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ABSTRACT 

 

Currently, there are only three high density single-nucleotide polymorphism (SNP) based 

linkage maps available in tetraploid garden and cut flower roses (Rosa spp.). Two 

populations, Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. ‘Radbrite’ (Brite 

Eyes™) (SWxBE) and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa L. ‘BAIgirl’ (Easy 

Elegance® My Girl) (BExMG), were genotyped using the WagRhSNP 68K Axiom SNP 

array and evaluated for the incidence of rose rosette disease (caused by rose rosette virus), 

black spot of rose (Diplocarpon rosae F.A. Wolf), and cercospora leaf spot (Cercospora 

rosicola Pass.) and assessed for defoliation, flowering intensity, plant size, and apical 

dominance. The clonally propagated populations and were evaluated in Somerville, TX, 

Overton, TX, and Crossville, TN. Linkage maps were created and quantitative trait loci 

(QTL) interval mapping and genome-wide association analysis (GWAS) were used to 

identify QTL. QTL for resistance were discovered for rose rosette disease on LGs 3 and 

5, black spot on LGs 3, 5, and 7, cercospora leaf spot on LGs 1, 4, and 5, and for defoliation 

on LGs 3, 5, and 7. We discovered a cluster of QTL for black spot, cercospora, and 

defoliation near a black spot resistance locus, Rdr4, on LG 5. QTL for flower intensity 

were found on LGs 1, 3, 4, and 5, and for plant size (length, width, height, primary stem 

lengths) on LGs 1, 3, 5, and 6, for plant shape on LGs 3 and 7, and stem color on LG 6. 

We discovered plant architecture related QTL are near the everblooming gene, RoKSN, 

on LG 3, floral activation gene, RoFT, on LG4, GA signaling gene, RoSLEEPY, on LG 6, 

and a gene involved in deactivation of GA, RoGA2ox, on LG 5. In addition to QTL 
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discovery, we were able to isolate 18 progeny in the BExMG family that carried 2 

resistance alleles against black spot and one resistance allele for cercospora leaf spot for 

use in future breeding. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Economic Importance of Roses 

Roses are an important horticultural crop worldwide. In 2003, an estimated 8500 

ha of protected rose culture produced 15-18 billion stems worldwide (Blom and Tsujita, 

2003). Potted miniatures production was estimated to be 60-80 million pots annually 

(Pemberton et al., 2003), and landscape roses estimated at 200 million bushes annually 

valued at $720 million USD (Short and Roberts, 1991). Worldwide, garden roses along 

with cut flowers were valued at 24 billion Euros in 2008 ($42.3 billion USD equivalent 

adjusted for both historical exchange rate and inflation) (Heinrichs, 2008).  

In the USA, garden roses had about $203 million in sales in 2014 and $168 

million in sales in 2019 (USDA NASS, 2015; 2020) and.  In 2012, Steven B. Hutton, the 

President and CEO of Conard-Pyle (now owned by Ball Horticultural Company), 

estimated that the US produced around 30 million rose bushes per year.  Mr. Hutton says 

that while rose production is only 70% as compared to about 40 years ago, the outlook of 

rose production in the US is one of hope as breeders continue to develop own root roses 

that are resistant to biotic and abiotic stresses (Hutton, 2012). Another major change in 

the production of landscape roses in the US is the shift from grafted plants to self-rooted 

plants and from field production to container production (Pemberton and Karlik, 2015).  

From the combined production of cut roses, potted miniature, and garden roses, the rose 

industry is of high economic importance worldwide. 



 

2 

 

The Rosaceae Family 

Rosaceae includes herbs, shrubs, and trees. This family is one of the most 

economically important plant families as its worldwide farm gate value is worth $60 

billion and consumer value is $180 billion annually (Hummer and Janick, 2009). Plants 

in this family sometimes have thorny stems (roses have prickles), and are characterized 

by rhizomes, alternate leaves, and showy flowers that are usually hermaphroditic (Judd 

et al., 1999). Rosaceae includes fruit, berry, and ornamental crops and is divided into 

subfamilies Prunoideae (peach, nectarine, plum, apricot, cherry, and almond), Maloideae 

(apple, pear, quince and loquat), Rosoideae (rose, strawberry, blackberry, and raspberry), 

and Spiraeoideae (some ornamental trees and bushes of lesser economic importance) 

(Arús and Gardiner, 2007). Taxonomists have reorganized the subfamilies into three: 

Rosoideae, Dryadoideae, and Spiraeoideae (Malus and Prunus have moved into this 

subfamily) (Potter et al., 2007).  

 

Rose Breeding and Genetics 

The majority of garden roses today are either diploid (2n=2x=14), triploid, or 

tetraploid, while species roses range from diploid to octoploid (Zlesak, 2007; 

Krussmann, 1981) with one report of a decaploid species (Jian et al., 2010). Almost all 

of the cultivated roses come from interspecific crosses from the following species: Rosa 

canina L., R. chinensis Jacq., R. foetida Herrm., R. gallica L., R. gigantea Collet ex 

Crép., R. moschata Herrm., R. multiflora Thunb., R. phoenicea Boiss., R. rugosa Thunb., 

and R. wichuraiana Crép. (Gudin, 2000). The rose was domesticated in Europe, where 
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traits for winter hardiness, pest resistance, floral complexity, and doubling were selected, 

while in China the traits of recurrent flowering and color brightness were selected 

(Martin et al., 2001). Garden roses have been recorded in history as far back as the Han 

Dynasty dating back to 141 to 87 BC where roses were planted in the palace gardens 

(Guoliang, 2003). Today, roses are used in a variety of ways ranging from the classic cut 

flowers and garden rose to fragrances and culinary uses (Hummer and Judd, 2009).  

Rose breeding prior to the 20th century primarily consisted of developing new 

cultivars from seedlings derived from open pollination (Zlesak, 2007). As the use of 

designed crosses began, the horticultural traits from the two areas of domestication were 

further incorporated into new superior cultivars. Attempts at mutation breeding has 

produced viable plants but is not commonly used as a tool for introducing genetic 

variation (Zlesak, 2007; Yamaguchi et al., 2003). Current breeding of commercial roses 

is predominantly elite by elite crosses. However, frequently the ploidy of parents is not 

known and there are a number of triploids released that are the result of tetraploid by 

diploid crosses. These resulting triploids can often be good garden varieties and the 

pollen can sometimes be viable and used for crosses. Current breeding goals include 

creating visually appealing roses that are resistant to biotic and abiotic stresses, as such 

plants need less attention and pesticide applications while being easy to root for the 

production of own root container grown plants (Pemberton and Karlik, 2015; Debener 

and Byrne, 2014). 

In the designing of crosses, parents are selected for desirable traits, namely 

disease resistance along with flower color, flower type, and plant architecture. In the 
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spring, pollen is collected by harvesting anthers and drying them for two days at room 

temperature then stored in a freezer (-20°C) until use. Pollen is applied to the stigmas via 

makeup brushes after emasculating flowers that are at the correct stage (not yet open but 

about to open). Crosses are then marked to distinguish hips that were results of designed 

crosses from outcrosses and selfs. Seeds from resulting hips are collected in the fall and 

undergo a cold treatment prior to placement in greenhouses for seedling selection.  

Within the first three months, seedlings can be screened for powdery mildew 

resistance and remontancy. Once bloomers along with unattractive flowers and those 

extremely susceptible to powdery mildew are typically discarded (Zlesak, 2007). 

Commercial programs will discard up to 75-95% of their seedlings during these first few 

months. However, Zlesak points out that while selecting based on flowering 

characteristics brings a rapid gain of selection for flower related traits, the massive 

discarding of seedlings may leave little variation for selecting non-floral traits such as 

disease resistance. Seedlings that make it past the greenhouse stage are planted in one 

location for phenotypic evaluation for other traits such as growth type, disease 

resistance, and general health of the plant. In the second year, plants that make it past the 

initial field test are clonally propagated (either by budding, grafting, or rooted cuttings) 

to test in multiple locations to evaluate the plant’s adaptation to those areas or to expose 

the progeny to higher disease pressures. Selections can be sent to collaborators 

throughout the world for further commercial evaluation for adaptation and ornamental 

qualities in other environments. 

 



 

5 

 

Major Rose Diseases 

Even though a heavy emphasis is placed on the appearance of the flower, disease 

resistance is very important as the chemical control of diseases and insects associated 

with producing and maintaining roses in a landscape is of environmental, health, and 

monetary concern (Zlesak, 2007). Creating resistant cultivars would make the plants less 

costly to produce for the grower and ultimately require less care from the end user. 

Depending on the breeding program, most breeders in the United States will breed for 

resistance among the cultivated material while others try to incorporate resistance from 

species. The former takes less time to develop commercially acceptable cultivars as the 

cultivated material has more favorable alleles conditioning exceptional horticultural 

traits from hundreds of years of accumulating those alleles through designed crosses and 

selection. Going to the wild species however may capture resistance alleles that are not 

currently found among commercial rose germplasm. However, using rose species and 

species hybrid roses brings along unfavorable alleles through linkage drag that must be 

bred out while maintaining the favorable alleles of interest.   

The major production and processing areas of roses in the United States are 

California, Arizona, and Texas. Major centers for container production are in the 

Midwest, South Central, and Eastern seaboard of the United States including Florida 

(Pemberton and Karlik, 2015). The roses produced in these major nurseries are shipped 

across the country to be used in the landscape. The Southeastern United States is 

characterized by hot humid summers causing the prevalence of black spot (Diplocarpon 

rosae F.A. Wolf) and cercospora (Cercospora rosicola Pass.), however, the production 
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areas in California and Arizona rarely deal with these diseases since their climate is 

much drier and cooler (DeVor et al., 2013). Powdery mildew (Podosphaera pannosa 

var. rosae Wallr.) is a problem throughout the United States especially during cool (18-

25°C) humid nights accompanied with dry days during the spring and fall (Horst and 

Cloyd, 2007). Greenhouses provide high relative humidity and cooler temperatures 

which favors powdery mildew. In Texas powdery mildew is only a problem in the 

greenhouse during the spring. Rust is only a problem on the Pacific coast of the United 

States (DeVor et al., 2013). 

The most important fungal disease that affects field grown roses as well as roses 

in landscapes is black spot. It is a fungal pathogen which causes black spots with 

feathery margins on the upper portion of the leaf (Horst and Cloyd, 2007). Black spot is 

favored by humid summer climates and as the infection progresses, leaves yellow which 

can be followed by defoliation. Often bad infections leave rose bushes completely 

defoliated. 

Powdery mildew is also a major fungal disease affecting roses. While Horst and 

Cloyd (2007) believe powdery mildew to be the most serious disease of cut roses, from a 

breeder’s view, highly susceptible seedlings can be identified and discarded in the 

greenhouse within a few months of germination. Symptoms most commonly include the 

heavy white mycelium growth on the upper portion of leaves, stems, and flower buds 

(Horst and Cloyd, 2007). Powdery mildew does not require free water on the leaf 

surfaces to form as does black spot (Karlik et al., 2020). In addition, overhead irrigation 

actually inhibits the spore release of the fungi as it requires a dry period. In the breeding 
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program at Texas A&M University, powdery mildew is primarily seen inside the 

greenhouse during the spring. Once the seedlings are planted outside, little to no disease 

pressure makes it difficult to phenotype for disease resistance.  

Another major fungal disease affecting roses is cercospora leaf spot. It forms 

lesions characterized by circular spots with a small white or tan necrotic area in the 

center with concentric (target-like) look. Normally, the edges of the lesion are smooth 

when compared to black spot (Mangandi and Peres, 2012). In the past, cercospora was 

not considered a major rose problem, however as major strides were made in selecting 

roses resistant to black spot, cercospora has emerged as an important disease. 

Cercospora has most likely been present and affecting roses but the effects were masked 

by the presence of black spot which causes defoliation. Only in extreme cases of 

cercospora infection is defoliation observed. Hagan et al. (2005), observed that many of 

the roses with the highest resistance to black spot showed infection by cercospora. 

Similar observations were made in the Texas A&M Rose Breeding and Genetics 

program. The most probable explanation is that the defoliation caused by blackspot does 

not allow for cercospora to develop properly on highly blackspot susceptible genotypes. 

Current breeding efforts are aimed towards the few major diseases mentioned 

above in the garden rose industry. Diseases that are of less economic importance are rust 

(Phragmidium spp. Pers.), downy mildew (Peronospora sparsa Berk.), and anthracnose 

(Sphaceloma rosarum Pass.). Crown gall from Agrobacterium tumefaciens can also be a 

major problem, however, this is a problem producers deal with much more than the 

homeowner. Bacterial leaf spot caused by Xanthomonas spp. has also been reported in 
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Florida and Texas (Huang et al., 2013). Sequence data from Huang et al. (2013) shows 

that it is within the Xanthomonas axonopodis subgroup however the principal coordinate 

analysis grouped the rose isolates together in a distinct group from others in this 

subgroup. Thus far Xanthomonas has not been a major problem in the Texas A&M 

cultivar trial block.   

Typically, it takes two to three years to properly phenotype seedlings for 

resistance to diseases as new plantings take time for natural disease inoculum pressure to 

build up (Debener and Byrne, 2014; Lühmann et al., 2010). However, the use of genetic 

markers could speed up the breeding process by reducing the number of seedlings going 

to the field, which reduces the costs (labor and land) associated with field-based 

phenotyping (Byrne et al., 2018). However, if high numbers of seedlings in the field can 

be sustained by the program, using marker assisted selection could mean many more 

seedlings first screened via markers in the greenhouse and increasing the number of 

seedlings with favorable alleles being phenotyped in the field, increasing the rate of 

breeding progress within the program. 

In addition to disease resistance work in the breeding of roses, work developing 

garden roses resistant to abiotic stresses is essential to creating low maintenance roses. 

Abiotic stresses considered are heat, cold, drought, salt, and soil pH extremes. Breeders 

test their selections in many different environments to test both GxE and the stability of 

their selections in stressed environments. A key environmental stress that the Texas 

A&M rose breeding program evaluates is heat tolerance. Potential parents and progeny 

are evaluated in Somerville and Overton, TX. Both these locations are hot and humid 
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creating optimal environments to test the performance of garden roses to the abiotic 

stress of Texas summer heat along with biotic factors including black spot and 

cercospora.  

 

Rose Rosette Disease 

One emerging biotic stress is rose rosette disease (RRD) caused by the 

Emaravirus, Rose Rosette Virus (RRV) (Pemberton et al., 2018). Emaravirus (European 

mountain ash ringspot associated virus) is a new genus of viruses containing negative 

sense RNA (Miekle-Ehret and Mühlbach, 2012). Viruses included in this family are 

ringspot disease of European Mountain Ash (EMARaV) (Kegler, 1960), fig mosaic virus 

(FMV) (Condit and Horne, 1933), rose rosette virus (RRV) (Conners, 1941), raspberry 

leaf blotch virus (FLBV) (Gordon and Taylor, 1976; Jones et al., 1984), pigeonpea 

sterility mosaic virus (PPSMV) (Jones et al., 2004; Mitra 1931), and high plains virus 

(recently renamed maize red stripe virus) (Jensen and Lane, 1994; Slykhuis, 1956). RRV 

was first described to have 4 negative RNA strands (Laney et al., 2011), however, more 

recently, 3 more strands were discovered (Di Bello et al., 2015; Babu et al., 2016). These 

RNA strands are encapsulated by double membranes. Protocols have been established 

for the detection of the presence of RRV using RT-PCR (Dobhal et al., 2016). 

The virus is vectored by an eriophyid mite (Phyllocoptes fructiphilus Keifer) 

(Armine et al., 1988; Allington et al., 1968). The virus is transmitted via the mite and 

grafts but not by mechanical means (pruners) (Armine et al., 1988; Doudrick et al., 

1987). Although drop inoculations when suspended in proper buffers were reported 
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(Doudrick et al. 1987), subsequent trials have not been very successful. A major reason 

why RRD has spread at such an accelerated rate is the widespread distribution of R. 

multiflora, introduced in the United States as a garden plant, breeding parent, and a 

conservation plant which was planted by the government for soil erosion and wildlife 

conservation efforts (Armine, 1996). R. multiflora is susceptible to the mite and RRV. 

The virus was even suggested to be a biocontrol method to eradicate R. multiflora 

(Armine et al., 1996; Doudrick et al., 1986; Epstein and Hill, 1995; Epstein et al., 1997; 

Epstein and Hill, 1999; Hindal et al., 1988;). However due to the prolific seed 

production of the plant, R. multiflora can produce thousands of seeds before the virus 

can kill it. Thus, the population survives the virus in spite of its high susceptibility. At 

first it was observed that RRD would not spread to the cultivated ornamental roses if 

they were more than 100 meters away (Epstein et al., 1997), however, Armine described 

the microscopic eriophyid mites as able to be carried hundreds of feet up in the air via 

wind and thus able to travel long distances (Armine, personal communication). Mites 

travelling via the wind can land on ornamental roses in the landscape and since 

ornamental roses are typically planted in large closely spaced groups, mites and the virus 

can easily spread from plant to plant.  

Symptoms of rose rosette disease were first described in the early 1940’s in 

Manitoba, Wyoming, and California (Conners, 1941). The descriptions of the disease 

were “witches’ broom” type growth, misshapen leaflets and flowers (Pemberton et al., 

2018). The disease was then found in the United States on possibly Rosa pisocarpa and 

Rosa woodsii (Amrine, 1996). Modern descriptions of disease symptoms include large 
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masses of reddish prolific twisted growth extending from an otherwise healthy-looking 

bush. These prolific growths (rosettes) are identified by containing strapped leaves (long 

and thin) accompanied with shorter internodes and increased thorniness on cultivars with 

prickles (Windham et al., 2014). This abnormal growth pattern can be easily confused 

with glyphosate (Roundup®) damage. However, glyphosate damage differs in that it 

causes a yellow to light green excessive twisted growth instead of red. The early 

symptoms of RRD before the obvious witches’ broom include: 1) strapped leaves, 2) 

flattened stems, and 3) increased thorniness. If two of these symptoms are present, there 

is a high probability that the plant has the virus (Windham, personal communication).  

Dr. Mark Windham at the University of Tennessee has developed a scale for 

rating the severity and the number of rosettes per plant in an effort to try to capture the 

quantitative nature of the disease assuming disease resistance is quantitative. To rate the 

severity, 0 = no rosette, 1 = small single shoot with aforementioned symptoms, 2 = 2-3 

shoots in the rosette, 3 = 4 or more shoots in the rosette. Rosettes per plant are rated as 

following 0 = no rosettes, 1 = 1 rosette per plant, 2 = 2 rosettes per plant, 3 = 3 or more 

rosettes per plant (Windham, personal communication). 

The current best management practices are to remove the infected plant so it does 

not serve as a reservoir of inoculum for the virus or for the mite. This includes bagging 

the plant to prevent mite movement and removing it from the site. Complete removal of 

the crown is important to prevent the regrowth of infected plant tissue from the crown. 

This approach of aggressively rouging infected plants under high disease pressure in the 

Beall Family Rose Garden at University of Tennessee has been successful at limiting 
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losses to 2-4% per year of the plants. Other approaches to managing the disease being 

studied are the use of miticides to control the mite vector, the use of nonhost plants to 

restrict the movement of the mite vector and an antiviral compound (Windham et al., 

2014). The best management practices described are the current solutions to RRD until 

cultivars resistant to RRV are created and can be incorporated into best management 

practices. 

To develop new cultivars that are resistant to RRD, both cultivated material and 

species are being screened for resistance to find potential parents to use for crosses. 

Trials in Delaware and Tennessee screened 141 and 264 commercial cultivars and R. 

spp. collected, respectively, with 2-5 reps at each location. The material was exposed to 

natural surrounding inoculum as well as augmentation with mite infested RRD 

symptomatic branches 2-3 times a year in Delaware and Tennessee (Byrne et al., 2017). 

Not all cultivars and Rosa species were at both locations. 

 

Rose Architecture 

Plant architecture is important in garden roses as in all horticultural plants. There 

is much diversity in garden rose germplasm as there are architecture types that include 

climbers, bush types, and ground covers. Depending on the landscape use of the rose, the 

end user may want to incorporate these many architecture types. As there is much 

diversity in these growth types, this creates a wide genetic germplasm base in which to 

select for desirable growth types. The ideal plant architecture for most garden roses is a 

plant with many primary and secondary shoots which creates a plant with dense foliage 
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and high flower productivity. However, measuring plant architecture is limited in 

accuracy and time consuming.  

Plant architecture consists of many components of plant growth which contribute 

to the overall shape of the plant. Branching angles of shoots and of roots can 

significantly alter the final structure of a plant and thus alter not only the appearance but 

also the yield of a plant. Plant architecture has been an important part of plant breeding 

as exemplified by the “Green Revolution” focus on plants with dwarfing plant 

architectures to increase the grain yield by reducing lodging (Wang and Li, 2008). 

Similarly, plant architecture can affect the flower productivity of roses.  

Plant architecture is driven by many pathways that alter plant hormones of auxin, 

gibberellins, and brassinosteroids within the shoot, root, and axillary meristems (Wang 

and Li, 2008). Different ratios of these plant hormones can alter the expression of these 

architectural traits. RoKSN (Genebank ID: HQ174211.1) is an insertion of a Copia 

transposon in the TERMINAL FLOWER 1, TFL1 gene (Iwata et al., 2012). Both RoKSN 

and TFL1 control the continuous blooming trait. It is suggested that these two genes may 

either have pleiotropic effects on other things like plant architecture and flowering time, 

or these traits are controlled by other genetic factors closely linked with RoKSN 

(Kawamura et al., 2015; Goretti et al., 2020; Shannon and Meeks-Wagner, 1991; and 

Ratcliffe et al., 1998). 

Another gene of importance is the antagonist to RoKSN, RoFT (Remay et al., 

2009). In Arabidopsis, TFL1 and FT are antagonistic where TFL1 represses flowering 

and FT initiates flowering (Moraes, et al., 2019). Other genes that are involved in plant 
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architecture are the genes relating to gibberellin pathways, RoGA2ox (Remay et al., 

2009) and RoSLEEPY (Foucher, et al., 2008). These gibberellins play roles in plant 

architecture as they are a one of the main classes of plant hormones associated with plant 

cell elongation and flower signaling. 

 

Rose Genetic Work 

Recurrent vs non-recurrent (ever blooming vs once blooming) is a very well 

understood trait and possibly one of the most frequently selected trait. This is controlled 

by one gene (RoKSN) in which the non-recurrent gene is dominant over recurrent (De 

Vries and Dubois, 1978). Selection for this trait is easy as ever bloomers will bloom 

when the seedling is young whereas once bloomers need to be at least a year old to 

bloom. Because the recurrent bloomer is desired in garden roses, crosses that result in 

once blooming progeny are discarded or need to be selfed or back crossed to regain the 

ever blooming trait. 

Four genes (Rdr1, Rdr2, Rdr3, Rdr4) controlling vertical resistance to black spot 

have been described (Von Malek and Debener, 1998; Hattendorf et al., 2004; Whitaker 

et al., 2010; Zurn et al., 2018; Zurn et al., 2020). In addition to vertical resistance to 

black spot, partial or horizontal resistance has been observed in roses (Xue and 

Davidson, 1998; Whitaker et al., 2007; Shupert, 2005; Dong et al., 2017; Yan et al., 

2019). By pyramiding different sources of partial resistance, a breeder can potentially 

create a more robust resistance than single partial resistance genes. A meta analysis has 

been conducted on black spot resistance which found meta-QTL on LGs 3 and 5 (Lopez 
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Arias et al., 2020). Various genes (Rpp1, Pm1, Pm2, Glu7) for resistance to powdery 

mildew have also been reported (Linde and Debener, 2003; Dugo et al., 2005; Xu et al., 

2007).  

Horticultural traits such as flower size (Liang et al., 2017), flower color, flower 

production, shrub size, and architecture (Wu et al., 2019; Kawamura et al., 2011, 2015; 

Li-Marchetti et al., 2017) are also key traits a breeder considers when making selections. 

However, because of the complexity of these traits and their interaction with the 

environment (GxE effect), the genes of interest are more difficult to identify. For 

instance, flower color is controlled by many different pigments all produced in different 

pathways and the summer heat alters pigment production making the rose lighter in color 

than it would appear in the spring or fall (Dela et al., 2003).  

Although many studies have been conducted in Arabidopsis thaliana to 

understand the genetic complexities of plant architecture, few have been done with 

roses. What has been done on plant architecture of rose is mainly just characterization of 

plant architecture with some studies looking at how cultural practices affect plant 

architecture (Kool, 1997; Kool and Lenssen, 1997; Kool et al., 1997; Mascarini et al., 

2006; Crespel et al., 2013). There have been a few studies on plant and flower 

architecture on rose (Kawamura et al., 2011, 2015; Li-Marchetti et al., 2017). Kawamura 

et al. (2011, 2015), looked at the plant architecture from a primary shoot perspective. 

Kawamura et al. (2011) found heritabilities (H2) ranging from 0.82 to 0.93 when looking 

at numbers of nodes on different parts of the primary shoot. Kawamura et al. (2015) 

found similar broad sense heritabilities ranging from 0.75 - 0.89 when looking at plant 
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architectural traits such as plant height, primary shoot angles, internode length, and stem 

diameters.  Wu et al. (2019) found low to moderate narrow sense heritabilities (0.12-

0.50) and low to high broad sense heritabilities (0.04-0.92) when looking at plant 

architecture related traits. 

 

Diploid Versus Tetraploid Genetics 

While diploid genetics follows normal Mendelian inheritance through bivalent 

pairing during meiosis, tetraploids are much more complex in the segregation of genes 

since they have four sets of chromosomes (Voorrips et al., 2011). Tetraploidy resulting 

from the doubling of a diploid species is called autotetraploidy which presents difficult 

genetic analysis because during meiosis, a tetrad can form allowing crossover between 

any of the four homologs. The implications of having tetravalents form is that at any 

given site there are 4 corresponding positions. If there are only two alleles which is the 

case for most SNP markers, there are 5 possible dosage classes (AAAA, ABBB, AABB, 

AAAB, BBBB).  Tetraploidy resulting from the combination of unreduced gametes 

between two individuals of different species or distant relatives of the same species 

produces allotetraploids. Allotetraploid chromosomes pair bivalently due to the 

differences between the homeologs therefore the preferential pairing of the homeologs 

allows us to study the segregation of alleles as a diploid. Furthermore, segmental 

allotetraploids may have some chromosomes that preferentially pair during meiosis and 

some that form tetravalents, making analysis even more complicated. To make matters 
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even more complicated the addition of null alleles further complicates segregation ratios 

(Hackett et al., 1998). 

Because of the complexities of tetraploid genetics, one must consider which 

genotyping platform would be the best for analysis of tetraploids. The choices among 

current genotyping technologies are Genotyping by Sequencing (GBS) or a SNP array; 

the 68k WagRhSNP Axiom Array is used for roses (Koning-Boucoiran et al., 2015). 

GBS on the Illumina platform reads DNA by attaching single stranded DNA fragments 

that have been cut using restriction enzymes on a surface then adding fluorescent labeled 

bases and observing the different colors when added (Illumina, 2015). GBS obtains short 

reads (50-300 bp) and either aligns them to a reference genome for SNP calling or if a 

reference genome is not available, Stacks (Catchen et al., 2013), can be used to call SNP 

by “stacking” the short reads and looking for SNP variants. SNP micro arrays, also 

called SNP chips work by using 25-mer probes that target the different variants of the 

SNPs. When the homologous DNA binds to the probe on the chip, a florescent signal is 

produced and tells which version of the SNP was on the DNA fragment (LaFramboise, 

2009). SNP arrays are created from SNPs identified from transcriptomes from a 

representative range of genotypes of the organism in question (Koning-Boucoiran et al., 

2015). For example the WagRhSNP 68k array for rose was made using transcriptomes 

from a range of cut and garden roses from both leaf and flower tissue. A diploid Rosa 

multiflora hybrid was also used after being wounded, heat stressed, or inoculated with 

blackspot, powdery mildew, or downy mildew. Biases towards the transcriptome and 
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genotypes used for SNP discovery for the development of SNP micro-arrays can skew 

the resulting genotype data (Bourke et al., 2018).  

Currently GBS methods are much cheaper than SNP arrays. While the GBS 

method may be cheaper up front, the time and expertise associated with SNP calling and 

data cleanup from the GBS reads may outweigh the costs of using the SNP chip. 

However, as described in Bajgain et al. (2016), they compared GBS and a SNP chip for 

QTL mapping in wheat and they found 8 and 9 QTL, respectively, and only one was a 

shared QTL. They also found that because the SNP chip had a bias on the germplasm, 

one of the wheat genomes was underrepresented. When they described the workflow of 

the two systems, GBS required much higher computational power and resources when 

compared to the SNP chip. Given that the 68k WagRhSNP. was constructed using both 

cut and garden roses (‘Morden Fireglow’, ‘Adelaide Hoodless’, ‘Prairie Joy’, ‘Morden 

Blush’, ‘Diamond Border’, ‘Nipper’, ‘J.P. Connell’, ‘Princess of Wales’, ‘Heritage’, 

‘Graham Thomas’, ‘Morden Centennial’, and ‘Red New Dawn’), the SNP chip should 

not be too biased when genotyping the tetraploid families at Texas A&M as our 

tetraploid crosses are within cultivated material. In addition, SNP arrays can better 

differentiate dosage of alleles for polyploid analysis. 

 

Linkage Mapping and QTL Analysis 

Genomics work within Rosaceae that has led to the development of markers for 

use in breeding include peach (Prunus persica (L.) Batsch.), apple (Malus x domestica 

Borkh.), strawberry (Fragaria vesca L.), and sweet and tart cherries (Prunus avium L.) 
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since the genome assemblies for these species have been created and released for use 

(Arus and Gardiner, 2007; Jung et al., 2014; Peace et al., 2012; Genome Database for 

Rosaceae, 2017). However, the work in these four crops has laid the foundation for other 

Rosaceae crops. Rose genotyping work has utilized the strawberry genome as a ‘proxy’ 

reference genome (Gar et al., 2011; Vukosavljev et al., 2016; Yan et al., 2018) since the 

rose genome was not available until doubled-haploids of Rosa chinensis ‘Old Blush’ 

plants were sequenced (Raymond et al., 2018; Saint-Oyant et al., 2018).  

Early linkage maps for rose were based on RAPD and AFLP markers and the 

density of the two parental maps was only 278 markers spread over 14 linkage groups 

with an average distance between markers of 2.4 and 2.6 cM (Debener and Mattiesch, 

1999). In addition to constructing this map, Debener and Mattiesch (1999) were able to 

find markers corresponding with loci controlling petal number and flower color. Other 

maps constructed with RAPDs, microsatellites, and morphological markers, attempted to 

locate QTL for flower size, days to flowering, leaf size, and powdery mildew (Dugo et 

al., 2005). However due to the relatively low marker density in relation to the technology 

we presently have using SNPs, the results are putative. Crespel et al. (2002) released a 

map using AFLP markers and their study focused on finding QTL for recurrent 

blooming, double corolla, and stem-prickle quantity. This map was later improved by 

adding 44 EST-SSRs and 20 genomic SSR markers, and focused on flower petal number 

and blooming date (Hibrand-Saint Oyant et al., 2008). Yan et al. (2005) used Debener 

and Mattiasch’s (1999) population to create an integrated map utilizing 520 markers 

(AFLP, SSR, PK, RGA, RFLP, SCAR, and morphological markers). The integrated map 
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consisted of a total length of 545 cM. The parental maps had marker density ranging 

from 0.4 to 0.7 markers per cM. The two parental maps were able to be merged into an 

integrated map because of common markers in both parents whereas with Debener and 

Mattiesch’s (1999) earlier map in did not have common markers and/or common 

positioning of the markers on groups 6, 3, 5, and 7. This is likely due to the fact that Yan 

et al. (2005) had almost twice the markers than Debener and Mattiesch (520 vs 278). 

These few examples show the importance of collaboration of different research groups 

in order to collaboratively answer the different questions being addressed. Probably the 

pinnacle of mapping in rose prior to the introduction of Next Generation Sequencing and 

SNPs as the marker of choice, was the creation of an integrated consensus map from 

four diploid populations resulting in a map with 597 markers spanning 530 cM (Spiller 

et al., 2011). This map utilized AFLP, SSR, NBS-LRR, Protein Kinase, and RGA 

markers. With the creation of this map, the naming of the rose linkage groups was 

standardized and loci associated with floral development, flower number, number of 

prickles, blackspot resistance, and powdery mildew resistance were mapped. This map 

was similar in length and marker number when compared to Yan et al. (2005) but Spiller 

et al. (2011) state that their marker order is more reliable due to more populations and 

individuals used for analysis. With the introduction of Genotyping by Sequencing 

(GBS), many more SNP markers are used for mapping. However, due to the sheer 

quantity of markers found using GBS, many filtering steps and binning is necessary to 

cut down on the number of markers used in mapping to help with computation time. An 

integrated consensus map was created by Yan et al. (2018), combining three diploid 
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populations resulting in a map with 3527 total markers (20 SSR markers as anchors, and 

3507 SNPs). These populations were phenotyped for blackspot resistance, architectural 

traits, and flowering traits.  

Markers used in tetraploid rose mapping populations have historically been 

limited to dominantly scored markers scored as present or absent as the marker 

technologies of AFLP, RFLP, and SSR, have limitations in seeing SNPs, small indels, 

and determining dosage of alleles (Rajapakse et al., 2001; Zhang et al., 2006; Gar et al., 

2011; Koning-Boucoiran et al. 2012; Yu et al., 2015; Bourke et al., 2018). In addition to 

the restrictive marker types, small polyploid mapping families further constrict the 

ability to distinguish the dosage of the alleles due to large segregation ratios (Sorrells, 

1992). However, as the technology has evolved to use SNPs, dosage of the SNPs can be 

determined via deep GBS sequencing (50X depth) or using the signal intensity of SNP 

arrays (Bajgain et al., 2016; Voorrips et al., 2011). A tetraploid cut rose mapping 

population was genotyped using the 68k WagRhSNP Axiom Array (Koning-Boucoiran 

et al., 2015) and the authors found that 3 chromosomes showed disomic preferential 

pairing whereas all the rest paired tetrasomically (Bourke et al., 2017). They state that 

the preferential pairing is dependent on the mapping population and the genetic 

background of the roses being used.  

The Rose Genome Sequence Initiative has sequenced the diploid rose Rosa 

chinensis ‘Old Blush’ (Foucher et al., 2015; Bendahmane et al., 2015). The rose 

however is a highly heterozygous crop making it difficult to create a high quality 

assembly. To circumvent this issue, a double haploid was created for use in sequencing 
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(Saint-Oyant et al., 2018; Raymond et al., 2018). Before the rose sequence was released 

for public use, the strawberry sequence (v2.0.a1) was used for the alignment of the rose 

GBS data due to synteny between strawberry and rose to construct a diploid rose 

consensus map with five inter-related populations at Texas A&M University (Yan et al., 

2018; Bourke et al., 2017). Work is being done to identify QTL regions responsible for 

black spot resistance, cercospora resistance, architectural traits, and flower traits, using 

the consensus map created.  

The long term goal of this project is to determine if there are alleles for resistance 

to black spot, cercospora, defoliation, and RRV, and alleles for flower intensity and plant 

architecture within our rose germplasm. If there are such alleles, the goal is to find the 

specific haplotypes conferring disease resistance. If a Mendelian trait locus (MTL) or 

quantitative trait loci (QTL) and haplotypes are found for resistance, validation studies 

need to be performed with closely related or unrelated populations to confirm that the 

marker(s) are useful in predicting resistance. This information could then be used to 

create less expensive KASP assays which would allow the breeder to screen progeny in 

the greenhouse for potential resistant seedlings before placing the seedlings out in 3+ 

year field trials (Debener and Byrne, 2014). This ultimately will save time and money 

while simultaneously accelerating breeding efforts to release roses with disease 

resistance and favorable horticultural traits. 
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Conclusions 

The objective of this dissertation research is to create two inter-related tetraploid 

rose families, consisting of 150-200 individuals each to study the inheritance of rose 

rosette virus, black spot of rose, cercospora, defoliation, flowering intensity, plant size 

and apical dominance. To study the inheritance of these traits, we have to genotype and 

phenotype these individuals, create a linkage map, and perform a QTL analysis on these 

traits.  
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CHAPTER II  

MAPPING DISEASE RESISTANCE IN TWO TETRAPLOID GARDEN ROSE 

POPULATIONS AND FINDING MARKERS FOR MARKER ASSISTED 

SELECTION FOR ACCELERATED BREEDING 

 

Abstract 

Two populations, Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. 

‘Radbrite’ (Brite Eyes™) (SWxBE) and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa L. 

‘BAIgirl’ (Easy Elegance® My Girl) (BExMG), were used to study resistance to rose 

rosette disease, black spot, cercospora leaf spot, and defoliation. The SWxBE and 

BExMG populations were used to construct linkage maps with R package ‘polymapR’ 

mapping 4,047 and 4,220 unique positions on 7 linkage groups (LGs), respectively. 

TetraploidSNPMap, R package ‘QTLpoly’, and R package ‘GWASpoly’ were used to 

identify QTL for rose rosette disease on LGs 3 and 5, black spot on LGs 3, 5, and 7; 

cercospora leaf spot on LGs 1, 4, and 5; and defoliation on LGs 3, 5, and 7. Markers 

associated with less disease incidence were used to identify and select 18 progenies in 

the BExMG family that carried 2 resistance alleles against black spot and one resistance 

allele to cercospora leaf spot for future breeding. 

 

Introduction 

Garden roses (Rosa spp.) are important ornamental plants worldwide. In the 

USA, garden roses had about $203 million in sales 2014 and $168 million in sales in 
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2019 (USDA NASS, 2015 & USDA NASS, 2020). Garden roses along with cut flowers 

were valued at 24 billion Euros worldwide in 2008 ($42.3 billion USD equivalent 

adjusted for both historical exchange rate and inflation) (Heinrichs, 2008).  In addition to 

the horticultural characteristics of the plant, increased disease resistance is highly 

desirable to consumers (Byrne et al., 2017; Walizcek et al., 2018; Chavez et al., 2019). 

Therefore, breeding efforts are geared towards creating cultivars with superior disease 

resistance and horticultural traits when compared to what is currently commercially 

available (Debener and Byrne, 2014). 

The most important fungal disease that affects garden roses is black spot 

(Diplocarpon rosae F.A. Wolf). This fungus causes black spots with feathery margins on 

the upper portion of the leaf (Horst and Cloyd, 2007). Black spot infection is favored by 

humid summer climates. As the infection progresses, the foliage becomes chlorotic and 

severe infections cause defoliation.  

 Another major fungal disease affecting roses is cercospora leaf spot (Cercospora 

rosicola Pass.). From here on, cercospora leaf spot will be called cercospora. It is a 

fungal pathogen with circular lesions characterized a small white or tan necrotic area in 

the center with brown concentric rings. Normally, the edges of the lesion are smooth 

when compared to black spot (Mangandi and Peres, 2012). In the past, cercospora was 

not considered a major rose problem, however as major strides were made in selecting 

roses resistant to black spot, cercospora has emerged as an important disease. 

Cercospora has most likely been present and affecting roses but the effects were masked 



 

43 

 

by the presence of black spot that causes defoliation (Hagan et al., 2005). Only in 

extreme cases of cercospora infection is defoliation observed. 

A very important emerging disease that is significantly affecting the garden rose 

industry in the United States is Rose Rosette Disease (RRD), a disease caused by the 

Rose Rosette Virus (RRV) (Laney et al., 2011; Di Bello et al., 2015) and vectored by a 

microscopic eriophyid mite Phyllocoptes fructiphilus (Allington et al., 1968). Common 

RRD symptoms include large masses of reddish prolific twisted growth extending from 

an otherwise healthy-looking bush. The term “witches’ broom” is often used to describe 

these growths. The rosettes are identified by having strapped leaves (long and thin) 

accompanied with shorter internodes and increased thorniness on cultivars with 

prickles/thorns (Windham et al., 2014). In addition to RRD causing visually displeasing 

growth, infection of RRV will normally kill susceptible plants within 2 to 3 years after 

infection. 

Disease lesions and defoliation from severe black spot and cercospora infections 

influence the horticultural aesthetic of the plant. Thus breeding efforts in the Texas 

A&M University Rose Breeding program are focused on developing lines which have 

resistance to black spot, cercospora and rose rosette disease (Byrne et al., 2018). 

Many garden roses are tetraploid which are genetically more complex than their 

diploid counter parts. Due to the genetic complexities and relative importance, there has 

been little genetic research done on tetraploid garden roses. Only three high density SNP 

tetraploid rose linkage maps have been published to date (Zurn et al., 2018; Zurn et al., 

2020; Bourke et al., 2017). Therefore, in the present research, two bi-parental tetraploid 



 

44 

 

populations were created to study defoliation and disease resistance of black spot, 

cercospora, and RRD. Linkage maps were constructed, and QTL scans identified regions 

of interest for the traits studied. 

Currently there are three linkage mapping software packages available for 

mapping autopolyploids. The oldest, TetraploidMap, was updated to allow for more 

markers and renamed TetraploidSNPMap (Hackett et al., 2017). TetraploidSNPMap can 

conduct linkage mapping for genotypes assigned allele dosage and conduct interval 

mapping QTL scans. However, the program has an upper limit of 8000 markers. Two 

newer software packages available for linkage mapping are polymapR (Bourke et al., 

2018) and MAPpoly (Mollinari and Garcia, 2019). All three software packages can order 

markers using MDSmap (Preedy and Hackett, 2016). MDSmap implements multi 

dimension scaling for marker ordering. MAPpoly also has the ability to estimate the 

marker order given an a priori order which can be defined by the physical position of the 

markers.  

After linkage mapping, phased maps can be imported into TetraploidSNPMap 

(Hackett et al., 2017) and QTLpoly (Pereira et al., 2020) for QTL interval mapping. A 

genome-wide association analysis (GWAS) using GWASpoly (Rosyara et al., 2016) was 

used to support these findings. Interval QTL mapping methods explore the probability 

that intervals between markers on a linkage map are affecting the trait we are studying. 

This takes into account both the marker order of the linkage map and the phasing of the 

markers for each individual used to create the linkage map (Miles and Wayne, 2008). 

GWAS methods are different in that they look for significant marker trait associations 
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and is testing each marker separately for significance to the trait. Due to the large 

number of markers compared to numbers of individuals used, Bonferroni corrections or 

a false discovery rate needs to be implemented to take into account false positives 

(Alqudah et al., 2020). 

 

Materials and Methods 

Population Development 

Two F1 populations, Rosa  L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. 

‘Radbrite’ (Brite Eyes™) (SWxBE) n=200 and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa 

L. ‘BAIgirl’ (Easy Elegance® My Girl) (BExMG) n=157, were developed in spring 

2016 by the Texas A&M University Rose Breeding and Genetics Lab and Weeks Roses. 

From here on out the trade names of these cultivars will be used instead of their proper 

scientific name which indicates their plant protection names. These trade names Stormy 

Weather™, Brite Eyes™, and Easy Elegance® My Girl, will be referred to as Stormy 

Weather, Brite Eyes, and My Girl. They will also be abbreviated as SW, BE, and MG, 

respectively. In 2017, the populations were grown from seeds in Somerville, TX, and 

propagated for multi-site evaluation (Table 2.1).  The incidence of RRD was evaluated 

in Crossville, TN, and the incidence of black spot and cercospora resistance was 

assessed in Somerville and Overton, TX.   
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Table 2.1. Tetraploid garden rose (Rosa spp.) mapping populations planted in 

Crossville, TN, Somerville, TX, and Overton, TX in April 2018, for the assessment of 

RRD, black spot, and cercospora leaf spot incidence in 2019. 

Female Male # of Individualsd 

SWa BEb 202 (200) 

BE  MGc 161 (157) 

a Rosa L. ‘ORAfantanov’ (Stormy Weather™)  
b Rosa L. ‘Radbrite’ (Brite Eyes™)  
c Rosa L. ‘BAIgirl’ (Easy Elegance® My Girl)  
d Number of individuals genotyped and used for linkage mapping, number in parenthesis is number of individuals with 

both genotypic and phenotypic data used for QTL analysis 

 

 

The two mapping populations (rooted cuttings) were planted in a randomized 

complete block design (RCBD) (2 reps) at 4 foot spacing in April of 2018 at the Texas 

A&M University Horticulture Teaching Research and Extension Center in Somerville, 

TX (30.52, -96.42), approximately ten miles from the campus of Texas A&M 

University, College Station, TX. Black landscape fabric was used for weed suppression 

and overhead irrigation was installed to encourage black spot development. The soil type 

at this location is Belk clay. Plants were fertilized and irrigated as needed. No fungicides 

were sprayed. Plants were pruned once in the spring of 2018 to a uniform size of around 

1.5 cubic feet. At the Texas A&M AgriLife Research and Extension Center in Overton, 

TX (32.30, -94.98), 2 reps of the rooted cuttings were planted in April 2018 on 4 foot 

spacing in a RCBD. Rows were on 12 foot centers. Landscape fabric was used for weed 

suppression, and drip irrigation was placed underneath the landscape fabric. Irrigation 

and fertilizer was applied as needed. The soil type at this location was a Bowie Fine 

Sandy Loam. Plants were pruned in the winter to 50% reduction in canopy. No 
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fungicides were used and overhead irrigation was not necessary for disease 

development. At the University of Tennessee AgResearch Plateau Research and 

Education Center in Crossville, TN (36.01, -85.13), 2 reps of the rooted cuttings were 

planted in the Spring of 2018 using a RCBD on 4 foot spacing with drip irrigation and 

mulched with wood and bark chips for weed control. The soil type at this location is a 

Lily Loam. Natural RRD infections were augmented by planting inoculum rows with 

RRD infected plants on the outside rows and in the middle of the field. Natural infection 

was augmented by clipping rosettes collected from infected plants onto healthy plants 2-

3 times a year. Infected wild roses (Rosa multiflora) growing in the woods surrounding 

the field also served as a source of inoculum. 

 

Phenotyping 

Plants were phenotyped monthly for black spot incidence, cercospora incidence, 

and level of defoliation from June to November 2019 in Somerville, TX, and in June, 

September, and August in Overton, TX. Data was recorded using Field Book (Rife and 

Poland, 2014). RRD visual ratings were taken in September 2019 in Crossville, TN. 

Plants were tested for the presence of the virus via real-time quantitative PCR (rt-qPCR) 

using methods described in Shires et al. (2018, 2020). RNA extraction was done using a 

modified direct antigen-capture method described by Shires et al. (2018, 2020) by 

crushing samples in ELISA bags and isolating the RRV viral particles via adhesion to 

the polypropylene walls of 1.5 ml microcentrifuge tubes. PCR detection of RRV was 

done using the RRV2 primer sets (Dobhal et al., 2016). The thermocycler was run for 40 
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cycles at 94°C for 30 seconds, 51°C for 30 seconds, and 72°C for 60 seconds. Final 

extension was set at 72°C for 10 minutes. 

Black spot, cercospora, and defoliation were rated on a scale of 0-9 in which 0 

represents no disease in canopy or a lack of defoliation. A rating of 1 would be 

representative of a plant that had 1-10% of the leaves with disease lesions or 1-10% of 

the leaves missing. A rating of 2 would represent 11-20%, et cetera.  

Dr. Mark Windham at the University of Tennessee developed an assessment 

scale for RRD by rating the severity and the number of rosettes per plant. To rate the 

severity, 0 = no symptoms, 1 = small single shoot with rosetting, 2 = 2-3 shoots with 

rosetting, 3 = 4 or more shoots with rosetting. Rosettes per plant are rated as 0 = no 

rosettes, 1 = 1 rosette per plant, 2 = 2 rosettes per plant, 3 = 3 or more rosettes per plant 

(Windham et al., 2014). The rose rosette phenotyping was done by the Windham Lab at 

the University of Tennessee. In addition to visual phenotypic scores, RT-qPCR was used 

to quantify the viral load in the plants over the two years (Dobhal et al., 2016).  Visual 

phenotypic ratings and the PCR results using the threshold cycle as the quantitative trait 

were used for QTL analysis. The Ct values for detection of RRV were between 5-37 

cycles. Samples with Ct values less than or equal to 29 and greater than 5 were 

considered to be strong positives while samples between 30-37 were considered 

moderate to weakly positive for presence of RRV (Shires, 2020). The Ct values ranged 

from 18 to 33. These Ct values were used for QTL scans and GWAS scans with the 

negative samples assigned the value of 37. 
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Phenotypic data was analyzed using JMP 15 (SAS Institute Inc. Cary, NC, USA) 

and SAS 9.4 (SAS Institute Inc. Cary, NC, USA). Normality and homogeneity of 

variance was checked for each trait. The raw phenotypic data of black spot, cercospora, 

defoliation, rose rosette ratings, and rose rosette RT-qPCR ratings did not fit a normal 

distribution. Transformations (square root, x2, natural log, or log) did not make the data 

normal. Thus, comparisons should use non-parametric methods.  However, the non-

parametric comparisons grouped means similarly to Tukeys’ Studentized Tests.  

 

Heritability Estimates 

Mixed models were used to estimate variance due to location, month, replication, 

family, and genotype using the Restricted Estimated Maximum Likelihood (REML) 

method in SAS 9.4 (SAS Institute Inc. Cary, NC, USA). Mixed models using REML 

methods are better at estimating model effects when there is random missing data which 

is common in field research (Holland, 2003). While REML methods require normality of 

data it seems that the method is still robust on skewed data (Banks et al., 1985). 

Heritabilities were calculated from the estimated variances. Models were constructed 

using both location’s data separately and together by including both two-way (genetic x 

month) and three-way interactions (genetic x location x month). Models were considered 

with and without other disease phenotypes as covariates by setting them as fixed effects 

using proc mixed in SAS. Models that included the covariates showed significant effects 

of the covariates on the dependent variable, however, the Akaike information criterion 

(AIC) improvement was minimal while the residual increased.  Other models tested 
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included considering each month by location interaction as a separate environment. The 

model selected for estimating variances to calculate heritability was based on which 

model had the lowest residuals, AIC, and Bayesian information criterion (BIC).  

The area under the disease progress curve (AUDPC) (Simko and Piepho, 2011) 

was calculated using the following equation where yi is the score of the disease, at the ith 

observation and ti is time at the ith observation with n total observations. AUDPC was 

calculated for all traits.    

𝐴𝑈𝐷𝑃𝐶 =  ∑
𝑦𝑖 + 𝑦𝑖+1

2
 × (𝑡𝑖+1 − 𝑡𝑖

𝑛−1

𝑖=1

) 

Variance components were calculated using the models (Table 2.2) where y is 

the observed phenotypic score and all factors of the model were considered random. 

Additive variance (Va) was attributed to the variance between the families (σfamily) and 

the non-additive variance (Vd) was from the variance between the progeny within a 

family (σprogeny[family]). In studies with multiple bi-parental families with several parents, 

the additive variance is calculated by estimating parental variances as the sum of the 

female and male parental variances (Liang et al., 2017). However, since our two 

mapping populations only have three parents, we can only estimate additive variance as 

the variance between the two half sib families. A good approximation for the 

combination of the male and female parental variances is the collapse of that term into a 

family term. Narrow and broad sense heritabilities were calculated from the variances 

obtained from the mixed models (Table 2.3).  
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Table 2.2. Models used to calculate heritability and environmental effects for two 

tetraploid garden rose mapping populations. 

  Models 

Somerville or Overton 

alone 

y = σ2
family + σ2

progeny[family] + σ2
rep[month]+ σ2

month + σ2
month 

x family + σ2
month x progeny[family] + σ2

error 

AUDPC y = σ2
family + σ2

progeny[family] + σ2
environment  + σ2

rep[environment] 

+ σ2
environment x family + σ2

environment x progeny[family] + σ2
error 

Full model with three-

way interaction 

y = σ2
family + σ2

progeny[family] + σ2
location  + σ2

 month [location]  + 

σ2
rep[location* month] + σ2

location x family + σ2
location x progeny[family] 

+ σ2
month x family + σ2

month x progeny[family] + σ2 
location x month x 

family + σ2
location x month x progeny[family] +   σ2

error 

Models with each 

location by month 

combination as a separate 

environment 

y = σ2
family + σ2

progeny[family] + σ2
environment  + σ2

environment x 

family + σ2
environment x progeny[family] +   σ2

error 

 

 

Table 2.3. Variance components, abbreviations, and heritability calculations. 

Va Additive variance = σ2
family 

Vd Non-additive variance = σ2
progeny[family] 

Vg Genotypic variance = Va + Vd = σ2
family + σ2

progeny[family] 

Vgxe Genotype by Environment variance (including both locations) = σ2
location 

x family + σ2
location x progeny[family] + σ2

month x family + σ2
month x progeny[family] +  

σ2
location x month*family +  σ2

location x month*progeny[family] 

Genotype by Environment variance (locations calculated separately) =  

σ2
month x family + σ2

month x progeny[family]  

Vp Phenotypic variance = (Va+Vd+Vg×e/E)+(residual/rE) 

r Number of reps 

e Number of environments 

h2 Va/Vp 

H2 =(Va+Vd)/Vp 
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Heritability estimates were calculated using an entry means method where r is 

the number of evaluation environments and e is the number of reps:  

𝐻(𝑝𝑟𝑜𝑔𝑒𝑛𝑦 𝑚𝑒𝑎𝑛 𝑏𝑎𝑠𝑖𝑠)
2 =

𝜎𝑝𝑟𝑜𝑔𝑒𝑛𝑦
2

𝜎𝑝𝑟𝑜𝑔𝑒𝑛𝑦
2 +

𝜎𝑝𝑟𝑜𝑔𝑒𝑛𝑦 𝑥 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
2

𝑟 +
𝜎𝑒𝑟𝑟𝑜𝑟

2

𝑟𝑒

 

Narrow sense heritability, h2, was calculated dividing the variance between the 

families by the total phenotypic variance h2 = (σ2
family) / (σ

2
family + σ2

progeny[family] + 

σ2
location x family + σ2

location x progeny[family] + σ2
month x family + σ2

month x progeny[family] + σ2 
location x 

month x family + σ2
location x month x progeny[family] +   σ2

error). The GxE interaction terms were 

divided by 9 as there were 9 individual environments in which data was recorded. The 

error term was divided by 18 as two replications were evaluated in each environment. 

The broad sense heritability (H2) was calculated similarly with the only difference being 

the numerator being the sum of the variance between the families and the variance due to 

difference within the family H2 = (σ2
family + σ2

progeny[family]) / (σ
2

family + σ2
progeny[family] + 

σ2
location x family + σ2

location x progeny[family] + σ2
month x family + σ2

month x progeny[family] + σ2 
location x 

month x family + σ2
location x month x progeny[family] +   σ2

error). 

 

Genotyping and Allele Dosage Calling 

Unexpanded young leaf tissue was collected, flash frozen in liquid nitrogen and 

stored at -80°C until DNA extraction. DNA was extracted using a the CTAB protocol 

described by Yan et al., (2018). Extracted DNA samples were incubated with RNase at 

37°C and purified using the OneStep™ PCR Inhibitor Removal Kit (Zymo Research, 

Irvine, CA, USA). Extracted DNA samples were quantified using a DS-11 
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spectrophotometer (DeNovix Inc, Wilmington, DL, USA) using Accublue® high 

dsDNA Quantification standards (Biotium, Inc., Fremont, CA, USA). DNA samples 

with a concentration of greater than 50 ng/µL were sent to Thermo Fisher Scientific for 

genotyping on the Axiom WagRhSNP 68k array (Koning-Boucoiran et al., 2015). The 

SNPs on this array were designed using RNA-Seq from tetraploid cut and garden roses 

and a diploid Rosa multiflora hybrid. For each SNP on the WagRhSNP 68k array, there 

are two probes, one for the forward and another for the reverse strand of DNA. Parental 

genotypes were replicated as 4 separate extraction events as a quality control for making 

sure the parental genotypes were well genotyped.  

The raw light intensity data files (.cel files) from Thermo Fisher were aggregated 

using Axiom Analysis Suite and R package ‘SNPolisher’ (v 2.0.3; Affymetrix, Inc.). 

Dosage allele calling was performed using the default parameters of the 

‘saveMarkerModels’ function indicating the parents of the cross using the ‘pop.parents’ 

and ‘population’ arguments of the R package ‘fitPoly’ (v 3.0.0; Voorrips et al., 2011). 

The WagRhSNP 68k array was designed to have two probes (forward and reverse 

strand) per SNP and fitPoly scores all probes as separate “markers”.  A custom R script 

combined the data from both probes that represented each SNP. Probes with the same 

allele dosage assignment and those with only one probe that was called were kept, 

whereas probes that had differing genotype calls were discarded. About 18.9% of the 

markers were consistent between the two probes, 37% having only one probe being 

called, 12% having different calls, and 32% were not called (Table 2.4).  Markers were 

then filtered for only those that had both parental calls resulting in 38,459 and 38,482 
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markers in the SWxBE and BExMG mapping populations respectively. Filtering for 

non-segregating markers, progeny incompatibility, markers with missing data cutoff = 

0.01, missing genotype calls per individual cutoff = 0.075, and binning markers with 

identical segregation, resulted in 5,396 and 6,969 markers respectively used for linkage 

mapping in the SWxBE and BExMG mapping populations. The parental genotyping 

calls were less than 0.5% different between the 4 replicates (0.25% - 0.42% range) and a 

consensus parental call was created for the markers that were different between 

genotyping runs. Principle component analysis on the markers from the function 

‘PCA_progeny’ in ‘polymapR’ identified off types (Figure 2.1) that were removed from 

the analysis. 

 

Table 2.4. WagRhSNP 68K array marker call comparison between the two 

oligonucleotide fragments for each marker for two tetraploid garden rose families. 

Markers with congruent and single probe calls were kept while markers with probes that 

had different calls were discarded. Averages were calculated by summation of the 

number of markers classified in each group below for each individual in the mapping 

population. 

Family Congruent  

calls 

Single probe 

calls 

Different 

Probe calls 

Not called 

SWxBE 13000 (18.9%) 25285 (36.8%) 8500 (12.4%) 21939 (31.9%) 

BExMG 12969 (18.9%) 25350 (36.9%) 8425 (12.2%) 21979 (32.0%) 
SW - Rosa L. ‘ORAfantanov’ (Stormy Weather™)  

BE - Rosa L. ‘Radbrite’ (Brite Eyes™)  

MG - Rosa L. ‘BAIgirl’ (Easy Elegance® My Girl)  
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Figure 2.1. PCA of genotype calls in which off types, selfs, and a third population is 

observed in tetraploid garden rose. On the left and colored in red is the SWxBE and the 

group on the right colored in the black is BExMG population. The top left is Stormy 

Weather and any identified selfs, the top right is My Girl along with its selfs, and at the 

bottom is Brite Eyes along with its selfs. A third off type population can be seen in the 

center top in between Stormy Weather and My Girl. All genotypes not within the  

two main SWxBE and BExMG clusters were removed prior to linkage mapping. 
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Linkage Mapping 

Linkage map construction was attempted using both MAPpoly and polymapR, 

however, due to the computational requirements of MAPpoly and difficulty grouping 

linkage groups, linkage mapping was performed using polymapR. Maps were created for 

both mapping populations. Parental maps were created then merged to create a 

consensus map for the population. Pairwise recombination was initially calculated 

between the simplex by nulliplex (SN markers) markers (roughly 2300 markers) to form 

7 linkage groups with 4 homologs per linkage group using the “linkage” and 

“cluster_SN_markers” function. Marker groupings that did not cluster with any of the 28 

homologs were removed (Figure 2.2). These simplex by nulliplex markers served as a 

scaffold of the linkage map. After establishing the linkage groups with their homologs, 

simplex by simplex, duplex by nulliplex, and all other marker types were fit to the map 

by calculating the linkage between the aforementioned markers and the simplex by 

nulliplex markers using “assign_linkage_group” and “homologue_lg_assignment” 

functions. MDSmap (Preedy and Hackett, 2016) was utilized to order the markers from 

within polymapR using the default Haldane mapping function. Markers on the end of the 

linkage groups that were greater than 5 cM from the next marker and had nnfit values 

greater than 10, were removed. The resulting maps were checked for preferential pairing 

and linkage groups with preferential pairing were rerun to account for the pairing 

behavior. Preferential pairing was only detected on LG 1 in the SWxBE and on LG 5 in 

the BExMG populations. The rerun maps resulted in maps that were 2-3 cM shorter and 

decreased largest gaps by 1-2 cM for those chromosomes. Markers that did not 
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physically map (Saint-Oyant et al., 2018) to the right LG were removed resulting in the 

removal of 1086 and 1355 markers from the SWxBE and BExMG maps respectively. 

After linkage mapping, the LGs were oriented in the same direction as the OBDH_1.0 

rose genome assembly (Saint-Oyant et al., 2018).  

 

 
Figure 2.2. Simplex x nulliplex marker clusters for tetraploid garden rose Stormy 

Weather™. Plot generated from “cluster_SN_markers” function in polymapR where one 

cluster does not seem to group with any particular LG or homolog and is considered 

“noise” and discarded. 

 

QTL Analysis 

Phased maps generated by polymapR were imported into TetraploidSNPMap 

(Hackett et al., 2017) and QTLpoly (Pereira et al., 2019) for QTL interval mapping. 

Phenotypic values used in the QTL scans were best linear unbiased predictions (BLUPs) 
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calculated from mixed models using the PROC MIXED in SAS 9.4 (SAS Institute Inc. 

Cary, NC, USA). In order to use QTLpoly, the polymapR generated map was imported 

into MAPpoly and converted into conditional genotypic probabilities. QTL scans were 

run in QTLpoly using both the “remim” and “feim” functions. The “remim” function 

scans for QTL by first building a null model where the first round of score statistics are 

run for each trait, followed by rounds of forward search of QTL and backward 

elimination of QTL. The genome wide significance levels used for the forward search of 

QTL and backward eliminations are determined by using a score-based resampling 

method to establish a genome-wide significance by simulating QTL at every position in 

the linkage map (Zou et al., 2004). The simulation is run 1000 times prior to QTL 

mapping to obtain the p-values to be used for forward search and backward elimination 

of QTL in the remim method. After rounds of adding and eliminating QTL, the model of 

the location of the QTL is refined and confidence intervals are calculated for each QTL. 

The “feim” function implemented, first proposed by Hackett et al. (2001), does not 

account for multiple QTL and only scans for QTL at each interval specified. Thus, there 

is no stepwise addition and subtraction of QTL during the scan and the results are similar 

to TetraploidSNPMap. Allele effects estimated the effect of the QTL on the phenotypic 

mean in QTLpoly using the “qtl_effects” function. The interpretation of the allele effects 

results is clear with QTL segregating in a simplex x nulliplex manner (1x0) and as doses 

are added, it become more difficult to interpret the results due to population sizes of the 

mapping populations. We are able to interpret segregation patters of up to two doses 

(1x0, 0x1, 1x1, 2x0, and 0x2).  



 

59 

 

In addition to performing QTL analysis with TetraploidSNPMap and QTLpoly, 

genome-wide marker association (GWAS) analysis was performed with GWASpoly 

(Rosyara et al., 2016) using the markers’ physical positions. Markers were not LD-

pruned to detect QTL peaks in the populations. Initially, the two bi-parental populations 

were run together with the relatedness accounted for using a K-matrix derived from 

genotypic information. The bi-parental populations were then run separately to 

determine which QTL were present in each population.  

 

Marker Assisted Progeny Selection 

The most significant markers were used to select individuals that carried 

resistance alleles for both black spot and cercospora. The markers were then individually 

tested using ANOVA and Tukey’s means separation to determine which allele state 

conferred resistance. Individuals carrying multiple resistance alleles are useful in 

breeding as resistance may come from different sources. Stacking many smaller effect 

resistance QTL may offer more stable resistance as multiple mechanisms must be 

overcome by the pathogen. 

 

Results and Discussion 

Populations Created and Seedling Rates 

 Initially, there were 405 SWxBE and 298 BExMG seedlings created however 

due to the number of replicates available and number of individuals genotyped, only 200 

SWxBE and 157 BExMG individuals were used in linkage mapping and subsequent 
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QTL analysis (Tables 2.1 and 2.5). The creation of the mapping populations was a joint 

effort by Texas A&M University Rose Breeding and Weeks Roses. The BExMG family 

includes individuals pooled from a reciprocal cross in order to have enough individuals 

for better linkage map resolution. 

 

Table 2.5 Tetraploid garden rose families developed by Texas A&M University and 

Weeks Roses for the study of black spot, cercospora leaf spot, and rose rosette disease. 

Number of hips, seed, seedlings, and percent germination shown. 

Female parent Male 

parent 

Number 

of hips 

Number 

of seed 

Number 

of 

seedlings 

Percent 

germination 

Stormy 

Weather 

Brite Eyes 91 1065 405 38.03% 

Brite Eyes My Girl 83 1030 298 28.93% 

* The Brite Eyes x My Girl population includes individuals pooled from a reciprocal 

cross. 

 

Phenotyping Results 

 There were differences between the months among most traits. The percentage of 

variance explained by month was between 2.6 and 7.1% when estimated by the model: 

y=σ2
family + σ2

progeny[family] + σ2
location + σ2

 month [location] + σ2
rep[location* month] + σ2

location x family + 

σ2
location x progeny[family] + σ2

month x family + σ2
month x progeny[family] + σ2 

location x month x family + 

σ2
location x month x progeny[family] + σ2

error. As the data for black spot, cercospora, and defoliation 

was not normally distributed (Figures 2.3-2.4), nonparametric Spearman’s correlations 

(Table 2.6, Figure 2.5) were conducted on BLUPs calculated from a mixed model. 

Although the correlations between defoliation and the disease incidence were weak to 

very weak, the two disease incidence ratings showed a moderate negative correlation. 
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The moderate negative correlation between black spot and cercospora is possibly due to 

the difficulty of assessing cercospora incidence on a plant largely defoliated by black 

spot or competition between the two fungal organisms. In recently defoliated plants, new 

leaves that form may not have the same inoculum pressure or may not have enough time 

for cercospora to colonize leading to a low cercospora disease score.   

 

 

 
Figure 2.3. Histograms of black spot, cercospora leaf spot, and defoliation ratings 

evaluated on two tetraploid garden rose families Stormy Weather x Brite Eyes and Brite 

Eyes x My Girl in 2019 at Somerville, TX, and Overton, TX. Histograms are shown 

from these traits at both locations, Somerville, and Overton. Black spot, cercospora leaf 

spot, and defoliation were rated on a scale of 0-9 in which 0 represents no disease in 

canopy or a lack of defoliation. A rating of 1 would be representative of a plant that had 

1-10% of the leaves with disease lesions or 1-10% of the leaves missing. A rating of 2 

rating would indicate 11-20 % etc. Histograms are of raw data. 
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Figure 2.4. Histograms of black spot, cercospora leaf spot, and defoliation ratings 

evaluated on two garden rose families Stormy Weather x Brite Eyes and Brite Eyes x 

My Girl in 2019 at Somerville, TX, and Overton, TX. Histograms are showing the two 

populations together and separately. On the x axis is the disease severity score and the y 

axis is the number of observations of those scores. Histograms show data combined and 

by family. Black spot, cercospora leaf spot, and defoliation were rated on a scale of 0-9 

in which 0 represents no disease in the canopy or a lack of defoliation. A rating of 1 

would be representative of a plant that had 1-10% of the leaves with disease lesions or 1-

10% of the leaves missing. A rating of 2 rating would indicate 11-20 % etc. Histograms 

are of raw data. 

 

 

Table 2.6. Spearman correlations between phenotypic traits gathered from two tetraploid 

garden rose mapping populations. 

Variable by Variable Spearman ρ Prob>|ρ| 

Cercospora Black spot -0.5614 <.0001 

Defoliation Black spot 0.317 <.0001 

Defoliation Cercospora -0.1321 0.007 

*correlations were conducted using best linear unbiased predictors calculated from a 

mixed model. 
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Figure 2.5. Scatterplot matrix of the correlations among black spot, cercospora, and 

defoliation on two tetraploid garden rose mapping populations. Correlations were 

conducted using best linear unbiased predictors (BLUPs) calculated from a mixed 

model. Numbers in the top right half of plots are the Spearman’s correlation denoted 

with asterisks denoting significance. The bottom left half are the scatterplots of the 

BLUPs of all the genotypes and the red line is a fitted line. 

 

Phenotypic Means Comparisons Between Month and Families. 

In 2019 in Somerville, TX, black spot incidence increased from June to July, 

decreased in the months of August, September, and October, and peaked in November 

whereas cercospora incidence increased between June and July then decreased over the 

rest of the year. Defoliation was lower in the beginning of the year, however as the heat 
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and disease pressure increased during the year, so did defoliation (Figures 2.6-2.8). 

These trends are consistent over both populations. Differences between disease pressure 

and defoliation between the populations were significant in all months except for black 

spot ratings in September (Figures 2.9-2.11). 

In Overton, TX, black spot incidence was lowest in September and highest in 

June and October. Defoliation decreased while cercospora incidence increased from June 

to October. These trends are consistent over both populations (Figures 2.12-2.14). The 

populations differed in disease incidence and defoliation except for defoliation in 

September and October (Figures 2.15-2.17). 

The decrease in both black spot and cercospora during the summer and early fall 

months can be attributed to the lack of moisture as those were the driest months 

accompanied with the hottest temperatures (Figures 2.18-2.19). Both fungal diseases 

need moisture for development, and both can be hindered by extreme temperature. In 

addition to the lack of moisture and high temperature, the adverse summer weather 

conditions can also inhibit new growth on the plants on which the fungal pathogens can 

infect. 
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Figure 2.6. Monthly means of black spot, cercospora and defoliation of two tetraploid 

garden rose mapping populations in Somerville, TX in 2019. Means separation using 

Tukey’s HSD. Means with differing letters are significantly different at P≤0.05. A rating 

of 1 would be representative of a plant that had 1-10% of the leaves with disease lesions 

or 1-10% of the leaves missing. A rating of 2 rating would indicate 11-20 % etc. 

  

 

 

 
Figure 2.7. Monthly means of black spot, cercospora and defoliation of tetraploid 

garden rose mapping population Brite Eyes x My Girl in Somerville, TX in 2019. Means 

separation using Tukey’s HSD. Means with differing letters are significantly different at 

P≤0.05. A rating of 1 would be representative of a plant that had 1-10% of the leaves 

with disease lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 

11-20 % etc. 
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Figure 2.8. Monthly means of black spot, cercospora and defoliation of two tetraploid 

garden rose mapping Stormy Weather x Brite Eyes in Somerville, TX in 2019.  Means 

separation using Tukey’s HSD. Means with differing letters are significantly different at 

P≤0.05. A rating of 1 would be representative of a plant that had 1-10% of the leaves 

with disease lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 

11-20 % etc. 

 

 

 

 
Figure 2.9. Comparison of monthly black spot incidence for the tetraploid garden rose 

mapping populations Brite Eyes x My Girl and Stormy Weather x Brite Eyes in 

Somerville, TX, in 2019. Differences between family means are significant at P≤0.05 

except for months denoted with ns. A rating of 1 would be representative of a plant that 

had 1-10% of the leaves with disease lesions or 1-10% of the leaves missing. A rating of 

2 rating would indicate 11-20 % etc. 
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Figure 2.10. Comparison of monthly cercospora incidence for the tetraploid garden rose 

mapping populations Brite Eyes x My Girl and Stormy Weather x Brite Eyes in 

Somerville, TX, in 2019. Differences between family means are significant at P≤0.05 at 

all months. A rating of 1 would be representative of a plant that had 1-10% of the leaves 

with disease lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 

11-20 % etc. 

 

 

 

 
Figure 2.11. Comparison of monthly defoliation incidence for the tetraploid garden rose 

mapping populations Brite Eyes x My Girl and Stormy Weather x Brite Eyes in 

Somerville, TX, in 2019. Differences between family means are significant at P≤0.05 at 

all months. A rating of 1 would be representative of a plant that had 1-10% of the leaves 

with disease lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 

11-20 % etc. 
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Figure 2.12. Monthly black spot, cercospora and defoliation evaluations of two 

tetraploid garden rose mapping populations in Overton, TX in 2019. Means separation 

using Tukey’s HSD. Means with differing letters are significantly different at P≤0.05. A 

rating of 1 would be representative of a plant that had 1-10% of the leaves with disease 

lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 11-20 % etc. 

  

 

 

 
Figure 2.13. Monthly black spot, cercospora, and defoliation evaluations of tetraploid 

garden rose mapping population Brite Eyes x My Girl in Overton, TX in 2019. Means 

separation using Tukey’s HSD. Means with differing letters are significantly different at 

P≤0.05. A rating of 1 would be representative of a plant that had 1-10% of the leaves 

with disease lesions or 1-10% of the leaves missing. A rating of 2 rating would indicate 

11-20 % etc. 

  

1.95 a

0.8 b

2.09 a

1.09 c

1.92 b

2.94 a2.87 a

2.05 b

1.63 c

0

0.5

1

1.5

2

2.5

3

3.5

June September October

D
is

ea
se

 I
n

ci
d

en
ce

Blackspot Cercospora Defoliation

1.76 a

0.6 b

1.43 a
1.65 c

2.67 b

3.63 a

2.22 a 2.18 a

1.61 b

0

0.5

1

1.5

2

2.5

3

3.5

4

June September October

D
is

ea
se

 in
ci

d
en

ce

Blackspot Cercospora Defoliation



 

69 

 

 
Figure 2.14. Monthly black spot, cercospora, and defoliation evaluations of tetraploid 

garden rose mapping population Stormy Weather x Brite Eyes in Overton, TX in 2019. 

Means separation using Tukey’s HSD. Means with differing letters are significantly 

different at P≤0.05. A rating of 1 would be representative of a plant that had 1-10% of 

the leaves with disease lesions or 1-10% of the leaves missing. A rating of 2 rating 

would indicate 11-20 % etc. 

 

 

 
Figure 2.15. Comparison of monthly black spot ratings of two tetraploid garden rose 

mapping populations, Brite Eyes x My Girl and Stormy Weather x Brite Eyes, in 

Overton, TX in 2019. Means separation used Tukey’s HSD. A rating of 1 would be 

representative of a plant that had 1-10% of the leaves with disease lesions or 1-10% of 

the leaves missing. A rating of 2 rating would indicate 11-20 % etc. An * denotes 

differences between the families at P≤0.05. 
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Figure 2.16. Comparison of cercospora leaf spot ratings of two tetraploid garden rose 

mapping populations, Brite Eyes x My Girl and Stormy Weather x Brite Eyes, in 

Overton, TX in 2019. Means separation used Tukey’s HSD. A rating of 1 would be 

representative of a plant that had 1-10% of the leaves with disease lesions or 1-10% of 

the leaves missing. A rating of 2 rating would indicate 11-20 % etc. An * denotes 

differences between the families at P≤0.05. 

 

 

 

 
Figure 2.17. Comparison of monthly defoliation ratings of two tetraploid garden rose 

mapping populations, Brite Eyes x My Girl and Stormy Weather x Brite Eyes, in 

Overton, TX in 2019. Means separation used Tukey’s HSD. A rating of 1 would be 

representative of a plant that had 1-10% of the leaves with disease lesions or 1-10% of 

the leaves missing. A rating of 2 rating would indicate 11-20 % etc. An * denotes 

differences between the families at P≤0.05 and ns denotes no difference between the two 

families. 
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Figure 2.18. Average maximum and minimum monthly temperatures and corresponding 

accumulated monthly precipitation in 2019 for College Station, TX, 

(GHCND:USW00003904) approximately 5 miles from the Texas A&M University 

Horticulture Teaching Research and Extension Center in Somerville, TX. Temperature 

scale on left y-axis is in degrees Fahrenheit and precipitation’s scale is on the right y-

axis measured in inches. 

 

 

 
Figure 2.19. Average maximum and minimum monthly temperatures and corresponding 

accumulated monthly precipitation for in 2019 Tyler, TX, (GHCND:USC00419207) 

approximately 20 miles from the Overton experiment station. Temperature scale on left 

y-axis is in degrees Fahrenheit and precipitation’s scale is on the right y-axis measured 

in inches. 
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Heritability Estimates 

Black spot, cercospora, and defoliation, narrow sense heritability ranged from 2.3 

to 9.3%, 16.4 to 21.5% and 0 to 19.8%, respectively. Black spot, cercospora, and 

defoliation broad sense heritability ranged from 49.3 to 85.5%, 85.7 to 95.4% and 35.2 

to 86.5%, respectively (Tables 2.7-2.9). Over all traits, the narrow sense heritability was 

low indicating a low level of additive genetic effects. The broad sense heritabilities 

however are moderate to very high indicating large non-additive genetic effects for these 

traits. As seen later in the discussion of the QTL, many of these traits segregate in a 

simplex x nulliplex fashion (1x0 and 3x4).  

The heritability estimates between the two locations differ as the disease pressure 

and the number of individuals at each test location were not the same (Table 2.10). As 

there were limited numbers of clonal propagates for each genotype, priority was given to 

planting two replicates in Somerville, TX, for ornamental and disease pressure screening 

and in Crossville, TN, for screening for RRD resistance. Because mixed models utilizing 

REML methods is robust when having unbalanced designs, heritability estimates 

calculated using models from both College Station, TX, and Overton TX, are a better 

estimate of heritability than looking at either location separately. 

Along with heritability, the variance attributed to environmental effects on all 

traits was less than 20% of the variance. The GxE variance in most cases was greater 

than the variance observed on the environment alone. The implications from having a 

high GxE effect is that genotypic selections will differ depending on the environment in 

which the selection was made. However, for both black spot and cercospora, the GxE/G 
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ratio is less than 1 meaning that we should be able to make progress in selecting for 

individuals in most of the environments as the genetic variance is greater than the GxE 

variance. For defoliation, the GxE/G ratio is greater than 1 when considering both 

Somerville and Overton locations together. However, looking at Somerville alone, the 

GxE/G ratio is less than 1 meaning that at that location, we should be able to select for 

individuals with better resistance to defoliation throughout the year.   The full model and 

the model which treated each month and location combination as a separate environment 

were the models we focused on as they were able utilize all the data from both locations.  

In the end, we chose the full model from the list of models listed in Tables 2.7-2.9. The 

individual variance components from the selected model are listed Table 2.11. BLUPs 

were obtained from the full model for use in QTL and GWAS scans; and the variances 

of the full model and percent of variance attributed to genetic, environmental, and error 

is listed in Table 2.11 and Figure 2.20. Standard errors to heritability estimates were 

calculated using the Dickerson approximation (Dickerson, 1969). 
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Table 2.7. Black spot heritabilities calculated from tetraploid garden rose mapping 

populations, Brite Eyes x My Girl and Stormy Weather x Brite Eyes, phenotyped in 

Somerville, TX, and Overton, TX, in 2019.  

Somerville  Overton 

AUDPC 

both 

combined 

Full 

model 

Month and 

location 

combinations 

treated as separate 

environments 

h2 0.023 0.093 0.053 0.071 0.070 

H2 0.855 0.686 0.698 0.853 0.885 

Parental 0.010 0.035 0.030 0.023 0.025 

Progeny 0.349 0.226 0.400 0.250 0.296 

Environment 0.059 0.107 0.017 0.078 0.070 

GxE 0.154 0.098 0.205 0.206 0.346 

G 0.359 0.261 0.429 0.272 0.322 

GxE/G 0.430 0.374 0.479 0.758 1.076 

residual 0.422 0.520 0.338 0.433 0.445  

AIC 13606.7 5039.8 14680.5 18616.2 18644.6 

 

 

Table 2.8. Cercospora leaf spot heritabilities calculated from tetraploid garden rose 

mapping populations, Brite Eyes x My Girl and Stormy Weather x Brite Eyes, 

phenotyped in Somerville, TX, and Overton, TX, in 2019. 

 Somerville Overton 

AUDPC 

both 

combined 

Full 

model 

Month and 

location 

combinations 

treated as separate 

environments 

h2 0.164 0.211 0.215 0.195 0.189 

H2 0.942 0.857 0.861 0.931 0.954 

Parental  0.104 0.105 0.169 0.104 0.108 

Progeny 0.497 0.323 0.507 0.392 0.438 

Environment 0.038 0.177 0.002 0.022 0.068 

GxE 0.081 0.034 0.135 0.184 0.306 

G 0.601 0.428 0.675 0.496 0.547 

GxE/G 0.135 0.079 0.200 0.371 0.560 

residual 0.278 0.359 0.164 0.295 0.293 

AIC 15386.9 4965.3 15555.3 20204.6 20234.9 
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Table 2.9. Defoliation heritabilities calculated from tetraploid garden rose mapping 

populations Brite Eyes x My Girl and Stormy Weather x Brite Eyes phenotyped in 

Somerville, TX, and Overton, TX, in 2019.  

Somerville Overton 
AUDPC both 

combined  
Full model 

Month and 

location 

combinations 

treated as 

separate 

environments 

h2 0.198 0.000 0.070 0.147 0.175 

H2 0.859 0.322 0.623 0.800 0.865 

Parental 0.087 0.000 0.026 0.038 0.058 

Progeny 0.290 0.092 0.207 0.170 0.231 

environment 0.062 0.066 0.347 0.093 0.104 

GxE 0.209 0.194 0.145 0.287 0.616 

G 0.377 0.082 0.233 0.208 0.289 

GxE/G 0.555 2.360 0.619 1.380 2.133 

residual 0.323 0.648 0.275 0.361 0.363 

AIC 16104.9 5049.7 15455.7 21140.3 21199.4 

 

 

 

Table 2.10. Number of genotypes from tetraploid garden rose mapping populations Brite 

Eyes x My Girl and Stormy Weather x Brite Eyes at each location in 2019 used for 

heritability calculations. 

Location Number of 

Genotypes 

SWxBE BExMG 

Somerville, TX 363 188 172 

Overton, TX 286 179 107 

Together 412 234 178 

*number of genotypes were not same in both locations due to number of clonal 

propagates available and due to seedling die off from weak clonal propagates. 
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Table 2.11. Sources of variation in two garden rose mapping populations Brite Eyes x 

My Girl and Stormy Weather x Brite Eyes phenotyped for black spot, cercospora and 

defoliation in Somerville, TX, and Overton, TX, in 2019. 

Source of variation Black spot Cercospora Defoliation 

Family 0.06522 0.5571 0.1856 

Progeny(Family) 0.7195*** 2.1008*** 0.825*** 

Location 0.0706 0.04806 0.305 

Month 0.155 0.07232 0.1473 

Rep(Location x Month) 0.03006* 0.01124 0.2448* 

Location x Family 0 0 0.07682 

Location x Genotype 0.1723*** 0.3006*** 0.3363*** 

Family x Month 0 0 0.0438 

Genotype x Month 0.1291** 0.1264* 0.605*** 

Location x Family x Month 0.1199* 0.2943* 0.02027 

Location x Genotype x Month 0.1732** 0.266** 0.3128*** 

Residual 1.2476*** 1.5833*** 1.7549*** 

Total 2.88248 5.36012 4.85759 

Percent of total varianceabc 

h2 0.071 (0.122) 0.195 (0.504) 0.147 (0.312) 

H2 0.853 (0.151) 0.931 (0.305) 0.800 (0.292) 

Parental 0.023 0.104 0.038 

Progeny 0.250 0.392 0.170 

Genotypic (G) 0.272 0.496 0.208 

Environment (E) 0.078 0.022 0.093 

GxE 0.206 0.184 0.287 

Residual 0.433 0.295 0.361 

GxE/G ratio 0.758 0.371 1.380 
a Narrow sense heritability, h2 = σ2

family / (σ
2

family + σ2
genotype[family] + ( σ2

location x family + 

σ2
location x genotype[family] + σ2

month x family + σ2
month x genotype[family] +  σ2

location x month*family +    

σ2
location x month*genotype [family] )/e +  (σ2

error)/re) 
b Broad sense heritability, H2 =  (σ2

family + σ2
genotype[family] )/ (σ

2
family + σ2

genotype[family] + ( 

σ2
location x family + σ2

location x genotype[family] + σ2
month x family + σ2

month x genotype[family] +  σ2
location x 

month*family +    σ2
location x month*genotype [family] )/e +  (σ2

error)/re) 

r=reps 

e=environments 
c Standard Errors calculated for heritabilities in parenthesis and calculated using the 

Dickerson estimation  
*, **, *** Variance components are significant at P≤0.05, 0.01, or 0.001, respectively 

using the Wald’s Z test. 
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Figure 2.20. Percentage of phenotypic variance attributed to genetic, environmental, 

genotype by environment, and residual variance for two garden rose populations 

phenotyped for black spot, cercospora leaf spot, and defoliation, in Somerville, TX, and 

Overton, TX, in 2019. Mixed models were used to estimate variances. 
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Table 2.12. Black spot phenotypic variance and heritability calculations by environment 

for two garden rose mapping populations, Brite Eyes x My Girl and Stormy Weather x 

Brite Eyes, in Somerville, TX, and Overton, TX in 2019. Mixed models were used to 

estimate variances. 

   SM6 SM7 SM8 SM9 SM10 SM11 OV6 OV9 OV10 

Family 0.037 0.182 0.022 0.000 0.014 0.379 0.042 0.041 0.528 

Progeny (family) 1.230 1.506 0.531 0.411 0.752 2.821 0.574 0.577 2.144 

Rep 0.011 0.000 0.000 0.000 0.017 0.065 0.160 0.000 0.000 

Residual 0.909 1.427 0.917 0.883 0.620 1.624 1.729 1.313 2.590 

Total 2.187 3.114 1.469 1.293 1.403 4.889 2.506 1.930 5.262 

Heritabilites and residual expressed as a percent of total variance 

h2 0.022 0.076 0.021 0.000 0.013 0.094 0.028 0.032 0.133 

H2 0.736 0.703 0.547 0.482 0.712 0.798 0.416 0.485 0.674 

Residual 0.416 0.458 0.624 0.682 0.442 0.332 0.690 0.680 0.492 
a Environments are denoted as either SM or OV for Sommerville, TX, and Overton, TX, followed by the 

month in which the data was taken. 
b Narrow sense heritability calculated by h2 =  σ2

family / (σ2
family + σ2

genotype[family] + σ2
error /r) 

c Broad sense heritability calculated by H2 = (σ2
family + σ2

progeny[family]) / (σ2
family + σ2

progeny[family] + σ2
error / r) 

r=reps 

 

 

 
Figure 2.21. Distribution of genetic, replication, and residual variation for black spot by 

environment measured on two tetraploid garden rose mapping populations, Brite Eyes x 

My Girl and Stormy Weather x Brite Eyes, in Somerville, TX, (SM) and Overton, TX, 

(OV) in 2019. Mixed models were used to estimate variances. 
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Table 2.13. Cercospora phenotypic variance and heritability by environment for two 

garden rose mapping populations, Brite Eyes x My Girl and Stormy Weather x Brite 

Eyes, in Somerville, TX, and Overton, TX in 2019. Mixed models were used to estimate 

variances. 
  SM6 SM7 SM8 SM9 SM10 SM11 OV6 OV9 OV10 

Family 0.258 0.797 0.723 0.735 0.439 0.700 0.405 0.620 0.510 

Genotype(Family) 3.024 5.100 4.739 2.530 2.033 1.980 1.236 1.895 2.035 

Rep 0.000 0.006 0.009 0.026 0.044 0.000 0.000 0.034 0.000 

Residual 1.428 1.914 1.922 1.512 1.163 1.557 1.399 1.737 1.866 

Total 4.709 7.817 7.393 4.803 3.679 4.236 3.041 4.286 4.410 

Heritabilites and residual expressed as a percent of total variance 

h2 0.065 0.116 0.113 0.183 0.144 0.202 0.173 0.183 0.147 

H2 0.821 0.860 0.850 0.812 0.810 0.775 0.701 0.743 0.732 

Residual 0.303 0.245 0.260 0.315 0.316 0.367 0.460 0.405 0.423 

a Environments are denoted as either SM or OV for Sommerville, TX, and Overton, TX, followed by the 

month in which the data was taken. 
b Narrow sense heritability calculated by h2 =  σ2

family / (σ2
family + σ2

genotype[family] + σ2
error /r) 

c Broad sense heritability calculated by H2 = (σ2
family + σ2

progeny[family]) / (σ2
family + σ2

progeny[family] + σ2
error / r) 

r=reps 

 

 

 

 
Figure 2.22. Distribution of percent variation contributed by genetic factors, rep, and 

residual calculated from cercospora measured on two garden rose mapping populations, 

Brite Eyes x My Girl and Stormy Weather x Brite Eyes, in Somerville, TX, (SM) and 

Overton, TX, (OV) in 2019. Mixed models were used to estimate variances. 
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Table 2.14. Defoliation phenotypic variance and heritability calculations for each set of 

phenotypic observations. Defoliation measured on two garden rose mapping populations, 

Brite Eyes x My Girl and Stormy Weather x Brite Eyes, in Somerville, TX, and Overton, 

TX, in 2019. Mixed models were used to estimate variances. 

  SM6 SM7 SM8 SM9 SM10 SM11 OV6 OV9 OV10 

Family 0.812 0.683 0.508 0.236 0.218 0.379 0.521 0.005 0.000 

Genotype(family) 3.645 2.545 2.649 2.044 1.891 2.415 1.352 0.311 0.505 

Rep 0.154 0.100 0.091 0.022 0.403 0.116 0.000 0.000 0.022 

Residual 1.388 1.550 1.569 1.623 1.680 2.286 2.042 2.846 1.398 

total 5.999 4.878 4.816 3.925 4.191 5.195 3.915 3.162 1.925 

Heritabilites and residual expressed as a percent of total variance 

h2 0.158 0.171 0.129 0.076 0.074 0.096 0.180 0.003 0.000 

H2 0.865 0.806 0.801 0.738 0.715 0.710 0.647 0.182 0.419 

res 0.231 0.318 0.326 0.414 0.401 0.440 0.522 0.900 0.727 
a Environments are denoted as either SM or OV for Sommerville, TX, and Overton, TX, followed by the 

month in which the data was taken. 
b Narrow sense heritability calculated by h2 =  σ2

family / (σ2
family + σ2

genotype[family] + σ2
error /r) 

c Broad sense heritability calculated by H2 = (σ2
family + σ2

progeny[family]) / (σ2
family + σ2

progeny[family] + σ2
error / r) 

r=reps 

 

 

 
Figure 2.23. Distribution of genetic, replication, and residual variation for defoliation 

measured on two garden rose mapping populations, Brite Eyes x My Girl and Stormy 

Weather x Brite Eyes, in Somerville, TX, (SM) and Overton, TX, (OV) in 2019. Mixed 

models were used to estimate variances. 
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Mapping 

 The two parental maps created are comparable to the quality of previously 

published maps (Bourke et al., 2017; Zurn et al., 2018; 2020). The SWxBE map 

contained 8273 markers at 4047 unique positions spanning 536.23 cM with an average 

gap size of 0.14 cM and largest gap size of 4.58 cM located on LG5 (Table 2.15). The 

BExMG map contained a total of 9654 markers at 4220 unique positions over 526.31 cM 

with an average gap size of 0.13 cM and the largest gap of 4.01 cM on LG2 (Table 

2.16). In comparison, the map by Bourke et al. (2017) contained 20,090 markers mapped 

over 654.84 cM with the largest gap being 4.3 cM.  Zurn et al. (2018) constructed a map 

containing 10,835 markers spanning 421.92 cM with a largest gap of 3.6 cM. 

Subsequently, Zurn et al. (2020) constructed a map consisting of 6527 markers within 

3273 unique bins, spanning 405.42 cM with the largest gap of 5 cM. Zurn et al. (2018; 

2020) maps were both around 100 cM shorter than SWxBE, BExMG, and the K5 

(Bourke et al., 2017) maps possibly due to differences in marker ordering functions as 

both we and Bourke used Haldane’s while Zurn used Kosambi’s mapping functions. 

 

Table 2.15. Tetraploid rose mapping population Stormy Weather x Brite Eyes linkage 

map statistics. 

Chr. #markers map_size average 

gap_size 

biggest 

gap_size 

#unique 

positions 

1 744 66.17 0.18 3.41 370 

2 2345 86.16 0.08 1.21 1018 

3 661 61.35 0.18 2.71 337 

4 987 70.87 0.12 2.84 594 

5 1147 96.99 0.15 4.58 653 

6 1167 73.94 0.18 2.57 410 

7 1222 80.75 0.12 1.89 665 

all 8273 536.23 0.14 4.58 4047 
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Table 2.16. Tetraploid rose mapping population Brite Eyes x My Girl linkage map 

statistics. 

Chr. #markers map_size average 

gap_size 

biggest 

gap_size 

#unique 

positions 

1 1066 71.06 0.14 2.29 515 

2 2319 85.37 0.09 4.01 923 

3 795 60.28 0.17 1.48 354 

4 1312 78.14 0.14 2.44 576 

5 1349 82.29 0.14 2.29 608 

6 1659 75.15 0.11 1.96 655 

7 1154 74.02 0.13 1.31 589 

all 9654 526.31 0.13 4.01 4220 

 

 

 

Table 2.17. Marker probe characteristics of markers of two tetraploid garden rose 

linkage mapping populations. 

Family Congruent calls Single probe calls 

Stormy Weather x Brite Eyes 4725 (57%) 3533 (43%) 

Brite Eyes x My Girl 5362 (56%) 4275 (44%) 

*numbers do not add up to total number of markers present in map as this is an average 

number of markers which were called by both probes vs just one probe 

 

 

 

Both linkage maps (SWxBE and BExMG) have close to 10,000 markers and are 

comparable to the Morden Blush x Brite Eyes (Zurn et al., 2018) and Morden Blush x 

George Vancouver (Zurn et al., 2019) maps.  However, Bourke et al. (2017) had twice as 

many markers in their map of P540 x P867 (K5 tetraploid cut rose population) (Figure 

2.24). This is due to the differences in the populations that were used.  The mapping 

population Bourke used was a population derived from the K5 cut rose mapping 

population in which the parents (P540 and P867) were used to develop the WagRhSNP 

68k SNP array. Mapping with a population which has a direct relationship to genotypes 

used to develop the SNP array results in many more DNA fragments that adhere to the 
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SNP array when compared to populations that did not have parents used to create the 

SNP array (Figures 2.25-2.28).  

 

 
Figure 2.24. Marker number and unique positions in Stormy Weather x Brite Eyes and 

Brite Eyes x My Girl tetraploid rose linkage maps compared to other tetraploid rose 

maps (Zurn et al., 2018; Zurn et al., 2020; Bourke et al., 2017). Abbreviations: SWxBE 

(Stormy Weather x Brite Eyes), BExMG (Brite Eyes x My Girl), MBxBE (Morden 

Blush x Brite Eyes), MBxGV (Morden Blush x George Vancouver), K5 (K5 cut rose 

mapping population). 
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Figure 2.25. Total map length comparison of Stormy Weather x Brite Eyes and Brite 

Eyes x My Girl tetraploid rose linkage maps to other tetraploid rose maps (Zurn et al., 

2018; Zurn et al., 2019; and Bourke et al., 2017). Abbreviations: SWxBE (Stormy 

Weather x Brite Eyes), BExMG (Brite Eyes x My Girl), MBxBE (Morden Blush x Brite 

Eyes), MBxGV (Morden Blush x George Vancouver), K5 (K5 cut rose mapping 

population). 

 

 

 

 
Figure 2.26. Average and maximum gap size comparison of Stormy Weather x Brite 

Eyes and Brite Eyes x My Girl tetraploid rose linkage maps to other tetraploid rose maps 

(Zurn et al., 2018; Zurn et al., 2020; Bourke et al., 2017). Abbreviations: SWxBE 

(Stormy Weather x Brite Eyes), BExMG (Brite Eyes x My Girl), MBxBE (Morden 

Blush x Brite Eyes), MBxGV (Morden Blush x George Vancouver), K5 (K5 cut rose 

mapping population). 
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Figure 2.27. Number of markers mapped per LG comparison of Stormy Weather x Brite 

Eyes and Brite Eyes x My Girl tetraploid rose linkage maps to other tetraploid rose maps 

(Zurn et al., 2018; Zurn et al., 2020; Bourke et al., 2017). Abbreviations: SWxBE 

(Stormy Weather x Brite Eyes), BExMG (Brite Eyes x My Girl), MBxBE (Morden 

Blush x Brite Eyes), MBxGV (Morden Blush x George Vancouver), K5 (K5 cut rose 

mapping population). 

 

 

 

 
Figure 2.28. Map size per LG comparison of Stormy Weather x Brite Eyes and Brite 

Eyes x My Girl tetraploid rose linkage maps to other tetraploid rose maps (Zurn et al., 

2018; Zurn et al., 2020; Bourke et al., 2017). Abbreviations: SWxBE (Stormy Weather x 

Brite Eyes), BExMG (Brite Eyes x My Girl), MBxBE (Morden Blush x Brite Eyes), 

MBxGV (Morden Blush x George Vancouver), K5 (K5 cut rose mapping population). 
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QTL Analysis 

The different QTL mapping software packages use different algorithms to 

calculate the position of QTL and their support intervals (1.5 LOD) leading to 

differences between the positions and phenotypic variance assigned to each QTL. In 

most cases, the different software’s QTL positions only varied a few cM (Tables 2.18-

2.19). The only trait that had inconsistent QTL positions were the traits dealing with 

RRD. The 1.5 LOD 95% confidence intervals overlap when using different QTL 

mapping software packages thus giving us confidence that there are genetic factors on 

the chromosomes of interest. The convention used for the naming of QTL is the 

convention used for uploading results to the Genome Database for Rosaceae (GDR; 

www.rosaceae.org). Due to the naming convention for GDR, the naming of linkage 

group (LG) mentioned in the text and chromosome (ch) used in the QTL names are 

synonymous. The allele effects are described as the parent contributing the allele 

affecting the QTL and a  or  symbol describing whether the presence of the allele 

increases or decreases the phenotypic mean.
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Table 2.18. QTL detected for the tetraploid mapping population Brite Eyes x My Girl for black spot, cercospora, and RRD. 

QTLa Trait 
Contributing 

Alleleb Detection Method LG  LOD Position (cM)c Position 

(Mb)d 

Phenotypic 

Variance 

explained 

GWASpoly 

position (bp)e 

qRDR.BExMG-ch3 Black spot MG (0x1)  TetraploidSNPMap 3 12.83 43 (39 - 47) 28.30-40.85 27.1 28.22-40.98 
   

QTLPoly_feim 3 12.65 49.00 (43.16 - 53.11)  28.30-45.85 28.71 28.22-40.99 

      QTLPoly_remim 3 >15.65 45.65 (45.65-46.30) 28.30-39.44 34.91 28.22-40.10 

qRDR.BExMG-ch5 Black spot BE (1x0)  TetraploidSNPMap 5 13 47 (46 - 51) 32.93-76.40 26.6 40.79 
   

QTLPoly_feim 5 13.65 47.36 (47.36 - 48.18) 36.84-44.62 30.8 40.79 

      QTLPoly_remim 5 >15.65 47.36 (44.12 - 48.18) 31.05-76.40 36.93 40.79 

qCERC.BExMG-ch1 Cercospora BE (1x0)  TetraploidSNPMap 1 15.03 18 (13 - 21) 12.50-62.55 33.01 10.39-62.55 
   

QTLPoly_feim 1 15.46 15.25 (13.07 - 17.14) 12.50-47.27 34.45 10.39-62.56 

      QTLPoly_remim 1 >15.65 15.25 (12.10 - 22.46) 10.39-62.55 41.18 10.39-62.57 

qCERC.BExMG-ch5 Cercospora BE (1x0)  TetraploidSNPMap 5 10.45 47 (45 - 47) 32.55-76.40 26.6 40.79-44.36 
   

QTLPoly_feim 5 10.43 51.05 (43.06 - 54.00) 10.96-77.61 23.8 40.79-44.37 

      QTLPoly_remim 5 7.42 47.36 (44.12 - 52.15) 31.05-77.61 24.35 40.79-44.38 

qRRD.BExMG-ch5 RRD-rosettes 
  

BE (1x0)  TetraploidSNPMap 5 6.29 8 (6.5 - 10.5) 0.74-4.14 13.75 5.65-15.61 
  

QTLPoly_feim 5 5.79 21.12 (10.02 - 27.00) 0.19-33.47 14.99 5.65-15.62 

    QTLPoly_remim NA NA NA NA NA NA 

qRRV.BExMG-ch5 RRV-RT-qPCR BE (1x0)  TetraploidSNPMap 5 7.29 16 (15-17.5) 5.42-14.12 18.42 5.45-14.89 
   

QTLPoly_feim 5 6.33 16.36 (10.02 – 43.06) 3.25-50.91 15.50 5.45-14.90 

      QTLPoly_remim 5 4.74 37.24 (8.25 – 44.12) 1.14-50.91 22.41 5.45-14.91 

aName of QTL following the naming conventions of the Genome Database for Rosaceae. 
bParent contributing allele which affects the trait mean. Estimated by using “qtl_effects” function in QTLpoly. Alleles affecting the trait mean are followed by estimated mode of inheritance 

in the parenthesis and also indicative of whether the allele caused an increase () or decrease () of the mean of the phenotype. 
cQTL peak position followed by 1.5 LOD confidence intervals in parenthesis. 
dPhysical positions of markers within the 1.5 LOD confidence intervals. WagRhSNP 68k Axiom SNP array probes were aligned to the Saint-Oyant, 2018 genome. 
ePhysical position of markers within 1.5 LOD from the peak found in genome-wide association scans using GWASpoly. 
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Table 2.19. QTL detected for the tetraploid mapping population Stormy Weather x Brite Eyes black spot, cercospora, 

defoliation, and RRD. 

QTLa Trait 
Contributing  

Alleleb 
Detection Method LG  LOD Position (cM)c 

Position 

(Mb)d 

Phenotypic 

Variance 

explained 

GWASpoly 

position (bp)e 

qRDR.SWxBE-ch5 Black spot BE (0x1)  TetraploidSNPMap 5 30.96 55 (54 - 56) 36.31-52.66 50.65 40.79-41.06 

   QTLPoly_feim 5 33.25 54.20 (54.20 - 56.09) 35.90-52.66 54.05 40.79-41.07 

      QTLPoly_remim 5 >15.65 54.2 (38.22 - 69.02) 10.96-77.61 70.68 40.79-41.08 

qRDR.SWxBE-ch7 Black spot NA TetraploidSNPMap 7 5.57 46 (44-51)  25.57-39.58 9.5 42.7 

   QTLPoly_feim 7 5.76 48.12 (34.15-51.09) 18.93-39.58 10.23 42.7 

      QTLPoly_remim NA NA NA NA NA NA 

qCERC.SWxBE-ch1 Cercospora BE (0x1)  TetraploidSNPMap 1 4.95 21 (18.5 - 23.5) 17.75-50.24 4.5 27.78-39.13 

   QTLPoly_feim 1 6.73 30.01 (22.12 - 30.01) 23.82-50.24 12.32 27.78-39.14 

      QTLPoly_remim 1 4.959 23.19 (0.00 - 30.01 0.37-61.02 16.47 27.78-39.15 

qCERC.SWxBE-ch4 Cercospora NA TetraploidSNPMap 4 4.75 37 (27 - 43) 7.74-58.09 7.69 NA 

   QTLPoly_feim NA NA NA NA NA NA 

      QTLPoly_remim NA NA NA NA NA NA 

qCERC.SWxBE-ch5 Cercospora BE (0x1)  TetraploidSNPMap 5 18.96 55 (53.5 - 57) 35.90-52.66 40.16 24.91-54.42 

   QTLPoly_feim 5 19.88 55.18 (54.2 - 56.09) 35.90-52.66 36.37 24.91-54.43 

      QTLPoly_remim 5 >15.65 55.18 (50.1 - 67.12) 10.96-77.61 48.95 24.91-54.44 

qDEF.SWxBE-ch3 Defoliation SW (1x0)  TetraploidSNPMap 3 4.86 28 (23 - 34) 28.21-37.74 5.55 NA 

   QTLPoly_feim NA  NA NA NA NA 

      QTLPoly_remim 3 5.684 25.14(22.11-30.12) 26.40-34.18 12.16 NA 

qDEF.SWxBE-ch5 Defoliation BE (0x1)  TetraploidSNPMap 5 15.36 53 (52 - 57) 32.69-52.66 29.33 32.69-41.06 

   QTLPoly_feim 5 16.21 53.06 (52.15 - 58.01) 32.69-77.61 30.42 32.69-41.07 

      QTLPoly_remim 5 >15.65 53.06 (53.06 - 58.01) 35.78-77.61 46.87 32.69-41.08 

Table continued next page 
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Table 2.19. Continued 

QTLa Trait 
Contributing 

Alleleb 
Detection Method LG  LOD Position (cM)c 

Position 

(Mb)d 

Phenotypic 

Variance 

explained 

GWAspoly 

Position (bp)e 

qDEF.SWxBE-ch7 Defoliation SW (2x0)  TetraploidSNPMap 7 4.1 49(33-55) 25.57-39.58 6 2.19 

   QTLPoly_feim NA NA NA NA NA NA 

      QTLPoly_remim 7 3.507 65.09 (44.01-74.68) 25.57-66.90 7.7 2.19 

qRRV.SWxBE-ch3 RRV-RT-qPCR SW (1x0)  TetraploidSNPMap 3 6.26 12 (0-14) 0.07-25.60 10.81 10.17-23.30 

   QTLPoly_feim 3 7.11 11.06 (9.09 - 13.17) 1.20-25.50 13.73 10.17-23.31 

      QTLPoly_remim NA NA NA NA NA NA 

qRRV.SWxBE-ch5 RRV-RT-qPCR BE (0x1)  TetraploidSNPMap 5 5.86 58 (53-61) 27.07-53.41 9.50 NA 

   QTLPoly_feim NA NA NA NA NA NA 

      QTLPoly_remim NA NA NA NA NA NA 

aName of QTL following the naming conventions of the Genome Database for Rosaceae. 
bParent contributing allele which affects the trait mean. Estimated by using “qtl_effects” function in QTLpoly. Alleles affecting the trait mean are followed by estimated mode of inheritance 

in the parenthesis and also indicative of whether the allele caused an increase () or decrease () of the mean of the phenotype. An NA in this column denotes that either the software used 
cannot calculate a parental allele effect or the QTL’s segregation pattern is too complex to accurately estimate the allele effects of the parental alleles. 
cQTL peak position followed by 1.5 LOD confidence intervals in parenthesis. 
dPhysical positions of markers within the 1.5 LOD confidence intervals. WagRhSNP 68k Axiom SNP array probes were aligned to the Saint-Oyant, 2018 genome. 
ePhysical position of markers within 1.5 LOD from the peak found in genome-wide association scans using GWASpoly. 



 

90 

 

Black Spot Resistance 

QTL scans performed with both interval mapping and GWAS analysis for black 

spot resistance show QTL on LGs 3, 5, and 7 (Tables 2.18-2.19). The SWxBE family 

had black spot resistance QTL on LGs 5 and 7 (qRDR.SWxBE-ch5 and qRDR.SWxBE-

ch7) while the BExMG family had QTL on LGs 3 and 5 (qRDR.BExMG-ch3 and 

qRDR.BExMG-ch5). 

Both mapping populations have the QTL on LG 5 (qRDR.BExMG-ch5 and 

qRDR.SWxBE-ch5) while the black spot QTL on LG 3, qRDR.BExMG-ch3, only appears 

in the BExMG family and the QTL on LG 7, qRDR.SWxBE-ch7, only appears in the 

SWxBE family. The contributing allele to the QTL on LG 3 comes from MG (0x1) 

which presence lowers the phenotypic mean and the QTL described in both populations 

on LG 5 comes from BE (1x0) which also lowers the phenotypic mean. We are not 

confident about the allele effect estimates of qRDR.SWxBE-ch7, as it looks like the 

segregation of this QTL is in a duplex x triplex manner. While we are confident on the 

estimates of the allele effects and in the segregation patterns of the simplex x nulliplex 

QTL because of the 1:1 segregation ratio, segregation ratios become more complex as 

you add more dosage classes. For example a 1x1 genetic factor in a tetraploid would 

segregate in a 1:2:1 ratio for the duplex : simplex : nulliplex (Zych et al., 2019). With 

populations like ours, n=160-200, we cannot be too certain of the estimates of how QTL 

are inherited if the software indicates segregation patterns greater than simplex x 

simplex. The position of the QTL on LG 5 is similar in both populations and overlaps 

the Rdr4 region described by Zurn et al. (2018) thus we conclude that these two QTL 
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represent the Rdr4 black spot resistance locus. We determined the position of Rdr4 by 

flanking markers described by Zurn et al. (2018). The QTL on LG 5 are also near the 

meta-QTL Meta_2_5, described by (Lopez Arias et al., 2020). The proportion of 

variance explained (PVE) of the QTL on LGs 3 and 5 range from 27.1 to 70.68% while 

the QTL on LG 7 only had a PVE of 9.5 to 10.23%. Therefore, the QTL described on 

LGs 3 and 5 have greater effects on black spot resistance compared to the QTL on LG 7. 

Examining QTLpoly’s estimated allele effects on the black spot QTL on LG 7, the QTL 

seems to be segregating in a duplex x triplex manner. This estimation is most likely not 

accurate due to difficulty in fitting these higher dosage segregation patterns in 

population sizes of around 200 individuals. However we can tell that this QTL is not 

segregating in any of the lower dosage segregation ratios that we can describe with our 

population sizes. 

The genome-wide association analyses (GWAS) agreed with the interval 

mapping QTL scans (Figure 2.29). When both populations are analyzed together, we 

detect the presence of both QTL on LGs 3 and 5. When analyzed separately, 

qRDR.SWxBE-ch5 is detected in the SWxBE population only, while both 

qRDR.BExMG-ch3 and qRDR.BExMG-ch5 were evident in the BExMG population. The 

GWAS scans did not reveal any peak on LG 7, and the few significant markers 

identified did not collocate with qRDR.SWxBE-ch7.  

GWAS scans on monthly phenotypic ratings reveal higher peaks (greater than 

LOD 10) in June, July, October, and November as compared to August and September 
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(Figure 2.30), which corresponds to the months with larger disease pressure which also 

had higher heritability estimates (Table 2.12, Figure 2.30).  

 

 

 
Figure 2.29. Black spot  genome-wide association scans of both the BExMG and 

SWxBE populations together and separately on plants phenotyped in College Station, 

TX, and Overton, TX, in 2019. The Manhattan plot pictured on the left is of both 

families run together while the plot in the middle is only the members of the BExMG 

family and the plot on the right is only the SWxBE family. Six models were used for 

scans and are plotted as quantile-quantile (bottom) and Manhattan plots (above). 
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Figure 2.30. Manhattan plots (top) and quantile-quantile plots (bottom) of genome-wide 

association analysis of black spot incidence on two garden rose families in 2019 in 

College Station, TX, over six months (June through November). The greatest peaks can 

be seen on data taken in June, July, October, and November.   
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Defoliation Resistance 

Black spot impacts defoliation as serious black spot infections can completely 

defoliate the plants. Thus, co-localization of QTL for defoliation and black spot would 

be expected. However, the weak correlation between black spot and defoliation in our 

analysis indicates that there are other factors beyond black spot affecting defoliation in 

our populations. We observed some overlap in the location of QTL for black spot and 

defoliation.  

There were no significant QTL peaks for defoliation in the BExMG population, 

however the SWxBE population showed a peak on LGs 3, 5, and 7 (qDEF.SWxBE-ch3, 

qDEF.SWxBE-ch5, and qDEF.SWxBE-ch7) (Tables 2.18-2.19). The PVE of 

qDEF.SWxBE-ch3 and qDEF.SWxBE-ch7 were low ranging between 5.55 and 12.16% 

while estimates of PVE of qDEF.SWxBE-ch5 were greater between 29.33 and 46.87%. 

Interestingly, the black spot and defoliation QTL peaks on LG 5 are 2-3 cM from each 

other.  Based on the “qtl_effects” function in QTLpoly, Stormy Weather contributes an 

allele at qDEF.SWxBE-ch3 that increases the amount of defoliation while the favorable 

allele (decreasing defoliation) for qDEF.SWxBE-ch5 is from the same homolog as the 

black spot resistance donated from Brite Eyes. Since both black spot and defoliation 

QTL on LG 5 are positioned relatively close (2 to 3 cM), these may represent the same 

genetic factor. This is plausible since black spot infections cause defoliation. Both the 

black spot and defoliation QTL on LG5 appear to overlap Rdr4 (Figure 2.35) suggesting 

that these are QTL representing the black spot resistance locus, Rdr4 (Zurn et al., 2018). 
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SW contributes two alleles for qDEF.SWxBE-ch7 one allele increases while the other 

decreases the phenotypic mean for defoliation. 

GWAS scans also show no significant associations when the BExMG population 

is scanned alone whereas when either both populations or SWxBE was scanned alone, 

we observe a peak on LG 5 around 32 Mb (Figure 2.31). Only 1 marker on LG 2 and 1 

marker on LG 7 were significantly associated with defoliation; however, since these do 

not have any observed peak building up to the significant markers, and they are not in 

the same relative positions described by the interval mapping QTL scans, these marker-

trait associations are probably due to markers being assigned to the incorrect physical 

positions when performing BLAST analysis of the sequences comprising the 

WagRhSNP 68k array to the rose genome.  
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Figure 2.31. Manhattan plots (top) and quantile-quantile plots (bottom) of genome-wide 

association scans for defoliation phenotyped on two tetraploid garden rose mapping 

populations both together (left) and separately (middle and right) in College Station, TX, 

and Overton, TX in 2019. 

 

 

 

Cercospora Resistance 

Cercospora resistance QTL were observed on LGs 1, 4, and 5 in the SWxBE 

population (qCERC.SWxBE-ch1, qCERC.SWxBE-ch4, and qCERC.SWxBE-ch5) and 

only on LGs 1 and 5 in the BExMG population (qCERC.BExMG-ch1 and 

qCERC.BExMG-ch5) (Tables 2.18-2.19). Both populations have cercospora QTL 

derived from the BE parent on LGs 1 and 5 in similar genetic positions. However, 

qCERC.SWxBE-ch4 is only detected using TetraploidSNPMap and has approximately 

7.69% of variance attributed to the QTL. When using QTLPoly_remim, qCERC.SWxBE-

ch4 was only classified as a putative QTL present in the forward search of the QTL, 
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however in backwards elimination, the stringent p-value used eliminates this QTL. 

When looking closer at qCERC.SWxBE-ch4, it appears that both BE and SW donate an 

allele that contributes to cercospora resistance. As this QTL is only picked up using 

TetraploidSNPMap, we are not able to estimate the any allele effects from the QTL 

which affect the phenotypic mean. GWAS scans only show the LG1 and LG5 QTL in 

both families while the QTL on LG 4 is not picked up (Figure 2.32).  

 

 

 

 
Figure 2.32. Manhattan plots (top) and quantile-quantile plots (bottom) of genome-wide 

association scans of two tetraploid mapping populations both together and separately for 

cercospora leaf spot incidence at College Station, TX, and Overton, TX, in 2019. The 

Manhattan plot pictured on the left is of both families run together while the plot in the 

middle is only the members of SWxBE family and the plot on the right is only the 

BExMG family. 
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Rose Rosette Resistance 

Analysis with RRD phenotypic ratings showed a small effect QTL in both 

interval mapping QTL scans (Tables 2.18-2.19) and GWAS scans (Figure 2.33) for rose 

rosette severity and number of rose rosettes on LG 5 only in the BExMG population 

(qRRD.BExMG-ch5). However, QTL scans with the RT-qPCR results indicated a QTL 

in the similar location as the QTL that we observed using the visual phenotypic ratings 

in the BExMG population (qRRV.BExMG-ch5). The SWxBE population had one QTL 

detected on LG 3 (qRRV.SWxBE-ch3) and possibly a QTL on LG 5 picked up by 

TetrploidSNPMap. When using the visual RRD ratings and qPCR results for QTL 

analysis, the resistance allele of RRD resistance on LG 5 comes from Brite Eyes while 

the QTL on LG 3 using the qPCR results has one allele from SW that negatively affects 

the phenotypic mean. A decrease in CT values suggests an increase in virus titer. The 

variability in the placement of the QTL for both the visual phenotypic ratings and the 

RRV titer estimated by the CT values leads us to believe there may be genetic factors on 

the proximal arm of LG 5. However more data collection may be needed as it can take 3-

4 years of phenotyping to accurately assess the susceptibility of genotypes to RRD/RRV. 
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Figure 2.33. Manhattan plots (top) and quantile-quantile plots (bottom) of genome-wide 

association scans on two tetraploid garden rose populations BExMG and SWxBE both 

together and by themselves for rose rosette disease number of rosettes (1-3), severity 

ratings (4-6), and rt-qPCR of RRV (7-9) phenotyped in Crossville, TN. All denotes that 

all genotypes were run together while BExMG is the Brite Eyes x My Girl population 

run alone and SWxBE is Stormy Weather x Brite Eyes run by itself. 
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Interaction Between Black Spot, Cercospora, and Defoliation 

QTL scans for black spot, cercospora, and defoliation revealed QTL in similar 

positions on LG5 near the Rdr4 locus (Zurn et al., 2018). Using flanking markers 

described by Zurn et al. (2018), we determined that the black spot QTL (qRDR.BExMG-

ch5 and qRDR.SWxBE-ch5) overlaps with the black spot resistance Rdr4 locus. Zurn et 

al. (2018) determined that the donor parent for black spot resistance is Brite Eyes which 

is a common parent in both our mapping populations (Figures 2.34-2.37).  

In both interval mapping and in GWAS scans, the cercospora QTL on LG5 is 

located in the same area as that of black spot resistance (Figures 2.34-2.37). The most 

significant marker for both black spot and cercospora resistance in the GWAS scans was 

Rh12GR_81013_297 and upon closer inspection of the marker alleles, progeny with the 

allele dosage 3 (ACCC) had a lower mean occurrence of black spot and higher amounts 

of cercospora while progeny with the allele dosage 4 (CCCC) had the opposite effect.  

Rh12GR_81013_297 is also the second most significant marker for defoliation on LG 5 

and similar to blackspot, the individuals with the dosage of 3 (ACCC) had a lower 

amount of defoliation while individuals with the dosage of 4 (CCCC) had higher 

amounts of defoliation.  
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Figure 2.34. Linkage map of tetraploid mapping population Stormy Weather x Brite Eyes with QTL peaks denoted by a 

horizontal mark and the 1.5 LOD confidence interval denoted by the whiskers. QTL are labeled with the names of the software 

used to detect the QTL. Rdr4 is displayed using a thick blue bar and the boundary of the gene is determined by the flanking 

markers described by Zurn et al. (2018). The RDR4_Zurn_flanking_markers bar the placement of Rdr4 based off the flanking 

markers also being mapped in this population whereas the RDR4_Zurn_physical is the physical estimate of the flanking 

markers. The Meta_1_3, Meta_2_3, Meta_1_5 and Meta_2_5 are the meta-QTL described by Lopez Arias et al. (2020). 
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Figure 2.35. Linkage map of tetraploid mapping population Brite Eyes x My Girl with QTL peaks denoted by a horizontal 

mark and the 1.5 LOD confidence interval denoted by the whiskers. QTL are labeled with the names of the software used to 

detect the QTL. Rdr4 is displayed using a thick black bar and the boundary of the gene is determined by the flanking markers 

described by Zurn et al. (2018). The RDR4_Zurn_flanking_markers bar the placement of Rdr4 based off the flanking markers 

also being mapped in this population whereas the RDR4_Zurn_physical is the physical estimate of the flanking markers. The 

Meta_1_3, Meta_2_3, Meta_1_5 and Meta_2_5 are the meta-QTL described by Lopez Arias et al. (2020).



 

103 

 

 
Figure 2.36. QTL scans of tetraploid rose mapping population Brite Eyes x My Girl 

using the “remim” function in QTLpoly. QTL peaks are denoted by a triangle under the 

QTL scans. Some peaks may not be visible on the graph due to a max p-value that can 

be displayed in R. 
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Figure 2.37. QTL scans of tetraploid mapping population Stormy Weather x Brite Eyes 

using the “remim” function in QTLpoly. Some peaks may not be visible on the graph 

due to a max p-value that can be displayed in R. 

 

 

It is not surprising that QTL for defoliation and black spot QTL were co-located 

sense as severe black spot infections cause defoliation. However, having cercospora and 

black spot QTL in the same location means either these are two tightly linked alleles, or 

resistance to both defoliation and blackspot is controlled by one allele. Results from 

QTLpoly suggest that both black spot and cercospora are affected by QTL on the same 

homolog (Figures 2.38-2.39). The same homolog conferring black spot resistance 
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(negative allele effect) also results in cercospora susceptibility (positive allele effect).  

This is supported by the GWAS analysis (Figures 2.40-2.41) that identified the markers 

associated with resistance to black spot were also associated with susceptibility to 

cercospora. This would indicate that either there are two closely linked alleles with 

opposite effects or the cercospora peak is an artifact of how we phenotype for these 

disease resistances. With the available data it is not possible to determine whether the 

QTL controlling black spot, cercospora, and defoliation are stemming from the same 

genetic factor as it would require many more individuals to dissect closely linked loci.  
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Figure 2.38. Allele effect estimates for black spot and cercospora leaf spot for tetraploid 

rose mapping population Brite Eyes x My Girl phenotyped in College Station, TX, and 

Overton, TX, in 2019. Allele estimates show opposite allele effects from the same 

homolog contributing to the two traits.   

 

 

 

 

 
Figure 2.39. Allele effect estimates for black spot, cercospora leaf spot, and defoliation 

for Stormy Weather x Brite Eyes phenotyped in College Station, TX, and Overton, TX, 

in 2019. The allele effects show different black spot and cerospora allele effects while 

showing the same allele effects for defoliation. Allele estimates are estimated using the 

‘qtl_effects’ function in QTLpoly which estimates the additive effects of each parental 

allele and all the resulting combinations within the progeny for that specific QTL. 
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Figure 2.40. Manhattan plots of genome-wide association scans with GWASpoly on two 

tetraploid mapping populations using either all genotypes, black spot resistant 

genotypes, and black spot susceptible genotypes (from left to right).  a. black spot scans 

on all genotypes, b. black spot scans on black spot resistant genotypes, c. black spot 

scans on black spot susceptible genotypes, d. cercospora scans on all genotypes, e. 

cercospora scans on black spot resistant genotypes, f. cercospora scans on black spot 

susceptible genotypes, g. defoliation scans on all genotypes, h. defoliation scans on 

black spot resistant genotypes, i. defoliation scans on black spot susceptible genotypes. 
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Figure 2.41. Manhattan plots of genome-wide association scans with GWASpoly of two 

tetraploid rose mapping populations using black spot resistance as a fixed effect (top) 

and plots of genome-wide association scans without using black spot resistance as a 

fixed effect (bottom). 

 

 

 

Marker Based Selection of Progeny 

QTL scans in TetraploidSNPMap and MAPpoly determined that QTL conferred 

resistance to black spot and cercospora in the BExMG population. The qRDR.BExMG-

ch3 was inherited from My Girl and qRDR.BExMG-ch5 was inherited from “Brite 

Eyes.” Both QTL were detected as inherited in a simplex (resistance donor) x nulliplex 

segregation within the population. Most significant markers identified using GWASpoly 

were used to represent the QTL for the trait. Markers tightly linked to resistance are 

desirable to use in breeding. Genotyping seedlings at an early stage can sidestep the 2-3 
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year field resistance trials and allow the rapid discarding of individuals that do not carry 

the alleles for resistance. While the use of the WagRhSNP 68K SNP array would be very 

expensive to run on all progeny, Kompetitive allele-specific PCR (KASP) markers are 

much more cost effective when only needing to sample a handful of significant markers. 

Markers discovered to be important on the WagRhSNP 68K array could be used to 

design primers for use in KASP genotyping. 

For the BExMG population, markers (Table 2.20) were selected for the black 

spot QTL qRDR.BExMG-ch3 and qRDR.BExMG-ch5 and for cercospora 

qCERC.BExMG-ch1. These markers were then used for selecting individuals that carried 

the resistance alleles in the simplex (AAAB) state. The selected progeny were selected 

for propagation and further use in breeding crosses. Markers for qCERC.BExMG-ch5 

were not considered as it is in repulsion with qRDR.BExMG-ch5. Selecting for 

individuals with markers for resistance for black spot would be selecting for the 

individuals that are susceptible to cercospora. Because the three QTL are located on 

different LGs, independent assortment dictates that in the BExMG population, we would 

expect a 0.53 = 0.125 or 12.5% of the individuals in the population studied would have 

all alleles in the resistant state. Out of the 157 individuals we expected 19.625 and 

observed 18 individuals carrying the three resistance QTL described above (χ2 = 0.135, 

df=1, p-value = 0.05). 
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Table 2.20. Markers from the Brite Eyes x My Girl population used to select progeny 

with resistance alleles. Markers were identified using GWASpoly.  
Affymetrix 

marker name 
Marker name 

Model 

detected  

Significance 

threshold 
LG Position LOD 

qCERC.BExMG-ch1 

Affx-86799619 RhMCRND_8447_241 general 3.74 1 19581440 8.61 

Affx-86803478 Rh12GR_56000_1337 general 3.74 1 17763638 8.61 

Affx-86833419 Rh12GR_70921_191 general 3.74 1 19130161 8.61 

Affx-86788067 RhK5_9643_184 general 3.74 1 16048547 8.41 

Affx-86829869 Rh12GR_57675_1635 general 3.74 1 21559226 8.41 

Affx-86807748 RhK5_4744_983 additive 3.65 1 23816721 8.26 

Affx-86788803 RhMCRND_1094_1131 diplo-general 3.85 1 24733654 8.22 

Affx-86789725 RhMCRND_12762_716 diplo-general 3.85 1 24172282 8.22 

Affx-86791614 RhMCRND_17225_546 diplo-general 3.85 1 25236582 8.22 

Affx-86805160 RhK5_7705_624 general 3.74 1 62552824 8.22 

Affx-86841690 RhMCRND_798_1153 diplo-general 3.85 1 24276183 8.22 

Affx-86809794 RhK5_2992_302 diplo-general 3.85 1 23047321 8 

Affx-86798105 RhMCRND_5960_1504 general 3.74 1 23778409 7.96 

Affx-86791411 RhMCRND_16740_128 additive 3.65 1 23547770 7.87 

Affx-86816843 Rh12GR_14097_430 general 3.74 1 14130539 7.36 

Affx-86797907 RhMCRND_5631_559 additive 3.65 1 10389320 7.03 

Affx-86789780 RhMCRND_12889_730 general 3.74 1 22685924 6.91 

Affx-86818887 Rh12GR_19279_530 additive 3.65 1 27777830 6.3 

Affx-86787322 RhK5_8518_746 additive 3.65 1 28779387 6.16 

Affx-86815569 Rh12GR_11067_1318 general 3.74 1 20648911 6.16 

qRDR.BExMG-ch3 

Affx-86831650 Rh12GR_6326_326 additive 3.44 3 37733803 9.02 

Affx-86841479 RhMCRND_5722_374 additive 3.44 3 37770682 9.02 

Affx-86836459 Rh12GR_84943_1865 general 3.63 3 37807749 8.97 

Affx-86815608 Rh12GR_11167_748 general 3.63 3 28221800 8.66 

Affx-86839174 Rh12GR_98817_153 additive 3.44 3 28297996 8.23 

qRDR.BExMG-ch5 (RDR4) 

Affx-86835658 Rh12GR_81013_297 additive 3.44 5 40790477 9.36 

Affx-86802674 Rh12GR_23542_3707 general 3.63 5 53197103 6.9 

Affx-86794614 RhMCRND_27406_258 general 3.63 5 65938271 5.35 
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Using markers to identify individuals that have resistance alleles at each of the 3 

loci allows the breeder to manipulate these loci in a breeding context. There are several 

cases in which these selected individuals can be utilized. If these individuals are crossed 

with other parental genotypes that have some other desired trait, each of the 3 QTL will 

independently segregate 1:1 for resistance to susceptible. The resulting population would 

have approximately 12.5% of the individuals carrying a resistance allele in simplex at 

each of the 3 loci. However, there is another scenario for these selected individuals. 

These individuals can be either selfed or crossed with each other. The result of these 

selfed or full sib crosses would result in 0.53 * 0.53 = 0.0156 or around 1.56% of the 

individuals from these families having the resistance alleles in the duplex state at the 3 

loci. By continuing to select for number of resistance alleles at each loci in each 

successful generation, we can select for individuals that have higher doses of resistance 

alleles with the ultimate goal of creating individuals that are fixed for resistance with all 

three alleles in the quadruplex state. Once all three resistance alleles are configured in a 

triplex or quadruplex state, all progeny resulting from crosses with these genotypes will 

result in resistant progeny.  

Similarly, the most significant markers were selected in the SWxBE family 

identified using GWASpoly and in this case we tried to stack the cercospora resistance 

locus identified on LG 1 with the RDR4 locus (black spot QTL) on LG5 (Table 2.21). 

The expected number of individuals carrying both resistance alleles was 0.52 = 0.25 as 

both QTL appear to display a simplex x nulliplex 1:1 segregation pattern. Out of the 200 

individuals we expected 50 to have both resistance alleles and 41 individuals carried 
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both resistance alleles which fits the Chi-Square segregation expectation (χ2 = 1.62, df = 

1, p-value = 0.05).  

 

Table 2.21. Markers from the Stormy Weather x Brite Eyes population used to select 

progeny with resistance alleles. Markers were identified using GWASpoly. 
Affymetrix 

name  Marker name 

Model 

detected 

Significance 

threshold LG Position LOD 

qRDR.SWxBE-ch5 

Affx-86821050 Rh12GR_258_2610 diplo-general 3.9 5 41059938 18.24 

Affx-86835658 Rh12GR_81013_297 diplo-general 3.9 5 40790477 17.94 

Affx-86781774 RhK5_20503_312 additive 3.86 5 52662557 15.14 

Affx-86791832 RhMCRND_1780_1215 additive 3.86 5 32692332 13.08 

Affx-86816137 Rh12GR_12422_663 additive 3.86 5 24907437 12.01 

Affx-86838063 RhMCRND_23381_381 additive 3.86 5 54423818 11.47 

Affx-86820066 Rh12GR_22388_324 general 3.94 5 26033558 10.87 

qCERC.SWxBE-ch1 

Affx-86841256 RhMCRND_8769_681 additive 3.97 1 38281267 5.32 

Affx-86776903 Rh88_19654_229 additive 3.97 1 38731046 5.32 

Affx-86826035 Rh12GR_44439_214 additive 3.97 1 36960397 5.27 

 

 

Conclusions and Future Work 

 The development of two mapping populations has led to the linkage mapping of 

these tetraploid populations that are of similar quality to the tetraploid rose linkage maps 

currently available. Narrow sense heritability estimates of black spot, cercospora, and 

defoliation were 0.071, 0.195, and 0.147, respectively, and broad sense heritabilities 

were 0.853, 0.931, and 0.800, respectively. From these linkage maps, QTL were 

described for rose rosette disease on LGs 3 and 5, black spot resistance on LGs 3, 5, and 

7; cercospora leaf spot resistance on LGs 1, 4, and 5; and defoliation on LGs 3, 5, and 7. 
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We found a cluster of black spot, cercospora, and defoliation QTL on LG 5 co-localized 

with the Rdr4 locus previously mapped by Zurn et al. (2018).  

Populations are being phenotyped again for these to better define the phenotypes 

and consequently the QTL of these traits. Individuals from the BExMG population that 

have the three resistance QTL described and individuals carrying two resistance QTL 

from SWxBE were selected for future use in breeding. Future studies will test the 

hypothesis of the inheritance of the resistance alleles described. 

 

 

 

 

 

 

  



 

114 

 

Literature Cited 

Allington, W.B., R. Staples, and G. Viehmeyer. 1968. Transmission of rose rosette virus 

by the eriophyid mite Phyllocoptes fructiphilus. Journal of Economic 

Entomology 61:1137–1140. doi: 10.1093/jee/61.5.1137. 

Alqudah, A.M., A. Sallam, P. Stephen Baenziger, and A. Börner. 2020. GWAS: Fast-

forwarding gene identification and characterization in temperate Cereals: lessons 

from Barley – A review. Journal of Advanced Research 22: 119–135. doi: 

10.1016/j.jare.2019.10.013. 

Banks, B.D., I.L. Mao, and J.P. Walter. 1985. Robustness of the restricted maximum 

likelihood estimator derived under normality as applied to data with skewed 

distributions. Journal of Dairy Science 68:1785–1792. doi: 10.3168/jds.S0022-

0302(85)81028-6. 

Bourke, P.M., P. Arens, R.E. Voorrips, G.D. Esselink, C.F.S. Koning-Boucoiran, et al. 

2017. Partial preferential LG pairing is genotype dependent in tetraploid rose. 

The Plant Journal 90:330–343. doi: 10.1111/tpj.13496. 

Bourke, P.M., G. van Geest, R.E. Voorrips, J. Jansen, T. Kranenburg, et al. 2018. 

polymapR—linkage analysis and genetic map construction from F1 populations 

of outcrossing polyploids. Bioinformatics 34:3496–3502. doi: 

10.1093/bioinformatics/bty371. 

Byrne, D.H., H.B. Pemberton, D.J. Holeman, T. Debener, T.M. Waliczek, et al. 2017. 

Survey of the rose community: desired rose traits and research issues. VII 

International Symposium on Rose Research and Cultivation 1232:189–192 



 

115 

 

Byrne, D.H., P. Klein, M. Yan, E. Young, J. Lau, et al. 2018. Challenges of breeding 

rose rosette–resistant roses. HortScience 53:604-608. 

Chavez, D.E., M.A. Palma, D.H. Byrne, C.R. Hall, and L.A. Ribera. 2020. Willingness 

to pay for rose attributes: helping provide consumer orientation to breeding 

programs. Journal of Agricultural and Applied Economics 52:1–15. doi: 

10.1017/aae.2019.28. 

Debener, T., and D.H. Byrne. 2014. Disease resistance breeding in rose: Current status 

and potential of biotechnological tools. Plant Science 228:107–117. doi: 

10.1016/j.plantsci.2014.04.005. 

Di Bello, P.L., T. Ho, and I.E. Tzanetakis. 2015. The evolution of emaraviruses is 

becoming more complex: seven segments identified in the causal agent of Rose 

rosette disease. Virus Research 210(Supplement C): 241–244. doi: 

10.1016/j.virusres.2015.08.009. 

Dickerson, G.E. 1969. Techniques for research in quantitative genetics. In: Techniques 

and Procedures in Animal Science Research. American Society of Animal 

Science. Albany, NY. 

Dobhal, S., J.D. Olson, M. Arif, J.A. Garcia Suarez, and F.M. Ochoa-Corona. 2016. A 

simplified strategy for sensitive detection of Rose rosette virus compatible with 

three RT-PCR chemistries. Journal of Virological Methods 232:47–56. doi: 

10.1016/j.jviromet.2016.01.013. 

 



 

116 

 

Hackett, C.A., J.E. Bradshaw, and J.W. McNicol. 2001. Interval mapping of quantitative 

trait loci in autotetraploid species. Genetics 159:1819–1832. 

Hackett, C.A., B. Boskamp, A. Vogogias, K.F. Preedy, and I. Milne. 2017. 

TetraploidSNPMap: Software for linkage analysis and QTL mapping in 

autotetraploid populations using SNP dosage data. Journal of Heredity 108: 438–

442. doi: 10.1093/jhered/esx022. 

Hagan, A., M. E Rivas-Davila, J. Akridge, and J. W Olive. 2005. Resistance of shrub 

and groundcover roses to black spot and Cercospora leaf spot, and impact of 

fungicide inputs on the severity of both diseases. Journal of Environmental 

Horticulture 23:77–85. 

Heinrichs, F. 2008.  International statistics flowers and plants vol. 56. AIPH. Union 

Fleurs. Brussels, Belgium. 

Hibrand Saint-Oyant, L., T. Ruttink, L. Hamama, I. Kirov, D. Lakhwani, et al. 2018. A 

high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. 

Nature Plants 4:473–484. doi: 10.1038/s41477-018-0166-1. 

Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martínez. 2003. Estimating and 

interpreting heritability for plant breeding: an update. Plant breeding reviews 

22:9–112. 

Horst, R.K. and R.A. Cloyd. 2007. Compendium of rose diseases and pests. 2nd ed. The 

American Phytopathological Society, St. Paul, M.N. 

 



 

117 

 

Koning-Boucoiran, C.F.S., G.D. Esselink, M. Vukosavljev, W.P.C. van ’t Westende, 

V.W. Gitonga, et al. 2015. Using RNA-Seq to assemble a rose transcriptome 

with more than 13,000 full-length expressed genes and to develop the 

WagRhSNP 68k Axiom SNP array for rose (Rosa L.). Frontiers in Plant Science  

6:249. doi: 10.3389/fpls.2015.00249. 

Liang, S., X. Wu, and D. Byrne. 2017. Flower-size heritability and floral heat-shock 

tolerance in diploid roses. HortScience 52:682–685. doi: 

10.21273/HORTSCI11640-16. 

Laney, A.G., K.E. Keller, R.R. Martin, and I.E. Tzanetakis. 2011. A discovery 70 years 

in the making: characterization of the Rose rosette virus. Journal of General 

Virology, 92:1727–1732. doi: 10.1099/vir.0.031146-0. 

Lopez Arias, D.C., A. Chastellier, T. Thouroude, J. Bradeen, L. Van Eck, et al. 2020. 

Characterization of black spot resistance in diploid roses with QTL detection, 

meta-analysis and candidate-gene identification. Theoretical and Applied 

Genetics 133:3299–3321. doi: 10.1007/s00122-020-03670-5. 

Mollinari, M., and A.A.F. Garcia. 2019. Linkage Analysis and haplotype phasing in 

experimental autopolyploid populations with high ploidy level using hidden 

markov models. G3: Genes, Genomes, Genetics 9:3297-3314. doi: 

10.1534/g3.119.400378. 

Mangandi, J. and N.A. Peres. 2012. Cercospora leaf spot of rose. UF/IFAS Extension. 9 

March 2017. <https://edis.ifas.ufl.edu/pdffiles/PP/PP26700.pdf>. 



 

118 

 

Miles, C. & Wayne, M. 2008. Quantitative trait locus (QTL) analysis. Nature Education 

1(1):208 

Pereira, G. da S., D.C. Gemenet, M. Mollinari, B.A. Olukolu, J.C. Wood, et al. 2020. 

Multiple QTL mapping in autopolyploids: A random-effect model approach with 

application in a hexaploid sweetpotato full-sib population. Genetics 215:579-595. 

doi: 10.1534/genetics.120.303080. 

Preedy, K.F., and C.A. Hackett. 2016. A rapid marker ordering approach for high-

density genetic linkage maps in experimental autotetraploid populations using 

multidimensional scaling. Theoretical and Applied Genetics 129:2117–2132. doi: 

10.1007/s00122-016-2761-8. 

Rosyara, U.R., W.S. De Jong, D.S. Douches, and J.B. Endelman. 2016. Software for 

genome-wide association studies in autopolyploids and its application to potato. 

The Plant Genome 9. doi: 10.3835/plantgenome2015.08.0073. 

Rife, T.W., and J.A. Poland. 2014. Field Book: An open-source application for field data 

collection on android. Crop Science 54:1624–1627. doi: 

10.2135/cropsci2013.08.0579. 

Shires, M., J. Ueckert, and K. Ong. 2018. Rose rosette virus: Effective and low-cost 

extraction method. 2018 ASHS Annual Conference. Poster 

Shires, M. 2020. Study of resistance to rose rosette disease utilizing field research, 

molecular tools, and transmission methods. Texas A&M University, PhD 

dissertation.  



 

119 

 

Simko, I., and H.-P. Piepho. 2011. The area under the disease progress stairs: 

calculation, advantage, and application. Phytopathology 102:381–389. doi: 

10.1094/PHYTO-07-11-0216. 

United States Department of Agriculture. 2015. 2012 Census of agriculture: census of 

horticultural specialties. Washington: United States Department of Agriculture. 

United States Department of Agriculture. 2020. 2017 Census of agriculture: census of 

horticultural specialties. Washington: United States Department of Agriculture. 

Voorrips, R.E., G. Gort, and B. Vosman. 2011. Genotype calling in tetraploid species 

from bi-allelic marker data using mixture models. BMC Bioinformatics 12:172. 

doi: 10.1186/1471-2105-12-172. 

Waliczek, T.M., D. Byrne, and D. Holeman. 2018. Opinions of landscape roses available 

for purchase and preferences for the future market. HortTechnology 28:807–814. 

doi: 10.21273/HORTTECH04175-18. 

Windham, M., A. Windham, F. Hale, and J. Armine Jr. 2014. Observations on rose 

rosette disease. University of Tennesee. 14 February 2017. 

<http://www.newenglandgrows.org/pdfs/ho_WindhamRoseRosette.pdf>. 

Yan, M., D.H. Byrne, P.E. Klein, J. Yang, Q. Dong, et al. 2018. Genotyping-by-

sequencing application on diploid rose and a resulting high-density SNP-based 

consensus map. Horticulture Research 5:1–14. doi: 10.1038/s41438-018-0021-6. 

Zou, F., J.P. Fine, J. Hu, and D.Y. Lin. 2004. An efficient resampling method for 

assessing genome-wide statistical significance in mapping quantitative trait Loci. 

Genetics 168:2307-2316. doi: 10.1534/genetics.104.031427. 



 

120 

 

Zurn, J.D., D.C. Zlesak, M. Holen, J.M. Bradeen, S.C. Hokanson, et al. 2020. Mapping 

the black spot resistance locus Rdr3 in the shrub rose ‘George Vancouver’ allows 

for the development of improved diagnostic markers for DNA-informed 

breeding. Theoretical and Applied Genetics 133:2011-2020. doi: 

10.1007/s00122-020-03574-4. 

Zurn, J.D., D.C. Zlesak, M. Holen, J.M. Bradeen, S.C. Hokanson, et al. 2018. Mapping a 

novel black spot resistance locus in the climbing rose Brite EyesTM (‘RADbrite’). 

Frontiers in Plant Science 9:1730. doi: 10.3389/fpls.2018.01730. 

Zych, K., G. Gort, C.A. Maliepaard, R.C. Jansen, and R.E. Voorrips. 2019. FitTetra 2.0 

– improved genotype calling for tetraploids with multiple population and parental 

data support. BMC Bioinformatics 20:148. doi: 10.1186/s12859-019-2703-y. 

  



 

121 

 

CHAPTER III  

MAPPING HORTICULTURAL TRAITS IN TWO TETRAPLOID POPULATIONS. 

 

Abstract 

Two populations, Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. 

‘Radbrite’ (Brite Eyes™) (SWxBE) and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa L. 

‘BAIgirl’ (Easy Elegance® My Girl) (BExMG), were created to study flowering, plant 

size, and stem color. Linkage maps were constructed using polymapR and QTL scans 

were conducted using TetraploidSNPMap, and QTLpoly utilizing two different QTL 

interval mapping algorithms. QTL for flower intensity were found on LGs 1, 3, 4, and 5, 

and for plant size (length, width, height, primary stem lengths) on LGs 1, 3, 5, and 6, for 

plant shape on LGs 3 and 7, and stem color on LG 6. We found that two of our plant size 

related QTL are close to RoKSN on LG 3 and RoGA2ox on LG 5.  

 

Introduction 

Garden roses (Rosa spp.) are important ornamental plants for both the United 

States and worldwide. Estimated sales for garden roses in the USA was $203 million in 

2014 and $168 million in 2019 (USDA NASS, 2015 & USDA NASS, 2020) and garden 

roses along with cut flowers were valued at 24 billion Euros in 2008 ($42.3 billion USD 

equivalent adjusted for both historical exchange rate and inflation) (Heinrichs, 2008).  In 

addition to disease resistance, horticultural traits of roses are important to consumers. 

Therefore, breeding efforts are geared towards creating cultivars that combine superior 
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disease resistance and horticultural traits (Byrne et al., 2017; Waliczek et al., 2018; 

Debener and Byrne, 2014). Garden roses are primarily valued for their aesthetic 

qualities. Important components of the aesthetics of a rose are the flower productivity 

and architectural growth type of the plant. Garden roses are a diverse group of plants 

which have many different growth types ranging from small compact plants to large 

climbing roses that require external structures for support. Many garden roses are 

tetraploid which are genetically more complex than their diploid counterparts. Due to the 

genetic complexities and smaller economic impact of horticultural crops as compared to 

agronomic crops, there has been little genetic research done on tetraploid garden roses. 

Only three high density SNP tetraploid rose linkage maps have been published to date 

(Zurn et al., 2018; Zurn et al., 2020; Bourke et al., 2017).  Therefore, two bi-parental 

tetraploid populations were created to study flower productivity and plant architecture. 

The two populations were used to study the genetic components responsible for disease 

resistance (Chapter II) and horticultural traits: flower intensity, length, width, height, 

volume, primary stem lengths, number of primary shoots, number of secondary shoots, 

apical dominance, plant shape, and stem color.   

 

Plant Architecture 

Plant architecture consists of many components of plant growth which contribute 

to the overall shape of the plant. Branching angles of shoots and of roots can 

significantly alter the final structure of a plant and thus alter not only the appearance but 

also the yield of a plant (Wang and Li, 2008). Plant architecture has been an important 
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part of plant breeding as exemplified by the “Green Revolution” focus on plants with 

dwarfing plant architectures to increase the grain yield by reducing lodging (Wang and 

Li, 2008). Similarly, plant architecture can affect the flower productivity of roses (Kool 

et al., 1997).  

Plant architecture is driven by many pathways that alter the plant hormones of 

auxin, gibberellins, and brassinosteroids within the shoot, root, and axillary meristems 

(Wang and Li, 2008). Different ratios of these plant hormones can alter the expression of 

these architectural traits. RoKSN (Genebank ID: HQ174211.1) is a homolog of 

TERMINAL FLOWER 1, TFL1, a key regulator of flowering (Iwata et al., 2012). 

RoKSN is one of the most important genes described in roses as most breeders select 

visually on the everblooming trait. On the rose genome assembly produced by Raymond 

et al. (2018), TFL1 maps to 18.98 Mbp while on the assembly produced by Saint-Oyaint 

et al. (2018), TFL1 maps to 28-33 Mbp. The physical locations are very different as the 

ordering of the two assemblies are inverse of each other on chromosome 3. The two 

genome assemblies used two different Old Blush doubled haploids. The doubled haploid 

in the assembly by Saint-Oyant et al. (2018) had a RoKSN deletion which they named 

RoKSNnull. When TFL1 is BLAST to this assembly, a small part of the gene 28 Mbp and 

the other part at 33Mbp. The doubled haploid used for the genome assembly performed 

by Raymond et al. (2018) had the RoKSN allele which is why TFL1 maps to a much 

narrower region. Using this narrow region, markers in our linkage maps corresponding 

to the physical positions of 18-20 Mbp were used to estimate the position of RoKSN in 

our populations. Both RoKSN and TFL1 control the continuous blooming trait. It is 
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suggested that these two genes may either have pleiotropic effects on other things like 

plant architecture and flowering time, or there are other genetic factors closely linked 

with RoKSN that control these traits. (Kawamura et al., 2015; Goretti et al., 2020; 

Shannon and Meeks-Wagner, 1991; and Ratcliffe et al., 1998). Kawamura et al. (2015) 

concluded with their research that it is more probable that there are genetic factors 

closely linked to RoKSN that affect these architectural traits.  

Another gene of importance but may not be as important in our germplasm is the 

antagonist to RoKSN, RoFT (Remay et al., 2009). In Arabidopsis, TFL1 and FT are 

antagonistic where TFL1 represses flowering and FT initiates flowering (Moraes et al., 

2019). Other genes that are involved in plant architecture are the genes relating to 

gibberellin pathways, RoGA2ox (Remay et al., 2009) and RoSLEEPY (Foucher, et al., 

2008). These gibberellins play roles in plant architecture as they are a one of the main 

classes of plant hormones associated with plant cell elongation and flower signaling. 

Although many studies have been conducted in Arabidopsis thaliana to 

understand the genetic complexities of plant architecture, few have been done with 

roses.  Plant architecture has been characterized in roses with some studies looking at 

how cultural practices affect plant architecture (Kool, 1997; Kool and Lenssen, 1997; 

Kool et al., 1997; Mascarini et al., 2006; Crespel et al., 2013). Kawamura et al. (2011) 

found broad sense heritabilities (H2) ranging from 0.82 to 0.93 when looking at numbers 

of nodes on different parts of the primary shoot and Kawamura et al. (2015) found 

similar broad sense heritabilities ranging from 0.75 to 0.89 when looking at plant 

architectural traits such as plant height, primary shoot angles, internode length, and stem 
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diameters. In these studies, the plants were grown in field and shoots were harvested for 

measuring. Wu et al. (2019) found moderate to low narrow sense heritabilities (0.12-

0.50) in the architectural traits of plant height, number of primary shoots, length of 

primary shoots, number of nodes on a primary shoot, number of secondary shoots, and 

number of tertiary shoots.  Broad sense heritabilities for these traits were all moderate to 

high (0.46-0.92) with the exception of number of secondary shoots (0.34). 

Li-Marchetti et al. (2017) looked at plant architecture in greenhouse conditions 

where plants were grown in containers. They estimated that the broad sense heritability 

of number of shoots to be between 0.54 and 0.71; and the H2 of the length of shoots to be 

between 0.36 and 0.58. Growing plants in containers can alter the architecture of a plant 

as container grown plants have root systems restricted by the volume of the container 

whereas field grown plants can give a better “real world” phenotype as most garden 

roses will be planted in the landscape in the ground. Our studies seek to study in-field 

architecture traits that would be affected only by yearly dormant pruning of plants with 

mechanical hedgers to a uniform size.  

 

Materials and Methods 

Population Development 

Two populations, Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. 

‘Radbrite’ (Brite Eyes™) (SWxBE) n=200 and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa 

L. ‘BAIgirl’ (Easy Elegance® My Girl) (BExMG) n=157, were developed in the spring 

2016 by Texas A&M University Rose Breeding and Genetics Lab and Weeks Roses. 
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From here on out the trade names of these cultivars will be used instead of their proper 

scientific name which indicates their plant protection names. These trade names Stormy 

Weather™, Brite Eyes™, and Easy Elegance® My Girl, will be referred to as Stormy 

Weather, Brite Eyes, and My Girl. They will also be abbreviated as SW, BE, and MG, 

respectively. The populations were designed to study disease inheritance described in 

chapter II, however we noticed the segregation in the populations for plant architecture 

types.  

In Somerville, TX, the plants were planted in randomized complete block design 

(RCBD) at 4 foot spacing and mulched using black landscape fabric in the April of 

2018. Irrigation was done with overhead sprinklers. Soil type was Belk clay. Plants were 

pruned once in April of 2019 to a uniform size of around 1.5 cubic feet. In Overton, TX, 

plants were planted on 4 foot spacing in a RCBD, mulched using landscape fabric, and 

irrigated with drip irrigation underneath the landscape fabric. Soil type was Bowie Fine 

Sandy Loam. Plants were pruned each winter to 50% reduction in canopy. Monthly 

temperature and precipitation for both locations are shown in chapter II in Figures 2.18 

and 2.19. In both locations, no fungicide was used and plants were irrigated and 

fertilized as needed. 

 

Phenotyping 

Flower productivity was phenotyped in 2019 in two locations, Somerville, TX, 

and Overton, TX. Flower intensity ratings estimated flower coverage of the canopy 

using a 0-9 scale in which 0 represents no flowers in the canopy. A rating of 1 would 
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represent a plant having between 1 to 10 percent of flower coverage, and a rating of 2 

represents 11 to 20 percent flower coverage, etc. Flower intensity was rated monthly for 

five months from June to October in Somerville, TX, and for three months June, 

September, and October, in Overton, TX.  

In addition to flower productivity, the plant architecture was phenotyped for the 

2018 and 2019 growing seasons in Somerville, TX. Architecture trait data were taken in 

April 2019 and in December 2019. Data taken in April 2019 was on dormant plant 

material prior to yearly dormant pruning, thus capturing the 2018 growing season’s 

growth. Data was taken in December 2019 on dormant plants accounting for plant 

growth in 2019. The plants within these two families ranged from dwarf to large 

climbing growth types. Architecture traits taken were plant length, width, and height. 

Plant volume was calculated as an ellipsoid using the following formula 𝑉 =
4

3
𝜋LWH 

where V = volume, L= plant length, W = plant width, and H = plant height. In addition, 

to basic plant size measurements, we counted the number of primary shoots coming 

from the base of the plant. To try to measure apical dominance, we measured the length 

of three basal shoots (primary shoots) and counted the number of secondary shoots 

greater than 2.54 cm broke from the buds on the basal shoot. We then calculated an 

apical dominance index = basal shoot length / number of secondary shoots greater than 

2.54 cm on that basal shoot. Throughout the phenotyping process, no primary shoots 

were removed to measure length and secondary shoots as removal of entire primary 

shoots may alter next year’s growth. 
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In April 2019, plant shape and stem color were rated. Plant shape was quantified 

categorically into three discrete groups: bush, semi-climber, and climber types. For QTL 

analysis, the three categories of bush, semi-climber, and climber types were converted to 

0, 1, and 2, respectively. Similarly, stem color was rated as a green, semi-red, and red. 

The corresponding numbers were 0, 1, and 2, respectively.  

 

Heritability Estimates 

Heritability was estimated using variances calculated from mixed models using a 

Restricted Estimated Maximum Likelihood (REML) method in SAS 9.4 (SAS Institute 

Inc. Cary, NC, USA) (Table 3.1). The model for flower intensity included factors of 

month and location due to multiple months and locations where flower intensity was 

being phenotyped. However, length, width, height, and number of primary shoots were 

taken on a yearly basis in one location, the mixed model used did not include months nor 

location but instead had a year effect.  For primary shoot length and number of 

secondary shoots which were taken on three shoots of each plant, the mixed model also 

accounted for the variation between shoot on each rep as three measurements were taken 

on each rep. Standard errors to heritability estimates were calculated using the Dickerson 

approximation (Dickerson, 1969). Heritability was not calculated for the plant shape and 

stem color traits which were categorically phenotyped. Plant shape and stem color also 

did not appear to follow qualitative segregation patters. 
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Table 3.1. Models used to calculate heritability and environmental effects for two 

tetraploid garden rose mapping populations. 

 Traits Models 

Flower Intensity y = σ2
family + σ2

progeny[family] + σ2
location  + σ2

 month [location]  + 

σ2
rep[location* month] + σ2

location x family + σ2
location x progeny[family] + 

σ2
month x family + σ2

month x progeny[family] + σ2 
location x month x family 

+ σ2
location x month x progeny[family] +   σ2

error 

Length, width, height, 

plant volume, number of 

primary shoots 

y = σ2
family + σ2

progeny[family] + σ2
year + σ2

rep[year] + σ2
year x 

family + σ2
year x progeny[family] + σ2

error 

Shoot length, number of 

secondary shoots longer 

than 1cm an apical 

dominance 

y = σ2
family + σ2

progeny[family] + σ2
year + σ2

 rep [year]  + 

σ2
shoot[year*rep] + σ2

year x family + σ2
year x progeny[family] + σ2

error 

 

 

Genotyping and Linkage mapping 

Tissue (young unexpanded leaflets) was collected from 200 and 157 individuals 

in the SWxBE and BExMG populations respectively and DNA was extracted using a the 

CTAB protocol described by Yan et al. (2018). Extracted DNA samples were incubated 

with RNase at 37°C and purified using the OneStep™ PCR Inhibitor Removal Kit 

(Zymo Research, Irvine, CA, USA). The samples were sent to Thermo Fisher Scientific 

for genotyping on the Axiom WagRhSNP 68k array (Koning-Boucoiran et al., 2015). 

Genotype calling and linkage mapping were conducted as described in chapter II. 

QTL mapping was conducted using maps created in polymapR (Bourke et al., 

2018) and imported into TetraploidSNPMap (Hackett et al., 2017) and QTLpoly (Pereira 

et al., 2020) for interval QTL mapping. The algorithm for QTL mapping in 

TetraploidSNPMap is very similar to that of the fixed effect interval mapping (feim) 

method in QTLpoly. However, QTLpoly also has a random-effect multiple interval 
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mapping method (remim) which assumes a model with no QTL followed by rounds 

forward search of QTL which in each round takes into account the QTL already in the 

model. This method is thought to be more accurate when compared to the other two 

algorithms as multiple QTL are considered through forward addition and backwards 

elimination of QTL. The genome wide significance levels used for the forward search of 

QTL and backward eliminations in the remim method are determined by using a score-

based resampling method to establish a genome-wide significance by simulating QTL at 

every position in the linkage map (Zou et al. 2004). The simulation is run 1000 times 

prior to QTL mapping to obtain the p-values to be used for forward search and backward 

elimination of QTL in the remim method. Best linear unbiased predictors (BLUPs) 

estimated from the same mixed model used to estimate heritability were used for the 

QTL scans. GWASpoly (Rosyara et al., 2016) scans were also conducted to also 

compare results from the interval QTL scans.  

 

Results and Discussion 

Correlations 

Correlations between flower intensity and all other traits are weak (the stongest is 

-0.27), while length, width, height, plant volume, and primary shoot length are strongly 

positively correlated (0.79 to 0.96) (Figure 3.1). The high correlations between these 

traits are most likely due to the fact they are all components of plant size. Number of 

primary shoots have moderate to moderately high positive correlations (0.43 – 0.70) 

with length, width, height, plant volume, primary shoot length, and number of secondary 
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shoots. Apical dominance has moderate to moderately low correlations with length, 

width, height, plant volume, primary shoot length, and plant shape (0.38 – 0.61). Stem 

color is not correlated with the other traits. When looking at correlations among years 

(Figure 3.2), moderate to high correlations (0.66 – 0.77) were found between the two 

years data for traits related to plant size (length, width, height, plant volume, and 

primary shoot length). Number of basal shoots between the two years was moderately 

correlated (0.50) and number of secondary shoots along with apical dominance had very 

low correlation between the two years (0.13 and 0.27, respectively).  
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Figure 3.1. Correlations between phenotypic traits taken on two tetraploid rose 

populations phenotyped in 2018 and 2019 in Somerville, TX, for flower intensity 

(FLIN), length (PLL), width (PLWD), height (PLHT), plant volume (PVOL), primary 

shoot length (PRL), number of primary shoots, (NPRS) number of secondary shoots 

(NSS), apical dominance (ADOM), color (STCL), and shape (PLSH). Correlations 

denoted with *, **, and *** are significant p = 0.05, 0.01, and 0.001. R package 

PerformanceAnalytics used to produce the figure. 
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Figure 3.2. Correlations between the two years of phenotypic traits taken on two 

tetraploid rose populations phenotyped in 2018 and 2019 in Somerville, TX, for length 

(PLL), width (PLWD), height (PLHT), plant volume (PVOL), primary shoot length 

(PRL), number of primary shoots, (NPRS) number of secondary shoots (NSS), apical 

dominance (ADOM). Correlations denoted with *, **, and *** are significant p = 0.05, 

0.01, and 0.001. R package PerformanceAnalytics used to produce the figure. 
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Heritability Estimates 

Broad sense heritability (H2) of flower intensity was 0.78 and narrow sense 

heritability (h2) was 0.37 (Table 3.2). The GxE variance is 23% of the total variance and 

the GxE/G ratio is 1.35. Ratios greater than one indicate increased difficulty in selecting 

for that trait in any environment. Genotypes selected to be great performers in one 

environment (part of the year) would not necessarily perform well in another 

environment. A closer examination of this differential response of genotypes to the 

environments revealed that the worst performing genotypes consistently perform poorly 

throughout the year, while the best performing genotypes show a decline in flower 

production during the hot summers then rebound in the cooler fall weather (Fig. 3.5). 

Thus, the genotypes with less flower productivity could be easily eliminated throughout 

the year. 

H2 estimates for length, width, and height range from 0.74 to 0.86 while the h2 

was estimated to be near zero (Table 3.3). These H2 estimates are similar to the H2 

estimates of plant height (0.82-0.88) (Kawamura et al., 2015; Wu et al., 2019); and a 

little bit higher than the H2 estimates (0.36-0.58) of shoot lengths from Li-Marchetti et 

al. (2017).  Plant volume measured as a function of length, width and height was 

estimated to have a H2 of 0.60 while also having an estimated h2 of zero. The number of 

basal shoots had a H2 estimate of 0.63 and a h2 of zero, which is comparable to the H2 

estimated by Li-Marchetti et al. (2017) of 0.54. H2 estimates of primary shoot length, 

number of secondary shoots and apical dominance was 0.71, 0.16 and 0.23, respectively, 

and h2 are near zero at 0.05, 0.01 and 0.09, respectively (Table 3.4). Wu et al. (2019) 
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also estimated low heritabilities of secondary shoots in diploid roses in the Texas A&M 

University rose breeding germplasm (h2 =0.21; H2=0.34). Number of primary shoots had 

near zero narrow sense (h2=0.002) and moderate broad sense heritabilities (H2=0.628) 

which were lower than the diploid estimates (h2 =0.27; H2=0.92) from Wu et al. (2019). 

Traits we measured that to our knowledge have not been studied in garden roses is 

flowering intensity (different than flowering time), plant length, and plant width. The 

high to medium heritabilities for length, width, height, plant volume, primary shoot 

length, and number of shoots indicate that we can breed and select for these traits. The 

low heritabilities of secondary shoots and apical dominance suggests that it may be hard 

to breed for these traits. Typically breeders working on seed propagated crops want to 

have high narrow sense heritability as additive variance is an approximation of the 

selectable variance for those crops. However, most of our traits show a narrow sense 

heritability near zero while having moderate to high broad sense (non-additive) 

heritability. This is still desirable for garden roses as the crop is vegetatively propagated. 

Thus, any desirable traits found in the progeny can be fixed via vegetative propagation. 

The GxE/G ratio for a specific trait is an approximation of whether a breeder can 

select for the trait irrespective of the environment in which the genotypes were 

phenotyped. The GxE/G ratio for length, width, height, shoot length, and number of 

shoots, is less than one signifying that the genetic variance is greater than the genetic by 

environment interaction (Table 3.3). This suggests that it is possible to select for these 

traits regardless of the year as there is more genetic variation than that attributed to GxE. 

The GxE/G ratio for flower intensity, number of secondary shoots, plant volume, and the 
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apical dominance index are greater than 1 suggesting that there may be difficulty 

selecting for these traits in any environment as the variance attributed to the interaction 

between genotype and environment is greater than the variance attributed genotype itself 

(Tables 3.2 and 3.4). Wu et al. (2019) also observed high GxE/G ratios for number of 

secondary shoots (3.90) however there was no further exploration of this ratio.  

The mean of the 10 best performing and 10 worst performing genotypes for 

flower intensity, number of secondary shoots, plant volume and apical dominance over 

different time periods was plotted to examine changes in GxE over time (Figure 3.3). 

For these four traits, the worst performing or lowest scored genotypes consistently 

performed poorly while there was a dramatic change in the best performing individuals 

over time. This indicates that even though GxE/G ratios are greater than one, we should 

still be able to select for these traits as the GxE primarily is derived from the changes 

seen in the best performing individuals.  

Furthermore, volume is a calculated value. For volume, all of the phenotypes that 

go into the calculation have small GxE/G ratios (0.13-0.38) Thus, plant size should be a 

phenotype that can be selected for irrespective of the year of phenotyping. Figure 3.3c 

shows that the smaller plants in 2018 continue to be small plants while the large climbers 

grow even larger the second year. Thus, we should be able to either select for climbers 

or small compact plants from year to year depending on what is desirable to the breeder.  
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Figure 3.3. These figures compare the 10 worst versus the 10 best performing genotypes 

in the different traits that exhibit high GxE/G ratios. These figures show that even with 

high GxE/G ratios, the lower performing individuals always perform lower than the high 

performing individuals, however the slopes of the high performing individuals shows 

great change over time thus contributing to the high GxE/G ratios. (a) Mean flower 

intensities of the 10 best and worst performing genotypes throughout 2019. Flower 

intensity was rated on a 0-9 scale in which 0 represents no flowers in the canopy. A 

rating of 1 would be representative of a plant that had 1-10% flower coverage of the 

canopy. A rating of 2 rating would indicate 11-20 %, etc. (b) Mean performance of 

number of secondary shoots between the two years of 10 genotypes producing lowest 

number of secondary shoots versus 10 genotypes with highest number of secondary 

shoots. (c) Mean plant volume in cubic meters of the 10 largest plants versus the 10 

smallest plants. (d) Mean plant apical dominance indices of 10 genotypes with the 

largest apical dominance index versus 10 with the smallest apical dominance index. 
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Table 3.2. Variance and heritability estimates of flower intensity on two tetraploid 

garden rose mapping populations grown in Somerville and Overton, TX in 2019.  Flower 

intensity was rated monthly for five months from June to October in Somerville, TX, 

and for three months June, September, and October, in Overton, TX.  Flower intensity 

was rated on a 0-9 scale in which 0 represents no flowers in the canopy, a rating of 1 

would be representative of a plant that had 1-10% flower coverage of the canopy, a 

rating of 2 rating would indicate 11-20 %, etc. 

Source of Variationab Variance 

Family 0.11 

Genotype(Family) 0.12*** 

Location 0.11 

Month 0.08 

Rep(Location x Month) 0.04 

Location x Family 0.00 

Location x Genotype 0.12*** 

Family x Month 0.00 

Genotype x Month 0.01 

Location x Family x Month 0.10 

Location x Genotype x Month 0.07** 

Residual 0.56*** 

Total 1.32 

Percent Variation 

Genotypic Variance 0.17 

Environmental Variance 0.14 

GxE Variance 0.23 

Residual Variance 0.43 

GxE/G ratio 1.35 

Heritabilitiesc 

h2 0.37 (0.60) 

H2 0.78 (0.60) 
a Narrow sense heritability, h2 = σ2

family / (σ2
family + σ2

genotype[family] + ( σ2
location x family + σ2

location x 

genotype[family] + σ2
month x family + σ2

month x genotype[family] +  σ2
location x month*family +    σ2

location x month*genotype 

[family] )/e +  (σ2
error)/re) 

b Broad sense heritability, H2 =  (σ2
family + σ2

genotype[family] )/ (σ2
family + σ2

genotype[family] + ( σ2
location x 

family + σ2
location x genotype[family] + σ2

month x family + σ2
month x genotype[family] +  σ2

location x month*family +    σ2
location x 

month*genotype [family] )/e +  (σ2
error)/re) 

r=reps 

e=environments 
c Standard Errors calculated for heritabilities in parenthesis and calculated using the Dickerson 

estimation  
*, **, *** Variance components are significant at P≤0.05, 0.01, or 0.001, respectively using the 

Wald’s Z test. 
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Table 3.3. Variance and heritability estimates of the traits length, width, height, plant 

volume, and number of basal shoots, taken on two tetraploid garden rose mapping 

populations phenotyped in Somerville, TX, for the 2018 and 2019 growing season. 

Variance 

Sources of Variation Length Width Height 

Plant 

Volume 

(Ellipsoid) 

Number of 

Shoots 

Family 0.00 0.00 4.39 0.00 0.01 

Genotype(Family) 1329.31*** 921.89*** 511.73*** 1.235E+13*** 3.48*** 

Season 283.88 263.73 431.37 6.822E+12 2.55 

Rep(Season) 7.06 4.55 4.56 2.316E+11 0.54 

Family x Season 7.16 3.48 0.00 0.00 0.00 

Genotype x 

Season(Family) 
167.39*** 158.78*** 196.77*** 1.253E+13*** 0.51 

Residual 523.55*** 377.13*** 315.05*** 8.571E+12*** 7.26*** 

Total 2318.35 1729.56 1463.87 4.050E+13 14.35 

Percent variation 

Genetic 0.57 0.53 0.35 0.31 0.24 

Environment 0.12 0.15 0.30 0.17 0.18 

GxE 0.08 0.09 0.13 0.31 0.04 

residual 0.23 0.22 0.22 0.21 0.51 

GxE/G ratio 0.13 0.18 0.38 1.02 0.14 

Heritabilitiesabc 

h2 0.00 0.00 0.01  0.00 0.00   

h2 standard error NA NA (0.02) NA (0.01) 

H2 0.86   0.84  0.74 0.60 0.63  

H2 standard error (0.076) (0.076) (0.080) (8.066E-14) (0.084) 
a Narrow sense heritability, h2 = σ2

family / (σ2
family + σ2

genotype[family] + (σ2
location x family + σ2

location x genotype[family] + 

σ2
month x family + σ2

month x genotype[family] + σ2
location x month*family +    σ2

location x month*genotype [family])/e + (σ2
error)/re) 

b Broad sense heritability, H2 = (σ2
family + σ2

genotype[family])/ (σ2
family + σ2

genotype[family] + (σ2
location x family + 

σ2
location x genotype[family] + σ2

month x family + σ2
month x genotype[family] + σ2

location x month*family +    σ2
location x month*genotype 

[family])/e + (σ2
error)/re) 

r=reps 

e=environments 
c Standard Errors calculated for heritabilities in parenthesis and calculated using the Dickerson estimation  
*, **, *** Variance components are significant at P≤0.05, 0.01, or 0.001, respectively using the Wald’s Z 

test. 
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Table 3.4. Variance and heritability estimates of the traits primary shoot length, number 

of secondary shoots, and apical dominance taken on two tetraploid garden rose mapping 

populations phenotyped in Somerville, TX, for the 2018 and 2019 growing season. 

Variance 

Sources of variation Shoot length 
Secondary 

shoots 

Apical 

dominance 

Family 29.79 0.05 10.41 

Genotype(family) 441.01*** 0.80* 14.51* 

Season 317.47 8.00 114.79 

Rep(season) 0.00 0.25 7.66 

Shoot(season*rep) 16.32* 0.08 0.80 

Family*season 0.00 0.35 17.20 

Genotype*season(family) 211.60*** 4.15*** 87.67*** 

Residual 330.45*** 8.20*** 129.22*** 

Total 1346.65 21.87 382.25 

Percent variation  
Genetic 0.35 0.04 0.07 

Environmental 0.24 0.37 0.30 

GxE 0.16 0.21 0.27 

Residual 0.25 0.38 0.34 

GxE/G ratio 0.45 5.31 4.21 

Heritabilitiesabc 

h2 0.05 (0.07) 0.01 (0.08) 0.10 (0.28) 

H2 0.71 (0.10) 0.17 (0.11) 0.23 (0.28) 
a Narrow sense heritability, h2 = σ2

family / (σ2
family + σ2

genotype[family] + (σ2
location x family + σ2

location x genotype[family] + 

σ2
month x family + σ2

month x genotype[family] + σ2
location x month*family +    σ2

location x month*genotype [family])/e + (σ2
error)/re) 

b Broad sense heritability, H2 = (σ2
family + σ2

genotype[family])/ (σ2
family + σ2

genotype[family] + (σ2
location x family + 

σ2
location x genotype[family] + σ2

month x family + σ2
month x genotype[family] + σ2

location x month*family +    σ2
location x month*genotype 

[family])/e + (σ2
error)/re) 

r=reps 

e=environments 
c Standard Errors calculated for heritabilities in parenthesis and calculated using the Dickerson estimation  
*, **, *** Variance components are significant at P≤0.05, 0.01, or 0.001, respectively using the Wald’s Z 

test. 

 

 

Flower Intensity 

Over the course of the year, we observe that flower intensity increases 

throughout the year with a slight decline of flowers in August (Figure 3.4). This is most 
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likely due to the increased heat during that month (Liang et al., 2017) (Figure 2.19). The 

means are different between families at each month and there are differences between 

the means of flower intensity ratings from month to month within each family.  In all 

months, the SWxBE family have less flowers on average when compared to the flower 

intensity of the BExMG family. This is possibly due to the fact Stormy Weather is a 

climbing rose while Brite Eyes and My Girl are more shrub like in nature (Figure 3.4-

3.5). Brite Eyes is officially classified as a climber, however in our field, Brite Eyes 

looks like an intermediate semi climbing plant. While there is not literature supporting 

this, observations within these two families seem to suggest that the climbing genotypes 

also have long primary shoots that are “leggy” and have many short secondary 

vegetative shoots less than 5 cm in length. This most often results in flower clusters at 

the ends of these primary shoots and as a result, the plant has less flower coverage of the 

plant canopy. In the two families that we have, we classified the plants as bush, climbers, 

and semi-climbers. The flowering intensity is lowest when we classified the plant as a 

climber, highest when classified as bush-type, and intermediate flowering when 

classified as a semi-climber (Table 3.5).  The family with a climbing cultivar as one 

parent (SWxBE) exhibits lower amounts of flowering when compared to the family with 

two parents exhibiting more shrub like plant architecture (BExMG).  

 

Plant Size 

Although the SWxBE family is a cross between two climbers, members of the 

SWxBE family is not significantly larger than individuals in the BExMG family which 
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only has one parent that is a climber with respect to plant length, width, height, and plant 

volume. However, individuals within the SWxBE family do have greater primary shoot 

lengths when compared to those in the BExMG family (Table 3.6). A possible reason for 

finding differences in primary shoot length and not other traits related to plant size is that 

for plant length, width, and height, we only took one measurement per rep per year 

resulting in a total of 4 measurements per genotype while we took 3 subsamples of 

primary shoot length per rep, resulting in 12 measurements per genotype. The increased 

number of observations lowered the standard error and was enough to separate the 

means of the two families. Looking at length, width, height, plant volume, number of 

primary shoots and primary shoot length, the plants in 2019 were larger than the plants 

in 2018 (Table 3.6). There were more secondary shoots in 2018 when compared to 2019, 

thus the apical dominance index is lower in 2018 when compared 2019. Possibly the 

larger plants in 2019 with more basal primary shoots created plants with more crowded 

primary shoots resulting in a suppression of secondary shoot growth.  
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Table 3.5. Means comparison of flower intensity, length, width, height, plant volume, 

number of primary shoots, primary shoot length, number of secondary shoots, and apical 

dominance taken on two tetraploid garden rose mapping populations phenotyped in 

Somerville, TX, for the 2018 and 2019 growing season. Means comparisons show the 

differences between the plant shape types of climber, semi-climber, and bush. 

 Traitsab 

Plant shape 

type 
FI L W H PV NPS PSL NSS AD 

Climber 0.90 c 128.53 a 103.49 a 87.12 a 7.59 a 7.70 a 90.93 a 8.31 a 20.24 a 

Semi - climber 1.24 b 109.94 b 88.42 b 77.74 b 4.83 b 7.73 a 73.37 b 7.45 b 15.2 b 

Bush 1.43 a 97.73 c 79.55 c 69.32 c 3.35 c 7.52 a 53.57 c 6.43 c 10.81 c 

aflower intensity (FI) rated on a 0-9 scale. 0-9 in which 0 represents no flowers in the 

canopy. A rating of 1 would be representative of a plant that had 1-10% flower coverage 

of the canopy. A rating of 2 rating would indicate 11-20 %, etc.; length (L) in cm, width 

(W) in cm, height (H) in cm, plant volume (PV) in cubic meters calculated as an 

ellipsoid 𝑉 =
4

3
𝜋LWH, primary shoot length (PSL) in cm, number of primary shoots 

(NPS), number of secondary shoots (NSS) greater than 2.54 cm, and apical dominance 

(AD) calculated as PSL/NSS. 
bMeans followed by the same letter are not different according to Tukey-Kramer method 

(P≤0.05). 

 

 

 

 
Figure 3.4. Flower intensity over time of two tetraploid rose mapping populations Brite 

Eyes x My Girl (BExMG) and Stormy Weather x Brite Eyes (SWxBE) evaluated in 

Somerville, TX, in 2019. Means separation between months separated via Tukey’s 

studentized method. Means between both families at all months were significantly 

different from each other and the means separation denoted by the connecting letters 

report indicate the differences observed within family from month to month.  
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Figure 3.5. Means of flowering intensity over time of two tetraploid rose mapping 

populations Brite Eyes x My Girl (BExMG) and Stormy Weather x Brite Eyes (SWxBE) 

evaluated in Overton, TX, in 2019. Means separation between months separated via 

Tukey’s studentized method. Means between both families at all months were 

significantly different from each other and the means separation denoted by the 

connecting letters report indicate the differences observed within family from month to 

month. 

 

 

 

Table 3.6. Means comparison of length, width, height, plant volume, number of primary 

shoots, primary shoot length, number of secondary shoots, and apical dominance. 

measured in meters of two tetraploid garden rose biparental rose mapping families 

Stormy Weather x Brite Eyes (SWxBE) and Brite Eyes x My Girl (BExMG) between 

two years of phenotyping in Somerville, TX. Means followed by the same letter are not 

significantly different according to Tukey-Kramer method (P≤0.05). 

Family Year 

Length 

(cm) 

Width 

(cm) 

Height 

(cm) 

Volume 

(m3) 

Number 

of 

Primary 

Shoots 

Primary 

Shoot 

Length 

Number of 

secondary 

Shoots 

Apical 

dominance 

SWxBE 2018 97.91 b 76.53 b 61.88 b 2.72 b 6.38 b 57.09 c 8.67 a 7.88   c 

BExMG 2018 90.07 b 72.43 b 58.60 b 2.36 b 6.61 b 47.86 d 8.76 a 5.89   d 

SWxBE 2019 117.67 a 95.99 a 91.38 a 6.48 a 8.71 a 81.18 a 5.19 c 27.09 a 

BExMG 2019 117.52 a 98.54 a 87.78 a 6.17 a 9.09 a 74.15 b 3.88 b 17.44 b 
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QTL Results 

QTL were detected using multiple software packages and positions reported in 

centimorgan (cM) are the peaks of the QTL followed by a 1.5 LOD confidence interval, 

and estimations of variance explained by the QTL (Tables 3.7 and 3.8, Figures 3.6-3.8). 

Physical positions of markers within the 1.5 LOD confidence interval were obtained by 

aligning the WagRhSNP 68k Axiom SNP array probes to the rose reference genome 

assembly by Hibrand Saint-Oyant et al. (2018). Physical positions identified by GWAS 

are also presented in Tables 3.7 and 3.8 as supporting evidence to the presence of these 

QTL.  In contrast to the disease traits discussed in Chapter II, many of the architecture 

traits described herein are controlled by multiple alleles on multiple LGs. Also, in 

contrast to the diseases where one parent was clearly the donor for resistance, many of 

these architectural QTL receive favorable alleles from both parents. Allele effects 

estimated the effect of the QTL on the phenotypic mean in QTLpoly using the 

“qtl_effects” function. The interpretation of the allele effects results is clear with QTL 

segregating in a simplex x nulliplex manner (1x0) and as doses are added, it becomes 

more difficult to interpret the results due to current population sizes of the mapping 

populations. We are able to interpret segregation patters of up to two doses (1x0, 0x1, 

1x1, 2x0, and 0x2). We are less confident about the allele estimates given for QTL that 

segregate in higher dosages. The allele effects are described as the parent contributing 

the allele affecting the QTL and a  or  symbol describing whether the presence of 

the allele increases or decreases the phenotypic mean.
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Table 3.7. QTL detected for the tetraploid mapping population Brite Eyes x My Girl for flower intensity, length, width, 

height, volume, primary lengths, number of primary shoots, number of secondary shoots, apical dominance, plant 

shape, and stem color. 
QTLa Trait Contributing 

alleleb 

Detection Method LG LOD Position (cM)c Position 

(Mbp)d 

Variance 

explained 

Position 

GWASe 

qFLIN.BExMG-ch1 flower 

intensity 

  

MG  

(0x2)  
 

TetraploidSNPMap 1 5.14 21 (13-24) 12.50-47.28 9.56 NA 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 1 3.59 13.07 (4.08-37.55) 0.75-47.85 15.72 NA 

qFLIN.BExMG-ch3 flower 

intensity 

  

BE  

(2x0)  
 

  

TetraploidSNPMap 3 2.96 40 (34-44) 34.31-40.85 6.93 NA 
 

QTLpoly_feim 3 6.29 57.03 (54.01-60.39) 41.00-46.74 13.76 NA 

  QTLpoly_remim 3 4.32 58.51 (51.34-60.39) 41.00-46.74 24.01 NA 

qPLL.BExMG-ch1 plant length 
  

  

NA 
  

TetraploidSNPMap 1 4.4 51 (51-55) 51.83-57.61 7.2 38.22-63.29 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim NA NA NA NA NA NA 

qPLL.BExMG-ch3 plant length 
  

BE  
(1x0)  
 

  

TetraploidSNPMap 3 9.55 26 (20.5-31.5) 25.34-35.72 21.06 31.42-32.59 
 

QTLpoly_feim 3 9.87 26.03 (21.34-33.22) 25.34-36.66 22.26 31.42-32.59 

  QTLpoly_remim 3 7.69 26.03 (21.34-34.05) 25.34-36.67 34.82 31.42-32.59 

qPLWD.BExMG-ch1 plant width 

  

BE and MG  

(2x1) 
 
  

TetraploidSNPMap 1 5.64 51 (51-55) 51.83-57.61 10.01 24.17-64.55 
 

QTLpoly_feim 1 6.27 51.12 (48.19-52.09) 50.31-60.98 13.52 24.17-64.55 

  QTLpoly_remim 1 3.65 51.12 (35.29-71.20) 37.74-64.71 21.86 24.17-64.56 

qPLWD.BExMG-ch3 plant width 

  

BE  

(1x0)  
 
  

TetraploidSNPMap 3 7.5 26 (19-31) 23.61-35.00 16.27 21.62-33.08 
 

QTLpoly_feim 3 7.75 29 (21.34-33.22) 25.34-36.66 17.25 21.62-33.08 

  QTLpoly_remim 3 5.91 26.03 (20.03-34.05) 24.60-36.66 23.51 21.62-33.08 

qPLHT.BExMG-ch1 plant height 

  

MG  

(0x1)  
 

  

TetraploidSNPMap 1 5.8 52 (51-55) 51.83-57.61 11.41 57.57 
 

QTLpoly_feim 1 5.87 51.12 (34.06-55.23) 38.69-57.61 13.52 57.57 

  QTLpoly_remim 1 4.88 55.23 (34.06-66.01) 38.69-64.70 21.07 57.57 

Table continued on next page 
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Table 3.7. Continued 

QTLa Trait 
Contributing 

alleleb 
Detection Method LG LOD Position (cM)c 

Position 

(Mbp)d 
Variance 

explained 
Position 

GWASe 

qPLHT.BExMG-ch3 plant height 

  

BE 

(1x0)  
 

  

TetraploidSNPMap 3 9.18 29 (19-31) 23.61-35.00 19.72 31.72-33.08 
 

QTLpoly_feim 3 6.68 29 (23.05-29) 27.09-33.73 22.22 31.72-33.08 

  QTLpoly_remim 3 9.11 26.03 (23.05-30.1) 27.09-33.94 33.86 31.72-33.08 

qPVOL.BExMG-ch1 plant 

volume 

  

NA 

  

TetraploidSNPMap 1 4.48 52 (51-55) 51.83-57.61 8.32 60.83 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim NA NA NA NA NA NA 

qPVOL.BExMG-ch3 plant 
volume 

  

BE and MG  
(1x1) 
 

  

TetraploidSNPMap 3 8.18 26 (19-31) 23.61-35.00 17.92 32.03-33.07 
 

QTLpoly_feim 3 8.28 26.03 (20.03-33.22) 24.60-36.66 18.52 32.03-33.07 

  QTLpoly_remim 3 6.37 26.03 (21.34-34.05) 25.34-36.66 29.42 32.03-33.07 

qPRL.BExMG-ch1 primary 
lengths 

  

BE and MG 
(3x3) 
 

TetraploidSNPMap 1 4.7 52 (51-55) 51.83-57.61 8.7 57.57 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 1 3.57 52.09 (33.19-71.2) 38.26-64.71 16.01 57.57 

qPRL.BExMG-ch3 primary 

lengths 

  

BE  

(1x0)  
 
  

TetraploidSNPMap 3 10.73 28 (20-29.5) 24.60-33.82 23.07 31.72-33.08 
 

QTLpoly_feim 3 10.93 26.03 (21.34-30.1) 25.34-33.94 24.66 31.72-33.08 

  QTLpoly_remim 3 8.69 26.03 (23.05-30.1) 27.09-33.94 36.51 31.72-33.08 

qNPRS.BExMG-ch1 number of 

primary 
shoots 

  

BE and MG  

(2x2)  
 
  

TetraploidSNPMap 1 8.65 52 (51-55) 51.83-57.61 18.21 48.52-56.18 
 

QTLpoly_feim 1 8.74 45.04 (43.14-55.23) 43.82-57.61 19.62 48.52-56.18 

  QTLpoly_remim 1 6.03 52.09 (43.14-55.23) 43.82-57.62 34.49 48.52-56.18 

qNSS.BExMG-ch1 Number 

secondary 

shoots 
  

MG & BE 

(1x2)  
 

  

TetraploidSNPMap 1 7.68 48 (47-49) 49.39-53.49 15.98 53.5 
 

QTLpoly_feim 1 8.19 48.19 (48.19-62.11) 50.31-64.37 18.32 53.5 

  QTLpoly_remim 1 5.56 48.19 (47.05-67.3) 50.31-64.71 27.24 53.5 

qNSS.BExMG-ch3 Number 

secondary 

shoots 
  

BE  

(1x0) 
  

TetraploidSNPMap 3 7.05 29 (22-33) 25.59-36.25 14.96 29.34-45.60 
 

QTLpoly_feim 3 7.73 29 (28.09-31.13) 28.26-35.01 17.19 29.34-45.60 

  QTLpoly_remim 3 5.2 29 (24.28-33.22) 27.09-36.66 25.82 29.34-45.60 

Table continued on next page 
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Table 3.7. Continued 
QTLa Trait Contributing 

alleleb 
Detection Method LG LOD Position (cM)c Position 

(Mbp)d 
Variance 

explained 
Position 

GWASe 

qNSS.BExMG-ch4 Number 

secondary 

shoots 
  

BE & MG  

(1x1) 
 

  

TetraploidSNPMap NA NA NA NA NA NA 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 4 4.21 63.26 (56.01-78.34) 38.18-58.88 13.2 46.70-58.53 

qNSS.BExMG-ch5 Number 

secondary 

shoots 

BE & MG  

(2x2) 
 

  

TetraploidSNPMap 5 5.67 39 (38-46) 21.64-44.00 11.43 14.09-69.35 
 

QTLpoly_feim 5 6.26 39.17 (36.53-42.1) 21.64-33.50 13.53 14.09-69.35 

    QTLpoly_remim NA NA NA NA NA NA 

qADOM.BExMG-ch3 apical 
dominance 

  

BE & MG  
(1x3) 
 

  

TetraploidSNPMap 3 6.27 26 (15-37) 19.89-37.70 13.1 33.41-32.89 
 

QTLpoly_feim 3 6.68 31.13 (23.05-36.02) 27.09-37.11 14.6 33.41-32.89 

  QTLpoly_remim 3 4.67 30.1 (20.03-38.04) 24.60-38.10 23.4 33.41-32.89 

qADOM.BExMG-ch5 apical 
dominance 

  

NA 
  

TetraploidSNPMap 5 9.81 56 (49-62) 39.83-69.08 9.81 45-85.34 
 

QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim NA NA NA NA NA NA 

qPLSH.BExMG-ch7 plant shape 

  

BE & MG  

(1x2) 

  

TetraploidSNPMap 7 5.05 35 (31-39) 14.51-32.55 10.06 NA 
 

QTLpoly_feim 7 6.03 47 (31.29-49.11) 14.51-41.10 12.93 NA 

  QTLpoly_remim 7 3.50 47 (30.03-50.05) 30.00-65.32 24.13 NA 

qSTCL.BExMG-ch6 stem color 

  

BE & MG  

(1x1)  
 
  

TetraploidSNPMap 6 7.46 53 (41-53.5) 32.82-65.32 15.82 1.57 
 

QTLpoly_feim 6 8.48 49.01 (41.1-53.05) 32.82-65.32 14.99 1.57 

  QTLpoly_remim 6 5.67 49.01 (41.1-54) 32.82-65.32 31.68 1.57 

aName of QTL following the naming conventions of the Genome Database for Rosaceae. 
bParent contributing allele which affects the trait mean. Estimated by using “qtl_effects” function in QTLpoly and by running “test with simple models” function in TetraploidSNPMap. For 

black spot, cercospora, and rose rosette, the favorable allele confers lower disease and the favorable allele for defoliation confers lower defoliation scores. Alleles affecting the trait mean are 
followed by estimated mode of inheritance in the parenthesis and also indicative of whether the allele caused an increase () or decrease () of the mean of the phenotype. An NA in this 

column denotes that the software used cannot calculate a parental allele effect.  
cQTL peak position followed by 1.5 LOD confidence intervals in parenthesis. 
dPhysical positions of markers within the 1.5 LOD confidence intervals. WagRhSNP 68k Axiom SNP array probes were aligned to the rose genome assembly produced by Saint-Oyant et al. 

(2018). 
ePhysical position of markers within 1.5 LOD from the peak found in genome-wide association scans using GWASpoly. 
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Table 3.8. QTL detected for the tetraploid mapping population Stormy Weather x Brite Eyes for flower intensity, length, 

width, height, volume, primary lengths, number of primary shoots, number of secondary shoots, apical dominance, plant shape, 

and stem color. 

QTLa Trait 
Contributing 

alleleb 
Detection Method LG LOD Position (cM)c 

Position 

(Mbp)d 

Variance 

explained 

Position 

GWASe 

qFLIN.SWxBE-ch3 flower 

intensity 

  

SW  

(1x0)  
 

  

TetraploidSNPMap 3 6.51 34 (23-39) 28.21-41.19 11.39 25.46-44.49 

 QTLpoly_feim 3 7.73 40.11 (23.06-42.02) 28.21-41.19 14.43 25.46-44.49 

  QTLpoly_remim 3 6.74 25.14 (23.06-41) 28.21-41.19 20.36 25.46-44.49 

qFLIN.SWxBE-ch4 flower 

intensity 

  

SW  

(1x0)  
 

  

TetraploidSNPMap 4 7.73 34 (28-35) 10.56-33.09 14.12 17.16-33.19 

 QTLpoly_feim 4 7.3 22.03 (20.02-41.01) 4.84-58.09 13.54 17.16-33.19 

  QTLpoly_remim 4 6 30.02 (22.03-43.13) 4.84-58.09 15.94 17.16-33.19 

qFLIN.SWxBE-ch5 flower 
intensity 

  

SW & BE  
(1x1)  
 

  

TetraploidSNPMap 5 5.84 73 (71-76) 60.99-83.00 9.1 49.95-83.81 

 QTLpoly_feim 5 5.81 83.57 (61.12-84.13) 44.86-85.17 10.33 49.95-83.81 

  QTLpoly_remim 5 4.33 83.57 (65.02-86.19) 54.00-85.17 17.59 49.95-83.81 

qPLL.SWxBE-ch3 length 
  

SW  
(1x1)  
 

  

TetraploidSNPMap 3 25.61 23 (22-24) 26.40-32.54 42.69 32.34-33.08 

 QTLpoly_feim 3 23.59 27.25 (23.06-27.25) 28.21-33.10 41.54 32.34-33.08 

  QTLpoly_remim 3 >15.65 24.1 (12.94-36.6) 20.49-38.70 54.95 32.34-33.08 

qPLL.SWxBE-ch5 length 

  

BE  

(0x2) 
 
  

TetraploidSNPMap 5 5.05 56 (49-64) 26.03-56.68 8.15 64.09 

 QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 5 5.55 61.12 (42.08-63.06) 23.57-55.32 10.64 64.09 

qPLWD.SWxBE-ch3 width 

  

SW x BE  

(1x1)  
 
  

TetraploidSNPMap 3 20.84 23 (22-24) 26.40-32.54 36.11 32.34-32.80 

 QTLpoly_feim 3 18.94 27.25 (20.04-27.25) 25.25-33.10 34.6 32.34-32.80 

  QTLpoly_remim 3 >15.65 24.1 (15.05-33.46) 22.15-37.74 47.06 32.34-32.80 

qPLWD.SWxBE-ch5 width 

  

BE  

(0x2)  
  

  

TetraploidSNPMap 5 4.82 56 (49-64) 26.03-56.68 7.68 64.09-75.37 

 QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 5 4.44 50.1 (35.24-72.03) 16.06-74.32 10.48 64.09-75.37 

Table continued on next page 
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Table 3.8. Continued 

QTLa Trait 
Contributing 

alleleb 
Detection Method LG LOD Position (cM)c 

Position 

(Mbp)d 
Variance 

explained 
Position 

GWASe 

qPLHT.SWxBE-ch3 height  

  

SW & BE  

(1x1)  
 

  

TetraploidSNPMap 3 22.43 25 (24-27) 28.21-33.10 37.95 32.59-32.80 

 QTLpoly_feim 3 21.14 24.1 (24.1-27.25) 28.21-33.10 37.98 32.59-32.80 

  QTLpoly_remim 3 >15.65 24.1 (15.05-33.46) 22.15-37.74 47.99 32.59-32.80 

qPLHT.SWxBE-ch5 height  

  

SW & BE  

(1x2)  
 

  

TetraploidSNPMap 5 5.88 57 (54-61) 35.79-53.41 9.59 64.09 

 QTLpoly_feim 5 5.99 70.33 (50.1-75.07) 27.07-78.15 10.62 64.09 

  QTLpoly_remim 5 4.09 71.02 (39.19-82.67) 19.11-85.17 12.05 64.09 

qPLHT.SWxBE-ch6 height  SW&BE  
(2x2) 
 

  

TetraploidSNPMap NA NA NA NA NA NA 

 QTLpoly_feim NA NA NA NA NA NA 

    QTLpoly_remim 6 3.68 58.07 (30.34-59.37) 20.00-66.70 8.14 25.00 

qPVOL.SWxBE-ch3 volume 
  

SW&BE  
(1x1)  
 

  

TetraploidSNPMap 3 16.88 23 (21-27) 26.40-33.10 30.28 33.21-45.41 

 QTLpoly_feim 3 16.16 27.25 (23.06-28.01) 28.21-32.89 30.07 33.21-45.41 

  QTLpoly_remim 3 >15.65 24.1 (16.39-30.12) 23.04-34.18 41.95 33.21-45.41 

qPVOL.SWxBE-ch5 volume 

  

BE 

(0x2)  
 
  

TetraploidSNPMap 5 5.56 57 (49-61) 26.03-53-42 9.15 78.22-83.02 

 QTLpoly_feim 5 6.11 69.02 (50.1-81.03) 27.07-85.17 10.89 78.22-83.02 

  QTLpoly_remim 5 4.98 61.12 (45.04-81.03) 23.58-85-17 12.74 78.22-83.02 

qPRL.SWxBE-ch3 primary 

lengths 
  

SW & BE  

(1x1)  
 
  

TetraploidSNPMap 3 32.06 23 (22.5-24) 26.40-32.54 50.37 32.54-32.80 

 QTLpoly_feim 3 31.37 27.23 (24.1-27.25) 28.21-33.10 51.53 32.54-32.80 

  QTLpoly_remim 3 >15.65 24.1 (9.09-40.11) 1.20-41.19 61.24 32.54-32.80 

qPRL.SWxBE-ch5 primary 

lengths 

  

BE  

(0x2)  
 

  

TetraploidSNPMap 5 6.29 57 (54-60) 35.78-51.74 10.44 64.09 

 QTLpoly_feim 5 6.11 57.11 (50.1-70.33) 27.07-72.02 10.88 64.09 

  QTLpoly_remim 5 6.37 57.11 (42.08-61.12) 23.57-53.42 10.8 64.09 

qPRL.SWxBE-ch6 primary 

lengths 

  

SW & BE  

(1x1)  
 

  

TetraploidSNPMap NA NA NA NA NA NA 

 QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 6 3.95 57.04 (38.14-74.34) 20.00-67.34 6.34 25.00 

Table continued on next page 
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Table 3.8. Continued 

QTLa Trait 
Contributing 

alleleb 
Detection Method LG LOD Position (cM)c 

Position 

(Mbp)d 
Variance 

explained 
Position 

GWASe 

qNPRS.SWxBE-ch1 number of 

primary 

shoots 
  

SW  

(3x1)  
 

  

TetraploidSNPMap 1 4.56 39 (36.5-42.5) 42.69-52.15 5.69 36.98-64.18 

 QTLpoly_feim NA NA NA NA NA NA 

  QTLpoly_remim 1 3.55 37.02 (14.14-62.89) 14.13-64.71 8.93 36.98-64.18 

qNPRS.SWxBE-ch6 number of 

primary 

shoots 
  

BE  

(0x1)  
 

  

TetraploidSNPMap 6 4.91 47 (40-53) 36.42-65.53 6.93 15.65-63.42 

 QTLpoly_feim 6 5.96 45.01 (38.14-59.37) 31.00-66.70 10.55 15.65-63.42 

  QTLpoly_remim 6 4.05 45.01 (38.14-57.04) 31.00-66.32 19.19 15.65-63.42 

qNSS.SWxBE-ch3 number of 

secondary 

shoots 
  

SW  
(1x0)  
 

  

TetraploidSNPMap 3 11.7 23 (21-23.5) 26.40-28.75 20.72 30.39-37.29 

 QTLpoly_feim 3 11.48 28.01 (19.56-35.01) 25.25-38.34 21.7 30.39-37.29 

  QTLpoly_remim 3 9.73 24.1 (20.04-34.11) 25.25-37.74 33.7 30.39-37.29 

qNSS.SWxBE-ch6 number of 

secondary 

shoots 
  

BE  
(0x1)  
 

  

TetraploidSNPMap 6 3.84 46 (38-55) 31.00-66.21 5.64 25.00 

 QTLpoly_feim 6 5.61 53.06 (45.01-60.26) 41.73-66.70 9.8 25.00 

  QTLpoly_remim 6 4.29 49 (39.08-59.37) 31.00-66.70 16.22 25.00 

qADOM.SWxBE-ch3 
apical 

dominance 
  

SW  

(2x1)  
 
  

TetraploidSNPMap 3 13.57 25 (24-27.5) 28.21-33.89 24.78 14.14-33.08 

 QTLpoly_feim 3 14.45 23.06 (20.04-26.21) 25.25-32.89 27.12 14.14-33.08 

  QTLpoly_remim 3 >15.65 23.06 (17.05-26.21) 23.04-32.89 40.74 14.14-33.08 

qPLSH.SWxBE-ch3 
plant 

shape 
  

SW & BE  

(1x2)  
 
  

TetraploidSNPMap 3 23.17 25 (21-27) 26.40-33.10 39.36 32.54-33.08 

 QTLpoly_feim 3 23.83 24.1 (24.1-25.14) 28.21-32.10 41.7 32.54-33.08 

  QTLpoly_remim 3 >15.65 24.1 (15.05-35.01) 22.15-38.34 56.88 32.54-33.08 

qSTCL.SWxBE-ch6 

stem color 
  

SW & BE  

(1x2)  
 

  

TetraploidSNPMap 6 9.58 47 (46-49) 48.58-63.08 16.12 56.74-56.89 

 QTLpoly_feim 6 8.71 48.01 (39.08-54.07) 31.00-66.07 16.22 56.74-56.89 

  QTLpoly_remim 6 5.91 48.01 (39.08-57.04) 31.00-66.32 28.93 56.74-56.89 

aName of QTL following the naming conventions of the Genome Database for Rosacae. 
bParent contributing allele which affects the trait mean. Estimated by using “qtl_effects” function in QTLpoly and by running “test with simple models” function in TetraploidSNPMap. For 

black spot, cercospora, and rose rosette, the favorable allele confers lower disease and the favorable allele for defoliation confers lower defoliation scores. Alleles affecting the trait mean are 
followed by estimated mode of inheritance in the parenthesis and also indicative of whether the allele caused an increase () or decrease () of the mean of the phenotype. 
cQTL peak position followed by 1.5 LOD confidence intervals in parenthesis. 
dPhysical positions of markers within the 1.5 LOD confidence intervals. WagRhSNP 68k Axiom SNP array probes were aligned to the rose genome assembly produced by Saint-Oyant et al. 
(2018). 
ePhysical position of markers within 1.5 LOD from the peak found in genome-wide association scans using GWASpoly. 
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Figure 3.6. Linkage maps with QTL of tetraploid mapping population, Brite Eyes x My Girl. QTL peaks denoted by a 

horizontal mark and the 1.5 LOD confidence interval denoted by the whiskers. QTL are labeled with the names of the software 

used to detect the QTL. 
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Figure 3.7. Linkage maps with QTL of tetraploid mapping population, Stormy Weather x Brite Eyes. QTL peaks denoted by a 

horizontal mark and the 1.5 LOD confidence interval denoted by the whiskers. QTL are labeled with the names of the software 

used to detect the QTL. 

 



 

154 

 

 
Figure 3.8. Manhattan plots of genome-wide association scans using GWASpoly of two tetraploid rose mapping population. 
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QTL for Flower Intensity 

QTL for flower intensity were located on LGs 1, 3, 4, and 5 and the variance 

explained by the QTL ranged from 7-24% (Tables 3.7 and 3.8, Figures 3.6-3.8). The 

BExMG population had flower intensity QTL on LGs 1 and 3 (qFLIN.BExMG-ch1 and 

qFLIN.BExMG-ch3) while the SWxBE population had QTL on LGs 3, 4, and 5 

(qFLIN.SWxBE-ch3, qFLIN.SWxBE-ch4, and qFLIN.SWxBE-ch5). Alleles controlling 

qFLIN.BExMG-ch1 are inherited from MG while qFLIN.BExMG-ch3 comes from BE. 

Both qFLIN.SWxBE-ch3 and qFLIN.SWxBE-ch4 come from SW while qFLIN.SWxBE-

ch5 comes from both SW and BE. Although qFLIN.BExMG-ch3 and qFLIN.SWxBE-ch3 

both are on LG3, the two QTL from the two populations do not share a common donor 

parent affecting the phenotypic mean. The parents of the two mapping populations are 

commercial cultivars that have already been selected for having many flowers thus 

favorable alleles may be coming from any or multiple parents. The QTL on LG 3 in the 

SWxBE population is near RoKSN (Figure 3.7). Kawamura et al. (2011) mapped QTL 

for the first day the flower appearing on LGs 3, 4, and 7 around 56, 35, and 53 cM, 

respectively. While we cannot compare the map positions of our maps and those of 

Kawamura et al. (2011), the proximity of both our flowering intensity QTL and their 

flowering date QTL to RoKSN on LG 3 is interesting, indicating that possibly the same 

underlying genetic factor is affecting both flowering intensity and flowering date. Our 

other flower intensity QTL do not overlap any other flowering QTL described by 

Kawamura et al. (2011). 
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QTL for Plant Size 

QTL for length, width, height, plant volume, and primary shoot lengths share 

overlapping intervals on LGs 1, 3, and 5 (Tables 3.7 and 3.8, Figures 3.6-3.8). The 

BExMG population had QTL for these plant size traits on LGs 1 and 3 (qPLL.BExMG-

ch1, qPLWD.BExMG-ch1, qPLHT.BExMG-ch1, qPVOL.BExMG-ch1, qPRL.BExMG-

ch1, qPLL.BExMG-ch3, qPLWD.BExMG-ch3, qPLHT.BExMG-ch3, qPVOL.BExMG-

ch3, qPRL.BExMG-ch3). The SWxBE population had overlapping QTL for plant size on 

LGs 3 and 5 (qPLL.SWxBE-ch3, qPLWD.SWxBE-ch3, qPLHT.SWxBE-ch3, 

qPVOL.SWxBE-ch3, qPRL.SWxBE-ch3, qPLL.SWxBE-ch5, qPLWD.SWxBE-ch5, 

qPLHT.SWxBE-ch5, qPVOL.SWxBE-ch5, qPRL.SWxBE-ch5). There was one QTL that 

did not overlap with any of the other plant size QTL on LG 6 (qPRL.SWxBE-ch6). The 

phenotypic variance explained by the QTL on LG 3 are greater than the QTL found on 

LGs 1, 5, and 6. The variance explained by QTL on LG 3 ranges from 16-61% while the 

QTL on LGs 1,5, and 6 range from 6 to 21%. The amount of variance attributed to the 

QTL on LG 3 seem to be greater than the variance of those same traits on other LGs 

(Tables 3.7 and 3.8). A possible explanation for this is the proximity of the QTL on LG 

3 to RoKSN, a major gene controlling the everblooming trait. From the aggregation of all 

the traits measuring plant size, it appears that the QTL for plant size on LG 1 

(qPLL.BExMG-ch1, qPLWD.BExMG-ch1, qPLHT.BExMG-ch1, qPVOL.BExMG-ch1, 

qPRL.BExMG-ch1) receives alleles affecting the phenotypic mean from both BE and 

MG. The QTL on LG 3 (qPLL.BExMG-ch3, qPLWD.BExMG-ch3, qPLHT.BExMG-ch3, 

qPVOL.BExMG-ch3, qPRL.BExMG-ch3) from the BExMG family looks to primarily 
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receive alleles affecting plant size from BE while the QTL on LG 3 (qPLL.SWxBE-ch3, 

qPLWD.SWxBE-ch3, qPLHT.SWxBE-ch3, qPVOL.SWxBE-ch3, qPRL.SWxBE-ch3) from 

the SWxBE family looks to receive alleles affecting plant size from both SW and BE. 

The QTL on LGs 5 and 6 (qPLL.SWxBE-ch5, qPLWD.SWxBE-ch5, qPLHT.SWxBE-ch5, 

qPVOL.SWxBE-ch5, qPRL.SWxBE-ch5, qPRL.SWxBE-ch6) receive alleles from BE 

affecting plant size. Because the QTL for length, width, height, plant volume, and 

primary shoot length are all measurements of plant size and highly correlated, they show 

QTL in many of the same locations (Tables 3.7-3.8, Figures 3.6-3.7). All QTL detected 

for plant size traits on LG 3 either overlap or are in close proximity to RoKSN. 

Furthermore, GWAS scans with markers aligned to both rose genome assemblies (Saint-

Oyant et al., 2018; Raymond et al., 2018) showed peaks near the physical location of 

RoKSN between 32.34-33.08 Mbp and 18.13-18.96 Mbp, respectively. Interestingly, 

Kawamura et al. (2011) mapped QTL relating to internode lengths on primary shoots 

near RoKSN. Internode lengths are a component of plant size so it is no surprise that we 

also discovered QTL for traits measuring plant size in this region.  

In addition to the strong QTL on LG 3 for traits associated with plant size, we 

found a QTL for length, width, height, and volume in the SWxBE family on LG 5 near 

the middle of the LG near where Kawamura et al. (2015) reported a minor QTL for plant 

height. However, Kawamura et al. (2015) reported their height QTL collocating with 

RoGA2ox.  The Genebank ID: BQ105545.1 sequence of RoGA2ox aligns to the 

assembly by Saint-Oyant et al. (2018) at 20.82 Mbp and aligns to the assembly by 

Raymond et al. (2018) at 21.85 Mbp on LG 5. Most of our QTL detected for length, 
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width, height, and primary shoot length, on LG 5 span over markers that are aligned 

physically between 22 and 38 Mbp and GWAS scans for these traits were between 31-33 

Mbp, when aligned to the assembly by Saint-Oyant et al., (2018). The physical positions 

of the QTL scans and the results from GWAS scans do not co-locate with RoGA2ox so 

our QTL is likely not the same as the one Kawamura et al. (2015) reported (Figures 3.6-

3.7). 

We also saw that qPLHT.SWxBE-ch6 and qPRL.SWxBE-ch6 co-locates with 

RoSLEEPY, a gene involved in the regulation of gibberellic acid production. This 

finding is not surprising as many architectural traits are controlled by pathways dealing 

with gibberellic acid. One of the QTL for average internode lengths mapped by 

Kawmura et al. (2011) was also near RoSLEEPY and this makes sense with our findings 

as internode lengths play a role into plant size. 

 

QTL for Primary Shoots, Secondary Shoots, and Apical Dominance 

QTL for number of primary shoots emerging from the base of the plant were 

found on LG 1 in the BExMG population (qNPRS.BExMG-ch1) and on both LGs 1 and 

6 in the SWxBE population (qNPRS.SWxBE-ch1 and qNPRS.SWxBE-ch6) (Tables 3.7 

and 3.8, Figures 3.6-3.8). The QTL for number of primary shoots in both families on LG 

1 (qNPRS.BExMG-ch1 and qNPRS.SWxBE-ch1) comes from parents both while the 

QTL on LG 6 is from BE. The difference between the QTL on LG 1 is the variance 

explained by the QTL. qNPRS.BExMG-ch1 has variance explained ranging from 18-
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29% while qNPRS.SWxBE-ch1 explains between 5-9%. qNPRS.SWxBE-ch6 contributes 

between 7-19%. 

QTL for number of secondary shoots were found on LGs 1, 3, 4, 5, and 6. The 

BExMG population has 4 QTL on LGs 1, 3, 4, and 5 (qNSS.BExMG-ch1, qNSS.BExMG-

ch3, qNSS.BExMG-ch4, and qNSS.BExMG-ch5) and the SWxBE population has two 

QTL on LGs 3 and 6 (qNSS.SWxBE-ch3 and qNSS.SWxBE-ch6). Alleles controlling the 

3 QTL, qNSS.BExMG-ch1, qNSS.BExMG-ch4, and qNSS.BExMG-ch5 comes from both 

BE and MG, while qNSS.BExMG-ch3 comes from BE. For the SWxBE family, an allele 

controlling qNSS.SWxBE-ch3 and qNSS.SWxBE-ch6 is from SW and BE respectively. 

The phenotypic variance attributed to all the QTL describing number of secondary 

shoots was between 5-33%. Interestingly qNSS.BExMG-ch5 overlaps the position where 

we estimate RoGA2ox to be and qNSS.BExMG-ch4 overlaps with RoFT. RoGA2ox is 

responsible for the breakdown of gibberellic acid which is known to affect plant 

architecture and RoFT is antagonistic to RoKSN. The homologues of RoFT and RoKSN, 

FT and TFL1, have been shown in Arabidopsis and in tomato to alter the growth type of 

the plant by the ratio they are present in the plant. Thus, it is plausible that the plant 

architecture QTL we have discovered are affected by these nearby genes. Kawamura et 

al. (2011) mapped QTL for number of nodes on primary shoots on LG 4 near RoFT. It is 

not surprising that we also found QTL for number of secondary shoots near RoFT as 

secondary shoots are nodes that have broken bud and elongated vegetatively. 

QTL for apical dominance index are on LGs 3 and 5 in the BExMG population 

(qADOM.BExMG-ch3 and qADOM.BExMG-ch5), while the SWxBE population has one 
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QTL, qADOM.SWxBE-ch3 on LG 3. In both families, both parents are contributing an 

allele for greater apical dominance for the QTL on LG 3 while we cannot estimate how 

qADOM.BExMG-ch5 due to it only being detected in TetraploidSNPMap. The apical 

dominance QTL in the BExMG family explained between 10-23% of the phenotypic 

variance while the dominance QTL in the SWxBE family explained more variance 

between 25-41%. 

 

QTL for Plant Shape and Stem Color 

QTL for plant shape in the BExMG population were found on LG 7 

(qPLSH.BExMG-ch7) and in the SWxBE population on LG 3 (qPLSH.SWxBE-ch3) 

(Tables 3.7 and 3.8, Figures 3.6-3.8). Both parents contributed alleles affecting plant 

shape. In the BExMG population only 10-24% of the phenotypic variance was attributed 

to qPLSH.BExMG-ch7 and in the SWxBE population, 39-56% of the phenotypic 

variance was attributed to qPLSH.SWxBE-ch3. Interestingly in the BExMG population, 

the plant shape QTL was found on LG 7 not near any of the other QTL for plant size. 

However, in the SWxBE population the QTL for plant shape was found near the other 

QTL associated with plant size on LG 3. Just like the other plant size QTL, 

qPLSH.SWxBE-ch3, overlaps with RoKSN (Figure 3.7). Kawamura et al. (2015) 

discovered a QTL for plant form measuring how prostrate or upright a plant was within 

1 cM to RoKSN. This measurement is similar to our ratings for plant shape.  

QTL for stem color in both populations is on LG 6 (qSTCL.BExMG-ch6 and 

qSTCL.SWxBE-ch6). Both QTL had alleles from both parents that donated color alleles 
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to the stem and both QTL were mapped to similar locations. Between 15-31% of the 

phenotypic variation could be explained by the QTL. 

RoKSN and Architectural Traits 

RoKSN is near or overlaps QTL for plant size, plant shape, flowering intensity, 

apical dominance, and number of secondary shoots. The RoKSN gene that controls 

continuous flowering also is involved in gibberellic acid (GA) signaling (Iwata et al., 

2012 and Roberts et al., 1999). GA is a plant hormone that can alter plant architecture 

(Liang et al., 2014) and has been used in crops to induce uniform flowering by inducing 

a change from vegetative to reproductive growth (Dong et al., 2017). The interaction of 

GA and auxin hormones can be a contributor to the expression of the number of 

secondary shoots allowed to break from the primary shoots.  

We did not expect to find QTL near RoKSN as all of our progeny are continuous 

bloomers. However, it has been suggested that either RoKSN and TFL1 have pleiotropic 

effects and contribute plant size and flowering time (Kawamura et al., 2015; Goretti et 

al., 2020; Shannon and Meeks-Wagner, 1991; Ratcliffe et al., 1998) or there are other 

genes closely linked to RoKSN and TFL1 that are controlling flowering intensity. Like 

Kawamura et al. (2015), we also cannot rule out the possibility that RoKSN has 

pleiotropic effects that affect plant architecture. However, because we see segregation 

for these architecture traits and can detect QTL for these traits even though both of our 

populations are all continuous flowering, we believe this is strong evidence supporting 

the theory that there are other loci near RoKSN that are affecting plant architecture. 
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Conclusions and Future Work 

The development of these two tetraploid mapping populations has helped us 

begin to understand the inheritance of flower intensity, length, width, height, plant 

volume, number of primary shoots, primary shoot length, number of secondary shoots, 

apical dominance, plant shape, and stem color. Narrow and broad sense heritabilities for 

flower intensity were 0.374 and 0.776, respectively. Narrow sense heritabilities for the 

plant size traits were near zero and broad sense heritabilities were between 0.714 and 

0.859.  The narrow sense heritabilities for number of primary shoots, number of 

secondary shoots, and apical dominance were all near zero, and the broad sense 

heritability was 0.628, 0.165, and 0.227, respectively. The moderate to high broad sense 

heritabilities of many of these traits indicate the ability to select for these traits. QTL for 

flower intensity were discovered on LGs 1, 3, 4, and 5, and for plant size (length, width, 

height, primary stem lengths) on LGs 1, 3, 5, and 6, for plant shape on LGs 3 and 7, and 

stem color on LG 6. We discovered plant architecture related QTL are near RoKSN on 

LG 3, RoFT on LG4, RoSLEEPY on LG 6, and RoGA2ox on LG 5. We observed that 

many of the QTL for plant size clustered with each other on LGs 1, 3, and 5, as these 

traits are highly correlated and are most likely measures of the same underlying genetic 

factor. 

Future work with these populations will continue to look at plant size especially 

at dwarfism found within these populations, stem color, and color changes within the 

flower as the bloom ages. Future work also needs to delve into possible fine mapping of 

these QTL for the purpose of finding candidate genes controlling these traits.
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CHAPTER IV  

CONCLUSIONS 

To date, only been three high density SNP based linkage maps for tetraploid 

roses. Our maps were created with more individuals than the existing 3 maps, 

theoretically giving us better resolution. The populations in our maps also has a recurrent 

parent Brite Eyes™, that also is a parent in one of the previously published linkage 

maps. The shared parent will allow for collaboration between labs studying different 

traits inherited from this common parent. Thus, our work contributes to the rose breeding 

community by study the inheritance of disease and horticultural traits of interest while 

allowing for future research conducted with these clonally propagated genotypes. Two 

populations, Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. ‘Radbrite’ (Brite 

Eyes™) (SWxBE) and Rosa L. ‘Radbrite’ (Brite Eyes™) x Rosa L. ‘BAIgirl’ (Easy 

Elegance® My Girl) (BExMG) were created to study inheritance of disease resistance 

(rose rosette virus, black spot, cercospora), defoliation, flower intensity, plant size, and 

apical dominance. These two populations were genotyped using the WagRhSNP 68K 

Axiom array and phenotyped in Somerville, TX, Overton TX, and Crossville, TN. 

Linkage maps constructed were of similar quality to the other three available tetraploid 

high-density SNP based linkage maps. The two linkage maps of Stormy Weather x Brite 

Eyes and Brite Eyes x My Girl consisted of 8273 and 9654 markers spanning 536.23 and 

526.31 cM respectively. The current maps of the K5 population (Bourke et al., 2017) 

was made with a tetraploid cut rose population of n=151 while the other two tetraploid 

garden rose linkage maps were made with n=94 (Zurn et al., 2018; Zurn et al., 2020). 
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Our two new linkage maps were constructed with more individuals n=200 and n=157, 

which is slightly more individuals than the K5 cut rose population, and significantly 

more than the other two garden rose linkage maps constructed by Zurn et al. (2018, 

2020).  

Using these linkage maps, QTL scans and GWAS scans identified QTL for rose 

rosette disease resistance on LGs 3 and 5, black spot resistance on LGs 3, 5, and 7; 

cercospora leaf spot resistance on LGs 1, 4, and 5; and defoliation on LGs 3, 5, and 7. 

On LG 5 we observe a cluster of QTL for black spot, cercospora, and defoliation which 

colocalize with Rdr4. For the horticultural traits, QTL were discovered for flower 

intensity on LGs 1, 3, 4, and 5, for plant size (length, width, height, primary stem 

lengths) on LGs 1, 3, 5, and 6, for plant shape on LGs 3 and 7, and stem color on LG 6. 

We discovered plant architecture related QTL are near RoKSN on LG 3, RoFT on LG4, 

RoSLEEPY on LG 6, and RoGA2ox on LG 5. We observed that many of the QTL for 

plant size clustered with each other on LGs 1, 3, and 5, as these traits are highly 

correlated. 

As a practical use to this research, markers identified to be highly associated with 

black spot and cercospora leafspot resistance were used to select 18 progeny in the Brite 

Eyes x My Girl family that carried resistance QTL against black spot (2 QTL) and 

cercospora leaf spot (1 QTL) for use in future breeding. 

In general, disease and architectural traits had low narrow sense heritability 

(most traits near 0) and high broad sense heritability (0.80 to 0.93 for diseases, 0.63 to 

0.86) indicating that for most these traits, we can select for the improvement of this trait. 
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Even though some of these traits’ genotypic by environmental variance by genotypic 

variance ratios were over 1, we showed that there is a differential response between the 

performance of the genotypes. Poor performers seem to consistently perform poorly 

irrespective of environment while the best performers were the ones that fluctuated due 

to environment. Thus, we believe we could still select genotypes that perform well 

irrespective of the environment. 

Future work will need to focus on either fine-mapping strategies and including 

both more genotypes and more mapping families to help dissect the QTL we have found 

in this study. Further work also needs to be done to create KASP markers for cheaper 

genotyping for markers found to be associated with disease resistance. Finally, a second 

year of disease and architecture data has been collected by another graduate student and 

will need to be integrated with this work to strengthen this body of work. 
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