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ABSTRACT

Challenges in turbulence modeling are often associated with a trade-off between accuracy

of flow physics and computational effort. For complex industry-relevant flows, high computa-

tional costs require engineers to adopt statistical closures, e.g., Reynolds-averaged Navier-Stokes

(RANS) models. These models, however, are unable to capture large-scale multi-point correla-

tions in the flow. On the other hand, high fidelity simulations, e.g., large-eddy simulations (LES)

and direct numerical simulations (DNS) are often associated with large computational effort and

are currently limited to simple geometries at low Reynolds numbers. Scale-resolving simulations

(SRS) have emerged in recent years as physics-based multi-point closures that provide ‘accuracy-

on-demand’. Partially-averaged Navier-Stokes (PANS) is a bridging-SRS strategy that offers com-

putational accuracy ranging from RANS to DNS as a function of commensurate computational

effort by specification of implicit filter parameters ( fk, fε ). These filter parameters dictate the range

of scales resolved in the turbulent flow thereby controlling the accuracy. The effect of unresolved

scales on the resolved field is captured using two-equation turbulence closures, e.g. k− ε , k−ω

models. This allows for the cut-off filter to be placed in inertial subrange and only dynamically rel-

evant scales may be resolved reducing overall computational effort compared to LES. Thus, PANS

models are well positioned to provide multi-fidelity simulations for numerous marine applications,

specifically numerical wave tanks (NWTs). Two major challenges for application of turbulence

models in accurate simulations of NWTs include efficient near-wall modeling and reliable repre-

sentation of wakes. Therefore, this dissertation focuses on advancing the PANS strategy in: (i)

near-wall closure and (ii) quantitative analysis of coherent structures in three-dimensional wakes.

The first study develops a PANS two-layer turbulence modelling approach. This closure aims

to provide a simple and robust computational strategy to alleviate numerical challenges posed

by steep gradients near-wall. This model allows for the near-wall region to be computed with

one-equation model while the outer high-Re region is resolved with the PANS ku− εu model.

This wall-resolved PANS (WR-PANS) two-layer model is analyzed in turbulent channel flow for
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Reτ = 180− 950. The results establish the model as an accurate and computationally feasible

approach with inherent ease of application.

For bluff body wakes displaying multi-point coherence, it is imperative to ensure the reliability

of coherent structures predicted by PANS simulations. In Study 2, a quantitative framework for

assessment of the large-scales structures is proposed in the wake of a sphere at Re = 3700 using

proper orthogonal decomposition (POD). The simulations are performed using a WR-PANS ap-

proach with the PANS ku−ωu closure for the unresolved scales. The results reveal that multi-point

correlations in the resolved flow are accurately captured using WR-PANS closures.

In an effort to further reduce the computational burden of resolving the near-wall region, a

wall-modeled PANS (WM-PANS) strategy is investigated in Study 3. This model allows for a

spatially varying filter in order to compute the near-wall region using RANS and resolve the wake

region using high-resolution PANS. The commutation residue arising from the spatial variation of

filter parameter is systematically incorporated using energy conservation principle. The theoretical

foundation and computational outcome of the model is examined in turbulent channel at Reτ =

950 and 8000. The model is further investigated in flow past a sphere at Re = 3700. The results

are highly encouraging.

In the final study, the WM-PANS strategy is applied to flow over a sphere at very high Reynolds

number, Re = 1.14× 106. The results further confirm that the WM-PANS strategy is a computa-

tionally efficient approach for simulating practical flows. Moreover, quantitative assessment of

coherent structures based on the approach outlined in Study 2 demonstrates that reasonably accu-

rate large scales are resolved in this supercritical regime using WM-PANS.
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1. INTRODUCTION

1.1 Motivation

Numerical Wave Tanks (NWTs) are emerging in recent years as front line computational tools

for simulating nearly realistic conditions to study responses of structure in a ‘single’ or ‘two-phase’

fluid. These NWTs reduce the capital costs associated with physical wave tanks, along with reduc-

ing measurement noise and scaling effects [7]. However, a major challenge for NWTs is accurate

modeling of multi-scale turbulence ubiquitous in flows and fluid-structure interaction (FSI) prob-

lems. In general, turbulence effects are important in: (i) wave-breaking [8] , (ii) wave-structure

interaction [9], (iii) wave-current interaction [10], (iv) wind-wave interaction [11] and (v) wind-

structure interaction [12]. Offshore environments are often subjected to complex wave–turbulence

interaction, and wave overturning and breaking. Such cases can only be accurately represented by

Navier–Stokes equations in conjunction with turbulence models [9]. High fidelity CFD simula-

tions are essential to capture turbulence in the free surface, wave-breaking, wave-runup to evaluate

extreme wave loading on offshore structures and survivability [13].

In a numerical towing tank, boundary layers developing on ship’s superstructure and small-

scales generated due to ship’s propeller require high fidelity turbulence closures. Moreover, air

wakes around ships in motion, maneuverability and seakeeping under strong winds, capsizing etc.,

necessitate accurate prediction of ship aero-hydrodynamics [14]. More recently, renewable energy

sources, e.g., wave energy converters (WEC) and offshore wind farms have witnessed significant

research interest. A recent study of WECs in a Numerical Wave Tank concluded that the turbulence

models have a considerable influence on the modeled free surface elevation, the wave excitation

forces, and the device dynamics [7]. Full-scale numerical simulations of wind farms in NWTs

would require highly accurate turbulence models capable of dealing with spatio-temporal scales

ranging from 1km to 1mm in the atmospheric boundary layers and even smaller in blade boundary

layers [12]. High fidelity turbulence closures are also required to accurately simulate hydrodynam-
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ics of floating offshore wind turbines which in turn affects the power output.

Historically, NWTs have been modeled based on potential flow theory with the assumption of

an irrotational and inviscid fluid flow. These assumptions are valid for linear and weakly non-linear

wave-structure interaction problems and therefore, are usually restricted to non-breaking waves in

a calm marine environment [15]. To capture the highly non-linear phenomena of wave-breaking,

green water and extreme body responses, CFD-based Numerical Wave Tanks (CNWTs) have been

developed [13]. The effects of turbulence have mostly been modeled using Reynolds-averaged

Navier-Stokes closures, e.g. RNG k− ε model [16], k−ω model [17]. The attractiveness of

RANS closures stem from their ease of application and low computational effort even though eddy-

viscosity based turbulence models, e.g. k− ε model tend to be highly diffusive [18]. Large-Eddy

Simulations (LES) can also be employed but their application is limited due to excessive numerical

resolution required [18]. Therefore, there is a clear need for multi-fidelity turbulence closures to

accurately simulate multi-scale turbulence behavior at modest computational effort for NWTs.

These variable resolution models can enhance the results by providing realistic environmental

loading and accurate structural responses whilst being cost efficient.

1.2 Background

Along the lines of Occam’s razor, Wilcox suggests [19]: An ideal (turbulence) model should

introduce the minimum amount of complexity while capturing the essence of relevant physics.

However, it would be remiss not to include the associated computational effort as a constraint.

Therefore, an ideal model should not only claim ease of application but also must capture relevant

flow physics in a computationally efficient manner.

Statistical closures, e.g., Reynolds-averaged Navier-Stokes (RANS) model the entire turbu-

lence kinetic energy spectrum and only the averaged quantities are evolved in time. RANS meth-

ods have been the turbulence model of choice for scientists and engineers alike to simulate variety

of complex industry relevant flows. Indeed, these models perform well in attached flows, how-

ever, predict sub-optimal behavior in flows with massive separation due to their inability to recover

multi-point physics [20]. Although, some large-scale structure information maybe recovered using
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unsteady RANS (URANS), their suppression of three dimensionality in turbulent wakes has been

shown in numerous studies [21, 22].

Direct Numerical Simulations (DNS) resolve the entire turbulent kinetic energy spectrum down

to the Kolmogorov scales. Therefore, DNS can capture flow physics accurately as dictated by

mass (continuity) and momentum (Navier-Stokes) conservation laws. For DNS, the computational

cost for simulating turbulent flows increases as O(Re9/4). Therefore, a full-scale ship calculation

at Re = 109 would require almost 1020 grid points [14]. For complex flows, the applicability

of DNS given the current trends in computer hardware is for modest Reynolds numbers at best

[23]. Large-Eddy Simulations (LES) on the other hand can resolve most of the energetic scales

in the flow and model the scales in the dissipative range as stochastic turbulence. This alleviates

the burden to resolve extremely small scales in the flow making LES strategy computationally

attractive. However, for very high Reynolds number flows, it can be shown that the computational

cost of a wall-resolved LES (WR-LES) can be comparable to DNS [24].

In recent decades, a new turbulence modeling strategy, Scale-resolving simulations (SRS) has

garnered significant interest in turbulence modeling community. SRS models are a suite of high

efficiency turbulence closure models wherein an optimal balance between accuracy and compu-

tational cost can be achieved. These models resolve flow features only on the key parts of the

computational domain rendering them more accurate than the RANS closures. Moreover, SRS

models can adapt a RANS-like behavior in the region of high computational requirement, e.g.,

near-wall, making them more computationally attractive than LES.

Scale-resolving simulations are broadly classified in two categories: (i) Zonal SRS (Z-SRS)

methods and (ii) Bridging SRS (B-SRS) methods. Z-SRS methods use different turbulence mod-

els at different locations in the domain for a faster turn around time. e.g., DES [25], DDES [26]

and XLES [27]. These models can adapt RANS like behavior in the regions where the computa-

tional solution is expensive (e.g. boundary layers) and regions of negligible impact on the solution

(e.g. far-field boundaries). An important element of these models are interface conditions at the

boundary of RANS and the high resolution region. This matching is achieved by introducing syn-
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thetic turbulence based on the spatio-temporal scales from the RANS model [28]. Bridging-SRS

methods include SAS [29], PITM [30] and PANS [31]. These models modify the parent RANS

equations in order to resolve more scales in the turbulence flow field.

Partially-averaged Navier-Stokes (PANS) model is a bridging-SRS strategy, developed in Refs.

[31, 32, 33, 34], that offers a seamless transition from RANS where all turbulent scales are mod-

eled to DNS where entirety of the turbulence energy spectrum is resolved. PANS closure derives

its form to a large extent from the corresponding RANS closures. Therefore, much of the physics

incumbent in more advanced RANS models, e.g., realizability, tensor invariance, effects of rota-

tion and buoyancy etc. can be translated directly to PANS [31]. In PANS, scales are resolved

‘on-demand’ by specification of implicit filter widths; fk and fε . These filter widths modify the

corresponding RANS coefficients in order to resolve the requisite range of scales in the flow.

For modeling the effects of unresolved scales, closure can be specified at different levels of so-

phistication. At the simplest level, a Boussinesq constitutive approximation for unresolved scales

can be invoked based on averaging invariance principle [35]. In RANS, Boussinesq constitutive

relationship is shown to be ineffectual in flows with sudden changes in mean strain rate, flows

with curved surfaces, flows in rotating fluids etc.[19]. In such flows, non-linear constitutive rela-

tions [36], algebraic Reynolds stress models [37] or second moment closure (SMC) can be used.

The PANS strategy developed from the two equation RANS closure can be extended to the afore-

mentioned higher order closures [31]. However, as the majority of dynamically relevant scales

are resolved in PANS, the severity of the deficiencies posed by the Boussinesq approximation for

the unresolved scales is tempered. Moreover, adding complexities due to higher order closures in

PANS can be counterproductive.

In LES, typically zeroth-order closures are used to model scales in the dissipative range.

Higher-order closures in PANS permits the filter placement in the inertial subrange thereby re-

ducing the overall computational effort compared to a conventional LES. Unlike LES, the PANS

closures are in general decoupled from the numerical resolution. However, increasing the degree

of resolution entails higher grid requirements [33]. Therefore, lowering the filter widths ( fk, fε )
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increases the accuracy of the simulations (as more scales are resolved); however, it also increases

the associated computational costs. Consequently, the choice of optimal filter parameters are often

limited by the available computational resources. Nevertheless, PANS models pose less stringent

grid requirements compared to LES and can provide higher accuracy than RANS models making

them well suited for multi-fidelity turbulence simulations.

1.3 Progress in PANS modelling

Important advancements in the field of modelling using the PANS approach has been made in

the last two decades. The following key points highlight the contributions made thus far:

1. Theoretical Foundation: The PANS closures as a function of implied cut-off have been

systematically derived based on the theoretical framework incumbent in the parent RANS

models. Fixed-point analyses are performed to ensure smooth transition from RANS to DNS

with decreasing filter widths in the absence of underlying flow instabilities [34]. The physical

fidelity of resolved fluctuations is characterized by adapting Kolmogorov hypothesis based

on the paradigm that PANS is DNS of a non-Newtonian variable viscosity fluid [38]. It

is shown that resolved fluctuations capture higher-order multi-point statistics and behave

according to well-known turbulence scaling laws. The effect of spatio-temporal variation

of filter is derived by carefully accounting for the commutation residue term using energy

conservation principles [39, 40]. The turbulent transport coefficients have been derived based

on equilibrium boundary analysis [41]. The framework for the choice of optimal fk based

on the underlying instabilities in the flow field has been developed in Ref. [42].

2. Verification in benchmark test cases: PANS closures have been extensively verified in

variety of benchmark test cases. Computations of flow past a square cylinder [43, 44], circu-

lar cylinder [45, 46, 47], turbulent channel [40, 41] and backward facing step [48, 49] have

been conducted. These test cases have served as a foundation for development of new PANS

turbulence closures [50, 51].

3. Application to industry relevant flows: In recent years, PANS strategies have solidified
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their position as an attractive tool to simulate highly complex practical flows at modest com-

putational effort. Encouraging results have obtained in flow scenarios encountered across

multiple disciplines: Aeronautics [52, 53, 54], Marine [55, 56], Internal combustion engines

(ICE) [57] and renewable energy [58].

We now identify some outstanding issues which need to be addressed to improve the accuracy

and efficiency further for use in NWT computations. In the next subsection we outline the key

challenges currently facing PANS turbulence models.

1.4 Challenges

1. Near-wall modeling: The high Reynolds number simulations in complex flows warrant a

cost efficient treatment of very thin boundary layers. The cost to resolve the small scales in

the thin boundary layers can be exorbitant [24]. Moreover, steep gradients in these boundary

layer can adversely effect the stability of turbulence modelling equations [59]. Although

some near-wall closures have been developed in context of PANS [50, 51], the overarching

challenge is to ensure both cost effectiveness and robustness of the modeling schemes. Study

1, 3 and 4 of this dissertation address this challenge.

2. Fidelity of large-scale coherent structures: Although numerous studies have commented

on the ability of PANS in capturing large-scale coherent structures [45, 46], a thorough qual-

itative and quantitative assessment in the accuracy of these large-scale structure is warranted.

Study 2 and Study 4 present a quantitative approach to characterize the large-scale structures

in the flow.

Besides these, some other avenues which can further explored in order to enhance the robustness

of PANS turbulence models include: identifying optimal fk for complex flows, higher-order con-

stitutive relationships and transition to turbulence.

1.5 Research objectives

This dissertation is focused toward achieving the following objectives:
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1. Develop an accurate and computationally reasonable near-wall approach using a ‘two-layer’

modeling strategy for PANS,

2. Establish a mathematical framework for quantitative evaluation of coherent structures re-

solved in PANS for 3D bluff body wakes,

3. Evaluate the theoretical foundation of a wall-modeled PANS approach and,

4. Demonstrate the wall-modeled PANS approach in flow past a sphere in subcritical and su-

percritical Reynolds number regimes.

The following subsections present the synopsis of the studies performed in order to realize the

aforementioned objectives.

1.5.1 Study 1: Two-layer near-wall modeling strategy for PANS closure

The objective of this study is to develop a two-layer PANS closure for improved near-wall

simulation capability. In the RANS context, the two-layer turbulence model displays superior near-

wall behavior compared with other closures of similar order. Our goal is to adapt these near-wall

closure advantages to the PANS-SRS model. In the outer region of the PANS two-layer closure,

a PANS k− ε turbulence model is employed. In the inner layer, an unresolved kinetic energy

equation is solved. The eddy viscosity and dissipation are specified using algebraic equations

based on known scaling relationships. The proposed model is evaluated in a turbulent channel

flow of friction Reynolds numbers in the range of Reτ = 180− 950. Comparison with DNS data

demonstrates that two-layer PANS is potentially an accurate and robust SRS approach.

1.5.2 Study 2: Characterization of large-scale coherent structures in turbulent wake of a

sphere at Re = 3700

The large-scale coherent structures in the wake of a sphere at subcritical Reynolds number

(Re = 3700) are examined at different degrees of resolution (filter size) using SRS. PANS-SRS

method is employed to compute the wake flow at four levels of resolution marked by unresolved-

to-total kinetic energy ratios: fk = 0.5, 0.3, 0.2, 0.1. The results from the four simulations are used
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to compute one-point statistics, frequency spectra and spatio-temporal Proper Orthogonal Decom-

position (POD) modes. One-point statistics are reasonably well reproduced (in comparison with

existing data) at all degrees of resolution. However, the frequency spectra and POD modes exhibit

some degree of dependence on the level of resolution. It is demonstrated that accurate depiction

of coherent structures is contingent upon adequately resolving key underlying instabilities. The

finest resolution PANS simulation ( fk = 0.1) is then used to characterize the large-scale coherent

structures in the near-wake of the sphere. The main features of this wake, specifically azimuthal

mode shapes, modal energy and frequency content are compared with experiments and numeri-

cal simulations of wakes of other axisymmetric bodies resulting in good agreement. Overall, the

study demonstrates that PANS can capture key one-point statistics and coherent structure features

of complex flows in a cost-efficient manner.

1.5.3 Study 3: PANS closure modeling in near-wall region of steep resolution variation

We seek to investigate the closure model to enable SRS of a turbulent flow to optimally switch-

over from RANS calculation at the wall to a specified degree of resolution in the wake or free-

stream region. The closure model is derived (i) using the physical principle that the total energy

of resolved and unresolved scales should be invariant independent of degree of resolution, and (ii)

establishing consistency with equilibrium boundary layer (EBL) scaling of the partially resolved

field. The resulting wall-modeled PANS (WM-PANS) is investigated in turbulent channel flow at

Reτ = 950 and 8000. The influence of RANS-SRS switch-over location on the computed flow field

is first examined. It is then demonstrated that the mean flow is reproduced quite accurately with

modest computational effort without discernible log-layer mismatch. While the Reynolds stresses

are also recovered accurately over most of the flow domain, a noticeable ‘computational transition’

from steady RANS to unsteady SRS flow behavior is observed and underlying physics is examined.

Irrespective of the location of computational transition, the unsteady features of the flow away from

the wall are well captured. The WM-PANS approach is used to simulate the wake of a sphere at

Re = 3700. WM-PANS results are in excellent agreement with simulations of wall-resolved PANS

(WR-PANS) performed at much finer resolution. Overall, the WM-PANS presents an accurate
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and computationally viable option for scale resolving computations of near-wall high-Reynolds

number flows.

1.5.4 Study 4: Wall-modeled PANS simulations of turbulent wake of a sphere at Re = 106

We investigate flow over a smooth sphere at high Reynolds number, Re = 1.14× 106 using

the WM-PANS strategy. In WM-PANS, the turbulent boundary layer is computed using a RANS

model whereas the scales in the unsteady turbulent wake region are resolved using uniform- fk

(physical resolution) PANS. The integral quantities, statistics and flow structures are investigated at

different levels of freestream physical resolution: fk(F) = 1.00 (RANS), fk(F) = 0.70, fk(F) = 0.50,

fk(F) = 0.30. The integral quantities are very well predicted by all the WM-PANS simulation

compared to the numerical studies and the flow statistics converge reasonably beyond fk(F)≤ 0.50.

The large-scale coherent structures in the wake are examined using a POD approach. Qualitative

comparison of the wake configurations in subcritical and supercritical regimes is also presented.

Overall, this study demonstrates the efficacy of WM-PANS in capturing important flow features of

high Reynolds number flows at modest computational effort.

1.6 Dissertation outline

This dissertation is organized into different chapters. Chapter 2 delineates the mathematical

framework of PANS simulations. Chapter 3 presents the development of PANS two-layer mod-

elling approach. The formulation, numerical parameters and results are presented for turbulent

channel at different friction Reynolds numbers. This work has been published in the AIAA Jour-

nal 2020 [60]. Chapter 4 presents WR-PANS computations of flow past a sphere in the subcritical

Reynolds number regime. The details of the POD approach to characterize the large-scale coher-

ent structures in the wake is clearly laid out. This work is published in Physics of Fluids 2020

[61]. Chapter 5 presents the WM-PANS approach adopted to simulate turbulent channel at high

Reynolds numbers and flow past a sphere in the subcritical regime. Chapter 6 deals with extension

of the WM-PANS modeling strategy to high Reynolds number bluff body wakes. Summary and

key conclusions of the studies are present in Chapter 7.
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2. DESCRIPTION OF PARTIALLY-AVERAGED NAVIER-STOKES MODEL

The velocity and pressure fields in the incompressible flow regime are governed by the conser-

vation of mass (continuity) and momentum (Navier-Stokes) equations:

∂Vi

∂ t
+Vj

∂Vi

∂x j
=− ∂ p

∂xi
+ν

∂ 2Vi

∂x j∂x j
, (2.1)

∂Vi

∂xi
= 0;

∂ 2 p
∂x j∂x j

=−∂Vi

∂x j

∂Vj

∂xi
(2.2)

Here, Vi and p represent the instantaneous velocity and pressure fields and ν is the fluid kinematic

viscosity. In this research work, the directions 1, 2 and 3 refer to the streamwise x, wall-normal y

and spanwise z directions respectively. The equations are solved in a Cartesian coordinate system

and the dependence of velocity field on the radial (r) and azimuthal (θ ) directions (for axisymmet-

ric bodies) is obtained using the following coordinate transformation:

Vr

Vθ

=

 cos(θ) sin(θ)

−sin(θ) cos(θ)


Vy

Vz

 (2.3)

A filter operator (〈〉) is used to decompose instantaneous velocity and pressure fields into the

resolved and unresolved parts [35]:

Vi =Ui +ui, Ui = 〈Vi〉, 〈ui〉 6= 0 (2.4)

p = P+ pu, P = 〈p〉, 〈pu〉 6= 0 (2.5)

In general, the filtering operator (<>) is non-commutative, i.e., it may not commute with the

spatial and temporal derivatives. Applying this spatio-temporal filter to the Navier-Stokes and
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pressure equations (Eqs. 2.1-2.2), the resolved field takes the form [39]:

∂Ui

∂ t
+U j

∂Ui

∂x j
= −

∂τ(Vi,Vj)

∂x j
− ∂P

∂xi
+ν

∂ 2Ui

∂x j∂x j
−Fi, (2.6)

∂ 2P
∂xi∂xi

= −∂Ui

∂x j

∂U j

∂xi
−

∂ 2τ(Vi,Vj)

∂xi∂x j
− ∂Fi

∂xi
(2.7)

where τ(Vi,Vj) is the generalized sub-filter stress (SFS) introduced in Ref. [35] and Fi is the com-

mutation residue term. Eq. 2.7 is the filtered pressure field evolution equation obtained by taking

divergence of Eq. 2.6 and applying the continuity equation for filtered velocity, ∂Ui/∂xi = 0.

The commutation residue term, Fi in Eqs. 2.6 and 2.7 is given by [39]:

Fi =

〈
∂Vi

∂ t

〉
+

〈
Vj

∂Vi

∂x j

〉
+

〈
∂ p
∂xi

〉
−
〈

ν
∂ 2Vi

∂x j∂x j

〉
−∂Ui

∂ t
−U j

∂Ui

∂x j
− ∂P

∂xi
+ν

∂ 2Ui

∂x j∂x j
−

∂τ(Vi,Vj)

∂x j

(2.8)

When the filter is commutative, Fi = 0 and non-zero otherwise. In general, slow changes in phys-

ical resolution do not incur much commutation residue (Fi ≈ 0) and uniform-resolution closure

models can be used. However, if the resolution variation in the switch-over region is steep, the

commutation residue can be dominant and its effect must be suitably modeled [39].

The generalized second moment of velocity field or sub-filter stress (SFS) is given by [35]:

τ(Vi,Vj) = 〈ViVj〉−〈Vi〉〈Vj〉 (2.9)

In principle, SFS can be modeled at different levels of sophistication similar to the closure of

Reynolds stress term. In its simplest form, SFS can be modeled via Boussinesq approximation

[31, 62]:

τ(Vi,Vj) =−2νuSi j +
2
3

kuδi j; where νu =Cµ

k2
u

εu
=

ku

ωu
(2.10)

where νu, ku, εu and ωu are the unresolved eddy viscosity, unresolved kinetic energy, unresolved
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Figure 2.1: Turbulent kinetic energy spectrum

dissipation rate and unresolved specific dissipation rate, respectively. Si j is the resolved strain-rate

tensor defined as:

Si j =
1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
(2.11)

In PANS, the range of the resolved and unresolved scales is controlled by the parameters:

fk ≡
ku

k
, fε ≡

εu

ε
, fω =

fε

fk
=

ωu

ω
(2.12)

where k is the total turbulent kinetic energy and ε is the total dissipation rate. These ratios dic-

tate the extent of implicit filtering in PANS. Fig. 2.1 illustrates a representative turbulence kinetic

energy spectrum. The filter parameter or physical resolution, fk can vary between 0 ≤ fk ≤ 1.0.

In RANS, the entire kinetic energy spectrum is modeled, therefore RANS computations are per-

formed by setting fk = 1.0. On the other hand, the entire kinetic energy spectrum is resolved

in DNS simulations; therefore, the turbulence model is not activated which is achieved by setting

fk = 0. Please note that fε is taken as unity in all the simulations in this research work as dissipation

is assumed to occur in the unresolved scales.
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Based on the relationships defined in Eqs. 2.10 and 2.12, the unresolved eddy viscosity can be

written as:

νu =
fk

fω

k
ω

=
f 2
k

fε

k
ω

= f 2
k

k
ω

= f 2
k νT (2.13)

where νT is the total viscosity computed by RANS models. Moreover, the effective Reynolds

number (Ree f f ) of the simulated flow is [38]:

Ree f f =
V∞D

ν +νu
=

V∞D
ν + f 2

k νT
(2.14)

Clearly, for high physical resolution (low fk) simulations, the contribution of the modeled viscosity

(νu) is small and Ree f f approaches the actual Reynolds number of the flow.

The size of the smallest resolved scales for a particular fk is the computational Kolmogorov

length scale given by [38, 42]:

ηu =

(
(ν +νu)

3

ε

)1/4

(2.15)

As fk is reduced, it is clear from Eqs. 2.14 and 2.15 that the size of smallest resolved scales (ηu)

in the flow decreases and a wider range of scales are resolved. This increases the computational

effort and allows for resolution of dynamically relevant scales increasing the accuracy of coherent

structures computed. The smallest physical resolution that is achieved for a given grid is calculated

as [33],

fk ≥
1√
Cµ

(
∆

Λ

)2/3

(2.16)

wherein ∆ is the smallest grid dimension and Λ = k3/2

ε
is the integral length scale of turbulence.

Thus, specification of fk in the simulation is contingent on a balance of available computational

resources and the required accuracy of computed physics.

PANS computations can be performed in two ways. In the first approach, fk is uniform ev-

erywhere. This approach is termed as wall-resolved PANS (WR-PANS) and does not involve

commutation error or a ‘hand-shake’ region as the uniform filter commutes with spatio-temporal

derivatives. In this approach, Fi = 0 in the velocity and pressure evolution equations. Consequently,
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uniform fk closures for unresolved scales developed in Refs. [33, 62] can be employed. Thus far,

PANS with spatially uniform fk has been used to compute various canonical flows to establish the

theoretical foundation [40, 42, 45, 48]. Chapters 3 and 4 in this dissertation use the WR-PANS

approach for the simulations in these studies. In the second approach, fk varies in space and/or in

time and is termed as wall-modeled PANS (WM-PANS). In regions of resolution variation, Fi 6= 0

and additional closure modeling terms arise due to commutation error as shown in Ref. [39]. This

region of resolution change is similar to the ‘hand-shake’ or interface region in hybrid RANS-LES

computations. This WM-PANS approach is utilized for closure modelling in Chapters 5 and 6.

14



3. PARTIALLY-AVERAGED NAVIER-STOKES FORMULATION OF A TWO-LAYER

TURBULENCE MODEL1

3.1 Introduction

Recent years have witnessed the emergence of Scale-Resolving Simulations (SRS) as key tur-

bulence computational tools due to their ‘accuracy-on-demand’ nature. Large scale coherent struc-

tures are resolved directly while the remaining small scales are modeled as stochastic turbulence.

The accuracy of the solution is dependent on the extent of the scales resolved and the fidelity of

closure models of the unresolved scales. Partially-Averaged Navier-Stokes (PANS) is a bridging

SRS approach initially developed by Refs. [31, 32, 34] who employ a two-equation subgrid closure

model for unresolved scales. In PANS, the physical resolution is controlled by the ratios of unre-

solved to total kinetic energy ( fk) and unresolved to total dissipation ( fε ). The accuracy of PANS

turbulence model and computational costs increase with decreasing filter parameter, fk, as more

scales in the energy spectrum are resolved. Studies by Refs. [48, 56, 63] exhibit the effectiveness of

PANS in capturing physics for a wide range of industry relevant flows with various PANS subgrid

closures. These studies demonstrate the potential benefits of PANS in achieving optimal cost-

accuracy balance. The theoretical foundation of PANS is further developed in Refs. [38, 39, 46].

One of the key SRS challenges is accurate, yet computationally reasonable, near-wall closure

modeling. Attempts have been made to enhance the near-wall physical fidelity of the scale resolv-

ing simulations by Ref. [50] who implement a four-equation k−ε−ζ − f model. In this work, the

near-wall eddy viscosity is defined in terms of wall-normal fluctuations rather than the total kinetic

energy. They also include a hybrid wall treatment to incorporate the low Reynolds number effects.

A low Reynolds number variant of the PANS k− ε model has also been proposed by Ref. [51] to

account for the viscous and wall-damping effects where model equations are integrated all the way

to the wall.
1Reprinted with permission from "Partially Averaged Navier–Stokes Formulation of a Two-Layer Turbulence

Model" by Chetna Kamble, Sharath S. Girimaji, and Hamn-Ching Chen, 2020, AIAA Journal, vol. 58, 174–183,
Copyright (2019) by American Institute of Aeronautics and Astronautics, Inc [60].
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In this study, to provide PANS near-wall closure guidance, we look to other RANS approaches.

The k− ε turbulence model is one of the most extensively used model in industry and is available

in nearly all commercial CFD codes. Most importantly, this model is robust over a variety of

freestream conditions, a feature that is a key advantage over other popular models, e.g., k−ω

turbulence model [64]. However, the standard k−ε model is known to be deficient in the near-wall

region. It is either coupled with the wall functions or formulated as a low-Reynolds number model

for accurate representation of the near-wall behavior. The inherent assumptions of wall functions

prohibit them from being universally applicable, especially in separated flows [65]. On the other

hand, the low-Reynolds number formulations are computationally expensive. To circumvent these

limitations, a two-layer modeling strategy was proposed by Ref. [59] by coupling the standard k-

ε model with a near-wall one-equation model of Ref. [66]. In this approach, the two-equation

k- ε model is applied to the high Reynolds number region away from the wall. The viscosity

dominated near-wall region is modeled with a one-equation model which reduces the physical

uncertainties and numerical difficulties of resolving large turbulence gradients. This two-layer

model of Ref. [59] has been tested successfully for flow past axisymmetric bodies with complex

features including separation, recirculation and reattachment.

The present study has two main objectives: (i) Adaptation of the two-layer turbulence model

into the PANS paradigm and (ii) Investigation and validation of the effectiveness of the PANS two-

layer model in the benchmark turbulent channel flow. This study aims to incorporate the two-layer

model as a strategy to enhance the near-wall modeling of PANS bridging methods by (a) avoiding

uncertainties in near-wall boundary conditions of turbulent length scales and, (b) capturing relevant

physics of the viscosity dominated near-wall region.

The remainder of the study is arranged as follows: In Section. 3.2, the PANS formulation of the

two-layer turbulence model using the approach adopted by Refs. [31, 62] is presented. The details

of the numerical setup and convergence study are presented in Section. 3.3. In Section. 3.4, PANS

results are compared against DNS studies. The new model is tested in a wall-bounded channel

flow of Reτ = 180−950.
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3.2 Theoretical formulation

3.2.1 Formulation of PANS outer layer

The PANS model equations are identical in form to the corresponding RANS counterpart as

required by averaging invariance [35]. The RANS two-layer k− ε model [59] is a standard k− ε

turbulence model in the outer region. Correspondingly, in the outer layer, we propose that the

standard two-equation PANS k− ε model [31] is applicable:

∂ku

∂ t
+U j

∂ku

∂x j
= Pu− εu +

∂

∂x j

[(
ν +

νu

σku

)
∂ku

∂x j

]
(3.1)

∂εu

∂ t
+U j

∂εu

∂x j
=Ce1

Puεu

ku
−C∗e2

ε2
u

ku
+

∂

∂x j

[(
ν +

νu

σεu

)
∂εu

∂x j

]
(3.2)

where Pu = τ(Vi,Vj)
∂Ui
∂x j

is the production in the unresolved scales. The modified closure coefficient

C∗e2 is given as,

C∗e2 =Ce1 +
fk

fε

(Ce2−Ce1) (3.3)

The PANS transport Prandtl coefficients are derived based on consistency with log-law physics

[41],

σku =
f 2
k

fε

σk and σεu =
f 2
k

fε

σε (3.4)

The values of the other RANS coefficients used in this study are: Cµ = 0.09; Ce1 = 1.44; Ce2 =

1.92; σk = 1.0; σε = 1.3. In the outer region of the boundary layer, the Reynolds number is

reasonably high. Thus, fε is taken to be unity.

Before proceeding to develop the PANS inner layer equations, we will summarize the RANS

inner layer formulation.

3.2.2 Description of RANS inner layer

In the RANS context, closure modeling of near-wall turbulence is achieved via a one-equation

model of Ref. [66] derived based on the Kolmogorov-Prandtl turbulence energy hypothesis. This

one-equation treatment of the viscosity-dominated regions provides an easier means of imposing
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near-wall scaling on the model. Further, it offers a simple means of coupling the inner layer closure

with the standard k− ε model in the outer layer.

In the RANS two-layer model, no modification is made to the turbulent kinetic energy evolution

equation in the inner layer:

∂k
∂ t

+U j
∂k
∂x j

= P− ε +
∂

∂x j

[(
ν +

νt

σk

)
∂k
∂x j

]
(3.5)

Dissipation is specified in terms of turbulent kinetic energy and length scale as,

ε =
k3/2

lε
(3.6)

Eddy viscosity is similarly given by,

νt =Cµ

√
k lµ (3.7)

The length scales of dissipation and eddy viscosity are specified as [59],

lε =Cly [1− exp(−Ry/Aε)]

lµ =Cly
[
1− exp(−Ry/Aµ)

]
Ry =

√
ky
ν

(3.8)

Here, Ry is the turbulence Reynolds number dependent on wall-normal distance, y, and turbulent ki-

netic energy. The length scales follow a structure similar to the Van Driest-style damping function

[67], however, employ Ry instead of y+ in the exponential term, which extends the applicability of

the two-layer model to complex separated flows. The constant Cl is defined as Cl = κC−3/4
µ where

κ is the von Karman constant. Aµ is calibrated to be 70 to recover the log-law constant B = 5.45.

Further, Aε = 2Cl is used to capture the asymptotic behavior of ε in the viscous sublayer.
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3.2.3 Formulation of PANS inner layer

Conveying the benefits of the RANS inner layer to SRS closure requires recalibration of the

empiricism incumbent in the inner layer equations. Emulating the RANS model development for

the inner layer, Eq. 3.1 is utilized to solve for the unresolved kinetic energy, ku, in the PANS inner

layer. Unresolved dissipation, εu, is calculated explicitly in terms of the unresolved kinetic energy

and a length scale as,

εu =
k3/2

u

lεu
(3.9)

The eddy viscosity for the unresolved scales is

νu =Cµu
√

ku lµu (3.10)

where Cµu =Cµ from the fixed point analysis argument of Ref. [34].

Now, the length scales from the corresponding RANS two-layer model must be transformed

in the PANS regime. We propose that the length scales follow a structure similar to their RANS

counterpart as:

lεu = F1( fk) Cly [1− exp(−Ryu/Aε)]

lµu = F2( fk) Cly
[
1− exp(−Ryu/Aµ)

] (3.11)

where F1 and F2 are reduction ratios associated with the unresolved dissipation and unresolved

eddy viscosity respectively, and Ryu is the turbulence Reynolds number in the PANS inner layer

defined as

Ryu =
√

kuy/
√

fkν ≈ Ry (3.12)

This definition of Ryu preserves the exponential variation of the PANS inner layer length scales

to be similar to their RANS counterpart from Eq. 3.8. The expressions of the reduction ratios are

not known a-priori and need to be established based on the underlying principles incumbent in

the RANS inner layer model and PANS subgrid closures. Further, these reduction ratios depend

exclusively on fk as only the unresolved kinetic energy (ku) equation is solved in the inner layer
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and other turbulent quantities (εu and νu) are directly specified in terms of ku.

The inner layer includes viscous sublayer, buffer layer and part of the logarithmic layer. The

length scales in the RANS context were derived based on emulating behavior of turbulent quantities

at the two extremes of the inner layer, i.e., at the wall and in the log layer. In the following

sections, we perform a similar analysis to obtain reduction ratios, F1 and F2, for the PANS inner

layer formulation.

Length scale modeling in viscous sublayer: Asymptotic behavior of εu at the wall

The limiting behavior of turbulence quantities near the wall has been well established in works

of Ref. [68]. For the filtered fields, unresolved turbulent kinetic energy ku ∼O(y2) and unresolved

dissipation εu ∼ O(y0) approaching the wall boundary. Near the wall, the flow quantities are

dependent on the wall-normal distance. Here, the Taylor series expansion of instantaneous velocity,

Vi, can be written as,

Vi(y) =Vi(0)+
∂Vi

∂y
y+O(y2) (3.13)

The no-slip condition at the wall makes Vi(0) = 0. Therefore, ∂Vi/ ∂y ≈ Vi(y)/ y and we can get

the following relations by simple mathematical manipulations,

〈ViVi〉=
〈

∂Vi

∂y
∂Vi

∂y

〉
y2 and 〈Vi〉=

〈
∂Vi

∂y

〉
y (3.14)

〈ViVi〉−〈Vi〉〈Vi〉=
[〈

∂Vi

∂y
∂Vi

∂y

〉
−
〈

∂Vi

∂y

〉〈
∂Vi

∂y

〉]
y2 (3.15)

This formulation directly leads to,

εu =
2νku

y2 (3.16)

which is the asymptotic limit of unresolved dissipation.

The rationale of the εu length scale is studied using this asymptotic behavior. At the wall,
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Taylor series expansion of lεu leads to,

lεu = F1( fk) Cly
[

1−1+
Ryu

Aε

− . . .

]
≈ F1( fk) Cly

(
Ryu

Aε

)
(3.17)

as both kinetic energy and wall-normal distance are negligible at the wall. Substituting the near-

wall length scale approximation (Eq. 3.17) in Eq. 3.9 and comparing with Eq. 3.16, we derive the

reduction ratio of the unresolved dissipation,

F1( fk) =
√

fk (3.18)

At the wall, the behavior of the reduction ratio for the unresolved viscosity, F2( fk), is not known

and shall be established next based on the log-layer physics.

Length scale modeling in Log layer: Equilibrium boundary layer analysis

The equilibrium boundary layer (EBL) analysis establishes a framework for derivation of

model constants in the RANS context. A similar analysis is done for the PANS closure for deriva-

tion of coefficients stated in Eqs. 3.3 and 3.4. In this section, we verify the formulation of the

length scales via the PANS-EBL analysis.

On an average, neither RANS, and consequently, nor PANS velocity field statistics grow in the

equilibrium state of the boundary layer. Therefore, in the outer layer, we have,

Dku

Dt
≈ 0 (3.19)

The above argument reduces the k-equation in the equilibrium boundary layer to

Pu ≈ εu =
u3

τ

κy
and ku = fk

u2
τ√

Cµ

(3.20)

We expect the unresolved dissipation εu from the inner layer to reduce to its PANS-EBL repre-

sentation in the log-layer (Eq. 3.20). Using the EBL representation of ku, the unresolved dissipa-
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tion (Eq. 3.9) can be written as,

εu = f 3/2
k

u3
τ

C−3/4
µ

1
F1( fk)Cly

(3.21)

which should be equal to the EBL representation of εu from Eq. 3.20. Simplifying, we obtain the

reduction ratio for unresolved dissipation as,

F1( fk) = f 3/2
k (3.22)

which differs from F1( fk) =
√

fk derived from asymptotic behavior of dissipation (εu) in the vis-

cous sublayer. This deviation arises due to the assumption of fk being a spatio-temporal constant.

This inconsistency, however, is only concentrated in a very thin layer near the wall with y+ < 30

and doesn’t affect the model’s performance as will be witnessed in Section 3.4. Therefore, for this

representation of PANS two-layer model, we aim to model the scales based on the accurate rep-

resentation in the log-layer only. However, further calibration of the reduction ratio F1 is needed

to accurately represent the physics of viscous sublayer and buffer layer and will be addressed in

future works.

For a seamless transition between the two layers, unresolved eddy viscosity in the inner and

outer layer must be equal at the matching location, i.e, in the log layer. The inner layer eddy

viscosity (Eq. 3.10) reduces to νu = Cµ

√
kuF2( fk) Cly owing to the linear nature of length scales

in the log layer. This unresolved eddy viscosity distribution must match the outer layer given in

Eq. 2.10. Therefore, using the boundary layer representations of kinetic energy and dissipation

(Eq. 3.20), we get,

νu−outer =Cµ

k2
u

εu
= f 2

k uτκy

νu−inner =Cµ

√
ku F2( fk) Cly =

√
fk F2( fk) uτκy

(3.23)

Equating the unresolved eddy viscosity values in both the layers, the reduction ratio F2 is estab-
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lished as

F2( fk) = f 3/2
k (3.24)

A detailed analysis of the wall-normal location of the inner and outer layer match is presented later

in the study.

In the region of viscous sublayer and buffer layer, the effect of damping functions alter the

behavior of the length scales and must be accounted for while analyzing model’s performance near

the wall.

3.3 Computational setup and numerical convergence study

We examine the PANS two-layer turbulence model for the benchmark test case of turbulent

channel flow for friction Reynolds numbers of Reτ = 180− 950. Here, Reτ is based on friction

velocity uτ , half channel width δ and the kinematic viscosity ν . DNS studies by Ref. [69] and

Ref. [70] are referenced to validate the PANS two-layer computations.

The computational domain is a rectangular prism defined in a Cartesian coordinate system with

origin at the inlet. Periodic boundary conditions are applied in the streamwise (x) and spanwise (z)

directions and the no-slip boundary condition is assigned at the walls in the normal (y) direction.

A constant pressure gradient is specified in the streamwise direction to drive the flow. An open-

source finite volume solver, OpenFOAM, is used for numerical computations with a PISO [71]

algorithm suitable for transient flow simulations. Second order accurate schemes are used for both

spatial and temporal discretizations with residual tolerance of 10−9.

A structured mesh with hexahedral elements is generated and is refined at the walls of the

channel to obtain sufficient grid resolution in the inner layer. A convergence study is performed

for Reτ = 590 to investigate grid dependence of one-point statistics. The details of the study are

presented in Table 3.1. The grid elements are varied in y-direction as the statistics are found to

be more sensitive to grid refinement in this direction due to large wall-normal gradients. Fur-

ther, accurate representation of viscous sublayer requires sufficient grid resolution below y+ of 5.

Therefore, first grid point has been maintained at y+ < 1 for all grid configurations for precise
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Table 3.1: Parameters for grid convergence for Reτ = 590; (∆y+c = y at the center of channel, Lx
and Lz are the domain lengths in streamwise and spanwise directions, t∗avg is the averaging interval)

Grid Grid size (Nx,Ny,Nz) (Lx, Lz) ∆t∗ ∆x+ ∆y+c ∆z+ t∗avg

G1 64 X 25 X 64 2πδ X πδ 0.00147 57.92 90.27 28.96 59

G2 64 X 50 X 64 2πδ X πδ 0.00089 57.92 46.12 28.96 89

G3 64 X 100 X 64 2πδ X πδ 0.00059 57.92 23.31 28.96 148

G4 64 X 150 X 64 2πδ X πδ 0.00059 57.92 15.60 28.96 177

Figure 3.1: Results from the convergence study (Table 3.1); mean streamwise velocity (left) and
total (resolved + modeled) streamwise turbulence intensity (right)

depiction of the near-wall behavior. The CPU time is proportional to the number of grid points as

finer grids require smaller time steps and longer time duration for averaging. The time units are

non-dimensionalised by the friction velocity (uτ ) and δ . The filter control parameter used for all

numerical simulations in this section is fk = 0.1, i.e., 90% of the turbulence spectrum is resolved

and the remaining is modeled using the PANS two-layer turbulence model. Results for other fk

values will be discussed later in Section 3.4.

The grid sensitivity results are presented in Fig. 3.1 for spatio-temporally averaged mean

streamwise velocity and streamwise turbulence intensity profiles. The coarsest grid, G1, shows

largest deviation from the DNS data. In PANS two-layer model, the damping functions reduce
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Table 3.2: Parameters of numerical simulations

Case Reτ fk Grid size (Nx,Ny,Nz) (Lx, Lz) ∆t∗ ∆x+ ∆y+c ∆z+ t∗avg

C1 180 0.1 64 X 50 X 64 4πδ X 4
3πδ 0.00072 35.34 11.88 11.79 10

C2 395 0.2 64 X 50 X 64 2πδ X πδ 0.00118 38.78 26.07 19.38 40
C3 395 0.15 64 X 50 X 64 2πδ X πδ 0.00079 38.78 26.07 19.38 40
C4 395 0.1 64 X 50 X 64 2πδ X πδ 0.00079 38.78 26.07 19.38 60
C5 590 0.2 64 X 100 X 64 2πδ X πδ 0.00088 57.92 23.31 28.96 60
C6 590 0.15 64 X 100 X 64 2πδ X πδ 0.00059 57.92 23.31 28.96 85
C7 590 0.1 64 X 100 X 64 2πδ X πδ 0.00059 57.92 23.31 28.96 148
C8 950 0.1 70 X 90 X 80 4δ X 2δ 0.00076 54.29 41.61 23.75 190

the effective viscosity near the wall to levels lower than other PANS closures. Therefore, the grid

requirement in the inner region increases, resulting in the inadequacy of a very coarse grid to accu-

rately resolve the velocity fluctuations in the inner layer. Nevertheless, the results converge quickly

to the DNS profiles with increasing number of grid points in the inner region. Improving the ability

of the PANS two-layer model to capture statistics using coarser grids in the inner layer is currently

ongoing.

3.4 Results and discussion

The capability of other PANS approaches in capturing the physics of many flow regimes has

already been examined extensively from works of Refs. [31, 42, 48, 50, 62]. In this section, we

evaluate the capability of PANS two-layer model for predicting one-point turbulence statistics and

flow structures in a channel flow. A complete list of the numerical tests performed is presented in

Table 3.2.

3.4.1 fk dependence study

Reducing the filter parameter fk allows resolution of more scales (higher wavenumbers) in-

cumbent in the fluid flow. However, to ensure that these high wavenumbers are fully resolved, a

finer grid resolution is required. Consequently, the optimal fk is bound by the computational cost.

In this section, we present a study to establish the dependency of the flow statistics on the filter
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parameter fk.

In wall-bounded shear flows, the Tollmien–Schlichting (T-S) wave is the underlying instability

mechanism which must adequately manifest to capture essential flow features. For fk > 0.3, this

important instability is not resolved as the corresponding computational Reynolds number is not

sufficient for the T-S waves to become unstable [40]. From the contour plots of unresolved eddy

viscosity in Fig. 3.2, it is evident that higher fk values increase the unresolved eddy viscosity in

the system, which dampens perturbations introduced by the instability. Therefore, according to

Fig. 3.3, the convergence of statistics is obtained for reduced values of fk.

Figure 3.2: Unresolved eddy viscosity contours for C5 (left), C6 (middle) and C7(right) at y+ = 40

Figure 3.3: Mean streamwise velocity (left) and total (resolved + modeled) turbulence intensities
(right) for different spectral cutoff, fk, for Reτ = 590
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Now, we extend the fk sensitivity study to visualize turbulence structures in the flow field. Co-

herent structures such as hairpin vortices are known to drive the dynamics of turbulent channel flow.

Near the outer edge of the viscous sublayer, relatively small scale eddies produce the maximum

Reynolds stresses via the ejection and sweep mechanisms. In this study, the small scale eddies

in the near-wall region are visualized quantitatively by the Q-criterion defined as Q = 1
2(Ω

2−S2)

where Ω is the antisymmetric and S is the symmetric component of the velocity gradient tensor.

The unresolved eddy viscosity plays a crucial role in damping these small scale eddies. From

Fig. 3.2, the unresolved eddy viscosity contour plots indicate that reducing fk increases the effec-

tive computational Reynolds number releasing more unsteadiness in the flow field. Thus, from

Fig. 3.4, the iso-surfaces and corresponding contour plots at y+ = 40 reveal progressively finer

coherent structures with reduction in fk value.

Figure 3.4: Iso-surfaces of second invariant of velocity gradient tensor (Q-factor) for varying spec-
tral cut-off (top) and the corresponding Q-factor contours at y+ = 40 (bottom) for C5 (left), C6
(middle) and C7 (right)

One of the key means of assessing the fidelity of the PANS two-layer model is to ensure that

the prescribed (a priori) modeled-to-total kinetic energy and dissipation ratios are recovered. This
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is achieved via calculating the a posteriori viscosity reduction ratio ( fν ) using computed fields. It

is the ratio of unresolved eddy viscosity (νu) to total eddy viscosity (νt) defined as,

fν =
1

Dµ

νu

νt
(3.25)

where Dµ = [1− exp(−Ryu/Aµ)] is the damping function of the unresolved eddy viscosity length

scale. Here,

νt =Cµ

k2
t

εt
=Cµ

(kr + k̄u)
2

(εr + ε̄u)
(3.26)

where kr =UiUi−ŪiŪi and εr = ν

(
∂Ui

∂x j

∂Ui

∂x j
−

¯∂Ui

∂x j

¯∂Ui

∂x j

)
(3.27)

where kr and εr are the kinetic energy and dissipation contained in the resolved field. Fig. 3.5

presents the fν recovery (a posteriori) value from the simulations for different prescribed fk filter

ratios for Reτ = 395 and 590. In the outer layer, it is evident that the recovered (a posteriori) value

is close to the specified (a priori) value. However, very near the wall fν is not very close to the

specified value. Nevertheless, through most of the boundary layer, the model functions as dictated

by closure physics.

3.4.2 Reτ dependence study

In this section, the ability of the PANS two-layer model to capture one-point statistics over a

range of Reynolds number is investigated. The results obtained from the PANS two-layer com-

putations are averaged temporally and spatially in homogeneous directions to reveal the mean and

resolved turbulent fields. The resolved turbulent quantities are then added to the modeled fields to

obtain the total turbulence behavior. The normalized streamwise mean velocity has been presented

in Fig. 3.6 for different friction Reynolds numbers. The PANS two-layer low Reynolds number

run of Reτ = 180 accurately captures the higher intercept of the logarithmic profile as seen in the

results of Ref. [69]. The intercepts remain unaltered for higher Reynolds number computations.

Coefficient of skin friction based on the centerline velocity, C f = τw/(ρU2
c /2), is presented in

Fig. 3.6 for different Reτ and grid sizes (for Reτ = 590 outlined in Table 3.1). The values from the
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Figure 3.5: fν recovery plots for fk = 0.2 (red), fk = 0.15 (green) and fk = 0.1 (blue) for Reτ = 395
(left; C2−C4) and Reτ = 590 (right; C5−C7) ; the dashed lines represent the prescribed value of
fν

PANS two-layer computations are in excellent agreement with the DNS data. For Reτ = 590, the

C f values converge to the DNS values with increasing grid resolution.

Figure 3.7 shows the comparison of streamwise, spanwise, normal rms velocity fluctuations

and turbulent shear stresses with the DNS data for Reτ = 180 and 395. The turbulence stresses

for Reτ of 590 have been presented in detail in Fig. 3.1 and Fig. 3.3. PANS two-layer formulation

clearly offers an excellent advantage over the RANS model by accurately predicting the anisotropic

behavior of the turbulent stresses.

Profiles of mean streamwise velocity and turbulence intensities have also been presented in

Fig. 3.8 for a higher Reynolds number simulation (Reτ = 950). The profiles are compared to DNS

results of Ref. [70]. The results are in a good agreement with the DNS data. For higher Reynolds

numbers, Reτ > 1000, a wall-modeled PANS approach [40] is suggested for computational effi-

ciency.

The invariants of tensor bi j

(
≡ <uiu j>

2k − 1
3δi j

)
are excellent indicators of the degree of anisotropy

in the system. Near-wall turbulence is dominated by 〈u1〉 and 〈u3〉 fluctuations, whereas the wall-

normal fluctuation 〈u2〉 is negligible. This behavior manifests as the 2-component (2C) turbulence

for small y+. As the distance from the wall increases, wall-normal fluctuations become dominant
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Figure 3.6: Mean streamwise velocity profiles for Reτ = 180 (C1), 395 (C4) and 590 (C7) (left) and
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Figure 3.7: Profiles of total (resolved + modeled) turbulence intensities and Reynolds shear stresses
for Reτ = 180 (C1; left) and Reτ = 395 (C4; right)
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Figure 3.8: Mean streamwise velocity (left) and total (resolved + modeled) turbulence intensities
and Reynolds shear stress (right) for Reτ = 950 (C8)
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and Reτ = 590 (C7; right)
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Figure 3.10: Streamwise, normal and spanwise components of normalized rms resolved vorticity
fluctuations ω for Reτ = 180 (C1; left) and Reτ = 590 (C7; right)

and the turbulence tends towards isotropy, i.e, ξ and η = 0, near the core of the channel. Figure

3.9 presents an invariant map of the PANS Reynolds stress anisotropy tensor as a function of y+.

It is evident that PANS two-layer model captures the invariant behavior extremely well.

Now we examine the character of the fluctuating field generated by PANS computations.

Specifically, we examine the vorticity field. The standard deviation of the components of the

vorticity vector, ω = ∇×U is presented in Fig. 3.10. For lower Reynolds numbers (Reτ = 180),

the simulations adequately capture the key attributes of the DNS data throughout the domain. For

higher Reynolds numbers of Reτ = 395 (not shown) and 590, the vorticity fluctuations are very

well captured by the PANS two-layer model away from the wall. However, the PANS simula-

tions don’t reproduce the high values of vorticity fluctuations observed by the DNS simulations

in the near-wall region. According to Ref. [72], vorticity fluctuations have significantly larger

contributions from smaller scales compared to the velocity fluctuations. The small scales are not

fully resolved in the near-wall region due to the numerical and physical constraints leading to the

discrepancies observed in Fig. 3.10.
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Figure 3.11: Mean streamwise velocity (left) and total streamwise (resolved + modeled) turbulence
intensity (right) for different matching locations between the layers for Reτ = 590

3.4.3 Variation of the matching location between layers

In two-layer models, the matching between the inner and outer layer typically occurs at the

edge of the viscous sublayer, i.e., in a region where viscous effects have become negligible to

ensure a smooth variation of eddy viscosity. Ref. [59] matched the two layers at preselected grid

lines running along the wall where minimum Ry is of the order of 250. The present PANS formu-

lation utilizes the matching criterion proposed by Ref. [65]. This criterion matches the two layers

when
[
1− exp(−Ryu/Aµ)

]
is close to unity so that the viscous effects are small. This leads to

effective switching between the layers at y+ ≈ 90−100. A study of varying the matching location

between the inner and outer layers is performed and the results (Fig. 3.11) are found to be nearly

independent of the switching location between the layers so long as matching occurs early in the

log layer.
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4. CHARACTERIZATION OF COHERENT STRUCTURES IN TURBULENT WAKE OF A

SPHERE USING PARTIALLY-AVERAGED NAVIER-STOKES (PANS) SIMULATIONS1

4.1 Introduction

Turbulent flows such as wakes, jets, mixing layers, internal flows etc., display spatio-temporal

coherence manifesting as large-scale structures that drive the flow physics. These coherent struc-

tures dictate both the global and local response of the system and hence play a vital role in en-

gineering design considerations. In some engineering applications, it is important to capture the

large-scale structures themselves as they directly determine large-scale entrainment leading to mix-

ing. Aircraft wake vortex is another example in which the description of the coherent structures is

important. For many other applications, the significance of coherent structures stem from the fact

that they strongly influence local flow statistics of importance. Low-order single-point statistical

closures such as Reynolds-averaged Navier-Stokes (RANS) models cannot effectively account for

the multi-point coherence and yield poor estimates of important integrated parameters (Cd,Cl) and

one-point statistics such as mean flow profiles and shear stress distributions. In summation, pre-

dictive computations must ensure that the dynamically relevant coherent structures are reasonably

resolved for their inherent importance and crucial role in driving global and local flow response.

In turbulent flows with coherent structures, the velocity field (Φ) can be effectively decom-

posed into three parts as follows:

Φ = Φ+ φ̃ +φ
′ (4.1)

where the mean field is denoted by Φ, coherent structures by φ̃ and stochastic background turbu-

lence is given by φ ′. Direct numerical simulation (DNS) resolves all components of the flow field

precisely, but the cost can be prohibitive for almost all practical flows [23]. Large eddy simulation

(LES) models the dissipative scales of the stochastic field while resolving the remainder of the

1Reprinted with permission from "Characterization of coherent structures in turbulent wake of a sphere using
partially averaged Navier–Stokes (PANS) simulations" by Chetna Kamble and Sharath S. Girimaji, 2020, Physics of
Fluids, vol. 32, Copyright (2020) by AIP Publishing [61].
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flow field. While LES computational requirements are lower than those of DNS, the cost can still

be too high for most engineering applications.

Scale-resolving simulations (SRS) offer a viable alternative to capture coherent-structure flow

physics with reduced computational effort. The subject of this study is the bridging-SRS method

[31] in which the cut-off length scale is controlled implicitly by specifying the extent of resolved

kinetic energy. Unlike LES, bridging-SRS seeks to model not only the stochastic component of the

flow field but also some of the smaller coherent-structure scales. Thus bridging-SRS techniques

allow the cut-off filter to be placed in the smaller inertial scales and model the remainder of the tur-

bulent flow field. The reduced computational burden requires that the subgrid closure model be of

higher degree of sophistication than what is typically used in LES. The Partially-averaged Navier-

Stokes (PANS) method is a bridging-SRS approach in which the subgrid model is developed sys-

tematically from RANS closures by accounting for scale-dependent physics [31, 34, 38, 39]. Thus

PANS aims for a different balance between cut-off scale and accuracy than LES.

The goal of the study is to examine the ability of PANS-SRS method to capture correct behavior

of one-point correlations and coherent structures in complex wakes. Important attributes of PANS

in particular and SRS in general are examined for the case of flow past a sphere in the subcritical

Reynolds number regime, Re = 3700. The specific objectives of the study are to: (i) validate the

PANS-SRS using one-point statistics and global parameters; (ii) examine the dependence of large-

scale coherent structures on the degree of resolution (or cut-off length scale) and (iii) characterize

the coherent structures in the wake of a sphere and compare their features with those of other

axisymmetric wakes.

Coherent structures in the wake of a sphere exhibit strong correlations in the azimuthal and

radial directions at different downstream locations in the wake. These correlations can be quantita-

tively examined using a proper orthogonal decomposition (POD) approach [73]. Although, large-

scale coherence in the wake of many axisymmetric bodies has been studied in detail [1, 74, 75, 76],

the studies in the near-wake region of sphere are scarce. Therefore, we seek to characterize the

near-wake coherent structures in the wake of a sphere using modal decomposition and examine
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mode shapes/amplitudes.

The remainder of the study is organized as follows: In the next section we present a general

discussion of coherent structures in the wake of the sphere and delineate a methodology for quan-

tification of these structures. The turbulence model used is presented in Sec. 4.3. A brief descrip-

tion of simulation setup and grid configuration is outlined in Section. 4.4. Section. 4.5 presents the

statistics and structures computed by the PANS-SRS simulations as a function of physical resolu-

tion (cut-off scales).

4.2 Coherent structures in the wake of a sphere

Unlike the statistically 2D wakes, the inherent three dimensionality of a sphere’s wake renders

it an interesting and challenging flow for turbulence model simulations. This flow is character-

ized by a smooth surface separation wherein the pressure gradient rather than the body geometry

determines the separation location. The features of the sphere’s wake are highly sensitive to the

Reynolds number regime considered. Low Reynolds number laminar flow over a sphere is divided

in four distinct regimes [77, 78]: (i) steady axisymmetric (Re≤ 200), (ii) steady planar-symmetric

(Re ∈ [210,270]), (iii) unsteady planar-symmetric (Re ∈ [280,375)) and (iv) unsteady asymmetric

(Re ∈ [375,800)). Whereas high Reynolds number turbulent flow over a sphere is broadly classi-

fied in two regimes[5]: (i) subcritical (Re∈ [800,3.7×105)) and (ii) supercritical (Re > 3.7×105)

where Re ≈ 3.7× 105 is the critical Reynolds number where the drag crisis occurs. In this study

we consider the coherent structures in the wake of a sphere in the subcritical Reynolds number

regime.

Several numerical [5, 78, 79] and experimental [6, 80] studies have been conducted for flow

over a sphere in the subcritical regime. With increase in computational power in recent years,

DNS studies of a sphere’s wake are also available [2, 81, 82]. These studies highlight several

key features of flow past a sphere in this regime; (i) smooth separation of a laminar boundary

layer, (ii) an axisymmetric free shear layer, (iii) roll-up of detached shear layers due to the Kelvin-

Helmholtz (KH) instability, (iv) transition to high intensity turbulence and (v) vortex shedding in

a three dimensional turbulent wake.
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Behavior of vortical structures in the turbulent wake of a sphere has also been an active area of

research [83]. Experiments by Ref. [84] analyzed migration of the vortex-separation point around

the sphere for flow in the range Re ∈ (400,5× 106). Flow visualization by Ref. [85] established

a wave-like motion exhibited by the wake in the streamwise axis plane. This large-scale waviness

has also been confirmed by LES simulations of Ref. [78] and DNS of Ref. [2]. These studies

have also established the tendency of the vortical structures to convect downstream in the same

plane they are shed. Moreover, analysis of multiple shedding cycles revealed a randomness in the

azimuthal shedding location of the vortices from the axisymmetric shear layer leading to a helical

appearance of the wake.

For a quantitative analysis of coherent structures, proper orthogonal decomposition (POD) has

been widely applied to various axisymmetric flows including jets [75], mixing layers [76] and

wakes of axisymmetric bodies [86]. POD is a modal decomposition technique which extracts most

energetic structures from a turbulent flow field. In this study, POD analysis is performed on the

streamwise velocity fluctuations, ux. The turbulent flow field (ux) is decomposed into a set of basis

functions, ψi(x, t) which are defined by maximization of their normalized mean-square projection

on the flow field (quantified by eigenvalue λ ) resulting in the following integral equation [87]:

∫
Ri, j(x,x′, t, t ′)ψ j(x′, t ′)dx′dt ′ = λψi(x, t) (4.2)

where the kernel is a two-point correlation tensor: Ri, j(x,x′, t, t ′) = 〈ui(x, t)u j(x′, t ′)〉. For fields

with finite total energy, i.e, statistically inhomogeneous fields, the Hilbert-Schmidt theory ensures

denumerable set of solutions for Eq. 4.2 given by eigenfunctions, ψ
(n)
i (x, t) and corresponding

eigenvalues, λ (n) (Ref. [86]).

Axisymmetric wakes are homogeneous in azimuthal direction (θ ) and stationary in time and

therefore the Hilbert Schmidt theory doesn’t apply. However, the POD modes are essentially

Fourier modes in these directions. Now, if the flow field at a given downstream location (x) is

considered then the POD description derived from Eq. 4.2 is only solved for radial direction r.
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The approach adopted in this study is an amalgamation of works by Ref. [76] and Ref. [88] and is

detailed below:

1. Obtain multiple snapshots of the streamwise velocity fluctuations (ux(r,θ , t)) at fixed down-

stream locations (x).

2. Expand the fluctuations in azimuthal direction (θ ) using Fourier decomposition for each

snapshot:

ûx(r,m, t;x) =
1

2π

2π∫
0

ux(r,θ , t;x)e−imθ dθ (4.3)

where m is the discrete azimuthal mode number characterizing the dependence of length

scales in θ direction.

3. For each azimuthal mode m, use û(r,m, t;x) and perform a Fourier transform in time based

on the number of snapshots and windowing using the Welch’s algorithm to obtain the corre-

sponding Fourier amplitudes ũx(r,m, f ;x).

4. Construct a cross-spectral density tensor, Sx,x(r,r′, f ,m;x) = 〈ũx(r,m, f ;x)ũx(r′,m, f ;x)〉 and

solve the following integral equation in radial direction:

∫
Sx,x(m, f ,r,r′;x)ψ(n)(m, f ,r′;x)r′dr′ = λ

(n)(m, f ;x)ψ(n)(m, f ,r;x) (4.4)

In the non-homogeneous radial direction, there exists a denumerable set of discrete radial

POD modes (ψ(n)(r,m, f ;x)) and modal energy content (λ (n)(m, f ;x)) from the Hilbert-

Schmidt theory. The radial POD mode number, n characterizes the dependence of length

scales in r direction.

The last two steps are computed using a spectral POD technique outlined in Ref. [88] capable

of capturing the spatio-temporal behavior of structures. Based on the above approach, the large

scales in axisymmetric wakes are completely described in terms of the azimuthal mode number

(m), frequency ( f ) and the radial mode number (n) at fixed downstream locations (x).
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Large-scale coherent structure analysis in axisymmetric wake of a disk [86, 1] and an axisym-

metric bluff body with blunt trailing edge [89, 90] reveals dominance of different azimuthal modes

as a function of downstream location in the wake. A schematic of the structure of axisymmetric

wake of a disk is illustrated in Fig. 4.1 where three dominant azimuthal modes have been identi-

fied. The azimuthal mode, m = 0, arising from axisymmetric fluctuations due to expansion and

contraction of the recirculation bubble, is called the ‘bubble-pumping’ mode. Although, study by

Ref. [74] found negligible contribution from the m = 0 mode in the wake of a disk, subsequent

studies found this mode to have sufficient energy even in the far wake region [86] of axisymmetric

bodies. The azimuthal mode, m = 1 is the most dominant mode reported in literature in the wakes

of axisymmetric bodies. This anti-symmetric mode is associated with shedding of large-scale co-

herent structures at the vortex shedding frequency ( fvs) and is responsible for the helical shape

of the turbulent wake [1]. A low frequency azimuthal mode, m = 2 has also been detected in the

axisymmetric wake studies [74, 86]. Although the correlation of this mode with the coherent struc-

tures in the wake is unclear, this mode appears to be dominant in the far-wake region (x/D > 30)

when the wake approaches self-similarity [86].

Surprisingly, behavior of modes characterizing the large-scale structures in the sphere’s wake

has not been investigated thoroughly. Ref. [1] claimed the wake of a sphere to be similar to a disk

in terms of modal behavior below Recr ≈ 2×105. They, however, did not investigate the details of

the modal composition in the near-wake region of a sphere. Consequently, there is a clear need to

examine the coherent structure dynamics in the wake of a sphere in detail. In the next section we

detail the SRS turbulence modeling approach utilized in this study.

4.3 Description of partially-averaged Navier-Stokes (PANS) closure

In the present study, unresolved/modeled scales are computed using a PANS ku−ωu model

proposed in Ref. [62]. The unresolved eddy viscosity (νu) from Eq. 2.10 is determined as:

νu =
ku

ωu
(4.5)
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Figure 4.1: Schematic of disk wake structure (Reprinted from Journal of Fluids and Structures,
Vol 4, E. Berger, D. Scholz, and M. Schumm, Coherent vortex structures in the wake of a sphere
and a circular disk at rest and under forced vibrations, 27, Copyright (1990), with permission from
Elsevier [1].)

Here, ωu is the specific rate of dissipation. Evolution equations for ku and ωu are given as:

∂ku

∂ t
+U j

∂ku

∂x j
= Pu−β

∗kuωu +
∂

∂x j

[(
ν +

νu

σku

)
∂ku

∂x j

]
(4.6)

∂ωu

∂ t
+U j

∂ωu

∂x j
= α

Puωu

ku
−β

′
ω

2
u +

∂

∂x j

[(
ν +

νu

σωu

)
∂ωu

∂x j

]
(4.7)

where Pu = τ(Vi,Vj)
∂Ui
∂x j

is the production in the unresolved scales. Closure coefficients from Eqs.

4.6 and 4.7 are determined as follows [62]:

β
′ = αβ

∗−α
β ∗

fω

+
β

fω

(4.8)

σku =
fk

fω

σk; σωu =
fk

fω

σω (4.9)

The remaining RANS k−ω model coefficients used are: β ∗ = 0.09, α = 5/9, β = 0.075, σk = 2.0

and σω = 2.0.
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4.4 Numerical setup

Flow past a sphere at subcritical Reynolds number, based on freestream velocity (V∞) and the

diameter of the sphere (D), Re = V∞D/ν of 3700 is simulated. In this section, we establish the

flow domain and numerical features of this study.

4.4.1 Domain and boundary conditions

A cylindrical computational domain is constructed with the sphere located at (x,y,z) = (0,0,0)

as shown in Fig. 4.2. The inlet is at x/D =−5 from the sphere and the domain in the wake extends

to x/D = 30. The cylindrical domain expands to r/D = 5 in the radial direction. The equations

are solved in a Cartesian coordinate system and the dependence of velocity field on the radial (r)

and azimuthal (θ ) directions is obtained using the coordinate transformation. Boundary conditions

analogous to the DNS of Ref. [2] and the LES of Ref. [78] are used in this study. A Dirichlet

boundary condition of uniform flow in streamwise direction, (Ux,Uy,Uz) = (V∞,0,0), is prescribed

at the inlet and the far-field boundaries. Moreover, turbulence intensity, I = 0.2%, eddy viscosity

νT/ν = 10−3 and non-dimensional specific rate of dissipation ω∗= 20 are maintained at the inflow

boundaries. No-slip boundary condition is specified for velocity at the sphere’s surface. Turbu-

lence quantities (k,νT ) and the normal derivative of pressure are set to zero, whereas the specific

dissipation rate, ω = 6ν/βd2 [19] is used on the surface of the sphere, where d is the distance

to nearest cell center from the sphere’s surface. A convective boundary condition is employed at

the outlet. For the PANS simulations performed in this study, unresolved or modeled turbulence

quantities are specified at the boundaries: unresolved turbulent kinetic energy (ku = fkk) and un-

resolved specific dissipation rate (ωu = fωω). The unresolved eddy viscosity is then prescribed as

νu = ( fk/ fω)νT .

4.4.2 Numerical schemes

The finite-volume code, OpenFOAM [91] is employed for all the simulations performed in

this study. Second-order accurate schemes are chosen for spatial discretization and a second-order

implicit backward scheme is used to discretize the temporal derivatives. The Pressure-Implicit
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Figure 4.2: Computational domain
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Figure 4.3: Grid configuration: grid resolution near the sphere in the streamwise axis plane (left)
and in the cross-sectional plane normal to the streamwise axis (right).

with Splitting of Operators (PISO) algorithm is used for the pressure–velocity coupling [71]. The

resulting algebraic equations are solved using a geometric agglomerated algebraic multigrid solver

for pressure and an iterative solver using a symmetric Gauss–Seidel smoother for all other flow

variables. A tolerance of 10−8 is maintained for convergence of all the variables at each time step.

4.4.3 Numerical grid and convergence of flow statistics

A multi-block structured grid within a cylindrical domain is constructed using ANSYS ICEM

with hexahedral elements. An overview of the mesh characteristics is presented in Table. 4.1 and

the mesh configuration for the g2 mesh is presented in Fig. 4.3 for both the (x,y) and (y,z) planes.

A consistent grid configuration is maintained in the (x,r) plane for each azimuthal angle θ . The

sphere is enclosed with a body-fitted radially expanding mesh for 0.5≤ r/D≤ 1 with ∆rmax/D =
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Table 4.1: Mesh parameters; Nt is the total number of cells in the domain, Ncs is the total number
of cells in the cross-sectional plane (perpendicular to the streamwise axis), ∆r+min = ∆rmin/D is
the radial displacement of cells adjacent to sphere’s surface, ∆t+ = ∆tV∞/D is the uniform non-
dimensional time step and ∆T+ = ∆TV∞/D is the averaging interval for the statistics.

Study Grid Type Nt(106) Ncs ∆r+min ∆t+ ∆T+

PANS ( fk = 0.5) Structured 6.09 12,784 0.003 3.7X10−3 200

PANS ( fk = 0.3) Structured 6.09 12,784 0.003 3.7X10−3 200

PANS ( fk = 0.2)

g1 Structured 3.82 12,320 0.01 3.7X10−3 150

g2 Structured 6.18 13,345 0.01 3.7X10−3 150

g3 Structured 7.52 14,981 0.003 2.96X10−3 250

PANS ( fk = 0.1) Structured 8.82 17,025 0.003 1.85X10−3 300

DNS [2] Unstructured 9.48 - - - 350

DNS [82] Structured 372.77 80,896 0.0016 - 80

LES [78] Structured (IBM) 9.08 12,880 - 1X10−2 800

0.1 for g1 mesh. In the near-wake region (0.5 ≤ x/D ≤ 5), approximately 170− 250 nodes are

placed in the x-direction with ∆xmax/D = 0.05− 0.11 for different meshes. While unstructured

grids (DNS [2]) or immersed boundary methods (IBMs) used in LES of Ref. [78], require lesser

number of grid cells, a Cartesian mesh is considered for seamless compatibility with OpenFOAM

solvers. The results from grid resolution study for the case of fk = 0.2 are presented in Fig. 4.4.

First-order statistics are compared against the DNS study of Ref. [2]. Better agreement is observed

for finer grid resolutions, g2 and g3. Therefore, in subsequent sections, results from g3 mesh are

examined for the fk = 0.2 case. Similar study is conducted for PANS fk = 0.5,0.3 cases and the

corresponding meshes presented in Table 4.1 are found optimal.
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(a) (b)

Figure 4.4: Grid convergence study: (a) time-averaged streamwise velocity profile at the centerline
and (b) time-averaged streamwise velocity profile at different locations in the near-wake; DNS
results from Ref. [2] are used for comparison.

4.5 Results

The objective of this work is to examine the ability of PANS-SRS simulations to capture flow

statistics, spectral behavior and large-scale structures as a function of physical resolution, fk. Ac-

cording to the results of Refs. [42, 46], satisfactory predictions from PANS simulations are ob-

served for fk ≤ 0.5 for 2D bluff body wakes. For coarser physical resolutions, fk > 0.5, key in-

stabilities in the flow field are not resolved leading to poor predictions. Therefore, high resolution

PANS simulations of statistically 3D wake with fk ≤ 0.5 are considered in this study.

We start by examining integral quantities and the first- and second-order statistics computed

from the simulations and examine the degree of agreement with established results in literature.

Next, we discuss the spectral behavior at specific probe locations. Finally, we perform an investi-

gation of the large-scale coherent structures in the wake of the sphere.

4.5.1 Integral quantities and flow statistics

The integral flow quantities are compared in Table. 4.2. At all fk values, the PANS quantities

compare well with the corresponding DNS data. The separation angle (φs(
o)) of about 90o (for a

laminar boundary layer separation) is well captured by all PANS-SRS simulations.

Now, we investigate the effect of physical resolution ( fk) variation on the first- and second-order
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Table 4.2: Integral quantities; Time-averaged drag coefficient Cd , root-mean-square lift coefficient
Cl(RMS), Strouhal number St , recirculation length LR, time-averaged base pressure coefficient Cpb
and separation angle φs(

o)

Study Cd Cl(RMS) St LR Cpb φs(
o)

PANS ( fk = 0.5) 0.395 0.0115 0.201 2.23 −0.221 89.97

PANS ( fk = 0.3) 0.396 0.0082 0.216 2.24 −0.221 89.82

PANS ( fk = 0.2) 0.395 0.0079 0.204 2.26 −0.220 89.83

PANS ( fk = 0.1) 0.396 0.0070 0.217 2.24 −0.220 89.79

DNS [2] 0.394 − 0.215 2.28 −0.207 89.4

LES [78] 0.355 − 0.21 2.622 −0.194 90

statistics in the wake of the sphere. The mean pressure coefficient, Cp over the sphere’s surface

is in excellent agreement with the DNS study of Ref. [2] as seen from Fig. 4.5(a). Although

minor deviations are observed in the back pressure coefficient, Cpb (see Table. 4.2), the profile

and the pressure minimum location (θpmin = 71.5o) are captured precisely for all fk. The time-

averaged streamwise velocity (Ux) profile along the wake centerline is presented in Fig. 4.5(b).

The recirculation bubble is estimated with reasonable accuracy at all resolutions. A maximum

error of 28% (for PANS fk = 0.5) is observed in the minimum mean streamwise velocity (Ux)

at x/D = 2.13 on the wake centerline compared to the DNS study. For finer fk resolutions, the

agreement is significantly better.

Mean streamwise (Ux) and radial (Ur) velocity profiles at different downstream locations in

the wake are illustrated in Fig. 4.6. The ‘U’ shaped profile inside the recirculation region (see,

Fig. 4.6(a)) is well replicated at all resolution levels. The simulations deviate from the DNS re-

sults at x/D = 5.0 as seen in Fig. 4.6(g). All PANS simulations compute a lower velocity deficit

compared to the DNS along with a slower recovery in the radial direction. For the low resolution

runs ( fk = 0.5,0.3), higher velocity fluid in the wake’s core is observed at x/D = 10 (Fig. 4.6(i)).
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(a) (b)

Figure 4.5: (a) Mean pressure coefficient around the sphere and (b) streamwise velocity profile in
the centerline for different physical resolutions ( fk) compared to DNS of Ref. [2].

For simulations with fk ≤ 0.2, the mean streamwise velocity profiles recover well and are in good

agreement with DNS. The radial velocity (Ur) profiles show slight deviations from the DNS values,

especially for fk = 0.5 simulation.

Profiles of the total turbulent kinetic energy (kT/V 2
∞) at different downstream locations are

shown in Fig. 4.7. The second-order quantities have contributions from both resolved flow fluctua-

tions and the modeled quantities. In the immediate vicinity of the sphere (x/D = 1.6), streamwise

fluctuations (uxux) dominate in the separating shear layers (r/D = 0.6) arising from the underly-

ing KH instability. This instability generates smaller scales in the recirculation region aiding the

transition to turbulence beyond x/D = 2.0. At the end of the recirculation region, peak values of

turbulent stresses (uxux, urur and uxur) are obtained between x/D = 2.0− 3.0 leading to a cor-

responding peak in total turbulent kinetic energy (Fig. 4.7(c)). As smaller scales are generated

at the location of transition to turbulence, a larger averaging window is required for finer phys-

ical resolution simulations (see, Fig. 4.7(b)) for convergence of higher order statistics. Beyond

the recirculation region, the turbulent kinetic energy is convected downstream by the large-scale

motions. Overall, the results improve substantially with decreasing fk.

Based on the results in this section, it is clear that the integral quantities and one-point flow

statistics are reasonably captured by the PANS simulations at most physical resolutions, fk. In the
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 4.6: Time-averaged streamwise and radial velocity profiles in z = 0 plane for x/D = 1.6
((a),(b)), x/D = 2.0 ((c),(d)), x/D = 3.0 ((e),(f)), x/D = 5.0 ((g),(h)) and x/D = 10.0 ((i),(j)).
Results are compared to DNS of Ref. [2].
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(a) (b)

(c) (d)

Figure 4.7: Total turbulent kinetic energy, kT (resolved + modeled (ku)) in z = 0 plane for (a)
x/D = 1.6, (b) x/D = 2.0, (c) x/D = 3.0 and (d) x/D = 5.0. Results are compared to DNS of
Ref. [3].
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next sub-sections, we assess the ability of PANS to resolve key instabilities in the flow and capture

large-scale coherent structures at different resolutions ( fk values).

4.5.2 Resolution of key instabilities and spectral behavior

Flow past a sphere exhibits two main instabilities[5]; (i) a large-scale instability associated

with shedding of coherent structures from the end of the recirculation region and (ii) a small-

scale instability associated with pulsation of the detached shear layer due to formation and spatial

development of Kelvin-Helmholtz (KH) rollers. The first large-scale vortex shedding instability

manifests as a progressive wave motion beyond critical Reynolds number, Rec1 = 280. Beyond

the second critical Reynolds number, Rec2 = 800, the second small-scale instability (spiral mode)

is present on the periphery of the recirculation region. Toward resolution of these key instabili-

ties, it is essential to ensure that the effective computational Reynolds number (Ree f f ) obtained

from Eq. 2.14 exceeds the critical Reynolds number of these instabilities [46]. The small-scale

KH instability acts along the locus of inflection-point for the velocity field (∂ 2Ux/∂ r2 = 0). To

ensure this instability fully manifests, Ree f f > Rec2 around the inflection line. The contours of the

effective computational Reynolds number are presented in Fig. 4.8. The results clearly illustrate

the ability of PANS simulations with fk ≤ 0.3 to capture both the key instabilities in the flow rea-

sonably well. Although for the fk = 0.5 simulation the inflection line doesn’t encounter a region

where Ree f f ≤ 800, the low Ree f f inside the recirculation region (Fig. 4.8(a)) clearly prohibits the

underlying KH instability to develop completely.

The Welch’s power spectral density distributions [92] of the radial velocity component (Ur)

are presented in Figs. 4.9-4.10 at different probe locations (see, Fig. 4.8) in the wake. The first

probe (Probe A) is placed at x/D = 1.0,r/D = 0.6 which is in the separated axisymmetric shear

layer to capture the Kelvin-Helmholtz roll-up. This instability manifests as intermittent bursts of

high amplitudes in the radial velocity time series. The PANS radial velocity spectra capture this

instability as a broadband frequency centered around fKHD/V∞ = 0.65− 0.71. These peaks are

slightly lower from the value of fKHD/V∞ = 0.72 found in the DNS study [2]. A scatter in the

values of this frequency is reported in the literature [77, 80]. This key instability is not distinctly
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(a) (b)

(c) (d)

Figure 4.8: Contours of effective computational Reynolds number, Ree f f ; (a) fk = 0.5, (b) fk =
0.3, (c) fk = 0.2 and (d) fk = 0.1. The dark line is the inflection line where ∂ 2Ux/∂ r2 = 0.

captured in the PANS fk = 0.5 simulation (Fig. 4.9(a)) due to a higher eddy viscosity (νu) generated

in the system (Eq. 2.13). The large-scale instability manifests as a vortex shedding fvs frequency

in the energy spectra and the value of fvsD/V∞ ≈ 0.21 (Ref. [2]) has been reasonably captured by

all PANS fk simulations as shown in Fig. 4.9 (Probe B).

4.5.3 Large-scale vortex structures in the wake of a sphere

Qualitative aspects of the axisymmetric wake of a sphere are examined in detail at different

physical resolutions. We now present a brief summary of the findings:

1. The vortex detachment location in the azimuthal direction (θs) based on the highest out-of-

plane vorticity content is obtained at the downstream location x/D = 3.0. The detachment

location (θs) is found to be randomly distributed in time for all fk simulations.

2. The vortical structures are traced throughout their shedding cycle (Ts) along with their max-

imum out-of-plane vorticity content in the plane along the streamwise axis. The maximum

vorticity content stays in the same plane throughout Ts for the vortical structures. This high-

lights the tendency of vortices to stay in the ‘shedding plane’ as they convect downstream.

50



(a) (b)

(c) (d)

(e) (f )

Figure 4.9: Caption on the next page.
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(g) (h)

Figure 4.10: Radial velocity spectra at different probe locations in the wake; Probe A: x/D =
1.0, r/D= 0.6 ((a) fk = 0.5, (c) fk = 0.3, (e) fk = 0.2, (g) fk = 0.1) and Probe B: x/D= 3.0, r/D=
0.6 ((b) fk = 0.5, (d) fk = 0.3, (f) fk = 0.2, (h) fk = 0.1). The spectra are averaged from data at
eight equally-spaced locations in azimuthal direction. (Caption also includes Fig. 4.9)

These findings are in accordance with the results of Ref. [5] and Ref. [78]. Iso-surfaces of

Q = 1
2(Ω

2−S2) where Ω and S are the antisymmetric and symmetric components of the velocity

gradient tensor, are presented in Fig. 4.11 for different PANS simulations. An axisymmetric vorti-

cal structure in the detached shear layers is readily discernible from the figure which corresponds

to the presence of vortex tubes [5]. These tubes then coalesce to form the large-scale structures

which are shed quasi-randomly in the wake. Hairpin-like structures in the wake are seen in all

PANS simulations. As the physical resolution improves (reduction in fk), a wider range of scales

are observed in the wake.

We quantify the structures generated from the PANS simulations using a POD technique. This

procedure, outlined in Section. 4.2, is applied at fixed downstream locations in the wake to examine

near-wake coherent structures at different degrees of physical resolution, fk. Based on eigenvalue

decomposition of the cross-spectral density tensor, S(r,r′,m, f ;x) (Eq. 4.4), the radial POD modal

energy content λ (n)(m, f ;x) and corresponding mode shapes (ψ(n)(r,m, f ;x)) can be obtained as

a function of azimuthal mode (m) and frequency ( f ). As the POD arranges the modes based on

their energy content, only the first few radial POD modes are analyzed to establish the ability of

PANS to capture the dominant coherent structures at different resolutions. Based on the analysis in
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(a) fk = 0.5 (b) fk = 0.3

(c) fk = 0.2 (d) fk = 0.1

Figure 4.11: Instantaneous Q-factor iso-surfaces for different fk ((a) fk = 0.5, (b) fk = 0.3, (c)
fk = 0.2 and (d) fk = 0.1) simulations colored with resolved streamwise velocity Ux.

53



this study, the first radial POD mode (n = 1) contains approximately 80−85% of the total energy

in the radial direction for the peak frequency over different azimuthal mode number (m) for all fk

simulations. Therefore, in the subsequent analysis, only the first radial POD mode (ψ1(r,m, f ;x),

λ 1(m, f , ;x)) is investigated in detail. The data from the numerical domain is mapped onto a

cylindrical polar grid with r ∈ [0, 1.5D], θ ∈ [0o, 360o] and z ∈ [1D, 10D]. The snapshots are

obtained at four stations in the wake of the sphere; (i) inside the recirculation region, x/D = 2.0,

(ii) just outside the recirculation region, x/D = 3.0, (ii) in the near-wake region, x/D = 5.0 and

(iv) in the intermediate wake region, x/D = 10.0. A total of approximately 2000 snapshots at

∆tsnaps = 30V∞/D on a polar grid (Nr = 50, Nθ = 180) with ∆r/D = 0.03 and ∆θ = 2o are used to

perform POD for all fk resolutions.

We first investigate the spectral behavior of the azimuthal modes (m) using eigenspectra, λ 1(m, f ;x)

as a function of normalized frequency at different downstream locations as presented in Fig. 4.12

for fk = 0.1 simulation. Studies by Ref. [1] and Ref. [89] report the first azimuthal mode m = 0

oscillates at a low frequency of St = 0.05−0.06. From Fig. 4.12, a concentration of energy at fre-

quency of around St = 0.05 can be deduced at x/D = 5.0 and 10.0. The most widely studied mode

in the wake is the m = 1 mode associated with the large-scale vortex shedding. Fig. 4.12 clearly

illustrates this oscillatory mode to peak at the natural shedding frequency of St = 0.21 at all down-

stream locations. Ref. [86] establish that the azimuthal mode m = 2 peaks at a near-zero frequency

beyond x/D = 30.0. This low-frequency peak is captured at St = 0.1 by Ref. [89]. In the present

PANS simulations, this peak is observed at the downstream stations, x/D = 5.0 and 10.0. With

the temporal frequency behavior of the modes established, we now investigate the mode shapes of

different azimuthal modes at their corresponding peak frequencies, i.e., f D/V∞ = 0.05 for m = 0,

f D/V∞ = 0.21 for m = 1 and f D/V∞ = 0.1 for m = 2.

The eigenfunctions (ψ1(r,m, f ;x)) obtained from the PANS simulation of fk = 0.1 at different

locations in the wake are presented in Fig. 4.13. These modes shapes are pre-multiplied by r1/2

to make the kernel in Eq. 4.4 Hermitian symmetric [86]. Inside the recirculation region, at x/D =

2.0, the mode m = 1 lacks a clear defined shape as small-scales are generated inside the bubble
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(a) (b)

(c) (d)

Figure 4.12: Eigenspectra λ 1(m, f ;x) at different downstream locations; (a) x/D = 2.0, (b) x/D =
3.0, (c) x/D = 5.0 and (d) x/D = 10.0 in the wake for PANS fk = 0.1 simulation.
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that interact with and distort the large-scale structures (Fig. 4.13(b)). At locations beyond x/D ≥

3.0, a signature anti-symmetric pattern of the m = 1 mode is clearly observed (Fig. 4.13(e), (h),

(k)). The m = 2 mode retains its shape at all locations in the wake unaffected by the small-scale

dynamics inside the recirculation region. A comparison of eigenfunctions for different physical

resolution ( fk) at different locations in the wake is presented in Fig. 4.14. The results clearly

illustrate a monotonic convergence of shapes of the large-scale behavior with improving physical

resolution (decreasing fk). The low resolution simulation of fk = 0.5 fails to capture the mode

shapes accurately, especially inside the recirculation region. Clearly, the mode shapes expand in

radial direction as the wake grows and at x/D = 10.0 (Fig. 4.14(j), (k), (l)) large-scale structures

diffuse more rapidly for coarser fk simulations due to higher effective viscosity.

In order to analyze the kinetic energy distribution in different azimuthal modes (m), eigenspec-

tra (λ (n)(m, f ;x)) integrated over frequency, ξ is proposed [76, 86]:

ξ
(n)(m;x) =

∑ f λ (n)(m, f ;x)

∑n ∑m ∑ f λ (n)(m, f ;x)
(4.10)

The resulting normalized quantity illustrates the relative importance of the azimuthal modes gov-

erning the large-scale physics at different locations in the wake. The results for the first radial POD

mode, ξ 1(m;x) are presented in Fig. 4.15. The PANS fk = 0.2 and fk = 0.1 cases capture the dom-

inance of m = 0 mode inside the recirculation bubble as illustrated in Fig. 4.15. The results clearly

display convergence of modal energy content for higher physical resolutions ( fk = 0.2, 0.1). The

PANS fk = 0.3 results show slight dominance of the m = 1 mode compared to the m = 0 mode at

x/D = 2.0. For the low-resolution PANS simulations, small-scales inside the recirculation region

are not captured in detail which leads to inconsistent energy allocation among the modes. Note

that the over-estimation of m = 0 mode by PANS fk = 0.5 simulation at x/D = 2.0 is entirely due

to the inability of fk = 0.5 simulation to resolve small-scales at this location (also see Fig. 4.14(a)).

We can further examine the distribution of azimuthal modes in detail based on ξ 1(m;x) by

isolating results of PANS fk = 0.1 simulation from Fig. 4.15. Inside the recirculation bubble, at
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(a) m = 0, x/D = 2.0 (b) m = 1, x/D = 2.0 (c) m = 2, x/D = 2.0

(d) m = 0, x/D = 3.0 (e) m = 1, x/D = 3.0 (f) m = 2, x/D = 3.0

(g) m = 0, x/D = 5.0 (h) m = 1, x/D = 5.0 (i) m = 2, x/D = 5.0

(j) m = 0, x/D = 10.0 (k) m = 1, x/D = 10.0 (l) m = 2, x/D = 10.0

Figure 4.13: Azimuthal mode shapes (r1/2ψ1(r,m, f ;x)) for m = 0 ((a), (d), (g) and (j)), m = 1
((b), (e), (h) and (k)) and m = 2 ((c), (f), (i) and (l)) at different locations in the wake of the sphere.
Results are obtained from PANS fk = 0.1 simulation.
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(a) m = 0, x/D = 2.0 (b) m = 1, x/D = 2.0 (c) m = 2, x/D = 2.0

(d) m = 0, x/D = 3.0 (e) m = 1, x/D = 3.0 (f) m = 2, x/D = 3.0

(g) m = 0, x/D = 5.0 (h) m = 1, x/D = 5.0 (i) m = 2, x/D = 5.0

(j) m = 0, x/D = 10.0 (k) m = 1, x/D = 10.0 (l) m = 2, x/D = 10.0

Figure 4.14: Comparison of azimuthal mode shapes (r1/2ψ1(r,m, f ;x)) for m = 0 ((a), (d), (g) and
(j)), m = 1 ((b), (e), (h) and (k)) and m = 2 ((c), (f), (i) and (l)) at different locations in the wake
for different PANS simulations.
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(a) (b)

(c) (d)

Figure 4.15: Eigenspectrum integrated over frequency (ξ 1(m;x)) as a function of azimuthal mode
number (m) at different locations: (a) x/D = 2.0; (b) x/D = 3.0; (c) x/D = 5.0 and (d) x/D = 10.0
for different physical resolution, fk.
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x/D = 2.0, the mode m = 0 corresponding to the expansion and contraction of the recirculation

bubble is dominant which is consistent with the findings in the axisymmetric wake of a disk [1].

Just beyond the recirculation bubble (x/D = 3.0), dominance of m = 1 mode is observed as the

hairpin vortices start to shed at the end of the recirculation bubble. A significant contribution from

m = 0 mode is still expected at this location due to its close proximity to the recirculation bub-

ble which is clearly predicted by the high resolution PANS simulations. This is in accordance

to the results of Ref. [1] who found the wake of a disk inside the recirculation region dominated

by the pumping mode and immediately outside by the helical mode. For downstream locations

x/D > 3.0, a significant dominance of m = 1 mode is expected in the fully-developed wake region.

In our analysis, m = 2 mode appears to become second-most dominant at x/D≥ 5.0. According to

the POD analysis of axisymmetric far-wake of a disk, m = 2 becomes dominant beyond x/D≥ 50

[5]. The contribution of m = 1 mode to total energy appears to reduce between x/D = 5.0 and

x/D = 10.0. At x/D = 10.0, the coarsening of the grid diffuses the coherent structures leading to

lesser energy content in m = 1 mode computed by the POD. Based on the analysis, it is evident that

the large-scale physics in the near-wake region of a sphere is similar to that of the axisymmetric

wake of a disk. The azimuthal modes (m = 0,1,2) constitute approximately 50% of kinetic en-

ergy fluctuations across all the downstream locations in the wake. Moreover, the azimuthal mode

(m = 1) comprises of approximately 25% of the total energy in the wake after the recirculation

region (Fig. 4.15). Although the large-scale dynamics in the flow field are governed by the first

three azimuthal modes, higher modes (m > 2) contribute significantly to the overall energy content

making the reduced order modeling of such flows challenging.
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5. CLOSURE MODELING IN THE NEAR-WALL REGION OF STEEP RESOLUTION

CHANGE

5.1 Introduction

Steep spatial changes of flow features in the near-wall region renders direct numerical sim-

ulations (DNS) of turbulent boundary layers computationally prohibitive at high Reynolds num-

bers. Even wall-resolved large-eddy simulations (WR-LES) can be very expensive in the Reynolds

number range of most boundary layers in practical flows [25]. At the other extreme of the closure

modeling spectrum, Reynolds-averaged Navier-Stokes (RANS) models capture the mean-flow and

turbulent shear stress profiles accurately [19] at very modest computational cost. The qualified

success of RANS models is due to the fact that important closure coefficients are derived based on

equilibrium boundary layer (EBL) scaling laws. Thus motivated, many authors in literature have

attempted to adapt EBL analysis for obtaining accurate sub-grid wall closures for LES [24, 93, 94].

The resulting methods called wall-modeled LES (WM-LES) have less stringent resolution require-

ments near the wall and potentially yield reasonable results.

Aside from LES, other computational strategies classified in the general category of scale-

resolving simulation (SRS) have emerged over the last two decades. The SRS approaches can

be broadly divided into two main groups: zonal and bridging methods. In zonal methods, LES

and RANS approaches are used in different parts of the flow field. Zonal SRS (Z-SRS) approach

employs RANS at the wall and LES at the interior regions of the flow [25]. The computational

domain interfacing between RANS and LES regions is variously called grey-area, hand-shake

region, etc. One of the enduring challenges in the Z-SRS approach is to model the grey-area in a

physically reasonable manner. Bridging methods [30, 31], on the other hand, use the same model

form throughout the computational domain, but the closure coefficients are functions of the implied

filter-width to accommodate scale-dependent physics. In principle, at the limit of large filter-width,

the bridging-SRS (B-SRS) reverts to RANS and at the limit of small filter-width, B-SRS tends to
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DNS. The zonal and bridging SRS approaches have distinctly different near-wall strategies.

As in the case of LES, the B-SRS near-wall computation can employ either the wall-resolved

(WR-SRS) or the wall-modeled (WM-SRS) strategies. In WR-SRS, the degree of flow resolution

is nearly uniform throughout the flow domain. As in WR-LES, the computational burden of WR-

SRS can be significant. For computational expediency, WM-SRS seeks to emulate RANS behavior

near the wall and then smoothly switch-over to a scale-resolving computation in the interior of the

domain. In both LES and B-SRS, the wall-modeling strategy transfers the burden from large

computational effort to higher fidelity closure models in the near wall region.

The objective of this work is to develop a near-wall closure model to account for the effects

of steep change in resolution (implied filter-width) to enable accurate and computationally viable

WM-SRS. The study involves three distinct steps: (i) closure model development in the switch-

over region; (ii) examination of the effect of commutation residue in the switch-over region on

the simulated flow physics; and (iii) assessment of the WM-SRS in turbulent channel flow at

Reτ = 950, 8000 and wake of a sphere at Reynolds number Re = 3700.

In the model development stage, we first identify the form and function of the commutation

residue that arises when a spatially varying filter is applied to the Navier-Stokes equations in the

switch-over region. Then, the model is derived by utilizing two important physical considerations:

(i) the total kinetic energy contained in the resolved and unresolved scales of motion must be

invariant of the filter-width and its spatial changes; and (ii) the equilibrium boundary layer (EBL)

scalings of filtered flow fields is preserved [41]. The closure models are developed in the context

of B-SRS approach called the partially-averaged Navier-Stokes (PANS) method [31].

This study is organized as follows. Development of near-wall physics modeling of the com-

mutation residue is performed in Section. 5.2. Section. 5.3 contains a brief description of the

numerical method for implementing the WM-SRS. The results are presented in Section. 5.4.

5.2 Near-wall closure modeling

The near-wall region is characterized by presence of steep variations of flow variables and

small turbulence length scales. In wall-resolved PANS (WR-PANS), a constant fk value is used at
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Figure 5.1: RANS-SRS switch-over region near-wall

the wall and interior regions. This entails very small grids near the wall rendering the calculations

computationally expensive.

In this study, we propose a wall-modeled PANS (WM-PANS) approach which permits fk vari-

ation from a value of unity near the wall to a smaller value in the outer region. As the near-wall

region is completely modeled using the RANS approach ( fk = 1), WM-PANS has significantly

less stringent grid requirements. Hence, there is a compelling need for developing closure models

that enable high-fidelity WM-PANS simulations.

In a typical wall modeled SRS computation, the boundary-layer is divided into three distinct

computational regions as shown in Fig. 5.1: Near-wall RANS zone of fk = 1, the grey area (or

the switch-over region) and outer SRS region of fk < 1. The simulated flow undergoes a change

in description from a steady flow at the wall to highly resolved unsteady flow in the outer region.

Closure modeling in the switch-over region represents one of the modern challenges in practical

turbulence flow computations.

5.2.1 Closure-modeling in region of varying fk

As mentioned previously, in the case of varying resolution (varying fk), the cut-off filter does

not commute with spatio-temporal derivatives leading to extra forcing terms in the governing equa-

tions. While modeling the commutation terms for temporal variation in fk is discussed in Ref. [39],

here we develop closure models of terms that arise due to a spatio-temporal variation of fk. As
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in Ref. [39], the mathematical framework for these closures comes from ‘commutation residue’

formulation and the physical principle emerges from the requirement that the total kinetic energy

(resolved + unresolved) must be independent of changes in fk.

We first proceed to formulate the commutation terms in the unresolved scales due to a spatio-

temporally varying fk. The unresolved scales are modeled according to the Boussinesq closure

(Eq. 2.10). The unresolved kinetic energy evolution equation is derived as (see Appendix A for

details):
∂ku

∂ t
+U j

∂ku

∂x j
= Pu−β

∗kuωu +
∂

∂x j

[
(ν +νu/σku)

∂ku

∂x j

]
+PTr +DTr (5.1)

where PTr is additional source term arising due to spatio-temporal variation of fk in the advective

term derived as:

PTr ≡
ku

fk

(
∂ fk

∂ t
+U j

∂ fk

∂x j

)
(5.2)

where U j is the mean velocity component. Similarly, the commutation residue due to spatial

variations of fk in the diffusion term is:

DTr ≡−
ku

fk

∂

∂x j

(
ν
∗
u

∂ fk

∂x j

)
− 2ν∗u

fk

(
∂ku

∂x j
− ku

fk

∂ fk

∂x j

)
∂ fk

∂x j
; ν
∗
u = ν +

νu

σku
(5.3)

The PTr and DTr terms account for the additional energy exchange between the resolved and unre-

solved scales in the switch-over region.

The specific rate of dissipation, ωu model equation for the case of uniform fk is given in

Ref. [62]. For WM-PANS case, this evolution equation becomes (see Appendix B for full details):

∂ωu

∂ t
+U j

∂ωu

∂x j
= α

ωu

ku
Pu−β

′
ω

2
u +

∂

∂x j

[
(ν +νu/σωu)

∂ωu

∂x j

]
+DTrω (5.4)

where the additional term, DTrω is derived to be:

DTrω =−ωu

ku
(PTr +DTr) (5.5)
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It is important to note that in regions of negligible fk variation, the PTr, DTr and DTrω terms vanish

and the ku (Eq. 5.1) and ωu equation (Eq. 5.4) revert to their corresponding uniform- fk formulations

(Eqs. 4.6 and 4.7). We next seek to account for the effect of varying resolution on the resolved flow

field.

5.2.2 Effect of varying fk on resolved flow field

The energy in the resolved flow field (Er =
1
2UiUi) can be calculated from Eq. 2.6 as:

∂Er

∂ t
+U j

∂Er

∂x j
=− ∂

∂x j
(τ(Vi,Vj)Ui)+

∂Ui

∂x j
τ(Vi,Vj)

− ∂P
∂xi

Ui +ν
∂ 2Er

∂x j∂x j
−ν

∂Ui

∂x j

∂Ui

∂x j
−FiUi

(5.6)

The various terms on the right hand side of equation (5.6) are: turbulent transport of resolved

kinetic energy, negative of kinetic energy production, resolved field pressure work, viscous diffu-

sion, dissipation and finally, FiUi represents the change in resolved energy due to the commutation

residue.

5.2.3 Closure modeling of Fi

Within the Boussinesq framework, varying fk modifies the eddy viscosity in the system captur-

ing the dynamics introduced by the commutation term. Therefore, the commutation residue term,

Fi, in the resolved flow equation (Eq. 2.6) may be modeled as a gradient transport term [39]:

Fi =−
∂

∂x j
(2νTrSi j) (5.7)

where νTr is termed as the commutation viscosity. Thus, the resolved flow equation, Eq. 2.6 can

be written as:

∂Ui

∂ t
+U j

∂Ui

∂x j
= −∂P

∂xi
+

∂

∂x j
(2(ν +νu +νTr)Si j) (5.8)

Total energy conservation dictates that Er + ku must remain conserved invariant of the cut-off
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( fk) location and its variations. Using Eq. 2.10 and Eq. 5.7, the evolution equation for the resolved

kinetic energy (Er) from Eq. 5.6 can be written as:

DEr

Dt
=−∂PUi

∂xi
+Ui

∂

∂x j
(2(ν +νu +νTr)Si j) (5.9)

The additional viscous term in the resolved flow energy equation due to the commutation residue

is decomposed as:

Ui
∂

∂x j
(2νTrSi j) =

∂

∂x j
(2νTrUiSi j)−2νTrSi jSi j (5.10)

The transport of resolved kinetic energy by the commutation term is represented by the first term

in the RHS of Eq. 5.10. The second term describes the energy exchange between resolved and

unresolved scales. Using Eq. 5.1, the following equality must hold in order to conserve the total

energy:

2νTrSi jSi j = PTr +DTr (5.11)

which leads to the following expression for commutation viscosity:

νTr =
PTr +DTr

2Si jSi j
(5.12)

Energy transfer to the resolved scales is associated with a negative νTr, while a positive value

corresponds to energy transferred from the resolved scales to the unresolved scales.

Eqs. 5.1, 5.4, 5.8 and 5.12, with the commutation terms derived in Eqs. 5.2, 5.3 and 5.5 establish

the WM-PANS model. While the formulation presented herein is in the context of PANS, the

approach is applicable for all bridging SRS methods.

5.2.4 Spatial variation of physical resolution

In WM-PANS, the characteristics of the switch-over region must be explicitly defined. As in

the case of other hybrid SRS schemes (e.g., DES), a blending function between the steady RANS

region and the high fidelity region away from the wall must be prescribed. A hyperbolic tangent
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function offers a suitable profile for a smooth fk variation and has been widely used as a blending

function in different turbulence models (e.g., DES [25], k−ω SST [64]). The following function

satisfactorily describes the variation of fk with respect to normalized wall-normal distance, y+:

fk(y+) = a1−a2 tanh
(

y+

γ
− c
)

; a1 =
1+ fk(F)

2
; a2 =

fk(F)−1
2

(5.13)

Here, fk(F) is the value of fk, i.e., the value of physical resolution in the unsteady freestream region.

Parameters a1 and a2 are selected to ensure fk ≈ 1, i.e., steady RANS region close to the wall. The

constants, γ and c, control the width and location of the grey region respectively. Specification

of these parameters for the switch-over region depends on available computational resources and

the required accuracy of the computed physics. It is evident that as we approach the near-wall

region, fk(y+) = 1 and the Eq. 5.1 and Eq. 5.4 to corresponding RANS equations as the constants

computed from Eq. 4.8 and 4.9 revert to the RANS k−ω values and Eqs. 5.2, 5.3 and 5.5 reduce

to zero. The influence of modifying the width (γ) and location (c) of the switch-over region will

be analyzed in detail in Section. 5.4.

5.3 Simulation procedure

Unsteady simulations are performed using a finite volume code OpenFOAM [91]. Pressure-

velocity coupling is achieved using a Pressure-Implicit with Splitting of Operators (PISO) solver

[71]. Second-order accurate schemes are used for spatial and temporal discretization. Two differ-

ent incompressible flow configurations are used to assess the fidelity of the WM-PANS approach

proposed in Section. 5.2: (i) wall-bounded turbulent channel flow, and (ii) flow past a sphere at

Re = 3700. The domain, boundary conditions and numerical settings for each flow type are pre-

sented in the following subsections.

5.3.1 Turbulent channel flow

Periodic boundary conditions are applied in the streamwise as well as spanwise directions. The

flow is driven by a constant pressure gradient in the streamwise direction. This pressure gradient is

applied as a source term to the streamwise momentum equation. The algebraic equations resulting
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Table 5.1: Grid resolution for turbulent channel flow simulations (∆+
x and ∆+

z are non-dimensional
grid cell sizes in streamwise and spanwise directions, Lx and Lz are domain sizes in streamwise
(x) and spanwise (z) directions; Nx, Ny and Nz denote the grid points in x, y and z directions
respectively, δ is the channel half-height)

Reτ Model Ny ∆+
x ∆+

z Lx/δ Lz/δ Nx Nz

950 WM-PANS 101 59.1 29.5 4 2 64 64

8000 WM-PANS 181 497.5 248.4 4 2 64 64

from the discretization schemes are solved using BiConjugate Gradient (BiCG) matrix solver with

a Diagonal-based Incomplete LU preconditioner. An iterative tolerance of 10−9 is specified for all

variables at each time step.

A structured mesh with hexahedral elements is employed in the domain with a uniform grid

spacing in both the streamwise and spanwise directions. In the wall-normal direction, the grid cells

are clustered near the wall to obtain sufficient resolution in the near-wall region. Table. 5.1 sum-

marizes different test cases with their specific grid resolutions. It is worth noting that significantly

coarse grid resolutions are utilized for the WM-PANS simulations compared to the corresponding

DNS studies (see, Ref. [4, 70]), particularly at high Reynolds numbers.

5.3.2 Flow past a sphere at Re = 3700

Flow past a sphere in the subcritical Reynolds number regime, Re = 3700 (based on freestream

velocity, V∞ and the diameter of the sphere, D) is simulated. A cylindrical computational domain is

constructed with the sphere located at the origin. The inlet is located at x/D =−5 , and the outlet

is at a distance of x/D = 30 from the sphere. The cylindrical domain radially extends to r/D = 5.

A uniform velocity in the streamwise direction, (V∞,0,0) is specified at the inlet and the far-

field boundaries with a turbulence intensity of I = 0.2%. Eddy viscosity of νt/ν = 10−3 and

non-dimensional rate of dissipation, ω∗ = 20 are prescribed at the inflow regions. Zero gradient

boundary conditions are specified at the outlet. No slip boundary conditions are specified on the

sphere. A geometric agglomerated algebraic multigrid (GAMG) solver is used to solve the alge-
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Table 5.2: Grid parameters for flow past a sphere (Re = 3700); Nt is the total number of cells in the
domain, Ncs is total number of cells in the cross-sectional plane (perpendicular to the streamwise
axis), ∆r+max = ∆rmax/D is max radial displacement of cells in 0.5 ≤ r/D ≤ 1, ∆t+ = ∆tV∞/D is
uniform non-dimensional time step and ∆T+ = ∆TV∞/D is the averaging interval for the statistics

Study Grid Type Nt(106) Ncs ∆r+max ∆t+ ∆T+

G1 Structured 1.51 8,770 0.041 5.5×10−3 60

G2 Structured 4.83 12,320 0.024 5.5×10−3 60

G3 Structured 6.09 12,784 0.016 3.7×10−3 200

DNS [2] Unstructured 9.48 - - - 350

DNS [82] Structured 372.77 80,896 - - 80

braic equation for pressure and an iterative solver with a Gauss-Seidel smoother is used for all

other variables. A tolerance of 10−8 is maintained for iterative convergence for all flow variables

at every time step.

A multi-block structured grid within the cylindrical domain is constructed using hexahedral

elements. An overview of the mesh characteristics is presented in Table. 5.2. A consistent grid

configuration for each azimuthal angle (θ ) is maintained. A body-fitted radially expanding mesh

around the sphere is generated with ∆rmin/D = 0.003 (normalized radial displacement of the first

cell center from the sphere surface) for all the meshes presented in Table. 5.2.

For both flow types, CFL is maintained at a value of less than unity to ensure numerical stability.

The various quantities specified at the inlet are: (i) turbulent kinetic energy, ku = fk(F)k, (ii) specific

dissipation rate, ωu = (1/ fk(F))ω , and (iii) unresolved eddy viscosity, νu = ( f 2
k(F))νt . In the above

expressions, fk(F) is the freestream value of fk in the domain. The specific dissipation rate at the

wall is calculated as ω = 80ν∆r−2
min [19].

5.4 Results

This section examines the ability of WM-PANS to capture flow statistics, integral quantities

and turbulence spectral characteristics in comparison with established numerical studies. Two

benchmark flow types are evaluated: (i) Turbulent channel flow at very high Reynolds numbers
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(up to Reτ = 8000), and (ii) Flow past an axisymmetric body of sphere in the subcritical Reynolds

number regime.

5.4.1 Turbulent channel flow

5.4.1.1 Analysis of flow behavior in the switch-over region

According to the results of Ref. [40], a ‘twitch’ in the velocity and stress profiles is observed

coinciding with the switch-over region. Here, we investigate the underlying reason using the sim-

ulations of Reτ = 8000 with different fk profiles as presented in the Fig. 5.2(a). These different

cases represent switch occurring progressively farther from the wall (c) and over a wider (γ) grey

zone. Fig. 5.2(b) presents the mean streamwise velocity profiles obtained for different fk variations

for Reτ = 8000. All the simulations are able to capture the log-law behaviour reasonably well. A

slight disagreement in the switch-over region is noticeable. An explanation of this disagreement

follows.

Fig. 5.3 illustrates the streamwise Reynolds stress profiles for Reτ = 8000 for different cases

outlined in Fig. 5.2(a). From the DNS results, it is evident that the peak of the streamwise stresses

occurs in the buffer region, i.e., y+ ≈ 15. To examine the location of WM-PANS peak, we use the

paradigm that PANS is DNS of a variable viscosity fluid [38]. Accordingly, we define the effective

y+ as follows:

y+e f f (PANS) =
uτy

(ν +νu +νTr)
(5.14)

It is immediately evident that the peak value in all cases occurs at y+e f f ≈ 15. The computational

viscous sublayer and computational buffer layer in the WM-PANS simulations extend further into

the outer region of the channel according the prescribed fk variation. As soon as the unsteady

PANS region is reached, the instabilities manifest and the peak values in the streamwise turbulence

stresses are observed at the location of y+e f f ≈ 15. As the distance of the switch-over location (c)

from the wall is increased (Case A3), the width of the viscous sublayer and early buffer region

increases as well. In DNS, the flow transitions naturally from buffer layer to log-layer behavior.

In WM-PANS however, this transition is forced to occur rapidly and at a location further away
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(a) (b)

Figure 5.2: WM-PANS simulation for Reτ = 8000: (a) Prescribed fk variations and (b) profiles of
mean streamwise velocity in wall-normal direction.

from the wall dictated by the fk prescription. This causes a twitch in the flow statistics in the

switch-over region. The model recovers to the correct log-law behavior quickly. We believe that

the twitch cannot be completely avoided in any switch-over zone. Its effect can be minimized by

having a more gradual change in fk but this affects the size of the grey zone.

Fig. 5.4 illustrates the spanwise vorticity contours in the x− y plane for Case A1 and Case A3.

The contours clearly indicate that the steady RANS region contains negligible vortical fluctuations.

However, as the fk is spatially reduced along the wall-normal direction (y+), the instabilities are

released leading to formation of multi-scale turbulence structures in the interior of the channel.

It is evident that the resolution of structures is directly dependent on the switch-over location.

Therefore, this switch-over region can be characterized as a computational non-turbulent/turbulent

(NT/T) interface [95] where a sharp increase in fluctuating vorticity is seen (Fig. 5.4) as the fk

value is reduced, i.e., resolution increases. When the computational buffer-layer is narrow (small

γ), the unsteady structures are exclusively in the computational log-layer region. When this layer

is wider (larger γ), some of the vortical structures penetrate into the switch-over region. This leads

to a decrease in the twitch observed in the flow statistics (Case A3).
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Figure 5.3: WM-PANS simulation for Reτ = 8000: Profiles of streamwise Reynolds stresses.
DNS result of Ref. [4] is used for comparison. The results clearly demonstrate a ‘twitch’ in the
computational buffer layer.

(a) (b)

Figure 5.4: Spanwise vorticity (ωzδ/Uc) contours (red) in x-y plane for: (a) Case A1 and (b)
Case A3 for Reτ = 8000. The yellow shaded region is the steady RANS region, white region is the
unsteady PANS region and the switch-over region is denoted by the grey shaded area with width
(γ); Uc is the velocity in center of the channel.
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Table 5.3: Variation of switch-over region: y+s is the center of the switch-over region

Study c γ y+s

Case B1 1.8 23.75 50.2

Case B2 5.0 23.75 149.2

5.4.1.2 Flow structures for varying switch-over region location

In order to examine the unsteadiness captured in the WM-PANS, two simulations are performed

with different spatial fk variations near the wall at Reτ = 950. The details are specified in Table. 5.3.

For Case B1, the resolution control parameter ( fk) transitions in the range of 20 < y+ < 100,

whereas for the second case the numerical transition from steady to unsteady part occurs within

100 < y+ < 250. In Fig. 5.5, iso-surfaces of the second invariant of the velocity gradient tensor,

Q are presented for the two cases. As is evident from the figure, a considerable amount of un-

steadiness is resolved using the fk distribution for Case B1 where the switch-over region occurs

in the buffer layer. The spectral behavior of streamwise velocity fluctuations (u1) at y+ = 25 and

y+ = 500 are presented in Fig. 5.6. The absence of high frequency fluctuations for Case B2 clearly

illustrates its inability to resolve small temporal scales in the buffer region and early log-layer

region near-wall. However, in the PANS region beyond the switch-over location, i.e., y+ = 500

(Fig. 5.6 (b)), the temporal spectra reveal nearly identical unsteadiness for both cases.

Therefore, it is evident that even though structures near-wall are not captured in Case B2, the

WM-PANS recovers sufficient unsteadiness away from the wall irrespective of the switch-over

region location. However, the switch-over region must ensure that at least part of the region of

instability is resolved using high resolution PANS for the underlying instabilities to manifest. This

serves as the foundation for the analysis of large-scale structures in Chapter. 6.

5.4.2 Flow past a sphere at Re = 3700

Now, we evaluate the ability of WM-PANS approach to capture the flow past a sphere at Re =

3700. At this Reynolds number, the boundary layer separation is laminar and the transition to

73



(a) (b)

Figure 5.5: Q iso-surfaces (colored with streamwise velocity) (a) Case B1 and (b) Case B2

(a) (b)

Figure 5.6: Temporal spectra of streamwise velocity fluctuations for Case B1 and Case B2 at (a)
y+ = 25 and (b) y+ = 500
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Table 5.4: Integral quantities; Time-averaged drag coefficient Cd , root-mean-square lift coefficient
Cl(RMS), Strouhal number St , recirculation length LR, time-averaged base pressure coefficient Cpb
and separation angle φs(

o)

Study Cd Cl(RMS) St LR Cpb φs(
o)

WR-PANS (G1) 0.422 0.0115 0.221 2.03 −0.221 90.17

WR-PANS (G2) 0.405 0.0115 0.201 2.15 −0.221 89.98

WR-PANS (G3) 0.396 0.0082 0.216 2.24 −0.221 89.82

WM-PANS (G1) 0.395 0.0079 0.214 2.27 −0.220 89.83

WM-PANS (G2) 0.396 0.0070 0.217 2.27 −0.220 89.79

DNS [2] 0.394 − 0.215 2.28 −0.207 89.4

LES [78] 0.355 − 0.21 2.622 −0.194 90

turbulence occurs in the separated axisymmetric shear layer. According to the results of Ref. [61],

flow physics in the wake of the sphere in the subcritical regime was accurately captured with WR-

PANS at fk ≤ 0.3. Here we perform WM-PANS simulation of the same flow with significantly

lesser number of grid points as outlined in Table 5.2. We ensure that the underlying instabilities

are resolved by maintaining fk(F) = 0.3 in the wake region.

The spatial variation of physical resolution ( fk(r+)) is presented in Fig. 5.7(a). This fk variation

ensures that the location of transition to turbulence in wake is sufficiently removed from the switch-

over region so that the small-scale instabilities in the wake manifest completely.

The integral quantities are compared with the established numerical studies in Table 5.4. It is

evident that WM-PANS compares extremely well with the DNS data even at extremely coarse mesh

resolution (see, Table 5.2). WR-PANS results at the same numerical resolutions are also presented

for comparison. On coarse grid resolutions (G1,G2), the WR-PANS simulations overpredict the

drag coefficient (Cd) and underpredict the recirculation region (LR). This is due to the fact that the

grid resolution is not adequate for the specified uniform- fk = 0.3 near-wall for WR-PANS.

Now, we evaluate the efficacy of WM-PANS approach in capturing first and second order

statistics in wake of the sphere. Fig. 5.7(b) presents the plot of mean streamwise velocity (Ux) along
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(a) (b)

Figure 5.7: (a) Variation of physical resolution, fk along non-dimensionalized wall-normal direc-
tion and (b) mean streamwise velocity profile in the centerline for different simulations compared
to DNS of Ref. [2].

the wake centerline for the different simulations performed in this study. The WM-PANS results

are in excellent agreement with the DNS results. Again, on coarse grids, the WR-PANS simulations

incur a significant error (23.8% for G1) in estimation of the minimum Ux at x/D = 2.13.

First- and second-order statistics at different downstream locations in the wake are presented

in Fig. 5.8. The location x/D = 1.6 is inside the recirculation region adjacent to the sphere. At

this location the small-scales are formed which eventually lead toward breakdown to turbulence

at x/D ≈ 2.3. The ′U ′ shape of the mean streamwise profile is captured reasonably well by all

simulations (Fig. 5.8(a)). Major differences in the estimated values of Ur is observed in WR-

PANS simulations compared to the DNS study. It is evident that the given numerical resolution is

insufficient for WR-PANS simulations to accurately estimate the behavior of small scales inside

the recirculation region. WM-PANS simulations capture the behavior with reasonable accuracy.

The coarse grid (WM-PANS G1), however, shows deviations from the DNS data for the total

turbulent kinetic energy (kT ) as shown in Fig. 5.8 (e). The second-order statistics have a stronger

dependence on the numerical resolution as the small scale fluctuations must be sufficiently resolved

by the given grid. Figs. 5.8 (b), (d), (f) illustrate first- and second-order statistics at the downstream

location of x/D = 3.0, just the outside the recirculation region. At this location, the breakdown to
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(a) (b)

(c) (d)

(e) (f )

Figure 5.8: Time-averaged streamwise velocity (Ux), radial velocity (Ur) and total turbulent kinetic
energy, kT (resolved + modeled (ku)) profiles in z = 0 plane for x/D = 1.6 ((a),(c),(e)) and x/D =
3.0 ((b),(d),( f )). Results are compared to DNS [2].
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(a) (b)

Figure 5.9: Radial velocity spectra at different probe locations in the wake; (a) Probe 1: x/D =
1.0, r/D = 0.6 and (b) Probe 2: x/D = 3.0, r/D = 0.6 for WM-PANS G1. The spectra are
averaged from data at eight equally-spaced locations in azimuthal direction.

turbulence is complete and the small-scales coalesce into large scales which are shed periodically

into the helical wake. Figs. 5.8 (d), (f) show significant deviations for the WR-PANS G1 simulation

in estimation of flow statistics compared to DNS.

Fig. 5.9 presents the radial velocity (Ur) spectra at different probe locations in the wake for

WM-PANS G1 simulation. Two key underlying instabilities: (i) small-scale Kelvin-Helmholtz

( fKH), and (ii) large-scale vortex-shedding ( fvs) instabilities are present in the wake of the sphere

in the subcritical regime [61]. WM-PANS captures the key instabilities in the wake reasonably

well at the coarse grid resolution (G1). The intermittent K-H instability along the periphery of

the axisymmetric shear layer (i.e., along the inflection line) is captured as a broadband peak in

Fig. 5.9 (a). It is important to note that the prescribed fk variation (Fig. 5.7 (a)) ensures that the

regions of development of key instabilities in the flow completely lie in the unsteady PANS region.

Fig. 5.10 presents the iso-surfaces of second invariant of velocity gradient tensor, Q colored

with the streamwise velocity (Ux). It is immediately evident that WM-PANS on the coarse mesh

(G1) is able to qualitatively capture large scales in the wake similar to the WR-PANS on the finest

mesh (G3). Naturally, resolution of smaller spatial scales require high grid resolution in the wake.

A quantitative analysis of the coherent structures resolved by the WM-PANS approach in the wake

of a sphere in supercritical Reynolds number regime is present in Chapter. 6.
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(a)

(b)

Figure 5.10: Instantaneous Q-factor iso-surfaces colored with resolved streamwise velocity Ux for
(a) WM-PANS G1 and (b) WR-PANS G3
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6. WALL-MODELED PARTIALLY-AVERAGED NAVIER-STOKES SIMULATIONS OF

TURBULENT WAKE OF A SPHERE AT Re = 106

6.1 Introduction

Flow past a smooth sphere remains one of the most challenging problems for many turbulence

models. This simple geometry exhibits variety of complex flow phenomenon including transition

to turbulence, smooth-surface separation and a complex three-dimensional wake. In the subcritical

Reynolds number regime, Re < 3.7× 105, the boundary layer remains essentially laminar and

transition to turbulence occurs in the separated shear layers. As the Reynolds number increases, the

location of transition to turbulence moves toward the sphere and at the critical Reynolds number

Recr = 3.7× 105 the transition occurs in the boundary layers exhibiting the well-known ‘drag-

crisis’. Beyond Recr, i.e., in the supercritical Reynolds number regime, the boundary layer is

turbulent prior to separation and vortices are shed from the sphere into a fully turbulent wake.

Although, numerous numerical and experimental investigations of flow past a sphere in the

subcritical Reynolds number regimes are present in the literature [2, 78, 96], the studies in the

supercritical regime are relatively scarce. The earliest experimental investigation of flow past a

sphere at high Reynolds numbers is presented in Ref. [6]. In this study, a high-pressure wind

tunnel is used to measure integral quantities (total drag, skin friction and static pressure) for the

Reynolds number range 5× 104 ≤ Re ≤ 6× 106. Ref. [85] visualized the turbulent wake of a

sphere in a wind tunnel for the Reynolds number in the range 104 to 106. The results show a

pair of streamwise vortices a short distance away from streamwise axis. The results also indicated

a side force on the sphere between 3.8× 105 < Re < 106. Detached eddy simulations (DES) of

Ref. [5] also exhibit a tilting of the wake and array of hairpin vortices that are shed at the same

azimuthal angle over long periods of time.

It is widely acknowledged that Reynolds-averaged Navier-Stokes (RANS) models predict the

turbulent boundary layer growth and certain aspects of separation well [20]. They, however, fail
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to estimate the large separation regions and unsteadiness in the flow and therefore their merit in

complex flows of engineering interest is limited. Large-Eddy Simulations (LES) on the other

hand resolve a large range of scales in the flow, but, are computationally challenging for complex

engineering flows. In wall-resolved LES, the cost to resolve the small scale eddies in the attached

boundary layers is ∆x∆y∆z ∝ Re1.8
L [24] which is excessive for high Reynolds number flows of

O(106). Therefore, there has been a considerable interest in turbulence modeling practices which

are computationally economical and resolve important flow physics.

Scale-Resolving Simulations (SRS) offer ‘accuracy-on-demand’ wherein only the energy con-

taining scales are resolved and dynamically passive scales are modeled. Unlike LES, the cut-off

between the resolved and unresolved scales can be positioned in the inertial range thereby de-

creasing the cost of computations significantly. Partially-averaged Navier-Stokes (PANS) method

is bridging-SRS approach that can provide accuracy ranging from RANS to DNS with propor-

tional computational effort [31, 34]. PANS methods utilize an implicit filtering technique wherein

the closure coefficients in RANS turbulence models are modified to resolve the requisite range of

scales in the flow. PANS turbulence closures have been successfully applied to a wide range of

complex industry relevant flows ([63, 56]) and have been shown to satisfy turbulence scaling laws

[38].

The wall-resolved PANS (WR-PANS) models prescribe uniform filter parameters throughout

the domain which can translate to high computational cost in the near-wall region at high Reynolds

number. Therefore, similar to the modeling rationale in hybrid turbulence closure (e.g., DES),

a variable-resolution wall-modeled PANS (WM-PANS) strategy can be adopted. This technique

developed in Ref. [97] employs a steady RANS in the near-wall region and models the outer region

as high-resolution PANS. Therefore, the computational cost associated with resolving small scales

in the near-wall region is greatly reduced and high-resolution is only applied to the region of

interest away from the wall. The WM-PANS strategy has been applied to high Reynolds number

channel flow, a low Reynolds number flow over smooth hump and flow past a sphere in subcritical

regime with reasonable success [40, 97].
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The WM-PANS approach is ideal for turbulence closure in the supercritical Reynolds number

regime at lower computational effort. We propose the following objectives of the study: (i) evaluate

the WM-PANS approach in the fully turbulent wake of a sphere at Re = 1.14×106 and (ii) analyze

the organization of large scale structures in this Reynolds number regime. This study is organized

as follows: In Section. 6.2, we present the WM-PANS equations. Section. 6.3 delineates the

numerical setup employed in this study. In Sec. 6.4, the results obtained from the WM-PANS

simulations are presented. We also characterize the differences in the wake structures observed in

subcritical and supercritical Reynolds number regimes.

6.2 Wall-Modeled PANS (WM-PANS) equations

The wall-modeled PANS (WM-PANS) equations used in this study are presented in Chapters. 2

and 5. High Reynolds numbers and steep fk variation can lead to very high values of the PTr +DTr

term which can make the numerical solution unstable. Therefore, we propose two limiters on νTr

to ensure physical consistency:

νTr <
νu

f 2
k

(Limiter 1); νu +νTr +ν ≥ ν (Limiter 2); (6.1)

Limiter 1 ensures that the commutation viscosity is always smaller than the total (or RANS) eddy

viscosity. Limiter 2 ensures that the total viscosity in the system is always above the kinematic

viscosity of the fluid. This situation arises when the negative value of νTr is greater than νu + ν

due to very steep spatial variation of fk in the domain. The above limiters ensure robustness of the

turbulence modeling scheme.

6.3 Numerical setup

Flow around a sphere at the Reynolds number, Re= 1.14×106 based on the freestream velocity

(V∞), diameter (D) and the kinematic viscosity (ν) is simulated. Experimental results by Ref. [6]

and numerical results by Ref. [5] are used to compare the integral flow quantities.
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6.3.1 Domain and boundary conditions

The sphere is enclosed in a cylindrical domain with inlet located at x/D = −5 and the outlet

extends to x/D = 30 with the sphere located at the origin. The domain radially expands to r/D =

5.0.

A constant inflow velocity, (V∞,0,0) is specified at the inlet and the far field boundaries and a

non-reflecting advective boundary condition is applied at the outlet. No-slip and impermeability

boundary conditions are prescribed on the sphere wall. A zero gradient boundary condition for

pressure is specified at all the boundaries. In the present study, a fully turbulent boundary layer is

simulated and therefore a turbulence intensity of I = 1% is maintained at the inlet. The turbulent

kinetic energy at the inlet is determined based on: k = 1.5(V∞I)2. A non-dimensional eddy viscos-

ity (νt/ν = 1.0) is prescribed at the inlet. This eddy viscosity value ensures that the flow field is

turbulent prior to entering the boundary layers. The unresolved specific dissipation rate (ω) at the

inlet and the far-field boundaries is then determined using ω = k/νt . The specific dissipation rate

at the wall is determined by ω = 80ν∆r−2
min [19], where ∆rmin is the distance of cell center adjacent

to the sphere from the sphere’s surface. The inlet and far field values are multiplied with fk(F) to

obtain their corresponding PANS counterpart: ku = fk(F)k, ωu = (1/ fk(F))ω and νu = ( f 2
k(F))νt

where fk(F) is the value of fk in the freestream region.

6.3.2 Solver settings

An open source finite-volume code, OpenFOAM [91] is used to perform unsteady transient

simulations for incompressible flow. The pressure-velocity coupling is achieved using a pressure-

implicit splitting of operators (PISO) algorithm [71] with two inner corrector loops. A geometric

agglomerated algebraic multigrid (GAMG) solver is used to solve the algebraic equations for pres-

sure with iterative tolerance of 10−8. For other flow variables (U,k,ω), an iterative solver with a

Gauss-Seidel smoother is applied with a tolerance of 10−7 every time step. An implicit backward

scheme is utilized for time integration. Second-order schemes are used for all spatial discretiza-

tions.
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Figure 6.1: Grid configuration of the domain (left) and grid resolution near the sphere in the
cross-sectional plane normal to streamwise axis (right).

6.3.3 Mesh characteristics and convergence study

A multiblock structured grid using hexahedral elements is constructed using ANSYS ICEM.

The sphere is enclosed in a body-fitted radially expanding mesh from 0.5 ≤ r/D ≤ 1.0 with min-

imum ∆r+ = uτ∆rwall/ν ≈ 1 near the sphere surface and the friction velocity is estimated as

uτ = 0.04V∞ similar to the DES computations [5]. Fig. 6.1(a) illustrates the grid configuration

in the entire domain and the mesh characteristics are presented in Table. 6.1. The near wake region

(1.0≤ x/D≤ 5.0) has a ∆rmin/D = 0.03 and ∆rmax/D = 0.12 with approximately 100 grid points

in the streamwise direction for the G3 mesh. A consistent grid configuration is maintained in the

azimuthal (θ ) direction. The grid configuration near the sphere is shown in Fig. 6.1(b). The grid

is clustered near the sphere with approximately 30 points in the turbulent boundary layer and an

exponential stretching is imposed.

A grid convergence study is performed for the fk(F) = 0.5 case and the mean pressure coef-

ficient (Cp) around the cylinder (azimuthally averaged) and the mean streamwise velocity (Ux)

profiles are presented in Fig. 6.2. The coarse mesh G1 overpredicts the back pressure coefficient

(Cpb) and predicts a smaller recirculation region compared to the finer meshes, G2 and G3. In

Fig. 6.2(b), fk(F) = 1.00 (RANS) case is also presented for comparison. Based on the analysis,
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Table 6.1: Grid parameters; Nt is the total number of cells in the domain, Ncs is total number of
cells in the cross sectional plane (perpendicular to the streamwise axis), ∆rmax/D is max radial
displacement of cells in 0.5≤ r/D≤ 1, ∆t+ = ∆tV∞/D is uniform non-dimensional time step and
∆T+ = ∆TV∞/D is the averaging interval for the statistics

Study Nt(106) Ncs ∆rmax/D ∆t+ ∆T+

RANS ( fk(F) = 1.00) 3.52 10,981 0.028 2.82×10−3 28.2

PANS ( fk(F) = 0.70) 3.52 10,981 0.028 2.82×10−3 28.2

PANS ( fk(F) = 0.50)

G1 1.71 8,770 0.058 2.82×10−3 21.15

G2 2.45 9,352 0.045 1.41×10−3 21.15

G3 3.52 10,981 0.028 1.41×10−3 28.2

PANS ( fk(F) = 0.30) 5.40 12,320 0.018 9.12×10−4 21.15

DES [5] 1.16 - - 0.02 30

G3 mesh configuration is used to analyze the integral quantities, statistics and flow structures for

fk(F) = 0.5 case.

In the next section, we investigate the integral quantities, flow statistics in the turbulent wake

and flow structures for different physical resolution ( fk) variations. It must be emphasized that

fk represents prescribed physical resolution which is the implied cut-off scale. The numerical

resolution on the other hand is indicated by grid size.

6.4 Results

The WM-PANS simulation results are presented in this section. The physical resolution is

varied from fk = 1.00 (RANS) to a smaller value fk(F) in the freestream region. The location of

the switch-over region is clearly dictated by the regions of instability in the fluid flow. According

to Ref. [97], a good agreement between numerical studies and the WM-PANS is achieved even

for the switch-over region located at y+ = 300 for high Reynolds number turbulent channel flow.

Therefore, in the present study, fk is varied gradually with the switch-over location ranging from

r+ = 200− 450 for different fk(F) cases. Largest width of the switch-over region is prescribed
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(a) (b)

Figure 6.2: Grid convergence study: (a) mean pressure coefficient around the sphere and (b)
time-averaged streamwise velocity profile in the centerline for fk(F) = 0.5. DES of Ref. [5] and
experiments of Ref. [6] are used for comparison.

Table 6.2: Variation of switch-over region

Study c γ r+s

PANS ( fk(F) = 0.70) 5 57 200.8

PANS ( fk(F) = 0.50)

Case 1 3.5 68.4 178.6

Case 2 4.28 79.8 364.8

PANS ( fk(F) = 0.30) 3.8 114 438.1

for fk(F) = 0.30 case to avoid steep gradients in the governing equations. Table. 6.2 presents the

parameters for spatial variation of fk.

6.4.1 Variation of switch-over region and model consistency

The sensitivity of the WM-PANS in the switch-over region is investigated for two different fk

variations prescribed in Table. 6.2. The switch-over region varies from 110 < r+ < 200 in Case

1 and from 150 < r+ < 400 for Case 2. The results from both the fk variations are presented

in Fig. 6.3. The prescription of fk must ensure that the key underlying instabilities in the flow
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(a) (b)

Figure 6.3: (a) Mean streamwise velocity profile and (b) mean resolved streamwise turbulent
stress profile in the centerline for different fk variations

field are adequately resolved [97]. Therefore, these fk prescriptions ensure that model switches to

high-resolution PANS in the log-layer region. Fig. 6.3(a) presents the mean streamwise velocity

profiles (Ux) in the centerline for the two cases. Beyond the recirculation region (x/D ≥ 1) both

the simulations compute identical velocity profiles. Inside the recirculation region, slightly larger

values are observed in Case 1 as compared to Case 2. Similarly, a larger peak value of the resolved

streamwise turbulent stress is observed for the Case 1 (Fig. 6.3(b)). These differences arise due to

the different switch-over regions and the corresponding numerical resolutions in this region. As

concluded in Ref. [97], earlier switch-over between the RANS and PANS regions improves accu-

racy, however, is associated with higher computational effort. Therefore, delaying the switch-over

location can be preferable, especially in very high Reynolds number flows, as the flow statistics

are reasonably predicted in the wake. The remainder of WM-PANS results for the fk(F) = 0.5 case

are computed using fk variation prescribed for Case 2.

Recovery of the prescribed physical resolution, fk in a simulation is an important consistency

check in establishing the model’s fidelity. This check ensures that the model performs as expected

and requisite range of scales are resolved in the flow. In this study, an external consistency check
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Figure 6.4: External consistency check: recovery of a-priori prescribed fk (x = x′+ 0.5D); the
dashed lines denote fk prescribed in the domain according to Table. 6.2 for different WM-PANS
computations.

is performed based on fk(F) = 1.00 (RANS) eddy viscosity (νt) as:

fk(recovered) =
√

fν =

√
νu +νTr

νt
(6.2)

Fig. 6.4 presents the fk recovery profiles along the wake centerline for different WM-PANS sim-

ulations. The results clearly indicate that the simulations are able to capture the RANS viscosity

levels near the sphere. The disagreement observed in the switch-over region is due to the large gra-

dients in the DTr term. This behavior is also observed in the turbulent channel flow simulations for

Reτ = 8000 [97]. Nevertheless, this disagreement is only confined to the region in the immediate

vicinity of the sphere and all the simulations recover the freestream fk(F) prescribed a-priori in the

domain according to Table. 6.2.

6.4.2 Flow statistics and integral quantities

The first- and second-order statistics are presented in Figs. 6.5 and 6.6. Mean streamwise ve-

locity (Ux) along the centerline shows a smaller recirculation region predicted by f(k(F)) = 1.00

(RANS) and f(k(F)) = 0.70 simulations. The recirculation region expands as the freestream fk

values are reduced and converges for fk(F) ≤ 0.5. Fig. 6.5(b) presents the total turbulent kinetic

energy (kT ) profile in the centerline. The results show high turbulent kinetic content near the end
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(a) (b)

Figure 6.5: (a) Mean streamwise velocity profile and (b) total turbulent kinetic energy (kT =
kr (resolved)+ ku) in the centerline for different fk(F) simulations

of recirculation bubble (x/D ≈ 1.0) similar to the DES results of Ref. [5]. Fig. 6.6(a) shows the

streamwise velocity profile inside the recirculation region at x/D = 0.7. This region is character-

ized by the ‘U’ shape of the streamwise velocity profile adjacent to the sphere for the subcritical

Reynolds number case [61]. In the supercritical regime, the ‘U’ shape of the profile is not evident

as the flow is fully turbulent in recirculation region. Moreover, higher momentum transfer leads to

a smaller velocity deficit in the wake compared to the subcritical regime [61]. The statistics con-

verge for high resolution WM-PANS cases ( f(k(F)) = 0.50, 0.30) compared to the low resolution

f(k(F)) = 0.70 case (see, Fig. 6.6(b)).

The mean pressure coefficient (Cp) around the sphere is presented in Fig. 6.7(a). The results are

compared to numerical [5] and experimental [6] studies. The pressure coefficient is predicted well

by all WM-PANS simulations compared to the established studies. The angle of minimum pressure

coefficient is well captured with a maximum error of 4% in the Cp value for the fk(F) = 0.70

case. WM-PANS results slightly overpredict the Cp values beyond separation (φ ≥ 120o). This

disagreement is expected as the small scales generated beyond separation lie predominantly in

the RANS and switch-over regions of the WM-PANS model and therefore are not adequately

resolved. It should be noted that the DES computations also show similar disagreements with the
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(a) (b)

Figure 6.6: Time-averaged streamwise velocity profiles at (a) x/D = 0.7 and (b) x/D = 1.3 for
different fk(F) simulations.

experimental results as the near-wall solution in DES is computed using a RANS model [5].

Fig. 6.7(b) shows the local skin friction distribution around the sphere. The WM-PANS results

agree very well with results of the DES simulation for a fully turbulent boundary layer. The

results, however, show large deviations between the numerical (WM-PANS and DES) and the

experimental results. According to the experiments by Ref. [6], the transition to turbulence occurs

in the boundary layers in the flow past a sphere at Re = 1.14×106. The attached boundary layer

stays laminar before the transition to turbulence at φ ≈ 90o and turbulent separation occurs at

φ ≈ 120o. This translates to lower skin friction values captured in the experiments for φ ≤ 90o. In

WM-PANS/DES models, the attached boundary layer in the flow is largely in control of the steady

RANS region. Therefore, the simulations are unable to capture the complexities associated with

transition to turbulence and compute the local skin friction values for a fully turbulent boundary

layer case. DES of Ref. [5] uses a method of “controlled transition" to emulate the behavior

observed in the experiments. The results seem to improve with this approach, however, differences

beyond φ ≈ 900 are still significant for Re = 1.14×106. This approach introduces many empirical

fixes which are not employed in the present study.

The integral quantities for different WM-PANS simulations are presented in Table. 6.3. The
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(a) (b)

Figure 6.7: (a) Mean pressure coefficient around the sphere; and (b) local skin friction around the
sphere for different freestream fk(F) simulations.

Table 6.3: Integral quantities; Time-averaged drag coefficient Cd , skin friction coefficient Cτ , re-
circulation length LR, time-averaged base pressure coefficient Cpb and separation angle φs(

o)

Study Cd Cτ/Cd(%) LR Cpb φs(
o)

RANS ( fk(F) = 1.00) 0.085 12.1 0.46 −0.038 119.8

PANS ( fk(F) = 0.70) 0.105 14.5 0.46 −0.014 121.5

PANS ( fk(F) = 0.50) 0.095 13.8 0.52 −0.021 119.4

PANS ( fk(F) = 0.30) 0.098 12.2 0.53 −0.041 118.2

DES [5] 0.102 15.2 0.60 −0.069 117

Expt [6] 0.12 7.5 − −0.037 120

Cd values are in good agreement with the DES results. The values are comparable to the RANS

simulation ( fk(F) = 1.00) which is expected as the inner region is computed using the RANS

model. The ratio of skin friction coefficient (integrated around the sphere) to drag (Cτ/Cd) is

markedly different from the experimental value but compares better than the DES results. This is

again due to the fact that the experimental boundary layer is initially laminar. Other quantities are

in good agreement with the studies in literature and the turbulent separation angle of φ = 120o [6]

is well predicted by all cases.
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(a) fk(F) = 1.00 (b) fk(F) = 0.70

(c) fk(F) = 0.50 (d) fk(F) = 0.30

Figure 6.8: Instantaneous Q-factor iso-surfaces for different fk(F) simulations colored with re-
solved streamwise velocity Ux.

6.4.3 Flow structures

The instantaneous Q = (S2−W 2)/2 iso-surfaces (S is resolved velocity strain-rate tensor and

W is the vorticity-rate tensor) are plotted in Fig. 6.8. The results clearly indicate that hairpin-

like vortices are shed in the turbulent wake for fk(F) = 0.70,0.50 and 0.30 cases. The RANS

simulation ( fk(F) = 1.00) does not exhibit any structures in the turbulent wake. An Ω-shaped

vortical structure immediately adjacent to the sphere is present in all resolving simulations similar

to the flow visualization by Ref. [85]. The iso-surfaces show progressively finer structures as

resolution in the wake is increased ( fk(F) is reduced).

Based on the first- and second-order flow statistics and flow structures in the wake, it is evident

that the results converge for high resolution ( fk(F) = 0.50 and 0.30) simulations. Therefore, in the

subsequent analysis, we would like to further evaluate these high resolution simulations based on

their ability to quantitatively capture large-scale structures in the wake.
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A spectral proper orthogonal decomposition (POD) approach for analysis of wakes of axisym-

metric bodies present in Ref. [61] is employed to evaluate the coherent structures quantitatively

in the wake. A Fourier decomposition of streamwise velocity fluctuations (ux(r,θ , t;x)) at dif-

ferent downstream locations (x/D) is performed in both azimuthal direction (θ ) and time. The

resulting fluctuating field, ũx(r,m, f ;x) is a function of azimuthal mode (m) and frequency ( f ). A

cross-spectral density tensor 〈ũx(r,m, f ;x)ũx(r′,m, f ;x)〉 is constructed and the eigenvalue prob-

lem is solved in the radial direction (r). The modes obtained by this eigvenvalue decomposition

in the radial direction are termed as radial modes, n. From the eigendecomposition, the cross-

spectral density tensor produces the eigenspectra (λ (n)(m, f ;x)) and the corresponding eigenfunc-

tions (ψ(n)(r,m, f ;x)). The eigenspectra quantify the modal energy content in different radial (n)

and azimuthal (m) modes at corresponding frequencies ( f ). Similarly, the eigenfunctions delineate

the mode shapes of the large-scale structures in the turbulent wake at different fixed downstream

locations. A detailed description of this method is present in Ref. [61]. In this study, the first radial

mode (n = 1) contains almost 95% of the total energy in the radial direction for all frequencies and

azimuthal modes (m). Therefore, the large-scale structures are characterized using only the first

radial mode for different azimuthal modes and frequencies.

The data for the POD analysis is extracted from three downstream locations; (i) x/D = 0.7,

inside the recirculation region, (ii) x/D = 1.3, outside the recirculation region and (ii) x/D = 2.5,

the near-wake region. Almost 100 snapshots per shedding cycle are obtained for ten shedding

cycles on a polar grid (r ∈ [0, 1.0D], θ ∈ [0o, 360o]) with ∆r/D = 0.02 and ∆θ = 2o.

The eigenspectrum integrated over frequency (ξ (1)(m;x)) value quantifies the total modal en-

ergy content in the first radial mode (for all frequencies) as a function of azimuthal mode (m)

[61]. This normalized quantity reveals relative dominance of different azimuthal modes at dif-

ferent downstream locations in the wake. The mode, m = 0 is the axisymmetric mode loosely

linked to the expansion and contraction of the recirculation region. The m = 1 mode is the anti-

symmetric vortex shedding mode. This mode quantifies the strength of large-scale vortex shedding

in the wake of a axisymmetric body. Although, correlation between the m = 2 mode and the large-
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(a) (b)

(c) (d)

Figure 6.9: (a) Eigenspectrum integrated over frequency (ξ (1)(m;x)) as a function of azimuthal
mode number (m); Comparison of azimuthal mode shapes (r1/2|ψ1(r,m, f ;x)|) for different WM-
PANS simulations for azimuthal modes: (b) m = 0, (c) m = 1 and (d) m = 2 at x/D = 0.7 (inside
the recirculation region).
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scale dynamics is unclear, it is found to be dominant at near zero frequencies [74]. Therefore, this

mode has a much larger axial scale and the structures at lower modes coalesce in a larger structure

at this higher mode as they advect downstream [74].

Fig. 6.9(a) presents the relative contribution of different azimuthal modes (ξ (1)(m;x)) inside

the recirculation region, i.e., x/D = 0.7. In this region, small scales from the separated shear

layers coalesce to form the large-scale vortices that are shed in the turbulent wake. The m = 1 is

the most dominant mode even in this region implying strong vortex shedding begins early in the

wake next to the sphere. The m = 0 mode has negligible contribution in this region indicating

that the recirculation bubble dynamics has a minor contribution in the overall wake configuration.

It is evident that both fk = 0.50 and 0.30 simulations capture similar modal energy content in

all the mode shapes. The fk(F) = 0.50 case captures a slightly higher modal energy content in

the m = 1 mode and lower content in higher modes due to its inability to resolve smaller scales

compared to the fk(F) = 0.30 simulation. Comparisons of mode shapes for different azimuthal

modes are presented in Figs. 6.9(b), 6.9(c) and 6.9(d) for the two WM-PANS simulations. The

mode shapes of the dominant m = 1 and m = 2 modes are reasonably captured by fk(F) = 0.50

simulation compared to the fk(F) = 0.30 simulation. The slight disagreement below r/D ≤ 0.25

can be attributed to the large differences in mesh resolutions between the two simulations (see,

Table. 6.1) in the near-wake region.

Figs. 6.10 and 6.11 present the modal energy content and mode shapes at two locations in the

near-wake region. At the location x/D = 1.3 (just outside the recirculation region), the m = 1

mode has the clear anti-symmetric pattern (Fig. 6.10(c)). The shapes and energy content of the

dominant modes are predicted very well by the fk(F) = 0.50 simulation as compared to the high

resolution fk(F) = 0.30 simulation. In the wake region, i.e., at x/D = 2.5 (Fig. 6.11), the mode

shapes present a significant disagreement between the two simulations. At this location, the grid

sizes are ∆x(max)/D = 0.01 (G3) for fk(F) = 0.50 case and ∆x(max)/D = 0.002 for fk(F) = 0.30 case.

Moreover, the effective viscosity (νe f f = ν +νu +νTr) is substantially higher for the fk(F) = 0.50

case. Therefore, the large-scale structures diffuse at a higher rate as they move downstream for
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(a) (b)

(c) (d)

Figure 6.10: Same as Fig. 6.9 at x/D = 1.3
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(a) (b)

(c) (d)

Figure 6.11: Same as Fig. 6.9 at x/D = 2.5

the low resolution simulation which has also been observed in the subcritical simulations (See,

Ref. [61]). This also leads to a smaller contribution of the m = 1 mode captured by the fk(F) = 0.50

simulation as POD is unable to recover these weak large-scale correlations.

6.4.3.1 Comparison between subcritical and supercritical regimes

Flow past subcritical and supercritical regimes display distinct differences with respect to the

wake configuration. The time-averaged streamlines in both the regimes are presented in Fig. 6.12.

The recirculation region near the sphere in the supercritical regime is fully turbulent with a sig-

nificant shrinkage in the recirculation bubble (LR ≈ 0.5) as a result of high turbulent momentum

transfer compared to the subcritical region (LR ≈ 2.72).
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(a) (b)

Figure 6.12: Mean streamwise velocity contours overlaid with the time-averaged streamlines for
(a) Re = 3700 (subcritical) and (b) Re = 1.14×106 (supercritical)

(a) (b)

Figure 6.13: Instantaneous Q-factor iso-surfaces for (a) Re = 3700 (subcritical) and (b) Re =
1.14×106 (supercritical). Solid green line represents the average orientation of the wake.

In the supercritical regime, the wake becomes ordered and highly compact (Fig. 6.13(b)). The

spiral instability mode responsible for wave-like motion of the wake is absent in the supercritical

regime [5] and any progressive wave motion is not discernible as compared to the subcritical wake.

Another distinct difference in the wake configurations is the tilting of the wake in supercritical

regime. According to Ref. [85], the flow visualization experiments also confirmed the tilting of the

wake due to a side force experienced by the sphere beyond the critical Reynolds number. Ref. [5]

speculated that this lateral force on the sphere is due to the successive shedding of hairpin like

vortices at a fixed azimuthal angle over long periods of time. Examination of multiple shedding

cycles revealed a similar locking of azimuthal location from which the vortices are consistently

shed in all WM-PANS simulations. This azimuthal location at which locking of the wake occurs is
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(a) x/D = 1.6 (b) x/D = 3.0 (c) x/D = 5.0

(d) x/D = 0.7 (e) x/D = 1.3 (f ) x/D = 4.0

Figure 6.14: Instantaneous streamwise vorticity (ωx) contours at different locations in the wake
for Re = 3700 ((a), (b), (c)) and Re = 1.14×106 ((d), (e), ( f ))

different for each simulation. Therefore, it can be deduced that this location is completely random

and highly sensitive to initial perturbations in the flow field.

Fig. 6.14 presents the vorticity contours at different locations for both subcritical and supercrit-

ical Reynolds number regimes. A chaotic wake with small scale structures inside the recirculation

region is evident for both regimes (Fig. 6.14(a) and Fig. 6.14(d)). In the supercritical regime, a pair

of counter-rotating vortices beyond the recirculation region can be clearly observed (Fig. 6.14(e)).

In subcritical flow regime, vortices are shed from random azimuthal locations every shedding cy-

cle [61]. This can be seen here as different orientations of the vorticity field as the downstream

location is changed. However, for the supercritical regime, the orientation of the vorticity field is

maintained as the vortices are shed from the same location for extended periods of time creating a

lateral force on the sphere.
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7. SUMMARY AND CONCLUSIONS

Computational fluid dynamics (CFD)-based numerical wave tanks (CNWTs) are emerging as

key design tools for many ocean systems. One of the key challenges toward their development is

the need for a variable fidelity turbulence model. The partially-averaged Navier-Stokes (PANS)

method is ideally suited to perform multi-fidelity simulations for the CNWTs. The PANS method

captures majority of the flow physics rendering them more accurate than the current RANS clo-

sures. The computational efficiency and robustness of the PANS closures presented in this disser-

tation make them highly advantageous compared to the high fidelity simulations, e.g. DNS and

LES. Now, a detailed summary and key conclusions from each study are presented.

In the first study, we present the development of the PANS two-layer turbulence model. The

two-layer turbulence model combines the simplicity and robustness of a one-equation model in

the viscous near-wall region with the accuracy of the k− ε turbulence model in the outer region.

The PANS two-layer model equations are derived from their parent RANS counterparts. Closure

coefficients and the length scale formulations for the inner layer of the PANS two-layer model have

been systematically developed based on the scaling of turbulent quantities in the near-wall and log

layer region. The fidelity of this two-layer PANS formulation is investigated in a channel flow

with Reτ = 180−950. One-point statistics predicted by the PANS two-layer turbulence model are

found to be in excellent agreement with the DNS data. The PANS two-layer model successfully

produces turbulent stresses and vorticity fluctuations in good agreement with the data. The fidelity

of the model is further verified via recovery of the prescribed physical resolution and the invariant

map.

In the second study, we investigate and characterize the wake of the flow past a sphere using

the scale-resolving PANS method [31]. In this flow, large-scale vortex shedding and small-scale

Kelvin-Helmholtz (KH) instability in the shear layer lead to the formation of complex coherent

structures. These wake coherent structures exert a strong influence on flow statistics in nearly

all regions of the flow. Hence, it is important to adequately resolve the structures to accurately
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determine quantities of engineering interest. The wake flow at subcritical Reynolds number, Re =

3700, is simulated at four levels of physical resolution (cut-off): fk = 0.5, 0.3, 0.2 and 0.1. Lower

fk values correspond to smaller cut-off scales and fk = 0.1 case represents the finest resolution

approaching the LES limit.

The focus of the first part of the study is to establish the degree of resolution required for

accurately computing various flow features such as coefficients of drag and lift, profiles of one-

point statistics, frequency spectra and coherent structures. The key findings are:

1. Flow statistics and integral quantities are captured reasonably well by all physical resolution

with fk ≤ 0.5. Although the large-scale vortex shedding instability is distinctly captured by

all physical resolution cases, the small-scale KH frequency is satisfactorily resolved only

for fk ≤ 0.3. This indicates that the coarser resolutions simulate lower effective Reynolds

number (Ree f f ) which leads to truncated development of the key instabilities in the flow.

These findings also suggest that one-point statistics are more influenced by vortex shedding

than the KH instability in most regions of the flow.

2. Convergence of large-scale structures in terms of mode shapes (ψ1(r,m, f ;x)) and modal en-

ergy content (λ 1(m, f ;x)) is only observed in fk ≤ 0.2. This clearly indicates that adequately

resolving the KH instability is important to capture the details of the coherent structures.

In the second part of the study, we characterize the coherent structure in the wake of the sphere and

compare it with the key features of other axisymmetric wakes. The findings are:

1. An axisymmetric ‘bubble-pumping’ mode (m = 0) is dominant inside the recirculation re-

gion. This mode oscillates at a very low-frequency of St = 0.05. The contribution of this

mode to the overall energy content steadily decreases as the distance from the sphere is

increased.

2. Mode m = 1 is the anti-symmetric mode related to the large-scale vortex shedding. This

mode becomes dominant just outside the recirculation region and its effect continues in the

near-wake region.
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3. Mode m = 2 oscillates at the sub-harmonic of fvs and becomes the second-most dominant

mode beyond x/D≥ 5.0.

All these features are very similar to the large-scale behavior in the near-wake region of other ax-

isymmetric bodies such as a disk [1]. This study clearly exhibits that PANS is capable of account-

ing for the effects of coherent structures on key engineering quantities of interest and one-point

flow statistics at coarse resolutions compared to LES[78]. On a Cartesian body fitted grid used in

this study, the numerical resolution requirement of the PANS simulations are substantially lower

than other high fidelity simulations[82]. Further, at sufficient resolution, PANS is shown to capture

the details of coherent structure with good precision.

In the third study, the near-wall treatment of the PANS-SRS model using spatially varying

physical resolution is investigated. The commutation residue originating due to the implicit filter

variation is systematically derived based on the energy conservation principle. The results clearly

demonstrate the advantage of using WM-PANS approach for coarse grid resolutions compared to

the WR-PANS.

The WM-PANS approach is evaluated in two different flow types:

1. WM-PANS is employed to perform simulations of turbulent channel flow at Reynolds num-

ber of Reτ = 950,8000. It is shown that the WM-PANS reasonably captures the flow physics

at Reτ = 8000 without discernible log-layer mismatch. The underlying reason for a small

twitch observed in the first- and second-order statistics is explained using a computational

buffer region analogy. It is also shown that the flow structures are adequately resolved suffi-

ciently away from the switch-over region irrespective of the location of the switch-over.

2. WM-PANS is further investigated in the flow past a sphere at Re = 3700. WM-PANS cap-

tures the integral quantities and first- and second-order flow statistics with significant accu-

racy on coarse grids. WM-PANS results on the coarsest mesh (1.5 million cells) are shown

to be comparable to the results of the finest grid (6.90 million cells) on WR-PANS allowing

for significant computational savings.
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In the fourth study, the WM-PANS approach from Study 3 is employed to compute flow past

a sphere at a very high Reynolds number of Re = 106. The resolution of near-wall region in thin

boundary layers at high Reynolds numbers is a major computational challenge for wall-resolved

turbulence models such as WR-SRS and LES. The near-wall region of these boundary layers is

fully modeled in the WM-PANS strategy reducing the overall computational burden.

Flow around a sphere at high Reynolds number of Re = 1.14× 106 is selected due to its in-

herent complexities: (i) thin turbulent boundary layer development, (ii) turbulent separation and

(iii) a fully turbulent three dimensional wake. The wake characteristics are investigated at different

freestream fk(F) values: (i) fk(F) = 1.00, (ii) fk(F) = 0.70, (iii) fk(F) = 0.50 and (iv) fk(F) = 0.30.

The integral quantities and flow statistics are first analyzed. The conclusions are:

1. The model, to a large-extent, is insensitive to the switch-over region. However, the fk varia-

tion must ensure reasonable manifestation of underlying instabilities.

2. The simulations recover the prescribed physical resolution, fk(F) adequately thereby estab-

lishing the model’s fidelity.

3. The integral quantities are captured reasonably well by all WM-PANS simulations compared

to the DES simulations of a fully turbulent boundary layer by Ref. [5] and the first- and

second-order flow statistics converge for fk(F) ≤ 0.50.

The flow structures are further verified both qualitatively and quantitatively. The quantitative com-

parison between the fk(F) = 0.50 and fk(F) = 0.30 cases is performed using the POD approach

outlined in Ref. [61]. The key findings are:

1. Large-scale structures agree well for both cases in terms of mode shapes (ψ1(r,m, f ;x)) and

modal energy content (λ 1(m, f ;x)). Some disagreement is seen at x/D = 2.5 as the vortices

diffuse at a higher rate for the fk(F) = 0.50 case due to a coarse grid resolution in the wake

compared to the fk(F) = 0.30 case.

2. The anti-symmetric shedding mode, m= 1 is found to be the most dominant mode at all loca-

tions in the wake considered in this study. It has 50% contribution to the total kinetic energy
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content unlike the subcritical regime where m = 0 mode is dominant inside the recirculation

region [61].

3. The qualitative analysis of the wake reveals that the wake organizes in a similar configuration

as was observed in the numerical studies [5].

Each of the studies presented in this dissertation establishes PANS models as highly accurate

and computationally efficient tools to overcome different challenges faced in the simulation of

NWTs as given below:

1. The two-layer modelling strategy presented in the first study requires relatively lesser num-

ber of grid points near the wall compared to the other WR-PANS models. This model can

easily replace the popular RANS k− ε closures used in CNWTs whilst providing increased

accuracy.

2. The second study reveals that the large-scale coherent structures in the flow field are ac-

curately captured by WR-PANS. This is essential as the wake dynamics of ship’s super-

structure, flexible marine risers or offshore wind turbines can largely affect their stability

and structural integrity. Moreover, accurate wake predictions are important in determining

responses of the structures in the downstream of the wake.

3. The third and fourth studies evaluate the efficacy of a WM-PANS approach in computing

practical flows at high Reynolds number. WM-PANS approach is shown to be reasonably

accurate at very coarse numerical resolutions. This is desirable for simulations of full-scale

marine vehicles where the operating Reynolds numbers are very large and the near-wall

region of the thin boundary layer must be modeled.
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APPENDIX A

WM-PANS: DERIVATION OF UNRESOLVED KINETIC ENERGY (ku) EQUATION

Following the methodology proposed in Ref. [31] for uniform fk, we begin with the RANS k

equation and multiply it with a spatio-temporally varying fk.

fk

(
∂k
∂ t

+U j
∂k
∂x j

= P−β
∗kω +

∂

∂x j

[
(ν +νt/σk)

∂k
∂x j

])
(A.1)

Here, U j is the Reynolds-averaged (or mean) velocity. Applying fk to each term in the equation,

we get

fk

(
∂k
∂ t

+U j
∂k
∂x j

)
= fk(P−β

∗kω)+ fk

(
∂

∂x j

[
(ν +νt/σk)

∂k
∂x j

])
(A.2)

The advective term evolves as:

fk

(
∂k
∂ t

+U j
∂k
∂x j

)
=

∂ku

∂ t
+U j

∂ku

∂x j
− k
(

∂ fk

∂ t
+U j

∂ fk

∂x j

)
+(U j−U j)

∂ku

∂x j
(A.3)

where the PTr term is defined as:

PTr ≡
ku

fk

(
∂ fk

∂ t
+U j

∂ fk

∂x j

)
(A.4)

Assuming the resolved fluctuations don’t contribute to sub-filter stress transport, the final term

(U j−U j)
∂ku
∂x j

can be neglected [31]. Further, according to the results of Ref. [41], σku =
fk
fω

σk,RANS.

Therefore, we can write νt/σk as νu/σku where νu = ( fk/ fω)νt . Now, let ν∗u = ν +νu/ σku, then

the diffusion term can be written as,

fk

(
∂

∂xk

[
ν
∗
u

∂k
∂xk

])
=

∂

∂xk

[
ν
∗
u

∂ku
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−2ν

∗
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(A.5)
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which leads to,

fk
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∂

∂xk

[
ν
∗
u
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∂ku
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f 2
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∂x j
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(A.6)

Therefore, the diffusion term can be written as

fk

(
∂

∂xk

[
ν
∗
u

∂k
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])
=

∂

∂xk

[
ν
∗
u

∂ku
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+DTr (A.7)

where the commutation residue due to the diffusion term is derived as:

DTr ≡−
ku

fk

∂

∂x j

(
ν
∗
u

∂ fk

∂x j

)
− 2ν∗u

fk
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; ν
∗
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νu

σku
(A.8)

The remaining production, dissipation and transport terms are modeled according to the framework

outlined in Ref. [31]. The final unresolved kinetic energy (ku) equation is:

∂ku

∂ t
+U j

∂ku

∂x j
= Pu−β

∗kuωu +PTr +DTr +
∂

∂x j

[
(ν +νu/σku)

∂ku

∂x j

]
(A.9)
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APPENDIX B

WM-PANS: DERIVATION OF UNRESOLVED SPECIFIC DISSIPATION RATE (ωu)

EQUATION

The unresolved dissipation (εu) remains unaffected due to spatial variations of fk if the cut-off

is outside the dissipation range [39]. Therefore, in order to derive the specific rate of dissipation

(ωu) equation, a transformation from the εu equation is needed. The evolution equation for the

unresolved dissipation (εu) is [31]:

∂εu

∂ t
+U j

∂εu

∂x j
=Ce1

Puεu

ku
−C∗e2

ε2
u

ku
+

∂

∂x j

[
(ν +νu/σεu)

∂εu

∂x j

]
(B.1)

Now, using the relation εu = β ∗kuωu, the above equation can be transformed as:

∂β ∗kuωu

∂ t
+U j

∂β ∗kuωu

∂x j
=Ce1

Puβ ∗kuωu

ku
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(β ∗kuωu)
2
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(B.2)

Simplifying, we get,

∂kuωu

∂ t
+U j

∂kuωu

∂x j
=Ce1Puωu−C∗e2β

∗kuω
2
u +

∂

∂x j

[
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∂kuωu

∂x j

]
(B.3)

Assuming Put = Pu + PTr + DTr and adding −Putωu + εuωu to both sides, we can simplify the

advective terms on the left hand side as:

∂kuωu

∂ t
+U j

∂kuωu

∂x j
−Putωu + εuωu = ku

(
∂ωu

∂ t
+U j

∂ωu

∂x j

)
+ωu

(
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∂ t
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−Put + εu

)
(B.4)

From Eq. A.9, we get

∂kuωu

∂ t
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Similarly, the transport terms in the right hand side of Eq. B.3 are simplified as:
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Substituting in Eq. B.3, we get,

ku
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2
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Rearranging the terms in the above equation,

∂ωu

∂ t
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Puωu

ku
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2
ku

(ν +νu/σεu)
∂ku

∂x j

∂ωu

∂x j

(B.8)

The additional term arising due to spatial variation of fk in the ωu equation is DTrω = −(PTr +

DTr)ωu/ ku. Therefore, the final ωu equation in the PANS ku−ωu model [62] is modified as:

∂ωu

∂ t
+U j

∂ωu

∂x j
= α

Puωu

ku
+DTrω −β

′
ω

2
u +

∂
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∂x j

]
(B.9)
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