in

order to optimize the FPGA architecture resource usage, the data from input matrices U and V

have been read from memory for exactly once. By simultaneously reading one column of matrix

U and one row of matrix V, and performing all multiply operations based on those values , optimal

data re-use is achieved. Data read in this sequence allows one partial product term of every element

to be computed in output matrix C per clock cycle.

5

Figure 2.1: Matrix Multiplication

2.2 Park and Inverse park transformation

In the paper [10], a phase to sinusoid amplitude converter based on first order polynomial

approximation of the sine function has been proposed. In [11], a non-uniform based piecewise

linear approximation with one bit error correction has been proposed to compute sinusoid values.

We discussed the advantages and drawbacks of these methods more in the section 5.

Embedded read-only-memory (ROM) is required in various situations when designing ASIC

[12]. The on-chip ROM is usually applied to store fixed information such as micro-code etc. The

micro-code ROM is a key component in the microprocessors, which is in generates the control

signals for CPU execution. Our Implementation is based on the approach described in [13].

There are two basic ROM cell structures using silicon-gate transistors for ROM design, they

are the NOR-gate type or parallel ROM cell structure, and the NAND-gate type or serial ROM

cell structure [14] [15]. The parallel ROM cell structure consists of MOS transistors in parallel in

which ROM data are generally fixed by a contact mask. The cell structure has the advantage of

high-speed operation, but comes at a cost of low bit density. The serial ROM cell structure however

on the other hand consists of serial MOS transistors and each memory cell state is determined by

an enhancement or depletion mode MOS transistor. The cell structure has the disadvantage of

relatively low-speed operation but the high packing density [16]. In our design, we chose to go for

6

NOR structure as speed is our top priority.

The design of the address decoders has a huge impact on the speed and power consumption

of the memory. In our design, we have both row and column decoders which can be designed

using either standard cells, NOR structure or NAND structure. Another component in our design

is column mux, which is implemented as tree decoder that uses a binary reduction scheme [17].

7

3. NUMBER REPRESENTATION

In this chapter, we talk about conventional number format in computer systems. Differences

between Fixed Point, Floating Point [18] and tradeoffs when it comes to VLSI implementation.

3.1 Radix Number System

A conventional radix number P can be represented as follows

(bn−1bn−2...b1b0)r (3.1)

with r being radix. Hence, P = bn−1.wn−1 + bn−2.wn−2... + b0.w0 with wi being the weight of

position of i. If r is a fixed radix number,

P = bn−1.rn−1 + bn−2.rn−2...+ b0.r0 =
n−1∑
i=0

bi.ri. (3.2)

To include fractional part, let us take ‘.’ As radix point and include integer part in the left,

fractional part in the right

(bn−1bn−2...b1b0b−1...b−m)r (3.3)

Now,

P =
n−1∑
i=−m

bi.r
i. (3.4)

For example, in decimal system, r = 10 and bi ε 0 ... 9

P = 73.210

= b1. r1 + b0. r0 + b−1 . r−1

= 7 x 101 + 3 x 100 + 2 x 10-1

= 73.2

In Hexadecimal system, r = 16 and bi ε 0...15

8

P = 2A16

= b1. r1 + b0. r0

= 2 x 16 + 10 x 1

= 42

Similarly, in binary system, r = 2 and bi ε 0,1

P = 1010.112 = b1. r1 + b0. r0 + b−1 . r−1

= 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 + 1 x 2−1 + 1 x 2−2

= 8 + 2 + 0.5 + 0.25

= 10.75

In Computer Systems, we use 1s and 0s to represent all the arithmetic numbers and all our

discussions in the upcoming chapters is based on binary system.

3.2 Signed Number Representation

The above discussion on the number system only talks about representing positive numbers.

However, all the scientific calculations don’t necessarily be confined to positive numbers. We need

a notation to describe negative integers. The general convention is leftmost bit(MSB) describes

sign of a number in which bit 0 is for positive and 1 is for negative.

However, the user has to determine, if a number is signed or unsigned. For a signed number,

then left most bit represents the sign and rest of the binary string represent the actual magnitude

of a number. Whereas for an unsigned number, all the string makeup the actual magnitude of a

number.

For example, a string of bits 01010 can be considered as 10(unsigned) or +10(signed) binary

and a string of bits 11010 can be considered as 26(unsigned) or -10(signed) binary.

Thus, with 5 bits of a string, we can represent from 0 to 31 by declaring a number unsigned.

Whereas using signed keyword, we can represent from -15 to + 15 only.

Although this is a simple method to represent numbers, computer systems adopt a different

system to represent negative numbers called signed-complement system.

9

Two methods in signed-complement system[19].

(1) 1’s complement

(2) 2’s complement

As an example, consider we have eight bits to represent a number.

Binary equivalent of +10 is 00001010. However, to represent -10, we can employ three meth-

ods.

Signed magnitude form: 10001010

Signed 1’s – complement form: 11110101

Signed 2’s – complement form: 11110110

1’s complement for a negative number is obtained by logically reversing all the bits of its positive

equivalent. +10 is 00001010 and reversing all the bits yield 11110101.

2’s complement is obtained by adding 1 to 1’s complement.

In computer arithmetic, 1’s complement is seldom used for arithmetic operations.

Adding and subtracting numbers in 2’s complement is much easier and doesn’t require additional

hardware circuitry to take care of sign bit.

3.3 Fixed Point Representation

As discussed in section Radix number system, we use a fixed radix point to distinguish between

integer and fractional point.

Consider a system in which 7 bits are used to represent integer part and 8 bits are for fractional

part, MSB 1 bit for sign.

Now, 15.375 in fixed point 2’s complement number is as follows:

P = 15.37510

= 00001111.011000002

-15.375 in 2’s complement can be obtained by taking 1’s complement of 15.375, reversing the bits

and adding 1 to the result.

P = -15.37510

= 11110000.101000002

10

3.4 Floating Point Representation

The floating-point notation is more flexible. Any number, P can be written as following:

P = ±(1.b1b2...bn)2x2m (3.5)

is normalized representation of P. This representation is achieved by choosing the exponent ‘m’

such a way that the binary points float to the position after the first non-zero bit. This is simply the

binary format of scientific notation.

To store a number in 32-bit number, we can reserve 1 bit for sign, 8 bits for the exponent and 23

bits for the fractional part of the number. The leading digit 1 is not stored and it is often called as

‘hidden bit’.

The fractional part is also referred with another name called ‘Mantissa’.

The exponent term has something called bias term, which is 127 for 8-bit exponent field. This

bias ensures both positive and negative exponent values can be fit in the field.

Hence, the range for exponent field is -126 ≤ m ≤ 127.

Figure 3.1: Floating point notation

This 32-bit representation of a decimal number is standardized as IEEE 754 notation.

For example, consider a number 263.3 and we need to represent this in 32-bit floating point

representation.

Integer part 263: 100000111

Fractional part 0.3: 01001100110011...

11

Hence 263.3 is 100000111. 01001100110011...

Now, we need to shift the radix point to first ‘1’ i.e., left shift the number by 8.

263.3 becomes 1.0000011101001100110011... x 28 which is scientific notation.

Now, sign bit is 0, because the number is a positive number.

Mantissa field is 23 bits: 0000011101001100110011

Exponent field is 8 bits: bias + 8 = 127 + 8 = 135: 10000111

So, 263.3 in IEEE 754 floating point representation is - 1 10000111 0000011101001100110011.

3.5 Fixed vs Floating Point format

Choosing one among Fixed and Floating point comes with its own benefits and tradeoffs. In

general, floating point format is preferred when precision is of utmost importance whereas fixed

point is chosen when area and timing in a VLSI chip is critical.

The exponentiation inherent in floating point format assures a much higher precision and larger

dynamic range. Thus, both largest and smallest numbers can be represented using this format

which is very essential and important for scientific computation.

The largest number that can be represented using IEEE 754 floating point notation is (1 – 2−24)

x 2128 and smallest number is 1.0 x 2−126.

Whereas 32 - bit fixed point notation with 16 - bit for fractional , the largest number that can

be represented is (1 – 2−16) x 216 and smallest number is 2−16.

Thus, floating point format can fit a given number with much higher precision. However, the

disadvantage for a floating-point number is that arithmetic operations are more costly and often

takes more time. The reasons are as follows:

(1) When addition or subtraction operation needs to be performed, all the exponents have to

be into account. Aligning the bits to common radix point is very costly requiring more hardware

resources.

(2) During multiplication operation of two floating numbers, in addition to multiplying man-

tissas, exponents have to be added too.

In our application, we chose to implement our circuit in fixed point as we target an architecture

12

with lowest area and power consumption possible at the cost of precision.

13

4. MATRIX VECTOR MULTIPLICATION

4.1 Efficient Hardware for computing Network Solution

With increased number of buses on a network, the matrix – vector operation becomes a big

bottleneck with increased time complexity. In order to meet the latency requirements, it is required

to instantiate multiple arithmetic units to perform all the computations simultaneously resulting in

increased die area size. Since our application is targeted towards custom VLSI architecture with

smallest chip area possible, it is essential to come up with efficient algorithms[20] to solve the

problem. Below sections will discuss the proposed approaches to compute the matrix operation

effectively.

4.1.1 Higher Order Difference

Multiplication operation is one of the most timing critical and area consuming component in a

matrix vector computation. The more the number of bits it takes to represent a number, the larger

the area it consumes to compute the multiplication operation. Thus, it is important to cut down

the number of input bits the MAC(multiply and accumulate) module consumes. Reducing the bits

in the integer part of a fixed point number reduces the upper bound whereas trimming down the

fractional part compromises the precision. This higher order difference approach that we are about

to discuss can solve this problem effectively without much sacrifice in the precision.

The algorithm is as follows:

Let us assume xa,xb, ... be a series of input vectors each of dimension n x 1.

Also, let ya,yb, ... be a series of output vectors each of dimension m x 1, where yi = M. xi

Here, M is a matrix of dimension m x n.

Now, Iteration 1:

ya = M.xa (4.1)

14

In this step, store both ya and xa.

yb = M.xb

= ya +M.(xb − xa)

= ya + pa

(4.2)

where, pa = M.(xb – xa)

compute M.(xb - xa) and use the previous stored result ya to calculate yb.

In this step, delete ya, xa and store yb, pa, xb – xa and xb.

Iteration 3:

yc = M.xc

= M.xb +M.(xc − xb)

= M.xb +M.(xb − xa) +M.((xc − xb)− (xb − xa))

= yb + pa +M.((xc − xb)− (xb − xa))

= yb + pb

(4.3)

where pb = M.(xc - xb)

Now at this stage, we have already computed M.xb as yb and M.(xb – xa) as pa.

All we need to do is calculate M.((xc – xb) – (xb – xa))

In this step, delete yb, xb and store yc, pb, xc - xb and xc.

Iteration 4:

yd = M.xd

= M.xc +M.(xd − xc)

= M.xc +M.(xc − xb) +M.((xd − xc)− (xc − xb))

= yc + pb +M.((xd − xc)− (xc − xb))

= yc + pc

(4.4)

15

where pc = M.(xd – xc)

The above sequence can be written as yi = yi−1 + pi−1 + M.((xi – xi−1) – (xi−1 – xi−2)), where

pi−1 = M.(xi−1 – xi−2).

Thus,

yi = yi−1 + ∆yi−1 +M.((xi − xi−1)− (xi−1 − xi−2))

= yi−1 + ∆yi−1 +M.∆2xi

= yold + ∆yold + ∆2yi

(4.5)

Hence, for every iteration, instead of computing the actual result, we can compute M. ∆2xi and

add the product to the previous stored results. All we need is initial values, y0 and ∆y0 which can

be loaded as part of initialization sequence.

The Equation 4.5, can be generalized to any order of differentiation as follows:

yi = yi−1 + (
k−1∑
j=1

∆jyi−1) + ∆kyi. (4.6)

yi = yi−1 + (
k−1∑
j=1

∆jyi−1) +M.∆kxi. (4.7)

where k is the order of differentiation.

Now, why does this approach work to our application and how does it help in reducing the

hardware resources?

The key here is that the input vectors in the network are current(I) with fundamental frequency

60Hz along with harmonics of small magnitude. As we are simulating a power system with high

frequency sampling rate, the variation in the consecutive samples is minuscule and we can use this

advantage to reduce the multiplication area size and thus number of standard cells required.

16

Figure 4.1: ’X’ waveform

For example, Fig 4.1 shows the waveform of a sample sine wave with magnitude 1000.

Figure 4.2: ’∆X’ waveform

17

Fig 4.2., shows the magnitude of ∆x.

If we need 10 bits (integer) + 32 (fractional) + 1 (sign) = 43 bits to store ‘X’. We need only

2bits (integer) + 32 (fractional) + 1 (sign) = 35 bits to store ∆x.

Another question, how do we know the value of k (In Eq 4.6), the order of the differentiation?

It depends on factors like amplitude of a signal, the number of bits we dedicate to represent the

fractional part, frequency of the signal and sampling frequency etc.,

The next sub section will talk about this in detail on how to decide the required differentiation

order.

4.1.2 Bit reduction scheme

In this sub-section, we derive a general formula to calculate the number of bits that can be

reduced using the above stated approach.

For this, consider a sine wave, with frequency f , with max possible amplitude A, sampled at

frequency fs. Let p be the number of bits, we use to represent the fractional part.

Any two consecutive samples of the signal can be written as:

x(n) = Asin(2πn
f

fs
)

x(n+ 1) = Asin(2π(n+ 1)
f

fs
)

(4.8)

x lies within the interval, [-A, A] and can be represented using p + log2A bits

Now,

x(n+ 1)− x(n) = Asin(2π(n+ 1)
f

fs
)− Asin(2πn

f

fs
)

∆x(n) = (Acos(2π
f

fs
)sin(2πn

f

fs
) + Asin(2π

f

fs
)cos(2πn

f

fs
))− Asin(2πn

f

fs
)

= A(cos(2π
f

fs
)− 1)sin(2πn

f

fs
) + Asin(2π

f

fs
)cos(2πn

f

fs
)

= A2π
f

fs
cos(2πn

f

fs
)

(4.9)

18

(when fs � f, cos (2π f
fs

) ≈ 1 and sin(2π f
fs

) ≈ 2π f
fs

)

∆x lies within the interval, [-A 2π f
fs

, A 2π f
fs

] and can be represented using p + log2(A 2π f
fs

)

= log2(A) + p + log2(2π f
fs

) bits.

Similarly, ∆2x, the double differentiation of x lies within the interval [-A (2π f
fs

)2, A (2π f
fs

)2]

and can be represented using log2(A) + p + 2. log2(2π f
fs

) bits.

Thus, given a signal x(n) of frequency ‘f’ with sampling frequency fs, its kth order difference

signal ∆kx lies within the interval [-A (2π f
fs

)k, A (2π f
fs

)k] can be represented using log2(A) + p

+ k. log2(2π f
fs

) bits, (log2(2π f
fs

) is a negative number).

From the above derivation, we can conclude that as the order of the differentiation is increased,

the range of the number becomes smaller and it needs fewer bits to represent.

let us assume that m is a real number whose value is greater than 1.

Going back to Eq 4.7,

yi = yi−1 + (
k−1∑
j=1

∆jyi−1) +m.∆kxi. (4.10)

The value of the yi changes, only when |m.∆kxi| > 0.

We know that, the smallest positive fractional number that can be represented using p bits is

2−p.

Hence,

m.∆kxi. ≥ 2−p (4.11)

m.A(2π
f

fs
)k ≥ 2−p (4.12)

If we choose m > 1, Eq 4.12 becomes

A(2π
f

fs
)k ≥ 2−p (4.13)

19

k ≤ p+ log2A

log2(2π
fs
f

)
(4.14)

By choosing the order of differentiation k, as described in the Eq 4.13, we can say for sure

that by applying the higher order difference technique to y = m.x, the relative error of calculating

output y(n) doesn’t get worsen.

Extending this hypothesis to the matrix vector multiplication y = M.x, let us assume we have a

vector x whose elements are current(I) with Amplitudes A1,A1 ... An with frequency f.

Now, the order of the differentiation k has to be chosen as described in Eq 4.15

k ≤ min{p+ log2A1

log2(2π
fs
f

)
,
p+ log2A2

log2(2π
fs
f

)
, ...

p+ log2An

log2(2π
fs
f

)
} (4.15)

The above derivation is applicable only to a pure sinusoid repeating signal, but the theory can

be extended to the power systems which consists of complex waveforms. As we all know, input

variables current(I) in a power system are of fundamental frequency 60 Hz and can be approxi-

mated into linear combination of sine and cosines of increasing harmonics using Fourier series.

So, let us assume that x is current(I) vector and each element ’v’ has fundamental frequency fv1

with Amplitude Av1 and higher order harmonic frequencies fv2,fv3. . . fvk with amplitudes Av2,Av3. . . Avk

respectively. Using Fourier series, the signal be can approximated as follows.

x(m) = A0 +
n∑

n=1

Akcos(
2πfnm

fs
+ θn) (4.16)

Extending 4.12 here, we get

N∑
n=1

(A1n(2π
f1n
fs

)k1) ≥ 2−p (4.17)

N∑
n=1

(A2n(2π
f2n
fs

)k2) ≥ 2−p (4.18)

N∑
n=1

(Avn(2π
fvn
fs

)kv) ≥ 2−p (4.19)

20

solve for k1, k2 ... kv in the above equations and the order of differentiation is

k = min{k1, k2...kv} (4.20)

4.2 Matrix vector multiplication

To give some context on the matrices x, y, U, and V, the column vector ’x’ represents a series

of samples of current (I) from different ’n’ buses of a large power system. whereas ’y’ represents

voltage (v) at different ’m’ buses of the same power system due to current (I). U and V are the low

rank approximated matrices which are derived from conductance matrix G−1 [3].

Figure 4.3: Matrix Vector Multiplication

The implementation example shown in the following section assumes ‘m’ value to be 12 (di-

mension of y vector), ‘n’ value 12 (dimension of x vector), r value as 6, time step 20us and the

order of differentiation to be 2.

In the simulation, the time step has chosen to be 20us i.e., sampling rate is 50KHz. Simulation

results have shown that we need 1 bit for sign, 16 bits to represent integer part and 32 bits to

represent the fractional part of input signal current(I).

21

Figure 4.4: Histogram for U matrix elements

Also, all the values of matrix U and V are found to have magnitude <1. Hence, we take 32 bits

to represent. 31 bits for fractional and 1 bit for sign.

Figure 4.5: Histogram for V matrix elements

Current(I) at 12 different buses as shown in the Figure 4.6 has been taken as an example for

22

rest of the thesis.

Figure 4.6: Current(I) at 12 different buses

Figure 4.7: Voltage(V) at 12 different buses

23

4.2.1 Previous Work

In the approach mentioned in [21], the matrix - vector multiplication is achieved through sys-

tolic array architecture as shown in the below figures.

Figure 4.8: Matrix Vector Multiplication using Karra’s approach

Figure 4.9: Circuit Design for Matrix Vector Multiplication using Karra’s approach

24

Figure 4.10: Processing Element

In the approach mentioned in [9], to optimize the the data from input matrices U and V have

been read from memory for exactly once. By simultaneously reading one column of matrix U and

one row of matrix V, and performing all multiply operations based on those values , optimal data

re-use is achieved. Data read in this sequence allows one partial product term of every element to

be computed in output matrix C per clock cycle.

Figure 4.11: Matrix vector multiplication using Khatri’s approach

25

Figure 4.12: Circuit Design using Khatri’s approach

4.2.2 Comparison between two architectures for matrix vector multiplication

Let q be the number of bits we use to represent U and V.

Let p be the number of bits we use to represent X.

Compute y = U(ΣV.x) Multipliers Adders SRAM

cells

Flipflops Latency

Karra’s method (m+r) (m+r) q*r*(m+n) p*(m+r) (m + n + r)

Khatri’s method (m+n) (m+n) q*r*(m+n) p*(m+n) r

For our network solution, we have chosen Khatri’s method and improved upon its architecture

as it offers low latency.

4.2.3 Matrix vector multiplication using higher order difference

ya =
∑r

i=1 ui(vixa)

yb =
∑r

i=1 ui(vixb)

Subtracting the above two equations, we get

yb - ya =
∑r

i=1 ui(vi(xb − xa))

yb, yb – ya, xb, xb – xa vectors are stored as initial conditions in the flipflops.

26

Now Eq 4.26, can be written as follows

yk = yk−1 + (yk−1 − yk−2) +
∑r

i=1 ui(vi((xk − xk−1)− (xk−1 − xk−2)))

y = yold + ∆yold + ∆2yk (4.21)

∆2yk =
r∑

i=1

ui(uixk) (4.22)

The above two equations can be implemented as follows:

We divide the hardware design into four parts:

(i) Storing U and V in SRAM memory.

(ii) computing ∆2xk using subtractors.

(iii) computing vi ∆2xk and then
∑r

i=1 ui.(vi∆
2xk) using multipliers and adders.

(iv) computing yk using adders.

4.2.4 Storing U and V

Figure 4.13: Storing U and V

27

To store U and V, we need m+n SRAM memory modules. m of them stores each row of U

matrix and n of them store columns of V.

Each SRAM module stores ‘r’ values each of 32 – bit. The following diagrams shows the cell

arrangements.

Figure 4.14: SRAM to store U and V

4.2.5 Computing ∆2xk using subtractors

∆2xk = (xk − xk−1)− (xk−1 − xk − 2)

For this computation, we need

n, 48- bit flipflops to store x vector and n, 41 – bit flipflops to store ∆x vector. n, 48- bit

subtractors to compute (xk – xk−1) and n, 41- bit subtractors to compute (xk – xk−1) – (xk−1 –

xk−2).

28

Figure 4.15: Computing ∆2xk using subtractors

4.2.6 Computing vi.∆
2xk and

∑r
i=1 ui.(vi∆

2xk) then using multipliers and adders

Figure 4.16: Computing vi∆
2xk and

∑r
i=1 ui.(vi∆

2xk) then using multipliers and adders

29

First, a row in V matrix and ∆2x vector are multiplied and added resulting in an intermediate

element. This intermediate element is multiplied with all the elements in the column of U matrix

to get the partial sum of ∆2y.

I.E =
r∑

i=1

(vix) (4.23)

∆2
partial = ui.I.E (4.24)

∆2yk =
r∑

i=1

∆2ypartial (4.25)

4.2.7 Computing ∆2yk using adders

Figure 4.17: Computing ∆2yk using adders

y = yold + ∆yold + ∆2yk

For computation we need

m, 48 + log2n + log2r - bit flipflops to store yold vector and n, 41 + log2n + log2r bit flipflops to

store ∆yold vector.

m, 41 + log2n + log2r bit adder to compute ∆yold + ∆2yk and n, 48 + log2n + log2r bit adders

30

to compute y.

4.2.8 Final Circuit

Figure 4.18: Final Circuit

Figure 4.19: Comparison of hardware resources

31

4.2.9 RTL Simulation Results

Figure 4.20: RTL Simulation Results

4.2.10 Comparison between Floating and Fixed Point implementation

The following plots are Voltage (V), Absolute Error and Relative Error for a particular bus

during our simulation.

32

Figure 4.21: Comparison between Matlab and Verilog

Figure 4.22: Absolute Error between Floating and Fixed Point implementation

33

Figure 4.23: Relative Error between Floating and Fixed Point implementation

Relative error spikes up, when the Voltage(V) approaches 0, which is expected.

4.3 FPGA Implementation

4.3.1 Integrating and Simulating the circuit on FPGA

The FPGA prototyping of the hardware has been done on the Zynq platform[22], Zybo Z7-20

board[23].

The defining features of Zynq:

1. Processing System (PS): Dual – core ARM cortex – A9 CPU

2. Programmable logic (PL) – Consists of LUTs, BRAM and Flipflops.

3. Advanced Extensible Interface (AXI) : Low latency and High bandwidth between PS and

PL.

34

Figure 4.24: Zynq Zybo Z7-20 board

The Xilinx FPGA supports three types of AXI interfaces

(i) AXI – Lite interface

(ii) AXI – full interface

(iii) AXI – stream interface

Figure 4.25: SOC - Zybo Z7-20 board

35

Figure 4.26: FPGA Implementation flow

Prototyping on FPGA[24] can be divided into two parts

IP block design (Xilinx Vivado)

• IP block creation

• AXI interfacing.

• IP integration

• HDL wrapper

• Generate Bitstream

ARM programming (Xilinx SDK)

• ARM programming

• Launching on hardware

For our thesis, we perform the simulation in four steps

36

1. First, we store the instructions and data in the form of micro codes in the DDR3 memory

available on the FPGA board.

2. With the help of Zynq Processor, we configure the DMA controller, the starting address and

length of the transfer.

3. we take back the results to the DDR3 memory.

4. Print the results on the terminal.

4.3.2 System Architecture

In the following section, we discuss in detail different types of system architectures we explored

for this thesis and which one suits the best for faster operation[25].

In the System Architecture 1 as shown in fig 5.4, the processor takes the control of the system

bus, requests the data from the Memory and sends the data to the peripheral.

Figure 4.27: System Architecture 1 – Processor intervention is needed

As a whole, two memory transfer operations are required in this architecture -

• Memory to the Processor (Processor is the master and memory is the slave)

• Processor to the peripheral. (Processor is the master and peripheral is the slave)

There are two disadvantages in this architecture:

37

• It requires the intervention of the processor for every memory access.

• Both memory transfer operations cannot happen at the same time as we share the system

bus.

In the second architecture 2, we add DMA controller (DMA stands for direct memory access)

to take control of the memory transfers.

With DMA controller at our disposal, the CPU initiates the transaction and the length of the

transfer. The controller then sends the data to the peripheral accordingly without any further inter-

vention from the CPU.

Two memory operations are required -

• Memory to the DMA controller (Memory is the slave and DMA controller is the master)

• DMA controller to the peripheral. (DMA controller is the master and peripheral is the slave)

Since all the transfers happens through the system bus, either one of the memory operations

must happen at time, limiting the throughput. This resource allocation of the system bus to memory

and the processor is usually done by inbuilt ‘Arbitration logic’.

Figure 4.28: System Architecture 2 – Only one operation at a time

38

Although this architecture eliminates the processor intervention for every transfer, it still limits

the throughput as arbitration logic for the data transfer is necessary.

In the System Architecture 3, the communication between the memory and DMA controller

happens through the system bus. But the transfer between the DMA controller and peripheral hap-

pens through AXI stream protocol which is direct point to point based maximizing the throughput.

Figure 4.29: System Architecture 3 – Two operations happen concurrently

39

Figure 4.30: Communication through DMA

4.3.3 Matrix Multiplication Peripheral

Since our FPGA is a 32-bit machine and has very little PL fabric logic resources, we used only

32-bit bus to load the inputs into our peripheral from the processing system (PS).

As discussed in the circuit diagram of the multiplication peripheral in the previous section, we

have taken M = 12, N = 12 and r = 6 for this example. Hence, we have to load current(I) for 12

different buses of 48 bits each.

40

Figure 4.31: Encoding

• When the databus[31:30] is encoded 00, we do nothing.

• When the databus[31:30] is encoded 01, we use it to load the data input.

• When the databus[31:30] is encoded 10, we execute the matrix multiplication.

• When the databus [31:30] is encoded 11, we pass the voltage(v) to the processing system.

As the current (I) input is of 48 bits, we use which field [21:20] to describe which part of the data

we are loading.

Databus [19:16] describe the bus no. from 1 to 12.

4.3.4 Block Diagram

After custom matrix vector multiplication IP is generated, we connect the entire system like a

block diagram as shown in the Fig 5.9. CPU , Global reset, DMA and required interconnect IPs

are provided by the Xilinx in the Vivado tool itself.

41

Figure 4.32: Block Diagram

4.3.5 ARM Programming

Figure 4.33: ARM programming

In the software part, we do the following steps

• We store all the instructions and the data in an array.

42

• Initiate two different DMA transfers one for sending the data and the other for receiving the

data.

• Print the obtained results on the terminal via printf.

4.3.6 Results

The following figure shows voltage (V) for a particular bus during our FPGA simulation.

Figure 4.34: FPGA Simulation Result

Figure 4.35: FPGA utilization Results

Our multiplication IP peripheral consume 6185 LUTs, 4369 FFs and 96 DSPs.

Each DSP does (25 x 18 multiplication operation).

43

Figure 4.36: FPGA routing results

Figure 4.37: FPGA timing results

44

Figure 4.38: FPGA Power consumption results

4.4 ASIC Implementation

The simulation and ASIC implementation[26] of the circuit is divided into three stages.

1. RTL Design using hardware description language(Verilog[27]).

2. Synthesizing the RTL code to netlist using Synopsys Design Compiler.

3. Place and Route using Cadence Innovus.

4.4.1 Synthesizing the RTL code to netlist using Synopsys Design Compiler

NanGate FreePDK standard library and Synopsys tools have been used to perform the design

flow. The details are as follows:

1. Synopsys Library Compiler[28]: Library files(.lib) contain abstract logical and timing views

of standard cells necessary for synthesis. Library Compiler converts a library file (.lib) format file

to database format (.db) which is suitable for synopsys tools.

2. Synopsys Design Compiler[29] [30]: Design Compiler first converts a synthesizable RTL

code to technology independent format called GTECH. Upon providing with standard cells, it

takes the GTECH format and gives gate level design optimized for the specific technology node in

terms of area, power and delay.

NanGate FreePDK 45[31] [32] is an open-source standard library kit held by US based multina-

tional corporations for exploring EDA flows. It contains tech files, design rules for 45nm process.

45

The OCL kit provides three different models as follows:

1. NLDM (Non - Linear Delay Model): This is a voltage source-based model which character-

izes input – output delay and output transition times with sensitivity to input transition time, side

input states and output load.

2. ECSM (Effective Current Source Model): This is a current based model which considers the

non – linear transistor switching behaviors, allowing the accurate modelling of interconnections.

3. CCS (Composite Current Source): A model similar to ECSM model in which dynamic

current is calculated using transient analysis and leakage power is the leakage current measured

using simple DC analysis.

These models are characterized into five different corners as follows [33]:

• Typical

• Slow

• Fast

• Low Temperature

• Worst case low temperature

In the .lib[34] file, the following attributes are present

• Voltage unit

• Current unit

• Leakage power unit

• Leakage power unit

• Leakage power unit

• Input threshold at rise and fall time.

46

• Output threshold for rise and fall time.

• Slew rate.

For each cell (AND, NAND, OR etc.,) following attributes are defined:

• Voltage unit

• Current unit

• Leakage power unit

• Leakage power unit

• Leakage power unit

• Input threshold at rise and fall time.

• Output threshold for rise and fall time.

• Slew rate.

• Area of cell

• Capacitance

• Rise and fall capacitance

• Direction of the pin etc.,

Synthesis steps:

1. Loading the Design: The design is provided in the form of High-level Description language

- Verilog or VHDL file. The analyze command reads the HDL file checks for syntax and synthe-

sizable logic. The elaborate command converts the design to a synopsys internal generic library

called gtech.

47

2. Loading Technology Libraries: Next step is to load technology libraries(.lib) from Nangate

FreePDK and Synopsys designware libraries. Synopsys designware library is a building block IP

and collection of reusable arithmetic modules tightly integrated to Synopsys synthesis environ-

ment.

Figure 4.39: Block diagram of the entire design in the Design Compiler

3. Creating virtual clock: create_clock clk -name ideal_clock1 -period 6. This command

creates a virtual clock that will be connected to all the flip flops required for our design.

4. Setting the operating conditions: Operating conditions are the process, voltage and temper-

ature variations on which the design operates. WCCOM(class) is the condition window on which

our design operates.

5. Ungrouping the cells: It is important to flatten the design by eliminating hierarchical bound-

aries. The tool will be able to perform better and achieve better PPA results.

6. Check Design: check_design command checks if there are no obvious errors in RTL code.

7. Compile Command: This command performs the actual optimization by converting the RTL

to technology optimized netlist.

8. Writing down the output: We output the result in two different file formats: .ddc and Verilog.

48

Figure 4.40: Detailed circuit diagram for the entire design in the Design Compiler

49

Figure 4.41: Slack paths when clock period is set to 5ns.

Figure 4.42: Slack paths when clock period is set to 7ns.

This matrix multiplication peripheral has been synthesized for clock of time period 7.2ns.

50

Figure 4.43: Area and Standard cell consumption before Place and Route

4.4.2 Comparison between different order of differentiation after implementation

Method Area(in um2) Improvement clock time(in

ns)

latency (in

clock cycles)

Previous work 178,200 - 7.7 6

Higher Order Differ-

ence with k = 1

164,566 7.65% 7.45 7

Higher Order Differ-

ence with k = 2

152,708 14.30% 7.2 8

Area is in proportion to the standard cell count.

4.4.3 Place and Route using Cadence Innovus

In this section, we will explain the detailed steps to perform the backend placing and routing

using cadence Innovus[35], an industry leading tool for place and route.

Needed files:

1. Gate level netlist which is generated using Design compiler.

2. NanGate FreePDK LEF files necessary for place and route.

51

3. Multi-mode multi-corner(MMMC) file for timing analysis.

The LEF [34] file is the abstract view of standard cells. It gives the idea about the pin position,

PR boundary and metal layer information of the cell.

Multi-mode multi-corner file specified what corner to use for timing analysis. A corner is a

characterization of standard cell with specific assumptions about process, temperature and volt-

age(V). For this placement and routing, we choose typical corner(average PVT).

Figure 4.44: Initial floor planning

Sub steps: 1. The first step is to input the tool with netlist, setting up the design name, timing

analysis, reading the technology .lef for layer information and standard cell.

52

2. Second step is to do floor planning. In this design, we chose aspect ratio to be 1.0 and

cell utilization to be 70%. Aspect ratio is the ratio of width and height of the entire chip and cell

utilization is the percentage of the actual chip used for standard cells.

3. The next step is power routing. We create a grid of power and ground wires on top metal

layers and connect this grid down to M1 power rails in each row.

Figure 4.45: Power planning

4. Fourth step is to create a power ring around the chip. This ensures that all the standard cell

get power and ground easily. We will use M6 and M7 to put the power ring across the chip.

5. The next step is to place standard cells using place_design command.

53

6. Sixth step is to optimize the clock tree routing using ccopt_design command.

Figure 4.46: Clock tree planning

7. Final step is signal routing.

54

Figure 4.47: Standard cell placement

55

Figure 4.48: Place and Route

56

Figure 4.49: Place and Route terminal result

Figure 4.50: Area consumption after place and route

57

Figure 4.51: DRC verification

58

Figure 4.52: Timing check after place and route

59

5. PARK AND INVERSE PARK TRANSFORMATION

5.1 Interface between network and non - network part

As discussed in the introduction, Park transformation converts the state variables from DQ0

coordinate in the generator side to the three phase coordinates in the network, whereas inverse

park transformation reverts the conversion back to the DQ0 coordinates.

Figure 5.1: High level diagram

Park Transformation:


Ia(t)

Ib(t)

Ic(t)

 =


sin(θ + 1

2
π) −sin(θ) 1

sin(θ − 1
6
π) sin(θ + 1

3
π) 1

sin(θ + 1
6
π) sin(θ − 1

3
π) 1



Id(t)

Iq(t)

0

 (5.1)

Inverse Park Transformation:


ed(t)

eq(t)

ε

 =


sin(θ + 1

2
π) sin(θ − 1

6
π) −sin(θ − 1

6
π)

−sin(θ) sin(θ + 1
3

sin(θ − 1
3

0.5 0.5 0.5



Va(t)

Vb(t)

Vc(t)

 (5.2)

60

As Eq 5.1 and 5.2 describe, the matrix is in terms of angle θ between a and q axes. This matrix

has to be computed at every time step as Θ changes. The sinusoidal values of angles ranging from

0 to π/2 has to be stored in memory like a lookup table.

5.2 Linear Interpolation

Linear Interpolation is a special case of polynomial interpretation. Given two known points

(x0, y0) and (x1, y1) on the xy plane, its linear interpolant is a straight line connecting the two

points and the equation can be derived as follows:

Figure 5.2: Linear Interpolation for two random points

Equation of slopes:

y − y0
x− x0

=
y1 − y0
x1 − x0

(5.3)

solving for y, we get

y = y0 + (x− x0)
y1 − y0
x1 − x0

(5.4)

61

5.3 Linear Interpolation for computing sinusoid values

Figure 5.3: Linear Interpolation for a sinusoid waveform

The objective is to take 2k, (where k is a whole number) number of sinusoid samples and

linearly interpolate them (as shown in the figure 5.2) such that the difference between two adjacent

interpolated values should be close to 2−32. Upon simulating in matlab with different values of k,

we concluded that k = 15 works best for our application.

In conclusion, we need 215 = (32768) samples of sine wave (from angle 0 to π/2) with each

value being 32 bits to meet the required accuracy for park transformation and its inverse.

5.3.1 Previous work

In the paper [11], authors have proposed a non-uniform based piecewise linear approximation

with one bit error correction to compute sinsuoid values. ROM3 as shown in the below figure

consumes large area when we extend this architecture for our application needs.

62

Figure 5.4: Linear Interpolation for computing sinusoid values using three ROM structure

In the paper [10], authors have proposed a phase to sinusoid amplitude converter based on first

order polynomial approximation of the sine function.

In this architecture, they use two ROM structures, one for storing the sinusoid values sampled

at ’N’ points and one to store difference between two consecutive samples.

Figure 5.5: Linear Interpolation for computing sinusoid values using two ROM structure

For this method, we need 32768(215) rows in ROM1 each of width 32 bits , 32768(215) rows in

ROM2 each of width 13 bits, one adder (32 - bit) and one multiplier(15 x 14).

63

5.3.2 Proposed method

Now, given an angle(x) in 32 bits, the two MSB bits x[31:30] can be used to represent the

quadrant, x[29:15] to address the ROM and LSB 15 bits x[14:0] for linear interpolation.

Fig 5.2 shows the architecture we propose in this thesis.

x0 = x[29:15]

y0 = lookup table(x[29:15])

x1 = x[29:15] + 1

y1 = lookup table(x[29:15] + 1)

Figure 5.6: Proposed method

64

Figure 5.7: Absolute error b/w Original and interpolated signal

Thus, to compute the required value y, we need two accesses to the lookup table, one for y0

and another for y1, two 32-bit adders and one multiplier (15 x 14).

5.3.3 Skipping Rows

As shown in the Fig 5.6, the absolute error is a monotonically increasing function i.e., Error(θ =

π/2) > Error(θ = 0). This is because the value of the sinusoid approaches to ‘1’ as θ approaches to

π/2. The absolute error is directly proportional to the actual magnitude in this case. (Our emphasis

here is to make absolute error as low as possible rather than the relative error).

As the absolute error between the actual value and interpolated value is less when θ is near 0,

we can take advantage to skip few more rows in the beginning.

The total 32768 rows can be divided into two groups:

Group 1 : consists of 4096 (0 – 4095) values.

Group 2 : consists of remaining 28,672 (4096 – 32,768) values.

65

Figure 5.8: Skipped rows

In the Group 1, instead of storing all the 4096 values, we can store only half of them i.e., 2048

values by skipping the odd numbered rows(1,3 . . . 2047). Group 2 stays as it is.

In our memory, we store the values in the block of 8 bits as shown in the fig 5.6 However, this

comes at a cost of complicated decoder, i.e., when (x < 4094 and x is even), row(x) and row(x + 1)

should have the same word_en signal.

66

Figure 5.9: Absolute Error after skipping rows near θ=0

5.3.4 Skipping Columns

As shown in the figure 5.9, yellow rectangles capture all the ‘1111_1111’ pattern and green

and red rectangles capture the repetitive patterns. Instead of storing these values separately, we can

store one value and share it among all the rows.

This comes at a cost of another complication in the decoder design requiring OR gates to share

the word_en signal for rows having the same pattern.

67

Figure 5.10: Skipping columns

68

5.4 VLSI Implementation of ROM

Figure 5.11: High-level implementation details of the ROM

As shown in the above figure, all the 32768 sinusoid values are divided into 32 blocks of

ROM each containing 1023 rows. Each block contains all the information pertained to each bit of

required 32-bit value.

This particular way of dividing the ROM into 1024 rows and 1024 columns ensures minimum

area required and also capacitance of the wires will be kept lower.

69

Figure 5.12: Improvement

The improvement however comes at a cost as complicated decoder is required to design and

also takes two clock cycles to get the required ROM data.

5.4.1 Block Diagram

The following diagrams Fig 5.10, Fig 5.11 and Fig 5.12 talk about cell arrangements in each

block of the entire ROM.

70

Figure 5.13: High-level implementation details of the ROM

The word lines WL0, WL1, . . . WL1023 come from the row decoder, whereas en0, en1 . . . en32

come from the column decoder.

The presence of a transistor represents a ‘1’, and absence represents a ‘0’.

Figure 5.14: Represents a ’1’

71

Figure 5.15: Represents a ’0’

5.4.2 Circuit Design - column and row decoders

The decoding logic can be divided into two parts – pre decoder and post decoder.

Since many gates share the exact same inputs and thus are redundant, the decoder area can be

improved by factoring out the common gates. This technique is called pre - decoding[36].

Either of the two – designs, can be used for decoder. Decoders using standard cells consume

lower dynamic power but more area whereas decoder using dynamic logic consume lower area but

higher dynamic power[37].

Figure 5.16: Pre - decoder using standard cells

72

Figure 5.17: Decoder using standard cells

Figure 5.18: Decoder using dynamic logic

73

Figure 5.19: Pre - decoder using dynamic logic

5.4.3 Circuit Design - column mux

Figure 5.20: Column mux - Design 1

74

6. CONCLUSION

In the first problem statement of our thesis, we proposed optimized architecture to implement

low rank based matrix vector multiplication for solving network equations. In a power system sim-

ulation, one of the input to the matrix vector operation is current(I) with a fundamental frequency

60 Hz. Through a mathematical proof and experimentation, we have shown when the current(I) is

sampled at a high frequency, instead of computing the actual result at each time step we can use

higher order differences to solve the problem using less hardware resources at a cost of slightly

increased relative error. The entire flow has been prototyped on Zybo Z7-20 board using Xilinx

hardware software co-design tool. Also, using the start-of-the art CAD tools combined with 45nm

FREEPDK kit we implemented the low rank based matrix vector multiplication and presented the

synthesized and routed results.

For the second problem statement, we proposed a custom ROM architecture along with linear

interpolation technique to compute high precision sinusoid values as part of park transformation

and inverse - park transformation design. We also presented two more techniques in the row and

column dimension to further reduce the transistor count.

75

REFERENCES

[1] P. Kamranfar, S. A. Shahabi, G. Vazhbakht, and Z. Navabi, “Configurable systolic matrix

multiplication,” in 2014 27th International Conference on VLSI Design and 2014 13th Inter-

national Conference on Embedded Systems, pp. 336–341, 2014.

[2] L. Zhang, M. Wu, Z. Li, P. R. Kumar, L. Xie, and W. Shi, “Vlsi architecture for exciter,

governor, and stabilizer in fast power system emt simulation,” in 2018 IEEE Texas Power

and Energy Conference (TPEC), pp. 1–6, 2018.

[3] L. Zhang, B. Wang, X. Zheng, W. Shi, P. R. Kumar, and L. Xie, “A hierarchical low-rank

approximation based network solver for emt simulation,” IEEE Transactions on Power De-

livery, vol. 36, no. 1, pp. 280–288, 2021.

[4] L. Zhang, B. Wang, D. Wu, L. Xie, P. R. Kumar, and W. Shi, “Fast electromagnetic tran-

sient simulation based on hierarchical low-rank approximation,” in 2019 IEEE Power Energy

Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, 2019.

[5] R. Wunderlich, M. Püschel, and J. C. Hoe, “Accelerating blocked matrix-matrix multiplica-

tion using a software-managed memory hierarchy with dma,” in High Performance Extreme

Computing (HPEC), 2005.

[6] Ž. Jovanović and V. Milutinović, “Fpga accelerator for floating-point matrix multiplication,”

IET Computers & Digital Techniques, vol. 6, no. 4, pp. 249–256, 2012.

[7] I. Sayahi, M. Machhout, and R. Tourki, “Fpga implementation of matrix-vector multiplication

using xilinx system generator,” in 2018 International Conference on Advanced Systems and

Electric Technologies (ICASET), pp. 290−−295, 2018.

[8] A. Amira and F. Bensaali, “An fpga based parameterizable system for matrix product imple-

mentation,” in IEEE workshop on signal processing systems, pp. 75–79, IEEE, 2002.

76

[9] S. J. Campbell and S. P. Khatri, “Resource and delay efficient matrix multiplication using

newer fpga devices,” in Proceedings of the 16th ACM Great Lakes symposium on VLSI,

pp. 308–311, 2006.

[10] J. Langlois and D. Al-Khalili, “Piecewise continuous linear interpolation of the sine function

for direct digital frequency synthesis,” in IEEE MTT-S International Microwave Symposium

Digest, 2003, vol. 1, pp. A65–A68, IEEE, 2003.

[11] R. Zhang, G. Chen, J. Zhang, G. Chen, and J. Yu, “A new ddfs based on unequal length piece-

wise linear approximation with one bit error correction,” in 2014 12th IEEE International

Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3, IEEE, 2014.

[12] E. Bertagnolli, F. Hofmann, J. Willer, R. Mary, F. Lau, P. von Basse, M. Bollu, R. Thewes,

U. Kollmer, U. Zimmermann, et al., “Ros: An extremely high density mask rom technol-

ogy based on vertical transistor cells,” in 1996 Symposium on VLSI Technology. Digest of

Technical Papers, pp. 58–59, IEEE, 1996.

[13] W. Cui and S. Wu, “Design of small area and low power consumption mask rom,” in 2007

IEEE International Conference on Integrated Circuit Design and Technology, pp. 1–4, IEEE,

2007.

[14] C.-R. Chang, J.-S. Wang, and C.-H. Yang, “Low-power and high-speed rom modules for asic

applications,” IEEE Journal of solid-state circuits, vol. 36, no. 10, pp. 1516–1523, 2001.

[15] C.-R. Chang and J.-S. Wang, “A new high-speed/low-power dynamic cmos logic and its

application to the design of an aoi-type rom,” in 1999 IEEE International Symposium on

Circuits and Systems (ISCAS), vol. 1, pp. 254–257, IEEE, 1999.

[16] S. Kamuro, Y. Masaki, K. Sano, and S. Kimura, “A 256k rom fabricated using n-well cmos

process technology,” IEEE Journal of Solid-State Circuits, vol. 17, no. 4, pp. 723–726, 1982.

[17] C. Melear, “Integrated memory elements on microcontroller devices,” in Proceedings of

WESCON’94, pp. 507–514, IEEE, 1994.

77

[18] “Fixed point vs float point.” https://www.math.drexel.edu/~tolya/300_

float.pdf. Accessed: 2021-03-03.

[19] M. Lu et al., Arithmetic and logic in computer systems, vol. 169. Wiley Online Library, 2004.

[20] K. K. Parhi, VLSI digital signal processing systems: design and implementation. John Wiley

& Sons, 2007.

[21] M. C. Karra, M. Bekakos, I. Milovanovic, and E. Milovanovic, “Fpga implementation of a

unidirectional systolic array generator for matrix-vector multiplication,” in 2007 IEEE Inter-

national Conference on Signal Processing and Communications, pp. 153–156, IEEE, 2007.

[22] “Zybo z7 reference manual.” https://reference.digilentinc.com/

reference/programmable-logic/zybo-z7/reference-manual. Accessed:

2021-03-03.

[23] “Zybo z7 technical reference manual.” https://www.xilinx.com/support/

documentation/user_guides/ug585-Zynq-7000-TRM.pdf. Accessed: 2021-

03-03.

[24] “Fpga tutorial.” http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/

Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%

20ARM%20and%20FPGA.pdf. Accessed: 2021-03-03.

[25] “Dma system level design.” https://www.youtube.com/watch?v=

5MCkjKhn1DM&list=PLXHMvqUANAFOviU0J8HSp0E91lLJInzX1&index=20.

Accessed: 2021-03-03.

[26] “Asic design tutorial.” https://cornell-ece5745.github.io/

ece5745-tut5-asic-tools/. Accessed: 2021-03-03.

[27] “Ieee standard for systemverilog–unified hardware design, specification, and verification lan-

guage,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1–1315, 2018.

78

https://www.math.drexel.edu/~tolya/300_float.pdf
https://www.math.drexel.edu/~tolya/300_float.pdf
https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/zybo-z7/reference-manual
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
http://www.cse.cuhk.edu.hk/~mcyang/ceng3430/2020S/Lec09%20Rapid%20Prototyping%20(I)%20-%20Integration%20of%20ARM%20and%20FPGA.pdf
https://www.youtube.com/watch?v=5MCkjKhn1DM&list=PLXHMvqUANAFOviU0J8HSp0E91lLJInzX1&index=20
https://www.youtube.com/watch?v=5MCkjKhn1DM&list=PLXHMvqUANAFOviU0J8HSp0E91lLJInzX1&index=20
https://cornell-ece5745.github.io/ece5745-tut5-asic-tools/
https://cornell-ece5745.github.io/ece5745-tut5-asic-tools/

[28] “Library compiler tutorial.” https://personal.utdallas.edu/~Xiangyu.Xu/

lc/. Accessed: 2021-03-03.

[29] “Design vision.” https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/design-compiler-graphical.html. Accessed: 2021-

03-03.

[30] “Prime time.” https://www.synopsys.com/content/dam/synopsys/

implementation&signoff/datasheets/primetime-ds.pdf. Accessed:

2021-03-03.

[31] “Open cell library.” https://si2.org/open-cell-library/. Accessed: 2021-03-

03.

[32] “Freepdk45.” https://www.eda.ncsu.edu/wiki/FreePDK45:Contents. Ac-

cessed: 2021-03-03.

[33] “Thesis reference.” https://repository.library.fresnostate.edu/

bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?

sequence=1. Accessed: 2021-03-03.

[34] “Lef def lib.” http://www.signoffsemi.com/lef-def-lib/. Accessed: 2021-

03-03.

[35] “Thesis reference.” https://www.cadence.com/en_

US/home/tools/digital-design-and-signoff/

soc-implementation-and-floorplanning/innovus-implementation-system.

html. Accessed: 2021-03-03.

[36] N. H. Weste and K. Eshraghian, “Principles of cmos vlsi design: a systems perspective,”

NASA STI/Recon Technical Report A, vol. 85, p. 47028, 1985.

[37] “Cadence documentation.” https://www.cadence.com/en_US/

home/tools/custom-ic-analog-rf-design/circuit-design/

virtuoso-analog-design-environment.html. Accessed: 2021-03-03.

79

https://personal.utdallas.edu/~Xiangyu.Xu/lc/
https://personal.utdallas.edu/~Xiangyu.Xu/lc/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/primetime-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/primetime-ds.pdf
https://si2.org/open-cell-library/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
https://repository.library.fresnostate.edu/bitstream/handle/10211.3/203831/Umapathy_csu_6050N_10580.pdf?sequence=1
http://www.signoffsemi.com/lef-def-lib/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-analog-design-environment.html

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	Introduction
	Network Equations
	Park Transformation and Inverse Park Transformation
	Outline

	PREVIOUS WORK
	Matrix Vector Multiplication
	Park and Inverse park transformation

	NUMBER REPRESENTATION
	Radix Number System
	Signed Number Representation
	Fixed Point Representation
	Floating Point Representation
	Fixed vs Floating Point format

	MATRIX VECTOR MULTIPLICATION
	Efficient Hardware for computing Network Solution
	Higher Order Difference
	Bit reduction scheme

	Matrix vector multiplication
	Previous Work
	Comparison between two architectures for matrix vector multiplication
	Matrix vector multiplication using higher order difference
	Storing U and V
	Computing 2xk using subtractors
	Computing vi.2xk and i=1r ui.(vi2xk) then using multipliers and adders
	Computing 2yk using adders
	Final Circuit
	RTL Simulation Results
	Comparison between Floating and Fixed Point implementation

	FPGA Implementation
	Integrating and Simulating the circuit on FPGA
	System Architecture
	Matrix Multiplication Peripheral
	Block Diagram
	ARM Programming
	Results

	ASIC Implementation
	Synthesizing the RTL code to netlist using Synopsys Design Compiler
	Comparison between different order of differentiation after implementation
	Place and Route using Cadence Innovus

	PARK AND INVERSE PARK TRANSFORMATION
	Interface between network and non - network part
	Linear Interpolation
	Linear Interpolation for computing sinusoid values
	Previous work
	Proposed method
	Skipping Rows
	Skipping Columns

	VLSI Implementation of ROM
	Block Diagram
	Circuit Design - column and row decoders
	Circuit Design - column mux

	CONCLUSION
	REFERENCES

