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ABSTRACT 

 

Voice Conversion (VC) aims to transform the speech of a source speaker to 

sound as if a target speaker had produced it. As a closely related but more challenging 

research problem, foreign accent conversion (FAC) [1] aims to create a new voice that 

has the voice identity of a given non-native (L2) speaker and the accent of a native (L1) 

speaker. Prior VC and FAC approaches require a considerable amount of speech data 

from each target speaker for model training, which can be tedious to collect and 

demotivating for users when applying to real-world scenarios. This dissertation aims to 

address these problems by introducing three few-shot learning approaches for VC and 

FAC: 

 Few-shot VC based on sparse representation 

 Zero-shot VC based on sequence-to-sequence (seq2seq) model 

 Zero-shot FAC based on seq2seq model 

In the first approach, I develop a novel sparse representation for VC that requires 

as much as one minute of speech from each target speaker. The proposed approach 

consists of two complementary components: a Cluster-Structured Dictionary Learning 

module to learn a dictionary capturing the speakers’ characteristics and a Cluster-

Selective Objective Function to compute the sparse representation carrying linguistic 

content. The approach outperforms previous methods that use Gaussian Mixture Model 

(GMM) and sparse representation, improving both acoustic quality and voice identity of 

the VC syntheses. 

In the second approach, I create a seq2seq model for zero-shot VC that reduces 

the amount of target speech required from minutes to seconds. The model transforms a 
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linguistic content representation (e.g., from phonetic posteriorgrams) to Mel-

spectrogram, conditioned on the target speaker embedding. Moreover, I propose an 

adversarial training scheme that reduces the speaker-dependent cues from the phonetic 

posteriorgram. The approach can synthesize more natural speech than conventional 

methods based on GMM and sparse representations. I also show that the adversarial 

training scheme further improves the voice identity of the synthesized speech. 

In the third approach, I generalize the zero-shot VC model for use in FAC. 

Compared to zero-shot VC, this approach has an additional accent encoder that generates 

an accent embedding, which is consumed by the seq2seq model. As in the second 

approach, the seq2seq model transforms the linguistic content representation to Mel-

spectrogram, conditioned on the desired speaker embedding, but now also on the accent 

embedding. I show via perceptual studies that the proposed approach reduces the 

accentedness of the syntheses compared to a state-of-the-art seq2seq based FAC 

approach, while retaining the acoustic quality and voice identity. More importantly, it 

reduces the required speech from each L2 speaker from hours to seconds. 

During the time of conducting this research, I also acted with a leading role in 

developing Golden Speaker Builder, a web application that uses FAC algorithms for 

pronunciation training. I will describe the design and implementation of this web 

application and the user experience feedback collected from the users who participated 

in the user studies. 
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1. INTRODUCTION  

Voice Conversion (VC) aims to transform the speech of a source speaker to 

sound as if a target speaker had produced it. A typical VC system first decouples speech 

utterances into two representations: (1) their linguistic content and (2) the speaker’s 

voice identity, and then combines the linguistic content from source speech with the 

voice identity of a target speaker to produce the VC speech. Foreign accent conversion 

(FAC) is closely related to VC but more challenging – it creates a new voice that has the 

voice identity of a given non-native (L2) speaker and the accent of a native (L1) speaker. 

In contrast with VC, FAC has to decouple the speech utterances into three 

representations: (1) their linguistic content, (2) the speaker’s voice identity, and (3) their 

accent. The synthesized FAC speech incorporates the linguistic content and accent from 

an L1 speaker along with the voice identity of an L2 speaker. 

VC and FAC find use in a number of applications, such as personalized text-to-

speech synthesis [1], speaking assistance [2],  speech enhancements [3], and especially 

pronunciation training [4]. In pronunciation training, FAC can create a “golden speaker” 

for the L2 speaker: their own voice, but with a native accent [4-7]. The “golden speaker” 

well-matches the voice characteristics of the L2 speaker, which has been shown to be 

more effective for L2 speakers to practice with than a poor-matched voice [8, 9]. 

Various approaches have been proposed to perform VC and FAC. In terms of 

VC, methods based on Gaussian Mixture Model (GMM) [10, 11] and Deep Neural 

Networks (DNN) [12-20] are commonly used and can achieve good performance. For 

FAC, a variety of techniques have been proposed, including voice morphing [4, 21, 22], 

frame pairing [23, 24], articulatory synthesis [25, 26], and sequence-to-sequence 

(seq2seq) modeling [27, 28]. However, previous VC and FAC approaches require a 

considerable amount of speech data (from 100s to 1,000s utterances) from each target 
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speaker for model training. Thus, when using these conventional methods in real-world 

applications such as pronunciation training, L2 learners need to record a large number of 

utterances and then wait for model training before using the system. This can be tedious 

and demotivating for learners and reduces the efficiency of the pronunciation-training 

process. 

This dissertation aims to address the data requirements of previous VC and FAC 

methods. In the first part of this dissertation (Chapters 3, 4, and 5), I propose three 

different state-of-the-art VC and FAC models that only use a few speech utterances from 

the target speaker during training (i.e., few-shot learning [29]). In the second part of this 

dissertation (Chapter 6), I bridge the gap between FAC techniques and the need for 

pronunciation training – I developed an interactive web application, Golden Speaker 

Builder1, which enables L2 speakers to build their “golden speaker” voice using FAC 

models and practice with it online. 

In the first work (Chapter 3), I propose a few-shot VC model based on a novel 

sparse representation . Sparse-representation based VC models [30-32] require much 

smaller training corpora (~20 utterances from the target speaker) [31] and are more 

robust to noisy speech than GMMs [30]. A typical sparse-representation based VC 

model consists of a dictionary construction step and a sparse coding. These models 

assume that the sparse representation carries linguistic content, and the dictionary 

captures the speakers’ characteristics. However, conventional dictionary-construction 

                                                 

 

 

 

1 https://goldenspeaker.engl.iastate.edu 
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and sparse-coding algorithms rarely meet this assumption. The result is that the sparse 

code is no longer speaker-independent, which leads to lower voice-conversion 

performance. To address the problem, I propose a Cluster-Structured Sparse 

Representation (CSSR) algorithm that improves the speaker-independence of the 

representations, and thus, the acoustic quality and voice identity of VC syntheses. CSSR 

consists of two complementary components: a Cluster-Structured Dictionary Learning 

module that groups atoms in the dictionary into clusters, and a Cluster-Selective 

Objective Function that encourages each speech frame to be represented by atoms from a 

small number of clusters.  

In the second work (Chapter 4), I propose a zero-shot VC approach based on a 

seq2seq model, which only requires one utterance from the target speaker during 

inference. The proposed seq2seq model (which I term PPG2speech synthesizer) has an 

encoder-decoder structure, which transforms a sequence of Phonetic-Posteriorgram 

(PPG) to a sequence of speech features (e.g., Mel-spectrogram), conditioned on the 

corresponding speaker embedding (e.g., i-vector [33], d-vector [34]). In practice, 

however, I noticed that PPGs still carry speaker identity information such as accent, 

intonation, and speaking rate [17] that can leak into the voice conversions, which can 

degrade the voice identity of VC syntheses. To resolve this problem, I propose a new 

training procedure that includes an adversarial speaker classifier jointly trained with the 

PPG2speech synthesizer, improving the speaker independence of the hidden 

representation and the voice identity of VC syntheses. During inference, the model can 

be directly applied to generate voice conversions to arbitrary target speaker given a few 

seconds of audio (i.e., the amount of audio needed to compute a speaker 

embedding/fingerprint), without the need to have any model re-training or adaptation 

process. 



 

4 

In the third work (Chapter 5), I propose a zero-shot FAC approach based on the 

seq2seq model. As described earlier, FAC characterizes speech utterances using three 

representations: their linguistic content, the speakers’ voice identity, and their accent. To 

capture the three aspects of an utterance, I use three independent models: (1) a speaker-

independent acoustic model to extract a linguistic content representation sequence 

(denoted as a bottleneck feature vector), (2) a speaker encoder to generate a speaker 

embedding, and (3) an accent encoder to obtain an accent embedding. Then, I train a 

novel seq2seq model to synthesize speech using the linguistic content representation and 

accent embedding from an L1 speaker along with the speaker embedding of an L2 

speaker. Once the model is trained, it can generate accent conversions to arbitrary L2 

speakers given a few seconds of audio that is used to extract their speaker embeddings, 

as described in the second work. 

The fourth and last part of this dissertation (Chapter 6) focuses on filling the gap 

between FAC models and the need for pronunciation training. With the assistance of my 

collaborators Christopher Liberatore,  Dr. Guanlong Zhao, Dr. John Levis, Dr. Evgeny 

Chukharev-Hudilainen, I developed Golden Speaker Builder, a web application for L2 

speakers to synthesize their “golden speaker” voice using FAC models and practice with 

it. To the best of my knowledge, this is the first interface that applies FAC technique to 

the use of pronunciation training. This tool can beneficially promote future research 

progress on computer-assisted pronunciation training and provide a more efficient way 

for L2 learners to improve their pronunciation. 

In summary, this dissertation research consists of four main objectives: 

1) Few-shot VC based on sparse representation: Develop a few-shot voice 

conversion system using structured dictionary learning and sparse coding 

algorithms. 



 

5 

2) Zero-shot VC based on seq2seq model: Develop a zero-shot voice 

conversion system using state-of-the-art seq2seq model and adversarial 

learning. 

3) Zero-shot FAC based on seq2seq model: Develop a zero-shot foreign 

accent conversion system using state-of-the-art seq2seq model. 

4) Golden speaker builder: Develop a web application that applies foreign 

accent conversion systems to pronunciation training. 

The research in this dissertation has the following major contributions.  

- Objective 1) improves the acoustic quality and voice identity of VC 

syntheses, and it only needs minutes of speech from the target speaker during 

model training.  

- Objective 2) improves the voice identity of VC syntheses. More importantly, 

it eliminates the need for using utterances from the target speaker during 

training.  

- Objective 3) extends the idea in objective 2) to FAC, and it significantly 

improves the foreign accentedness ratings of the syntheses compared to the 

previous FAC approaches.  

- Objective 4) provides a valuable resource for future research on computer-

assisted pronunciation training and provide a more efficient way for L2 

learner to improve their pronunciation. 

All the works in this dissertation were submitted to or published in top-tier 

peer-reviewed venues. Initial findings from Objective 1) were published at Interspeech 

2018; an improved method was published by the IEEE/ACM Transactions on 

Audio, Speech, and Language Processing (TASLP). Findings from Objective 2) were 

published at Interspeech 2020. Results from Objective 3) were submitted to TASLP. 
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Finally, the description of the web application developed in Objective 4) was published 

by Speech Communication, and the web application is available at 

https://goldenspeaker.engl.iastate.edu/. 

The rest of this proposal is organized as follows. Chapter 2 reviews the related 

background for this dissertation. Chapter 3, 4, and 5 describe the detailed work for each 

objective. Chapter 7 summarizes this dissertation work and points out potential future 

directions. 

https://goldenspeaker.engl.iastate.edu/
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2. BACKGROUND 

2.1. Voice conversion 

Most conventional VC systems, such as those based on GMMs, DNNs, and 

sparse representations, require time-aligned parallel corpora. GMM-based methods [10, 

11] learn the joint distribution of source and target spectral features and then estimate the 

target spectral features through least-squares regression. DNN-based methods map the 

source spectral features directly into the target space through various network structures 

such as restricted Boltzmann machines [12], auto-encoders [35], feed-forward neural 

networks [13], and recurrent neural networks [36]. Sparse representation methods [30, 

31] first build exemplar dictionaries for a source and a target speaker. At runtime, they 

use sparse coding to extract a speaker-independent code from the source speech and then 

combine it with the target dictionary to generate VC speech. 

To avoid the laborious process of collecting parallel corpora, several non-parallel 

VC techniques have been proposed in recent years. These include the INCA algorithm 

[37], DNNs [14, 15], sparse representations [38], and phonetic posteriorgrams [16]. 

More recently, several studies have proposed many-to-many VC approaches based on 

Variational Autoencoders (VAE) [39-44] and the PPG-to-speech synthesizer [45-49]. 

Hsu et al. [39, 50] first proposed to use a VAE for many-to-many VC. Their VAE 

consists of an encoder and a decoder. During training, the encoder learns a speaker-

independent latent embedding from input speech signals, and the decoder reconstructs 

the input speech signals given the latent embedding and the corresponding speaker 

embedding. During inference, they replace the speaker embedding with that of a target 

speaker to produce VC syntheses. A number of subsequent studies have been conducted 

to improve performance through various techniques, such as using auxiliary classifiers 

[43], WaveNet vocoder  adaption [44], and using discrete latent space [40, 51]. Other 
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studies [45-47] have used a PPG-to-speech synthesizer approach to perform many-to-

many VC. The PPG-to-speech synthesizer is a neural network that takes PPGs as an 

input, and predict spectra conditioned on the speaker embedding of the target speaker. 

Early many-to-many VC models used one-hot vectors as the speaker embedding due to 

its simplicity, but recent studies [41, 45-47] have used learned speaker embeddings (e.g., 

i-vector [33], d-vector [34]) to generalize to unseen speakers, which make it possible to 

perform the so-called zero-shot VC. 

2.2. Foreign accent conversion 

Early approaches to FAC [26, 52-54] usually involved building an articulatory 

synthesizer for an L2 speaker. The articulatory synthesizer was trained to map the 

speaker’s articulatory trajectories (e.g., tongue and lip movements) into his or her 

acoustics features (e.g., Mel Cepstra) using GMMs [26], unit-selection models [52], and 

DNNs [53]. Once the synthesizer was built, it could be driven with articulatory 

trajectories from an L1 speaker to synthesize FAC speech. However, these approaches 

are impractical since collecting articulatory data is expensive and requires specialized 

equipment2. As an alternative, acoustic methods are more practical since they only 

require recording speech with a microphone. Previous acoustic methods can be grouped 

into two categories: frame-pairing methods [23, 24] and seq2seq methods [27, 28]. 

Frame-pairing methods first pair L1 and L2 speech frames based on their similarity, and 

                                                 

 

 

 

2 Articulatory measurements can be performed via electromagnetic articulography [52], ultrasound imaging 

[55], palatography [56], and more recently real-time MRI [57] 
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then use a statistical model (e.g., a GMM) to convert from L1 frames to their 

corresponding L2 frames. Aryal and Gutierrez-Osuna [23] first proposed a technique to 

pair L1-L2 frames based on their acoustic similarity (in MFCC space), after applying 

vocal tract length normalization to reduce global differences between the L1 and L2 

spectra. Following this, Zhao et al.  [24] argued that the L1 and L2 frames should be 

paired based on their linguistic content, and consequently, they used Phonetic-

PosteriorGram (PPG) similarity instead of MFCC similarity to pair acoustic frames. 

More recently, methods based on seq2seq models have been shown to significantly 

improve synthesis quality. In a previous study [27], Zhao et al. proposed a seq2seq PPG-

to-Mel synthesizer for FAC. During training, the system learns a seq2seq model to 

convert PPGs to Mel-spectra extracted from utterances of an L2 speaker. During 

inference, the model is driven by PPGs extracted from a reference L1 utterance, which 

then produces FAC synthesis. In related work, Liu et al. [28] proposed a novel 

recognizer-synthesizer framework to remove the need for a reference L1 utterance. Their 

system trained a speaker recognizer, a multi-speaker TTS model, and an accent-sensitive 

ASR system. During inference, they feed L2 Mel-spectra to the ASR system with the 

corresponding accent, and then feed the output of the ASR system and the L2 speaker 

embedding to the multi-speaker TTS model to generate accent-converted utterances. 

These seq2seq model based FAC approaches can convert segmental and prosody 

features simultaneously, producing syntheses with higher speech naturalness and 

acoustic quality. 

2.3. Few-shot and zero-shot learning 

Few-shot learning [29] is the machine learning paradigm that trains the model 

using only limited samples with supervised information from a specific domain. Zero-

shot learning [58], as an extreme case of few-shot learning, does not require any sample 
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with supervised information from a specific domain during training. Previous few-shot 

learning studies solve the few-shot learning problems from three perspectives: data, 

model, and parameter searching, as discussed next. 

In terms of data, augmentation techniques are used to increase the number of 

training samples. These techniques use prior knowledge to augment the samples from 

the specific domain, including manual augmentations within the training set (e.g., 

flipping, cropping, and rotation for images [59-61]; time warping, frequency masking, 

and time masking for speech spectrograms [62]) and augmentations using unlabeled data 

(e.g., using exemplar classifier to predict labels for unlabeled data [63]).  

From the perspective of model, prior studies explore the use of knowledge 

sharing/transferring and designed different models to incorporate the shared knowledge. 

These include multi-task learning [61, 64, 65] and embedding learning [66-68]. Multi-

task learning paradigm learns multiple tasks at the same time, which utilizes both task-

generic and task-specific information. With multi-task learning, one can train a model 

that jointly learns the target task (which has limited samples) along with a few auxiliary 

tasks (which have sufficient samples). Embedding learning aims to learn a 

transformation function that can project samples to a lower-dimensional embedding 

vector. In this embedding space, samples that are similar regarding an attribute will be 

closer to each other, and vice versa (e.g., the speaker recognition model projects spectral 

features into an embedding space, where similar speakers are closer to each other). In 

few-shot learning, embedding learning can transfer the prior knowledge of the attribute 

to new samples, which helps the learning of the target task.  

Lastly, in terms of parameter searching, the most commonly used techniques are 

model finetuning and adaptation [69, 70]. In computer vision, ImageNet pre-trained 

models [71] are often finetuned for different tasks (e.g., person re-identification, object 
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detection,  and image segmentation). Similarly, in natural language processing, pre-

trained Bidirectional Encoder Representations from Transformers (BERT) are used to 

derive models for different tasks (e.g., language modeling, sentiment analysis, question 

answering).  These model finetuning strategies can not only avoid the need of a large 

amount of data in model training but also significantly improve their performances. 

In this dissertation, the models proposed in the first three objectives are with the 

few-shot learning paradigm. The sparse representation proposed in Objective 1 is a few-

shot learning model since the sparse coding algorithm itself only requires minimal data. 

The speaker recognition models in Objective 2 and Objective 3 are in line with the 

embedding learning perspective of few-shot learning. Namely, I use the speaker 

embedding extracted from a separately trained to control the speaker identity of the 

seq2seq models.  

2.4. Sparse coding and dictionary learning 

Sparse coding algorithms [72] aim to learn a useful sparse representation of input 

data in an unsupervised fashion. Generally, they represent input feature vectors using a 

linear combination of a few atoms in a dictionary, which captures high-level patterns of 

input data. Formally, suppose we have input data vector 𝐗 ∈ ℝ𝐷 and a set of pre-selected 

dictionary 𝐀 ∈ ℝ𝐷×𝑁, we can represent 𝐗 as: 

𝐗 ≅ 𝐀𝐖 (2.1) 

where 𝐖 ∈ ℝ𝑁 is a sparse non-negative weight vector (i.e., a sparse representation), 𝑁 is 

the number of atoms in the dictionary, and 𝐷 is the dimensionality of the vector. Given 𝐗 

and 𝐀, 𝐖 can be approximated via solving a standard sparse coding objective function 

(i.e., Lasso): 

𝐖 = argmin
𝐖

𝑑(𝐗, 𝐀𝐖) + 𝛼‖𝐖‖1 , 𝑠. 𝑡.  𝐖 ≥ 0 (2) 
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where 𝑑(∙) is a distance metric, typically Euclidean distance. The 𝐿1 norm term is 

included to enforce sparsity in 𝐖, with 𝛼 being a sparsity penalty. 

Early sparse coding algorithms usually use a set of pre-defined atoms (e.g., 

samples from the signal) [73]. However, learning the dictionary rather than directly 

using these pre-defined bases has been shown to be more effective for signal 

reconstruction [74-76]. Accordingly, a number of algorithms have been proposed to 

learn these dictionaries, such as the Alternating Minimization fashioned algorithm [77], 

Proximal methods [78], and online dictionary learning algorithms [79]. Sparse coding 

and dictionary learning algorithms have proven to be successful in various computer 

vision and speech processing tasks such as face recognition [79, 80], image classification 

[77, 81],  speech enhancement [82, 83], speech recognition [84], and source separation 

[85]. This model is used for Objective 1 in this research. 

2.5. Seq2seq models 

Seq2seq models aim to transform an input sequence into an output sequence that 

may have a different length, which was originally proposed by Sutskever et al.  [86] for 

machine translation. The seq2seq model usually has an encoder-decoder architecture, as 

shown in Figure 2.1. The encoder learns a hidden representation sequence from an input 

sequence, and the decoder learns to autoregressively generate the output sequence given 

the hidden representation. To capture local contextual information and handle length 

mismatches between the input and output sequences, an attention mechanism is added 

between the encoder and the decoder.  
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In recent years, there has been growing interest in applying seq2seq model to 

speech synthesis. Wang et al.  [87] first proposed a seq2seq based TTS synthesizer 

(Tacotron), which significantly improved the acoustic quality of the syntheses over 

previous methods. Following this, Shen et al.  [88] proposed Tacotron2, which further 

improved the acoustic quality of Tacotron by using a novel model architecture and a 

WaveNet vocoder. Jia et al.  [89] extended Tacotron2 to multi-speaker TTS by 

conditioning a speaker embedding on the decoder. Seq2seq model has also been applied 

to voice conversion [17, 48, 49] and foreign accent conversion [27, 28], which 

significantly improved the performance on these tasks compared to conventional 

approaches. This type of model is used for Objective 2 and Objective 3 in this 

dissertation. 

2.6. Speaker recognition 

Speaker recognition systems aim to automatically determine the identity of a 

speaker from the speech signal. There are two common tasks in speaker recognition: 

speaker identification and speaker verification. Speaker identification aims to determine 

who the speaker is and to which group s/he belongs. In contrast, speaker verification 

 

Figure 2.1: Illustration of seq2seq model. Green module indicates the encoder, 

and Blue module indicates the decoder. <GO> represents an initialized starting 

frame, and <EOS> represents the end of sentence frame. 

Attention

Input sequence <GO> <EOS>Output sequence
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aims to verify if the voice of a speaker matches the speaker’s claimed identity. A speaker 

recognition system consists of two main components: embedding learning and metric 

learning. Much of the work has focused on learning better speaker embeddings. Earlier 

systems used spectral features (e.g., MFCCs) as the speaker embedding [90, 91], but 

these have been superseded by systems based on identity vectors, or “i-vectors” for short 

[92].   An i-vector takes speech from a speaker (e.g., MFCCs) and uses it to adapt a 

speaker-independent Gaussian Mixture Model (GMM), referred to as a Universal 

Background Model (UBM).  The means of the adapted GMM are then concatenated to 

form a supervector, which is then reduced in dimensionality using joint factor analysis.  

More recently systems use “d-vectors” as the speaker embedding [93].  The d-vector is 

computed as the final hidden layer of a Deep Neural Network (DNN) trained to classify 

speakers from frame-level acoustic features. Research efforts have also been devoted to 

finding better metrics to identify or verify speakers. Most of conventional speaker 

recognition systems used cosine distance between speaker embeddings as the similarity 

metric, but more advanced techniques such as Probabilistic Linear Discriminant 

Analysis (PLDA) [94] and its variants, heavy-tailed PLDA [95] and Gauss-PLDA [96] 

have also been used. In this dissertation work, I used the speaker embedding produced 

by speaker recognition models to represent speaker identity in Objective 2 and Objective 

3. 

2.7. Language and accent recognition  

A complementary problem to speaker recognition is language recognition [97]. 

In language recognition, the goal is to automatically determine the language being used 

in a given speech segment from an unknown speaker. Language recognition techniques 

can be roughly grouped into two main categories: token-based (a.k.a., phonotactic) and 

spectral-based. In the token-based approach, a bank of phone recognizers is used to 
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convert each speech utterance into a string of discrete units/tokens. These tokens are 

then used to classify the underlying language/dialect. In the spectral-based approach, a 

spoken utterance is represented as a sequence of cepstral feature vectors. Most modern 

language recognition systems are based on i-vectors extracted from these feature vectors. 

The standard approach first uses an UBM to extract i-vectors from the given speech 

segment. Once extracted, i-vectors are commonly classified using cosine scoring, 

Gaussian backend, neural network, or logistic regression [98]. 

The task of accent/dialect recognition [99, 100] is relatively unexplored 

compared to language recognition. This is in part due to the lack of common benchmark 

datasets, but also that accent/dialect recognition is often treated as a special case of 

language recognition, so researchers tend to concentrate on the more general problem of 

language recognition. However, accent recognition is a more difficult problem because 

the dialects that belong to the same language family are very similar, and, in the case of 

non-native accents, there exists large variability from speaker to speaker. Accent/dialect 

recognition is useful for a variety of problems.  For example, in ASR it would enable the 

recognizer to adapt its pronunciation, acoustic, and language models appropriately [101, 

102]. Dialect recognition is also useful for identifying a speaker’s regional origin and 

ethnicity and would be helpful in forensic speaker profiling [103]. I used the accent 

embedding produced by accent recognition models to represent the accent pattern in 

Objective 3 of this dissertation. 

2.8. Golden speaker in pronunciation training 

Many second-language (L2) speakers of English emigrate to the United States to 

work in influential positions within higher education, medicine, and technology-related 

fields [104-107]. Despite having sound knowledge of English grammar and vocabulary, 

as well as good reading and listening abilities, their intelligibility can be impaired 



 

16 

because of non-native pronunciation [108]. Native-like pronunciation performance 

becomes more challenging with increasing age. Unfortunately, this problem cannot be 

easily ignored, since the kinds of highly-skilled fields that attract L2 speakers of English 

also typically require advanced skills in oral communication, including highly 

intelligible pronunciation. Because such professionals come from a wide variety of first 

language (L1) backgrounds, and because their English pronunciation reflects the 

influence of these L1s, their pronunciation needs are highly individualized. The need for 

instruction might be best met by offering organized pronunciation classes. However, 

such classes remain relatively infrequent [109], and even if offered they cannot 

sufficiently meet the extensive and varied needs of learners. A classroom setting does 

not allow for significant amounts of one-on-one instruction, which is critical since the 

pronunciation difficulties of L2 learners vary so widely. 

An alternative to organized classes is computer-assisted pronunciation training 

(CAPT) tools. CAPT is beneficial because it allows L2 learners to work on 

pronunciation skills at their own pace outside the traditional language classroom. CAPT 

has many advantages: it can provide diagnoses of difficulties, on-demand modeling of 

phonological features in the L2, explanations, and as many repetitions as desired by the 

learner. It can also provide practice with exercises in the same order or mixed up, as well 

as provide a virtual partner for discourse-level practice, reliable feedback, and the 

potential of a trained virtual teacher. Unfortunately, most CAPT materials make use of a 

single model speaker (typically native), which is not necessarily an ideal model for all 

learners because of the difficulty of imagining oneself speaking with a particular voice 

(e.g., [110]). In fact, prior research indicates that L2 learners are more likely to succeed 

when they imitate a speaker with a voice similar to their own, a so-called “golden 
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speaker” [111]. This shortcoming is challenging; to date, no guidelines exist that help 

identify an ideal golden speaker for each L2 learner. 

Prior studies [9, 112-115] also corroborate the effectiveness of golden speaker in 

CAPT, which report improvements in pronunciation (and intelligibility) if L2 learners 

are trained on their own utterances resynthesized to match the prosody of a native 

speaker. This focus on suprasegmentals has been, in part, motivated by technology: 

modifying the prosody of an L2 utterance is straightforward, e.g., through pitch-

synchronous overlap-add (PSOLA) [116]. Although prosody is clearly important, 

previous studies have shown that segmental errors also have significantly impact on the 

intelligibility of L2 speech, in particular for segments with high functional load [117-

119]. Furthermore, the two types of cues are interdependent in English: it is difficult to 

change stress or rhythmic features without a corresponding change to segmental features 

such as vowel quality [120]. It may even be said that the changes in suprasegmental and 

segmental features are often redundant features for listeners, each reinforcing the other’s 

impact [121].  Thus, there is a need for speech-processing methods that allow both types 

of accent conversion (segmental and suprasegmental) to be performed. Meanwhile, the 

algorithms proposed in the third objective of this dissertation performs accent conversion 

considering both segmental and suprasegmental cues. Therefore, it would be meaningful 

to explore the effectiveness of using the proposed accent conversion algorithm to 

produce the golden speaker voices in pronunciation training. 
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3. FEW-SHOT VC BASED ON SPARSE REPRESENTATION: LEARNING 

STRUCTURED SPARSE REPRESENTATIONS FOR VOICE CONVERSION* 

3.1. Overview 

Sparse-coding techniques for voice conversion assume that an utterance can be 

decomposed into a sparse code that only carries linguistic content, and a dictionary of 

atoms that captures the speakers’ characteristics. However, conventional dictionary-

construction and sparse-coding algorithms rarely meet this assumption. The result is that 

the sparse code is no longer speaker-independent, which leads to lower voice-conversion 

performance. In this paper, we propose a Cluster-Structured Sparse Representation 

(CSSR) algorithm that improves the speaker-independence of the representations. CSSR 

consists of two complementary components: a Cluster-Structured Dictionary Learning 

module that groups atoms in the dictionary into clusters, and a Cluster-Selective 

Objective Function that encourages each speech frame to be represented by atoms from a 

small number of clusters. We conducted three experiments on the CMU ARCTIC corpus 

to evaluate the proposed method. In a first ablation study, results show that each of the 
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two CSSR components enhance speaker independence, and that combining both 

components leads to further improvements. In a second experiment, we find that CSSR 

uses increasingly larger dictionaries more efficiently than phoneme-based 

representations by allowing finer-grained decompositions of speech sounds. In a third 

experiment, results from objective and subjective measurements show that CSSR 

outperforms prior voice-conversion methods, improving both acoustic quality and voice 

identity of the synthesized speech. Finally, we show that the CSSR captures latent (i.e., 

phonetic) information in the speech signal. 

3.2. Introduction 

Voice Conversion (VC) aims to transform the speech of a source speaker to 

sound as if a target speaker had produced it. VC finds use in a number of applications, 

such as personalized text-to-speech synthesis [1], pronunciation training [4], and speaker 

spoofing [122]. Various approaches have been proposed to perform VC. Statistical 

parametric methods based on Gaussian Mixture Models (GMM) [10, 11] and Deep 

Neural Networks (DNN) [12, 13, 35, 36, 39] are widely used and can achieve 

convincing results. A promising alternative to GMMs and DNNs are methods based on 

sparse representations [30-32]. A typical method based on sparse representations 

consists of a dictionary construction step (to encode the speaker’s identity) and a sparse 

coding step (to encode the content of an utterance). During training, a dictionary 

consisting of pairs of source and target frames is constructed from a parallel corpus of 

time-aligned utterances. At runtime, the sparse representation of a source spectrum is 

computed with respect to the source dictionary, and then the target spectrum is 

approximated by multiplying the source sparse representation with the target’s 

dictionary. Sparse representation methods have several advantages: they require much 
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smaller training corpora [31] and are more robust to noisy speech than GMMs [30]. As a 

result, sparse representation methods are particularly appealing in applications where 

collecting a large corpus is impractical or background noise is inevitable (e.g., 

pronunciation training [21, 23]). 

Sparse representation methods assume that the dictionary captures the speaker 

identity (i.e., how a speaker produces the various phonetic units), and that the sparse 

representation is speaker-independent and captures only the linguistic content. In 

practice, however, satisfying this assumption is difficult. First, the atoms in the 

dictionary do not fully capture speaker identity, since to do so the dictionary must 

capture all the phonetic units (e.g., tri-phones), which is not feasible for small corpora. 

Second, the sparse representation is not speaker independent (even if the dictionary 

contains all the phonetic units), since the standard sparse coding objective (i.e., Lasso 

[123]) ignores the phonetic structure of the dictionary. Namely, the Lasso minimizes the 

Mean-Square-Error using as few atoms as possible (the effect of the 𝐿1 constraint) 

regardless of their phonetic content, so the sparse representations of the same utterance 

from different speakers tend to be different. These two factors are compounded, making 

the sparse representations less speaker-independent. As a result, the similarity between 

source and target sparse representations decreases, ultimately degrading the sound 

quality of the VC syntheses. 

To address these problems, we propose a novel Cluster-Structured Sparse 

Representation (CSSR) for spectral transformation in VC. CSSR consists of two 

components, a Cluster-Structured Dictionary Learning algorithm (CSDL) and a Cluster-
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Selective Objective Function (CSOF)3. The training and runtime processes are as shown 

in Figure 3.1 and Figure 3.2. During training, and given a time-aligned corpus, CSDL 

uses a hard-decision Expectation Maximization algorithm to learn a family of 

“structured” sub-dictionaries, where atoms (i.e., pairs of source-target acoustic frames) 

within each sub-dictionary (or cluster) are acoustically similar. At runtime, and given the 

structured source dictionary that was learned, we compute a structured sparse code for 

the source utterance by optimizing the CSOF, which uses the 𝐿2,1 norm [124] to promote 

group sparsity and therefore tends to represent each speech frame using atoms from as 

few clusters as possible. Finally, we multiply the source’s structured sparse code with 

the target’s structured dictionary to generate the voice-converted utterance.  

`We conducted three experiments on the CMU ARCTIC corpus [125] to evaluate 

the proposed method: an ablation study to examine the effectiveness of each component 

in the CSSR algorithm, an experiment to characterize the performance of CSSR as a 
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function of the number of atoms in the dictionary, and a set of objective and subjective 

studies to compare the proposed method against baselines from previous studies. The 

results of the ablation study show that both CSDL and CSOF can reduce the difference 

between source and target sparse representations and improve VC performance, and that 

combining both components leads to further performance improvements. In addition, 

results from the second experiment show that CSSR uses increasingly larger dictionaries 

more efficiently than phoneme-based representations by allowing finer-grained 

decompositions of speech sounds. Lastly, results from the objective and subjective 

studies show that CSSR significantly improves both acoustic quality and voice identity 

when compared to the baseline systems. In our final analyses, we provide a phonetic 

interpretation of CSSR using the ground-truth phonemes labels of the speech corpus. 

The rest of the chapter is organized as follows. Section 3.3 reviews mainstream 

methods for VC, structured dictionary learning and sparse coding, how previous VC 

methods improve the speaker independence of sparse representations, and the relation of 

the proposed method to previous work. Section 3.4 describes the proposed method, 

including the overall VC framework, CSDL, and CSOF. Section 3.5 describes the 

experimental setup, including the corpus and the details in our implementation. Section 

3.6 shows results for two sets of experiments. Finally, we conclude the paper with a 

thorough discussion of the results, a phonetic interpretation of the method, and future 

directions of work. 
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3.3. Literature review 

3.3.1. Voice conversion algorithms 

Statistical parametric models such as Gaussian Mixture Models and Deep Neural 

Networks are among the most common algorithms for VC. GMM-based methods [1, 10] 

learn the joint distribution of source and target short-time spectra and then estimate the 

target spectral features through least-squares regression. However, the basic GMM-

based method suffers from over-smoothing issues [11, 126] on the generated feature 

sequences. To address this problem, Toda et al. [11] proposed to use maximum 

 

Figure 3.1: Training phase of CSSR. A source and a target utterances from 

training corpus are first time-aligned using dynamic time warping. The time-

aligned frames are then concatenated, and the structured dictionaries are 

randomly initialized with the concatenated frames as 𝐀(𝟎). Then, CSDL performs 

two steps (cluster update and dictionary update) iteratively until convergence. 

The optimal structured dictionaries, 𝐀∗, are then split into a source dictionary 𝐀𝐬 

and a target dictionary 𝐀𝐭. 

 

Figure 3.2: Testing phase of CSSR. The CSSR 𝑾 for the source utterance 𝑿 is 

computed relative to the source structured dictionary 𝐀𝐒. The converted 

utterance is then generated by multiplying the CSSR 𝐖 with the target 

structured dictionary 𝐀𝐓. 
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likelihood parameter generation (MLPG) as a post-processing step for GMM-based 

methods. Furthermore, global variance (GV) is often combined with MLPG to increase 

the quality of the synthesized speech [11]. 

By contrast, DNN-based methods map the source spectral features directly into 

the target space through various network structures such as restricted Boltzmann 

machines [12], auto-encoders [35], feed-forward neural networks [13], and recurrent 

neural networks [36]. More recently, Phonetic Posteriorgrams [19, 45] from acoustic 

models, generative models including Generative Adversarial Networks [48, 127] and 

Variational Auto-Encoders [39, 42, 51] have been shown to enhance VC performance. 

These methods can solve more generalized VC problems such as many-to-many VC and 

non-parallel VC, but they require relatively large corpora. Other statistical models such 

as partial least squares [128] and Hidden Markov Models [129] have also shown success 

in VC tasks. 

Methods based on non-parametric sparse representations have received much 

attention in recent years. Unlike statistical parametric methods, sparse representation 

methods require much smaller training corpora and are more robust to noisy speech. 

Takashima et al. [30] first applied sparse representations to perform VC in noisy 

environments. Following this work, subsequent studies focused on improving either the 

dictionary construction or the sparse coding process. Wu et al. [31] improved the 

original sparse representation by using both high-resolution and low-resolution features 

to capture spectral details and enforce temporal continuity. Zhao and Gutierrez-Osuna 

[130] proposed different strategies to construct more compact and effective dictionaries, 

while Fu et al. [131] used a dictionary learning algorithm to improve the effectiveness of 
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the dictionary. Aihara et al. [32, 132], Sisman et al. [133], and Liberatore et al. [38] 

incorporated phonetic information in both dictionary construction and sparse coding, 

which enhanced the speaker independence of the sparse representations. Other 

innovations have dramatically improved the quality of sparse representation-based VC. 

Wu et al. [134] and Liberatore et al. [135] showed that warping the source residual and 

adding it to the estimated target spectra can also significantly improve the VC syntheses 

quality. Wu et al. [136] generalized MLPG and GV into sparse representation methods 

via an approximation algorithm, which also improved the quality of the converted 

speech. 

3.3.2. Structured sparse coding and dictionary learning 

Signals such as images and speech are highly correlated and always have internal 

structures. However, the standard sparse coding objective functions (i.e., Lasso) do not 

consider any prior information about the internal structure of the data. To take such 

information into account, various structured-sparse representations have been proposed. 

Yuan et al. [137] first proposed the Group Lasso based on distinct groups (e.g. variables 

of different categories) and provided two algorithms to solve the Group Lasso. Group-

sparse representations have also been generalized to include trees and graph structures 

[138-141]. Accordingly, a number of algorithms have been proposed to learn 

dictionaries with group structures, such as the Alternating Minimization fashioned 

algorithm [77], Proximal methods [78], and online dictionary learning algorithms [79]. 

Given the internal structures of the data, these structured sparse representations are more 

flexible and accurate than conventional sparse representations. The structured sparse 

representations have proven to be successful in various computer vision and speech 
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processing tasks such as face recognition [79, 80], image classification [77, 81],  speech 

enhancement [82, 83], speech recognition [84], and source separation [85]. 

3.3.3. Improving the speaker independence of the sparse representations in VC 

Several previous studies have proposed solutions to improve the speaker 

independence of the sparse representation. Aihara et al. first examined this problem and 

provided different solutions [32, 132, 142]. In [32], they used phoneme information to 

regularize the sparse representation and attempt to make it speaker independent. Namely, 

they categorized the atoms into sub-dictionaries according to their phoneme labels and 

then selected different sub-dictionaries to represent the speech frames. In [142], they 

proposed an activity-mapping non-negative matrix factorization algorithm to introduce 

mappings between the source and target sparse representations. To further reduce the 

computational complexity while enforcing speaker independence, they proposed a 

parallel dictionary learning algorithm [132] with a graph-embedded discriminative 

constraint. Sisman et al. [133] followed [32] in building phoneme-categorized dictionary 

but selected sub-dictionaries using phoneme labels at runtime, which also improved the 

speaker independence of the sparse representations. In related work, Liberatore et al. 

[38] used the centroids of each phoneme as atoms and constructed a more compact 

dictionary. The more compact dictionary prevented the source and target sparse 

representations from becoming too different, which implicitly improved the speaker 

independence. 

3.3.4. Relation to prior work 

Our proposed method differs from prior studies in several respects. First, CSDL 

learns the dictionaries directly from the data, without any supervised information (e.g., 
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phoneme labels [32, 132, 133], etc.) It avoids the use of forced-alignment or automatic 

speech recognition to generate the labels, thus reducing computation. Second, CSDL is 

based on “hard-decision Expectation Maximization” algorithms [143-147] commonly 

used for learning models that depend on unobserved latent variables, which is different 

from previous dictionary learning algorithms [77-79] and previous dictionary learning 

VC methods [131, 132]. Finally, we use a CSOF to implicitly encourage the sparse 

coding algorithm to represent a speech frame using a compact set of atoms from a few 

clusters, rather than using a sub-dictionary selection procedure [32] or phoneme labels 

[133] at runtime. Additionally, CSDL and CSOF are complementary: CSDL learns a 

cluster-structured dictionary, and CSOF enforces the group-sparsity on the structured 

dictionary. The resulting structured sparse representation captures the internal structure 

of speech signals, which makes the representation more speaker independent. As a 

result, the VC performance is significantly improved. 

3.4. Method 

In the following sub-sections, we first introduce the entire VC framework based 

on the CSSR. Then, we provide a detailed derivation of the two components of the 

CSSR: the CSDL and the CSOF. 

3.4.1. Voice conversion framework 

First, we describe the conventional sparse representation method used in VC. 

During training, a source dictionary 𝐀𝐬 ∈ ℝ𝐷×𝑁 and a target dictionary 𝐀𝐭 ∈ ℝ𝐷×𝑁 are 

learned from time-aligned parallel utterances, where 𝑁 is the number of atoms in each 

dictionary, and each atom is a 𝐷-dimensional vector. Note that the requirement of 
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parallel utterances can be relaxed by using alignment algorithm such as those in [16, 23].  

At runtime, an 𝐿-frame source utterance 𝐗 ∈ ℝ𝐷×𝐿 is represented as, 

𝐗 ≅ 𝐀𝐬𝐖 (3.1) 

where 𝐖 ∈ ℝ𝑁×𝐿 is a sparse non-negative weight matrix (i.e., a sparse representation). 

Given 𝐗 and 𝐀𝐬, 𝐖 can be approximated via solving standard sparse coding objective 

(i.e., Lasso): 

𝐖 = argmin
𝐖

𝑑(𝐗,𝐀𝐬𝐖) + 𝛼‖𝐖‖1 , 𝑠. 𝑡.  𝐖 ≥ 0 (3.2) 

where 𝑑(∙) is a distance metric, typically the KL-divergence or the Euclidean distance. 

The 𝐿1 norm term is often included to enforce sparsity in 𝐖, with 𝛼 being a sparsity 

penalty. Given 𝐀𝐭 and 𝐖, a target utterance  ̂ ∈ ℝ𝐷×𝐿 can be generated as: 

  ̂ = 𝐀𝐭𝐖 (3.3) 

Voice conversion using CSSR. Compared to the conventional sparse 

representation used for VC, CSSR further considers that the speech signal has an internal 

structure (i.e., phonetic). Assume that the spectral frames of a speaker can be divided 

into 𝐾 clusters. During training, we use the CSDL algorithm (described in section 3.4.2) 

to learn the structured dictionaries 𝐀𝐬 and 𝐀𝐭 , each containing 𝐾 sub-dictionaries: 

𝐀𝐬 = [ 𝐬
1,  𝐬

2, ⋯ ,  𝐬
 ] (3.4) 

 𝐀𝐭 = [ 𝐭
1,  𝐭

2, ⋯ ,  𝐭
 ] (3.5) 

where  𝐬
𝑖 ∈ ℝ𝐷×𝑀 and  𝐭

𝑖 ∈ ℝ𝐷×𝑀denote the source and the target sub-dictionaries 

corresponding to the 𝑖-th cluster, respectively, and and 𝑖 ∈ {1, 2,⋯ , 𝐾}. 𝑀 is the number 

of atoms in a sub-dictionary. 
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At runtime, once the structured dictionaries have been learned, we generate the 

CSSR 𝐖 by jointly minimizing the objective function in eq. (3.2) and CSOF Ψ(𝐖): 

𝐖 = argmin
𝐖

𝑑(𝐗,𝐀𝐬𝐖) + 𝛼‖𝐖‖1 + 𝛽Ψ(𝐖) , 𝑠. 𝑡.  𝐖 ≥ 0 (3.6) 

where 𝛽 is a penalty term for Ψ(𝐖), which is based on the 𝐿2,1 norm [124]; see section 

3.4.3 for details. CSOF implicitly encourages the sparse coding algorithm to represent a 

speech frame using atoms from as few clusters as possible, which as we will later show 

to encode phonetic information. With the target dictionary 𝐀𝐭 and the computed CSSR 

𝐖, we then use eq. (3.3) to estimate the target spectrum. 

3.4.2. Cluster-structured dictionary learning 

Let 𝐗 ∈ ℝ𝐷×𝐿 and  ∈ ℝ𝐷×𝐿 denote the time-aligned source and target training 

utterances.  Following Fu et al. [131], we concatenate the time-aligned source and target 

training utterances as  = [𝐗,  ] . Our goal is to learn a concatenated dictionary 𝐀 =

[𝐀𝐬, 𝐀𝐭]
 , where 𝐀𝐬 and 𝐀𝐭 consist of sub-dictionaries, as defined in eqs. (3.4-3.5). For 

notational simplicity, we define the concatenated sub-dictionary as  𝑖 = [ 𝐬
𝑖,  𝐭

𝑖  ]
 
, and 

 𝐀 = [ 1,  2, … ,   ]. We solve this dictionary-learning problem through an iterative 

algorithm. At each iteration, we perform two steps: a cluster update and a dictionary 

update. Details of each step are provided in following sub-sections. The overall 

algorithm is summarized in Algorithm 3.1. 
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Algorithm 3.1: CSDL algorithm 

Inputs: concatenated training utterances  , the number of clusters 𝐾 

Outputs: learned structured dictionary 𝐀∗ = [ 1,∗,  2,∗, … ,   ,∗] 

Initialization: randomly assign a latent cluster label to each training 

frame and divide the training frames to 𝐾 clusters according to the 
latent cluster labels, as in eq. (3.10). Then initialize the dictionary 

𝐀( ) = [ 1,( ),  2,( ), … ,   ,( )] by solving eq. (3.11). 

Repeat until convergence: 

Cluster update: 

1. compute 𝐰𝑙
𝑖,(𝑡)

 by solving eq. (3.8) 

2. compute 𝑟𝑙
𝑖,(𝑡)

 as in eq. (3.7) 

3. assign each training frame 𝐳𝑙 a latent cluster label 𝑝𝑙
(𝑡)
 as in (3.9) 

4. divide the training data into 𝐾 clusters as in (3.10). 

Dictionary update:  

5. update each sub-dictionary  𝑖,(𝑡+1) in 𝐀(𝑡+1) by solving eq. (3.11). 

Return 𝐀∗ = [ 1,∗,  2,∗, … ,   ,∗] 

 

3.4.2.1. Cluster update 

We denote the concatenated dictionary and sub-dictionary at the 𝑡-th iteration as 

𝐀(𝑡) and  𝑖,(𝑡). In the cluster update step, all the sub-dictionaries  𝑖,(𝑡) are fixed. For 

each frame 𝐳𝑙 in  , we assign 𝐳𝑙 to the cluster  𝑖,(𝑡) whose sub-dictionary represents 𝐳𝑙 

with the lowest residual error. Formally, we denote the residual of 𝐳𝑙 respect to  𝑖,(𝑡) as, 

𝑟𝑙
𝑖,(𝑡) = ‖𝐳𝑙 −  𝑖,(𝑡)𝐰𝑙

𝑖,(𝑡)‖
2

2
(3.7) 

where 𝐰𝑙
𝑖,(𝑡)

 are the coefficients of the sparse representation. We compute 𝐰𝑙
𝑖,(𝑡)

 as, 

𝐰𝑙
𝑖,(𝑡)

= argmin
𝐰

‖𝐳𝑙 −  𝑖,(𝑡)𝐰‖
2

2
+ 𝜆‖𝐰‖1 (3.8) 

which we solve using the Least Angle Regression (LARS) [148] algorithm, and 𝜆 is the 

sparsity penalty. Once the residuals are updated, we can assign 𝐳𝑙 a latent cluster label 

𝑝𝑙
(𝑡)

 as, 
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 𝑝𝑙
(𝑡) = argmin

𝑖
𝑟𝑙
𝑖,(𝑡) (3.9) 

Then, we divide   into 𝐾 clusters based on their labels 𝑝𝑙
(𝑡)

 as, 

 𝑖,(𝑡) = {𝕀(𝑝𝑙
(𝑡) = 𝑖)𝐳𝑙} , 𝑙 = 1, 2, … , 𝐿 (3.10) 

where  𝑖,(𝑡) denotes all the speech frames in the 𝑖-th cluster, and 𝕀(∙) is the indicator 

function. 

3.4.2.2. Dictionary update 

In the dictionary update step, we fix the clusters and update the sub-dictionaries. 

For each  𝑖,(𝑡) (all the speech frames in the 𝑖-th cluster), we wish to find a sub-dictionary 

 𝑖,(𝑡+1) that can represent it sparsely with minimum residual. In other words, for each 

sub-dictionary  𝑖,(𝑡+1) we solve the problem: 

 𝑖,(𝑡+1) = argmin
 𝑖

‖ 𝑖,(𝑡) −  𝑖𝐰‖
2

2
+ 𝜆‖𝐰‖1 (3.11) 

which we solve using the online dictionary-learning algorithm proposed by Mairal et al. 

[149]. 

3.4.3. Cluster-selective objective function 

The proposed objective function (CSOF) is a generalization of the Phoneme-

Selective Objective Function (PSOF) we proposed in previous work [150].  PSOF 

promotes that each speech frame is represented with atoms from a small number of 

phonemes, which is achieved by enforcing group sparsity on the groups defined by 

phoneme labels (one group per phoneme).  However, PSOF is limited by the fact that 

phonemes are often too coarse to capture detailed information in speech (e.g., 

allophones).  To address this issue, CSOF allows the number of clusters to increase, e.g. 
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as the amount of training data increases. CSOF enforces group sparsity on the groups 

defined in the cluster-structured dictionary learned from CSDL. In practice, the most 

common mathematical tool to enforce group sparsity is the 𝐿2,1 norm. Therefore, we 

formulate the CSOF Ψ(𝐖) as,  

 Ψ(𝐖) =  ∑ ∑ √∑ 𝑤𝑖𝑗
2

𝑀

𝑖=1,𝑖∈ 𝐬
𝑘

 

𝑘=1

𝐿

𝑗=1
(3.12) 

where 𝑤𝑖𝑗 denotes the (𝑖, 𝑗)-th element of the weight matrix 𝐖, 𝐾 denotes the number of 

sub-dictionaries (i.e., clusters),  𝐬
𝑘 represents the 𝑘-th sub-dictionary in the source 

dictionary, 𝐿 is the number of frames in the utterance and 𝑀 is the number of atoms in a 

sub-dictionary (see Section 3.4.1).  By minimizing CSOF, we force the weights within a 

sub-dictionary to be activated or suppressed at the same time, and therefore implicitly 

encourage the sparse coding algorithm to represent a spectrum frame with atoms from as 

few clusters as possible. 

3.5. Experimental setup 

3.5.1. Corpus 

We used four English speakers from the CMU ARCTIC [125] corpus: BDL 

(male), RMS (male), SLT (female), and CLB (female). For each speaker, we selected 

three sets of utterances: 20 utterances for training (about 1.5 minutes), 10 utterances for 
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validation, and 50 utterances for testing4. Four VC pairs were considered for the 

experiments: M-M (BDL to RMS), M-F (RMS to SLT), F-F (SLT to CLB), and F-M 

(CLB to BDL). In what follows, all the results are averaged over these four VC pairs.  

3.5.2. Implementation details 

We used the WORLD vocoder [151] (D4C edition [152]) to extract a 513-

dimensional spectral envelope, fundamental frequency (F0) and aperiodicity for each 

utterance with a 5ms window shift. We computed the 25-dimensional Mel-Frequency 

Cepstrum (MFCC) from the WORLD spectral envelope (removing MFCC0, which is the 

energy) and used the MFCCs as the acoustic feature in dictionary learning and voice 

conversion. Source and target utterances were time-aligned using dynamic time warping 

[153]. 

In the proposed method, we set the number of atoms in each sub-dictionary to 

100. In the first and the third experiments, we set the number of clusters (sub-

dictionaries) 𝐾 to 40, i.e., the number of phonemes in CMU ARCTIC (except for 

silence). In the second experiment, we explored different number of clusters (sub-

dictionaries), as will be described in Section 3.6.2. For silent frames, we used a voice 

activity detector to find them and directly copy silent frames from source to target. We 

                                                 

 

 

 

4 A small number of training utterances was used to mimic a low-resource setting.  Utterances for each set 

were selected using a maximum entropy criterion to ensure good phonetic balance. 
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used the SPAMS sparse coding toolbox [75, 149] to solve for eqs. (3.6), (3.8) and (3.11). 

We set 𝛼, 𝛽, and 𝜆 to 0.001, 0.05, and 0.01, respectively, based on preliminary 

experiments [150, 154]. CSDL will stop when no more than 5% of training frames are 

re-assigned from one iteration to the next. 

Following Toda et al. [11], we convert the pitch trajectory (𝐹 ) of the source 

speech to match the pitch range of the target speaker using log mean variance 

normalization. We estimate the converted spectral envelope from the converted MFCC, 

and finally synthesize the converted speech using the WORLD vocoder with the 

converted spectral envelope, converted F0 and source aperiodicity. 

3.6. Results 

We conducted three experiments to evaluate CSSR. The first experiment was an 

ablation study that examined the effectiveness of each CSSR component in reducing 

differences between source and target sparse representations and improving VC 

performance. In the second experiment, we explored the influence of different number of 

clusters in CSSR. In the final experiment, we evaluated the VC performance of CSSR 

and compared it against baselines from previous studies. 

3.6.1. Ablation study 

To understand how much each CSSR component contributes to reducing the 

sparse representations difference and improving VC performance, we conducted an 

ablation study that evaluates the contribution of each method: the dictionary learning 

algorithm and the sparse coding cost function. To do so, we compared five different 

system configurations; also see Table 3.1: 

- Random Dictionary Learning (RDL) + Lasso: a baseline system following the 
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conventional VC framework based on sparse representations [30], which constructs 

dictionaries from randomly selected speech frames in training, and optimizes the Lasso 

(eq. (3.2)) at runtime. 

- Phoneme Structured Dictionary Learning (PSDL) + Lasso: a system that 

constructs the structured dictionary using phoneme labels during training (as in [32, 

133, 150]) and optimizes the Lasso at runtime. 

- CSDL + Lasso: a system that uses the CSDL algorithm to learn a cluster structured 

dictionary in training, and optimizes the Lasso at runtime. 

- PSDL + CSOF: a system that constructs the structured dictionaries using phoneme 

labels during training and optimizes the joint cost function in eq. (3.6) at runtime. 

- CSDL + CSOF (CSSR): the proposed method: CSDL and CSOF combined. 

Table 3.1.  The five system configurations used in the ablation study 

  Dictionary construction technique 

  Random Phoneme CSDL 

Objective 

function 

MSE+𝑳  

(Lasso) 

RDL+Lasso PSDL+Lasso CSDL+Lasso 

MSE+𝑳 + 𝑳 ,  

(CSOF) 

N/A5 PSDL+CSOF CSDL+CSOF 

 

                                                 

 

 

 

5 We do not consider the combination RDL+CSOF since CSOF requires a structured dictionary, which 

cannot be randomly selected. 
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RDL+Lasso, PSDL+Lasso, and CSDL+Lasso share the same sparse coding cost function 

(MSE + 𝐿1 norm) but differ in the dictionaries: random vs. derived from phoneme labels 

vs. learned via CSDL. This allows us to assess the relative merits of each dictionary 

construction technique. PSDL+Lasso and PSDL+CSOF share the same dictionary but 

differ in the sparse coding cost functions. This allows us to compare the two cost 

functions side by side. Finally, by comparing CSSR (i.e., CSDL+CSOF) against 

CSDL+Lasso and PSDL+CSOF we can evaluate the benefit of combining the two 

proposed algorithms. 

We used two metrics to evaluate the five systems: the distance between the 

source and target sparse representations, which measures whether the representations are 

speaker dependent, and the Mel-Cepstral Distortion between the synthesized speech and 

the ground-truth target speech: 

- Sparse Representation Distance. As discussed by Aihara et al. [32, 132], the loss 

of speaker independence decreases the similarity between source and target sparse 

representations. Accordingly, we compute the difference between source and 

target sparse representations of time-aligned parallel utterances as, 

𝐷(𝑊 ,𝑊 ) =
1

𝑇
‖𝐖𝐬 −𝐖𝐭‖𝐹 (3.13) 

where 𝐖𝐬 ∈  ℝ𝑁×  and 𝐖𝐭 ∈  ℝ𝑁×  are the source and target sparse 

representations, 𝑇 is the number of frames, and ‖∙‖𝐹 denotes the Frobenius norm. 

The lower this distance is, the more similar the source and target sparse 

representations are, and so the sparse representation tends to be more speaker 

independent.  
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- Mel-Cepstral Distortion (MCD). We also measured the MCD of the voice-

converted speech and its time-aligned target speech to examine the effect of sparse 

representation dissimilarity on synthesis quality. MCD is the most common 

objective measurement in VC systems, and is defined as, 

MCD[dB] =
10

ln10
√2∑(𝑦𝑑 − �̂�𝑑)2

24

𝑑=1

(3.14) 

where �̂�𝑑 and 𝑦𝑑 are the 𝑑-th Mel-Cepstral coefficient of the converted speech and 

the time-aligned ground-truth target speech, respectively. Lower MCD indicates 

that the converted speech is closer to the time-aligned target speech.  

Results for the sparse representation distance are shown in Figure 3.3 (a). From 

the results, we found that the sparse representation distance for CSSR (CSDL +CSOF) 

(0.37) is lower than that of the baselines: CSSR achieves 16.0% relative improvement 

over PSDL+CSOF (0.44), 68.4% relative improvement over CSDL+Lasso (1.17), 69.4% 

relative improvement over PSDL+Lasso (1.21), and 70.2% relative improvement over 

RDL+Lasso (1.24). These results indicate that CSSR systematically increases the 

similarity between the source and target sparse representations. Additionally, our results 

show that the system using CSDL (CSDL+Lasso) and the system using CSOF 

(PSDL+CSOF) outperform their corresponding baselines (RDL+Lasso and 

PSDL+Lasso), respectively. These results suggest that both CSDL and CSOF are 

essential in reducing the representation distance. Moreover, we found that CSSR 

outperforms both CSDL+Lasso and PSDL+CSOF, which indicates that combining 

CSDL and CSOF lead to further reductions in representation distance. Finally, we also 
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found that the sparse coding cost function (CSOF) is more effective than the dictionary 

construction algorithm (CSDL) in reducing representation distance, and hence in 

improving speaker independence. A possible explanation for this result is that in 

CSDL+Lasso, the objective function (Lasso) ignores the phonetic structure of the 

dictionary and minimizes the Mean-Square-Error using as few atoms as possible 

regardless of their phonetic content. 

Results for the Mel-Cepstral Distortion are shown in Figure 3.3 (b). CSSR 

systematically achieves lower MCD (2.25) than all the baseline systems: a 3.0% relative 

improvement over PSDL+CSOF (2.32), 7.4% relative improvement over CSDL+Lasso 

(2.43), 8.5% relative improvement over PSDL+Lasso (2.46), and 13.1% relative 

improvement over RDL+Lasso (2.59). These results suggest that using CSDL and CSOF 

individually can improve the voice-conversion syntheses, but that combining the two 

modules leads to further improvements. Although CSDL only achieves modest 

reductions in representation distance, it does significantly decrease the MCD. This result 

 

Figure 3.3: (a) Sparse representation distance of all the systems in the ablation 

study. As defined in eq. (3.13), lower distance means higher similarity between 

the source and target sparse representations (i.e., improved speaker 

indencencence). (b) Average MCD of all the systems in the ablation study. Lower 

MCD generally leads to better VC performance. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ar

se
 R

ep
re

se
n

ta
ti

o
n

 D
is

ta
n

ce

0

0.5

1

1.5

2

2.5

3

M
el

-C
ep

st
ra

l
D

is
to

rt
io

n
 [

d
B

](a) (b)



 

39 

shows that the deliberately learned atoms can reduce misalignments and better capture 

the structure of speech (see Section 3.6.2 below), which also considerably enhances the 

voice-conversion syntheses.  

3.6.2. Effect of dictionary size 

In a second experiment, we characterized the performance of CSSR as a function 

of the number of atoms in the dictionary. Namely, we fixed the number of atoms in each 

sub-dictionary (cluster) to 𝑀 = 100 while varying the number of sub-dictionaries 𝐾 =

{10, 20, 30,… , 100}, so the total number of atoms in the dictionary was 𝑁 =

{1000, 2000, 3000,… , 10000}.  For comparison purposes, we used PSDL+CSOF as a 

baseline. Because the number of sub-dictionaries in PSDL+CSOF is fixed to 40 (defined 

by phoneme labels in CMU ARCTIC, except for silence), we increased the number of 

atoms in each sub-dictionary so the total number of atoms was equal among the two 

systems.   

Results are shown in Figure 3.4 in terms of the average MCD of the two systems 

as a function of the total number of atoms. In both cases, the MCD decreases with 

increasing dictionary size.  The MCD of the baseline system is systematically higher, 

and reaches a plateau of 2.31 after 3,000 atoms. In contrast, the MCD of the proposed 

system continues to decrease past that point, stabilizing at 2.18 with 80 sub-dictionaries 

or more. These results show that CSSR uses a given dictionary size more effectively by 

allowing a more fine-grained representation of the data (i.e., more sub-dictionaries) as 

the number of atoms in the dictionary increase.  In other words, for a sufficiently large 

dictionary size, it is more effective to increase the number of sub-dictionaries (by fixing 
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the number of atoms per cluster) than to increase the number of atoms per sub-dictionary 

(by fixing the number of sub-dictionaries). 

3.6.3. Voice conversion performance 

In a third experiment, we evaluated the voice-conversion performance of the 

CSSR using objective and subjective measures, and compared it against three existing 

systems:  

- System 1: The method we proposed in [150], which constructs the structured 

dictionaries using phoneme labels during training and jointly optimizes the standard 

cost function along with the 𝐿2,1 norm (eq. (3.6)) at runtime. 

- System 2: The method we proposed in [154], which learns the structured dictionary in 

 

Figure 3.4: Average MCD of CSSR and PSDL+CSOF with different number of 

atoms in total. In CSSR, we fixed the number of atoms in each sub-dictionary to 

100, varying the number of sub-dictionaries from 10 to 100. In PSDL+CSOF, we 

fixed the number of sub-dictionaries to 40 (the number of phonemes in CMU 

ARCTIC, except for silence), varying the number of atoms in each sub-dictionary 

from 25 to 250. Lower MCD generally leads to better VC performance. 
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the joint source-target space without supervision (i.e., without phoneme labels) during 

training and selects the most likely sub-dictionary [32] using the standard cost function 

(eq. (3.2)) at runtime.  

- Baseline [11]: A GMM-based VC method that models the joint distribution of source 

and target speech frames. 

By comparing the proposed method (CSSR) against the two previous systems 

[150, 154], we aim to determine if the two algorithms are complementary. We did not 

include other sparse representation-based baseline methods (e.g., [31, 32]) in the 

comparison, since our two previous systems  [150, 154] had outperformed them. We 

also did not include neural network baselines since they require relatively large training 

corpus (e.g., [36] used 593 utterances, or about 42 mins), whereas our training corpus 

consists of 20 utterances (or about 1.5 minutes). Instead, we used GMM-based method, 

which is one of the most common methods in this low-resource setting.  For all three 

sparse representation-based methods (CSSR, System 1 and System 2),  we used 40 sub-

dictionaries and 100 atoms for each sub-dictionary, following the configurations from 

[150, 154]. For the GMM, we used 40 mixture components, the same as the proposed 

method to ensure a fair comparison. We did not use Maximum Likelihood Parameter 

Generation (MLPG) and Global Variance (GV) in any system to make the results 

comparable to those presented in [150, 154], but these techniques can be further 

incorporated to enhance the voice-conversion synthesis. Audio samples are available at 

https://shaojinding.github.io/samples/cssr/cssr_demo 

 

 

https://shaojinding.github.io/samples/cssr/cssr_demo
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3.6.3.1. Objective evaluation 

First, we compared the four systems by computing the MCD between the 

converted speech and the time-aligned target speech. Figure 3.5 (a) summarizes the 

results. CSSR achieved the lowest MCD (2.25) and outperformed all three existing 

systems (System 1: 2.32, 3.0% relative improvement, single-tail t-test, 𝑝 ≪ 0.001; 

System 2: 2.36, 4.7% relative improvement, single-tail t-test, 𝑝 ≪ 0.001; Baseline: 2.35, 

4.3% relative improvement, single-tail t-test, 𝑝 ≪ 0.001). 

3.6.3.2. Subjective evaluation 

In a final step, we conducted listening tests on Amazon Mechanical Turk to 

provide a subjective evaluation of the four systems. We measured acoustic quality with a 

5-point Mean Opinion Score (MOS) test and speaker identity with a Voice Similarity 

Score (VSS) test ranging from -7 (definitely different speakers) to +7 (definitely the 

same speaker) [155]. 

  

Figure 3.5: (a) Average MCD of the proposed method (CSSR) and three existing 

systems (System 1, System 2, and Baseline). Lower MCD generally leads to better 

VC performance. (b) Mean Opinion Scores (MOS) of CSSR and three baselines 

(System 1, System 2, and Baseline). MOS ranges from 0 to 5, with larger MOS 

indicating higher acoustic quality. The error bars show 95% confidence intervals. 
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Mean Opinion Score. Twenty-seven participants rated 92 utterances from the 

four systems: 20 utterances per system, 5 utterances per speaker pair plus 12 calibration 

utterances to detect if participants were cheating and remove them if they did [156]. We 

exclude ratings of the calibration utterances from the data analysis. Figure 3.5 (b) shows 

the Mean Opinion Scores of the four methods with 95% confidence intervals. The 

proposed method (CSSR) obtains a 3.34 MOS, which is higher than that of the other 

three systems with statistical significance: System 1 (2.80 MOS; 19.3% relative 

improvement; single-tail t-test, 𝑝 ≪ 0.001), System 2 (2.61 MOS; 28.0% relative 

improvement; single-tail t-test, 𝑝 ≪ 0.001), and GMM (2.23 MOS; 49.8% relative 

improvement; single-tail t-test, 𝑝 ≪ 0.001). These results show that combining the 

proposed dictionary construction algorithm (CSDL) and the proposed sparse coding cost 

function (CSOF) improves acoustic quality more than applying each technique 

individually. Additionally, System 1 and System 2 achieve statistically significant 

improvement over the Baseline (System 1: 25.6% relative improvement, single-tail t-

test, 𝑝 ≪ 0.001; System 2: 17.0% relative improvement, single-tail t-test, 𝑝 ≪ 0.001), 

which corresponds to the results in [150, 154]. 

Voice Similarity Score. Twenty-five participants rated 140 utterance pairs: 32 

pairs (16 VC-SRC and 16 VC-TGT pairs) for each system and 8 pairs (4 VC-SRC and 4 

VC-TGT pairs) for each speaker pair; 12 calibration utterances. A VC-SRC pair consists 

of a voice-converted (VC) utterance and an utterance randomly selected from the source 

speaker (SRC), and a VC-TGT pair consists of a voice-converted (VC) utterance and an 

utterance randomly selected from the target speaker (TGT). We used the utterance that is 

randomly selected from the source/target speaker to avoid the interference of linguistic 
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content and prosody. For each utterance pair, participants were required to decide 

whether the two utterances were from the same speaker and then rate their confidence in 

the decision on a 7-point scale. Following [155], VSS is computed by collapsing the 

above two fields into a 14-point scale. As shown in Table 3.2, participants were “quite 

confident” that (1) CSSR utterances and source (SRC) utterances were produced by 

different speakers (VSS: -5.90); and that (2) CSSR utterances and target (TGT) 

utterances were produced by the same speaker (VSS: 4.44). When analyzing VC-SRC 

pairs, we found no statistically significant differences in VSS between CSSR and the 

other three systems (System 1: p = 0.22; System 2: p = 0.36; Baseline: p = 0.48; two-tail 

t-test). When comparing VC-TGT pairs, we found no statistically significant differences 

in VSS between CSSR and the other three systems (System 1: p = 0.27; System 2: p = 

0.22; Baseline: p = 0.20; two-tail t-test). Thus, these results indicate that the four 

methods can produce speech that is different from the source speaker and the same as the 

target speaker equally well. In Table 3.2, we also presented the VSS of the intra-gender 

pairs (M-M and F-F) and that of the inter-gender pairs (M-F and F-M). In all cases, we 

found no statistically significant difference between CSSR and the other three systems. 

Additionally, we found that the VC-SRC VSS of intra-gender pairs are slightly lower 

than that of inter-gender pairs. A possible reason is that the pitch ranges of the speakers 

in intra-gender pairs are closer to each other than those in inter-gender pairs. For inter-

gender pairs, pitch (F0) conversion makes the voice-conversion more distinguishable 

from the source utterances. Moreover, we found that the VC-TGT VSS of inter-gender 

pairs are lower than that of intra-gender pairs, due to the fact that inter-gender voice 

conversion is more challenging than intra-gender voice conversion. 
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3.6.4. Phonetic interpretation of CSSR 

In a final analysis, we seek to provide a phonetic interpretation of CSSR. In this 

analysis, we used K = 40 sub-dictionaries and M = 100 atoms for each sub-dictionary. 

We first analyze the learned cluster-structured dictionaries by exploring the relationship 

between ground-truth phoneme labels and the learned clusters. In “hard-decision” 

algorithms, clusters commonly represent latent variables; phonetic clusters can be 

thought of as latent variables in CSDL. Accordingly, we assigned each speech frame in 

the training set to the cluster that minimized its residual (eq. (3.7)). In parallel, we used 

forced-alignment to assign a phoneme labels to each frame, and computed how each 

phoneme was distributed among the clusters. Then, we matched each phoneme to the 

cluster that most frequently represented it. The confusion matrix of ground-truth 

Table 3.2: Voice identity results of the proposed method (CSSR) and the three 

reference systems (System 1, System 2, and Baseline).Voice Similarity Score 

ranges from -7 (definitely different speakers) to +7 (definitely the same speaker). 

VC-SRC: VSS between VC and the source speaker; VC-TGT: VSS between VC 

and the target speaker. All the results are shown as average ± 95% confidence 

intervals. 

System All pairs Intra-gender Inter-gender 

 VC-SRC VC-TGT VC-SRC VC-TGT VC-SRC VC-TGT 

Baseline -5.89±0.08 3.92±0.18 -4.93±0.14 4.68±0.14 -6.85±0.04 3.16±0.26 

System 1 -6.11±0.07 4.07±0.17 -5.43±0.12 4.95±0.16 -6.78±0.04 3.18±0.23 

System 2 -5.80±0.09 4.00±0.18 -4.84±0.16 4.72±0.17 -6.76±0.06 3.24±0.22 

CSSR -5.90±0.09 4.44±0.17 -5.04±0.15 5.32±0.16 -6.76±0.07 3.56±0.24 
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phonemes6 vs. matched clusters is shown in Figure 3.6. The dark diagonal elements 

indicate that each cluster is preferentially associated with a single phoneme label. 

Confusions do occur but are usually restricted to be within the same manner of 

articulation. For example, the sub-dictionary for cluster “35” represents all the nasals. 

Likewise, clusters “40”, “31”, “33”, “1”, “34”, “18” are all used for stops. Both “15”, 

“28” and “11” can represent /EY/, /IH/, /IY/ well, which are all front vowels. In addition, 

confusions also appear on phonemes that often co-occur, which can be caused by 

inaccurate forced alignments. For example, “9” is good at representing /ER/ and /R/, 

which usually co-occur in words ending with “er”.  These results indicate that the 

proposed algorithm can learn the latent (i.e., phonetic) structure of speech and does it so 

without supervision. The learned latent structures are not restricted to phonemes but 

emerge directly from the data. Such structures can more accurately capture variability in 

pronunciations, which can further improve the similarity between source and target 

sparse representations than methods based on phoneme labels [32, 133, 150]. 

                                                 

 

 

 

6 We used Arpabet to represent the phonemes.  
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Next, we visualize the CSSR representation of an utterance to show that it is also 

phonetically meaningful. We used a similar approach as above to associate the learned 

clusters with phoneme labels, except each cluster was matched to the phoneme whose 

frames occurred most frequently in that cluster; this ensured that each cluster was 

matched with at least one phoneme. Figure 3.7a shows the Structured Sparse 

Representation of the word “never” from speaker BDL; for clarity, we only show the 

sub-dictionaries that were activated. As Figure 3.7a shows, the associated phoneme 

labels of the activated sub-dictionaries correspond to the ground-truth phoneme labels of 

the word, indicating that the cluster-structured sparse code is phonetically meaningful. 

Mismatches occur but are mostly in transitions and are restricted to adjacent clusters. For 

example, in the transition between /EH/ and /V/, atoms from clusters “9”, “24”, “27”, 

 

Figure 3.6: Confusion matrix between forced-aligned phoneme labels and the 

matched clusters. Y-axis values are phonemes (sorted by the manner of 

articulation), and X-axis values are the cluster IDs. 
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and “35” are activated; the speech frames of /ER/ are represented by atoms from clusters 

“9”, “24”, and “27”, whose associated phoneme labels are all /ER/ and /R/. 

Lastly, we compared the representation that emerges from CSSR (Figure 3.7a) 

with those of PSDL+CSOF (Figure 3.7b) and PSDL+Lasso (Figure 3.7c). To ensure a 

fair comparison, we set the sparsity penalty of the three systems to 0.05. As shown in 

Figure 3.7c, when using the Lasso cost function, a speech frame is represented by atoms 

from arbitrary phoneme labels, and this reduces the interpretability of the representation. 

Compare this to Figure 3.7a-b, where activation tends to occur on a few 

clusters/phonemes, as a result of adding the CSOF term to the Lasso. Figure 3.7d-f offers 

a complementary view of by showing the number of sub-dictionaries activated at each 

frame of the utterance.  CSSR and PSD+CSOF usually activate fewer sub-dictionaries 

(~2) than PSDL+Lasso (~6 sub-dictionaries). 

3.7. Discussions 

In previous work [150, 154], we showed that CSDL and CSOF alone could 

improve voice-conversion performance relative to other sparse representation methods in 

  

Figure 3.7: Visualization of sparse representations for the word ‘never’. (a) 

CSSR, (b) PSDL+CSOF, (c) PSDL+Lasso. The x-axis denotes the transcription of 

the word, and the y-axis shows the cluster labels (denoted by numbers) of the 

sub-dictionaries and the associated phoneme labels. (d), (e), and (f): number of 

sub-dictionaries that were used in the sparse representations. 
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the literature. This paper corroborates our earlier results and, more importantly, shows 

that jointly combining CSDL and CSOF can provide further improvements in voice-

conversion performance. 

In a first ablation study, we evaluated each CSSR component (CSDL and CSOF) 

by its ability to increase the speaker independence of the representation and reduce the 

MCD between the synthesized speech and the ground-truth target speech. Our results 

showed that both CSDL and CSOF are essential in reducing the sparse representation 

distance and the MCD, corresponding to the results in our previous work. Moreover, we 

found that combining both (CSSR) leads to further reductions in sparse representation 

distance and MCD. 

In a second experiment, we compared the performance of CSSR against that of 

our previous system [150] as the number of atoms in the dictionary increases.  CSSR 

increases the number of clusters (sub-dictionaries) in the representation (while keeping 

the number of atoms per cluster constant) whereas our previous system increases the 

number of atoms in each cluster (by maintaining the number of clusters constant).  Our 

results show that CSSR is the more effective of the two approaches, as measured by the 

MCD between the converted speech and the ground truth. Thus, CSSR improves upon 

our previous work [150] by allowing more fine-grained speech information than 

phonemes. 

In our study, we also evaluated the voice-conversion performance of CSSR 

through both objective and subjective measurements. We compared CSSR against the 

two systems from our previous work [150, 154] and against a GMM [11] baseline. In the 

objective evaluation, results showed that CSSR significantly improved the MCD over 
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the three reference systems. In the subjective evaluation, CSSR was rated to have the 

highest acoustic quality (in agreement with results from the objective evaluation) and 

was rated to have the same similarity to the voice identity of the target speaker as the 

other systems. Additionally, we found that the comparisons between System 1 and 

Baseline as well as that between System 2 and Baseline are corresponding to the results 

presented in [150, 154]. 

In the final analysis, we provided a phonetic interpretation for CSSR by 

analyzing the cluster-structured dictionary and the CSSR representation. In terms of the 

cluster-structured dictionary, we visualized he confusion matrix of ground-truth 

phonemes vs. matched clusters in the cluster-structured dictionary. The results showed 

that the CSDL can learn the phonetic structure of speech without supervision. In terms of 

the CSSR representation, we visualized the CSSR representation of the word “never” 

from speaker BDL From the results, we found that the CSSR is phonetically meaningful. 

Additionally, when comparing it with PSDL+CSOF and PSDL+Lasso. CSSR and 

PSDL+CSOF usually activate fewer sub-dictionaries than PSDL+Lasso, which 

demonstrated the effect of CSOF. 

3.8. Conclusions 

In this paper, we proposed a Cluster-Structured Sparse Representation (CSSR) 

for spectral transformation in voice conversion. CSSR consists of two inter-connected 

components: CSDL and CSOF. CSDL learns a structured dictionary from training 

utterances, and CSOF produces a structured sparse code at runtime. We conducted three 

experiments to evaluate CSSR. We first conducted an ablation study to examine the 

effectiveness of each component in CSSR. Then, we conducted an experiment to 
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characterize the performance of CSSR as a function of the number of atoms in the 

dictionary. Lastly, we conducted both objective and subjective experiments to evaluate 

the performance of CSSR and compared it with previous methods. The ablation study 

showed that both CSDL and CSOF promote the sparse representation to be speaker 

independent and improve VC performance, and that combining the two components 

leads to further performance improvements. In addition, results from the second 

experiment show that CSSR uses increasingly larger dictionaries more efficiently than 

phoneme-based representations by allowing finer-grained decompositions of speech 

sounds. Finally, results of objective and subjective studies show that CSSR significantly 

improves both acoustic quality and voice identity over the previous two systems. 
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4. ZERO-SHOT VC BASED ON SEQ2SEQ MODEL: IMPROVING THE SPEAKER 

IDENTITY OF NON-PARALLEL MANY-TO-MANY VOICE CONVERSION WITH 

ADVERSARIAL SPEAKER RECOGNITION* 

4.1. Overview 

Phonetic Posteriorgrams (PPGs) have received much attention for non-parallel 

many-to-many Voice Conversion (VC), and have been shown to achieve state-of-the-art 

performance. These methods implicitly assume that PPGs are speaker-independent and 

contain only linguistic information in an utterance. In practice, however, PPGs carry 

speaker individuality cues, such as accent, intonation, and speaking rate.  As a result, 

these cues can leak into the voice conversion, making it sound similar to the source 

speaker. To address this issue, we propose an adversarial learning approach that can 

remove speaker-dependent information in VC models based on a PPG2speech 

synthesizer. During training, the encoder output of a PPG2speech synthesizer is fed to a 

classifier trained to identify the corresponding speaker, while the encoder is trained to 

spoof the classifier. As a result, a more speaker-independent representation is learned. 

The proposed method is advantageous as it does not require pre-training the speaker 

classifier, and the adversarial speaker classifier is jointly trained with the PPG2speech 

                                                 

 

 

 

* © 2020 ISCA. Reprinted, with permission, from S. Ding, G. Zhao, and R. Gutierrez-Osuna, " Improving 

the speaker identity of non-parallel many-to-many voice conversion with Adversarial Speaker Recognition," 

in Interspeech, 2019, pp. 776-780. DOI: 10.21437/Interspeech.2020-1033. This reprint contains necessary 

modifications to include suggestions from the dissertation committee. 

https://psi.engr.tamu.edu/wp-content/uploads/2020/08/IS2020_shaojin_Adversarial_speaker_classifier_camera_ready.pdf
https://psi.engr.tamu.edu/wp-content/uploads/2020/08/IS2020_shaojin_Adversarial_speaker_classifier_camera_ready.pdf
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synthesizer end-to-end. We conduct objective and subjective experiments on the CSTR 

VCTK Corpus under standard and zero-shot VC conditions. Results show that the 

proposed method significantly improves the speaker identity of VC syntheses when 

compared with a baseline system trained without adversarial learning. 

4.2. Introduction 

Voice conversion (VC) aims to convert utterances from a source speaker to make 

it sound as if a target speaker had produced it. Conventional VC approaches [11-13, 30, 

157] usually require training a model for each speaker pair using parallel corpora. 

Alternative approaches have emerged in recent years that do not require parallel corpora 

and can build a universal model for all pairs of speakers [19, 39-41, 45-47, 49]. Among 

these, the Phonetic-PosteriorGram-to-speech (PPG2speech) synthesizer [19, 45-47] has 

been shown to be effective for non-parallel many-to-many VC. The PPG2speech 

synthesizer is a sequence-to-sequence (seq2seq) model that transforms PPGs to speech 

features (e.g., Mel-spectrogram). The PPG2speech synthesizer has an encoder-decoder 

structure. During training, the encoder learns a speaker-independent hidden 

representation from input PPGs, and the decoder learns to generate the speech features 

given the hidden representation and the corresponding speaker embedding (e.g., i-vector 

[33], d-vector [34]). During inference, the PPG of a source speaker and the speaker 

embedding of a   target speaker is used to produce VC syntheses. 

The PPG2speech synthesizer assumes that the input PPG represents the 

pronunciation of speech sounds in a speaker normalized space, which is speaker-

independent and contains only linguistic information. In practice, however, PPGs still 
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carry speaker identity information such as accent, intonation, and speaking rate [17] that 

can leak into the voice conversions. 

In this work, we address this problem using adversarial learning. Namely, we 

propose a new training procedure that includes an adversarial speaker classifier jointly 

trained with the PPG2speech synthesizer. During training, the encoder output is fed into 

the adversarial speaker classifier, and the classifier is optimized to identify the 

corresponding speaker. At the same time, the encoder is optimized to fool the adversarial 

speaker classifier. As a result, the encoder outputs become more speaker-independent. 

The adversarial speaker classifier does not need to be pre-trained. Instead, it is jointly 

trained with the synthesizer end-to-end, and the minimax optimization in adversarial 

learning is achieved by back-propagation. 

To evaluate the proposed adversarial learning system, we applied it to a state-of-

the-art non-parallel many-to-many PPG2speech synthesizer based on Tacotron2 [88]. 

Then, we tested its effectiveness against the same PPG2speech synthesizer trained 

without adversarial learning. Using the CSTR VCTK Corpus [158], we conducted both 

objective and subjective experiments under two testing conditions: standard (test 

speakers were known during training) and zero-shot (test speakers were unseen during 

training). Results show that the proposed method can significantly improve the 

perceived speaker identity of the VC syntheses in both testing conditions. 

The remainder of the chapter is organized as follows. Section 4.3 reviews prior 

VC approaches, the use of PPG in VC, and the relation of the proposed method to 

previous studies. Section 4.4 introduces the proposed approach, including the 

architecture of baseline PPG2speech synthesizer model and the proposed adversarial 
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training scheme. Section 4.5 describes the experimental setup, including the corpus, 

acoustic model, the speaker recognition model, the neural vocoder, and the PPG2speech 

synthesizer. Section 4.6 shows results for two sets of experiments. Finally, we conclude 

the paper in Section 4.7.  

4.3. Literature review 

Conventional VC frameworks (e.g., based on GMMs [11], sparse representations 

[30, 157], and DNNs [12, 13]) require time-aligned parallel corpora in training. 

However, the size of parallel corpora is usually limited (e.g., ~1 hour per speaker in the 

widely used CMU ARCTIC corpus [125]), and collecting parallel corpora can be 

laborious and expensive. To overcome this limitation, several non-parallel VC 

approaches have been proposed, such as the INCA algorithm [37], and various DNN 

architectures [14-18]. These methods avoid the use of parallel corpora, but they still 

require training a separate model for each pair of source-target speakers. To address this 

problem, serveral studies have proposed non-parallel many-to-many VC approaches 

based on Variational Autoencoders (VAE) [39-42] and the PPG2speech synthesizer [45-

47]. One-hot vectors are typically used as speaker embedding, due to its simplicity; 

several studies [41, 45-47] also explored the use of learned speaker embeddings (e.g., i-

vector [33], d-vector [34]) to generalize to unseen speakers (i.e., zero-shot VC). 

PPGs have gained much recent attention for VC. Sun et al. [19] first proposed to 

use PPGs for one-to-one VC. In this work, they extracted PPGs from source speech 

using an acoustic model, and then trained a DNN to produce the converted speech from 

source PPGs. Miyoshi et al. [17] extended the previous PPG-based method with a 

sequence-to-sequence model that converted the context posterior probabilities, which 
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improved the speaker identity of the converted speech. Zhou et al. [20] adopted bilingual 

PPG for cross-lingual voice conversion. Liu et al. [45], Lu et al. [47], and Mohammadi 

et al. [46] extended the one-to-one PPG-based VC framework for many-to-many VC by 

conditioning on a speaker embedding. 

Two previous studies [49, 159] explored the use of adversarial learning to 

disentangle linguistic and speaker representations in VC. Huang et al. [159] used a pre-

trained speaker classifier in a VAE to reduce speaker information from the linguistic 

representations. Zhang et al. [49] achieved the same purpose using AEs by explicitly 

enforcing the distribution of the hidden representation from each speaker to be identical. 

Our proposed method differs from these prior approaches in several aspects. First, 

our adversarial learning algorithm has two advantages. Huang et al. [159] pre-trained the 

classifier and froze its weights during the training of the VC model. In contrast, our 

proposed method does not require the pre-training of the adversarial speaker classifier. 

Zhang et al. [49] used an explicit loss function for adversarial learning. In contrast, the 

speaker-independent hidden representation in our proposed method is implicitly learned 

through the minimax optimization. Second, these previous approaches have only been 

evaluated for standard conditions. In contrast, our study considers both standard and 

zero-shot conditions, the latter being appealing for real-world applications since it 

requires little data from the target speaker. 

4.4. Methods 

As illustrated in Figure 4.1, our proposed VC system consists of four modules 

(highlighted in blue): a speaker-independent acoustic model to extract PPGs, a speaker 

recognition model to extract d-vectors as the speaker embeddings, a PPG2speech 
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synthesizer to convert PPG to Mel-spectrograms, and a final neural vocoder to generate 

a speech waveform from the Mel-spectrogram. First, we introduce a state-of-the-art 

PPG2speech synthesizer based on Tacotron2 [88] as a baseline system. Then, we 

describe the proposed adversarial learning approach. 

4.4.1. Baseline method: PPG2speech synthesizer 

Our system is based on the text-to-speech Tacotron2 model, which uses a 

seq2seq model to convert a text embedding sequence to a Mel-spectrogram. Tacotron2 

has an encoder-decoder architecture. The overall framework of our PPG2speech 

synthesizer is shown in Figure 4.2. Given a non-parallel corpus containing multiple 

speakers, the inputs to the network are pairs of PPGs (𝒙 ∈ ℝ ×𝐷) and the corresponding 

speaker embeddings (𝒔 ∈ ℝ𝑀), where 𝑇 is the length of the sequence, 𝐷 is the 

 

Figure 4.1: Overall workflow of the proposed non-parallel many-to-many VC 

system. 
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dimensionality of the PPG, and 𝑀 is the dimensionality of speaker embedding. During 

training, a PPG sequence 𝒙 is first fed to the encoder 𝑬, 

𝒛 = 𝑬(𝒙; 𝜽𝒆) (4.1) 

where  is the resulting hidden representation and 𝜽𝒆 are the encoder parameters. Then, 

the hidden representation  and the speaker embedding 𝒔 are concatenated and fed to an 

autoregressive attention-decoder network (along with the post-net) 𝑫 with parameters 

𝜽𝒅, to produce the Mel-spectrogram �̂�𝑀𝑒𝑙, 

�̂�𝑀𝑒𝑙 = 𝑫([𝒛, 𝒔]; 𝜽𝒅) (4.2) 

The speaker embedding we used here is a d-vector [160], which can be applied to either 

inset or unseen speakers. At the same time, the network also predicts if the generating 

process should stop, i.e., a stop token �̂�𝒔𝒕𝒐𝒑. The model is optimized by minimizing the 

loss: 

𝐿𝑉𝐶(𝜽𝒆, 𝜽𝒅) = 𝛼‖�̂�𝑀𝑒𝑙 − 𝒚𝑀𝑒𝑙‖2
2

+𝛽CE(�̂� 𝑡𝑜𝑝, 𝒚 𝑡𝑜𝑝) (4.3)
 

where  𝒚𝑀𝑒𝑙 is the ground-truth Mel-spectrogram; 𝒚 𝑡𝑜𝑝 is the ground truth stop 

token values; CE(∙) is the cross-entropy loss; 𝛼, 𝛽 are the weights for each term to 

control the relative importance. The detailed architecture of the encoder and decoder will 

be described in the following subsections, and the hyperparameters of each module are 

shown in Table 4.1. 
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Figure 4.2: PPG2speech synthesizer with adversarial speaker classifier. 𝒛 denotes 

the hidden representation produced by the encoder. The adversarial speaker 

classifier is only used during training.  

Table 4.1: Hyper-parameters of the proposed seq2seq FAC model. 

Block Component Parameters 

Inputs 

PPG 40-dim 

Speaker d-

vector 
256-dim 

Encoder 
Convolution 

layers 

Three convolution layers 

Convolution kernel size: 5×1 

Stride: 1×1 

Output-dim: 256 

Attention 
Attention 

layer 

Attention-dim: 128 

Attention convolution filters: 32 

Attention kernel size: 31 

Decoder 

 

PreNet 

Two fully-connected layers 

each has 256 ReLU units, 0.5 dropout probability 

Output-dim: 256 

LSTM 

Two LSTM layers 

1,024 cells in each direction 

0.1 dropout probability 

Output-dim: 512 

PostNet 

Five 1-D convolution layers 

Convolution kernel size: 5 

Output-dim: 80 

Encoder

Attention

Decoder

PPG

 

d-vec

Mel

Gradient 
Reversal

Speaker 
Classifier

Speaker 
Posterior

Concatenate

Adversarial 
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4.4.1.1. Encoder 

The encoder network in original Tacotron is consists of three convolution layers 

and one Bidirectional Long Short Term Memory (LSTM) layer, which takes a text 

embedding as the input and produces a hidden representation. In our case (voice 

conversion), the inputs of the PPG2speech synthesizer are PPGs instead of text 

embeddings. The PPG sequences are usually significantly longer than text embedding 

sequences.  To capture the high-level phonetic and contextual information in an input 

PPG sequence, we replace the LSTM layer in the encoder with two pyramidal-LSTM 

(pLSTM) layers [161]. Each pLSTM reduces the time resolution by a factor of two, and 

therefore our encoder produces four times shorter hidden representation sequences 

compared with the input sequences.  

Taking a PPG sequence  as the input, the convolution layers first captures the 

local temporal context information. Each of these layers has 32 kernels with a shape of 

3×3 in time×frequency and a stride of 1×1, followed by ReLU activations and batch 

normalization [162]. The pLSTM layers capture high-level frequency-wise feature and 

long-term temporal context information, each of which has 256 cells in each direction, 

followed by ReLU activations and batch normalization. The resulting hidden 

representation sequence  is four times shorter than the input PPG sequence with a 

dimensionality of 512. 

4.4.1.2. Decoder 

The decoder is an autoregressive recurrent network with a location-sensitive 

attention mechanism [163], as shown in Figure 4.3: The diagram of the decoder 

network.Figure 4.3. The decoder consumes the concatenation of the hidden 
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representation  and speaker embedding 𝒔, generating an 80-dimensional Mel-

spectrogram  as an estimation of the target speech. During each time step 𝑡, the 

estimated Mel-spectrogram from the previous step  is first input to a two-layer pre-

net of 256 neurons and produces a query vector: 

 

Following this, the location-sensitive attention mechanism produces a context vector  

based on the query vector , the concatenation between the hidden representation and 

speaker embedding , and the attention context vector from the previous time step 

: 

 

Then, the query vector  is concatenated with the attention context vector  and passed 

to two-layer of LSTMs with 256 cells, the output of which is concatenated with the 

attention context vector  again and fed to a linear layer, predicting the 80-dimensional 

Mel-spectrogram: 

 

At the same time, another linear layer predicts a stop token  to determine if the 

decoding process should stop during inference: 

 

Finally, the Mel-spectrogram is input to a post-net with five convolution layers, which 

predicts the residual and improves the synthesis by adding the residual. Each of the 

convolution layers has 512 kernels with 5 × 1 shape and  1 × 1 stride, followed by tanh 
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activation and batch normalization, which is added back to the original prediction to 

form the final prediction: 

 

4.4.2. Proposed method: Adversarial speaker classifier 

As we have noted, the PPG2speech synthesizer ignores the fact that PPGs carry 

speaker individualities such as accent, intonation, and speaking rate. As a result, the 

converted speech can still resemble the source speaker. The proposed adversarial 

 

Figure 4.3: The diagram of the decoder network. 
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speaker classifier, shown in Figure 4.2, is designed to address this issue. The classifier 

 takes the encoder output 𝒛 as input and generates a probability for each speaker: 

𝜽𝒄 𝜽𝒄  

where 𝜽𝒄 denote model parameters. The encoder  and adversarial speaker classifier  

are jointly trained with an adversarial loss: 

𝜽𝒆 , 𝜽𝒄 𝕀 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 == 𝑘  

where 𝕀(∙) is the indicator function,  is the number of speakers, 
 𝑝𝑒𝑎𝑘𝑒𝑟

 is the speaker 

who produced , and  is the probability of speaker 𝑘. During training, parameters 𝜽𝒄 

are optimized to minimize the adversarial loss to better identify the corresponding 

speaker, whereas parameters  are optimized to maximize the adversarial loss (i.e., to 

fool the classifier.) This minimax competition will finally converge when the output of 

the encoder is sufficiently speaker-independent such that the classifier is not able to 

identify the speaker. 

The VC model is trained jointly with the adversarial speaker classifier in a multi-

task learning fashion, 

𝜽𝒆 , 𝜽𝒅, 𝜽𝒄 𝜽𝒆, 𝜽𝒄  

where  control the relative importance of . Parameters 𝜽𝒆, 𝜽𝒅, 𝜽𝒄 are optimized 

such that, 

𝜽𝒆 , 𝜽𝒅 𝜽𝒆 , 𝜽𝒅, 𝜽𝒄  

𝜽𝒄 𝜽𝒆 , 𝜽𝒅, 𝜽𝒄  



 

64 

and they can be updated though back-propagation using stochastic gradient descent 

(SGD) as, 

𝜽𝒆 ← 𝜽𝒆

𝜕

𝜕𝜽𝒆

𝜕

𝜕𝜽𝒆

 

𝜽𝒅 ← 𝜽𝒅

𝜕

𝜕𝜽𝒅

 

𝜽𝒄 ← 𝜽𝒄

𝜕

𝜕𝜽𝒄

 

where  is the learning rate. The negative coefficient  in eq. (3.9) reversed the 

gradient back-propagated from the adversarial speaker classifier. The gradient reversal 

maximizes  for 𝜽𝒆 and makes the encoder spoof the classifier, which is key to the 

optimization. In practice, we use the gradient reversal layer introduced in [164, 165]. 

During forward-propagation, it operates as an identity transform, and during back-

propagation it multiplies the gradient by . 

4.5. Experimental setup 

4.5.1. Acoustic model, speaker recognition model, and neural vocoder 

We used a fully-connected DNN [166] as the acoustic model, which outputs 

5,816 senones. We used the implementation in Kaldi [167] and trained the acoustic 

model on the Librispeech corpus [168]. We implemented the speaker recognition model 

proposed in [160] to produce a 256 dimensional d-vectors and trained it on the 

VoxCeleb2 dataset [169]. We used a universal WaveRNN [170] as the neural vocoder 

for all the testing speakers. The vocoder was trained on the VCTK training set (see 

below). Both the speaker recognition model and the neural vocoder were implemented in 

PyTorch [171]. 
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4.5.2. PPG2speech synthesizer 

We trained and evaluated the proposed VC system on the CSTR VCTK Corpus 

[158], which contains utterances from 109 English speakers with several accents (e.g., 

British, American, Scottish, Irish, Indian). For each speaker, there are on average 300 

utterances, a subset of which have the same linguistic contents across all speakers. In our 

experiments, we divided the corpus into three subsets: a training set, a standard (test 

speakers were seen in training) test set, and a zero-shot set (test speakers were unseen in 

training) test set. The training set consists of 105 speakers. Among these speakers, we 

selected four speakers for standard testing (p227, p228, p240, p256). We used the first 

20 utterances of these speakers as the standard test set, and excluded them from the 

training set. The zero -shot test set consists of the first 20 utterances of 4 speakers (p225, 

p226, p229, p232) that did not appear during training. All the test speakers had a British 

accent. For the standard test set, we considered four VC directions: p227 to p228 (M-F), 

p228 to p240 (F-F), p240 to p256 (F-M), and p256 to p227 (M-M). For the zero -shot 

test set, we also considered four VC directions: p225 to p226 (F-M), p226 to p232 (M-

M), p232 to p229 (M-F), and p229 to p225 (F-F). 

For each utterance, we down-sampled the waveform from 48kHz to 16kHz to 

match the sampling rate of other modules, and then extracted an 80-dim Mel-

spectrogram with a 50ms window and 12.5ms shift. Following the same frame shift, we 

extracted the PPG (collapsed into a 40-dim mono-phone PPG from the 5,816-dim senone 

PPG) and the d-vector (256-dim) for each utterance using the acoustic model and 

speaker recognition model, respectively. 
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We implemented the VC models using TensorFlow7 [172] and trained on a single 

NVIDIA V100 GPU. Hyperparameters 𝛼, 𝛽 were set to 1.0, 0.005 empirically. 

Following [164], we gradually changed 𝜆 in adversarial speaker classifier from 0 to 1 

during the training process as: 

𝜆𝑝 =
2

1 + exp −10 ∙ 𝑝  
 

where 𝑝 is the percentage of the training process. We used a batch size of 64 and an 

Adam Optimizer with a learning rate of 10−4. The model converged after 60,000 steps, 

and the entire training time was around 30 hours. 

4.6. Experiments 

We conducted both objective and subjective experiments under standard (the test 

speakers were seen) and zero-shot conditions (the test speakers were unseen). For 

objective evaluation, we used the Mel-Cepstral Distortion (MCD) [173] between VC and 

the ground-truth target utterances, which is defined as, 

MCD[dB] =
10

ln10
√2∑∑(𝑦𝑑

𝑡 − �̂�𝑑
𝑡 )2

24

𝑑=1

 

𝑡=1

(4.13) 

where �̂�𝑑
𝑡  and 𝑦𝑑

𝑡  are the 𝑑-th Mel-Cepstral coefficient of the 𝑡-th frame of VC speech and 

                                                 

 

 

 

7 Audio samples and source code are available at https://github.com/shaojinding/Adversarial-Many-to-

Many-VC. 
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the time-aligned ground-truth target speech, respectively. Since computing MCD requires 

the ground-truth target speech, we selected a subset of 19 utterances that have the same 

linguistic content.  For subjective evaluation, we conducted two listening tests on Amazon 

Mechanical Turk. In the first test, we asked listeners to rate the acoustic quality using a 5-

point (1-bad, 5-excellent) Mean Opinion Score (MOS). In the second test, we asked 

listeners to rate the similarity between pairs of utterances using a Voice Similarity Score 

(VSS; -7-definitely different speakers, +7 definitely the same speaker) [155]. All 

participants were required to pass a pre-test that asked them to identify different regional 

accents in the United States. Additionally, in each listening test, we used 12 calibration 

utterances to detect if participants were cheating. We excluded ratings of the calibration 

utterances from the data analysis. 

4.6.1. Standard testing 

For standard testing, we compared the proposed adversarial-learning approach 

(denoted as Proposed) against the baseline PPG2speech system in Section 4.4.1 

(PPG2speech). We did not compare it to other zero-shot methods, as our PPG2speech 

baseline shares the same spirit as previous methods but with an advanced network 

structure. To ensure a fair comparison, we kept the encoder and decoder architectures 

identical to the proposed approach. 

Results from the objective and subjective evaluations are summarized in Table 

4.2. In objective evaluations, the proposed method achieved a statistically significant 

lower MCD (8.37) than the baseline (8.47, 𝑝 = 0.01), suggesting the synthesis from the 

proposed approach is closer to the target speech. 
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For the VSS test, 17 participants rated 108 utterance pairs: 32 pairs (16 VC-SRC 

pairs, 16 VC-TGT pairs) for each of the three systems, and 12 calibration utterances8. 

Each pair consisted of a VC utterance and an utterance randomly selected from either the 

source (i.e., VC-SRC pair) or the target speaker (VC-TGT pair). For each utterance pair, 

participants were required to decide whether the two utterances were from the same 

speaker and then rate their confidence in the decision on a 7-point scale. The VSS was 

computed by collapsing the above two fields into a 14-point scale: -7 (definitely 

different speakers) to +7 (definitely the same speaker). As shown in the in Table 4.2, the 

proposed approach received a VSS rating of -6.20 on VC-SRC pairs, and 5.02 on VC-

TGT pairs, which indicated that listeners were confident that VC syntheses and source 

speech were produced by different speakers, and that syntheses and target speech were 

produced by the same speaker, respectively. These scores were significantly better than 

those for the baseline: -5.62 VC-SRC, 4.25 VC-TGT; 𝑝 ≪ 0.001 in both cases, 

indicating that the synthesis from the proposed approach has an identity that is much 

closer to the target speech than the baseline. 

                                                 

 

 

 

8 A VC-SRC pair consists of a VC utterance and an utterance randomly selected from the source speaker 

(SRC), whereas a VC-TGT pair consists of a VC utterance and an utterance randomly selected from the 

target speaker (TGT). 
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In MOS test, 19 participants rated 72 utterances from the three VC systems: 20 

utterances per system, and 12 calibration utterances. These utterances shared the same 

linguistic content across all the systems to ensure a fair comparison. For each utterance, 

participants were required to rate its acoustic quality from 1-bad to 5-excellent. As 

shown in in Table 4.2, participants rate the proposed approach to have a 3.86 MOS, 

which is significantly higher than the baseline (3.77, 𝑝 = 0.03), boosting the synthesis 

acoustic quality. In summary, the proposed system shows significant improvements in 

terms of all three objective and subjective measurements compared to the baseline 

approach, which p[roves the effectiveness of adversarial training scheme. 

4.6.2. Zero-shot testing 

In the second set of experiments, we evaluated our approach under zero-shot 

condition. The zero-shot condition has attracted more attention from real-world 

applications in recent years since it requires little data from each target speaker, which 

saves the users’ time and improves their experiences. For zero-shot testing, we also 

compared the proposed approach against the PPG2speech baseline.  

Results from the objective and subjective evaluation tests are shown in Table 4.3. 

In the MCD test, the proposed method (9.31) marginally outperforms the PPG2speech 

Table 4.2: Objective (MCD, lower the better) and subjective (MOS and 

VSS, higher the better) results under standard setting. All the results are 

shown with 95% confidence interval. 

 

 MCD 
VSS 

MOS 
VC-SRC VC-TGT 

PPG2speech 8.47±0.07 -5.62±0.09 4.25±0.12 3.77±0.06 

Proposed 8.37±0.07 -6.20±0.06 5.02±0.10 3.86±0.05 
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baseline (9.38, 𝑝 = 0.4). In the VSS test, 18 participants rated 76 utterance pairs: 32 

pairs (16 VC-SRC pairs and 16 VC-TGT pairs) for each of the two systems, and 12 

calibration utterances. Each pair consisted of a VC utterance and an utterance randomly 

selected from either the source (i.e., VC-SRC pair) or the target speaker (VC-TGT pair). 

As shown in Table 4.3, participants were quite confident that the syntheses from the 

proposed method and the source speech were produced by different speakers (-6.12 VC-

SRC), and that the syntheses and the target speech were produced by the same speaker 

(4.80 VC-TGT). This result also surpasses the PPG2speech baseline (-5.53 VC-SRC, 

4.17 VC-TGT; 𝑝 ≪ 0.001 in all cases) with statistical significance, suggesting a 

superior voice identity of the proposed approach. 

 

In the MOS test, 19 participants rated 52 utterances from the two VC systems: 20 

utterances per system, and 12 calibration utterances. As shown in Table 4.3, participants 

rated the proposed approach to have a 3.77 MOS, which is significantly higher than the 

ratings of the baseline (3.61, 𝑝 ≪ 0.001).  

To summarize, the proposed approach significantly outperforms the baseline 

regarding all of the measurements, similar to our observations under standard testing 

condition. When comparing the performance of the proposed approach under the two 

Table 4.3: Objective (MCD, lower the better) and subjective (MOS and VSS, 

higher the better) results under zero-shot setting. All the results are shown 

with 95% confidence interval. 

 
MCD 

VSS MOS 

VC-SRC VC-TGT 

PPG2speech 9.38±0.09 -5.53±0.11 4.17±0.21 3.61±0.06 

Proposed 9.31±0.08 -6.12±0.10 4.80±0.20 3.77±0.06 
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conditions, we found that the performance under zero-shot condition is still not as good 

as that under standard condition. A possible explanation is that zero-shot condition 

challenging setting since the test speakers are unseen during training, yet the 

transferability of the speaker embedding is still limited to new speakers. 

4.7. Conclusions and future work 

We have proposed an adversarial learning approach to improve speaker identity 

in non-parallel many-to-many voice conversion. During training, the encoder output is 

consumed by an adversarial speaker classifier, which is optimized to identify the 

corresponding speaker. At the same time, the encoder is optimized to fool the adversarial 

speaker classifier, and therefore, it can produce more speaker-independent linguistic 

representations. We conducted both objective and subjective experiments under standard 

and zero-shot conditions. Results indicate that the proposed method consistently 

improves the speaker identity and acoustic quality of VC syntheses over the baseline 

under both conditions. 

Currently, there is still a gap between the performances under the two conditions. 

As a result, one potential future work is to improve the performance under zero-shot 

condition, which is probably due to the limited transferability of the speaker embedding. 

To improve the transferability of the speaker embedding, we can increase the number of 

training speakers, so that the model can better capture the speaker space. At the same 

time, overfitting is another issue that can reduce the transferability to unseen speakers of 

the model. To address this issue, we can explore the use of relative techniques such as 

dropouts [174] and batch normalization [162] in speaker recognition models. 

 



 

5. ZERO-SHOT FAC BASED ON SEQ2SEQ MODEL: FOREIGN ACCENT 

CONVERSION TO ARBITRARY NON-NATIVE SPEAKERS USING ZERO-SHOT 

LEARNING * 

5.1. Overview 

Foreign accent conversion (FAC) aims to create a new voice that has the voice 

identity of a given second-language (L2) speaker but with a native (L1) accent. Previous 

FAC approaches usually require training a separate model for each L2 speaker and, more 

importantly, generally require considerable speech data from each L2 speaker for 

training. To address these limitations, we propose an approach that can generate accent-

converted speech for arbitrary L2 speakers unseen during training. In the proposed 

approach, we first train a speaker-independent acoustic model on L1 corpora to extract 

bottleneck-features that represent the linguistic content of utterances. Then, we develop a 

speaker encoder and an accent encoder to generate embedding vectors for the desired 

voice identity (L2 speaker’s) and accent (L1 accent), respectively. Lastly, we use a 

sequence-to-sequence model to transform L1 bottleneck-features to Mel-spectrograms, 

conditioned on the L2 speaker embedding and the L1 accent embedding. We conducted 

experiments on the L2-ARCTIC corpus under two testing conditions: the standard FAC 

                                                 

 

 

 

* This chapter is being submitted to the Computer Speech and Language. 
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setting where test L2 speakers were seen during training, and a zero-shot FAC setting 

where test L2 speakers were unseen during training. The proposed system achieves over 

27% relative improvement in accentedness ratings compared to two state-of-the-art FAC 

systems in the standard FAC setting. More importantly, our results show that the 

proposed approach generalizes to the zero-shot FAC setting with no performance loss. 

Therefore, in practical use scenarios (e.g., computer-assisted pronunciation training 

software), our proposed approach can effectively avoid the need to adapt or retrain the 

model, which significantly reduces computations and the users’ waiting time. 

5.2. Introduction 

Foreign accent conversion (FAC) [4] aims to create a new voice that has the 

voice identity of a given L2 speaker and the accent (or pronunciation patterns) of an L1 

speaker. In pronunciation training, FAC can serve as a “golden speaker” for the L2 

speaker to practice with: their own voice, but with a native accent [4-7].  FAC also finds 

applications in movie dubbing [175], personalized text-to-speech (TTS) synthesis [176, 

177], and improving speech recognition performance [178]. A variety of techniques have 

been proposed to perform FAC, including voice morphing [4, 21, 22], frame pairing [23, 

24], articulatory synthesis [25, 26], and sequence-to-sequence (seq2seq) modeling [27, 

28]. However, previous FAC approaches have two major limitations. First, they operate 

in a one-to-one fashion, which requires training a separate model for each pair of L1 and 

L2 speakers. Second, they need a considerable amount of speech data (~1,000 

utterances) for each L2 speaker. Thus, when using these conventional FAC methods in 

real-world applications such as pronunciation training, L2 learners need to record a large 
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number of utterances and then wait for a dedicated model to be trained, which can be 

tedious and demotivating. 

To address this issue, we propose a zero-shot learning [58] approach to FAC that 

can synthesize speech for arbitrary L2 speakers who were unseen during training. Our 

system consists of four independent models: (1) a speaker-independent acoustic model 

that captures the linguistic content of an L1 utterance as a sequence of bottleneck feature 

vectors, (2) a speaker encoder that captures the voice identity of the L2 speaker, denoted 

as a speaker embedding, (3) an accent encoder that captures the desired L1 

pronunciation patterns, denoted as an accent embedding, and (4) a sequence to sequence 

(seq2seq) model that generates a Mel-spectrogram from the sequence of bottleneck 

features, conditioned on the desired speaker and accent embeddings. These components 

can be trained independently, at which point the system can generate accent conversions 

to arbitrary L2 speakers given a few seconds of audio (i.e., enough speech to compute a 

speaker embedding), without the need to have any model re-training or adaptation 

process. 

To our knowledge, ours is the first work to apply zero-shot learning for the task 

of FAC.  Though zero-shot learning has been used for voice conversion [11, 39] and 

voice cloning [89, 179], previous studies [19, 39, 43, 89, 179] have focused exclusively 

on manipulating voice identity, ignoring the speaker’s accent, which holds important 

cues to speaker recognition [180] and speech perception [181-184].  Incorporating 

accent into the conversion process requires changes to the conventional encoder-decoder 

structure of seq2seq models for voice conversion.  Our encoder takes a sequence of L1 
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bottleneck feature vectors as the input, and produces a hidden representation sequence. 

In a conventional voice conversion system [39-42, 45-47, 185], this hidden 

representation sequence is then concatenated with the speaker embedding of the target 

speaker.  In our case, however, the system also concatenates the accent embedding, 

which is treated as an additional independent and controllable factor during synthesis. 

The combined bottleneck/speaker/accent embedding is consumed by a decoder coupled 

with a location-sensitive attention mechanism [163]. During each decoding step, the 

decoder autoregressively predicts a Mel-spectrogram frame based on the output from the 

previous decoding step and a context vector produced by the attention mechanism. 

Finally, the output Mel-spectrogram is converted back into a waveform through either 

the Griffin-Lim algorithm [186] or a separately trained vocoder (e.g., WaveNet [187], 

WaveRNN [170]). 

We thoroughly evaluated the proposed approach on the L2-ARCTIC corpus 

[188]. First, we visualized the speaker and accent embedding distributions for the 

accent-converted speech and natural speech, and the results show that our FAC 

syntheses can successfully capture the L2 voice identity along with an L1 accent. 

Second, we conducted a series of listening tests under two different settings: (1) a 

standard FAC setting, where the test L2 speakers were available during training, and (2) 

a zero-shot FAC setting, which assumes that the test L2 speakers were not available 

during training. Our results show that the proposed system achieves 27% relative 

improvement in accentedness while retaining the acoustic quality and voice identity, 

compared to two state-of-the-art FAC systems in standard FAC settings,. In addition, the 
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proposed system is proven to have no performance loss when we test it under zero-shot 

FAC setting. 

The chapter is organized as follows. Section 5.3 reviews prior approaches to 

foreign accent conversion, many-to-many voice conversion, and sequence-to-sequence 

models. Section 5.4 describes the proposed foreign accent conversion method in detail. 

Section 5.5 provides the experimental setup, including the corpora and implementation 

details. Section 5.6 presents an analysis based on visualizations and two sets of 

subjective evaluations of the proposed method. We discuss the implications of the results 

in Section 5.7. Lastly, we conclude the findings of this work and point out potential 

future directions in Section 5.8. 

5.3. Related work 

5.3.1. Foreign accent conversion 

The problem of foreign accent conversion was initially formulated by Felps et al. 

[4] as the means to provide implicit feedback in computer assisted pronunciation 

training.  Early approaches to FAC [26, 52-54] involved building an articulatory 

synthesizer for the L2 speaker. The articulatory synthesizer was trained to map the 

speaker’s articulatory trajectories (e.g., tongue and lip movements) into his or her acoustics 

features (e.g., Mel Cepstra) using GMMs [26], unit-selection models [52], and DNNs [53]. Once 

the synthesizer was built, it could be driven with articulatory trajectories from an L1 

speaker to synthesize FAC speech. However, these approaches were impractical for 

pronunciation training since collecting articulatory data is expensive and requires 
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specialized equipment9. As a result, later work on FAC has focused on acoustic 

methods, since they only require recording speech with a microphone. Previous acoustic 

methods can be grouped into two categories: frame-pairing methods [23, 24] and 

seq2seq methods [27, 28]. Frame-pairing methods first pair L1 and L2 speech frames 

based on their similarity, and then use a statistical model (e.g., a GMM) to convert from 

L1 frames to their corresponding L2 frames. Aryal and Gutierrez-Osuna [23] first 

proposed a technique to pair L1-L2 frames based on their acoustic similarity (in MFCC 

space), after applying vocal tract length normalization to reduce global differences 

between the L1 and L2 spectra. Following this, Zhao et al.  [24] argued that the L1 and 

L2 frames should be paired based on their linguistic content, and consequently, they 

used Phonetic-PosteriorGram (PPG) similarity instead of MFCC similarity to pair 

acoustic frames. More recently, methods based on seq2seq models have been shown to 

significantly improve synthesis quality. In a previous study [27], we proposed a seq2seq 

PPG-to-Mel synthesizer for FAC. During training, the system learns a seq2seq model to 

convert PPGs to Mel-spectra extracted from utterances of an L2 speaker. During 

inference, the model is driven by PPGs extracted from a reference L1 utterance, which 

then produces FAC synthesis. In related work, Liu et al. [28] proposed a novel 

                                                 

 

 

 

9 Articulatory measurements can be performed via electromagnetic articulography [52], ultrasound imaging 

[55], palatography [56], and more recently real-time MRI [57] 
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recognizer-synthesizer framework to remove the need for a reference L1 utterance. Their 

system trained a speaker recognizer, a multi-speaker text-to-speech (TTS) model, and an 

accent-sensitive automatic speech recognition (ASR) system. During inference, they 

feed L2 Mel-spectra to the ASR system with the corresponding accent, and then feed the 

output of the ASR system and the L2 speaker embedding to the multi-speaker TTS 

model to generate accent-converted utterances. These seq2seq model based FAC 

approaches can convert segmental and prosody features simultaneously, producing 

syntheses with higher speech naturalness and acoustic quality. 

5.3.2. Many-to-many voice conversion 

Foreign accent conversion is related to the more general problem of voice 

conversion (VC) [189, 190], which aims to synthesize a voice that has the linguistic 

content of an utterance from a source speaker and the voice identity of a target speaker. 

Traditional VC approaches use GMMs [11, 37], sparse representations [30, 157], and 

DNNs [12-20] to transform the spectra from a source speaker to that of the target 

speaker. These methods require training a separate model for each pair of source-target 

speakers. More recently, several studies have proposed many-to-many VC approaches 

based on Variational Autoencoders (VAE) [39-44] and the PPG-to-speech synthesizer 

[45-49]. Hsu et al. [39, 50] first proposed to use a VAE for many-to-many VC. Their 

VAE consisted of an encoder and a decoder. During training, the encoder learns a 

speaker-independent latent embedding from input speech signals, and the decoder 

reconstructs the input speech signals given the latent embedding and the corresponding 

speaker embedding. During inference, the speaker embedding is replaced with that of a 
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target speaker to produce a VC synthesis. A number of subsequent studies have been 

conducted to improve performance through various techniques, such as auxiliary 

classifiers [43], WaveNet vocoder adaption [44], and discrete latent spaces [40, 51]. 

Other studies [45-47] have used a PPG-to-speech synthesizer approach to perform many-

to-many VC. The PPG-to-speech synthesizer is a neural network that takes PPGs as an 

input, and predict spectra conditioned on the speaker embedding of the target speaker. 

Early many-to-many VC models used one-hot vectors as the speaker embedding due to 

its simplicity, but recent studies [41, 45-47] have used learned speaker embeddings (e.g., 

i-vector [33], d-vector [34]) to generalize to unseen speakers, which make it possible to 

perform VC in a zero-shot fashion. 

5.3.3. Seq2seq models 

Our seq2seq model was originally proposed by Sutskever et al.  [86] for machine 

translation. The seq2seq model usually has an encoder-decoder architecture. The 

encoder learns a hidden representation sequence from an input sequence, and the 

decoder learns to autoregressively generate the output sequence given the hidden 

representation. To capture local contextual information and handle length mismatches 

between the input and output sequences, an attention mechanism is added between the 

encoder and the decoder. In recent years, there has been growing interest in applying 

seq2seq model to speech synthesis. Wang et al.  [87] first proposed a seq2seq based TTS 

synthesizer (Tacotron), which significantly improved the acoustic quality of the 

syntheses over previous methods. Following this, Shen et al.  [88] proposed Tacotron2, 

which further improved the acoustic quality of Tacotron by using a novel model 
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architecture and a WaveNet vocoder. Jia et al.  [89] extended Tacotron2 to multi-speaker 

TTS by conditioning a speaker embedding on the decoder. Seq2seq model has also been 

applied to voice conversion [17, 48, 49] and foreign accent conversion [27, 28], which 

significantly improved the performance on these tasks compared to conventional 

approaches. 

5.4. Methods 

The proposed FAC system consists of four modules: (1) a speaker-independent 

acoustic model that generates a linguistic representation of an utterance, (2) a speaker 

encoder that captures the voice identity of the desired speaker, (3) an accent encoder that 

captures the desired accent, and (4) a seq2seq model that consumes the previous three 

representations to synthesize Mel-spectrogram for an arbitrary L2 speaker. 

The workflow for training our system is shown in Figure 5.1. The acoustic 

model, speaker encoder, and accent encoder are trained separately, and then are used as 

feature extractors for the seq2seq model. The seq2seq model is trained on a parallel 

corpus with multiple L1 and L2 speakers, capturing the voice characteristics of different 

speakers and accents. In what follows, we define a “source” speaker to be a selected 

canonical L1 speaker, and a “target” speaker to be any L1/L2 speaker. To train the 

seq2seq model, we pair the source speaker with each target speaker. Then, for each pair 

of speakers, we feed source utterances to the speaker-independent acoustic model to 

extract bottleneck features (BNFs), which we assume to capture only the linguistic 

content. Next, we feed an utterance from the target speaker to the speaker encoder and 

the accent encoder, which extract their speaker embedding and accent embedding, 
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respectively. Finally, we train the seq2seq model to convert the source BNFs to the 

target Mel-spectrogram, conditioning on the target speaker’s speaker and accent 

embeddings. 

The workflow during inference is illustrated in Figure 5.2. The system requires a 

source utterance from an L1 speaker and an utterance from the L2 speaker. First, we 

extract the BNFs and an accent embedding from the L1 utterance, and a speaker 

embedding from the L2 utterance. The L1 BNFs and L1 accent embedding encode the 

linguistic content and native accent, respectively, where the L2 speaker embedding 

encodes the voice identity of the L2 speaker. Then, we pass the L1 BNFs, L1 accent 

embedding, and L2 speaker embedding to the seq2seq model, which generates the 

accent-converted Mel-spectrogram. Finally, we train the seq2seq model to convert the 

 

Figure 5.1: Overall training workflow of the proposed FAC approach. Source: a 

selected canonical L1 speaker, Target:  any L1/L2 speaker, BNF: bottleneck 

feature. Each of the modules is trained independently. 
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source BNFs to the target Mel-spectrogram, conditioning on the target speaker’s speaker 

and accent embeddings. 

5.4.1. Speaker-independent acoustic model 

To capture the linguistic content of an utterance, we use the output of the last 

hidden layer of a speaker-independent acoustic model (AM) as BNFs, rather than the 

output of the final layer of the AM, which represent the PPGs (i.e., the probabilities of 

each senone/tri-phone). BNFs contain similar linguistic information as PPGs but have 

much lower dimensionality (e.g., Senone-PPG: 6,024 dimensions; BNF: 256 

dimensions), which avoids the need to perform dimensionality reduction in the seq2seq 

model. 

 

Figure 5.2: Overall inference workflow of the proposed FAC approach. L1: 

native, L2: non-native, BNF: bottleneck feature. 
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Our AM is based on a Factorized Time Delayed Neural Network (TDNN-F) 

[191, 192], a feed-forward neural network acting as a sequential classifier.  Given an 

input acoustic feature vector (i.e., 40-dimensional MFCCs), the TDNN-F produces the 

probabilities of the vector belonging to each senone/triphone (6,024 senones). The 

TDNN-F takes time-delayed input frames as side inputs to its hidden layers to model 

long-term temporal dependencies, concatenated with a 100-dimensional i-vector [92] of 

the corresponding speaker10. Additionally, the TDNN-F uses factorized layers with 

semi-orthogonal constraints as hidden layers and dilated connections between hidden 

layers, which are more efficient during training and inference than recurrent layers due 

to their feed-forward nature [191]. The TDNN-F model is composed of five hidden 

layers. Each of the first four hidden layers has 1,280 neurons, followed by ReLU 

activation and batch normalization [162], whereas the last hidden layer has 256 neurons, 

corresponding to the dimensionality of the BNFs. We train the model through a 

supervised 6,024-way senone classification task. To promote that the AM produces 

speaker-independent BNFs, we train the model on speech data from several thousands of 

speakers (Librispeech corpus [168], 2,484 native English speakers; see Section 5.5.1). 

 

                                                 

 

 

 

10 As noted by Peddinti et al. [192], this allows the model to capture both speaker and environment specific 

information, which is useful for neural network adaption 
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5.4.2. Speaker and accent encoders 

We compute the voice identity and accent using two separate encoders. The 

speaker encoder is built upon a speaker recognition model trained to determine the 

identity of a speaker from an input utterance, whereas the accent encoder is based on an 

accent recognition model trained to recognize accent/dialect patterns (e.g., pronunciation 

and prosody). For this work, we use a convolutional neural network (CNN) based on 

ResNet-34 [193] for both the speaker encoder and the accent encoder. We use the same 

CNN architecture for both models, so we only describe the detailed workflow for 

speaker encoder; the training and inference workflows of the accent encoder can be 

derived similarly. 

The architecture of the speaker encoder is shown in Figure 5.3. The model takes 

300 × 257 in time×frequency magnitude spectrogram segments as inputs. The inputs 

are first fed to a convolution layer containing 64 7 × 7 kernels with 2 × 2 stride, 

followed by a 2 × 2 max-pooling layer. These layers decrease the spatial resolution of 

the feature maps, reducing model complexity and improving training speed. On top of 

them, there are 16 convolution residual blocks, which extract more abstract features. 

Each convolution block consists of two convolution layers with 3 × 3 kernels. The first 

convolution layer in each block has 2 × 2 stride to further decrease the spatial resolution 

of the feature maps. More importantly, each block has a skip connection as an alternative 

path to avoid gradient vanishing in a very deep model. The 16 convolution blocks have 

different numbers of kernels, as highlighted in different colors in Figure 5.3 (Purple: 64 

kernels; Green: 128 kernels; Orange: 256 kernels; Blue: 512 kernels). Next, there is an 
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average pooling layer that produces a 512-dimensional vector, followed by a 256-

dimensional fully-connected layer. All the layers are followed by ReLU activations and 

batch-normalization. 

The model is trained through a supervised speaker-classification task. During 

training, a classifier on top of the 256-dimensional fully-connected layer produces the 

probabilities that the segment belongs to each speaker. The network is then optimized by 

minimizing the cross-entropy loss between the prediction and the target speaker label. 

During inference, we discard the final classifier layer and directly use the 256-

dimensional bottleneck feature as the segment-wise speaker embedding. To obtain 

utterance-level speaker embeddings for a speaker that does not appear during training, 

we divide each test utterance into 300-frame segments with a 150-frame overlap using a 

sliding window, and then we compute the average of these segment-wise embeddings as 

the utterance-level speaker embedding (i.e., d-vectors [34]). 

5.4.3. Seq2seq foreign accent conversion model 

Our proposed seq2seq model is inspired by the text-to-speech Tacotron2 model 

[88]. As shown in Figure 5.4, the seq2seq model has an encoder-decoder architecture. 

 

Figure 5.3: Speaker/accent encoder model architecture. The model is based on 

ResNet-34 [193]. Each convolution block is illustrated as the kernel size and 

channel numbers. “/2” means the layer divides the spatial resolution by 2. 
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During training, inputs to the network consist of triplets of (1) a sequence of BNFs from 

the source (L1) speaker , (2) a speaker embedding of the target (L1 or L2) 

speaker  extracted from the speaker encoder, and (3) the accent embedding 

of the target speaker  extracted from the accent encoder. 𝑇𝑖 is the length of 

the sequence . 𝐷𝐵𝑁𝐹 is the dimensionality of the BNFs (e.g., 256 in this work). 

𝐷 𝑝𝑒𝑎𝑘𝑒𝑟 and 𝐷 𝑐𝑐𝑒𝑛𝑡 are the dimensionalities of the speaker embedding ( ) and accent 

embedding ( ), respectively (both of them are 256 in this work). The ground-truth target 

of the model is a sequence of Mel-spectrogram frames , where 𝑇𝑜 is the 

length of the sequence and 𝐷𝑀𝑒𝑙 is the number of Mel-filterbanks (e.g., 80 in this work). 

First, the encoder accepts a BNF sequence  and produces a hidden representation : 

 

Then, to condition the decoder on the voice identity and the accent of the target speaker, 

we concatenate the target speaker’s speaker embedding and accent embedding to the 

hidden representation: 

 

Finally, the decoder autoregressively predicts the Mel-spectrogram of the target speech 

using the attention context computed based on the concatenated hidden representation: 
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During inference, the inputs to the network are triplets of (1) a sequence of BNFs 

from an L1 speaker , a speaker embedding of an L2 speaker , and an accent 

embedding of an L1 speaker . The network first produces a hidden representation , 

and then , , and  are concatenated and fed to the decoder to produce the 

predicted FAC Mel-spectrogram. We describe each component in the following 

subsections. The hyper-parameters of each component are summarized in Table 5.1. 

Table 5.1: Hyper-parameters of the proposed seq2seq FAC model. 

Block Component Parameters 

Inputs 

BNF 256-dim 

Speaker d-

vector 
256-dim 

Accent d-

vector 
256-dim 

 

 

 

Figure 5.4: Proposed seq2seq FAC model. 
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Table 5.1 Continued. 

Block Component Parameters 

Encoder 

Convolution 

layers 

Three convolution layers 

Convolution kernel size: 5×1 

Stride: 1×1 

Output-dim: 256 

p-Bi-LSTM 

layer 

Two p-Bi-LSTM layers 

256 cells in each direction 

Each layer reduces the time resolution by 2 

Output-dim: 512 

Attention 
Attention 

layer 

Attention-dim: 128 

Attention convolution filters: 32 

Attention kernel size: 31 

Decoder 

 

PreNet 

Two fully-connected layers 

each has 256 ReLU units, 0.5 dropout probability 

Output-dim: 256 

LSTM 

Two LSTM layers 

1,024 cells in each direction 

0.1 dropout probability 

Output-dim: 512 

PostNet 

Five 1-D convolution layers 

Convolution kernel size: 5 

Output-dim: 80 

 

5.4.3.1. Encoder 

The encoder converts a BNF sequence to a hidden representation sequence. The 

original text-to-speech Tacotron2 encoder contains three 1-dimensional convolution 

layers and one Bidirectional Long Short-Term Memory (Bi-LSTM) layer. However, in 

our case, the inputs of the seq2seq model are BNF sequences instead of text embeddings, 

which are usually significantly longer. To capture the high-level phonetic and contextual 

information in an input BNF sequence, we replace the LSTM layer in the encoder with 
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two pyramidal Bidirectional LSTM (p-Bi-LSTM) layers [161]. Each p-Bi-LSTM 

reduces the time resolution by a factor of two, and therefore our encoder produces four 

times shorter hidden representation sequences compared with the input sequences. A 

convolution layer has 512 kernels with 5 × 1 shape in time×frequency and 1 × 1 stride, 

followed by ReLU activation and batch normalization. Each convolution kernel spans 

five BNF frames, which models the local context information. A p-Bi-LSTM layer has 

256 cells in each direction, followed by ReLU activation and batch normalization, 

producing a 512-dimensional hidden representation sequence. 

5.4.3.2. Decoder 

The decoder is an autoregressive recurrent neural network coupled with a local 

sensitive attention mechanism. We use the same decoder architecture as in Tacotron2. 

The decoder accepts the concatenated hidden representation sequences as inputs, and 

produces an 80-dimensional Mel-spectrogram as the prediction of the L2 speech. During 

each decoding step, the predicted Mel-spectrogram frame from the previous step is first 

passed into a pre-net that has two 256-dimensional fully-connected layers with ReLU 

activations: 

 

The pre-net acts as an information bottleneck, which is essential for learning attentions 

[88]. Next, the location-sensitive attention mechanism computes a 128-dimensional 

attention context vector  based on the pre-net output, the concatenated hidden 

representations, and the attention context from the previous step: 
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Following this, the pre-net output is concatenated with the context vector and fed to two 

unidirectional LSTM layers with 256 cells. Then, the output of the second LSTM layer 

is concatenated again with the context vector  and passed through an 80-unit linear 

layer to make a prediction of the 80-dimensional L2 Mel-spectrogram frame: 

 

More importantly, the network also predicts if the generating process should stop at the 

current decoding step at the same time, i.e., a stop token . Finally, to incorporate 

the spectral residual and improve synthesis quality, the predicted Mel-spectrogram is 

passed through a post-net consisting of five convolution layers to predict the residual. 

Each of these layers has 512 kernels with 5 × 1 shape and  1 × 1 stride, followed by 

tanh activation and batch normalization. The residual is added back to the original 

prediction to form the final prediction: 

 

The model is optimized by minimizing the L2 distance between the target Mel-

spectrogram and the prediction before/after the post-net. We also jointly minimize an 

extra cross-entropy loss to learn the stop token for model inference. 

 

where ∙  is the Euclidean distance;  is the sequence of predicted stop tokens, and  is 

the sequence of target stop tokens; 𝜆 is the weight controlling the relative importance of 

the cross-entropy loss. Additionally, we use the teacher-forcing procedure during 
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training by feeding in the correct output instead of the predicted output on the decoder 

side, which has been shown to improve the efficiency of the model training [194]. 

5.5. Experimental setup 

5.5.1. Acoustic model 

We trained the TDNN-F acoustic model using the Librispeech corpus [168], 

which consists of 960 hours of 16 kHz audiobook speech data produced by 2,484 native 

English speakers, the majority being American English. The training set consists of two 

“clean” subsets and a “noisy” subset. We used both sets in training to ensure that the 

BNF was speaker-independent. In addition, we used a subset (200 hours) of the training 

set to train the i-vector extractor. We implemented the training following the official 

“tdnn_1d” recipe of the TDNN-F model in Kaldi11. The trained model achieves 3.76% 

word error rate (WER) on Librispeech test-clean subset and 8.92% WER on the test-

other subset. 

5.5.2. Speaker encoder 

We trained the speaker encoder using the VoxCeleb1 corpus [195], which 

contains 153,516 utterances of 16 kHz speech produced by 1,251 speakers. Specifically, 

we used the training set from the official identification split, which is comprised of 

                                                 

 

 

 

11 https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh 
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138,316 utterances (~300 hours) from these speakers. We extracted 257-dimensional 

magnitude spectrograms with a 25ms window and 10ms shift. We trained the model on a 

single NVIDIA Tesla V100 GPU with a batch size of 128. We used Adam Optimizer 

with an initial learning rate of 10−2, which was annealed down to zero following a 

cosine schedule [196]. The trained model achieves 81.34% Top-1 accuracy and 94.49% 

Top-5 accuracy on the official VoxCeleb1 identification testing set. 

5.5.3. Accent encoder 

We trained the accent encoder using the Speech Accent Archive dataset [197], 

which consists of recordings of the “Please call Stella” paragraph [197] produced by 

speakers in 386 native and non-native English accents. For most of the accents, however, 

the number of speakers is limited, which may degrade the performance of the accent 

encoder. To address this issue, we selected a subset of accents where each accent has at 

least 30 speakers. The resulting subset we used during training has 18 accents, with an 

average of 107 speakers in each accent. The total length of the selected subset is around 

16 hours. We randomly selected 90% utterances from each accent as the training set and 

used the remaining 10% utterances as the testing set. The audio waveforms in the 

original dataset have 8 kHz sampling rate. To match it with other modules, we resample 

them to 16 kHz. Other configurations were the same as that for speaker recognition. Our 

trained model achieves 79.36% Top-1 accuracy and 95.42% Top-5 accuracy on the 

testing set. 
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5.5.4. Seq2seq FAC model 

To evaluate the proposed approach, we conducted experiments with the ARCTIC 

[125] and L2-ARCTIC corpora [188]. We used four native English speakers from 

ARCTIC (BDL, RMS, SLT, CLB) and all 24 non-native English speakers from L2-

ARCTIC. For each speaker, we divided their utterances into three subsets: a training set 

of 1,032 utterances (~1 hour of speech), a validation set of 50 utterances, and a testing 

set of 50 utterances. During training, we set BDL as the source speaker and paired it 

with all 28 speakers, including himself. During inference, we used both BDL (male) and 

CLB (female; used as an unseen L1 speaker for the zero-shot FAC setting) as the native 

reference speakers, and we performed FAC on four L2 speakers whose first languages 

were different: NJS (Spanish, female), TXHC (Mandarin, male), YKWK (Korean, 

male), and ZHAA (Arabic, female). 

The original L2-ARCTIC audio waveforms have a 44.1 kHz sampling rate, so we 

resampled them to 16 kHz to match the ARCTIC recordings. We extracted 80-

dimensional Mel-spectrogram with a 25ms window and 10ms shift. Following the same 

frame shift, we extracted BNFs for each utterance using the acoustic model (Section 

5.4.1). In addition, we extracted utterance-level speaker and accent d-vectors from the 

speaker encoder and accent encoder, respectively. We implemented the model using 

TensorFlow [172] and trained it on a single NVIDIA Tesla V100 GPU. The 

hyperparameter 𝜆 (eq. 8) in the loss function was set to 0.005 empirically. We set the 

batch size to 48, and we used an Adam Optimizer with an initial learning rate of 10-3, 

which was then annealed down to 10-5 following exponential scheduling. The model 
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converged after 200,000 steps, and the entire training time was around 100 hours. 

During model inference, we used a separately trained speaker-independent WaveRNN 

[170] vocoder to invert the Mel-spectrogram back to the time-domain waveform. We 

trained the WaveRNN model12 on the Librispeech dataset. Audio samples from this 

work can be found at https://shaojinding.github.io/samples/fac-to-arbitrary-speaker/. We 

intend to open-source our code after this work has been peer-reviewed. 

5.6. Results 

Our experiments are comprised of a t-SNE [198] visualization and two sets of 

subjective evaluations. In the t-SNE visualization, we visualized the speaker and accent 

embedding distributions for the accent-converted speech and natural speech to 

qualitatively evaluate the voice identity and the accentedness of the FAC syntheses. In 

the first set of subjective evaluation, we tested the system when the test L1 and L2 

speakers are seen during training (standard FAC setting) and compared it against two 

state-of-the-art FAC systems [27, 28]. We also tested whether our system could be used 

in the reverse direction, i.e., to impart a non-native accent to a native speaker’s voice. In 

the second set of subjective evaluation, we explored the effectiveness of the proposed 

method when the test L1 and L2 speakers were unseen during training (zero-shot FAC 

                                                 

 

 

 

12 We use the open-source implementation at https://github.com/fatchord/WaveRNN 

https://shaojinding.github.io/samples/fac-to-arbitrary-speaker/
https://github.com/fatchord/WaveRNN
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setting). Also, we characterized the performance of the proposed method as a function of 

the number of available L2 test utterances during inference, which were used to extract 

the L2 speaker’s voice identity footprint, and we compared it against a system that uses 

these utterances to finetune a pre-trained FAC system to provide more insights between 

the choices between zero-shot learning model and finetuning. 

5.6.1. Visualization of speaker and accent embedding spaces 

First, we visualized the speaker and accent embedding spaces to provide a 

qualitative and intuitive explanation of how our proposed system operates. For this 

purpose, we used t-distributed stochastic neighbor embedding (t-SNE) [198] to visualize 

the embeddings. We first visualized the speaker and accent embeddings of 20 FAC 

utterances for TXHC, a male Mandarin speaker. We used the system in the zero-shot 

condition when both L1 and L2 speakers were unseen (see Section 5.6.3.1) to generate 

the syntheses, since it acts as a performance lower-bound for all our systems, and it can 

also provide insights for zero-shot FAC. We also plotted the embeddings of natural 

speech from 10 L1 and L2 speakers as references (20 utterances for each speaker). 

Results are shown in Figure 5.5. We use colors and shapes to represent speaker and 

accent, respectively (e.g., we use blue for BDL speaker and diamond for L1 accent). In 

general, speaker embeddings of utterances from the same speaker form a cluster, and the 

boundary between different clusters are clear. Similarly, accent embeddings from 

speakers with the same accent form a cluster, verifying the correctness of our speaker 

and accent encoder. In terms of FAC syntheses, their speaker embeddings are distributed 

in the cluster of TXHC, and the accent embeddings lie in the clusters of L1 speakers 
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(BDL and CLB). These visualizations indicate that the FAC syntheses can successfully 

capture the voice identity of TXHC and an L1 accent. 

We also conducted the same visualization on a “reverse” FAC task [24, 199], 

where the goal was to synthesize speech with the voice identity of a given L1 speaker 

but with an L2 accent. This is a straightforward process in our system, since we only 

need to change the inputs of the seq2seq model to use an L2 accent embedding and an 

L1 speaker embedding during inference. Here, we synthesize a voice that has the voice 

identity of CLB but with an L2 (Mandarin) accent. As shown in Figure 5.6, the speaker 

embeddings of reverse FAC syntheses lie in the cluster of CLB, whereas the accent 

embeddings lie in the cluster of Mandarin speakers (TXHC and LXC), indicating that 

the reverse FAC syntheses have a voice identity of CLB and a Mandarin accent. 

 

Figure 5.5: Speaker and accent embedding visualization of FAC syntheses for 

TXHC using t-SNE. Left: speaker embedding; right: accent embedding. Colors 

and shapes represent speaker and accent, respectively. Speakers in the legend are 

annotated with gender and accent. L1: native accent; SP: Spanish accent; CN: 

Mandarin accent; KR: Korean accent; AB: Arabic accent. 
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5.6.2. Subjective evaluations under standard FAC setting 

In the first set of subjective evaluations, we evaluated the performance of the 

system under the standard FAC setting, i.e., the test L1 and L2 speakers were seen 

during training. During training, we used the union of the training sets of all 28 speakers. 

During inference, we used BDL as the L1 speaker, who then had been “seen” during 

training. First, we compared the proposed approach against two state-of-the-art FAC 

approaches: 

 Baseline1: the system proposed by Zhao et al. [27], a one-to-one FAC approach 

based on seq2seq model. This baseline system trains a seq2seq PPG-to-speech 

synthesizer for each L2 speaker, and drives the synthesizer with PPGs extracted 

 

Figure 5.6: Speaker and accent embedding visualization of reverse FAC 

syntheses (CLB with a Mandarin accent) using t-SNE. Left: speaker embedding; 

right: accent embedding. Colors and shapes represent speaker and accent, 

respectively. Speakers in the legend are annotated with gender and accent. L1: 

native accent; SP: Spanish accent; CN: Mandarin accent; KR: Korean accent; 

AB: Arabic accent. 
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from an L1 speaker. As such, the baseline system requires training separate models 

for each L2 speaker.  

 Baseline2: the system proposed by Liu et al. [28], a reference-free many-to-many 

FAC approach based on a novel recognizer-synthesizer architecture. The system 

is trained on 105 speakers from CSTR VCTK dataset [158]. Audio samples were 

produced by feeding the test utterances through their system, which is provided as 

a courtesy by Liu et al. Due to the implementation differences between the 

systems, we conducted two post-processing steps to ensure a fair comparison. 

First, as the accent conversion model of Liu et al. was trained on VCTK speakers, 

the stop-token predictions on L2-ARCTIC test utterances are not robust, 

occasionally resulting in a few seconds of white noise at the end of speech in accent 

conversion syntheses. To solve this issue, we manually removed the trailing white 

noises in these test utterances. Second, we resampled the syntheses of Liu system 

from 22.05 kHz to 16 kHz to make the sampling rate be consistent with other 

systems. 

We conducted listening tests through Amazon Mechanical Turk13 to rate three 

perceptual attributes of the synthesized speech: 

                                                 

 

 

 

13 https://www.mturk.com 
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 Accentedness: The test asked participants to rate the degree of foreign 

accentedness of each utterance in a 9-point scale (1-no foreign accent; 9-very 

strong foreign accent), which is commonly used in the pronunciation literature 

[200]. Participants were told that the native accent in this task was General 

American. 

 Acoustic quality: The test asked participants to rate the acoustic quality of each 

utterance through a standard 5-point Mean Opinion Score (MOS; 1-bad, 5-

excellent). 

 Voice identity: The test asked participants to rate the voice similarity between the 

FAC syntheses and the original L2 speech through a 14-point Voice Similarity 

Score (VSS) [155]. For each FAC-L2 utterances pair, participants were required 

to decide whether the two utterances were from the same speaker and then rate 

their confidence in the decision on a 7-point scale (1: not confident at all; 3: 

somewhat confident; 5: quite a bit confident; 7: extremely confident). The VSS 

was computed by collapsing the above two fields into a 14-point scale: -7 

(definitely different speakers) to +7 (definitely the same speaker). To minimize the 

influence of accent, the two utterances had different linguistic content and were 

played in reverse, following [4]. 

Instructions were given in each test to help participants focus on the target speech 

attribute. For example, in the accentedness test, we asked participants to “Try to ignore 

the audio quality (noise, distortions). Please focus only on the speaker's accent, for 

example, their pronunciation, rhythm, and fluency”. Test utterances were randomly 
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selected from our test set, and the presentation order was counter-balanced. Additionally, 

in each listening test, we included five calibration utterances to detect if participants 

were cheating. We excluded ratings of the calibration utterances from the data analysis 

[201]. We recruited 18 participants for each listening test. All participants resided in the 

United States, and they passed a qualification test that asked them to identify different 

regional accents in the United States. 

5.6.2.1. Comparison to the baseline system 

Accentedness. Participants rated 20 utterances per system (5 utterances for each 

test L2 speaker). These utterances shared the same linguistic content across all the 

systems to ensure a fair comparison. Additionally, participants also rated the same set of 

sentences from the original L1 and L2 speakers as a reference. Results are shown in the 

second column of Table 5.2. Our proposed system received an average 3.39 

accentedness score, which is significantly better (i.e., lower) than both baselines 

(Baseline1: 4.63, 27% relative improvement, 𝑝 ≪ 0.001; Baseline2: 6.25, 46% relative 

improvement, 𝑝 ≪ 0.001). The proposed system received significantly lower ratings of 

foreign accentedness than the original L2 utterance (7.11), although it still did not reach 

those of the original L1 utterance (1.06). These results suggest that our proposed seq2seq 

FAC model can effectively reduce foreign accentedness from the L2 speech. 

Acoustic quality. As shown in the third column of Table 5.2, the proposed 

method achieved an MOS of 3.51, which is comparable to Baseline1 (3.47, 𝑝 > 0.05) 

but significantly higher than Baseline2 (3.12, 13% relative improvement, 𝑝 ≪ 0.001). 

The original L1 speech received the highest MOS (4.90), followed by the original L2 
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speech (3.67).  Note that the MOS ratings of the proposed system are closer to those of 

the original L2 speech than to the original L1 speech, possibly due to the raters 

confounding acoustic quality with intelligibility; we discuss this issue in Section 5.7. 

Thus, the proposed system achieves similar (or better) acoustic quality as the baseline 

systems, but unlike them does not require training a separate model for each new test L2 

speaker. 

Voice identity. Participants rated 20 pairs of utterances per system (5 pairs of 

utterances for each test L2 speaker). Each pair consisted of a FAC utterance and an 

utterance randomly selected from the L2 speaker. Voice identity results are shown in 

Table 5.3. The proposed system achieved a 5.05 VSS, indicating that the participants 

were “quite confident” that the FAC syntheses and the L2 speech were produced by the 

same speaker. These ratings are comparable to those of Baseline1 (5.05 VSS, 𝑝 > 0.5) 

and significantly higher than those of Baseline2 (3.81 VSS, 33% relative improvement, 

Table 5.2: Accentedness (1-no foreign accent, 9-very strong foreign accent) 

results and acoustic quality (1-bad, 5-excellent) results under standard FAC 

setting. All the results are shown as average ± 95% confidence intervals. 

 Accentedness Acoustic quality 

Original L2 7.11 ± 0.21 3.67 ± 0.28 

Original L1 1.06 ± 0.12 4.90 ± 0.10 

Baseline1 4.63 ± 0.10 3.47 ± 0.14 

Baseline2 6.25 ± 0.39 3.12 ± 0.13 

Proposed 3.39 ± 0.14 3.51 ± 0.15 
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𝑝 < 0.001).  It was worth noting that the L1 speaker in Baeline1 had the same gender as 

the L2 speaker, whereas the proposed system used the same L1 speaker for all L2 

speakers. As a result, syntheses from the proposed system included both intra (same)-

gender FAC pairs and inter (different)-gender FAC pairs, the latter being more 

challenging due to the differences in prosody and pitch range. Although the VSS on 

inter-gender pairs (4.80) was lower than that on intra-gender pairs (5.29) and Baseline1, 

the difference was not significant (𝑝 = 0.14). These results suggest that the proposed 

system can generate FAC syntheses that greatly resemble the voice identity of L2 

speakers of any gender, using a canonical reference L1 speaker. 

5.6.2.2. Performance on reverse FAC 

To evaluate our system on the reverse FAC task, we synthesized testing 

utterances using the accent embeddings from NJS, TXHC, YKWK, and ZHAA, and the 

speaker embedding from BDL. Table 5.4 shows the accentedness, acoustic quality, and 

Table 5.3: Voice identity results. Voice Similarity Score ranges from -7 

(definitely different speakers) to +7 (definitely the same speaker) under 

standard FAC setting. All the results are shown as average ± 95% confidence 

intervals. 

 Voice Similarity Score 

Baseline1 5.05 ± 0.28 

Baseline2 3.81 ± 0.29 

Proposed (All pairs) 5.05 ± 0.31 

Proposed (Intra-gender) 5.29 ± 0.30 

Proposed (Inter-gender) 4.80 ± 0.35 
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voice identity results of the reverse FAC evaluation. Our proposed system received a 

5.58 rating of accentedness, much closer to that of the original L2 speech (7.11) than to 

the original L1 speech (1.06), indicating that our approach was able to impart an L2 

accent to utterances from an L1 speaker. The proposed system also received a 3.24 

MOS, significantly lower (𝑝=0.02) than the MOS of the “direct” FAC syntheses (3.51), 

a result that is likely due to the correlation between acoustic quality and intelligibility –

see Section 5.6.2.1. Finally, the proposed system received a 4.91 VSS, indicating that 

raters were “quite confident” that the reverse FAC syntheses and the L1 speech were 

produced by the same speaker; we found no significant differences between the voice 

identity ratings of reverse and direct FAC syntheses. Thus, we can conclude that the 

proposed approach can also operate in the reverse direction, generating non-native 

utterances with the voice identity of a native speaker. 

5.6.3. Subjective evaluations under zero-shot FAC setting 

In the second set of subjective evaluations, we evaluated the proposed system 

under the zero-shot FAC setting, where the L1 speaker and/or the L2 speaker were 

Table 5.4: Accentedness (1-no foreign accent, 9-very strong foreign accent) 

results, acoustic quality (1-bad, 5-excellent) results, and voice identity results (-

7-definitely different speakers, +7-definitely the same speaker) of reverse foreign 

accent conversion under standard condition. All the results are shown as 

average ± 95% confidence intervals. 

 Accentedness Acoustic quality Voice identity 

Original L2 7.11 ± 0.21 3.67 ± 0.28 - 

Original L1 1.06 ± 0.12 4.90 ± 0.10 - 

Proposed 5.58 ± 0.35 3.24 ± 0.17 4.91 ± 0.34 
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unseen during training. The zero-shot FAC setting is appealing for real-world 

applications since it requires minimal data from the target speaker. First, we compared 

the performance of the proposed approach when using seen/unseen L1 or L2 speakers 

during inference. Then, we characterize the performance of the proposed method as a 

function of the number of available L2 utterances. 

5.6.3.1. Comparing different conditions in zero-shot foreign accent conversion 

We considered four different conditions in this experiment, as summarized in 

Table 5.5 In condition SS, the L1 speaker and the L2 speaker were both seen during 

training. Note this condition is the same as the system evaluated in Section 5.6.2.1, so it 

serves as a best-case scenario. In condition US, the L1 speaker was unseen during 

training, and the L2 speaker was seen during training. In condition SU, the L1 speaker 

was seen during training, and the L2 speaker was unseen during training. Finally, in 

condition UU, the L1 speaker and the L2 speaker were both unseen during training. 

Thus, condition UU was the most challenging of the four. 

To ensure that the test speakers were unseen during training, we trained four 

models using different training sets. In Condition SS, we used the same model as in the 

standard FAC condition. In Condition US, we excluded CLB from the training set and 

used it as the test L1 speaker. In Condition SU, we excluded the four test L2 speakers 

Table 5.5: The four conditions in zero-shot FAC experiment 

  L1 speaker 

  Seen Unseen 

L2 speaker 
Seen Condition SS Condition US 

Unseen Condition SU Condition UU 
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from the training set. In Condition UU, we excluded the four test L2 speakers and CLB 

from the training set, and we also used CLB as the test L1 speaker. For unseen L1/L2 

speakers, we used the 50 utterances from the test set to generate the accent/speaker 

embedding. As before, we conducted three types of listening tests through Amazon 

Mechanical Turk to rate the accentedness, acoustic quality, and voice similarity of the 

synthesized speech. In addition, we kept the participants the same as those in the first 

experiment, so that the results are comparable between different experiments (e.g., 

participants in the accentedness test for the two experiments were the same). 

Results from the accentedness, acoustic quality, and voice identity tests are 

shown in Table 5.6. We found no statistically significant differences between condition 

SS (best-case scenario) and the three more challenging conditions (US, SU, UU); 𝑝 >

0.5 in all cases. This result suggests that the proposed system generalizes to unseen L1 

or (and) L2 speakers during inference without any degradation in accentedness, acoustic 

quality, and voice identity. 

Table 5.6: Accentedness (1-no foreign accent, 9-very strong foreign accent) 

results, acoustic quality (1-bad, 5-excellent) results, and voice identity results (-7-

definitely different speakers, +7-definitely the same speaker) under zero-shot 

FAC condition. All the results are shown as average ± 95% confidence intervals. 

 Accentedness Acoustic quality Voice identity 

Condition SS 3.39 ± 0.15 3.51 ± 0.14 5.15 ± 0.28 

Condition US 3.33 ± 0.26 3.47 ± 0.13 4.99 ± 0.30 

Condition SU 3.35 ± 0.25 3.50 ± 0.12 4.92 ± 0.28 

Condition UU 3.30 ± 0.26 3.43 ± 0.12 4.59 ± 0.34 
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5.6.3.2. Influence of the number of available L2 utterances 

For practical FAC applications, it is important to understand the minimum 

amount of data needed from a target speaker. Requiring L2 learners to record a large 

amount of speech before they can hear their “golden speaker” voice can be tedious and 

demotivating. On the other hand, training the system with insufficient speech data might 

significantly degrade performance. To characterize the data requirements of the system 

under zero-shot FAC condition, we measured the performance of the UU codition 

(unseen L1 speaker and unseen L2 speaker) as a function of the number of available L2 

utterances.  We used the UU condition since it is the most flexible for real-world 

applications (e.g., computer-assisted pronunciation training), and also the most 

challenging, which provides a lower bound of the performance for the proposed 

approach. For the results shown in Table 5.7, condition UU used 50 test L2 utterances to 

produce the speaker embedding during inference. For this experiment, we reduced the 

number from 50 to 1 (𝑁 = 50, 20, 10, 5, 1) and re-evaluated system performance. 

Results are shown in Table 5.7. Reducing the number of utterances from 50 to 1 

has no impact on any of the three perceptual measures (𝑝 > 0.5 in all cases). These 

results indicate that as little as a single utterance (~3 seconds of speech) is sufficient to 

generate accent conversions for a new unseen L2 speaker, with no impact on 

performance. To some extent, this is to be expected since the test utterances are only 

used to compute the speaker embedding.  Thus, we also examined whether the test 

utterances could instead be more beneficial if they were used to finetune a pre-trained 
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FAC system. Starting with a pre-trained UU model, we finetuned the model on each 

unseen L1-L2 speaker pair (i.e., CLB-NJS, CLB-TXHC, CLB-YKWK, CLB-ZHAA) 

with 𝑁 = 50, 20, 10, 5, 1 test utterances, resulting in 20 finetuned models (4 speakers; 5 

models with different number of training utterances for each speaker) for the unseen L2 

speakers. Results are also shown in Table 5.7. We observe performance degradations in 

all three measurements when reducing the number of utterances from 50 to 1. When 

there are 50 test utterances, the finetuned system shows a marginal improvement 

compared to the proposed system (i.e., without finetuning), though the differences are 

not statistically significant (Accentedness: 3.03 vs. 3.30, 𝑝 = 0.03; Acoustic quality: 

3.54 vs. 3.43, 𝑝 = 0.18; Voice identity: 4.97 vs. 4.59, 𝑝 = 0.25). When decreasing the 

number from 50 to 20, the proposed system achieves comparable performance as the 

finetuned system (𝑝 > 0.5). Surprisingly, fine-tuning the systems with fewer than 20 

utterances degrades performance as compared to the proposed system. At the extreme 

case (with only 1 utterance), the proposed system significantly outperforms the finetuned 

system in all three measurements (Accentedness: 4.72  vs. 3.31, 𝑝 < 0.001; Acoustic 

quality: 3.24 vs. 3.43, 𝑝 = 0.01; Voice identity: 3.73 vs. 4.57, 𝑝 < 0.001).  These results 

verified the robustness of our proposed approach in zero-shot condition, and they also 

provide insights regarding the choice between zero-shot learning models and finetuning 

models in FAC.  
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5.7. Discussion 

We have proposed a many-to-many system that can convert utterances from a 

source speaker to appear as if someone else, and with a different accent, had produced it. 

We thoroughly evaluated the system through a visualization and a series of perceptual 

listening experiments. In the visualization, we used t-SNE to visualize the speaker and 

accent embedding of the FAC syntheses and reverse FAC syntheses. Both visualization 

results show that the proposed method can capture the desired voice identity and accent. 

Another interesting question that we would like to investigate here is whether the 

speaker embedding also carries accent cues, as these two aspects are closely related in 

the perception of speech [181-184]. If the speaker embedding is still entangled with 

accent information, the FAC syntheses tend to have an incorrect accent that is introduced 

by speaker embeddings. To examine it, we visualize speaker embeddings of natural 

utterances from 16 speakers with 4 accents, as shown in Figure 5.7. According to the 

Table 5.7 : Accentedness (1-no foreign accent, 9-very strong foreign accent) 

results, acoustic quality (1-bad, 5-excellent) results, and voice identity results (-

7-definitely different speakers, +7-definitely the same speaker) with different 

numbers of available L2 (non-native) utterances during inference. All the 

results are shown as average ± 95% confidence intervals. 

#L2 

utterances 

Accentedness Acoustic quality Voice identity 

Proposed Finetuned Proposed Finetuned Proposed Finetuned 

50 3.30 ± 0.26 3.03 ± 0.24 3.43 ± 0.12 3.54 ± 0.11 4.59 ± 0.34 4.97 ± 0.27 

20 3.30 ± 0.22 3.47 ± 0.18 3.45 ± 0.11 3.48 ± 0.11 4.68 ± 0.30 4.65 ± 0.23 

10 3.34 ± 0.26 3.84 ± 0.18 3.44 ± 0.12 3.46 ± 0.11 4.59 ± 0.29 4.06 ± 0.26 

5 3.32 ± 0.23 4.58 ± 0.10 3.43 ± 0.11 3.38 ± 0.10 4.42 ± 0.33 3.49 ± 0.34 

1 3.31 ± 0.25 4.72 ± 0.08 3.43 ± 0.12 3.24 ± 0.13 4.57 ± 0.29 3.73 ± 0.35 
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figure, we cannot find any adjacency pattern between the speakers with the same accent. 

Instead, there is an obvious gap between the male speakers and female speakers. These 

observations suggest that speaker embedding mainly encodes information such as voice 

timbre and pitch, and there is no evidence for the entanglement between speaker and 

accent cues. 

Next, we evaluated the proposed approach through three perceptual listening 

tests in standard FAC setting and compared it against two state-of-the-art FAC systems. 

Compared to the first baseline [27], the proposed system achieves significantly better 

(i.e., lower) ratings of foreign accentedness (3.39 vs. 4.63; 𝑝 < 0.001), and similar 

acoustic quality (3.51 vs. 3.47; 𝑝 > 0.5) and voice identity (5.05 vs. 5.05; 𝑝 > 0.5) 

ratings, an important finding since the first baseline system builds a dedicated model for 

 

Figure 5.7: t-SNE visualization of the speaker embeddings from 16 speakers with 

4 accents. Colors and shapes represent speaker and accent, respectively. . 

Speakers in the legend are annotated with gender and accent. L1: native accent; 

SP: Spanish accent; CN: Mandarin accent; KR: Korean accent; AB: Arabic 

accent. 
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each pair of L1-L2 speakers, which one would expect would help capture voice identity 

more faithfully than a many-to-many system such as the one we have proposed. 

Compared to the second baseline [28], the proposed system achieves preferable ratings 

in all measurements (accentedness: 3.39 vs. 6.25; acoustic quality: 3.51 vs. 3.12; voice 

identity: 5.05 vs. 3.81; 𝑝 < 0.001 in all cases). This comparison is necessary since the 

second baseline system is also a many-to-many system as ours, but instead of using L1 

reference speech to encode the linguistic content and accent during inference, the 

baseline system uses L2 speech to encode the linguistic content and has no module to 

explicitly encode the accent. As suggested by the results, although the baseline system 

can avoid the need of L1 reference speech, the quality of their FAC syntheses is 

significantly inferior to ours. As a result, the linguistic content and accent carried by 

reference L1 speech are key to the integrity of FAC syntheses. Meanwhile, we believe 

that the use of L1 speech reference in FAC systems will not become a burden of CAPT, 

since a considerable number of L1 speech corpora are publicly available (e.g., 

Librispeech [168], VoxPopuli [202]). We also evaluated the proposed system on a 

reverse FAC task, where the goal was to impart a non-native accent to a native utterance. 

The results corroborates to our visualizations, suggesting that the reverse accent 

conversion can capture an L2 accent well while preserving the L1 speaker’s voice 

identity. Collectively, results from the direct and reverse FAC tasks indicate that the 

proposed system can disentangle linguistic content, voice identity, and accent in speech 

signals, instead of simply memorizing mappings between different speaker pairs. 
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The results of the perceptual listening tests in standard FAC setting lead to 

several additional observations. First, though the first baseline and the proposed system 

have similar architectures (i.e., both are based on a seq2seq model), the proposed system 

achieved significantly better (lower) ratings of accentedness. A possible explanation for 

this result is that the baseline system was trained using only utterances from an L2 

speaker, i.e., at no point during training does it see L1 utterances. Thus, if the L2 speaker 

has systematic substitution or deletion errors (e.g., Mandarin speakers from certain areas 

systematically substitute /SH/ with /S/), the correct pronunciations will be missing in 

their utterances. When the model is driven by L1 PPGs during inference, it has to 

interpolate these missing pronunciations. The interpolation may not be accurate, and 

therefore, the syntheses could still retain considerable segmental errors. In contrast, the 

proposed system avoids this potential issue since it is trained using both L1 and L2 

speech. Second, when evaluating voice identity, previous studies on FAC [23, 24, 27] 

generally use a reference L1 speaker that had the same gender as the target L2 speaker to 

avoid mismatches in pitch range. In contrast, our results show that our system can 

achieve similar voice identity ratings for intra-gender pairs and inter-gender pairs. 

Therefore, our system addresses these limitations and makes it possible to build a 

universal model for arbitrary L2 speakers using only a single reference L1 speaker. 

Finally, though the system achieves ratings of acoustic quality that are lower than those 

of the original L1 speech, the ratings are comparable to those of the original L2 speech. 

A possible explanation suggested by prior literature [4] is that the native listeners 
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associate acoustic quality with intelligibility, and they may be influence by the 

intelligibility and provide lower ratings for non-native speech. 

Lastly, we evaluated the proposed approach through the same perceptual 

listening tests in zero-shot FAC setting. First, we compared all four combinations in 

which the L1 speaker and L2 speakers were seen/unseen during training. Our results 

show that there are not significant differences among the four conditions in terms of 

accentedness, acoustic quality, or voice identity. Thus, the proposed system performs 

equally well under both standard FAC settings and any zero-shot FAC settings, which 

suggests that it can generalize to unseen L1 and L2 speakers without the need to re-train 

or finetune the model. Second, we characterized the performance of the system as a 

function of the number of available L2 utterances. Our results show that the 

accentedness, acoustic quality, and voice identity were not statistically significantly 

different when reducing the number of test utterances from 50 to 1, indicating that the 

system can retain its performance even using only one utterance (around three seconds 

of speech) from an arbitrary L2 speaker. Compared to previous FAC approaches, our 

approach avoids the need to collect a large corpus from testing L2 speakers (e.g., the 

users of computer-assisted pronunciation training software [203]), improving user 

experience and pronunciation training efficiency. Additionally, we also used these test 

utterances to finetune a pre-trained FAC system to see if finetuning would provide extra 

performance gains. Starting with 50 test utterances, we do observe marginal performance 

gain from the finetuning. However, when reducing the number of utterances from 50 to 

1, the performance of the finetuned system starts to degrade and becomes inferior to the 
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proposed system with 20 or fewer utterances. A possible reason to it is that the model 

overfits to a few utterances that were used for finetuning, and therefore the model loses 

generalizability to the test utterances, resulting in inferior performance.  

5.8. Conclusion 

In this paper, we propose a system that can generate accent conversion for any 

L2 speaker (seen or unseen). Our proposed approach is in contrast to most of existing 

FAC approaches, which require building a separate model for each L2 speaker. The 

proposed approach first uses separately trained models to extract L1 bottleneck features, 

L1 accent embeddings, and L2 speaker embeddings. Then it uses a seq2seq model to 

transform the L1 bottleneck features to accent-converted Mel-spectrogram, conditioned 

on an L1 accent embedding and L2 speaker embedding. Our results suggest that the 

proposed system can successfully transform L1 speech to match the voice identity of an 

L2 speaker while using a small amount of data from the L2 speaker. 
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6. APPLICATION OF VC/FAC ALGORITHMS: GOLDEN SPEAKER BUILDER–AN 

INTERACTIVE TOOL FOR PRONUNCIATION TRAINING* 

6.1. Overview 

The type of voice model used in Computer Assisted Pronunciation Instruction is 

a crucial factor in the quality of practice and the amount of uptake by language learners. 

As an example, prior research indicates that second-language learners are more likely to 

succeed when they imitate a speaker with a voice similar to their own, a so-called 

“golden speaker”. This manuscript presents Golden Speaker Builder (GSB), a tool that 

allows learners to generate a personalized “golden-speaker” voice: one that mirrors their 

own voice but with a native accent. We describe the overall system design, including the 

web application with its user interface.  Next, we present results from a user study in a 

language-instruction setting and collected their comments to GSB, which show that 

practising with GSB leads to improved fluency and comprehensibility. We suggest 

reasons for why learners improved as they did and recommendations for the next 

iteration of the training. 
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An interactive tool for pronunciation training," in Speech Communication, vol, 115, 2019, pp. 51-66. DOI: 
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6.2. Introduction 

Pronunciation teaching often includes practice with a teacher, who can guide 

learners individually and provide feedback in the correct manner and amount when 

necessary [204]. Yet this is often time- consuming and expensive when the educational 

institutions’ benefits are taken into consideration. Additionally, this does not match up 

well with the way that teachers usually approach pronunciation teaching. Research 

shows that most teachers approach pronunciation teaching in an ad-hoc manner, that is, 

they address pronunciation issues mostly in presence of a salient error or an error 

causing a communication problem. This is mostly either because teachers do not have 

sufficient training [205] or self-confidence [206, 207] in pronunciation teaching. 

Another common belief among teachers is that pronunciation improvement will take 

care of itself with sufficient input and it does not require teaching in the way that other 

language skills do. This is a belief that was motivated by the principles of 

communicative language teaching which emphasized fluency over accuracy [208]. 

However, providing instruction and feedback on immediate production in 

pronunciation teaching is an essential pedagogical requirement for learners’ 

improvement, even though it can demand extensive instructional interventions [209]. 

One solution to the lack of time and training of teachers is computer-assisted 

pronunciation training (CAPT) systems, which have been utilized to support learners to 

study autonomously and help teachers provide learners with individual feedback without 

using large amounts of time in class [210-213].  CAPT may also be motivating for many 

learners, both because of their interest in technology and because of learning preferences 
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that make working with a computer program more comfortable than interacting with a 

real person. CAPT gives learners the chance to work on their pronunciation in a stress-

free environment, at their own time and pace. For instance, pronunciation is a skill that 

may require extensive listening and repetition. Some learners may feel uncomfortable 

about asking for a repetition in class more than once, but with a CAPT program it is 

easier to make use of extensive repetition [214]. All said, CAPT offers great promise for 

individualized pronunciation instruction, more consistent practice, and greater comfort in 

learning [215]. 

With advancements in speech technologies such as automatic speech recognition 

(ASR) and speech synthesis, CAPT can also provide practice opportunities that a face-

to-face class cannot. For example, the use of speech visualizations that adapt to each 

person’s speech [216], the use of multiple voices in perceptual training [217-219], or the 

use of personalized voices [8] all provide learning opportunities that classroom 

pronunciation training cannot.  The later idea (i.e., personalized voices), has resurfaced 

several times in the CAPT literature. It was first proposed nearly thirty years ago by 

Nagano and Ozawa [9]. In their pioneering study, Japanese learners were asked to 

practice with a model of their own voice that had been modified to match the prosody of 

a reference English speaker.  Post-training utterances from these learners were rated as 

more native-like than those for a second group of learners who instead had practiced 

with the reference English voice.  More than a decade later, Probst et al. [8] published a 

study in Speech Communication where L2 learners were asked to practice with a native 

speaker voice that had different characteristics. Participants who imitated a well-matched 
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voice (i.e., one with characteristics similar to their own voice) improved more than those 

who imitated a poor match. This result led the authors to suggest that each learner has an 

ideal speaker voice to imitate, a so-called “Golden Speaker.”  Nearly ten years later, and 

in an article also published in Speech Communication [4], we proposed that each 

learner’s Golden Speaker should be their own voice, resynthesized to have a native 

accent.  Most notably, in that study we presented an accent-conversion technique that 

was able to correct not only the learner’s prosody (as Nagano and Ozawa had done) but 

also their segmental errors (i.e., phoneme substitutions, additions and deletions).   

Missing from our study, however, was a validation of the technique on pronunciation-

training experiments. It has taken us nearly a decade to refine our initial accent-

conversion technique to make it robust for deployment in the classroom.  This is a clear 

next step. A decade since the first paper has shown that refining the accent-conversion 

technique for successful deployment in pronunciation training was more challenging 

than expected. The improvement we have seen in accent-conversion quality makes us 

optimistic for further successful deployment of the Golden Speaker algorithms. 

This chapter describes a web application (Golden Speaker Builder; GSB) and the 

effectiveness of GSB being used in a language-instruction setting with a population of 

Korean L2 learners of English.  The study was guided the research questions:  

- RQ1: What is the effect of using the GSB on learners’ improvement of 

their comprehensibility and fluency? 

- RQ2: What features of the GSB did learners find useful, and what did 

they find in need of improvement? 
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6.3. Review of the literature 

6.3.1. Feedback in Second Language Pronunciation Acquisition 

Feedback refers to “information learners receive in response to their 

communicative efforts” [220] (p. 210), which is a significant perspective in L2 learning. 

Prior studies have explored and emphasized the role of feedback in Second Language 

Acquisition (SLA). In [221], Swain and Lapkin suggest that output is equally important 

as input in SLA since output fosters deeper engagement with language than input alone. 

Similarly, Swain [222] highlighted the importance of output by stating “output may 

stimulate learners to move from the semantic, open-ended, strategic processing prevalent 

in comprehension to the complete grammatical processing needed for accurate 

production” (p. 99). 

When it comes to the computer-assisted language learning (CALL) environment, 

the feedback forms are different from conventional oral classroom settings, due to the 

differences of the medium, as noted by Heift [223] (see Table 6.1). These types of 

feedback can also be provided to second language learners in CAPT applications, which 

are developed based on speech recognition/synthesis models. A first feedback type that 

may lead to an improvement in pronunciation is clarification. For example, speech 

recognition algorithms were used in CAPT to detect pronunciation errors in an utterance 

and thus provide a pronunciation score [224]. These scores may lead learners to repeat 

their performance until they get a satisfactory score, which shares the spirit of 

clarification in an oral classroom. 
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Another effective type of feedback SLA is recast, a correct restatement of the 

mispronounced utterance. In CALL, it can be interpreted as the imitation of a correct 

utterance, mostly pronounced by a native speaker. A previous study [225] indicated that 

imitation exercise improves learners’ perception [225], which proves their effectiveness 

in pronunciation improvement. However, questions about what voice a language learner 

should imitate, i.e., what factors lead to a ‘golden speaker’, led to new research 

directions in CALL. Probst et al. [8] advocated that it is beneficial for L2 learners to 

imitate a voice that is similar to their own voice in pronunciation training. In other 

words, the golden speaker voice would serve as a recast for the learner’s production. 

Other research also shows that the choice of a golden speaker may depend on L2 

learners’ language background, proficiency, and learning stage. For instance, learners 

may go from slower to faster to find a comfortable utterance speed [7]. Additionally, 

Table 6.1: Feedback types in the oral classroom and CALL environment [223] (p. 

418) 

Feedback type Oral classroom CALL 

Explicit correction You mean… Correct answer 

Recast Teacher reformulation Correct answer 

Clarification What do you mean? Try again! 

Meta-linguistic feedback Explanation of error type Explanation of error type 

Elicitation  Ellipsis Highlighting 

Repetition Intonation Highlighting 
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Probst et al. [8] proposed that a CAPT application should provide learners multiple 

golden speakers to practice with; Wang and Lu [7] suggested that this means that these 

applications should provide learners chances to control voice features such as different 

speech rates and pitch formants based on their own preference, when synthesizing 

golden speaker voices. 

6.3.2. Self-imitation in pronunciation training 

A handful of studies have examined the possibility of modifying the learner’s 

own voice and using it for pronunciation training [112-115, 226, 227]. In early work, 

Nagano and Ozawa [228] evaluated a prosodic-conversion method to teach English 

pronunciation to Japanese learners. One group of students was trained to mimic 

utterances from a reference English speaker, whereas a second group was trained to 

mimic utterances of their own voices, previously modified to match the prosody of the 

reference English speaker. Post-training utterances from the second group of students 

were rated as more native-like than those from the first group. More recently, Bissiri et 

al. [112, 113] used prosodic modification to teach German lexical stress to Italian 

speakers.  Receiving feedback in the form of the learner’s own voice (resynthesized to 

match the local speech rate, intonation, and intensity of a reference German speaker) was 

shown to be more effective than receiving feedback in the voice of the reference German 

speaker. Providing feedback in the learner’s own voice also had a motivating effect, with 

several participants asking to continue the training, whereas participants in the control 

group showed no particular interest. 
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Pronunciation training with prosodic modifications of the learner’s utterances has 

been shown to improve not only accentedness but also intelligibility. De Meo et al. [115] 

evaluated the effectiveness of two forms of training (imitation and self-imitation) to 

teach suprasegmental patterns of Italian to Chinese learners.   Participants in the self-

imitation condition heard their own voice, resynthesized to match the native model, 

whereas those in the imitation condition followed traditional imitation exercises.  Native 

listeners were then asked to classify learners’ post-training productions as belonging to 

one of four speech acts: requests, orders, granting, and threats.  Classification 

performance was significantly higher for utterances from participants in the self-

imitation group.  Similar improvements in communicative effectiveness were obtained in 

a later study with Japanese learners of L2 Italian [114].  These studies show that (1) 

prosodic accent conversions are an effective tool to teach pronunciation to L2 learners, 

and (2) the effect is robust across several L1-L2 combinations. Incorporating segmental 

accent conversion–the next logical step in this new genre of technology–is the major 

contribution of our work. 

6.3.2.1. Algorithms for segmental accent conversion 

In contrast with the self-imitation literature, where no studies exist that 

incorporate segmental adjustments of the learner’s own voice, the speech-processing 

literature offers a few studies on speech modification of segmental errors in non-native 

speech. These studies have shown that segmental modifications effectively reduce the 

perceived accent of an utterance than prosody modification alone, both within regional 

accents of the same language [229] and across languages [4]. 
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In early work, Yan et al. [229] developed a method to transform vowels of three 

major regional English accents (British, Australian, and General American). The authors 

built a statistical model of vowel formant ratios from multiple speakers, and then 

extracted empirical rules to modify pitch patterns and vowel durations across the three 

accents. Using this model, the authors then adjusted formant frequencies, pitch patterns 

and vowel durations of an utterance to match a desired target accent. In an ABX test, 

78% of Australian-to-British accent conversions were perceived as having a British 

accent, and 71% of the British-to-American accent conversions were perceived to have 

an American accent. In both cases, changing prosody alone (pitch and duration) led to 

noticeable changes in perceived accent, though not as significantly as formant 

modifications. The method hinged on being able to extract formant frequencies, so it 

cannot be easily extended to larger corpora because formant frequencies are ill-defined 

for unvoiced phones and cannot be tracked reliably even in voiced segments. 

A few studies have attempted to blend L2 and L1 vocal tract spectra instead of 

completely replacing one with the other. In one such study, Huckvale and Yanagisawa 

[230] reported improvements in intelligibility for Japanese utterances produced by an 

English text-to-speech (TTS) after blending their spectral envelope with that of an 

utterance of the same sentence produced by a Japanese TTS.  Felps et al. [4] proposed a 

suitable method for voiced and unvoiced phones. The authors split short-time spectra 

into a spectral envelope and flat glottal spectra. Then, they replaced the spectral 

envelope of an L2 utterance with a frequency-warped spectral envelope of a parallel L1 

utterance and recombined it with the L2 glottal excitation. Listening tests showed a 
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significant reduction in accent following segmental modification. More recently, Aryal 

et al. [21] presented a voice morphing strategy that can be used to generate a continuum 

of accent transformations between an L2 speaker and a native speaker. The approach 

decomposes the speech Cepstrum into spectral slope and spectral detail, then generates 

accent conversions by combining the spectral slope of the L2 speaker with a morph of 

the spectral detail of the native speaker. This morphing technique provides a tradeoff 

between reducing the accent and preserving the voice identity of the L2 learner, and it 

may serve as a behavioral shaping strategy in computer-assisted pronunciation training. 

Accents originate from differences in articulation, which suggests that 

articulatory information may be useful in accent conversion. To explore this possibility, 

Felps et al. [52] used concatenative speech synthesis to replace mispronounced diphones 

in an L2 utterance with other L2 diphones whose articulatory configuration was similar 

to a reference native utterance.  The approach reduced the perceived non-native accents 

by 20%, but performed poorly when tasked with finding phonemes that the L2 did not 

utter. To address this problem, Aryal and Gutierrez-Osuna [26] proposed a statistical 

parametric approach, which trains a GMM-based articulatory synthesizer for the L2 

speaker, then drives it with articulatory data from a reference native utterance mapped to 

the L2  articulatory space via a Procrustes transform. In listening tests, the authors found 

that the method reduced the perceived non-native accents while preserving the voice 

quality of the L2 speaker. However, these methods require articulatory data, which is 

impractical for pronunciation training. 
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6.3.3. Comprehensibility and Fluency 

In this paper, we assessed L2 learner’s speech productions using 

comprehensibility and fluency, which are partially independent measures of speech 

understanding [200]. Comprehensibility refers to the amount of cognitive effort put forth 

by listeners in understanding speech [231]. Highly comprehensible speech is thus easy to 

understand, taking little extra effort. Comprehensibility is closely related to 

accentedness, but comprehensibility may be a better predictor of communicative success 

than accentedness in evaluating the success of pronunciation training [232]. In contrast 

with accentedness ratings, comprehensibility ratings correlate with a wide range of 

features beyond pronunciation, including prosodic skills, fluency features, features 

related to vocabulary and grammatical complexity, and discourse features related to the 

construction of oral texts [233-235]. 

Another feature we evaluated in this study is fluency. Fluency is not directly 

related to pronunciation accuracy, but is instead a measure of how automatically speech 

is produced. Fluency is connected to a wide variety of temporal features of speech (i.e., 

speech rate, the use of pauses, and repairs), the use of formulaic language [236], whether 

phrases are logically constructed [237], phonological features of speech [238], 

interactive characteristics of speech in conversation [239], perceived smoothness of 

speech by listeners [119], mean length of run (see [240]), and automaticity of speech 

production [241]. Fluency is not independent of accentedness and comprehensibility but 

is indirectly related to both. For example, comprehensibility ratings and fluency ratings 

correlate with perspectives in common [233]. In addition, speech rate is also predictive 
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of fluency judgments [242, 243], and similar judgments of fluency may be given for 

speech at different rates. Listeners are sensitive to whether speech is fluent, and speech 

that is heard as too fast or too slow may also be heard as more accented or as less 

comprehensible [234]. 

6.3.4. Effects of instruction 

Three recent studies were proving the instruction from either human teachers or 

in CAPT to improve the pronunciation of L2 learners. First, Saito [244] designed 15 pre-

/post-test studies to explore if the instruction can lead to pronunciation improvement. 

The author concluded that explicit attention to pronunciation typically led to 

improvement, where improvement was more common in controlled tasks and less 

common in spontaneous speech. Second, Lee, Jang, and Plonsky [245] conducted a 

study through a meta-analysis of 86 studies to explore the success of pronunciation 

instruction. Their results suggested significant improvements, especially when the 

instruction was carried out over longer time periods, and the learners were receiving 

consistent feedback. Lastly, Thomson and Derwing [219, 246] analyzed most of the 

studies in Lee et al., [245], but focusing on what pronunciation training should be like. 

Their study examines improvements in comprehensibility, but most results that show 

improvements in global ratings privilege prosody rather than segmentals. In summary, 

all three studies suggest that interventions should be successful, and that explicit 

attention to pronunciation should lead to improvement. However, they do not consider 

implicit feedback, such as golden speaker voice. As a result, it would be meaningful to 
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explore if this type of feedback is sufficient to lead to improvement in comprehensibility 

and fluency, which is the focus of our study. 

6.4. System description 

To answer the Research Questions presented earlier, we developed Golden 

Speaker Builder (GSB), an online interactive tool that allows L2 learners to build a 

personalized pronunciation model: their own voice producing native-accented speech 

(i.e. a “golden speaker”). To build their golden speaker, L2 learners follow three steps. 

In the first step, the learner records a keyword for each phone (e.g., for phoneme /ʒ/, the 

learner records the keyword “vision”) under the guidance of an instructor to ensure that 

the utterance has near-native production. After recording each keyword, the learner 

segments the phone using a graphical display of the waveform. In the second step, the 

learner records several sentences, which are used to estimate the learner’s pitch statistics. 

In a final step, the learner selects a native speaker as a source model, and GSB 

resynthesizes the native speaker’s sentences using the recorded phone segments and 

prosody statistics of learner. The process can be completed in less than thirty minutes 

and generates a Golden Speaker voice that produces intelligible speech with the voice 

quality of the L2 learner, and the prosody of the source native speaker normalized to the 

pitch range of the L2 learner. 

The software architecture of GSB is shown in Figure 6.1. GSB consists of three 

components: a web application, a signal processing back-end, and a middleware to 

connect the signal processing back-end to the web application. The web application 

provides a graphical interface for the learner, responds to the learner’s requests, and 
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stores the learner’s data (i.e., login information, speech recordings, and golden speakers) 

onto a database – see Figure 6.1b. The signal processing back-end runs the accent 

conversion algorithms, which generates synthesized speech for each Golden Speaker 

model. Finally, the middleware layer provides communication between the web 

application and the signal processing back-end via an asynchronous task queue. Detailed 

descriptions of each component are included in the following subsections. 

6.4.1. Web application 

We implemented the web application using the Django framework14. The web-app front-

end was written in HTML5 and Javascript, and decorated with Bootstrap15, whereas the 

                                                 

 

 

 

14 https://www.djangoproject.com/ 
15 https://getbootstrap.com/ 

 

Figure 6.1: (a) Overall software architecture. (b) Architecture of the web 
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web-app back-end was written in Python with Django internal modules. User data is 

managed by an SQLite database engine16 on a standard Linux file system. We hosted the 

web application through Nginx17. To follow the workflow described below, we provide 

five functional modules: Login; Record Anchor Set; Edit Anchor Set; Build Golden 

Speaker; and Practice with Golden Speaker. 

The Login module provides registration and login functions. To use GSB, 

learners must register an account using their email, and login with their registered 

account and password. We implemented this module using Auth0 authentication18, and 

connected Auth0 to the SQLite database to save the users’ account information. This 

module guarantees the privacy of learners’ information and ensures that each learner can 

only operate on their own information and data. 

The Record Anchor Set module enables learners to record keywords and 

prosody sentences, later used to build a Golden Speaker model. As shown in Figure 6.2, 

the learner must record a keyword for each of the 40 phones in American English (CMU 

phone set19). Once a user records a keyword, the interface allows the learner to segment 

the phone segment (or “Anchor”) by highlighting the corresponding region of the speech 

                                                 

 

 

 

16 https://www.sqlite.org/  
17 https://www.nginx.com/ 
18 https://auth0.com/ 
19 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
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http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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waveform. Separate tabs are used for consonants, vowels, and pitch sentences. 

Consonants are arranged according to their place and manner of articulation, and vowels 

are arranged according to their frontness and height (not shown). This arrangement 

allows the teacher and learner to review the basic organization of speech sounds in 

English, as the learner records the various keywords. The “Pitch Sentences” tab includes 

30 sentences representative of conversational speech (e.g., “What time does the bus 

leave for the airport?”) that were deliberately selected to provide good coverage of 

various prosodic contexts, and a free-speech exercise in which the learner first watches a 

3-minute short film20 and then records a 1-2 minute audio summary. Recordings for all 

the keywords and pitch sentences are saved on the file system, whereas the segmentation 

information is saved in the database. In a final step, both the recordings and the 

segmentation information are sent to the signal processing back-end. 

                                                 

 

 

 

20 “Spellbound” by Ying Wu and Lizzia Xu; available at youtube.com/watch?v=W_B2UZ_ZoxU 
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Figure 6.2:  Graphical user interface for recording consonants in American 

English.  In the example shown, the learner has already recorded keywords for 

all the stop consonants (highlighted in green), has recorded the phone /𝜽/ 

(highlighted in blue) and is in the process of selecting the appropriate section in 

the speech waveform shown at the bottom of the page. 
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We selected one keyword per phoneme to capture an “ideal” example of that 

phoneme or its main characteristic, e.g., the dominant allophone of that phoneme. 

Voiceless aspirated stops are more distinct than unvoiced aspirated stops, and were 

chosen preferentially for that reason. Additionally, final stops were avoided, as well as 

final rhotics and velarized approximants (e.g. “dark L”). The full selection of keywords 

is shown in Table 6.2. 

The Edit Anchor Set module allows learners to make changes to a previously 

recorded “Anchor Set”. This includes re-recording specific keywords or pitch sentences, 

and making corrections to the segmentations. Learners also have the option to rename, 

copy, and delete the Anchor Sets from their profile. Once an Anchor Set is modified, the 

updated recordings and segmentation information are automatically sent to the signal 

processing back-end. 

Table 6.2: Keyword selection. The following is a list of keywords used to build 

anchor sets for L2 learners in the GSB application. Phoneme names are shown 

on the left column in ARPABET notation, and the words used to elicit the 

phoneme on the left. 

AA father CH cheat HH heat NG sing TH think 

AE ash D deep IH if OW oh UH push 

AH us DH this IY east OY toy UW boot 

AO horse EH "s" JH jeep P poke V vote 

AW ouch ER earth K keep R reads W weeds 

AX sofa EY ace L leads S See Y yes 

AY ice F feed M make SH sheep Z zoo 

B boat G gust N no T tea ZH vision 
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The Build Golden Speaker module allows learners to select one of several 

Native Speaker (NS) voices, each containing hundreds of sentences, and pair it with one 

of their own Anchor Sets.  Once a particular NS voice, Anchor Set, and list of sentences 

has been selected, this information is sent to the signal-processing back-end to build the 

Golden Speaker model. 

The Practice with Golden Speaker module allows the learner to practice 

pronunciation with any of the previously-built Golden Speakers.  For example, we used 

a backward buildup exercise as one technique for pronunciation practice, where the 

learner practices a long sentence starting from the last phrase and adding complexity in a 

backwards fashion.  As an example, given the practice sentence “We’re going to the 

supermarket to buy vegetables for dinner,” the learner produces the phrase “for dinner,” 

then the phrase “to buy vegetables for dinner” and so forth. 

6.4.2. Speech processing back-end 

To build Golden Speakers, the signal processing back-end uses a Sparse, Anchor-

Based Representation (SABR) reported in prior work [247, 248]. The motivation behind 

SABR is to separate speaker-dependent cues (how something was said) from speaker-

independent ones (what was said). Then, we combine the speaker-independent cues 

extracted from the source speech with the speaker-dependent cues from the target 

speaker to produce the accent-conversions. For more details about SABR, we refer 

readers to the original studies by Liberatore et al. [247, 248]. Noted that other foreign 

accent conversion algorithms can also be used in the signal processing back-end on GSB 

(e.g., the state-of-the-art zero-shot foreign accent conversion algorithm described in 
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Chapter 5), which we leave as future work of this dissertation, as we will discuss in 

Chapter 7.3.4. 

The signal processing back-end is implemented using MATLAB. Specifically, 

the signal-processing tasks are divided into two folds: (1) building a SABR model for a 

given Anchor Set, and (2) synthesizing speech for a Golden Speaker. In addition, the two 

tasks can be further divided to several function units: 

- Speech Analysis: The pre-process of speech signals, including signal 

resampling, signal normalization, extracting spectral features (e.g., MFCC), and 

computing prosody features (e.g., pitch contour). 

- Construct SABR model: Construct SABR model using extracted MFCC from 

the learners’ speech signal. Once the SABR model is accomplished, it will be 

saved as a “.mat” file into the file system, whose path will be saved into the 

database. 

- Construct pitch model: Construct pitch model using extracted pitch contour. 

Similarly, the pitch model is saved as a “.mat” file into the file system, whose 

path is saved into the database. 

- Synthesize GS voice: Synthesize the Golden Speaker voice for learners to 

practice with. This function is consists of two sub-functions. First, it generates 

the spectral features and pitch contours of the Golden Speaker voice, using the 

SABR models and pitch models that is computed previously. Then, it 

synthesizes the audio waveform of Golden Speaker voice using a vocoder. 
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6.4.3. Middleware 

GSB uses an asynchronous task queue, Celery [249], as the middleware to 

communicate between the web application and the signal processing back-end. Each 

time the user submits a request containing signal processing operations, the web 

application creates a task worker and pushes it into the asynchronous task queue. Tasks 

in the queue are then dispatched to an available worker, which in turn calls the 

appropriate signal processing function in the back-end. Once the task is complete, results 

are sent back to the web application through the asynchronous task queue, and the 

worker is set to be available. 

Two types of signal-processing tasks are included in GSB: (1) building a SABR 

model for a given Anchor Set, and (2) synthesizing speech for a Golden Speaker. Tasks 

of the first type are dispatched after a complete Anchor Set is recorded and saved. This 

involves passing all the recordings (keywords, pitch sentences) and segment information 

to the signal processing back-end, saving the SABR model to the file system, and 

passing the corresponding path to the web application so it can be stored in the database. 

The run time to build a SABR model is 10 minutes, largely due to the STRAIGHT 

speech analysis (~5 seconds processing time for 1 second of speech). Tasks of the 

second type are dispatched when the user submits a request to build a Golden Speaker. 

This involves passing the following information to the signal-processing backend: the 

teacher’s SABR model (computed far in advance), the learner’s SABR model (computed 

from the Anchor Set), and a list of sentences the learner wants to synthesize. Once these 

sentences have been re-synthesized as a Golden Speaker, the recordings are saved to the 
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Linux file system, and the corresponding path is returned to the web application so it can 

be stored in the database. The run time for this type of task is approximately 10 

seconds/sentence. 

6.5. User study21 

We conducted a user study to validate GSB in a language-instruction setting with 

a population of Korean L2 learners of English. The study followed a quasi-experimental 

pre-, immediate post- and delayed post-test at a midwestern university in the USA. 

Learners took a pre-test followed by three weeks of CAPT using the GSB, followed by 

an immediate post-test one week after training and a delayed post-test three weeks after 

training. Learners were interviewed after each test session.  

6.5.1. Participants 

There were two groups of participants in this study: learners and raters. Learners 

were 15 Korean learners of English (eight male) majoring in various fields of study. 

Learners were recruited from undergraduate and graduate ESL courses when one of the 

researchers introduced the study in a classroom visit. Initially, 18 learners signed up to 

                                                 

 

 

 

21 The user study of Golden Speaker Builder was conducted by S. Sonsaat, I. Lučić, A. Silpachai, E. 

Chukharev-Hudilainen, and J. Levis at Iowa State University. Since the focus of this chapter in this 

dissertation is the development of GSB, only the learners’ GSB experiences were reported in this section, 

corresponding to the second research question. For other results of this study, we refer readers to the original 

publication [203]. 
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participate the study; however, we did not include the data from three of these 

participants since they missed at least two training sessions. 

Raters included 95 native-English speaking undergraduate students majoring in 

different areas at the same university. These raters were part of two groups since 

comprehensibility (n=50), and fluency (n=45) were each rated by a separate group of 

raters. All raters were recruited from first- and second-year composition classes through 

the introduction of the study by one of the researchers in a classroom visit. Learners and 

raters were recruited through convenience sampling; that is, we collected data from all 

students who were willing to participate. 

6.5.1.1. Pronunciation challenges for Korean speakers in English 

We chose to use Korean speakers because of the high likelihood that they would 

have both segmental and suprasegmental difficulties with English. We also chose 

Korean learners because different Korean learners often have similar types of 

difficulties, even at more advanced levels of English proficiency. Among the most 

notable differences between the English and the Korean sound systems are that Korean 

vowels do not have a tense vs. lax distinction, and voiced and voiceless sounds are not 

regarded as different [250]. 

L1 Korean learners find both segmental and suprasegmental features of English 

challenging. Lee [250] lists the vowel and consonants sounds of English most likely to 

cause issues. Among vowels, /ɔ/ is problematic, as it does not exist in Korean, so Korean 

speakers of English tend to assimilate it to a pure /o/ [251]. Additionally, English /ʌ/ is 

often pronounced by Koreans as  /ɑ/, while English /æ/ is assimilated to Korean /e/. The 
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Korean sound system does not include the sound /ɝ/, which is frequently confused with 

/ɔ/. Therefore, differentiating words such as “work” and “walk” is difficult both in 

perception and production. 

For consonant sounds, Korean learners of English do not have a voiced vs. 

voiceless distinction as in English. Therefore, word pairs such as “log” and “lock”, 

“raised” and “raced”, “beach” and “peach”, etc., are often confused [250]. Voiced and 

voiceless distinctions are also not found in stops and affricates. Korean has three 

phonemic voiceless stops (such as /p/, ph/ and /pp/) for the bilabial, alveolar and velar 

places of articulation where English has two phonemes distinguished by voicing. The 

same pattern holds for the post-alveolar affricate /tʃ/. The lack of phonemic stop-fricative 

distinctions in Korean also leads to challenges with /b/-/v/ and /f/-/p/, as in “defend” and 

“depend” [251]. Another common challenge is the English distinction between /ɹ/ and 

/l/, mapping to a single Korean phoneme. Other consonant sounds not found in Korean 

are /z/, /ð/, and /θ/, and they are frequently assimilated to /dʒ/, /d/, and /s/, respectively. 

Apart from having difficulties with consonant sounds because they are not present in the 

Korean sound system, Korean learners of English also have difficulties with certain 

similar consonant sounds in specific environments. So, /ʃ/ and /tʃ/ are part of Korean but 

are not found in syllable codas. As a result, Korean learners often add either /ɪ/ or /ə/ to 

English words ending in these sounds to match Korean syllable structure constraints 

[250]. 

Prosodically, in Korean each syllable has similar emphasis, and each word in a 

sentence has the same prominence. This may sometimes cause it to be characterized as 
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monotonous-sounding [251]. Korean and English also differ in the ways that they use 

intonation, and especially in how English uses flexibly-placed lexical prominence to call 

attention to information structure. Korean also has an accentual phrase that is defined by 

varied tonal patterns that do not map to equivalent patterns in English [252]. 

6.5.2. Results: Learners’ GSB experience 

To answer RQ2, “What features of the GSB did learners find useful or in need of 

improvement?”, we interviewed learners following their immediate post- and delayed 

post-tests. Although both interviews included similar questions (Appendix B), delayed 

post-test interview included an additional question in which learners were asked to listen 

to two sentences from their pre- and post-test productions. 

When learners were asked about the value of the pronunciation training and the 

ways they improved their speaking and pronunciation, they named several features. The 

feature that all learners except for one mentioned was fluency. Fourteen learners stated 

that GSB was helpful in making their speech sound more fluent and smoother. In fact, 

eight of these learners noticed how fluent they sounded after they listened to their pre- 

and post-test sentences during the delayed post-test interview. Learners’ perceived 

improvement in fluency is also supported by our quantitative findings which showed a 

significant improvement between pre- and post-test. Learners (Excerpts 1 and 2) usually 

reported how ‘choppy’, ‘cut’ or ‘slow’ they sounded in their pre-test sentences whereas 

how ‘quick’ or ‘smooth’ they were in their post-test productions. 
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Excerpt 1: 

Learner: actually this one is much more better than first.  

Interviewer: okay, what is better about it?  

Learner: this one, second one.  

Interviewer: but what about it is better? What makes it better?  

Learner: the first one is just uh how to say that, flow, the flow sounds like cut cut 

cut.  

Interviewer: okay so choppy.  

Learner:  and the second one isn't, more better fluency.  

Excerpt 2:  

Learner: uh, oh.  I think my spoken English is more quick.  

Interviewer: more quick, okay.  

Learner: yeah more quick and um I think my fluency is better.  

Connections between the words was something that some learners mentioned 

when they talked about fluency; they believed being able to connect words to each other 

instead of saying them one by one made their speech sound more smooth and more 

natural (See Excerpt 3). As a result, fluency and connected speech features were co-

occurring topics learners touched on. Connected speech was something that some 

learners noticed clearly during their GSB training. They referred to the ‘linking’ between 

words and how they did not notice the connection between sounds before. They stated 

that they tried to use the GSB voice as a model to be able to produce the linking between 
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words. One of the learners (Excerpt 4) said she knew about connected speech but she did 

not care about it until her practice with the GSB because she thought connected speech 

created a noticeable difference between her own pronunciation and that of the model 

voice. This awareness led her to care about something that she had not cared about 

before. 

Excerpt 3:  

Learner: so far more smooth and sounds more naturally.  

Interviewer: Okay and anything else other than those?  

Learner: mmm, I think just like I changed the way I speaked. Like well first 

before the training I said all words, speaking really clearly. And after the training 

like more connected and more smooth.  

Excerpt 4: 

Interviewer: what are those things that you noticed with this model voice?  

Learner: some something like when the words connected together very strongly.  

Interviewer: Okay so you have trouble with connected speech. Did you notice 

that before? Your, did you not know it before?  

Learner: actually I didn’t care about it before. But I do care right now. After 

this,  

Interviewer: why did it make you to care about it?  

Learner: um, I think it’s the big difference with my voice and model voice. 
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Another pronunciation feature that was mentioned by most learners (n = 12) was 

intonation. Learners often stated how monotonous their speech was compared to the 

model voice and they did not have much ‘ups and downs’ or ‘highs and lows’ in their 

speech when they spoke English (Excerpt 5). Learners often explained the difference 

between their intonation and that of English by explaining how Korean works in general. 

They explained the change between ‘high and low’ as not something existing in Korean 

(Excerpt 6). When we asked learners if they would recommend practicing with the GSB 

to the others, one learner specifically commented on the benefit of hearing his own voice 

and how it helped with noticing the flow and intonation of the language: “…it is a good 

opportunity to listen to your actual voice and then you can practice your pronunciation 

and you can actually be aware of your voice or flows and intonation”. 

Excerpt 5: 

Interviewer: did you feel any changes during the training in your pronunciation? 

Anything you think you are doing better now?  

Learner: oh I could some um realize that in terms of like um do question or some, 

so sometimes I need to tone down and tone up in terms of different question 

types. That would be helpful to speak in English.  

Interviewer: so you improved your intonation with those questions?  

Learner: Mm-hmm. Yes I think so.  
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Excerpt 6: 

Interviewer: okay, so how was yours different from the model voice?  

Learner: um many Koreans pronunciation is not really high or low.  just stable 

because Korean yeah, Korean language is kind of that. So um it was helpful to 

practice how to which part is good and what goes off and which part is goes 

down.  

Interviewer: Mm-hmm. So you started to think about those things? 

Learner: Mm-hmm.  

Learners also mentioned how GSB helped them notice the stress in individual 

words and sentences (n = 6). In addition, they mentioned how it helped with the 

improvement of certain sounds of English. However, the benefit of the GSB in 

improving segmentals was likely from practicing extensively for three weeks rather than 

hearing a voice similar to theirs. Extensive fluency practice may impact segmental 

improvement simply because of practice. Because the learners mostly talked about 

improvements in fluency and prosody, improvements in segmental quality may have 

been a side-effect of practice in general, and not connected to practicing with a golden 

speaker voice. 

Three different exercise types were included in the design: say-listen-repeat, 

listen-repeat, and backward build-up exercises. Several learners (n = 9) stated their 

favorite exercise type was backward build-up because it gave them a chance to practice 

pronunciation in smaller chunks of speech. They could listen to the phrases in a sentence 

separately and this helped them in three ways: a) focus on parts they had more 



 

143 

difficulties with, b) listen to words individually, c) focus on tones [i.e., intonation], and 

d) control the speed better (See Excerpt 7). One of the learners specifically mentioned 

the normal speed of sentences was too fast for him and backward build-up gave him the 

chance to practice things step by step, thus helping him with the flow of speech. 

Excerpt 7:  

Learner: Mm, I think all of them is great for practicing, but mmm, big words 

made the small words helpful.  

Interviewer: okay, why?  

Learner: Mm, all because the two the big words I could follow the speed, and I 

understand how to pronounce  the tones.  

Excerpt 8: 

Learner: The difficult part was it was too fast. It was too fast to me and it’s 

difficult to follow uh the full sentence. And the easy part was, I don’t know in 

the third practice, the step by step practice it was good to learn how to pronounce 

and how to make some flows. Something like that. 

In addition to the benefits for their pronunciation, most learners (n = 10) talked 

about the benefits of GSB for their listening skills—about how it helped them improve 

their listening or how it helped them listen critically and notice the problems in their 

pronunciation. Comments about listening improvement were similar to the comments 

about pronunciation in the sense that they performed better in hearing the connections 

between words or were better at catching up with the speed of speech. However, 

comments about listening critically showed how listening to a voice similar to one’s own 
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can help with perceiving the differences between one’s self and the target pronunciation. 

One of the learners said “I did not realize that there was a problem for me, but when I 

practicing it, I just realize that oh, model voice is correct and so yeah.” 

Learners in the study were also asked about further development of the GSB. 

One of the topics they commented on frequently was the voice quality. They suggested 

the voice quality could be improved. Some students stated that the model voice in the 

GSB was not very much like them and some others said there were parts of some 

sentences that the voice was not clear or very easy to understand. One learner said “Uh it 

was good but one thing, um the models voice sometimes like vague. A little noise, so 

sometimes I can, I could not figure it out. The clear sounds from model voice.” A similar 

comment from another learner was “not clear sounds. So at the time I could not um 

figure out how to pronounce it like exactly because model voice sometimes very fast and 

sometimes vague.” 

Another place for improvement lay in the design aspects of the GSB because 

some learners said having only three types of exercises or having a limited number of 

sentences to work with made their experience boring at times. Thus, adding more 

exercise types and sentences would be helpful. Another thing recommend by the learners 

was to be able to control the speed of speech because it was too fast for some learners 

and it made their effort to focus on pronunciation more challenging. Similar to that, 

learners also asked to practice individual words instead of only by phrases as in the 

backward build-up exercises. Suggestions about pronunciation improvement and support 
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of visualization (such as including pictures and videos) were among the other 

recommendations for the improvement of the GSB. 

6.6. Discussion 

In this study, we looked at the effectiveness of an interactive CAPT program on 

what 15 Korean learners’ thought about their learning experience with the program. 

When learners were asked for their opinions of their GSB experience, many learners 

reported how practice with the GSB helped them hear that their intonation and stress 

were different than the model voice and they believed they improved these features. 

Learners said the model voice allowed them to learn prosodic features of the language. 

While this is encouraging, it does not offer clear support for GSB; the use of any native-

like voice prosody may have been equally or more effective. Because there was no 

control group, we cannot speak to this question. 

One concern raised by learners was the speed of the model voice. It was initially 

too fast for many learners, even though it sounded like a normal speech rate for a native 

speaker. Fast speech can create problems for learners to catch the words and imitate 

speech [253]. However, research shows that it does not necessarily mean that slower 

speech will lead to greater comprehensibility. It is more important to have a speech rate 

which is similar to a learner’s, or just slightly faster, rather than a slower one [8, 254]. 

The only feedback learners received in the training was the synthesized version 

of their own voice, and we hypothesized it would help learners in perceiving their 

pronunciation problems and pronouncing in a more target-like way. Some learners said 

the GSB model voice did not sound quite like them; for others, learners said they did not 
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hear all words clearly in some sentences, which could be due to either synthesis quality 

or speed. The voice quality issue is indeed not a new problem, as other studies also 

showed some distortions in parts of their synthesized speech [255, 256].  But there is a 

possibility that the synthesized speech, either in quality or speed, may have limited what 

learners could pay attention to. 

6.7. Conclusions 

This study suggests that a CAPT program which utilizes feedback from a voice 

model can be helpful for the improvement of fluency (through attention to 

suprasegmental features of pronunciation) and for comprehensibility. Learners 

themselves reported an increase in their awareness for their use of intonation, stress, and 

connected speech in English. It may be that other types of feedback could be even more 

effective in promoting improvement. 
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7. CONCLUSIONS 

7.1. Summary 

In this dissertation, I propose three novel few-shot VC/FAC systems, and 

develop Golden Speaker Builder, a web application that applies FAC models to 

computer-assisted pronunciation training. In the first system, I focus on sparse 

representation based VC conversion approaches and develop a Cluster-Structured Sparse 

Representation (CSSR), which consists of two complementary components: a Cluster-

Structured Dictionary Learning module that groups atoms in the dictionary into clusters, 

and a Cluster-Selective Objective Function that encourages each speech frame to be 

represented by atoms from a small number of clusters. Through a set of visualizations 

and analyses of CSSR, I illustrate that CSSR is able to learn phonetically meaningful 

sparse representations without any supervision, and the sparse representations are more 

speaker-independent compared against previous sparse-representation-based VC 

algorithms [30]. Compared to conventional GMM-based [11] methods, the proposed 

approach achieves superior acoustic quality and voice identity. More importantly, the 

proposed approach significantly reduces the number of utterances required during 

training (one minute of speech), avoiding the need to collect a large corpus from the 

users in real-world applications. 

In the second system, I explore the effectiveness of neural networks in few-shot 

VC. Namely, I propose a VC approach based on seq2seq model, which only requires a 

few seconds of speech from the target speaker during inference and none during training 

(i.e., zero-shot learning). The seq2seq model has an encoder-decoder structure, and it 
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transforms a sequence of Phonetic-Posteriorgram (PPG) to a sequence of speech features 

(i.e., Mel-spectrogram), conditioned on the corresponding speaker embedding. 

Additionally, to avoid the speaker-dependent information from PPG leaking into the 

voice conversions, I create an adversarial learning paradigm for training, which jointly 

trains the seq2seq model with an adversarial speaker classifier. The proposed system 

achieves significantly better acoustic quality and voice identity than sparse 

representation based few-shot VC algorithms. Meanwhile, with the need of only few 

seconds of speech from each speaker, the system can convert between any speakers, 

which is particularly fascinating for practical applications. Lastly, I verify the adversarial 

learning paradigm's effectiveness – when comparing it against a baseline without using 

an adversarial speaker classifier, there is a notable improvement in voice identity. 

The third work generalizes the second work to FAC and builds a zero-shot FAC 

approach based on the seq2seq model. In this work, I use three independent models to 

disentangle the three aspects of an utterance: (1) a speaker-independent acoustic model 

to extract a linguistic content representation sequence (denoted as a bottleneck feature 

vector), (2) a speaker encoder to generate a speaker embedding, and (3) an accent 

encoder to obtain an accent embedding. To achieve FAC, I train a novel seq2seq model 

to synthesize speech using the linguistic content and accent representations from an L1 

speaker along with the voice identity representation of an L2 speaker. To verify the 

effectiveness of the approach, I conduct experiments under two settings: standard FAC 

setting and zero-shot FAC setting. Under standard FAC setting, the proposed approach 

outperforms a state-of-the-art FAC model [27] in terms of accentedness, while retaining 
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the acoustic quality and voice identity. Under zero-shot FAC setting, the proposed 

approach performs equally well as under the standard FAC setting. Additionally, similar 

to the second work, the system can produce FAC syntheses for arbitrary L2 speakers 

after training, with only few seconds of speech from each of them. These results are 

encouraging for pronunciation training applications, since it avoids the need to collect a 

large corpus for testing L2 speakers, improving user experience and pronunciation 

training efficiency. 

In the fourth work, I develop Golden Speaker Builder, an interactive web 

application for computer-assisted pronunciation training. In Golden Speaker Builder, 

users can practice with the “golden speaker” voice with their own identity but a native 

accent, which has been shown to be more effective in pronunciation training [8]. To use 

Golden Speaker Builder, users first need to go through an enrollment process, which 

collects users’ speech and trains foreign accent conversion models. They can then select 

a set of sentences they would like to practice with, and the web application will 

synthesize the “golden speaker” voice of these sentences for them to practice with. 

Results reported from a user study suggest an increase in their awareness for their use of 

intonation, stress, and connected speech in English. As the first interface under the 

“golden speaker” paradigm, it beneficially promotes future research progress on 

computer-assisted pronunciation training and provides a more efficient way for L2 

learners to improve their pronunciation. 

7.2. Contributions 

The main contributions of this dissertation can be summarized as, 
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 Constructed a novel few-shot voice conversion algorithm based on sparse 

representation, Cluster-Structured Sparse Representation (CSSR), which 

improves both acoustic quality and voice identity over previous GMM-based 

and sparse representation-based voice conversion algorithms. 

 Verified that CSSR can achieve reasonable performance using only around 

one minute of training speech. 

 Illustrated that CSSR is able to learn phonetically meaningful sparse 

representations without any supervision. 

 Developed a zero-shot voice conversion algorithm based on seq2seq model 

that is able to convert between any speakers after training, with the need of 

only 3 second of speech from each speaker. 

 Examined the effectiveness of adversarial learning paradigm during training 

for removing the speaker-dependent information from Phonetic 

PosteriorGrams. 

 Proposed a zero-shot foreign accent conversion algorithm based on seq2seq 

model that can synthesize accent converted speech for arbitrary L2 learners, 

using only few seconds of speech from each of them. 

 Verified that the zero-shot foreign accent conversion algorithm reduced 

accentedness over a state-of-the-art approach, and it performed equally well 

under standard and zero-shot foreign accent conversion settings. 
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 Developed Golden Speaker Builder, an interactive web application for 

pronunciation training, which applied foreign accent conversion algorithms to 

real-world scenarios. 

 Demonstrated the effectiveness of Golden Speaker Builder in pronunciation 

training through a set of user studies. 

7.3. Future work 

7.3.1. Improvements on the first work 

In the first work, I proposed CSSR for few-shot voice conversion. However, in 

the current CSSR system, the dictionary-learning algorithm (CSDL) to learn structured 

dictionaries is based on the Expectation-Maximization (EM) algorithm with hard-

decision rules. A natural generalization of CSDL is the EM dictionary-learning 

algorithm [257], which computes the probability of each sample belonging to each 

cluster in the “E” step and updates each sub-dictionary using the samples with non-zero 

probabilities in the “M” step. The EM dictionary-learning algorithm avoids the hard 

decision but use a weighted sum of the samples during the “E” step, learning more 

representative dictionaries and thus improving voice conversion performance. The 

second substantial future work is to generalize CSSR to non-parallel training corpora. 

Currently, CSSR requires the training corpora to be parallel utterances (i.e., the source 

and target utterances have the same linguistic content). To relax this limitation, dynamic 

time warping algorithm used for time alignment can be replaced with the phonetic 

similarity based frame-paring technique proposed by Zhao et al. [24], which can directly 
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generate frame pairs from non-parallel utterances. This modification makes it easier for 

the system to be used in practical purposes, since parallel corpora would not be required. 

7.3.2. Improvements on the second work 

In the second work, I proposed a zero-shot voice conversion algorithm based on 

seq2seq model, and an adversarial learning paradigm during model training. First, one 

valuable future direction is to improve the speaker transferability of the speaker 

recognition model to unseen speakers. To achieve this, the number of training speakers 

must be increased, so that the model can better capture the speaker space. Another issue 

that might impact the transferability to unseen speakers in the current system is 

overfitting. To address this issue, one can explore the use of regularization techniques 

such as dropout [174] and batch normalization [162] in speaker recognition models. It is 

also worthwhile to explore advanced loss functions that alleviate the overfitting for 

speaker recognition models, such as AM-Softmax loss [258] and Triplet loss [259]. 

Second, the current input sequences to the model are 40-dimensional mono-phone 

Phonetic PosteriorGrams (PPG) sequences, which do not contain information in co-

articulations between phonemes, and therefore, degrade the intelligibility and naturalness 

of the voice conversions. As a result, a future work worth noting is to test the 

effectiveness of different input sequences (e.g., tri-phone PPG, bottle-neck feature 

extracted from the hidden layer of the acoustic model, spectral features) and compare 

them with the current system. Another potential future research line is to explore 

different adversarial learning schemes. Currently, adversarial learning is accomplished 

by jointly training the seq2seq model with an adversarial speaker classifier. However, 
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this adversarial learning scheme is based on speaker classification, which may not work 

well when there are several speakers that are very similar. Therefore, it is worthwhile to 

examine other adversarial learning schemes (e.g., explicitly enforcing the distribution of 

the hidden representation from each speaker to be identical through an extra term in loss 

function [49]) and compare the effectiveness among them. A better adversarial learning 

scheme can further remove speaker-dependent information from the hidden 

representations, and therefore, improve the voice identity of voice conversions.  

7.3.3. Improvements on the third work 

Future works of the third work are two-fold. The first part will focus on 

improving the robustness and synthesis quality of the proposed approach. One possible 

future direction is to improve its robustness in generating long utterances. Currently, the 

system uses a location-sensitive attention mechanism [163] in the seq2seq model, which 

can fail when the utterances are too long [260]. To solve this problem, it can be replaced 

with alternative attention mechanisms, for instance, the Gaussian mixture attention 

mechanism [261], which has been shown to be robust in generating long utterances 

[260]. An additional potential improvement would be to add a second decoder for 

phonetic recognition (during training), following [262, 263]. Such an auxiliary decoder 

would guide the hidden representation produced by the encoder to preserve phonetic 

information, enforcing the synthesized speech to be phonetically reasonable and 

improving synthesis quality [262, 263]. Second, the current system still requires an L1 

speaker's utterances as the reference, which requires extra human interference in 

practical applications. A possible solution to mitigate this issue is to use a text-to-speech 
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synthesizer (e.g., Tacotron2 [88]) to generate the L1 utterances from text. As a result, it 

avoids the need for L1 speakers to produce learning materials. Instead, the system could 

synthesize accent conversions from any text. 

7.3.4. Improvements on the fourth work 

Future works focus on improving the Golden Speaker Builder (GSB) experience 

regarding both the quality of the golden speakers and design issues with the learning 

interface. First, the signal processing back-end in the first version of GSB system is 

based on Sparse, Anchor-Based Representation (SABR) [247, 248], which was the state-

of-the-art few-shot accent conversion algorithm during the time that I was developing 

GSB. Afterwards, I upgraded the signal processing back-end PPG-GMM [24], as it 

outperforms SABR in both acoustic quality and voice identity. However, more recently, 

seq2seq models based accent conversion have been proven to boost synthesis 

performance significantly. As a result, a beneficial future work would be to replace the 

signal processing back-end from PPG-GMM to a more advanced accent conversion 

system, for example, the one presented in Chapter 5. By replacing the signal processing 

back-end, GSB will provide the learners with high-quality syntheses, possibly improving 

pronunciation training effectiveness. Learners should also be able to control the speech 

rate, making it slower or faster depending on their needs. It is likely that learners will use 

the speed control to slow down and increase rate in practice for different purposes. In 

addition, giving learners the ability to work on small chunks of speech by allowing them 

to select a region of interest of their speech waveform would also allow them to target a 

particular part of speech depending on their personal difficulties. The GSB learning 
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interface can also be developed more with different exercises types (such as directed 

perception tasks), feedback that highlights individual problems, learning aids such as 

brief explanations about how to work on pronunciation features, and guidance on what 

features are most important in a particular sentence. 
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APPENDIX B 

POST-TEST AND DELAYED POST-TEST INTERVIEW QUESTIONS IN GOLDEN 

SPEAKER BUILDER STUDY 

Post-Test Interview 

1. In what ways was the pronunciation training valuable to you? In what ways do you 

feel you have improved? 

2. What was it like practicing with the golden speaker model? 

3. How long and how often did you practice? 

4. Was the visual feedback helpful? 

5. Do you feel like your ability to listen to English speech has improved?  

6. Do you feel like your pronunciation has improved? In what ways? 

7. Which types of pronunciation were the most difficult to improve? 

8. Did you notice any other pronunciation or language items that you had difficulty 

with during your practice? What were they? 

9. What was difficult about practicing with the golden speaker? 

10. What kind of suggestions would you give for trying this in the future? 

11. What did you notice when you were practicing?  

12. Was it easy to repeat the sentences at the same speed? 

13. Was it easy to get the consonant sounds correctly? 

14. Was it easy to get the vowel sound correctly? 

15. What kinds of things did you pay most attention to? 

16. What kind of thins did you practice most and why? 
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17. How do you like the interface of the Golden Speaker? 

18. How easy was it to use the website to practice? 

19. How comfortable were you using the website?  

20. Did you have any technical problems?  

21. Would you recommend that others try out the golden speaker builder? 

 

Delayed Post-test Interview  

 

1. Since finishing the training, in what ways was the pronunciation training continued 

to be valuable  to you?  

2. Have you continued to use the training materials?  

3. Has the training affected how you approach your English pronunciation? 

4. Do you feel like your ability to listen to English speech has improved?  

5. Do you feel like your pronunciation has improved? In what ways? 

6. Which types of pronunciation continue to be difficult to improve? 

7. Have you noticed any other pronunciation or language items that have been 

difficult after your practice? What were they? 

8. What things would you suggest for more effective practice? 

9. What kind of suggestions would you give for trying this in the future? 

10. What features do you most remember about practicing – consonants, vowels or 

other features of speech? 

11. Was it helpful to have someone helping you to practice? 
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12. What kinds of things do you remember paying attention to? 

13. Are there any things you have tried to change in your own speech since the 

training? 

14. Would you recommend that others try out the golden speaker builder? 

 


