
MULTI-VALUED REGISTER SIMULATIONS

A Thesis

by

SAI KRISHNA ADITYA BIRADAVOLU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jennifer Welch
Committee Members, Andreas Klappenecker

Krishna Narayanan

Head of Department, Scott Schaefer

May 2021

Major Subject: Computer Engineering

Copyright 2021 Sai Krishna Aditya Biradavolu

ABSTRACT

Shared read-write registers help processes in a shared-memory system to communicate by per-

forming read and write operations on them. In this thesis, we study the wait-free simulations of

shared read-write registers using weaker shared registers, for two consistency conditions regular-

ity and atomicity. We propose an algorithm which is a hybrid of the existing tree algorithm and

the clique algorithm such that it gives a trade-off between the two algorithms in the number of

read/write steps used and the number of base registers. We also explore if existing algorithms,

particularly the tree algorithm, can be extended to simulate multiple writer registers, since register

simulations in most prior works have been for single-writer registers.

ii

ACKNOWLEDGMENTS

Firstly I would like to thank my supervisor, Dr. Jennifer Welch whose guidance and support

throughout my Master’s degree helped me transition comfortably to the field of Distributed Algo-

rithms. I would also like to thank Dr. Dariusz Kowalski. My weekly discussions with him and Dr.

Welch were critical in shaping the key ideas behind the algorithms proposed in this thesis. I am

also grateful to Dr. Krishna Narayanan for his advice and guidance during the initial semesters of

my graduate studies.

Finally I would like to thank my parents and my uncle, Ramesh Amancherla for being incredi-

bly supportive throughout my education.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Jennifer Welch [advi-

sor] and Professor Andreas Klappenecker of the Department of Computer Science and Engineer-

ing and Professor Krishna Narayanan of the Department of Electrical and Computer Engineering,

Texas A&M University.

The thesis was completed by the student in collaboration with Dr. Jennifer Welch and Dr.

Dariusz Kowalski, Department of Computer & Cyber Sciences, Augusta University .

Funding Sources

This work was made possible in part by NSF under Grant Number 1816922.

Its contents are solely the responsibility of the authors and do not necessarily represent the

official views of the NSF

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES. viii

1. INTRODUCTION AND RELATED WORK . 1

1.1 Related Work . 2

2. MODEL. 5

3. HYBRID ALGORITHMS . 7

3.1 Hybrid Algorithm for Regular Registers . 7
3.1.1 Tree Algorithm . 7
3.1.2 Clique Algorithm . 11
3.1.3 Combination . 11
3.1.4 Lower Bounds . 12

3.2 Hybrid Algorithm for Atomic Registers . 13
3.2.1 Correctness of Algorithm 2 . 15
3.2.2 Algorithm 2 performance analysis . 17

4. MULTI-WRITER REGISTER SIMULATIONS . 18

4.1 Background . 18
4.2 MWRegWeak Register from Binary Atomic Registers . 18
4.3 MWRegPM Register from Binary MWRegPM Registers . 22
4.4 MWRegPM register from binary atomic registers . 25

5. CONCLUSIONS AND FUTURE WORK . 29

v

REFERENCES . 31

vi

LIST OF FIGURES

FIGURE Page

4.1 Example 4-ary logical register X with base atomic registers. 20

4.2 Example schedule at X . 20

4.3 Detailed schedule considered in this counterexample. 21

4.4 R reads 1 at register A. 21

4.5 R reads 0 at register C. 22

4.6 Example 4-ary logical register X with base MWRegPM registers. 23

4.7 Example schedule for this counter example. 24

4.8 Detailed schedule at X . 24

4.9 At register A, R reads the value written by W1. 25

4.10 At register B, R reads the value written by W0. 25

4.11 Example 8-ary logical register X with base atomic registers. 26

4.12 Schedule at X considered for this counterexample. 26

4.13 Detailed schedule at X considered for this counterexample. 27

4.14 At register A, R reads the value written by W2. 27

4.15 At register C, R reads the value written by W3. 28

4.16 At register G, R reads the value written by W4. 28

vii

LIST OF TABLES

TABLE Page

3.1 Behavior of hybrid regular algorithm for different values of d. 12

3.2 Behavior of the hybrid-atomic algorithm.. 16

viii

1. INTRODUCTION AND RELATED WORK

A shared read-write register is a basic concurrent data structure that stores a value and sup-

ports two operations to read and to write new values into it. These data structures help processes

in a shared-memory system to communicate by performing read and write operations on them.

The problem of synchronizing concurrent processes that try to access the shared registers in a

shared-memory system has been studied since the 1970s. This eventually led to Lamport ([1], [2])

formally introducing the notion of concurrent consistency conditions, namely safety, regularity

and atomicity. Lamport ([1], [2]) also studied how registers with certain base properties can be

used to implement stronger registers, and correspondingly proposed algorithms to do so. Recent

works ([3], [4]) have again renewed the interest in register simulations. In this thesis, we study the

wait-free simulation of shared read-write registers using a collection of weaker shared read-write

registers. Wait-freedom means that every operation invoked by a process completes within a finite

number of steps taken by that process, no matter how fast the other processes operate. Shared read-

write registers can be classified using properties such as their concurrency consistency condition,

number of read and write processes that are supported and whether they are binary or multi-valued.

There are many prior works studying the simulations of multi-valued registers from binary reg-

isters, atomic registers from regular registers, multi-reader registers from single-reader registers,

etc. In this thesis, we look at simulations of multi-valued multi-reader registers from binary multi-

reader registers. Lamport ([1], [2]) proposed the unary representation algorithm which simulates a

k-valued regular/atomic single-writer register using k − 1 binary regular/atomic single-writer reg-

isters. The tree algorithm in [5] also uses k − 1 base registers to implement a multi-valued regular

single-writer register from binary regular single-writer registers, but improves on the number of

steps taken by the reader and writer. Later Chaudhuri et al. [6] improve on the number of write

steps used by proposing a one-write algorithm called the clique algorithm which uses k(k − 1)/2

1

base registers to implement a k-valued regular single-writer register from binary regular single-

writer registers. Although the clique algorithm significantly improves on the number of write

steps, it is worse off in the steps taken by the reader and the number of base registers used, when

compared to the tree algorithm. We attempt to bridge this gap and propose an algorithm to sim-

ulate multi-valued regular/atomic single-writer register from binary regular/atomic single-writer

registers, that gives a trade-off between the tree and clique algorithms in the number of read/write

steps used and the number of base registers used.

The clique algorithm [6] can simulate an atomic multi-valued register from binary atomic base

registers, but the tree algorithm cannot simulate an atomic register. Chen and Wei [7] proposed a

modification to the tree algorithm to simulate an atomic register using binary atomic base registers.

While all these algorithms work with invisible reads, i.e., when the reader doesn’t write to any base

registers, the number of base registers can be improved when visible reads are used [8]. We present

an algorithm with invisible reads that is based on both the tree and clique algorithms and attempts

to utilize the advantages of both algorithms to result in a hybrid that exhibits trade-off results in

various metrics.

Most of the register simulations in these prior works have been for single-writer registers. This

is because regularity was originally only defined for the single-writer scenario. Shao et al. [9] first

defined a set of multi-writer consistency conditions for regularity. In this work, we also explore

if existing algorithms, in particular the tree algorithm, can be extended to simulate multiple writer

registers which satisfy any of the consistency conditions for regularity as in [9].

1.1 Related Work

As mentioned above Peterson [8] and Lamport ([1], [2]) have some of the first proposed algo-

rithms for simulating multi-valued registers. Peterson’s algorithm uses a buffer-based implementa-

tion to implement a multi-valued atomic register. The algorithm uses two global buffers, each with

log k registers, and every reader has another buffer. The idea is that the writer alternatively writes

2

to the two global buffers and also writes the value to be returned into the reader’s own buffer. Ag-

hazadeh et al. [3] also use an improved buffer-based implementation and simulate a multi-writer

atomic register.

Lamport’s unary representation algorithm ([1], [2]) simulates a multi-valued regular register

from binary regular registers. It uses a base register corresponding to each value that can be written,

“arranged” in descending order. The WRITE protocol for a value v writes 1 into the corresponding

base register and writes a 0 into every other base register to its right. The READ protocol works

in the opposite direction, by reading the right-most register first, going to the left until a 1 is read,

and returns the corresponding value associated with that register.

The tree algorithm that was described in [5] simulates a multi-valued single writer regular

register from binary base single-writer regular registers. The READ operation in the simulated

register is thought of as a binary search in a binary tree with registers as nodes of the tree. The

leaves of the tree are the values that the simulated register can take. The READ operation takes

the path from the root to a leaf based on what value is returned along each node of its path. If a

value of 0(1) is read, it then proceeds to the left(right) child of the node. If the subsequent child is

a leaf then that is the value returned by the simulated register, if not, the child node is also read and

the READ proceeds further down the path. Similarly a WRITE operation goes from the leaf to the

root of the tree, starting from the parent of the value at the leaf that is supposed to be written. A

0(1) is written in the parent node if the child is the left(right) child, and the operation ends when

the root node is written.

The clique algorithm [6] implements a k-ary single writer regular/atomic register from binary

base regular/atomic registers respectively. The algorithm uses a k-vertex clique with a binary

register representing each edge of the clique. The idea is that the simulated write algorithm consists

of flipping the base register on the edge between the old and new value of the write. The simulated

read algorithm reads all the base registers, and infers the value to be returned, by applying a

function to the values read.

3

Chen and Wei [7] have extended the tree algorithm and modified it to simulate a k-valued

atomic register from binary atomic registers. Their algorithm uses a larger tree structure by includ-

ing a layer of k2 height 1 nodes, each of them being an atomic register, such that they represent

the parents of all possible pairs of old-new values. This helps the algorithm in atomically changing

from the current value to the new value. The tree on top of the bottom layer with k2 nodes is a

similar binary tree as used in the regular tree algorithm, and all the nodes apart from the bottom

layer can be regular registers. The READ protocol of this modified tree algorithm is the same as

before, whereas the WRITE protocol involves an additional step of flipping the parent node of the

old-new leaf pair, after performing the write operation with the index of the old value.

Shao et al. [9] came up with formalization to define consistency conditions for regular multi-

writer registers. They introduced four definitions of varying relative strengths. They also intro-

duced the corresponding algorithms that satisfy each of these consistency conditions. They point

out various ways in which the original definition of regularity ([1], [2]) can be extended and the

costs associated with it. We will further discuss this in Section 4.2.

4

2. MODEL

Shared read-write registers store a value and support read and write operations. For a read-write

register X , read operation has an invocation read(X) and a response of return(X ,v). Similarly, to

write a value v into the shared read-write register, the write invocation is write(X ,v) with a response

of ack(X). If in a sequence of non-overlapping operations, each read returns the value of the latest

preceding write, we say that it is a legal sequence of operations.

Consider a sequence of operations on the shared register to be σ. We denote σ|i to be the sub-

sequence that contains the invocations and responses of a process pi. A sequence of operations σ

form a schedule if σ|i starts with an invocation and consists of invocations and their corresponding

responses alternately, with every invocation having a matching response.

We consider the asynchronous shared-memory model, with read and write processes. A shared

register is said to be single-writer if only one process is allowed to perform write operations on

it. A single-writer register can have any number of read processes (i.e., processes that perform

read operations on the register). Processes and registers are modeled as state machines, and a

configuration of the system contains the states of all the processes and registers in the system. An

execution is a sequence of configurations and steps in an alternating manner, starting with the initial

configuration of the system. Each step is an invocation or response of a read or write operation.

We say that a register is regular if, for any execution, every read operation returns the value

written by an overlapping write operation or the latest preceding write operation. If there is no

preceding write operation, the read operation returns the initial value.

We say that a read-write register is atomic if, for any execution there exists a total ordering of

all the operations in the execution such that it respects the ordering of the non-overlapping read and

write operations in the execution, and any read operation in the total order returns the value written

by the latest preceding write operation in the total order. If there is no preceding write operation,

5

the read operation returns the initial value.

An implementation is said to be wait-free if, every operation by a process completes in a finite

number of steps by that process irrespective of how the other processes in the system behave.

We consider implementing a multi-valued register using a set of binary physical registers,

and read and write processes. All invocations and responses for READ and WRITE operations

on the simulated logical registers are denoted in uppercase words as READ(X), RETURN(X,v),

WRITE(X,v) and ACK, where X is the logical register. Similarly, lowercase words are used to

denote operations on physical registers, like read(A), return(A,v), write(A,v) and ack, where A is

the physical register.

6

3. HYBRID ALGORITHMS

In this section we present the hybrid algorithms for the cases of regular registers and atomic

registers in Sections 3.1 and 3.2 respectively.

3.1 Hybrid Algorithm for Regular Registers

We consider the problem of simulating a k-ary single writer regular register using binary regu-

lar registers as building blocks, where k > 2. Here an algorithm is proposed, which is a hybrid of

the tree algorithm [5] and the clique algorithm [6] as discussed in Section 1.1.

3.1.1 Tree Algorithm

The tree algorithm takes log k steps each by the reader and writer, whereas the clique algorithm

takes a single write step and k(k − 1)/2 steps by the reader. The proposed algorithm exhibits a

trade-off between the number of steps taken by a simulated read and those taken by a simulated

write, as a hybrid between both the tree and clique algorithms (Table 3.1). The key idea is to

construct a tree with k leaves where the depth and the number of children of each internal node

vary inversely. Each tree node is then implemented using an instance of the clique algorithm.

In the rest of this subsection we describe and analyze a small generalization of the tree algo-

rithm [5], where the base registers are not necessarily binary. See [7] for related discussion. The

intuition as mentioned above is that instead of restricting the algorithm to use a binary tree struc-

ture, we use a tree such that the number of children each node has is inversely proportional to the

depth of the tree. We then use the clique algorithm for each internal node, since now each internal

tree node doesn’t necessarily hold only two values. Intuitively, the proposed algorithm is intended

to use the best of both the existing algorithms, by reducing the tree depth (which causes the write

steps to decrease compared to the original tree algorithm), and also reduce the number of registers

the clique algorithm uses (and thus the read steps decrease compared to the clique algorithm). This

results in the hybrid nature of performance for the proposed algorithm.

7

Let T (k, d) be a rooted tree with k leaves such that every internal node has the same number

of children and all the leaves have depth d, where k and d are such that k1/d is an integer.

Claim: T (k, d) is a complete tree with branching factor k1/d and (k − 1)/(k1/d − 1) internal

nodes.

Definition: A k1/d-ary string is a (finite) string over {0, 1, . . . , k1/d − 1}.

The root node of T (k, d) is labeled with the empty string ε. For each node of T (k, d) labeled

with k1/d-ary string `, the strings `0, `1, . . . , `x, where x = k1/d − 1, are the labels of its children

going from left to right. Note that each of the k leaves of T (k, d) is labeled with a unique k1/d-ary

string of length d, representing one of the values in V .

Example: k = 16, d = 2, k1/d = 161/2 = 4: branching factor is 4 and there are 5 internal

nodes (the root and its 4 children). The root is labeled ε, its children are labeled 0, 1, 2, and 3, and

the leaves are labeled 00 through 33 (in base 4). In base 10, the leaves correspond to the values 0

through 15.

We now describe the hybrid tree algorithm based on T (k, d) to emulate a regular register over

the set V of k values, using regular base registers each of which can hold one of k1/d values. For

simplicity, assume V = {0, 1, . . . , k − 1}. Assign a base register to each internal node in T (k, d).

Each base register can take on any value in the set {0, 1, ..., k1/d − 1}. The simulated read and

write algorithms are given in Algorithm 1. We assume that initially every base register contains

the value 0 and that there is an initializing simulated write W0 that writes the initial value and

completes before any other operation begins.

Example: To write(9): since 9 in base 10 is 21 in base 4, write 1 into register labeled 2 (parent

of leaf labeled 21), write 2 into register labeled ε (root).

To read: read 3 from register labeled ε (root), read 2 from register labeled 3 (parent of leaf

labeled 32), return 14 in base 10 (which equals 32 in base 4).

The following lemma (rephrased from [5]) proves that the proposed hybrid algorithm for regu-

lar registers is correct even when the base registers aren’t binary.

8

Algorithm 1 Code for Hybrid tree algorithm.

1: READ():
2: ` := ε
3: for p := d to 1 do
4: vp := read base register for node with label `

5: ` := `vp // ` = vd . . . vp
6: return vdvd−1 . . . v1 (in desired base)

7: WRITE(v):
8: let vdvd−1 . . . v1 be the base k1/d representation

of v
9: ` := vdvd−1 . . . v1

10: for p := 1 to d do
11: ` := ` minus last character // ` =

vdvd1 . . . vp+1

12: write vp to base register for node with label `
13: return ACK

Definition: Base read r reflects base write w if r and w access the same base register and either

(i) w completely precedes r, or (ii) w and r overlap and r returns the value that w writes.

Definition: Simulated read R notices simulated write W if R contains a base read that reflects

a base write contained in W .

Observation: Since every simulated read R reads the root and the initializing write W0 writes

the root, R notices W0, i.e., every simulated read notices at least one simulated write.

Lemma 1. (cf. Lemma 4.2 in [5]) Every simulated read R returns the value of the latest simulated

write W that R notices.

Proof. By the observation, W is well-defined. Let s be the last register read by R such that R’s

read r from s reflects W ’s write w to s. (There is at least one such register by the definition of

“notice”.) That is, either (i) w completely precedes r, or (ii) w and r overlap and r returns the

value that w writes.

Claim 1: The value b read by r from s is the same as the value written by w into s.

Proof of Claim 1: First note that w either precedes or overlaps r. If w and r overlap, then by

the definition of reflects, w writes b. Suppose w completely precedes r and, for contradiction, that

w writes some value other than b. By the definition of regularity since r reads b, there is a base

write w′ that starts after w ends and before r ends that writes b into s. Since a simulated write never

9

writes to the same base register more than once, w′ must be part of a simulated write W ′ 6= W .

Since there is only one write of the simulated register, W ′ follows W . But then R notices W ′,

contradicting the choice of W as the latest simulated write that R notices.

Claim 2: s is the last base register read by R.

Proof of Claim 2: Suppose in contradiction that s is not the last base register read by R. Then

after r, R next reads a child t of s, since simulated reads go down the tree. Since simulated writes

go up the tree, W writes a child of s before it writes s; by Claim 1, the child of s that W writes is

t. Thus R’s read of t reflects W ’s write to t. This contradicts the definition of s as the last register

read by R such that R’s read of this register reflects W ’s write to this register.

Theorem 1. (cf. Theorem 4.3 in [5]) The hybrid tree algorithm for regular registers is correct.

Proof. Since clearly the algorithm is wait-free (operations terminate), we just have to show regu-

larity. Let R be a simulated read and W be the latest simulated write that R notices. By Lemma 1,

R returns the value that W writes. We must show that either W overlaps R or W is the latest

simulated write that precedes R. Obviously R cannot precede W . Suppose in contradiction W

precedes R but there is another simulated write W ′ such that W precedes W ′ and W ′ precedes R.

Since W ′ writes the register corresponding to the root of T (k, d) before R reads that register, R

notices W ′, contradicting the choice of W as the latest simulated write that R notices.

We next state some obvious facts about the complexity of the generalized tree algorithm based

on T (k, d).

Lemma 2. The number of steps taken in the simulated write algorithm is d times the number of

steps for writing one of the tree node registers. The number of steps taken in the simulated read

algorithm is d times the number of steps for reading one of the tree node registers. The number of

binary base registers is k−1
k1/d−1 times the number of binary base registers used to implement each

tree node register.

10

3.1.2 Clique Algorithm

We use the clique algorithm [6] to implement each tree node. We briefly review that algorithm

next. To implement an m-ary regular register using binary base registers, where m > 3, conceptu-

ally there is a clique on m nodes, one for each value, and a binary base register is associated with

each (undirected) edge in the clique, resulting in 1
2
(m − 1)m base registers. The simulated write

algorithm consists of flipping the value in the base register associated with the edge that connects

the old simulated value to the new simulated value, resulting in one step per simulated write. The

simulated read algorithm consists of reading all the base registers and applying a function to the

values read, resulting in 1
2
(m − 1)m steps per simulated read. The function is the following: for

each value v, calculate the number of edges incident on the corresponding node in the clique from

whose associated register a 1 was read. If, for every node, the number of such edges is even, then

return the initial value; otherwise, return the largest value for which the number of such edges is

odd.

Theorem 2. (Theorem 4.6 in [6]) The clique algorithm correctly implements a regular m-ary

register using regular binary base registers.

3.1.3 Combination

Corollary 1. The algorithm resulting from using a copy of the clique algorithm, instantiated with

m = k1/d, for each internal node of T (k, d) in the generalized tree algorithm results in an algo-

rithm for simulating a k-ary regular register using binary base registers that is correct (termina-

tion, regularity) and uses

• d steps per simulated write ,

• d
2
(k1/d − 1)k1/d steps per simulated read, and

• 1
2
(k − 1)k1/d binary base registers.

11

Essentially we have an algorithm that is a hybrid between the clique algorithm (d = 1) and the

original tree algorithm (d = log2 k), and gives a trade-off between the number of steps taken by

the simulated read and the simulated write. Table 3.1 shows the trade-off.

clique 2-hybrid d-hybrid tree
depth 1 2 d log2 k

branching factor k
√
k k1/d 2

no. internal nodes 1
√
k + 1 k−1

k1/d−1 k − 1

no. regs/internal node 1
2
(k2 − k) 1

2
(k −

√
k) 1

2
(k1/d − 1)k1/d 1

no. steps per write 1 2 d log2 k

no. steps per read 1
2
(k2 − k) k −

√
k d

2
(k1/d − 1)k1/d log2 k

no. regs 1
2
(k2 − k) 1

2
(k3/2 −

√
k) 1

2
(k − 1)k1/d k − 1

Table 3.1: Behavior of hybrid regular algorithm for different values of d.

We can observe that when the number of write steps is an arbitrarily large constant d, the

number of read steps is Θ
(
k2/d

)
, which is an arbitrarily small polynomial, and the number of

registers is Θ
(
k1+1/d

)
, which is only slightly larger than the lower bound, as we discuss in the

section below.

3.1.4 Lower Bounds

Now let’s think about whether our hybrid algorithm can be improved to give better trade-offs.

A result in [5] (Theorem 4.8) states that if the simulated write takes d steps, then the simulated

read must take at least (d!k/2)1/d steps, as long as d ≤ (log2 k)/3. Since it can be shown that

limd→∞(d!)1/d/d = 1/e ≈ .37, this implies that the upper and lower bounds on the number of

steps for a read differ by a factor of Θ(k1/d), which goes from Θ(k) to Θ(1) as d goes from 1 to

(log2 k)/3.

A result by Wei [10] states that for algorithms with invisible reads (the read algorithm doesn’t

write to any base registers), the number of base registers must be at least k − 1. This implies that

12

the upper and lower bounds on the number of registers also differ by a factor of Θ(k1/d), which

goes from Θ(k) to Θ(1) as d goes from 1 to (log2 k)/3.

3.2 Hybrid Algorithm for Atomic Registers

We can generalize the tree algorithm for implementing an k-valued atomic register, as described

in [7]. The algorithm also uses a balanced tree with k2 height 1 nodes (the nodes in the tree that

are parents of the leaves), and each node shares a binary register called a switch, to select between

its two children. The registers in the tree can be regular except for the height 1 nodes which must

be atomic. We try to extend the hybrid tree algorithm described above in section 3.1 for regular

registers to simulating an atomic register as well, so that the nodes in the tree need not be binary.

But the algorithm relies on the fact that each height 1 node has exactly two children that represent

the old and new values that were written and also help to atomically ’switch’ from old to new

values. Therefore we require the height 1 nodes to be binary and atomic.

The idea is that we modify the tree structure used in [7] but leave the bottom layer (parents of

the leaves) of binary atomic registers as it is. The top layer (the tree on top of the binary atomic

nodes) is modified to be similar to the tree structure we use in Section 3.1, but with k2 leaves

(since there are k2 binary atomic nodes underneath it). This will help us tune the depth of the tree

(and therefore the branching factor) as desired, and to obtain the necessary trade-off between the

number of read/write steps.

We can generalize this tree into two layers. The top layered tree is similar to the hybrid tree

described in the previous section for regular registers, with its leaves as the height 1 nodes. Let

us refer to the height 1 nodes as w0, w1, . . . , wk2−1. Then in the second layer, each height 1 node

wi has 2 children; the left child has a value of α = bi/kc, and a right child with a value of

β = (i mod k). So, each pair of values (α, β) have a common parent wα∗k+β .

Similar to the hybrid tree algorithm for regular registers, to implement a k-valued atomic regis-

ter, for the top layer, we use a T (k2, d) rooted tree, with k2 leaves (which would become the height

13

1 nodes of the overall tree) such that every internal node has the same number of children and all

the height 1 nodes of the overall tree are at depth d, where k and d are such that k2/d is an integer.

Just as in case of hybrid algorithm for regular registers, each internal node of the tree (apart from

the height 1 nodes) is implemented using the clique algorithm.

The root node of T (k2, d) is labeled with the empty string ε. For each node of T (k2, d) labeled

with k1/d-ary string `, the strings `0, `1, . . . , `x, where x = k2/d − 1, are the labels of its children

going from left to right. Note that each of the k2 leaves of T (k2, d) is labeled with a unique k2/d-

ary string of length d. Assign a base register to each internal node in T (k2, d). Each base register

can take on any value in the set {0, 1, ..., k2/d − 1}.

The simulated read and write algorithms are given in Algorithm 2. We assume that initially

every base register contains the value 0 and that there is an initializing simulated write W0 that

writes the initial value and completes before any other operation begins.

Similar to [7] and in [5], the read algorithm starts from the root and arrives to a height 1 node

and then returns the corresponding value of either the left or the right child of that height 1 node,

as discussed before. The write algorithm starts by writing a zero at the height 1 node whose left

child has the current value and right child has the new value to be written. It then proceeds to the

write values to nodes in the tree along the path to the root just like in the regular tree algorithm.

This is analogous to performing a WRITE operation of the current value as per Algorithm 1. Now

a value of 1 is written to that height 1 node. This is equivalent to performing a WRITE operation

of the new value as per Algorithm 1, since all other values to be written along the path to the root

will be the same. The WRITE operation is linearized immediately after the final step. This atomic

version of the tree algorithm requires the height 1 nodes to be atomic, since the last write operation

at the height 1 node (switching its value from 0 to 1) needs to be atomic for the logical WRITE

operation to be linearized after this.

14

Algorithm 2 Code for hybrid tree algorithm for atomic registers.

1: READ():
2: ` := ε
3: for p := d to 1 do
4: vp := read base register for node with label `

5: ` := `vp // ` = vd . . . vp
6: v = read base register in the leaf of T (k2, d) with

label `
7: i = ` (in base 10)
8: if v==0 then
9: return bi/kc

10: else
11: return (i mod k)

12: WRITE(v):
13: vparent := oldval ∗ k + v
14: let vdvd−1 . . . v1 be the base k2/d representation

of vparent
15: let parent be the node with label vdvd−1 . . . v1
16: write(parent, 0)
17: ` := vdvd−1 . . . v1
18: for p := 1 to d do
19: ` := ` minus last character // ` =

vdvd1 . . . vp+1

20: write vp to base register for node with label `
21: write(parent, 1)
22: oldval := v
23: return ACK

3.2.1 Correctness of Algorithm 2

From Theorem 1 we know that the hybrid tree algorithm for regular registers is correct. The

write protocol in Algorithm 2 uses the write protocol in Algorithm 1 as subroutine with v = vparent

(from lines 17-20), and the read protocol of Alg. 2 uses the read protocol of Alg. 1 as subroutine

(until line 5). We can see that both the read and write operations terminate and Algorithm 2 is

wait-free. We now have to show atomicity. To do this we can use the correctness proof in [7] (and

also from their prior conference version of the same in 2016 [11]).

Theorem 3. (cf. Section 4.2 in [7]) The hybrid tree algorithm for implementing atomic registers is

correct.

Proof. Similar to the hybrid tree algorithm for regular registers, we assume that there is an ini-

tializing simulated write W0 that writes the initial value and completes before any other operation

begins.

Consider an execution of READ and WRITE operations, and let R be a READ operation in

the execution such that it returns a value x. If a WRITE of x is linearized during the execution of

15

R, then we also linearize R immediately after the first such WRITE. So, R returns the value of the

last WRITE operation before it. If there is no such WRITE linearized during the execution of R,

then R is linearized immediately after its first step.

So in the case that there is no linearized WRITE duringR, it should be proven that a WRITE of

x is the last linearized WRITE before the first step ofR. Let W be the last such linearized WRITE.

Since W is linearized after it’s last step, and before the first step of R, this means that W finishes

before R starts. If there is no other concurrent WRITE until after R finishes, then R returns the

value written by W , by the correctness of Algorithm 1.

Let us assume that there is another WRITE W1 following W , before R finishes, and say W

writes y 6= x. This means W1 must be linearized after the first step ofR, since W is supposed to be

the last linearized WRITE before the first step of R. This means the last completed write operation

before the first step of R can either be the last write at line 21 of W , or the first write before line

21 of W1 (from Algorithm 2). From the Algorithm 2, it is evident that either of these writes would

write y.

For R to return a value of x, this should mean that there is some other write W2 of x during the

execution interval R (from the correctness of Algorithm 1 which is a subroutine in Algorithm 2).

This contradicts our assumption that no WRITE is linearized during the execution interval of R.

Hence W must have written x.

clique d-hybrid-atomic atomic-tree [7]
depth 1 d+ 1 2 log2 k +1

branching factor k k2/d 2
no. internal nodes 1 k2 + k2−1

k2/d−1 2k2 − 1

no. steps per write 1 d+ 2 2 log2 k + 2

no. steps per read 1
2
(k2 − k) 1 + d

2
(k2/d − 1)k2/d 2 log2 k + 1

no. regs 1
2
(k2 − k) k2 + 1

2
(k2 − 1)k2/d 2k2 − 1

Table 3.2: Behavior of the hybrid-atomic algorithm.

16

3.2.2 Algorithm 2 performance analysis

Table 3.2 shows the trade off between the number of steps taken by the read protocol and the

write protocol, as a hybrid between the clique algorithm and the modified tree algorithm for atomic

registers. The expressions for the number of steps per read, number of steps per write and number

of registers can be carried over from Corollary 1, but for a T (k2, d) tree and taking into account

the additional layer of k2 binary atomic registers. This means that the tree has a depth of d+1, and

so the simulated read and write algorithms follow a path of length d + 1. The additional atomic

write step (from line 21 in Alg. 2) results in a total of d+ 2 write steps. We can also notice that the

additional k2 atomic registers will result in the total number of registers to be Θ
(
k2+2/d

)
which is

worse off than that of the regular register case.

The upper extreme reaches the modified tree algorithm [7] for d = log2 k. But, unlike the

hybrid tree algorithm of Section 3.1, we observe here that at the lower extreme this version of the

hybrid tree algorithm doesn’t reach the clique algorithm. This is also because of the additional

layer of binary atomic registers that are added to the tree at the bottom. The number of registers of

this hybrid atomic algorithm is always greater than that of the clique algorithm.

It is interesting to check how the number of steps per read would vary between extremes in

the hybrid algorithm. When k = 1 or 2 (which isn’t very interesting), we observe that the hybrid

algorithm takes more steps per read than the clique algorithm, no matter what d is. By plotting and

comparing the functions, we can observe that for k ≥ 3, the hybrid algorithm takes fewer steps per

read than the clique algorithm if d ≥ 6.

17

4. MULTI-WRITER REGISTER SIMULATIONS

4.1 Background

Shared register simulations have been studied in various works ([6], [5], [1], [2]), where a set of

shared read-write registers are used to simulate stronger shared read-write registers in a wait-free

manner. In particular, simulations of multi-valued safe, regular and atomic registers using binary

base registers that are also safe, regular and atomic respectively, have been studied in prior works

like [6] and [5]. But notably, most prior research on these multi-valued regular register simulations

only focused on simulating single-writer registers and having single-writer base registers. One

reason for that was the consistency conditions for safe and regular registers had only been defined

for single writer registers, until Shao et al. [9] defined new multi-writer consistency conditions for

regularity. We focus on attempting to check if these prior simulations can be extended to multiple

writers.

It is intriguing to extend the elegant tree algorithm mentioned before, to multiple writers with-

out making too many modifications by just using multi-writer base registers. However, we’ll show

through some counterexamples that this doesn’t work. In particular, we show that the tree al-

gorithm cannot be extended to satisfy the MWRegWeak multi-writer consistency condition [9],

when atomic registers are used (Section 4.2). We further continue to show that the tree algo-

rithm wouldn’t satisfy an even weaker multi-writer consistency condition, called MWRegPM,

when atomic base registers are used (Section 4.3).

4.2 MWRegWeak Register from Binary Atomic Registers

Consider the set of all logical writes in schedule S to be Lw and define the partial order (Lw,

<S), such that W1 <S W2 if and only if W2 is invoked after W1’s response. An element W of Lw

is a maximal element if there is no other write W1 ∈ Lw such that W <S W1.

Shao et al. [9] describe the MWRegWeak consistency condition as “A schedule satisfies

18

MWRegWeak if each read r returns the value of some write w that either overlaps or precedes

r, as long as no other write falls completely between w and r.”

Consider the partial order of all logical reads and writes in S, {WRITES(S) ∪ READS(S),

<S}. For a READ r in S, let Lwr be the set of all logical writes such that w <S r, ∀ w ∈ Lwr .

We can rephrase MWRegWeak using the definition of maximal writes by saying that “A sched-

ule S satisfies MWRegWeak if each read r returns either an overlapping write or a maximal write

in (Lwr , <S)”.

Atomicity is a stronger consistency condition which requires that all operations in a schedule

have a total ordering that respects the partial order of the executions of operations, and also the se-

mantics of the objects ([1], [2], [9]). Therefore, if a schedule satisfies atomicity then it also satisfies

the MWRegWeak consistency condition. If the tree algorithm fails to simulate an MWRegWeak

logical register using the stronger atomic registers as building blocks, then it implies the tree al-

gorithm also can’t simulate an MWRegWeak logical register using weaker MWRegWeak building

blocks, since atomicity implies MWRegWeak. Using this, a counterexample is presented as fol-

lows:

Consider the tree below in Figure 4.1 that represents a 4-ary logical register X , with the base

registers A, B and C all being atomic registers:

19

Figure 4.1: Example 4-ary logical register X with base atomic registers.

Consider the schedule for the logical register X as shown below in Figure 4.2:

Figure 4.2: Example schedule at X .

Elaborating this further to include the physical registers A, B & C, as shown in Figure 4.3:

20

Figure 4.3: Detailed schedule considered in this counterexample.

In this scenario, when R starts reading A, it returns the value of 1 consistent with A being

atomic and then proceeds down the tree to read C, as shown below in Figures 4.4 & 4.5.

At A:

Figure 4.4: R reads 1 at register A.

At C:

21

Figure 4.5: R reads 0 at register C.

Since R reads a zero here at C, it proceeds to return the left leaf (the left child of C), i.e., 2.

But there is a write of 1 by W2 at X which falls completely between the write of 2 by W1 and R.

This violates the definition of MWRegWeak consistency in this schedule for X .

4.3 MWRegPM Register from Binary MWRegPM Registers

In the previous section, we have proved using a counterexample that an MWRegWeak register

cannot be simulated using the tree algorithm. This opens up the question that the tree algorithm

might satisfy a weaker multiple writer consistency condition. We have previously mapped the

definition of MWRegWeak consistency condition to a maximal element set preceding a READ.

To further weaken the consistency condition, the idea is to broaden the set of WRITEs preceding

the READ, whose values could be returned by the READ. We consider a "pseudo-maximal" set of

elements that also include elements that overlap at least one maximal element.

Now consider a poset X , an element t in X is said to be called a pseudo-maximal element if

there exists a maximal element m of X such that t ⊀ m.

We can describe a weaker consistency condition named MWRegPM as: “A schedule S satisfies

MWRegPM if each read r returns either an overlapping write or a pseudo-maximal write in (Lwr ,

<S)” (with S and Lwr as defined in section 4.2)

As discussed in Section 4.2, atomicity is a stronger consistency condition than MWRegPM. So,

22

if the tree algorithm could simulate an MWRegPM logical register using MWRegPM registers as

building blocks, then it can do so using the stronger atomic registers as building blocks as well. On

the other hand if the tree algorithm can’t simulate an MWRegPM logical register with MWRegPM

base registers, then it’s an open question to check if the use of stronger building blocks like atomic

registers might help the case. So we first investigate the case with MWRegPM registers as building

blocks using a counterexample, and then proceed to demonstrate a counterexample when the base

registers are atomic as well in the next section.

Consider a 4-ary logical register X as shown in Figure 4.6, and when base registers are all

satisfying MWRegPM consistency condition.

Figure 4.6: Example 4-ary logical register X with base MWRegPM registers.

Consider the following schedule at the logical register X .

23

Figure 4.7: Example schedule for this counter example.

As seen above in Figure 4.7, W2 and W3 are maximal writes to R. W1 is pseudo-maximal

and W0 is not. In more detail at each of the physical registers A, B and C, the schedule looks as

follows in Figure 4.8:

Figure 4.8: Detailed schedule at X .

As shown below in Figures 4.9 & 4.10,R starts reading atA after all four writes are completed,

and readsW1 which is valid since it is pseudo-maximal; and then proceeds to return the value writ-

ten byW0, which is not pseudo-maximal. ThereforeX violates MWRegPM consistency condition.

24

At A:

Figure 4.9: At register A, R reads the value written by W1.

At B:

Figure 4.10: At register B, R reads the value written by W0.

4.4 MWRegPM register from binary atomic registers

Now consider the scenario when we are trying to simulate a multi-valued MWRegPM register

using the tree algorithm and all the base registers are atomic. This time let us consider the tree as

shown in Figure 4.11, which represents an 8-ary logical register X:

25

Figure 4.11: Example 8-ary logical register X with base atomic registers.

Consider the following schedule of X shown in Figure 4.12:

Figure 4.12: Schedule at X considered for this counterexample.

26

Figure 4.13: Detailed schedule at X considered for this counterexample.

From Figures 4.12 & 4.13, we can see thatW1 andW2 are maximal,W3 is pseudo-maximal and

W4 is not. We will proceed to show how R can return the value of W4 which isn’t valid according

to MWRegPM consistency condition.

At A:

Figure 4.14: At register A, R reads the value written by W2.

READR ofX starts reading atA after the four WRITEs have completed, and reads a 1 fromA,

27

following atomicity as shown above in Figure 4.14. After proceeding further to C, as seen below

in Figure 4.15, it reads a 1 again as per how the schedule is constructed. This leads the reader to G

(see Figure 4.16 below), where it again reads a 1, and thus returning 7 which was written by W4.

Thus X violates MWRegPM consistency condition.

At C:

Figure 4.15: At register C, R reads the value written by W3.

At G:

Figure 4.16: At register G, R reads the value written by W4.

28

5. CONCLUSIONS AND FUTURE WORK

In this thesis, we have first studied the wait-free simulation of a single writer regular register

with binary regular registers as building blocks. We proposed an algorithm that is based on the

existing ideas of tree and clique algorithms ([6], [5]). The algorithm uses a modified tree structure

with each internal node of the tree implemented using the clique algorithm. The proposed hybrid

algorithm exhibits a trade-off between the number of read and write steps. At one extreme the

algorithm behaves exactly like the clique algorithm, and towards the other extreme it simulates the

tree algorithm. The depth of the modified tree structure can be adjusted to obtain the desired trade-

off in read/write steps. We further extend the idea of this hybrid algorithm to simulate single writer

atomic registers, based on the prior work from Chen and Wei [7]. But unlike the hybrid algorithm

for regular registers, an extreme of the hybrid atomic algorithm doesn’t imitate the clique algorithm

and performs much worse off in terms of the number of registers. This is due to an additional layer

of atomic registers in the tree structure of the atomic algorithm [7]. It will be an interesting attempt

to further modify the hybrid atomic algorithm to improve the performance metrics.

We also explore if existing algorithms, in particular the tree algorithm, can be extended to

simulate multiple writer registers, since register simulations in most prior works have been for

single-writer registers. We consider the multi-writer consistency condition for regular registers,

MWRegWeak, introduced by Shao et. al. [9], and prove using a counterexample that the tree

algorithm does not satisfy the MWRegWeak consistency condition. We further introduce a weaker

consistency condition named MWRegPM and show that the tree algorithm does not satisfy this

consistency condition as well. This direction of work can be further investigated to check if the

elegant tree or clique algorithms can be modified to satisfy any of the multi-writer consistency

conditions for regularity. That can then be further extended to study the simulation of a multi-

29

writer regular register using binary single-writer regular registers as building blocks.

30

REFERENCES

[1] L. Lamport, “On interprocess communication. part I: basic formalism,” Distributed Comput.,

vol. 1, no. 2, pp. 77–85, 1986.

[2] L. Lamport, “On interprocess communication. part II: algorithms,” Distributed Comput.,

vol. 1, no. 2, pp. 86–101, 1986.

[3] Z. Aghazadeh, W. M. Golab, and P. Woelfel, “Making objects writable,” in ACM Sympo-

sium on Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014,

pp. 385–395, ACM, 2014.

[4] A. Berger, I. Keidar, and A. Spiegelman, “Integrated bounds for disintegrated storage,” in

32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA,

USA, October 15-19, 2018, vol. 121 of LIPIcs, pp. 11:1–11:18, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2018.

[5] S. Chaudhuri and J. L. Welch, “Bounds on the costs of multivalued register implementations,”

SIAM J. Comput., vol. 23, no. 2, pp. 335–354, 1994.

[6] S. Chaudhuri, M. J. Kosa, and J. L. Welch, “One-write algorithms for multivalued regular

and atomic registers,” Acta Inf., vol. 37, p. 161–192, Nov. 2000.

[7] T. Z. Chen and Y. Wei, “Step-optimal implementations of large single-writer registers,” Theor.

Comput. Sci., vol. 826-827, pp. 40–50, 2020.

[8] G. L. Peterson, “Concurrent reading while writing,” ACM Trans. Program. Lang. Syst., vol. 5,

no. 1, pp. 46–55, 1983.

[9] C. Shao, J. L. Welch, E. Pierce, and H. Lee, “Multiwriter consistency conditions for shared

memory registers,” SIAM J. Comput., vol. 40, no. 1, pp. 28–62, 2011.

31

[10] Y. Wei, “Space complexity of implementing large shared registers,” CoRR,

vol. abs/1808.00481, 2018.

[11] T. Z. Chen and Y. Wei, “Step optimal implementations of large single-writer registers,” in 20th

International Conference on Principles of Distributed Systems, OPODIS 2016, December

13-16, 2016, Madrid, Spain, vol. 70 of LIPIcs, pp. 32:1–32:16, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2016.

32

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Related Work
	Related Work

	MODEL
	HYBRID ALGORITHMS
	Hybrid Algorithm for Regular Registers
	Tree Algorithm
	Clique Algorithm
	Combination
	Lower Bounds

	Hybrid Algorithm for Atomic Registers
	Correctness of Algorithm 2
	Algorithm 2 performance analysis

	MULTI-WRITER REGISTER SIMULATIONS
	Background
	MWRegWeak Register from Binary Atomic Registers
	MWRegPM Register from Binary MWRegPM Registers
	MWRegPM register from binary atomic registers

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

