
3M-POSE: MULTI-RESOLUTION, MULTI-PATH AND MULTI-OUTPUT NEURAL

ARCHITECTURE SEARCH FOR BOTTOM-UP POSE PREDICTION

A Thesis

by

DUC HOANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tracy Hammond
Committee Members, Zhangyang Wang

Marcia Ory
Head of Department, Dilma Da Silva

May 2021

Major Subject: Computer Science

Copyright 2021 Duc Hoang

ABSTRACT

Human pose estimation is a challenging computer vision task and often hinges on

carefully handcrafted architectures.

This paper aims to be the first to apply Neural Architectural Search (NAS) to auto-

matically design a bottom-up, one-stage human pose estimation model with significantly

lower computational costs and smaller model size than existing bottom-up approaches.

Our framework dubbed 3M-Pose co-searches and co-trains with the novel building block

of Early Escape Layers (EELs), producing native modular architectures that are optimized

to support dynamic inference for even lower average computational cost. To flexibly ex-

plore the fine-grained spectrum between the performance and computational budget, we

propose Dynamic Ensemble Gumbel Softmax (Dyn-EGS), a novel approach to sample

micro and macro search spaces by allowing varying numbers of operators and inputs to

be individually selected for each cell. We additionally enforce a computational constraint

with a student-teacher guidance to avoid the trivial search collapse caused by the pursuit

of lightweight models. Experiments demonstrate 3M-Pose to find models of drastically

superior speed and efficiency compared to existing works, reducing computational costs

by up to 93% and parameter size by up to 75% at the cost of minor loss in performance.

ii

ACKNOWLEDGMENTS

I would like to express gratitude to those who has helped me as I worked on this

thesis. This work could not have been possible without the guidance of my advisor, Dr.

Tracy Hammond, thank you for giving me the opportunity, and for providing with constant

supports when I needed it.

Thank you to my committee member, Dr. Zhangyang Wang for your advice has been

utmost critical.

Finally, I would like to thanks the members of Sketch Recognition, especially Saman-

tha Ray, for providing me a place of encouragement, and always being available to help.

iii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES. vii

1. INTRODUCTION. 1

1.1 Human Pose Estimation . 1
1.1.1 Top-Down Pose Estimation . 1
1.1.2 Bottom-Up Pose Estimation . 1

1.2 Neural Architectural Search . 2
1.3 Proposed Work . 3
1.4 Summary . 5

2. PRIOR AND RELATED WORK . 7

2.1 Recent Methods in top-down pose estimation . 7
2.1.1 Traditional Approaches . 7
2.1.2 NAS Approaches . 7

2.2 Recent Methods in bottom-up pose estimation . 8
2.3 Recent Methods in Neural Architectural Search. 9
2.4 Recent Methods in Dynamic Inference . 10

3. METHODOLOGY . 11

3.1 3M-Pose . 11
3.1.1 Pose Neural Fabric Search . 11
3.1.2 Fuse-Split block . 11
3.1.3 Early Escape Layers (EELS). 12
3.1.4 Dynamic Inference . 13

3.2 Search Spaces . 14
3.2.1 Gumbel-Softmax trick. 14

iv

3.2.2 Micro Search Space . 15
3.2.3 Macro Search Space . 16

3.3 Dynamic Ensemble Gumbel Softmax (Dyn-EGS).. 16
3.4 Supervision . 17

4. EXPERIMENTS . 20

4.1 COCO Keypoint Detection . 20
4.2 Ablation Study . 23

5. CONCLUSION, LIMITATION, AND DISCUSSION . 25

REFERENCES . 27

APPENDIX A. 32

A.1 Resulting Architecture . 32

v

LIST OF FIGURES

FIGURE Page

1.1 An illustration of 3M-Pose. The framework is based on PNFS [1] with
cells densely connected in a fabric-like grid. Each EEL has what we call a
fuse-split stage, where features are aggregated, outputted, and then finally
redistributed back into the the features stream. See Figure 3.2, and Sec-
tion 3.1.2 for details. Note that the intermediate output is also used as the
skip features to the next EEL or to the last layer. 4

3.1 An illustration of of our micro search space. This figure includes our input,
output, and hidden stages. 12

3.2 An illustration of our fuse-split stage with two scale factors. Note that in-
put features into FUSE are forwarded to SPLIT, this behavior is not shown
in Figure 1.1 for simplicity. 14

3.3 An illustration of different architecture sampling methods: a) densely con-
nected cells, b) argmax discrete architecture, c) DARTS-EGS [2] with
r = 2, d) Our Dynamic Ensemble Gumbel-Softmax. Note that while the
cells in (a), (b), and (c) have a static architecture, our cells’ architectures
can vary from cell to cell. 16

3.4 We demonstrate our model’s performance on obtained data from publicly
available COCO dataset [3]. The colored skeletal structure is drawn using
predicted keypoints from 3M-Pose. 19

A.1 An illustration of the searched architecture at the macro level. We simplify
the Fuse-Split block as a dashed line for better clarity. Each cell is marked
with a number that will correspond to table A.1. 32

vi

LIST OF TABLES

TABLE Page

4.1 Comparison with hand-crafted bottom-up and top-down NAS methods on
COCO2017 validation set. GFLOPs are calculated at single scale. Note
that we are using static-inference on the last layer to report our results. (*)
the GFLOP per person detected bounding boxes and not image sample. 1

indicates using refinement. 20

4.2 Ablation study of 3M-Pose’s components on COCO2017 validation
dataset. tea+flop: GFLOP constraint and student-teacher loss. FS,
fuse-split module . 20

4.3 Ablation study comparing performance, and computational cost at differ-
ent layers, versus using dynamic inference . 21

A.1 Our searched architecture break down by cell’s position corresponding to
figure A.1. O0

s,l is the operator between I and h1s,l, O
1
s,l is between I and

h2s,l, and O2
s,l is between h1s,l and h2s,l. SE stands for Squeeze and Excite.

CSI stands for Conv-Sigmoid * Identity. SepConv is Depth-wise Separable
Convolution. 33

vii

1. INTRODUCTION

1.1 Human Pose Estimation

Human Pose Estimation (HPE) is one of the fundamental tasks in computer vision

that serves as the foundation for many subfields such as activity recognition, medical AI

research, and interactive entertainment. Higher accuracy in HPE enables a better under-

standing of human behaviors, human actions, and human anatomies. Current works in

the field over-emphasize improving performance without consideration for the size of the

models. HPE applications often need run on resource-constrained platforms such as mo-

bile and handheld devices, and need to recognize from image streams with low latency or

even in nearly real time.

1.1.1 Top-Down Pose Estimation

High performing HPE DNNs are all 2-stage top-down (TD) approaches which rely on

two networks: one to detect people in bounding box, the other to estimate human pose

from that detection. Some of these algorithms can reach well over 35 billion floating

point operations (FLOP) per person [4]. It is common to find DNN algorithms with over

60 million parameters [4]. Accordingly, the energy cost of TD is astronomical and there

is a disconnect between their prohibitive energy cost and the energy capability of many

resource-constrained IoT devices. Therefore to close the gap between power and perfor-

mance in pose detection, there is a need for an efficiency-focused ultra-lightweight HPE

framework with comparable performance to SOTA.

1.1.2 Bottom-Up Pose Estimation

The bottom-up (BU) or one-stage approaches [5, 6, 7, 8, 9, 10, 11] utilize a single

network for both keypoint detection and identity grouping. This type of approach is ideal

1

for real-time estimation. However, while BU’s computational cost is not proportional

to the number of people, it can be expensive (405.5 GFLOP [5]) and the network itself

can be large (277.8M parameters [10]). Scale invariance is a unique problem for BU

and poses two challenges in predicting keypoints for small persons. One is dealing with

scale variation by improving prediction while not harming prediction of large persons.

The other is to generate quality heatmaps for precise localization of keypoints of small

persons. There are various solutions for scale invariance, e.g., using feature pyramids,

direct image upsampling, and outputting outputs of different scales. Solving this specific

challenge while remaining conscious of efficiency is a daunting task to do manually.

In addition, since BU expenses the same amount of GFLOPs for five persons or for

one, there is efficiency to be gained if there is a way to let easy samples out early without

having to traverse the entire model. As such, there is a need for models that support

dynamic inference to avoid those unnecessary computational costs.

1.2 Neural Architectural Search

Neural Architectural Search (NAS) [12, 13, 1, 14, 15, 16, 17, 18, 19, 2, 20, 21, 22,

23, 2, 24] is capable of generating task-specific model comparable to those that are hand-

crafted. There have been but a few pose NAS works [1, 12] for TD and none for BU.

But existence of prior works in TD show that it is possible to extend NAS beyond simple

classification and onto complex dense prediction tasks. However, as seen later in Table 4.3,

a naive implementation of NAS in BU resulted in a design with unimpressive results. A

large search space and limited sampling capability mean that NAS is often ineffective

without additional guidance and constraints to provide support.

Furthermore, when generating the final architecture after search, we find the choice

between generating either a dense [1] or sparse architecture [12] to be limiting. A densely

connected architecture is computationally inefficient and physically impossible to fit on a

2

GPU in our case. On the other hand, a sparse network is efficient, but it does not have

enough parameters to represent the data effectively. Recent work by [2], proposed DART-

EGS, a differentiable method to sample r number operators in a differentiable manner.

However, DART-EGS is static in nature, and thus cannot react to either performance or

computational needs during the architecture search.

1.3 Proposed Work

To this end, we propose 3M-Pose, a multi-resolution, multi-paths, and multi-output

NAS for BU pose prediction to generate an efficient-orientated BU HPE framework.

Multi-resolution Scale variation is the main challenge we face designing BU approach.

We use Pose Neural Fabrics Search (PNFS) [1] as the base of our framework to facilitate

multi-resolution macro and micro search spaces, which we denote as the fabric and cell

respectively (see Figure 1.1).

Multi-path We propose Dynamic Ensemble Gumbel-Softmax (Dyn-EGS), a new

method for architecture sampling to facilitate multi-paths searching (see Figure 3.3). It

controls the network’s density for both the micro and macro search spaces. Dyn-EGS

dynamically determines the number of operations per edge and the number of inputs per

cell to optimize between performance and computational budget. By allowing cells to

have heterogeneous number of operators and inputs, 3M-Pose is able to generate high

performing architecture with a small computational footprint.

Multi-output: Motivated to gain additional efficiency with mulitple-outputs, we im-

plement EELs along the fabric depth. During train and search, the features from these

layers are fed through our Fuse-Split module (FS) (see Figure 3.2), to become an addi-

tional output along with the final layer’s. Since we co-train and co-search with EELs, they

are sub-models that can work in concert or used independently for improved computa-

tional costs without extra effort. To be used in concert, we design a gating mechanism

3

Image

Stem

1
/8

1
/1

6

1
/3

2

1
/4

1
/4

1
/4

Featu
re

m
ap

s
cell

id
en

tity
u

p
sam

p
le

strid
ed

C
o

n
v.

fu
sio

n

b
lk.

sp
lit b

lk.
C

o
n

v.
lo

ss

Figure 1.1: An illustration of 3M-Pose. The framework is based on PNFS [1] with cells
densely connected in a fabric-like grid. Each EEL has what we call a fuse-split stage,
where features are aggregated, outputted, and then finally redistributed back into the the
features stream. See Figure 3.2, and Section 3.1.2 for details. Note that the intermediate
output is also used as the skip features to the next EEL or to the last layer.

4

to measure our confidence in the output at each EEL and let the network stop early if it

reaches above a threshold.

Supervision: To better guide our searching process, we supervised our search with

MSE for heatmap loss, Associative Embedding Loss [10] for identities, and two other

architecture supervision losses, a FLOP constraint and a student-teacher loss. We pair

FLOP constraint with a student-teacher loss to avoid trivial architectural optimizations that

satisfy the computational condition by disabling all expensive high-functioning functions

at great expense to performance. Inspired by [15], we investigate an end-to-end version

of the proposed TG-SAGE loss for faster search time. Instead of training and ranking

premature architectures for final selection, we opt for a one-shot searching approach by

continuously apply TG loss throughout the searching process. We use Higher-HRNet [7]

as our teacher network.

1.4 Summary

We summarize our contributions as follows:

• Framework: We are the first to propose a NAS framework on a BU pose prediction

task. We co-search and co-train our architecture with EELs for dynamic inference,

therefore reducing overall computational cost without any significant degradation to

model’s performance.

• Enabling Technique: We propose Dyn-EGS a novel approach to sample micro

and macro search spaces by allowing varying numbers of operators and inputs to

be individually selected for each given cell. Furthermore, we employed a student-

teacher loss that continuously guides 3M-Pose using any mature teacher network.

• Performance: Our discovered architecture is more efficient than existing bottom-

up solutions with respect to parameter size and computational costs. Experiments

5

demonstrate that 3M-Pose finds models with drastically superior speed and effi-

ciency than existing works: 3M-Pose reduces computational cost by up to 93% and

parameter size by 75% with the price of only a minor loss in performance.

6

2. PRIOR AND RELATED WORK

2.1 Recent Methods in top-down pose estimation

By the number of published literature, top-down or 2 stages approach is the more

popular skew within the pose estimation research community. Since most top-down papers

focused mainly on keypoint detection, the required hardware needed to do research is low,

thus attracting more research. Recent works including [25, 26, 12, 1, 27, 28, 29] contains

many hand-crafted approaches, and some Neural Architectural Search approach as well.

2.1.1 Traditional Approaches

Traditional approaches or hand-crafted approaches use human samples generated from

an image by popular object detection models such as [30, 31, 32].

Typically, works such as [25, 27, 28] make use of a deep encoder network to generate

feature-rich but spatially small tensors from a input image, before passing the encoded

feature-rich tensor through a series of deconvolution layers to recover the desired informa-

tion. The common chosen encoder networks are usually Resnet [33], Mobilenet[34], or

Shufflenet [35]. However, physical capcity and the problem of vansihing gradients limit

how deep simple feed-forward networks, such as those mentioned earlier, can be.

Works by [26], uses multiple parallel branches, with cross-resolution feature fusion,

to take advantage of high resolution feature representation to achieve the current SOTA

performance without the need of a very deep backbone.

2.1.2 NAS Approaches

Beside hand-crafted approaches, we are seeing more Neural Architectural Search ap-

proaches making their way into the pose estimation domain. Several recent works [1, 12]

have used NAS to create their TD architecture.

7

[1] proposes Pose Neural Fabric Search framework, a derivative of Convolutional Neu-

ral Fabric [36], to estimate keypoints spatial location using keypoint vector space repre-

sentation, and assumed prior knowledge. Their approach is similar to DARTs [16], but

instead of training model’s weights and model’s architectural parameters on two separated

training sets, they unified their search and train stages, thus saving time. However, because

of this unique approach, their resulting network is very dense, since they cannot prune their

search space.

[12] proposes a hybrid optimization scheme. They use DARTS [16] to optimization

the mirco search spaces, and reinforcement learning [23] to optimize the macro search

spaces.

2.2 Recent Methods in bottom-up pose estimation

Bottom-up or 1 stage approach is considered rare. Having to solve not only the key-

point estimation problem, but also the identity problems, researching into bottom-up ap-

proach can be prohibitively costly. All recent bottom-up works, [5, 6, 7, 8, 9, 10, 11],

are hand-crafted approaches. All of them generate Gaussian heatmaps to localize the key-

points spatial locations, but differ greatly in how they approach keypoints identity group-

ings.

HigherHRNet [7] uses HRNet [4] and a devolution module to predict heatmaps at

different resolutions. HigherHRNet groups by associative embedding, which assign key-

points with a identity vector or tag and groups keypoints by their l2 tag distances. Unlike

other approaches, [2] uses multiple parallel branches to develop high dimension represen-

tational matrix, therefore avoiding a need for a very deep backbone.

OpenPose [11] uses a two-branch multi-stage network: one to predict heatmaps, the

other for grouping. OpenPose groups keypoints by using Part Affinity Fields, which learn

a 2D vector field to link pairs of keypoints. Unlike HigherHRNet which unifed both key-

8

points estimation and identity grouping into a "single" stream , OpenPose opted to special-

ized individual branches for specific purpose. The main disadvantage from this approach

is the inability for the network to share information between parallel branches, thus muting

its potential.

[10] proposes the method of associative embedding to predict heatmaps and group

keypoints. However, unlike other literature listed in this section, [10] focused mainly on

the development of associative embedding for keypoint estimation and segmentation. To

facilitate their experimentation, they uses Stack hour glass [37], which is a series of auto-

encoder, as the backbone for their framework.

PersonLab [5] uses dilated ResNet[33] to predict and group keypoints directly. This

approach is the most straight forward methods, however its simplicity does not yield very

high quality results.

PifPaf [8] proposes a novel model to detect human poses in crowded images by using

a Part Intensity Field (PIF) to localize parts and Part Association Field (PAF) to associate

body parts with each other. Unlike other grouping method which require extensive post-

processing steps to group identity correctly, PifPaf’s approach allows for a simple greedy

keypoints association thus making it quite ideal for mobile application.

2.3 Recent Methods in Neural Architectural Search

Neural Architectural Search is an active research topic in the field of computer vision

and machine learning [12, 13, 1, 14, 15, 16, 17, 18, 19, 2, 20, 21, 22, 23, 2, 24]. Capable

of designing networks that can surpass those handcrafted by human experts, NAS plays an

important role in reducing labor costs associated with traditional approaches.

Reinforcement Learning NAS [23, 21, 12, 13] uses REINFORCE algorithm to trans-

form non-gradient base metrics to reward signals that encourage unseen agents to design

a network that maximize these reward signals.

9

Differentiable searching NAS [16, 14, 1] is a gradient base search approach which

directly optimize the architecture against some loss metrics. Our framework 3M-Pose,

falls into differentiable searching algorithm category. Despite the recent popularity of

NAS, dense prediction tasks, e.g., human pose prediction, remain a challenge. To our

knowledge, only a few works have applied NAS to human pose prediction and both use

top-down approaches [12, 27].

2.4 Recent Methods in Dynamic Inference

Dynamic inference or adaptive inference [38, 13, 39, 40] aims to develop dedicated

strategies to dynamically skip some computations during the inference phase for easy in-

puts. As a result, the model does not use unnecessary resources on simple inputs. Many

works will build escape points into the architecture to achieve this outcome

Multi-Scale DenseNet (MSDNet) [38] manually designs an architecture to support

anytime classification with classification blocks strategically placed throughout the depth

of the network. However, because of the blatant placement of escape layer at every cross-

section, this approach’s worst case scenario is very costly.

[39, 40] divides the CNN architecture into multiple stages and exits inference on easy

inputs. Unlike previous approaches which place escape layer at every junctions, these

approaches incorporate some intelligent design thus minimizing the impact of the worst

case scenario.

S2DNAS [13] uses NAS to generate all possible model configurations for dynamic

inferencing from a seeded CNN architecture and then searches for the most optimal con-

figuration from those options. This approach generates optimal escape layer placement

using Neural Architectural Search but cannot generate a model on its own.

10

3. METHODOLOGY

In this section, we will go over the implementation of the framework and its supporting

modules. We illustrate 3M-Pose framework in Figure 1.1. We will firstly discuss the

overview of the proposed 3M-Pose framework and then describe its components in detail.

3.1 3M-Pose

3.1.1 Pose Neural Fabric Search

We borrow the general fabric layout as employed by [1] to facilitate the micro and

macro search spaces. Each micro search space or cells are arranged in a grid or fabric,

starting with highest resolution on the top row to the smallest resolution at the bottom

row. Every subsequent row is 1
2

the resolution of the previous row. Each cell contains h

hidden layers (we chose h to be 2), and takes up to three inputs from its predecessors (see

Figure 3.1).

We get our stem network from HRNet [4] which consists of two 3 x 3 strided con-

volution, followed by 4 residual units, and ends with one 1 x 1 convolution to reduce the

resolution to 1
4

the scale and feature maps’ width to C. Our fabric is ten columns deep. The

feature maps’ width for each row are C, 2C, 4C, and 8C, with C being 32. Following [10],

we predicted the scalar tag for every keypoint.

3.1.2 Fuse-Split block

Unlike [1], we empirically found better performance by aggregating features across

scales, instead of only using the features of the highest resolution.

To facilitate feature aggregation, we pass the set of inputs through a 1 x 1 convolu-

tion and up-sample them to 1
4

resolution in a parallel fashion before we concatenate them

together. Next, we feed the resulting tensors, which are 4C wide, through another 1 x 1

11

downsample

operators

Concat.

identity

upsample

Data node

Figure 3.1: An illustration of of our micro search space. This figure includes our input,
output, and hidden stages.

convolution, reducing the width back to C, before being activated by Squeeze-and-Excite

block [41]. We repeat the previous step between skip-features and the fused features to

obtain the final features.

The final features derived from fusion are forwarded to three places: the next Fuse

block, the Split block, or the final stage to obtain the final output. For the EELs, we must

keep feature continuity. We hence use the Split block to separate the final features using a

1 x 1 stride convolution to obtain the correct scale and width for each respective row before

adding them with the input features of the Fuse block. Detail of our implementation can

be view in Figure 3.2.

3.1.3 Early Escape Layers (EELS)

We designate layers along with the fabric depth as our EELs. At each EEL, we place a

Fuse-Split module to facilitate feature fusion and dispersion. We chose the 4th and 7th lay-

12

ers, respectively. EELs provide additional points of supervision during training, and we

found this approach improve our final layer’s performance. Since 3M-Pose co-searches

network architectures with consideration for EELs, the resulting architecture achieves bet-

ter performance than those without.

3.1.4 Dynamic Inference

We recognize that not all inputs are equally hard. We improve efficiency by outputting

easy inputs early. The challenge is constructing a reliable confidence score that can detect

good outputs among the EELs. Since our model predicts the Gaussian distributed heatmap

provided as ground truth, we can measure relative “goodness” of outputs by examining the

predicted heatmaps’s skew and kurtosis. Given a distribution curve, skew is given as:

moment3

(moment2)
3
2

(3.1)

while kurtosis is given as:
moment4

(moment2)2
(3.2)

and moment is defined as:

momentk =
1

n

n∑
i=1

(xi − x)k (3.3)

Our confidence equation is given as:

conf = f(c0 ∗ (
c1 ∗ skew + c2 ∗ kurtosis

2
))− 0.5 (3.4)

Where f(.) is the sigmoid activation function, N is the total number of detected keypoints,

skew and kurtosis fall somewhere between 1 and -1, and {c0, c1, c2} are hyperparameters

that can be tuned to extract better performance. Furthermore, if N = 0, we automatically

13

skip features feature maps output features

conv. upsample downsample identity

SE squeeze and excite blk.c concat.

+ add

c

1/8

1/4

SE

c SE +

+

FUSE SPLIT

Figure 3.2: An illustration of our fuse-split stage with two scale factors. Note that input
features into FUSE are forwarded to SPLIT, this behavior is not shown in Figure 1.1 for
simplicity.

stop inferencing. Each EEL has its own set of (c0, c1, c2). In our implementation we set

the fourth layer’s to be (1, 1, 1) with a confidence threshold of 1, and the seventh layer to

be (2, 1, 1) with a confidence threshold of 0.6.

3.2 Search Spaces

In this section we denote h for hidden layer, H for number of hidden layers, s for scale,

l for layer, α for the micro search space, β for the macro search space, and m for the

density search space.

3.2.1 Gumbel-Softmax trick

We utilize DART as our primary method for discovering optimal architecture. Follow-

ing, the common approach [16], we use Gumbel-softmax trick [42] to enhance the network

14

ability to sample diverse range of architecture while avoiding initialization bias; the trick

is given as:

yi =
e
zi+gi
τ∑k

j=1 e
zj+gj
τ

(3.5)

where gk is the Gumbel noise and τ is the temperature parameter. We apply Gumbel-

Softmax instead of Soft-max on our architectural parameter during the searching duration

starting with τ = 10 and linearly decrease it to a minimum of 0.001.

3.2.2 Micro Search Space

for any cells,l uses αs,l to determine which operator from the set of operators, O, to be

used. This behaviour is expressed as:

hHs,l =

H−1∑
k=1

hks,l +

|O|∑
k=1

αH,ks,l O
H,k
s,l (h

H−1
s,l), H > 0

Is,l, H = 0

(3.6)

where Is,l is the input to the cell. O ∈ O, and O is a set of 9 different operators, which

are:

• Identity

• Conv (3x3)

• Avg pool (3x3)

• Max pool (3x3)

• Residule Block (3x3)

• Depth Wise Separable Convolution

(3x3)

• Conv-Sigmoid * Identity

• Zoom Convolution (3x3) [43]

• Squeeze-and-Excite [41]

Finally, we obtain the cells,l’s output, Os,l, by concatenating all features, {h1s,l, ..., hH
s,l},

and passing the concatenated features through a 1 x 1 convolution.

15

1

a)

3

2

1

b)

3

2

1

c)

3

2

1

d)

3

2

Figure 3.3: An illustration of different architecture sampling methods: a) densely con-
nected cells, b) argmax discrete architecture, c) DARTS-EGS [2] with r = 2, d) Our
Dynamic Ensemble Gumbel-Softmax. Note that while the cells in (a), (b), and (c) have a
static architecture, our cells’ architectures can vary from cell to cell.

3.2.3 Macro Search Space

The input, Is,l, for any cells,l is a combination of inputs from its predecessors at differ-

ent scales. The resulting fusion is given the following expression:

Is,l = β0
s,lO s

2
,l−1 + β1

s,lOs,l−1 + β2
s,lO2s,l−1 (3.7)

3.3 Dynamic Ensemble Gumbel Softmax (Dyn-EGS).

Once we completed the searching process, we have to derive the final architecture

from the supernet. Most works will constrain the selected architecture to be either dense

or sparse, but making this choice places unnecessary limitations on the final architecture.

Both types of architecture have their associated problems. A densely connected architec-

16

ture is computationally inefficient and physically impossible to fit on a GPU in our case.

On the other hand, a sparse network is computationally efficient but does not have enough

parameters to represent the data effectively. Recent work by [2] proposed DART-EGS,

a differentiable method to sample multiple operators in an end-to-end manner. However,

DART-EGS uses a fixed sampling rate r which forces every cell to sample r times. DART-

EGS’ static nature means that it cannot react to either performance or computational needs

during the architecture search.

To add the ability to adapt the number of parameters in the current representation based

on the available budget, we improve on this idea and propose Dyn-EGS. We represent

Dyn-EGS as m in our architecture parameters. To independently control the density for

micro and macro searching spaces, we further differentiate {mα, mβ}, respectively. mα has

a dimension of |cells| x H x Rα. Similarly, mβ has a dimension of |cells| x 3 x Rβ . Here,

|cells| are the total number of cells, H the total number of hidden layers, and {Rα, Rβ}

the possible number of sampling states for the respective search spaces.

During search, we apply the one-shot Gumbel-Softmax trick, θ, to m. Let i be one

of the positive indexes from θ(mα) which represent a sampling state for cells,l at hidden

layer h; then the resulting operators for this particular cell, at this particular hidden layer

are αhs,l =
∑i+1

k=1 θ(α
h
s,l) (note that α is discrete while α is continuous). To derive the

final architecture, we replace θ with argmax to find i from {mα, mβ}, and select the top-i

operators and or paths from {α, β}, see Figure 3.3.

3.4 Supervision

During the searching process, we use ModelLoss+
(
GFLOPS

T

)w+TeacherLoss as the

optimization goal, where ModelLoss is the summation of Mean-Square-Error loss for

heatmaps and Associative Embedding loss [10] for identities.

FLOP constraint We target GFLOPs rather than latency since we are not targeting any

17

specific hardware. Our value for T, 47.8, is reported by Higher-HRNet [7], and w is 0.15.

We observe that aggressive pruning in the early searching stage can produce efficient but

ineffective architectures. To rectify this phenomenon, we employ a simple step-case loss

scaling from 0.0001, increasing by a power of 10 every three epochs to a ceiling of 1.

Student-teacher loss. 3M-Pose uses a teacher model to guide the search process to avoid

trivial optimization caused by aggressive pruning from our FLOP constraint such as the

“latency collapse” as revealed in [43]. Inspired from [15], we use the Representational

Dissimilarity Matrix (RDM) [44] to quantify the activation patterns of the representational

space in response to a set of inputs for any particular activated tensors. RDM is calculated

by computing the pair-wise distances between each pair of activation vectors using a dis-

tance measure; for our case, we use simple Euclidean distance. Let X be the set of RDM

from the student network, and Y be the set of RDM from the teacher network. For the

student network, RDM is calculated for every cell’s output; for the teacher network, RDM

is calculated for only a set of handpicked outputs. We calculate the student-teacher sim-

ilarity by Simi = max(corr(Yi, Xj)) for j ∈ {1, 2, ..., |X|} and i ∈ {1, 2, ..., |Y |}. We

use Pearson correlation to measure the similarity and then construct the student-teacher

loss by taking 1−mean(Sim).

18

Figure 3.4: We demonstrate our model’s performance on obtained data from publicly avail-
able COCO dataset [3]. The colored skeletal structure is drawn using predicted keypoints
from 3M-Pose.

19

4. EXPERIMENTS

Table 4.1: Comparison with hand-crafted bottom-up and top-down NAS methods on
COCO2017 validation set. GFLOPs are calculated at single scale. Note that we are using
static-inference on the last layer to report our results. (*) the GFLOP per person detected
bounding boxes and not image sample. 1 indicates using refinement.

Method Mode Backbone Input size #Params(M) GFLOPs AP AP50 AP75 APM APL

Manual approaches
OpenPose [11] 1 BU - - - - 61.0 84.9 67.5 56.3 63.3
Hourglass [10] BU Hourglass 512 277.8 206.9 56.6 81.8 61.8 49.8 67.0
Personlab [5] BU ResNet-152 1401 68.7 405.5 66.5 86.2 71.9 62.3 73.7

PifPaf [8] BU ResNet-152 241x321 62.09 75.38 67.4 - - - -
HigherHRNet [7] BU HRNET-w32 512 28.6 47.9 67.1 87.5 72.8 61.5 76.1

NAS approaches
AutoPose [12] TD - 256 - 10.65* 73.6 90.6 80.1 69.8 79.7

PNFS [1] TD - 256 27.5 11.4* 73.0 - - - -
3M-Pose (Ours) BU 4r10d32w 512 17.79 16.63 58.3 82.4 64.1 53.9 67.6
3M-Pose (Ours) BU 4r10d32w 640 17.85 25.98 62.5 84.0 68.4 57.6 69.8

4.1 COCO Keypoint Detection

Dataset. The COCO dataset [3] contains 250,000 samples with one or more people; each

person instance is labeled with 17 keypoints. The dataset is split into train/validation/test

subsets with 57k, 5k, and 20k images respectively. Following [16], we perform our ar-

chitecture search by training on the train set and checking performance on the validation

Table 4.2: Ablation study of 3M-Pose’s components on COCO2017 validation dataset.
tea+flop: GFLOP constraint and student-teacher loss. FS, fuse-split module

Dyn-EGS tea+flop EELs FS AP GFLOP
7 7 7 7 31 31
3 3 7 7 41.5 20.6
3 3 3 7 50.1 24.5
3 3 3 3 58.3 16.8

20

Table 4.3: Ablation study comparing performance, and computational cost at different
layers, versus using dynamic inference

Input layer Gflop AP AP(M) AP(L)

512

4 10.14 22.1 25.0 17.9
7 12.38 54.3 49.1 62.3
10 16.63 58.3 53.9 67.6

Dynamic 13.82 57.9 52.2 66.9

640

4 15.85 24.5 27.1 22.0
7 19.34 59.0 54.4 65.5
10 25.98 62.5 57.6 69.8

Dynamic 20.16 61.7 56.5 69.2

dataset. During evaluation, we train exclusively on the train dataset and evaluate on the test

dataset. We reports our results on the validation set for our ablation and dynamic inference

studies and on the test set for when comparing with other SOTA methods.

Following [10] and [7], we perform random scaling in the range of [0.75, 1.25], random

rotation in the range of [−30o, 30o], random translation in the range of [−40, 40], and

random flip on all our image data before cropping the images to 512x512. We use the

same preprocessing steps during both the search and train stages.

Searching. Following [16], we optimize our architecture parameters {α, β,m} on the

validation set and the model’s parameters, ω, on the training set. We use the Adam op-

timizer [45] for both processes, which we will denote as oparch and opmodel respectively.

opmodel has a base learning rate of 1e−3 which remains constant throughout. On the other

hand, oparch has a base learning of 5e−3 which drops to 2.5e−3 and 1.25e−3 at the 20th

and 25th epochs respectively. We search for a total of 35 epochs.

We balance between heatmap loss, grouping loss, teacher guidance loss, and GFLOP

loss. To give more weight to the heatmap loss and teacher guidance losses, we set the

weights to 1, 1e−3, 1, and 1e−3, respectively, when combining these metrics.

We aim for tiny but capable BU architectures. We limit Dyn-EGS possible sampling

21

states by settingRα, our operator’s sampling limit, andRβ , our path sampling limit, to be 2

and 3, respectively. While it is possible to extract more performance with higher sampling,

we find the trade-of between the gain in performance and the increase the inefficiency

unappealing for our paper’s goal.

Our fabric is four rows wide and ten layers deep with 34 cells, each with two hidden

stages. We select the fourth and seventh layers to be EELs. We set C, the channel-width,

to be 32. We found the discovered architecture is transferable across different fabrics with

different input sizes and channel-width, as long as the numbers of rows, columns, and

hidden stages remain constant. We report our architecture in the supplementary section.

Training. From the derived architecture, we first prune unnecessary operators and paths

from the micro and macro search spaces. We use an Adam optimizer with a base learning

rate of 1ee−3 that drops to 1e−4 and 1e−5 at the 200th and 260th epochs, respectively. We

train the model for 300 epochs. We follow [7] and balance heat map losses with grouping

loss with weights of 1 and 1e−3.

Testing. Following testing procedures by [7] and [10], we resize the short side of image

to 512 while keeping the aspect ratio. We use flip testing on all experiments. We report

accuracy and GFLOPs from both static and dynamic inference in Table 4.3. In static

inference, we only report the output of the last layer of the fabric.

Results on COCO2017 validation. Table 4.1 summarizes the results on COCO2017 vali-

dation dataset on hand-crafted bottom-up approaches and NAS top-down approaches. The

results shown that 3M-Pose is small and efficient in terms of the model’s total numbers of

parameters and GFLOPs. We outperform OpenPose [11] and Hourglass [10] in accuracy,

while being 87.5% more computationally efficient compared to [10]. We acknowledge our

performance short-coming comparing to Personlab [5] and HigherHRNet [7]. We see a

reduction of 93%, and 45.76% in computational cost and 75% and 63% fewer parameters

in exchange for only 4% degradation in performance, an acceptable tradeoff. In compari-

22

son to other NAS’s pose estimation works, 3M-Pose is smaller with respect to the number

of parameters. This benefit is compounded by the fact that 3M-Pose is a single-model

approach while the other works use two models. Furthermore, our model has comparable

performance with respect to GFLOPs and better performance on images containing two or

more people. Top-down computational cost is proportional to the number of people in the

image while bottom-up approaches’ cost is independent of that factor.

4.2 Ablation Study

Effectiveness of our proposed modules: Table 4.2 compares the baseline to our proposed

modules to demonstrate their effectiveness in guiding both search and train processes. The

models in this table is evaluate on COCO2017 validation dataset.

a) Baseline model: We search and train the baseline architecture using none of the

proposed features, relying solely on heatmap and grouping loss to guide both processes. It

achieves an AP = 31% while costing 31 GFLOP per sample.

b) Dyn-EGS, student-teacher loss and GFLOP constraint: By adding Dyn-EGS to

sample complex operators and paths alongside with GFLOP constraint and teacher

guidance, 3M-Pose achieves a AP = 41.5, a significant +10.5 gain in performance with

a −10.44 reduction in computational costs. The result indicates Dyn-EGS’s ability to

design effective micro and macro sampling strategies under computational constraint, and

student-teacher loss’s ability to counteracts trivial search collapse causes by excessive

pruning.

c) Early Escape Layers: Next, we co-search and co-train 3M-Pose with EELs. Note

that without a fuse-block module, we only use the feature of the largest dimension as inter-

mediary outputs, and we do not forward these features to the next EEL or final layer. We

again saw a significant improvement in performance, +8.6, which indicate the important

of supervising intermediate outputs in both search and train process.

23

d) Fuse-Split module: Finally, we add fuse-split after every EELs to facilitate feature

fusion, dispersion, and skip connection. This time, the GFLOP constraint accounts for

the entire model, searchable and non-searchable modules alike. This final configuration

achieves an AP of 58.3, an +8.2 increase from the previous model and +27.3 total increase

from baseline. This version also has the lowest computational costs of only 16.8 GFLOP

per sample.

Evaluation with Dynamic Inference. Table 4.3 compares the effectiveness of dynamic

inference against static inference at different output layers in 3M-Pose. Again we use

COCO2017 validation set to evaluate our results.

We see a 16.8% reduction in computational cost for our smaller model with a 0.6%

degradation in performance. 38.7% of the total outputs are from the fourth layer, while 8%

is from the seventh layer, with the rest, 53.26%, attributed to the tenth layer. Likewise, the

larger model sees a 22% reduction in GFLOP with a 1.28% degradation in performance.

The outputs are distributed among the fourth, seventh, and tenth layers at 49%, 11.8%, and

38.9%, respectively. Despite the poor performance, the fourth layer is an excellent human

detector and can reject most of the negative samples within the validation dataset. This

result shows our simple metric’s effectiveness to select the correct output layer for a given

input.

24

5. CONCLUSION, LIMITATION, AND DISCUSSION

We introduce 3M-Pose as the first BU human pose prediction framework via NAS.

Our predecessors [12, 1] made respectable initial attempts for NAS in HPE, but their dis-

covered models were computationally heavy yet still produced inferior and uncompetitive

performance w.r.t. handcrafted SOTAs. By contrast, we are delighted to see that 3M-

Pose has made a much more meaningful step towards practically useful NAS in HPE

by finding an ultra-lightweight BU network that achieves comparable results, revealing

the appeal of NAS to HPE practitioners. Our work is aligned with the recent trend in

“refocusing” the NAS goal to generating mobile friendly and tiny neural networks. For

example, TinySR [46] utilized NAS to find extremely compact super-resolution networks,

with slightly compromised yet still strong performance compared to SOTA methods. We

consider this efficiency-oriented direction to be a blue ocean for NAS.

Applying NAS to HPE, or complicated vision tasks that involve dense or point set

predictions in general, is more challenging than applying it to image classification. This

difference is owing to the the enormous design variations caused by the task complexity.

For HPE, a large degree of ambiguity for identity grouping and the challenge of identifying

keypoints at different scales have placed daunting barriers for any manual or automated

design. Recall the initial difficulty of AutoML, where it can only design neural networks

with comparable results to human experts, and these results were constrained to small

academic datasets such as CIFAR-10 and the Penn Treebank [47]. Likewise, there are

many aspects in which 3M-Pose can improve.

In order to make 3M-Pose more competitive, there are many techniques we can ap-

ply to improve its performance. Some are directly inspired by the handcrafted models,

e.g., [7]. For example, we can increase the channel width, e.g., from 32 to 48 which has

25

been shown by [7] to increase overall accuracy by 2%, leverage our efficiency with inputs

at higher resolution, or make 3M-Pose scale-aware by using a deconvolutional module to

output multiple different resolutions which has shown to improve accuracy by 1.4% [7].

Since 3M-Pose is modular in design, we can easily scale the model up to enjoy similar or

even better performance gains, though perhaps sacrificing a bit efficiency. We further note

that the scaling up can be an integrated part of NAS by holistically searching the expan-

sion ratio, the scaling factor, the number of channels, and the depth of the overall network.

For example, EfficientNet [48] uses NAS to search a network’s compound scaling ratio

to achieve a favorable accuracy-resource tradeoff on ImageNet. We aim to adopt their

multi-dimensional scaling into the future versions of 3M-Pose too.

26

REFERENCES

[1] S. Yang, W. Yang, and Z. Cui, “Pose neural fabrics search,” arXiv preprint

arXiv:1909.07068, 2019.

[2] J. Chang, X. Zhang, Y. Guo, G. Meng, S. Xiang, and C. Pan, “Differentiable archi-

tecture search with ensemble gumbel-softmax,” arXiv preprint arXiv:1905.01786,

2019.

[3] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,

D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in

context,” CoRR, vol. abs/1405.0312, 2014.

[4] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning

for human pose estimation,” CoRR, vol. abs/1902.09212, 2019.

[5] G. Papandreou, T. Zhu, L.-C. Chen, S. Gidaris, J. Tompson, and K. Murphy, “Person-

lab: Person pose estimation and instance segmentation with a bottom-up, part-based,

geometric embedding model,” in ECCV, 2018.

[6] K. Sun, Z. Geng, D. Meng, B. Xiao, D. Liu, Z. Zhang, and J. Wang, “Bottom-

up human pose estimation by ranking heatmap-guided adaptive keypoint estimates,”

arXiv preprint arXiv:2006.15480, 2020.

[7] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang, “Higherhrnet: Scale-

aware representation learning for bottom-up human pose estimation,” arXiv preprint

arXiv:1908.10357, 2019.

[8] S. Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: Composite fields for human pose esti-

mation,” in CVPR, 2019.

27

[9] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep convo-

lutional neural network for fast object detection,” in ECCV, 2016.

[10] A. Newell, Z. Huang, and J. Deng, “Associative embedding: End-to-end learning for

joint detection and grouping,” in NeurIPS, 2017.

[11] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: real-

time multi-person 2d pose estimation using part affinity fields,” arXiv preprint

arXiv:1812.08008, 2018.

[12] X. Gong, W. Chen, Y. Jiang, Y. Yuan, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “Auto-

pose: Searching multi-scale branch aggregation for pose estimation,” arXiv preprint

arXiv:2008.07018, 2020.

[13] Z. Yuan, B. Wu, Z. Liang, S. Zhao, W. Bi, and G. Sun, “S2dnas: Transforming

static cnn model for dynamic inference via neural architecture search,” arXiv preprint

arXiv:1911.07033, 2019.

[14] S. Saxena and J. Verbeek, “Convolutional neural fabrics,” in NeurIPS, 2016.

[15] P. Bashivan, M. Tensen, and J. J. DiCarlo, “Teacher guided architecture search,” in

CVPR, 2019.

[16] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” arXiv

preprint arXiv:1806.09055, 2018.

[17] J. Mei, Y. Li, X. Lian, X. Jin, L. Yang, A. Yuille, and J. Yang, “Atomnas: Fine-

grained end-to-end neural architecture search,” arXiv preprint arXiv:1912.09640,

2019.

[18] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network

and specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

28

[19] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and

K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable neu-

ral architecture search,” in CVPR, 2019.

[20] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and

J. Shlens, “Searching for efficient multi-scale architectures for dense image predic-

tion,” in NeurIPS, 2018.

[21] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”

arXiv preprint arXiv:1611.01578, 2016.

[22] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures

for scalable image recognition,” in CVPR, pp. 8697–8710, 2018.

[23] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network architectures

using reinforcement learning,” arXiv preprint arXiv:1611.02167, 2016.

[24] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network transformation

for efficient architecture search,” arXiv preprint arXiv:1806.02639, 2018.

[25] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation and track-

ing,” in ECCV, 2018.

[26] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learning

for human pose estimation,” in CVPR, 2019.

[27] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral human pose regression,” in

ECCV, 2018.

[28] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid net-

work for multi-person pose estimation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7103–7112, 2018.

29

[29] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,

X. Wang, et al., “Deep high-resolution representation learning for visual recogni-

tion,” TPAMI, 2020.

[30] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV, 2017.

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in NeurIPS, 2015.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 779–788, 2016.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

CoRR, vol. abs/1512.03385, 2015.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mo-

bile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[35] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolu-

tional neural network for mobile devices,” CoRR, vol. abs/1707.01083, 2017.

[36] S. Saxena and J. Verbeek, “Convolutional neural fabrics,” in Proceedings of the 30th

International Conference on Neural Information Processing Systems, NIPS’16, (Red

Hook, NY, USA), p. 4060–4068, Curran Associates Inc., 2016.

[37] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose esti-

mation,” in ECCV, 2016.

[38] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger, “Multi-

scale dense networks for resource efficient image classification,” arXiv preprint

arXiv:1703.09844, 2017.

30

[39] K. Berestizshevsky and G. Even, “Dynamically sacrificing accuracy for reduced

computation: Cascaded inference based on softmax confidence,” in ICANN, 2019.

[40] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast inference via

early exiting from deep neural networks,” in ICPR, 2016.

[41] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,”

2019.

[42] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”

2017.

[43] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang, “Fasterseg: Searching for

faster real-time semantic segmentation,” arXiv preprint arXiv:1912.10917, 2019.

[44] N. Kriegeskorte, M. Mur, and P. A. Bandettini, “Representational similarity analysis-

connecting the branches of systems neuroscience,” Frontiers in systems neuro-

science, vol. 2, p. 4, 2008.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[46] R. Lee, Ł. Dudziak, M. Abdelfattah, S. I. Venieris, H. Kim, H. Wen, and N. D.

Lane, “Journey towards tiny perceptual super-resolution,” in European Conference

on Computer Vision, pp. 85–102, Springer, 2020.

[47] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”

CoRR, vol. abs/1611.01578, 2016.

[48] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neu-

ral networks,” CoRR, vol. abs/1905.11946, 2019.

31

APPENDIX A

A.1 Resulting Architecture

Im
ag

e Stem 0

1 3

4

5

6

7

8

13

14

15

16

17

18

19

20

9

10

11

12

Feature
maps

cell identity upsample strided Conv.Conv. loss

25

26

27

28

29

30

31

32

21

22

23

24

Fuse-Split blk

33

34

35

36

Figure A.1: An illustration of the searched architecture at the macro level. We simplify
the Fuse-Split block as a dashed line for better clarity. Each cell is marked with a number
that will correspond to table A.1.

32

Table A.1: Our searched architecture break down by cell’s position corresponding to fig-
ure A.1. O0

s,l is the operator between I and h1s,l, O
1
s,l is between I and h2s,l, and O2

s,l is
between h1s,l and h2s,l. SE stands for Squeeze and Excite. CSI stands for Conv-Sigmoid *
Identity. SepConv is Depth-wise Separable Convolution.

Cell No. Inputs O0
s,l O1

s,l O2
s,l

0 parallel Max + Avg Max + Avg Identity
1 above Identity Identity + CSI Identity + CSI
2 - - - -
3 parallel + above + below Identity + Residual Identity + SepConv Identity + Residual
4 above Identity + Avg Max + Avg Identity + Avg
5 below CSI + SE CSI + SE Residual + SepConv
6 parallel + below Identity + Residual Identity + SepConv Identity + SE
7 parallel Identity + CSI Identity + CSI Identity + CSI
8 above Max Max Avg
9 parallel Identity + Avg Identity + SepConv Avg + SE
10 parallel + below Identity Identity + ZoomConv Residual + ZoomConv
11 parallel + above + below Residual + ZoomConv Identity + Residual Avg + Residual
12 parallel Avg Avg Conv
13 parallel + below Identity + SE Identity + SE Avg + SE
14 parallel + above + below CSI Identity + Residual ZoomConv + SepConv
15 parallel + above + below Avg + CSI Avg + CSI Avg
16 parallel Avg + CSI CSI + SepConv Residual + Conv
17 parallel + below Identity + CSI CSI + Conv SE + SepConv
18 parallel + above SE + ZoomConv Identity + SE ZoomConv + SepConv
19 parallel CSI + ZoomConv CSI Residual + SepConv
20 parallel Conv + SepConv Identity + ZoomConv Conv + ZoomConv
21 parallel + below SE SE + SepConv Max
22 parallel + above + below Max + Avg Max + Avg Max + SE
23 below ZoomConv + SepConv ZoomConv + SepConv Max + Avg
24 parallel Max + Avg Identity + Avg Max + Conv
25 parallel SE + SepConv Identity + Residual Max + Avg
26 parallel + below Max + Avg Max + Avg Max + Avg
27 parallel + below Residual + SepConv ZoomConv + SepConv Max + Avg
28 parallel Identity + CSI Conv + SepConv Max + Conv
29 parallel + below Conv SepConv Max
30 parallel + above Max + Avg Max + Avg Max + SE
31 parallel + above Avg + Residual Conv + ZoomConv Max + ZoomConv
32 parallel CSI + ZoomConv Avg + ZoomConv Conv + ZoomConv
33 parallel + below Residual SepConv SepConv
34 parallel + above + below ZoomConv Identity SepConv
35 below CSI SepConv SepConv
36 parallel CSI + ZoomConv ZoomConv + SepConv Avg + Residual

33

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Human Pose Estimation
	Top-Down Pose Estimation
	Bottom-Up Pose Estimation

	Neural Architectural Search
	Proposed Work
	Summary

	PRIOR AND RELATED WORK
	Recent Methods in top-down pose estimation
	Traditional Approaches
	NAS Approaches

	Recent Methods in bottom-up pose estimation
	Recent Methods in Neural Architectural Search
	Recent Methods in Dynamic Inference

	METHODOLOGY
	3M-Pose
	Pose Neural Fabric Search
	Fuse-Split block
	Early Escape Layers (EELS)
	Dynamic Inference

	Search Spaces
	Gumbel-Softmax trick
	Micro Search Space
	Macro Search Space

	Dynamic Ensemble Gumbel Softmax (Dyn-EGS).
	Supervision

	EXPERIMENTS
	COCO Keypoint Detection
	Ablation Study

	CONCLUSION, LIMITATION, AND DISCUSSION
	REFERENCES
	APPENDIX
	Resulting Architecture

