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ABSTRACT

The standard assumption in classification is that the training data are independent and identi-

cally distributed. Indeed, this assumption is so pervasive that it is often applied without mention.

In this dissertation, we propose novel methods that address violations of this standard assumption

corresponding to 1) restricted sampling and 2) a nonstationary environment.

The first part of this dissertation concerns the bias of classification precision estimation under

restricted sampling. Precision and recall have become very popular classification accuracy metrics

in the statistical learning literature, under the standard i.i.d. sampling assumption. However, in

many cases of interest, as in observational case-control studies for biomarker discovery in cancer

studies, the training data are sampled separately from the case and control populations, violating

the standard sampling assumption, under which the data is sampled randomly from the mixture of

the populations. We present an analysis of the bias in the estimation of the precision of classifiers

designed on separately sampled data. The analysis consists of both theoretical and numerical

results, which show that classifier precision estimates can display strong bias under separating

sampling, with the bias magnitude depending on the difference between the true case prevalence

in the population and the sample prevalence in the data. We show that this bias is systematic in

the sense that it cannot be reduced by increasing sample size. If information about the true case

prevalence is available from public health records, then we propose the use of a modified precision

estimator based on the known prevalence that displays smaller bias, which can in fact be reduced

to zero as sample size increases under regularity conditions on the classification algorithm. The

accuracy of the theoretical analysis and the performance of the precision estimators under separate

sampling are confirmed by numerical experiments using synthetic and real data from published

observational case-control studies. The results with real data confirmed that under separately-

sampled data, the usual precision estimator produces larger, i.e. more optimistic, estimates than

the estimator using the true prevalence value.

The second part of this dissertation proposes a state space model approach to classification of
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nonstationary data. In many applications, the data are collected at different time points. If the time

between consecutive acquisition points is large enough, the distribution of data is likely to shift

due to natural physical processes, and the standard i.i.d. sampling assumption is violated. This has

been known in the statistical learning literature as “population drift” problem. Most attempts to

address nonstationarity are ad-hoc and carry no guarantee of optimality. In this dissertation, we

propose a state-space methodology, whereby the data are assumed to evolve linearly or nonlinearly

under Gaussian observation noise, and applied adaptive filtering methods to estimate the distribu-

tional parameters, leading to nonstationary linear and quadratic discriminant analysis (NSLDA and

NSQDA) classification rules. Parameter estimation in the linear state-space model is accomplished

by a combination of Kalman smoothing and maximum-likelihood estimation by expectation max-

imization, while particle filtering methods are proposed for the nonlinear state-space model. We

have also addressed the case where the time labels of some data are unknown, a situation that often

arises in practice, by proposing a hybrid Gaussian mixture modeling (GMM)-Kalman Smoother

approach. The accuracy of the proposed nonstationary discriminant analysis rule, as well as its ro-

bustness against noise, missing data, and unbalanced training data are demonstrated in numerical

experiments, where we compare it to “naive” LDA, QDA, and nonlinear SVM classification rules.
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1. INTRODUCTION

In statistics, a standard assumption is that sampling is unrestricted and stationary, i.e., the

sample is independent and identically distributed [1, 2]. See Fig. 1.1.

Figure 1.1: Independent and identically distributed sampling example.

Let

ci = “true” proportion of class i in the mixture population

Ni = number of individuals from class i in the sample.

Under random sampling, an i.i.d. sample is drawn from the mixture of the populations Π0 and

Π1. This means that if a sample of size n is drawn for binary classification, then the numbers

of sample point Ni ∼ Binomial (n, ci), and ĉi = Ni/n is a consistent estimator of ci, for i = 0,1

(also consistent, by the Bernoulli’s Law of Large Numbers [3, 4]). Like this example, a consistent

estimator of c0 is 1/3 if we label 0 for the orange.

However, restriction is any constraint that creates dependencies in the data. For example,

separate sampling [5] is common in observational case-control studies in biomedicine [6, 7]. That

is to say suppose the sampling is not random, in the sense that the ratio r = n0

n and 1 − r = n1
n are

1



chosen prior to the sampling procedure. See Fig. 1.2. Here n0 = 4 and n1 = 2 are not realizations

of binomial random variables, but are fixed parameters prior to sampling. Hence, ĉ0 = n0/n and

ĉ1 = n1/n are not estimators of c0 and c1 in any useful sense. However, the inability to consistently

estimate ci matters!

Figure 1.2: Separate sampling example.

Another example of i.i.d. assumption being violated is stationarity. In many time series tech-

niques, being stationary series means data statistical properties like mean, variance, covariance is

not changing over time. We could compare these two figures in Fig. 1.3: in the stationary case,

mean needs to be constant; while in the nonstationary case, mean depends on time. However, the

stationary assumption is likely to be violated if the time between consecutive acquisition points is

large enough; then population drift problem should be solved.

A simple example of nonstationary data is - heterogeneous data [8] collected at different time

points - when there is population drift, shown in Fig. 1.4. The heterogeneous sample data at time

k are given by

Sn[k] = Sm[0] ∪ Sm[1]⋯∪ Sm[k] (1.1)

where Sm[k] is a sample from the mixture of populations Π0 [j] and Π1 [j] for j = 0,1, ..., k.

Sample size at time k: n [k] =m [0] + ⋯ +m [k].

2



Figure 1.3: A comparison example between stationarity and nonstationarity.

Now suppose that the populations are multivariate Gaussian with means µ0 [k] and µ1 [k] and

common covariance matrix Σ [k]. Assume further that the means evolve according to a first-order

linear equation. By stacking the vectors appropriately, we can write the state-space equation:

µ [k + 1] = Aµ [k] +w [k] (1.2)

xi [k] = µ [k] + vi [k] , i = 1, ...,m [k] (1.3)

for k = 0, 1, ... where the transition noise w [k] and observation noise vi [k] are zero-mean Gaus-

sian random vectors with covariance matrices R and Σ, respectively.

In the figure, the naive decision boundary is simply made by a Quadratic Discriminant Analysis

classifier; while one can draw a Linear Discriminant Analysis classifier boundary at each time

point [9]. Even though both decision boundaries make perfect separate for data with different

labels, the one doesn’t consider nonstationary property fail to explain the data well, and is very

likely to give bad accuracy of test dataset.

3



Figure 1.4: An example of nonstationary classification.

1.1 On the Bias of Precision Estimation under Separate Sampling

1.1.1 Background

Biomarker discovery is typically attempted by means of observational case-control studies

where classification techniques are applied to high-throughput measurement technologies, such

as DNA microarrays [10, 11], next-generation RNA sequencing (RNA-seq) [12], or “shotgun”

mass spectrometry [13]. The validity and reproducibility of the results depend critically on the

availability of accurate and unbiased assessment of classification accuracy [14, 15].

The vast majority of published methods in the statistical learning literature make the assump-

tion, explicitly or implicitly, that the data for training and accuracy assessment are sampled ran-

domly, or unrestrictedly, from the mixture of the populations. However, observational case-control

studies in biomedicine typically proceed by collecting data that are sampled with restrictions. The

most common restriction, and the one that is studied in this dissertation, is that the data are sam-
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pled separately from the case and control populations. This is always true in studies involving

rare diseases, since sampling randomly from the population at large would not yield enough cases.

That creates an important issue in the application of traditional statistical learning techniques to

biomedical data, because there is no meaningful estimator of case prevalences under separate sam-

pling. Therefore, any methodology that directly or indirectly uses estimates of case prevalence will

be severely biased.

Precision and Recall have become very popular classification accuracy metrics in the statistical

learning literature [16–18]. In practice, these quantities must be estimated from sample data. The

recall does not depend on the prevalence, while the precision does. Therefore, in this dissertation,

we investigate the bias of precision estimates when the typical separate sampling design used in

case-control studies is not properly taken into account.

A similar study was conducted previously into the accuracy of cross-validation under sepa-

rate sampling [19]. It was shown in that study that the usual “unbiasedness” property of k-fold

cross-validation does not hold under separate sampling. In fact, the bias can in fact be substantial

and systematic, i.e., not reducible under increasing sample size. In [19], modified k-fold cross-

validation estimators were proposed for the class-specific error rates. In the case where the true

case prevalence is known, those estimators can be combined into an estimator of the overall error

rate, which satisfies the usual “unbiasedness” property of cross-validation.

By contrast, the present research study employs analytical and numerical methods to investi-

gate precision estimation under separate sampling. We show that the usual precision estimator is

asymptotically unbiased as sample size increases, under the condition that the classification rule

has a finite VC dimension. However, under separate sampling, we show that the usual precision

estimator will in general display a systematic bias, which cannot be reduced by increasing sample

size, if the observed prevalence of cases in the data is different from the true prevalence in the

population of interest, and the bias is larger the more different they are. In particular, the bias

tends to be large when the true prevalence is small but the training data contains an equal number

of examples from both classes, which is a common scenario in practice. If the true case preva-
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lence is known (e.g., from public health records), then a modified precision estimator that uses the

known prevalence is shown to be asymptotically unbiased in the separate sampling case, under the

condition that the classification rule is sufficiently stable as sample size increases. All of these the-

oretical results, and the approximations used to derive them, are verified by numerical experiments

using both synthetic and real data from published studies.

1.1.2 Summary of Contributions

This project employs analytical and numerical methods to show that the ordinary precision

estimator can display large bias under separate sampling. This is a consequence of the fact that

precision is a function of the true prevalence. Case-control studies involving rare diseases are

specially affected, since in those studies the true prevalence is small and will almost always differs

substantially from the observed prevalence in the data. To address this problem, we propose a

modified estimator for precision, which can be applied in case the true prevalence is known. This

estimator has small bias that vanishes as sample size increases under certain regularity conditions.

In the absence of any knowledge about the true prevalence, precision estimates should be avoided

under separate sampling.

1.2 State Space Models to Nonstationary Discriminant Analysis

1.2.1 Background

The standard assumption of statistical learning is that the training data are identically and in-

dependently distributed [20–22]. Identical distribution implies that the population is stationarity,

meaning that it does not change over time. This assumption is likely to be violated in modern

“big data” applications of machine learning, including natural language processing, speech recog-

nition, image recognition, and bioinformatics. In these real-world applications, data are complex,

with different training points being acquired at different time points. If the time between consec-

utive acquisition points is large enough, the distribution of the data is likely to shift due to natural

physical processes. In practice, there are many circumstances where the stationary assumption is

unwarranted because the underlying physical processes are strongly non-stationary, for instance,
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in the case of tumor classification where genetic structure evolves over time. This kind of behav-

ior has been termed “population drift” in the literature [23], where population drifting means that

whole population is assumed to be homogeneous with respect to the distribution of the response

variable conditioned on the feature space. Similar problem has been discussed and addressed

in [24] and [25].

Changes in population distribution over time is a challenging problem in supervised learning.

The book [26] focuses on a specific nonstationary environment known as covariate shift, in which

the distributions of inputs (queries) change but the conditional distribution of outputs (answers)

is unchanged. [27] discusses the detection and adaptation in nonstationary environment. Once a

change has been detected, the classifier needs to adapt the change by learning from the newly

available information, and discarding the obsolete one. Previous attempts to address nonstationar-

ity in statistical learning, also known as “population drift,” are ad-hoc and carry no guarantee of

optimality. Our methodology provides a optimal solution to solve the problem of machine learning

application in nonstationary environment, where we utilized the state-space approach. In particu-

lar, we combined Kalman Smoother algorithm [28] with Linear Discriminant Analysis (LDA) [29]

in different scenarios.

Formally, the standard assumption in binary classification is that there is a feature-label distri-

bution f(x, y) with classes described by the class-conditional distributions f(x∣0) and f(x∣1), the

aim being to construct a classifier ψ ∶ Rd → {0,1}, with small error rate ε[ψ] = P (ψ(X) ≠ Y ), via

some classification rule utilizing sample data, the implicit assumption being that the feature-label

distribution is stationary, that is, fixed over time. Linear Discriminant Analysis (LDA) [29] is a

simple classification rule, which presents a low degree of overfitting, and is therefore useful for ap-

plication in small-sample cases. Provided that the underlying feature-label distribution is linearly

separable, LDA produces very good classifiers.

1.2.1.1 Nonstationary Discriminant Analysis Overview

In a nonstationary classification problem, there is a feature vector Xk ∈ Rd and a label Yk ∈

{0, ..., c − 1} defined at each discrete time k = 0,1, . . . (this results from sampling the correspond-
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ing continuous-time stochastic processes at discrete points in time). Let f jk(x ∣ Yk = j) be the

class conditional distributions and πjk = P (Yk = j) be the prior probabilities at time step k. The

population drift reflects itself in the changing f jk and πjk. It is easy to show that an optimal classifier

at each time point k is given by

ψ∗k(x) = argmax
j=0,1,...,c−1

D∗,j
k (x) , (1.4)

where the optimal discriminants are given by

D∗,j
k (x) = logπjk + log f jk(x) , (1.5)

for j = 0,1, . . . , c − 1 and k = 0,1, . . . Traditional classification makes the stationarity assumption

f jk ≡ fj and πjk ≡ πj , in which case there is a single optimal classifier ψ∗, which is not a function of

time.

Typically, the distributional quantities necessary to compute optimal classifiers are not known

or only partially known, and (sub-optimal) classifiers need to be designed with the help of sample

data. In nonstationary classification, classifiers ψn,k are designed from data Sn of sample size

n to approximate the optimal classification error of ψ∗k at a point of time k where the classifier

is supposed to be deployed. This could be a time in the past (in historical studies), but more

commonly the present or a future time. The sample data Sn = ⋃k Sk consists of a collection of

i.i.d. samples Sk = {(Xk,1, Yk,1), . . . , (Xk,nk , Yk,nk)} from the mixture∑c−1
j=1 π

j
kf

j
k , where n = ∑k nk

(in practice, data for only a finite number of present and past time points are available). The time

labels for each data point could be known explicitly, but they might not be known if this information

was not kept while collecting the data, in which case they would need to be estimated. A “naive”

classification rule would simply ignore the time label information completely and design a single

classifier based on the entire data. Alternatively, different classifiers could be designed based on

each subsample Sk, if the time label is known. A nonstationary classification rule that does not

ignore the time label and uses the entire data should be to be able to do better than either of these
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at any point of time (including time points not represented in the data), provided that enough data

are available and an accurate model for the evolution of the distributions is known.

Consider the case where the f jk are multivariate Gaussian densities,

f jk(x ∣ Yk = j) = 1√
(2π)d det(Σj

k)
exp(−1

2
∣∣x −µj

k∣∣2Σj
k

) , (1.6)

where ∣∣v∣∣2M = vTM−1v. Ignoring constant terms, the optimal discriminants in (1.5) reduce to

DQDA,j
k (x) = logπjk −

1

2
log ∣Σj

k∣ −
1

2
∣∣x −µj

k∣∣2Σj
k

, (1.7)

where “QDA” stands for quadratic discriminant analysis, in allusion to the fact that the decision

boundaries produced are piecewise quadratic. Under the additional assumption that Σj
k ≡ Σk at

each time k, the optimal discriminants reduce to

DLDA,j
k (x) = logπjk −

1

2
∣∣x −µj

k∣∣2Σk , (1.8)

where “LDA” stands for linear discriminant analysis, as in this case the decision boundaries are

piecewise linear.

Nonstationary Gaussian discrimination is based on plugging in estimators π̂jk, µ̂j
k, Σ̂k, and Σ̂j

k

based on the entire data Sn for the unknown parameters to obtain sample discriminants DQDA,j
n,k (x)

and DLDA,j
n,k (x), and the corresponding sample-based QDA and LDA classifiers:

ψQDA
n,k (x) = argmax

j=0,1,...,c−1
DQDA,j
n,k (x) (1.9)

and

ψLDA
n,k (x) = argmax

j=0,1,...,c−1
DLDA,j
n,k (x) . (1.10)

The quality of these classifiers depend on how accurate the parameter estimators are. Indeed,

it can be shown [30, Thm. 4.1] that if, for a given k, these estimators converge in probability to the
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corresponding parameters as sample size increases, then the classification error of ψn,k converges

in probability to the error of the optimal classifier ψ∗k . In the rest of this paper, we discuss how to

define accurate estimators π̂jk, µ̂j
k, Σ̂k, and Σ̂j

k based on linear and nonlinear state-space models of

distributional drift.

1.2.1.2 Linear Drift Model Overview

Let us consider a classification problem, in which j = {0,1, ..., c − 1} denote the set of all

classes. Assume Πj
k = fk(x∣j) is the class conditional distribution of class j at time step k. In

non-stationary condition, the class conditional distributions are function of time. Considering the

linear model for evolution of the class conditional distributions, we have:

µj
k = Ajµj

k−1 + wj
k , (1.11)

for k = 1,2, ...; where wj
kis independent zero-mean Gaussian noise processes with known covari-

ances matrices of Qj , and Aj is state transition matrices for class j.

The data are assumed to be generated through the following measurement process:

xjk = Cjµj
k + vjk , (1.12)

where vjk ∼ N (0,Rj), and Cj denote the dynamics of measurement process for class j.

In this project, the ultimate goal is to developed the Linear Discriminant Analysis (LDA) for

nonstationary condition given only c sets of measurements. A conventional approach for estimating

the mean vectors and covariance matrices of the class conditional distributions is to use the classical

Kalman smoother (KS) [31]. Two major cases are considered in this linear model case:

• Systems with Fully-Known Dynamics: In this case, all matrices in equations (1.11) and (1.12)

are assumed to be known, and the Kalman Smoother algorithm can be directly applied to ob-

tain estimates of the class means {µj
k;k = 1, ..., T}. A modified version of Kalman Smoother

with multiple measurements at one time is discussed in Chapter 3.
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• Systems with Partially-Known Dynamics: In this case, parameters in equations (1.11)

and (1.12) are only partially known. In the conventional case, the well-known maximum-

likelihood or Bayesian techniques can be used for estimating these unknown parameters [32–

34]. Several modified versions of Kalman Smoother for state space model with unknown pa-

rameters are discussed in Chapter 3.

The outputs from the modified Kalman Smoother frameworks are used in our proposed Nonsta-

tionary Discriminant Analysis. Performance is assessed in a set of numerical experiments using

simulated data, where the average error rates obtained by NSLDA are compared to the error pro-

duced by a naive application of LDA to the pooled nonstationary data.

1.2.1.3 Nonlinear Drift Model Overview

In a multiclass nonstationary problem with c classes and T time points, we assume that the

centroid of each class is a latent variable that evolves in time according to the following nonlinear

model:

zjk = f jk (z
j
k−1,w

j
k) , (1.13)

for j = 0,1, . . . , c − 1 and k = 1, . . . , T , where f jk is an arbitrary nonlinear function governing the

evolution of class j and wj
k defines an i.i.d. transition noise process, which is independent of the

zjk process. The initial states zj0 are generated from given starting “prior” distributions.

For notational simplicity, we partition the training data into c × T subsamples

Sjk = {xjk,1, . . . ,x
j

k,nj
k

}, (1.14)

for j = 0, . . . , c−1 and k = 1, . . . , T , where njk are the sample sizes for each class j at time k, adding

up to the total sample size n. The data are assumed to satisfy the following general observation

model:

xjk,i = hjk(z
j
k,v

j
k,i) , (1.15)

for i = 0,1, . . . , njk, j = 0,1, . . . , c − 1 and k = 1, . . . , T , where hjk is an arbitrary nonlinear function
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mapping the latent variables to the observable data and vjk,i defines an i.i.d. observation noise

process, which is independent of the zjk process.

In the non-linear case problem, the ultimate goal is to develop a framework for nonstationary

classification when the class-conditional distribution is represented by (1.13) and (1.15). Due to

the nonlinearity of the state process and non-Gaussianity of the state process noise, in Chapter 5,

we propose using sequential Monte-Carlo (SMC) for estimating the class-conditional distributions.

The proposed framework yields several benefits:

• High classification accuracy, as all available data are employed for particle-based estimation of

the class conditional distributions at various time points.

• The ability of handling missing data, by using the prediction step of the particle smoother.

• Robustness against unbalanced data, which can be compensated for by picking different number

of particles for estimation of the class conditional densities.

1.2.2 Summary of Contributions

In [35], we proposed a novel classification algorithm for nonstationary data, called nonstation-

ary LDA (NSLDA). This new classification rule is model-based, using a state-space equation for

evolution of the distribution parameters “population drift”) in different scenarios. Furthermore, we

address the case where parameters in linear state space models are unknown by proposing several

different Kalman Smoothing frameworks in maximum-likelihood methods. Last, we proposed a

general nonlinear, non-Gaussian model for nonstationary data, which allowed us to derive non-

stationary discriminant analysis classification rules capable of producing classifiers tuned to the

state of the distribution at each time point, while borrowing information from all time points. The

high accuracy of the proposed NSLDA classification rule and its ability in handling missing or

unbalanced data is demonstrated in a series of numerical experiments.

1.3 Organization

This dissertation contains two different projects I’ve been doing for my PhD research: on

the bias of precision estimation under separate sampling and state space models to nonstationary
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discriminant analysis. This chapter covers background and summary of main contributions for

each of the project.

In Chapter 2, we examine the bias of precision and recall estimators under separate sampling.

After this, we proposed an unbiased precision estimator, which can be applied in case the true

prevalence is known. We performed a set of experiments employing synthetic models and two

real-data case studies.

In Chapter 3, we illustrated how linear state-space model approach to nonstationary data in

different scenarios. We first review the linear drifts model, then reviewed Kalman Soother that

applied multiple observations at one time. In the case when parameters in state space models

are unknown, two maximum likelihood method Kalman Smoothing framework are developed -

EM-based and GMM-based Kalman Smoother. Different versions of Non-stationary discriminant

analysis are proposed. Last we showed synthetic simulations in different scenarios.

In Chapter 4, we extended the cases when the state-space model is non-linear and non-Gaussian.

we propose using sequential Monte-Carlo (SMC) techniques [36,37] for efficient estimation of the

class-conditional distributions via a finite set of particles, together with corresponding SMC-based

Non-stationary discriminant analysis. Performance is assessed in a set of numerical experiments

using simulated data.

Finally, Chapter 5 summarizes this dissertation.
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2. ON THE BIAS OF PRECISION ESTIMATION UNDER SEPARATE SAMPLING*

2.1 Performance Metrics

We provide definitions and properties of the various error rates of interest in this study, in-

cluding precision and recall. We consider the population error rates, which depend only on the

probability distribution (also known as the “feature-label” distribution) governing the problem, as

well as the estimated error rates, which attempt to approximate the corresponding population error

rates by using sample data, and are thus the main object of our interest.

2.1.1 Population Performance Metrics

In an observational case-control study, there are two populations: Π0 (control) and Π1 (case).

The feature vector X ∈ Rd summarizes numerical characteristics of a patient (e.g, blood concen-

trations of given proteins). The classification problem is how to assign accurately a new obser-

vation X to one of those two populations. Let the label Y ∈ {0,1} be defined as: Y = 0 if X is

from the control population Π0, and Y = 1 if X is from the case population Π1. The statistical

properties of the classification problem are entirely determined by the joint feature-label probabil-

ity distribution f(x, y) between X and Y . The feature-label distribution can be decomposed as

f(x, y) = f(x ∣ y)f(y), where f(x ∣ y), y = 0,1, give the distribution of X in each population of

interest, whereas f(y) is the marginal distribution of the binary random variable Y , specified by

P (Y = 0) = 1 − prev and P (Y = 1) = prev , (2.1)

where prev denotes the prevalence, i.e., is the probability that a randomly selected individual is a

case subject. The name comes from the fact that it typically measures the prevalence of a disease

in a population of interest. The prevalence plays a fundamental role in the sequel.

A classifier ψ ∶ Rd → {0,1} assigns X to the control or case population, according to whether

*Reprint with permission from “On the Bias of Precision Estimation Under Separate Sampling” by Shuilian Xie
and Ulisses M Braga-Neto, 2019. Cancer Informatics, 18:1176935119860822. doi: 10.1177/1176935119860822.
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ψ(X) = 0 or ψ(X) = 1, respectively. A classifier’s sensitivity and specificity are defined as:

sens = P (ψ(X) = 1 ∣ Y = 1) , (2.2)

spec = P (ψ(X) = 0 ∣ Y = 0) . (2.3)

These are accuracy metrics that reflect how closely the classifier agrees with the true population of

origin of the individual. The closer both are to 1, the more accurate the classifier is. A noteworthy

property of the sensitivity and specificity is that they do not depend on the prevalence. In fact, one

can write:

sens = ∫
x∶ψ(x)=1

f(x ∣1)dx , (2.4)

so that sensitivity is a function only of f(x ∣ y), not of f(y). A similar expression holds for the

specificity, showing that it too is not a function of the prevalence.

Other common performance metrics for a classifier are the false-positive (FP), false-negative

(FN), true-positive (FP), and true-negative (FN) rates, given by

FP = P (ψ(X) = 1, Y = 0) , (2.5)

FN = P (ψ(X) = 0, Y = 1) , (2.6)

TP = P (ψ(X) = 1, Y = 1) , (2.7)

TN = P (ψ(X) = 0, Y = 0) . (2.8)

The (overall) classification error and accuracy rates are given by the sum of the appropriate error

rates above:

Err = FP + FN = P (ψ(X) ≠ Y ) , (2.9)

Acc = TP +TN = P (ψ(X) = Y ) = 1 −Err . (2.10)

See Fig. 2.1 for an illustration.
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Figure 2.1: Diagram of error (red) and accuracy (green) rates.

Unlike sensitivity and specificity, the previous performance metrics do depend on the preva-

lence. This can be seen easily via the relationships:

FP = (1 − spec) × (1 − prev) , (2.11)

FN = (1 − sens) × prev , (2.12)

TP = sens × prev , (2.13)

TN = spec × prev . (2.14)

Take, for example, TP and sensitivity; they are intimately (linearly) related, but TP is weighted by

the prevalence. If the latter increases or decreases, TP increases and decreases accordingly, but the

sensitivity stays the same. Other relationships can easily be obtained, for example:

prev = FN +TP, 1 − prev = FP +TN, (2.15)

sens = TP

TP + FN
, spec = TN

TN + FP
. (2.16)

Finally, we define the precision and recall accuracy metrics. Precision measures the likelihood

that one has a true case given that the classifier outputs a case:

prec = P (Y = 1 ∣ ψ(X) = 1) . (2.17)
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Precision is thus similar to sensitivity; the latter is the likelihood that the classifiers outputs a case

when applied on a true case. But the conditioning order is inverted. Applying Bayes’ Theorem and

using previously-derived relationships reveal that:

prec = TP

TP + FP
= sens × prev

sens × prev + (1−spec) × (1−prev) . (2.18)

On the other hand, recall is simply the sensitivity:

rec = sens = TP

TP + FN
. (2.19)

It follows that precision depends on the prevalence, but recall does not.

2.1.2 Estimated Performance Metrics

All the performance metrics defined in the previous section require the knowledge of the full

feature-label distribution, or at least the class-conditional densities. In practice, however, these

quantities are unknown, and thus sample data must be used to estimate the performance metrics.

Let Sn = {(X1, Y1), . . . ,Xn, Yn)} be a sample of size n from f(x, y), known as the training data.

Consider the empirical distribution p(x, y), which is a discrete distribution putting mass 1/n over

each pair (Xi, Yi), and let P̂ denote the empirical probability measure under p(x, y). The basic

estimation approach in statistical learning is to nominally replace the unknown distribution f(x, y)

by p(x, y). This leads to the following simple estimator of prevalence:

p̂rev = P̂ (Y = 1) = 1

n

n

∑
i=1

IYi=1 , (2.20)

where IA = 1 if A is true and IA = 0 if A is false. In the case of FP, FN, TP, and TN, and a given

classifier ψ, one obtains
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F̂P = P̂ (ψ(X) = 1, Y = 0) = 1

n

n

∑
i=1

I{ψ(Xi)=1,Yi=0} , (2.21)

F̂N = P̂ (ψ(X) = 0, Y = 1) = 1

n

n

∑
i=1

I{ψ(Xi)=0,Yi=1} , (2.22)

T̂P = P̂ (ψ(X) = 1, Y = 1) = 1

n

n

∑
i=1

I{ψ(Xi)=1,Yi=1} , (2.23)

T̂N = P̂ (ψ(X) = 0, Y = 0) = 1

n

n

∑
i=1

I{ψ(Xi)=0,Yi=0} . (2.24)

Similarly,

Êrr = F̂P + F̂N = 1

n

n

∑
i=1

Iψ(Xi)≠Yi , (2.25)

Âcc = T̂P + T̂N = 1

n

n

∑
i=1

Iψ(Xi)=Yi = 1 − Êrr . (2.26)

These are basic counting estimators; e.g., the FP estimator counts the number of false positive over

the training data (and divides that by n, so the result is between 0 and 1). Êrr is also known as the

resubstitution estimator in the pattern recognition literature [15].

We define the remaining performance metrics estimators analogously, using (2.16), (2.18), and

(2.19):

ŝpec = T̂N

T̂N + F̂P
= ∑

n
i=1 I{ψ(Xi)=0,Yi=0}

∑n
i=1 IYi=0

,

p̂rec = T̂P

T̂P + F̂P
= ∑

n
i=1 I{ψ(Xi)=1,Yi=1}

∑n
i=1 Iψ(Xi)=1

,

r̂ec = ŝens = T̂P

T̂P + F̂N
= ∑

n
i=1 I{ψ(Xi)=1,Yi=1}

∑n
i=1 IYi=1

.

(2.27)

2.2 Mixture and Separate Sampling

The usual scenario in Statistical Learning is to assume that Sn = {(X1, Y1), . . . , (Xn, Yn)} is

an independent and identically distributed (i.i.d.) sample from the true feature-label distribution

f(x, y); i.e., the set of all sample points is independent and each sample point has distribution
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f(x, y), so that

f(Sn) = Πn
i=1f(Xi, Yi) = Πn

i=1f(Xi ∣ Yi) ×Πn
i=1f(Yi) , (2.28)

where all the densities on the right-hand side are as defined previously. That makes Sn a sample

from the mixture of populations, where each label Yi is distributed as:

P (Yi = 0) = 1 − prev and P (Yi = 1) = prev , (2.29)

for i = 1, . . . , n. Under mixture sampling,N0 = ∑n
i=1 IYi=0 andN1 = ∑n

i=1 IYi=1 = n−N0 are binomial

random variables, with parameters (n,1 − prev) and (n,prev), respectively.

By contrast, observational case-control studies in biomedicine typically proceed by collecting

data from the populations separately, where the separate sample sizes n0 and n1, with n0 + n1 = n,

are pre-determined and nonrandom; i.e., sample occurs with the restriction N1 = ∑n
i=1 IYi=1 = n1

(or, equivalently, N0 = ∑n
i=1 IYi=0 = n0). The restriction means that the labels Y1, . . . , Yn are no

longer independent, even though the feature vectors X1, . . . ,Xn are independent given the labels.

Furthermore, the conditional distributions f(Xi ∣ Yi) are the same as before. The distribution of

the sample is given by

f(Sn ∣ N0 = n0) = Πn
i=1f(Xi ∣ Yi) × f(Y1, . . . , Yn ∣ N0 = n0) , (2.30)

Under separate sampling, only the order of the labels Y1, . . . , Yn may be random. Thus, f(Y1, . . . , Yn ∣

N0 = n0) is a discrete uniform distribution over all ( nn0
) possible orderings. This can also be ob-

tained by direct computation, as follows:

f(Y1, . . . , Yn ∣ N0 = n0) = f(Y1, . . . , Yn,N0 = n0)
P (N0 = n0)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

prevn1(1−prev)n0
( n
n0

)prevn1(1−prev)n0 = 1
( n
n0

) , if ∑n
i=1 IYi=0 = n0,

0, otherwise.

(2.31)
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It is not difficult to verify that under (2.30) and (2.31), the marginal distribution of each label Yi is

given by

P (Yi = 1 ∣ N0 = n0) = n1

n
△= r ,

P (Yi = 0 ∣ N0 = n0) = n0

n
= 1 − r ,

(2.32)

for i = 1, . . . , n, where r is the (fixed) sample size ratio under separate sampling. Comparing (2.29)

and (2.32) reveals the main difference between mixture and separate sampling.

2.3 Bias of the Precision Estimator

In this subsection, we present a theoretical large-sample analysis of the bias of the estima-

tors discussed previously, focusing on the precision estimator. Estimation bias is defined as the

expectation over the sample data Sn of the difference between the estimated and true quantities.

The situation is clear with the estimator of the prevalence itself, given by (2.20). Under mixture

sampling, we have

E[p̂rev] = 1

n

n

∑
i=1

E[IYi=1] = P (Y1 = 1) = prev , (2.33)

so the estimator is unbiased (in addition, as n increases, Var(p̂rev) → 0 and p̂rev → prev in

probability, by the law of large numbers). However, under separate sampling,

E[p̂rev ∣ N0 = n0] =
1

n

n

∑
i=1

E[IYi=1 ∣ N0 = n0]

= P (Y1 = 1 ∣ N0 = n0) = r ,
(2.34)

according to (2.32). This also follows directly from the fact that p̂rev becomes a constant estimator,

p̂rev ≡ r, according to (2.20). Thus,

Biassep(p̂rev) = E[p̂rev − prev ∣ N0 = n0]

= r − prev .

(2.35)

Assuming that the sample size ratio r = n1/n is held constant as n increases (e.g., under the

common balanced design case, n0 = n1 = n/2), then this bias cannot be reduced with increased
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sample size. Furthermore, the bias is larger the further away prev is from r. In particular, the bias

tends to be large when prev is small and r = 1/2, which is a common scenario in practice.

The situation for F̂P, F̂N, F̂P, and T̂N is more complicated. First, we are interested in a

classifier ψn derived by a classification rule from the sample data Sn = {(X1, Y1), . . . ,Xn, Yn)}.

Therefore, all expectations and probabilities in the previous sections are conditional on Sn. Un-

der mixture sampling, the powerful Vapnik-Chervonenkis Theorem can be applied to show that all

of these estimators are asymptotically unbiased, provided that classification rule has a finite VC

Dimension [20]. This includes many useful classification algorithms such as LDA, linear SVMs,

perceptrons, polynomial-kernel classifiers, certain decision trees and neural networks, but it ex-

cludes nearest-neighbor classifiers, for example. Classification rules with finite VC dimension do

not cut the feature space in complex ways and are thus generally robust against overfitting.

Assuming mixture sampling and a classification algorithm with finite VC dimension VC , it can

be shown that (details omitted; see [15, p. 47] for a similar argument)

Biasmix(F̂P) ≤ 8

√
VC log(n + 1) + 4

2n
, (2.36)

so that the bias vanishes as n → ∞. Similar inequalities apply to F̂N, F̂P, and T̂N. These are

distribution-free results, hence vanishingly small bias is guaranteed if n ≫ VC , regardless of the

feature-label distribution. For linear classification rules, VC = d + 1, where d is the dimensionality

of the feature vector. In this case, the F̂P, F̂N, F̂P, and T̂N estimators are essentially unbiased if

n≫ d.

Next we consider the bias of the precision and recall estimators under mixture sampling (the

analysis for the sensitivity and specificity estimators is similar; in fact, the former is just the recall

estimator). We will make use of the following approximation for the expectation of a ratio of two

random variables W and Z (see the Appendix A for the derivation of this approximation and the
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conditions under which it is valid):

E [W
Z

] ≈ E[W ]
E[Z] . (2.37)

The approximation is quite accurate if W and Z are around E[W ] and E[Z], respectively (it is

asymptotically exact as W → E[W ] and Z → E[Z]). For the precision estimator,

E[p̂rec] = E[ T̂P

T̂P + F̂P
] ≈ E[T̂P]

E[T̂P + F̂P]

≈ E[TP]
E[TP + FP] ≈ E[ TP

TP + FP
] = E[prec],

(2.38)

for a sufficiently large sample, where we used the previously-established asymptotic unbiasedness

of T̂P, T̂P, and F̂N. An entirely similar derivation shows that E[r̂ec] = E[rec]. Hence, for “well-

behaved” classification algorithms (those with finite VC dimension), both the precision and recall

estimators are asymptotically unbiased under mixture sampling.

We are not aware of the existence of a VC theory for separate sampling at this time. In order

to obtain approximate results for the separate sampling case, we will assume instead that, at large

enough sample sizes, the classifier ψ is nearly constant, and invariant to the sample. This assump-

tion is not unrelated to the finite VC dimension assumption made in the case of mixture sampling.

Many of the same classification algorithms that have finite VC dimension, such as LDA and linear

SVMs, will also become nearly constant as sample size increases. In this case, we have

E[T̂P ∣ N0 = n0] =
1

n

n

∑
i=1

E[I{ψ(Xi)=1,Yi=1} ∣ N0 = n0]

= P (ψ(X1) = 1, Y1 = 1 ∣ N0 = n0)

= P (ψ(X1) = 1 ∣ Y1 = 1)P (Y1 = 1 ∣ N0 = n0)

= sens × r ,

(2.39)

where we used the fact that the event {ψ(X1) = 1} is independent of N0 given Y1 and (2.32).

Notice that the equality P (ψ(X1) = 1 ∣ Y1 = 1) = sens depends on the fact that ψ is assumed to be
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constant, so that (X1, Y1) behaves as an independent test point (also because of a constant ψ, there

is no expectation around sens). Hence, T̂P is biased under separate sampling, with

Biassep(T̂P) = sens×r −TP = sens×(r − prev) . (2.40)

As in the case with the bias of p̂rev under separate sampling, the bias of T̂P cannot be reduced

with increasing sample size. The bias is in fact larger the more sensitive the classifier is. One can

derive similar results for F̂P, F̂N, and T̂N.

The recall estimator is approximately unbiased under separate sampling:

E[r̂ec ∣ N0 = n0] = E
⎡⎢⎢⎢⎢⎣

T̂N

T̂N + F̂P

RRRRRRRRRRR
N0 = n0

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

T̂P

p̂rev

RRRRRRRRRRR
N0 = n0

⎤⎥⎥⎥⎥⎦
= E[T̂P ∣ N0 = n0]

r

= sens × r
r

= sens = rec .

(2.41)

This is a consequence of recall’s not being a function of the prevalence. However, for the precision

estimator,

E[p̂rec ∣ N0 = n0] = E
⎡⎢⎢⎢⎢⎣

T̂P

T̂P + F̂P

RRRRRRRRRRR
N0 = n0

⎤⎥⎥⎥⎥⎦

≈ E[T̂P ∣ N0 = n0]
E[T̂P + F̂P ∣ N0 = n0]

= sens × r
sens × r + (1 − spec) × (1 − r)

≠ sens × prev

sens × prev + (1−spec) × (1−prev) = prec .

(2.42)

The precision estimator is thus biased under separate sampling unless the true prevalence matches

exactly the sample ratio r = n1/n; the bias is larger the further away prev is from r.

In case the true prevalence is known, e.g., from public health records and government databases,
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then we show below that the following estimator of the precision,

p̂recprev = ŝens × prev

ŝens × prev + (1−ŝpec) × (1−prev) , (2.43)

which is based on (2.18), is an asymptotically unbiased estimator of the precision under either

mixture or separate sampling. Asymptotic unbiasedness in the mixture sampling case can be shown

by repeating the steps in the analysis of the ordinary precision estimator. Under separate sampling,

we have
E[p̂recprev ∣ N0 = n0]

≈ E[ŝens ∣ N0] × prev

E[ŝens ∣ N0] × prev + (1−E[ŝpec ∣ N0]) × (1−prev)

= sens × prev

sens × prev + (1−spec) × (1−prev) = prec ,

(2.44)

since E[ŝens ∣ N0 = n0] = sens and E[ŝpec ∣ N0 = n0] = spec, as can be easily shown. Hence,

p̂recprev is an asymptotically unbiased estimator of the precision under either mixture or separate

sampling. The ordinary precision estimator p̂rec should not be used under separate sampling,

or large and irreducible bias may occur. On the other hand, in the impossibility of obtaining

information on the true prevalence value, then no meaningful estimator of the precision is possible.

2.4 Simulation Results and Discussion

In this section, we employ synthetic and real-world data to investigate the accuracy of the

analysis in the previous section and the performance of the precision estimator under separate

sampling. We present results for the bias of the usual and proposed precision estimators under

separate sampling, using different classification rules. We also showed corresponding results for

mixture sampling and the recall estimator.

2.4.1 Experiments with Synthetic Data

We performed a set of experiments employing synthetic data from a homoskedastic Gaussian

model, consisting of 3-dimensional class-conditional distributions N(µi,Σ), for i = 0,1, with

µ0 = (0,0,0), µ1 = (0,0, θ), where θ > 0 is a parameter governing the separation between the
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classes, and Σ = diag(σ2
1, σ

2
2, σ

2
3) (i.e., a matrix with σ2

1, σ
2
2, σ

2
3 on the diagonal and zeros off

diagonal). We consider two sample sizes, n = 30 and n = 200, so that we can compare the results

for small and large sample sizes. All experiments with separate sampling are performed with

sample size ratio r = n1

n ∈ [0.1,0.9]. The synthetic data parameters are summarized in Table 2.1.

For each value of r and prev, we repeat the following process 1,000 times, and average the

results to estimate expected values:

1. Generate sample data Sn of size n according to r (separate sampling) or prev (mixture

sampling);

2. Train a classifier using one of three classification rules [38]: Linear Discriminant Analysis

(LDA), 3-Nearest Neighbors (3NN), and a nonlinear Radial-Basis Function Support Vector

Machine (RBF-SVM).

3. Obtain recall and precision estimates. Compute both the usual precision estimate p̂rec and

the modified precision estimate p̂recprev.

4. Obtain accurate estimates of the true precision values by using a test set of size 10,000.

Parameter Value
Dimensionality/ feature size D = 3
Mean difference θ = 2
Covariance matrix σ2

1 = 0.5, σ2
2 = 0.5, σ2

3 = 1
Sample size n = 30,200
Sample size ratio r r = 0.1,0.3,0.5,0.7,0.9
True prevalence prev = 0.1,0.3,0.5,0.7,0.9

Table 2.1: Synthetic data parameters.

Fig. 2.2 displays the results of the experiment. Notice that there is only one curve for the

traditional precision estimator p̂rec because it does not employ the actual value of prev. The
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values of p̂rec and p̂recprev coincide when prev = r, as expected. However, as the values of prev

and r become different, their values become quite different, and p̂recprev displays much less bias,

i.e., it tracks the true precision much more closely, than p̂rec. At the small sample size n = 30,

both estimators display bias, which is however much larger overall for p̂rec than for p̂recprev. At

the large sample size n = 200, the bias of p̂recprev nearly disappears for LDA and is reduced for the

other classification rules. We note that, among these classification rules, LDA is the only one with

a finite VC dimension; the fact that the bias in this case shrinks to zero as sample size increases

confirms the results of the theoretical analysis in the previous section (convergence is quite fast,

and quite evident at n = 200, due to the fact that the synthetic data is homoskedastic Gaussian).

Notice also that the bias of p̂rec cannot be reduced by increasing sample size, which is also in

agreement with the theoretical analysis.

To examine more closely the effect of the difference between prev and r on precision estima-

tion, Fig. 2.3 plots bias estimates for p̂rec and p̂recprev as a function of the absolute difference

between prev and r, using the same data employed in Figure 2.2. It can be seen that the bias is al-

ways positive, indicating optimistic precision estimates. In nearly all cases, p̂recprev has a smaller

bias than p̂rec, and when prev is far from r, the difference in bias becomes quite large.

2.4.2 Case Studies with Real Data

Here we further investigate the bias of precision estimation under separate sampling using real

data from three published studies:

• Leukemia Study. This publication [39] used a tumor microarray dataset containing two

types of human acute leukemia: acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (ALL). Gene expression measurements were taken from 15,154 genes from 72

tissue specimens, 47 of which of ALL type (class 0) and 25 of AML type (class 1), so that

r = 0.347. The estimator p̂recprev was computed using the value prev = 0.222, which is the

incidence rate of ALL over AML in the U.S. population [40].
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Figure 2.2: Average true precision (solid curves), average usual precision estimate p̂rec (dash-
diamond curves), and average modified precision estimate p̂recprev (dashed curves), for LDA,
3NN and RBF-SVM, with sample sizes n = 30 and n = 200, and different prevalence values, as a
function of the sample size ratio.
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Figure 2.2 Continued

Figure 2.3: Estimated bias of the usual precision estimator p̂rec (dotted curves), and the modified
precision estimator p̂recprev (dashed curves) for LDA, 3NN and RBF-SVM, with sample sizes
n = 30 and n = 200, and different prevalence values, as a function of the absolute difference
between true prevalence and sample size ratio.
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Figure 2.4: Precision under mixture sampling, as a function of prev for different classification rules
and different sample size using synthetic data. Average true precision values (solid blue curve) and
average precision estimates p̂rec (dashed orange curve) and p̂recnew (dashed purple curve)
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Figure 2.5: Recall under mixture and separate sampling, as a function of r or prev for differ-
ent classification rules and different sample size using synthetic data. Average true recall values
(solid curves) and average recall estimates (dashed curves). Mixture sampling (red) and separate
sampling (green).
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• Breast Cancer Study. The second publication [41] employed the Wisconsin Breast Cancer

(Original) Dataset from the University of California-Irvine (UCI) Machine Learning Repos-

itory [42, 43], which has been used by several groups to investigate breast cancer classifi-

cation methods [44, 45]. The dataset consists of 699 instances, 458 and 241 of which are

from benign and malignant tumors, respectively, and 10 features corresponding to cytolog-

ical characteristics of breast fine-needle aspirates. According to [46], fewer than 20% of

breast lumps are malignant, therefore we used used prev = 0.2 in the computation of the

modified precision estimator p̂recprev.

• Liver Disease Study. The final publication [47] employed a liver disease dataset, also from

the UCI Machine Learning Repository. This data set contains 5 blood test attributes and

345 records, of which 145 belong to individuals with liver disease (class 0) and 200 mea-

surements are taken from healthy individuals (class 1), so that r = 0.42. This dataset was

donated to UCI in 1990, when the prevalence rate for chronic liver disease in the US was

prev = 0.1178 [48], which we use as the prevalence in the computation of the p̂recprev esti-

mator.

All three studies used libraries from the Weka machine learning environment [49] to compute

usual precision estimates on separately-sampled data, while ignoring true prevalences, for differ-

ent classification rules: Naive Bayes (NB) [50], C4.5 decision tree [51], Back-Propagated Neural

Networks, 3NN and Linear SVM [38]. We reproduced the analysis in all three papers using Weka,

obtaining almost exactly the same p̂rec estimates reported in those papers, and added for compar-

ison the p̂recprev using the prevalence values described above. The results, displayed in Fig. 2.6,

show that, without exception, the usual precision estimates p̂rec are larger than the more accurate

p̂recprev estimates, in agreement with the previously observed fact that p̂rec displays a larger (op-

timistic) bias. The bias is particularly large in the case of the liver disease study, reflecting the fact

that among the three data sets, this is the one where the value of prev and r differ the most.
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Figure 2.6: Precision estimates for different classification rules using separately-sampled leukemia,
breast cancer, and liver disease data. The white bars depict the usual estimated precision estimates,
while the shaded bars are for the precision estimates using the true case prevalences.
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3. LINEAR STATE-SPACE-MODELS TO NONSTATIONARY DISCRIMINANT

ANALYSIS*

3.1 Linear Drift Model

Let us consider a classification problem, in which j = {0,1, ..., c − 1} denote the set of all

classes. Assume Πj
k = fk(x∣j) is the class conditional distribution of class j at time step k. In non-

stationary condition, the class conditional distributions are function of time. Using the Gaussian

assumption for class conditional distributions, we have: fk(x∣j) ∼ N (µj
k, P

j
k). Considering the

linear model for evolution of the class conditional distributions, we have:

µj
k = Ajµj

k−1 + wj
k , (3.1)

for k = 1,2, ...; where wj
kis independent zero-mean Gaussian noise processes with known covari-

ances matrices of Qj , and Aj is state transition matrices for class j.

In most real-world problems, only noisy data from the class conditional distributions of the

system is available for decision making task. This can be due to various sources of errors that

might affect process of acquiring data. In this project, the data are assumed to be generated through

the following measurement process:

xjk = Cjµj
k + vjk , (3.2)

where vjk ∼ N (0,Rj), and Cj denote the dynamics of measurement process for class j.

In this project, the ultimate goal is to developed the Linear Discriminant Analysis (LDA) for

nonstationary condition given only c sets of measurements, where Sj
Nj
k

= {Xj
1, ...,X

j

Nj
k

} denotes

N j
k measurements at time step k from equation 3.1 and 3.2 . Toward this, one needs to accurately

*Parts of this section are reprinted with permission from “Nonstationary linear discriminant analysis” by S. Xie, M.
Imani, E. R. Dougherty and U. M. Braga-Neto, 2017 51st Asilomar Conference on Signals, Systems, and Computers,
2017, pp. 161-165, doi: 10.1109/ACSSC.2017.8335158.

33



estimate the class conditional distributions. A conventional approach for estimating the mean

vectors and covariance matrices of the class conditional distributions is to use the classical Kalman

smoother (KS) [31]. Two cases are considered in this project:

• Systems with Fully-Known Dynamics: In this case, all matrices in equations (3.1) and (3.2)

are assumed to be known, and the Kalman Smoother algorithm can be directly applied to

obtain estimates of the class means {µj
k;k = 1, ..., T} required for the proposed NSLDA

classifier. A modified version of Kalman Smoother with multiple measurements at one time

is discussed in Section 3.2.

• Systems with Partially-Known Dynamics: In this case, parameters in equations (3.1) and (3.2)

are only partially unknown. In this case, unknown parameters must be learned from data, si-

multaneously with the class mean themselves. Two versions of modified Kalman Smoother

have been proposed in Section 3.3 for this purpose, where parameters such as initial states

µj
1, matrices Aj , Qj , and the corresponding time labels of available measurements might be

unknown.

3.2 Kalman Smoother

For class label j ∈ {0,1, ..., c − 1}, the state model and measurement processes are

µj
k = Ajµ

j
k−1 +Bjwj

k ,

xjk = Cjµj
k +Djvjk ,

(3.3)

where wj
k and vjk are i.i.d. Gaussian white noise at time k for class label j, with wj

k ∼ N (0,Qj),

and vjk ∼ N (0,Rj). For the i.i.d. sample Sk at time k, let the j -label points be written in vector

form as xjk = (xjk,1,x
j
k,2, ...,x

j

k,Nj
k

), where N j
k denotes the number of measurements labeled j at

time k. The goal is to use these available measurements for each class to optimally estimate the

means of classes through the fixed time interval.

Since data are assumed to be available off-line, the state estimation is referred to as smoother.

The optimal minimum mean-square error smoother for the linear-Gaussian state space model is
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Kalman Smoother [28]. Here, multiple measurements have been observed at each time point, as

oppose to the regular Kalman Smoother which is developed for state estimation of systems with

single observation at each time point. Here, the modified version of the Kalman Smoother capable

of processing multiple measurements at each time step has been used. As most of smoothing tech-

niques, the method has two main processes, forward and backward, as described in the following

paragraphs.

In the forward Process, assuming known initialized states µj

1,nj1
= µj

1 and the corresponding er-

ror covariance matrix P j

1,nj1
= P i

1, two well-known prediction and update steps should be followed.

However, due to the existence of multiple measurements at each time step, one prediction is

followed by several update steps to estimate the mean and error covariance matrix of each class at

each time point. The process is summarized as follows:

Forward Process:

• Initialization:

µ̂j

1,nj1
= µj

1, P
j

1,nj1
= P j

0 .

• Prediction Step: for k = 2, ..., T ,

µ̂j
k,0 = AjT µ̂j

k−1,nj
k−1
,

P j
k,0 = AjP j

k−1,nj
k−1
Aj

T + BjQjBjT .

• Update Step: for k = 1, ..., T , and for i = 1, ...,N j
k , do:

Kj
k,i = P

j
k,i−1C

jT (CjP j
k,i−1C

jT + DjRjDjT )−1 ,

µ̂j
k,i = µ̂j

k,i−1 + K
j
k,i (x

j
k,i − Cjµ̂j

k,i−1) ,

P j
k,i = (Id − Kj

k,iC
j) P j

k,i−1 ,

35



where Kj
k,i is the Kalman Gain, which is a function of the relative certainty of the measurements

and the forward filter estimate. As time increases, the prediction error covariances Pk,Nj
k

should

converge to steady-state values. The backward process starts with the final filtering estimate, which

is extrapolated backwards in time as follows [28]:

Backward Process:

• Initialization: for k = T − 1, ...,1, do:

µ̂j
T ∣T = µ̂j

T,Nj
T

, P j
T ∣T = P j

T,Nj
T

.

• Backward Step:

Ljk = P j

k,Nj
k

Aj
T (P j

k+1,0)
−1
,

µ̂j
k∣T = µ̂j

k,Nj
k

+ Ljk (µ̂
j
k+1∣T − µ̂j

k+1,0) ,

P j
k∣T = P j

k,Nj
k

+ Ljk (P
j
k+1∣T − P j

k+1,0) L
j
k

T
,

where Ljk is the Smoother Gain, which does not depend on the backward estimate. Its form reveals

just a correction of the forward estimate using only the values computed in the forward process. In

addition, the smoothed estimate µ̂j
k∣T does not depend on the smoothed covariance P j

k∣T . To obtain

the smoothed estimate, only the forward state estimate and the smoothed gain have to be stored.

3.3 Adaptive Filter for Systems with Unknown Dynamics

When the parameters in equations (3.1) and (3.2) are only partially unknown, the Kalman

Smoother , which is developed for state estimation with known linear-Gaussian state space equa-

tions, must be modified by performing an adaptive filter for simultaneous identification and state

estimation of linear-Gaussian state space model. For example, when parameters initial states µj
1,

matrix Aj and state noise covariance Qj in eq (3.1) are unknown, we use the expectation maxi-
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mization (EM) [32, 52] in combination with Kalman Smoother to estimate unknown parameters,

simultaneously with the class mean themselves. However, in the case where corresponding time

labels of available measurements are missing, we use Gaussian mixture model (GMM) [53] com-

bined with Kalman Smoother to estimate time label and other unknown parameters.

3.3.1 EM-based Kalman Smoother

Ordinary maximum likelihood estimation attempts to find the value of the unknown parameter θ

that maximizes the “incomplete" log-likelihood function. The EM algorithm considers instead the

“complete" log-likelihood function, which includes the unknown state sequence, the assumption

being that maximizing the complete log-likelihood is easier than maximizing the incomplete one.

For the jth class, the EM algorithm obtains a sequence of parameter estimates θjn. Given the

current estimates θjn, the algorithm obtain the next estimate θjn+1 in the sequence by computing

(E-step) the function as:

Q(θjn, θ̂jn) = E [logp (µj
1∶T ,x

j
1∶T ∣ θj) ∣ xj1∶T , θ̂jn] , (3.4)

and then maximizing (M-step) this function:

θ̂jn+1 = argmax
θj

Q(θj, θ̂jn) . (3.5)

Using (3.1) and (3.2), the joint log probability logp (µj
1∶T ,x

j
1∶T ) in (3.4) is a sum of quadratic

terms, and can be written as:

logp (µj
1∶T ,x

j
1∶T ) ∝ −

T

∑
k=1

(1

2
[xjk −Cjµk]

T
Rj−1
k [xjk −Cjµk]) −

T

2
log∣Rj ∣

−
T

∑
k=2

(1

2
[µj

k −Ajµk−1]
T
Qj−1
k [µj

k −Ajµk−1]) −
T − 1

2
log∣Qj ∣

− 1

2
[µj

1 −π1]
T
V j−1

1 [µj
1 −π1] −

1

2
log∣V j

1 ∣

(3.6)
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where µ̂j
k∣T and P j

k∣T can be obtained from the Kalman smoother tuned to parameter θ̂jn, and P j
k,k−1∣T

is defined as:

Pk−1,k−2∣T = Ljk−1 (Pk,k−1∣T −AjP j
k−1∣nk−1

)LjTk−2 + P
j
k−1∣nk−1

Lj
T

k−2 , (3.7)

which can be computed backward with terminal condition

PT−1,T−2∣T = (Id −Kj
T ∣nT

Cj)AjPT−1∣NT−1 . (3.8)

The parameters of this system are Cj (output matrix), Rj (output noise covariance), Aj (state

dynamics matrix), Qj (state noise covariance), πj
1 (initial state mean), V j

1 (initial state covariance).

It can be shown that the E-Step computation in equation (3.5) can be performed by setting the

derivative of Q(θj, θ̂jn) to zero, which leads in to closed-form solutions:

• Output matrix:

∂Q(θj, θ̂jn)
∂Cj

= −
T

∑
k=1

Rj−1xjkµ̂
jT

k∣T +
T

∑
k=1

Rj−1Cj (P j
k∣T + µ̂j

k∣T µ̂
jT

k∣T) = 0

Ĉj
n+1 = (

T

∑
k=1

xjkµ̂
jT

k∣T)(
T

∑
k=1

(P j
k∣T + µ̂j

k∣T µ̂
jT

k∣T))
−1

. (3.9)

• Output noise covariance:

∂Q(θj, θ̂jn)
∂Rj−1

= T
2
R −

T

∑
k=1

(1

2
xjkx

jT

k −Cjµ̂j
k∣Tx

jT

k + 1

2
C (P j

k∣T + µ̂j
k∣T µ̂

jT

k∣T)C
T) = 0

R̂j
n+1 =

1

T

T

∑
k=1

(xjkx
jT

k − Ĉj
n+1µ̂

j
k∣Tx

jT

k ) . (3.10)

38



• State dynamics matrix:

∂Q(θj, θ̂jn)
∂Aj

= −
T

∑
k=2

Qj−1 (P j
k,k−1∣T + µ̂j

k∣T µ̂
jT

k−1∣T) +
T

∑
k=2

Qj−1Aj (P j
k−1∣T + µ̂j

k−1∣T µ̂
jT

k−1∣T) = 0

Âjn+1 =(
T

∑
k=2

(P j
k,k−1∣T + µ̂j

k∣T µ̂
jT

k−1∣T))(
T

∑
k=2

(P j
k−1∣T + µ̂j

k−1∣T µ̂
jT

k−1∣T))
−1

. (3.11)

• State noise covariance:

∂Q(θj, θ̂jn)
∂Qj−1 = T − 1

2
Q − 1

2
(
T

∑
k=2

(P j
k∣T + µ̂j

k∣T µ̂
jT

k∣T) − Â
j
n+1

T

∑
k=1

(P j
k,k−1∣T + µ̂j

k∣T µ̂
jT

k−1∣T)
T
) = 0

Q̂j
n+1 =

1

T − 1
(
T

∑
k=2

(P j
k∣T + µ̂j

k∣T µ̂
jT

k∣T) − Â
j
n+1

T

∑
k=1

(P j
k,k−1∣T + µ̂j

k∣T µ̂
jT

k−1∣T)
T
) . (3.12)

• Initial state mean:

∂Q(θj, θ̂jn)
∂πj

1

= (µ̂j
1 −π1)V j−1

1 = 0

π̂1
j
n+1 = µ̂j

1 . (3.13)

• Initial state covariance:

∂Q(θj, θ̂jn)
∂V j−1

1

= 1

2
V j

1 −
1

2
((P j

1∣T + µ̂j
1∣T µ̂

jT

1∣T) − µ̂j
1π

jT

1 −πj
1µ̂

jT

1 + µ̂j
1µ̂

jT
1 ) = 0

V̂1

j

n+1 = (P j
1∣T + µ̂j

1∣T µ̂
jT

1∣T) − µ̂j
1µ̂

jT
1 . (3.14)

The process continues until the maximum absolute difference between the estimated param-

eters in two consecutive steps gets smaller than the prespecified value ε. After stopping the EM

algorithm for both classes, the Kalman Smoother introduced in previous section can be run tuned

to the inferred θj parameters to estimate the means of classes at different time steps.
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3.3.2 GMM-based Kalman Smoother

In this subsection, a way of simultaneous estimation of measurement time-labels and param-

eters of the class conditional distributions are provided. Let θj be the set of unknown parameters

of class j, where θj might contain the initial mean or covariance matrix, dynamics of state or

measurement process or even the statistics of noises. This parameter vector is assumed to take its

values from the space Θj . Letting p(θj) be the prior information about the parameter vector θj , the

maximum a posteriori estimate (MAP) of joint labels and parameters can be computed as follows:

(θ∗,{t∗,j1 , ..., t∗,jn }) = argmin
θ̂∈Θj ,{t1,...,tn}∈(N+)n

p(θ̂,{t1, ..., tn} ∣ Sjn) (3.15)

where N+ = {1,2, ...}. Finding solution for minimization in (3.15) can be so challenging.

In this case, the combination of the well-known mixture Gaussian model (GMM) and Kalman

filter (KF) are used for joint estimation of time labels and parameters in equation (3.15). Let θ̂ be

a vector containing parameters of the class conditional distribution. Assuming the time labels are

independent of measurements, the joint distribution of parameters and time labels can be approxi-

mated as:

{tθ̂,j1 , ..., tθ̂,jn } = argmin
{t1,...,tn}∈(N+)n

P ({t1, ..., tn} ∣ θ̂) . (3.16)

The minimization in equation (3.16) can be computed efficiently using the Gaussian mixture

model(GMM) [53]. Using the linear structure for class conditional distribution, it is easy to show

that the projection of the initial mean and covariance matrix of the class conditional distribution

represented by parameter vector θ̂ will result in the following means and covariance matrices under

the GMM clustering algorithm:

µGMM,j

k,θ̂
= Aj

θ̂
µGMM,j

k−1,θ̂
,

ΣGMM,j

k,θ̂
= Aj

θ̂
ΣGMM,j

k−1,θ̂
(Aj

θ̂
)T + Qj

θ̂
+ Rj

θ̂
,

(3.17)
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for k = 1,2, ...; whereN(µGMM,j

k,θ̂
,ΣGMM,j

k,θ̂
) specifies the Gaussian distribution over the kth cluster,

Aj
θ̂
,Qj

θ̂
,Rj

θ̂
are parameters of state space model represented by a parameter vector θ̂, and µGMM,j

0,θ̂
=

µj

0,θ̂
,ΣGMM,j

0,θ̂
= P j

0,θ̂
. Since, the GMM is the soft clustering technique, we assign each measurement

to a cluster with the highest probability. The time assigned to Xj ∈ Sjn is as follows:

tj,θ̂i = arg max
k=1,2,...

N(Xj;µ
GMM,j

k,θ̂
,ΣGMM,j

k,θ̂
) (3.18)

for i = 1, ..., n; where N(x;µ,Σ) specifies the probability of sample x in Gaussian distribution

with mean µ and covariance matrix Σ.

Now, one needs to compute the posterior probability of the parameter vector θ̂ under the esti-

mated time labels by the GMM method. This can be written as:

p(θ̂ ∣ {tθ̂1, ..., tθ̂n}, Sjn) ∝ p(θj = θ̂)p(Sjn ∣ θ̂,{tθ̂1, ..., tθ̂n}), (3.19)

The second term in the right hand side of above equation specifies the likelihood of the measure-

ment set given the estimated parameter vector θ̂ and the assigned labels. It should be noted that

there might be more than one sample at any given time point. This suggests that the prediction step

of Kalman filter should be followed by several update steps to estimate the likelihood function of

model represented by the parameter vector θ̂.

There are several ways, such as Markov Chain Monte Carlo (MCMC) methods, for finding

the parameter θ̂ ∈ Θ which maximizes the posterior distribution in (3.19) [32, 34]. Without loss

of generality, letting Θ = {θ̂1, ..., θ̂1} be the set of estimated parameters, the maximum aposterior

estimate of θ and time labels can be approximated as:

θ̂∗,j = arg max
θ̂∈Θ

log p(θj = θ̂) + log p(Sjn ∣ θ̂,{tθ̂,j1 , ..., tθ̂,jn }). (3.20)

Notice that the second term in the right hand side of above equation specifies the log-likelihood of

the Kalman filter tuned to vector θ̂ obtained based on the assigned time labels {tθ̂,j1 , ..., tθ̂,jn }. For
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more information see [32].

After estimating the best set of parameters and their associated time labels, one need to estimate

the means and covariance matrix of class conditional distributions at different time points. This

can be done by performing the backward process of Kalman smoother (KS) based on the results

computed by the KF tuned to the parameter vector θ̂∗,j and estimated time labels {tθ̂,j1 , ..., tθ̂,jn }.

The output of the KS specifies the mean vectors and covariance matrices of class conditional

distributions over time.

3.4 EM-based and GMM-based Nonstationary Linear Discriminant Analysis

After computation of the class conditional distributions at various time steps, one can use non-

stationary linear discriminant analysis for classification at each time step. Letting Π0
k ∼ N (µ0

k∣T,θ̂∗
, P 0

k∣T,θ̂∗
)

and Π1
k ∼ N (µ1

k∣T,θ̂∗
, P 1

k∣T,θ̂∗
) be the class conditional distributions at time step k, where µi

k∣T,θ̂∗
and

P i
k∣T,θ̂∗

are the mean vector and covariance matrix computed by the KS at time step k tuned to θ̂∗,i.

The optimal quadratic discriminant is [29]

Dk (x) = xT Ekx + F T
k x +Gk , (3.21)

where
Ek = −

1

2
((Σ1

k∣T +R1)−1 − (Σ0
k∣T +R0)−1)

Fk = (Σ1
k∣T +R1)−1µ̂1

k∣T − (Σ0
k∣T +R0)−1µ̂0

k∣T

Gk = −
1

2
(µ̂1

k∣T )T (Σ1
k∣T +R1)−1µ̂1

k∣T

+ 1

2
(µ̂0)T (Σ0

k∣T +R0)−1(µ̂0
k∣T )T −

1

2
log

∣Σ1
k∣T +R1∣

∣Σ0
k∣T +R0∣ ,

(3.22)

with hyper-quadratic optimal decision boundary Dk = P (Yk = 1) /P (Yk = 0), for k = 1,2, ....

The designed Nonstationary Linear Discriminant Analysis (NSLDA) classifier is defined by
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substituting the estimates for the unknown parameters in the equation (3.22):

ψk (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, Dk(x) ≤ 0

0, otherwise
, (3.23)

The whole process of the proposed EM-based and GMM-based Nonstationary Linear Discrim-

inant Analysis is summarized in Algorithm 1 and 2, respectively.

Algorithm 1 EM-based Linear Non-Stationary Discriminant Analysis
For j = {0,1, ...}, do:

- EM process:

- Initial guess: θ̂j0.

- n = 0.

Repeat

- E-Step: Run Kalman smoother tuned to θ̂jn,

- M-Step: Update estimation of θj using (3.9) - (3.14)

- n = n + 1.

Until (max∣θ̂jn − θ̂in−1∣) < ε

- Set θ̂j = θ̂jn.

- Run Kalman smoother tuned to θ̂i and obtain µ̂ik and P jk .

EndFor
- NSLDA: plug µ̂jk and P jk into (3.23), to obtain the classifier ψk (x) for k = 1, ...T .
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Algorithm 2 GMM-based Non-Stationary Linear Discriminant Analysis

1: for θ̂ ∈ {θ̂1, ..., θ̂M} do

2: for i = 0,1 do

3: µGMM,i

0,θ̂
= µ0,θ̂, ΣGMM,i

0,θ̂
= P0,θ̂

4: for k = 1,2, ..., n do

5: µGMM,i

k,θ̂
= Ai

θ̂
µGMM,i

k−1,θ̂
.

6: ΣGMM,i

k,θ̂
= Ai

θ̂
ΣGMM,i

k−1,θ̂
(Ai

θ̂
)T +Qi

θ̂
+Ri

θ̂
.

7: end for

8: ti,θ̂j =arg max
k=1,2,...,n

N(Xj ;µ
GMM,i

k,θ̂
,ΣGMM,i

k,θ̂
), j = 1,2, ..., n

9: end for

10: T θ̂ = max(t0,θ̂1 , ..., t0,θ̂1 , t1,θ̂1 , ..., t1,θ̂1 )

11: Run Kalman Filter tuned to θ̂
{µ̂i

k∣k,θ̂, P
i
k∣k,θ̂}

T θ̂

k=0, L
i(θ̂)←KF(θ̂,{ti,θ̂1 , ..., ti,θ̂n }, S

i
n), i = 0,1

12: end for

13: Time Label and Parameter Estimation, for i = 0,1:

θ̂∗,i = arg max
θ̂∈{θ̂1,...,θ̂M}

log p(θi = θ̂) +Li(θ̂)

14: T = T θ̂
∗
.

15: Run a Kalman Smoother (KS) tuned to θ̂∗, for i = 0,1:

{µ̂i
k∣T,θ̂, P

i
k∣T,θ̂}

T
k=0 ← KS(θ̂∗,i,{ti,θ̂

∗,i
1 , ..., ti,θ̂

∗,i
n }, Sin).

16: NSLDA:

ψk (x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, (x −
µ̂0
k∣T+µ̂

1
k∣T

2 )

T

Σ−1
k (µ̂

0
k∣T − µ̂

1
k∣T ) ≤ 0

0, otherwise

3.5 Simulation Results and Discussion

To study the performance of our proposed state-space models to nonstationary discriminant

analysis, we designed several numeric experiments in linear drift models. All simulation results

compare the error rates of the “naive” discriminant analysis that did not consider population drift
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between our proposed nonstationary discriminant analysis.

3.5.1 Systems with Fully-Known Dynamics

When all matrices in both state and measurement models of two classes are assumed to be

known, the parameters settings are shown in Table 3.1. Fig. 3.1 shows the average error for naive

LDA and NSLDA for different values of T . We can see that both classification rules perform better

as the number of time points increases, but NSLDA overall performs much better than naive LDA.

Parameters Values

Total time points T = 3, 4, 5, ..., 18, 19, 20

Sample size n = 10

Dimensionality d = 2

Initial means µ0
1 =

⎡
⎢
⎢
⎢
⎢
⎣

1

1

⎤
⎥
⎥
⎥
⎥
⎦

, µ1
1 =

⎡
⎢
⎢
⎢
⎢
⎣

1.5

1.5

⎤
⎥
⎥
⎥
⎥
⎦

Initial covariances P 0
1 = 0.5Id, P

1
1 = 0.5Id

Evolution matrix

A0 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0.1

0.1 1

⎤
⎥
⎥
⎥
⎥
⎦

,A1 =

⎡
⎢
⎢
⎢
⎢
⎣

0.99 0

0 0.99

⎤
⎥
⎥
⎥
⎥
⎦

C0 = Id,C
1 = Id,B

0 = Id, B1 = Id,D
0 = Id, D1 = Id

Noise Q0 = 0.1Id,Q
1 = 0.1Id, R1 = 0.2Id,R

1 = 0.2Id

Table 3.1: Parameter settings for systems with fully-known dynamics

3.5.2 Systems with Partially-Known Dynamics

In this subsection, we showed two case studies for linear-drift numerical experiments, where

the parameter settings in Eq (3.1) and Eq (3.2) are shown in Table 3.2.

• Case One: initial states µ0, matrices A in Eq (3.1) are unknown.

• Case Two: initial states µ0, matrices A in Eq (3.1) and corresponding time labels of available

measurements in Eq (3.2) are unknown.
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Figure 3.1: Average errors for naive LDA and NSLDA for a fully-known system.

To estimate the unknown parameters and states, for the first case, we used the EM-based

Kalman Smoother (showed in Section 3.3.1); while for the second case, we applied the GMM-

based Kalman Smoother (showed in Section 3.3.2). To examine the performance of our modified

Kalman Smoother, we defined the Mean Square Error (MSE) at time k as the sum of diagonal

elements of the error covariance matrix E [(µk − µ̂k∣T,θ̂⋆)
T
× (µk − µ̂k∣T,θ̂⋆)].

Last, we plug the estimated states from the modified Kalman Smoother into our proposed

NSLDA (showed in Section 3.4), and obtained the average error estimates, and compare the

“naive” LDA using pooled sample means and covariances of measurements. For above steps,

both NSLDA and naive LDA, 1000 Monte Carlo simulated data sets are employed.

3.5.2.1 Case One Discussion

While initial states µc
0, matricesAc, and in model (3.1) are unknown, as shown in the Algorithm

1, we initialize values of these unknown parameters below in Table 3.3:
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Parameters Value

Total time points T = 4, 6, 8, 10, 12

Sample size n = 20

Dimensionality d = 2

Initial means µ0
0 =

⎡⎢⎢⎢⎢⎣

1.2

0.5

⎤⎥⎥⎥⎥⎦
, µ1

0 =
⎡⎢⎢⎢⎢⎣

0.2

1.5

⎤⎥⎥⎥⎥⎦
Initial covariances P 0

0 = 0.1Id, P 1
0 = 0.1Id

Evolution
matrix

A0 =
⎡⎢⎢⎢⎢⎣

1.3 0.2

0.9 0.6

⎤⎥⎥⎥⎥⎦
,A1 =

⎡⎢⎢⎢⎢⎣

0.9 0.8

1 0.5

⎤⎥⎥⎥⎥⎦
C0 = Id,C1 = Id,B0 = Id,
B1 = Id,D0 = Id, D1 = Id

Noise
Q0 = 0.1Id,Q1 = 0.1Id,

R1 = 0.2Id,R1 = 0.2Id

Table 3.2: Parameter settings for case in 3.5.2

Parameters Value

Initial means µ0
0,guess =

⎡⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎦
, µ1

0,guess =
⎡⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎦

Matrix A
A0

guess =
⎡⎢⎢⎢⎢⎣

1 1.5

0.8 1.2

⎤⎥⎥⎥⎥⎦
,A1

guess =
⎡⎢⎢⎢⎢⎣

0.8 1.3

0.5 2

⎤⎥⎥⎥⎥⎦

Table 3.3: Initial parameter settings for case in 3.5.2

By repeating the E-steps and M-steps in the Algorithm 1, the unknown parameters got con-

verged. In the meanwhile, estimated states using these converged parameters are very close to true

states.
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3.5.2.2 Case Two Discussion

In this numerical experiment, in contrast to Case One, we assume state model noise covariance

Q is known, but time labels of measurements are unknown. Therefore to estimate time labels,

unknown parameters initial states µc
0, matrices Ac, as well as states in the state space model,

GMM-based Kalman Smoother was applied. As shown in the Algorithm 2, we also initialize

values of these unknown parameters in Table 3.3, but have Qc known. It turns out that the time

labels can be estimated correctly by our algorithm, and the estimated states using the estimated

parameters and time labels are very close to true states.

The last step for these two case studies is nonstationary discriminant analysis. The estimated

states from our modified Kalman Smoother provided the information of conditional population of

the dataset, therefore can be used in our proposed NSLDA in Section 3.4. On contrast, the “naive”

LDA use estimates the means by pooling all the data. Fig. 3.2 and 3.3 show the average errors

of different classifiers for different values of T . From the figure of error estimate, nonstationary

discriminant analysis classifiers performs better than naive LDA and SVM. The NSQDA perform

better when the distributions overlap in complicated ways. As time goes, the distributions are more

linearly separable, then you won’t see much difference between these two.
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Figure 3.2: Average classification errors for linear drift numeric experiment in Section 3.5.2 Case
One. The dash line marked by ▲ represent the “naive” LDA error rate and dash line marked by ●
shows the “naive” support vector machine error rate. Two solid lines are for nonstationary classifier
results, where ∎ represents EM-Based NSLDA ; ☀ presents EM-Based NSQDA.
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Figure 3.3: Average classification errors for linear drift numeric experiment in Section 3.5.2 Case
Two. The dash line marked by ▲ represent the “naive” LDA error rate and dash line marked by ●
shows the “naive” support vector machine error rate. Two solid lines are for nonstationary classifier
results, where ∎ represents GMM-Based NSLDA ; ☀ presents GMM-Based NSQDA.
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4. NONLINEAR STATE SPACE MODELS TO NONSTATIONARY

DISCRIMINANT ANALYSIS

4.1 Nonlinear Drift Model

In the previous two chapters, the restrictive assumptions such as linearity of the state-space

model or Gaussianity of the noise process, are omitted by modeling the evolution of the class

conditional distributions using general state-space models. Training classifiers at any given time

point using the available data from various classes might not be practical or lead to poor classifi-

cation performance. This is due to factors such as data limitation, missing data, or large noise in

the data. To overcome these difficulties, we propose using sequential Monte-Carlo (SMC) tech-

niques [36, 37] for efficient estimation of the class-conditional distributions via a finite set of par-

ticles. This is achieved by the use of a particle smoother technique [54], modified here to handle

multiple data at each time point. Upon representing the underlying process of the class-conditional

distributions, any discriminant analysis classifiers can be employed for decision making using the

sets of particles at different time points. We need to define the nonlinear drifts in class-conditional

distributions.

In a multiclass nonstationary problem with c classes and T time points, we assume that the

centroid of each class is a latent variable that evolves in time according to the following nonlinear

model:

zjk = f jk (z
j
k−1,w

j
k) , (4.1)

for j = 0,1, . . . , c − 1 and k = 1, . . . , T , where f jk is an arbitrary nonlinear function governing the

evolution of class j and wj
k defines an i.i.d. transition noise process, which is independent of the

zjk process. The initial states zj0 are generated from given starting “prior” distributions.

For notational simplicity, we partition the training data into c × T subsamples

Sjk = {xjk,1, . . . ,x
j

k,nj
k

}, (4.2)
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for j = 0, . . . , c−1 and k = 1, . . . , T , where njk are the sample sizes for each class j at time k, adding

up to the total sample size n. Nothing is assumed in this paper about the sampling mechanism;

e.g., for fixed k, njk could be a random variable or a fixed experimental design parameter (future

work will examine the sampling issue). The data are assumed to satisfy the following general

observation model:

xjk,i = hjk(z
j
k,v

j
k,i) , (4.3)

for i = 0,1, . . . , njk, j = 0,1, . . . , c − 1 and k = 1, . . . , T , where hjk is an arbitrary nonlinear function

mapping the latent variables to the observable data and vjk,i defines an i.i.d. observation noise

process, which is independent of the zjk process.

4.2 Particle Smoother for Nonstationary Classification Model Inference

Our ultimate goal is to developed a framework for nonstationary classification based on the

model described in the previous section (for short, the NCS model). For that purpose, the primary

task is to estimate the latent variables zjk, but it may also be necessary to estimate the noise parame-

ters. In this paper, we will assume that all noise parameters are known and focus on the estimation

of the latent variables given the data. In the next section, we build a classification rule using the

results of this section.

Several inference methods exist in the literature that can handle the nonlinearity and non-

Gaussianity of the NSC model [37, 55]. In this paper, we propose a method that is based on

the particle smoother in [54], with a suitable modification to handle multiple independent data at

each time point. For each class, the smoother consists of forward and backward processes. In

the forward process a particle filter algorithm is run to compute the forward particles and weights

characterizing the filtering distributions. The approximate smoothed distribution is computed by

running a backward process for correcting the filtering weights. We describe each of these steps

next.
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4.2.1 Forward Process

The auxiliary particle filter (APF) [56] is a sequential Monte-Carlo (SMC) method, which

efficiently predicts the location of “particles” with high probability at time step k using information

up to time step k − 1 via an auxiliary variable ζk. Let

Sj1∶k = Sj1 ∪⋯ ∪ Sj1 (4.4)

be the the data available for class j up to time k. The method first draws a sample (the “particles”)

from the joint distribution p(zjk, ζk ∣ Sj1∶k), then drops the auxiliary variable to obtain particles from

p(zjk ∣ Sj1∶k), for k = 1, . . . , T .

Let {z̃jk−1,i,w
j
k−1,i}Ni=1 be N particles and their associated weights at time k − 1, which approx-

imate p(zjk−1 ∣ Sj1∶k−1). The process consists of two stages. The first stage weights are computed

as:

vjk,i = p(S
j
k ∣ νjk,i)w

j
k−1,i , (4.5)

for i = 1, . . . ,N ; where νjk,i is a characteristic of zjk given z̃jk−1,i, which can be the mean, the mode

or even a point sampled from p(zjk ∣ z̃jk−1,i) [56]. The auxiliary variables {ζk,i}Ni=1 are sampled from

the weights:

{ζk,i}Ni=1 ∼ Cat({ṽjk,i}Ni=1) , (4.6)

where {ṽjk,i}Ni=1 denotes the normalized first-stage weights, and Cat(a1, . . . , aN) is the discrete

categorical distribution with probability mass function p(i) = ai. Finally, the new particles are

obtained via

{z̃jk,i}Ni=1 ∼ p(zjk ∣ z̃jk−1,ζk,i
) , (4.7)

with associated second-stage weights

wjk,i =
p(Sjk ∣ z̃jk,i)
p(Sjk ∣ νjk,ζk,i)

=
nj
k

∏
j=1

p(xjk,j ∣ z̃
j
k,i)

p(xjk,j ∣ ν
j
k,ζk,i

)
, (4.8)
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for i = 1, . . . ,N . Iterating the previous process from k = 1 to T leads to the full set of forward

particles and weights {z̃j0∶T,i,w
j
0∶T,i}Ni=1.

4.2.2 Backward Process

The backward process is based on the following equation:

p(zjk ∣ Sj1∶T )

= ∫
zj
k+1
p(zjk ∣ zjk+1, S

j
1∶T )p(z

j
k+1 ∣ Sj1∶T )dz

j
k+1

= ∫
zj
k+1
p(zjk ∣ zjk+1, S

j
1∶k)p(z

j
k+1 ∣ Sj1∶T )dz

j
k+1

= ∫
zj
k+1

p(zjk+1 ∣ zjk)p(z
j
k ∣ Sj1∶k)p(z

j
k+1 ∣ Sj1∶T )

p(zjk+1 ∣ Sj1∶k)
dzjk+1 ,

where k < T and p(zjk+1 ∣ Sj1∶T ) is the smoothed distribution at time step k + 1. The smoothed

weights wj
T ∣T,i are just the forward weights wjT,i and the end of the time interval. The smoothed

weights at time k < T can be obtained recursively:

wj
k∣T,i = w

j
k,i

N

∑
i=1

p(z̃jk+1,i ∣ z̃
j
k,i)w

j
k+1,i

∑N
l=1 p(z̃jk+1,i ∣ z̃

j
k,i)w

j
k,l

. (4.9)

for k = T − 1, . . . ,1, i = 1, . . . ,N .

4.3 SMC-Based Nonstationary Discriminant Analysis

The particles and weights calculated with the particle smoother in the previous section, together

with the information about the observational model in (4.3) can be used to approximate the class-

conditional densities p(xk ∣ y = j) for each class j at each time k, j = 0,1, . . . , c−1 and k = 1, . . . , T .

In this paper, we will assume a specific case of model (4.3):

xjk,i = zjk + vjk,i , (4.10)

where vjk,i ∼ N(0,Rj) is i.i.d. zero-mean Gaussian noise with known covariance matrix Rj , for
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i = 0,1, . . . , njk, j = 0,1, . . . , c − 1 and k = 1, . . . , T .

From (4.10), the first and second moments of p(xk ∣ y = j) are given by

µj
k = E[xk ∣ y = j] = E[zjk]

Σj
k = Σj

zk
+Rj

(4.11)

for j = 0,1, . . . , c − 1 and k = 1, . . . , T .

Using the particles and weights {z̃jk,i,w
j
k∣T,i}Ni=1 calculated previously leads to the following

approximations

µ̂j
k =

N

∑
i=1

z̃jk,iw
j
k∣T,i ,

Σ̂j
k = N

N − 1

N

∑
i=1

wj
k∣T,i (z̃

j
k,i − µ̂j

k) (z̃
j
k,i − µ̂j

k)
T + Rj

(4.12)

for j = 0,1, . . . , c − 1 and k = 1, . . . , T .

Quadratic Discriminant Analysis (QDA) [21] relies on general estimators µ̂j, Σ̂j , for j =

0, . . . , c − 1, of the first and second moments of the class-conditional densities to obtain a clas-

sifier. Given the discriminants (derived from the theory of optimal classification with Gaussian

class-conditional densities)

Dj
QDA(x) = logπj − 1

2
log ∣Σ̂j ∣ − 1

2
(x − µ̂j)T (Σ̂j)−1(x − µ̂j), (4.13)

where πj = P (y = j) are the class prior probabilities or estimates of the same, the general QDA

classifier is given by

ψQDA(x) = argmax
j=0,1,...,c−1

Dj
QDA(x) . (4.14)

On the other hand, Linear Discriminant Analysis (LDA) [21] is based on the discriminants:

Dj
LDA(x) = logπj − 1

2
(x − µ̂j)T Σ̂−1(x − µ̂j), (4.15)
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where the pooled covariance matrix estimator is given by

Σ̂ = ∑
c−1
j=0(nj − 1)Σ̂j

n − 2
. (4.16)

The LDA classifier is then given by

ψLDA(x) = argmax
j=0,1,...,c−1

Dj
LDA(x) . (4.17)

The QDA and LDA decision boundaries are composed of pieces of hyperquadric surfaces and

hyperplanes; see [21] for more details.

The naive QDA and LDA classification rules ignore the nonstationarity in the data and plug

in the usual sample means and sample covariance matrix based on all the data in the previous

formulas.

By contrast, we are in position to define (SMC-based) nonstationary LDA and QDA (NSLDA

and NSQDA, for short) classifiers at each time point k, which also use the entire data, but are

adapted to the state of the evolving distribution at time k. This is done by defining discriminants

Dj
QDA,k(x) = logπj − 1

2
log ∣Σ̂j

k∣ −
1

2
(x − µ̂k

j)T (Σ̂j
k)−1(x − µ̂j

k), (4.18)

and

Dj
LDA,k(x) = logπj − 1

2
(x − µ̂j

k)T Σ̂−1
k (x − µ̂j

k), (4.19)

with

Σ̂k = ∑
c−1
j=0(njk − 1)Σ̂j

k

nk − 2
, (4.20)

and define the classifiers
ψQDA,k(x) = argmax

j=0,1,...,c−1
Dj

QDA,k(x) ,

ψLDA,k(x) = argmax
j=0,1,...,c−1

Dj
LDA,k(x) .

(4.21)

for k = 1, . . . , T .
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The entire process for the proposed SMC-based nonstationary discriminant analysis, for both

the QDA and LDA cases, is summarized in Fig. 4.1.

Discriminant Analysis

Particle Smoother

Training Process

Test Process

Figure 4.1: Proposed SMC-based Nonstationary Discriminant Analysis classification algorithm.

4.4 Simulation Results and Discussion

In this section, we showed several studies for non-linear drift numerical experiments when the

non-linear drift system is either fully-known or partially know (i.e. some parameters in Eq. (4.1)

and/or Eq. (4.3) are unknown). To estimate the states, in fully-known nonlinear system, we used

the particle smoother (showed in Section 4.2.1 and 4.2.2). We plug the estimated states from the

particle smoother into our proposed SMC-based nonstationary discriminant analysis (showed in

Section 4.3), and obtained the average error estimates.
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4.4.1 Fully-known Non-linear System

the following example of two-class, two-dimensional nonlinear centroid evolution (4.1) is

adopted:
⎡⎢⎢⎢⎢⎢⎢⎣

z0
k (1)

z0
k (2)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

z0
k−1 (1) + 2

−0.5z0
k−1 (2) + 0.4z0

k−1 (1) ∗ sin (0.8z0
k−1 (1)) + 2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

z1
k (1)

z1
k (2)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

z1
k−1 (1) + 2

−0.7z1
k−1 (2) + cos (z1

k−1 (1)) + 4

⎤⎥⎥⎥⎥⎥⎥⎦

(4.22)

for k = 1, . . . , T . We therefore consider no transition noise in this example. The starting

points for the evolution have the following Gaussian distributions: z0
0 ∼ N([1,2]T , I2) and z1

0 ∼

N([1,3]T , I2). In the first experiment, we compare the results of the SMC-based NSLDA and

the previously described naive LDA. The time horizon is T = 6, with equal class probability

π0 = π1 = 1/2. Four different scenarios are considered:

Case 1: n0
k = n1

k = 10, for k = 1, . . . ,6, and low observation noise: R0 = R1 = 0.01 I2.

Case 2: (noisy data) Same sample sizes as in Case 1, and high observation noise: R0 = R1 = 0.1 I2.

Case 3: (missing data) Same sample sizes and observation noise as in Case 1, except that n0
4 =

n1
4 = 1.

Case 4: (unbalanced data) n0
k = 10, n1

k = 3, for k = 1, . . . ,6, and same observation noise as Case 1.

The classifier decision boundaries obtained in all four cases for both naive LDA and NSLDA

are displayed in Fig. 4.2. The arrows specifies the direction of class 0. In case 1, the naive LDA is

clearly underfitted, with a large rate of misclassified training data, while NSLDA can separate the

data. This is due to the nonlinear evolution of the class conditional densities. In Case 2, under more

noise, naive LDA continues to do a poor job, but NSLDA still performs reasonably well, given the

confusion between the classes. The robustness against noise is a consequence of using the entire

data set to fit the decision boundaries at each time point. In Case 3, we can see that the even with a

single training point per class at k = 4, NSLDA is still able to find an accurate decision boundary
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NSLDA				 Naïve	LDA	 Class	0	Data									Class	1	Data										Classifier	Direction	(Class	0	)																																											

Case	3																																																																										Case	4

Case	1																																												 Case	2

Figure 4.2: Decision boundaries produced by the naive LDA and SMC-based nonstationary LDA
in four different cases of fully-known non-linear systems.

(compare this with the corresponding decision boundary at k = 4 in Case 1), which shows again

the ability of NSLDA to “borrow” information from the other time points. Finally, in Case 4, one

can see that the naive LDA decision boundary has shifted significantly (and erroneously), which

is a well-known issue arising from unbalanced data. However, the unbalanced data does not affect

the NSLDA results.

In the second experiment, the average classification error (estimated with large synthetic test

sets) for naive LDA, NSLDA and a naive nonlinear radial-basis function Support Vector Machine

(SVM) classification rule, which uses the entire data for training while ignoring nonstationarity.
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The averages are based on 1000 runs, with T = 4,6,8,10,12, n0
k = n1

k = 10, for k = 1, . . . ,12, and

R0 = R1 = 0.01 I2. For nonstationary classifiers, the errors at each time points are averaged across

the interval. The classification error rates for each of the three classification rules are plotted in

Fig. 4.3. It can be seen that naive LDA displays a very poor accuracy, while the naive nonlinear

SVM does a much better job, given its ability to fit the nonlinearly-separable data. However,

nonstationary classifiers are the best classification rule, displaying a remarkably low classification

error throughout.

Figure 4.3: Average classification errors for naive LDA, naive nonlinear SVM, NSLDA and
NSQDA classification rules versus time in fully-known non-linear systems. The dash line marked
by ▲ represent the “naive” LDA error rate and dash line marked by ● shows the “naive” sup-
port vector machine error rate. Two solid lines are for nonstationary classifier results, where ∎
represents SMC-Based NSLDA ; ☀ presents SMC-Based NSQDA.
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5. CONCLUSIONS

This dissertation proposes methodologies for designing classifiers 1) under a restricted sam-

pling method and 2) in nonstationary environment.

In Chapter 2, we focus on the bias of precision estimation under separate sampling. Accuracy

and reproducibility in observational studies is critical to the progress of biomedicine, in particular,

in the discovery of reliable biomarkers for disease diagnosis and prognosis. In this study, theoret-

ical results confirmed by numerical experiments show that the usual estimator of precision can be

severely biased under the typical separate sampling scenario in observational case-control studies.

This will be true especially if the true disease prevalence differs significantly from the apparent

prevalence in the data. If knowledge of the true disease prevalence is available, or can even be

approximately ascertained, then it can be used to define a modified precision estimator, which is

nearly unbiased at moderate sample sizes. In all the results using real data sets, we observed that

the usual precision estimator produces values that are larger, i.e., more optimistic, than the modi-

fied one using the true prevalence, which agrees with the results obtained with the synthetic data.

Absence of knowledge about the true prevalence means simply that the precision cannot be reliably

estimated in observational case-control studies and its use should be discouraged. Finally, we note

that in our experiments we considered the case where the prevalence is between 0.1 and 0.9, not

without reason. If the prevalence is significantly under 0.1, as is the case in some rare diseases,

then neither the precision, nor in fact the classification error, should be used as a criterion of per-

formance, but rather the sensitivity and specificity need to be considered separately — otherwise,

a large precision and small classification error can be achieved by biasing the classification rule to

produce false positive rates close to zero while ignoring the false negative rate.

The rest of this dissertation, we discuss how state-space models work for nonstationary dis-

criminant analysis. In Chapter 3, we showed nonstationary data in linear drift model. To address

this problem, we first considered the simple case where the class-conditional densities evolve lin-

early under Gaussian observation noise, and applied standard methods of linear filtering to obtain
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a nonstationary linear discriminant analysis (NSLDA) classification rule. Later on, we address the

case where parameters in linear state model are unknown, and/or time points of the measurements

are unknown, by using a combination of Expectation Maximization (EM) or Gaussian mixture

models (GMM) and classical Kalman Smoother (KS) to estimate the time labels, and then using

these values with a Kalman smoother (KS) for estimating the unknown parameters. We are work-

ing on an extension of linear state-space model approach for nonstationary discriminant analysis,

by Bayesian method. In the model, there are uncertain noise statistics, and a Bayesian robust

Kalman smoothing framework is used to estimate the noise statistics and states of the model.

In Chapter 4, we proposed a general nonlinear, non-Gaussian model in a fully-known system

for nonstationary data, which allowed us to derive non-stationary discriminant analysis classifica-

tion rules capable of producing classifiers tuned to the state of the distribution at each time point,

while borrowing information from all time points. The proposed framework uses the sequential

Monte- Carlo (SMC) estimation of the class conditional density centroids at all time points using

all available data. The high accuracy of the proposed nonstationary classification rules and its abil-

ity in handling missing or unbalanced data is demonstrated in a series of numerical experiments.
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APPENDIX A

ASYMPTOTIC APPROXIMATION FOR THE EXPECTATION OF A RATIO OF TWO

RANDOM VARIABLES

Here we derive the asymptotic approximation for the expectation of a ratio of two random variables

W and Z:

E [W
Z

] ≈ E[W ]
E[Z] . (A.1)

Proof:

If f ∶ R2 → R is infinitely differentiable at point (a, b) then it can be expanded by a bivariate Taylor

series around (a, b) as:

f(x, y) = f(a, b) + ∂f(a, b)
∂x

(x − a) + ∂f(a, b)
∂y

(y − b)

+ second and higher order terms in x − a and y − b .
(A.2)

Now let Xn and Yn be sequences of random variables with means µX and µY , with µY ≠ 0. The

ratio x/y is infinitely differentiable at (a, b) if b ≠ 0, therefore we can apply the previous result and

get
Xn

Yn
= µX
µY

+ 1

µY
(Xn − µX) − µX

µ2
Y

(Yn − µY )

+ second and higher order terms in Xn−µX and Yn−µY .
(A.3)

Taking expectations on both sides gives:

E [Xn

Yn
] = µX

µY
+E[second and higher order terms

in Xn−µX and Yn−µY ] .
(A.4)

Except in pathological cases involving heavy-tailed distributions, the remainder in the previous
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equation becomes negligible as Xn → µX and Yn → µY in probability. Therefore, we write

E [X
Y

] ≈ E[X]
E[Y ] , (A.5)

as long as X and Y are around E[X] and E[Y ] respectively (i.e., Var[X] and Var[Y ] are small).
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