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ABSTRACT

We extend recent results in order to construct projective resolutions for modules over twisted
tensor products of truncated polynomial rings. We begin by taking note of the conditions necessary
to think of these algebras as a type of Ore extension. We then use this parallel with Ore extensions
to develop a method for constructing projective resolutions. Finally we use the new construction

to compute a resolution for a family of examples.
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1. INTRODUCTION

Wanting to generalize the Eilenberg-Zilber Theorem to fiber spaces, Edgar Brown published a
paper in 1959 on the study of the singular cohomology of fiber spaces arising in algebraic topology.
In the process of doing so he introduced what he called a twisted tensor product of algebras. The
definition arose naturally out of his attempts to give an algebraic description of certain fibrations
[1]. His construction focused on tensor products of differential graded augmented algebras, or
DGA algebras, where the twisting maps were induced by the differentiation maps.

In 1995, motivated by a question from non-commutative differential geometry, Cap, Schichl,
and VanZura revisited the idea of a twisted tensor product of algebras. Given two algebras that
describe two spaces, they wanted to know what would be an appropriate notion of the product of
those spaces. Intuition from the non-commutative case allowed them to introduce a more general
and much more useful definition for a twisted tensor product of unital algebras. This definition gave
a new way of thinking about many common non-commutative algebras. In particular any algebra
which is isomorphic as a vector space to the tensor product of two of its subalgebras under the
canonical inclusion maps is also isomorphic to some twisted tensor product of those subalgebras
[2]. In the same paper they also gave the conditions needed for the multiplication induced by a
twisted tensor product to be associative.

For quite some time the majority of the study of the homology theory of twisted tensor prod-
ucts focused on calculating the co/homology of some particular examples. However in 2008 Bergh
and Opperman obtained very strong results concerning the cohomology of a large class of twisted
tensor products. They were interested in the cohomology groups over a quantum complete in-
tersection and so looked at twisted tensor products of graded algebras whose twisting maps arise
from a bicharacter on the grading groups. In [3] they showed that the Ext-algebra of this family of
twisted tensor products can be constructed by taking a twisted tensor product of the Ext-algebras of
the factors. Later Shepler and Witherspoon were looking to study deformations of twisted tensor

product algebras and in order to do so they wished to be able to describe the homology theory of



such algebras in terms of the homology theory of their factors. So in 2019 they published a paper
giving the conditions necessary for resolutions of modules of the factor algebras to be compati-
ble with twisting maps [4]. They then, in the same paper, showed how to use these compatible
resolutions to construct resolutions for the twisted tensor product of the factor algebras.

Included in [4] are some homological methods for a class of twisted tensor products called Ore
extensions. In 1933, @ystein Ore introduced a new class of noncommutative rings by generalizing
earlier work by Hilbert and Schlessinger [5]. These rings and their algebra counterparts came to be
known as Ore extensions. The noncommutative multiplication in these algebras arises from the use
of an automorphism and a derivation. By 1966 Gopalakrishnan and Sridharan were studying the
homological properties of Ore extensions [6]. They were able to construct resolutions for certain
classes of Ore extensions. In the mentioned paper of Shepler and Witherspoon is a method for
constructing projective resolutions for any Ore extension.

In this paper we give a definition for a class of associative algebras which share many similar-
ities with Ore extensions. In [7], Guccione, Guccione, and Valqui study these algebras and refer
to them as noncommutative truncated polynomial extensions. They classify a large collection of
these algebras by their twisting maps and show how to extend the twisting map from one algebra
to a similar algebra. Throughout the remainder of this paper we will call these algebras truncated
Ore extensions and in fact one may think of these algebras as quotients of Ore extensions. Some
examples include U, (sly)", the positive part of the quantized universal enveloping algebra of sly,
the family of quantum algebras A,(0|2) = k[z,y]/(zy — qux, 2%, y*), and the family of Nichols
algebras R = k(z,y)/(a?,y?, yz — zy — 32%) used in [8]. We will use this parallel with stan-
dard Ore extensions to adapt the methods of [4] in order to construct projective resolutions for
truncated Ore extensions. The projective resolution our construction gives for the Nichols algebra
R = k(z,y)/(a?, y?, yr—zy— 327) is the same as the one constructed in [8] and in the last portion

of this paper we construct a resolution for a family of algebras which include R.



2. Preliminary Information

Throughout this paper we assume k is a field and n is a positive integer, n > 2. We use the
common notation T = z + (2") € k[z]/(z") and ® = ®y. Let A, B be associative k-algebras
with multiplication maps m 4 and mpg. In this paper we will also denote function composition by

concatenation.
2.1 Algebra Preliminaries

Definition 2.1.1. Let 7 be a bijective k-linear map, 7 : B ® A — A ® B, such that

T(lp®a)=a®1lp,7(b®14) =14 ®bforalla € A, b€ B and for which

Tmp@my)=(ma@mp)l@TR1)(T7)(1®T7®1) (2.1.2)

as maps from B ® B ® A ® Ato A® B. Then 7 is called a twisting map.

Definition 2.1.3. Let 7 be a twisting map. The twisted tensor product algebra, A ®. B, is the

vector space A ® B with multiplication given by the map

(ma@mp)(l@T®1) (2.1.4)

onAR B AR B.

It is shown in [2] that multiplication given by a twisting map is associative as a consequence
of relation (2.1.2). We also note that since 7 is bijective, 7! exists and there is a natural k-algebra
isomorphism A ®, B = B ®,-1 A.

Ore extensions are a specific class of twisted tensor products constructed in the following way.
Let A be any associative algebra. Let o be a k-linear automorphism of A, that is ¢ € Auty(A).

Finally let § be a left o-derivation of A, i.e. § : A — A such that

d(aa’) = d(a)a’ + o(a)d(a’) for all a,a’ € A.
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Definition 2.1.5. The Ore extension Alx;0,d] is the associative algebra with underlying vector

space A[z| and multiplication determined by that of A and k|x] with the additional Ore relation

za =o(a)r +d(a) for all a € A.

Thus if we let B = k[z] and 7 be the twisting map induced by 7(x ® a) = o(a) @ x + d(a) ® 1
then Ajx;0,0] = A®, B.

In this paper we wish to take the idea of an Ore extension and modify it slightly to cover a
family of twisted tensor products who share a similar algebraic structure with Ore extensions. We
thus define an algebra whose multiplication is determined similarly to an Ore extension but has
Alx]/(2™) as an underlying vector space for some integer n instead of simply A[z].

We note that when using a quotient as our underlying vector space in order for a map 7 gen-
erated by the Ore relation above to be a twisting map we must impose conditions on ¢ and . In
order for 7 to induce a well-defined map on the quotient, (™) ® A must be in ker(7). We will first
define our new class of algebras and then afterward in Theorem 2.1.7 we derive the conditions on

o and § necessary for 7 to induce a well defined associative multiplication.

Definition 2.1.6. A truncated Ore extension A[T; 0, 4] is an associative algebra with underlying
vector space A[x]/(z") and multiplication determined by that of A and of k[z]|/(x™) with the
additional Ore relation

Ta=o0(a)T +d(a) forallaec A

for some o € Auty(A) and 0 a left o-derivation of A.

In a similar fashion as above we see that if B = k[z]/(x™) and 7 is the twisting map induced
by 7(T® a) = 0(a) ® T + d(a) ® 1 for any a € A, then the twisted tensor product of A and B
under 7, A ®, B, is isomorphic to the truncated Ore extension A[T; o, ¢].

Now before we present the conditions on ¢ and 6 we mentioned earlier we must first introduce
some notation in order to succinctly express these relations. Let s(;, i, ..., z'k)(ﬁﬁ, Tg,...,xy) be the

sum of all permutations without repetition of a multiset X containing 7; copies of x1, i5 copies of
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T, ..., and iy copies of x;. Alternatively, s¢, 4,,..., ik)(wl, Tg, ..., T)) is the polynomial in k noncom-
muting variables, x1, xs, ..., Ty, that is a sum of all possible products of i; copies of 1, iy copies

of s, ..., and 7, copies of z. Hence, we have

S(i,i2,..., ik)(ﬂfl,ﬂ?mm,lﬂk): E o

ce6(X)
where X = {z',2%..., 2}*} and G(X) is the set of all permutations without repetition of X. For
example
2,2 2 2 22
S(2,2)(T1, T2) = X1T5 + 12521 + T1T2X1 T2 + ToT1 a1 + ToX1 T2 + THT7.
Thus through a slight abuse of our newly introduced notation we interpret s(1 2)(c, §) to be the map

sa1.2)(0,0) = 06®> + 600 + 60

where the product is defined to be composition of maps.

Theorem 2.1.7. Let A be an associative algebra and A[x; c,0| be an Ore extension. Let T be the

twisting map associated with Alx; o, 0|. If the maps 0,0 : A — A satisfy the relations
S(i,j)(0,0) =0 (2.1.8)

foralli =0,1,....n—1,and j = 1,2,....,n such that 1 + j = n, then T induces a well defined

multiplication on A[T;0,0] = A &, k[x]/(z").

Proof. Let A be any associative algebra, B = k[z], B = k[z]/(2"), and  be a twisting map from
B® Ato A® B given by 7(z ® a) = o(a) ® x + §(a) ® 1 . Suppose by, b; € B such that
bo + (z™) = by + (2") € B. Since multiplication in A[T; o, 0] is given by (2.1.2). then in order for
7 to induce a well defined twisting map from B ® A to A ® B we must have (z") ® A C ker (7).

Since such a 7 is a k-linear twisting map it is sufficient to show that 7(2" ® a) = 0 for all a € A.
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We will now show by induction on [ that

(' ®a) = Z s@.j)(0,0)(a) @ 2. (2.1.9)

itj=l

By definition
Tx®a)=0c(a)@zr+ia)®1= 8(170)(0, d)(a) @ x+ 5(071)(0, 9)(a) ® 1.

Now assume for £ <[ — 1 that

T(;(;k ® a) = Z S(i,j)(U, 5)(@) (9 xi.

itj=k

Then

T(@'®a)=Tmp@mA)(z@r ™ ®@a® 1)
=(ma@mp)(lere)reon(lere)(rs'®a®1)

=(ma@mp)(197R (TR (@@ ( Y suj(0,d)(a) @) @1)

i+j=l—1
= (ma®@mp) (17T 1)(r @T)(' Z x® 53.5(0,0)(a) @2’ @ 1)
=(ma@mp)(1OTR1)( Y (0(s)(0,6)(a)) @+ 6(s(15(0,6)(a)) @ 1) @ 1 @ 2

itj=1—1

=(ma@mp)107R1)( Y o(si(0.0)(e) @1’

itj=l—1
+ D (sep(0,0) (@) ®1®1®a)
i+j=l-1
=(ma@mp)( Y olsaplod)a)@l@rer’+ > (suy(00)(a)@leler
i+j=l—1 i1



= > osapled)@ @+ Y sy (0,0)(a) @

itj=i—1 itj=I—1
=) (0(si-14)(0,0)) + 6(s(1,j-1)(0, 6))) (a) ® 2’
it+j=l

where we interpret s(_1,,)(0,0) = S(n,—1)(0,9) = 0. Now s(; ;(0, d) is an expression which has
as terms all possible arrangements of ¢ ¢’s and 7 ¢’s. We can group the terms into two sets, one
that has all the terms which start with o and one that has all the terms which start with §. Since
s(i,j)(0,8) covers all possible arrangements then the terms that start with o contain all possible
arrangements of ¢ — 1 ¢’s and j ’s. Similarly the terms that start with § contain all possible
arrangements of ¢ 0’s and j — 1 §’s. Thus we may rewrite the expression s; j)(c, d) in terms of this

grouping to see that

5(i,j)(0,0) = 0(5(i-1,4)(0,0)) + 6(533,5-1)(0,9))

with 5(0,9) (O', 6) = 5(8(07];1) (O'7 5)) and 5(4,0) (0, (5) = O'(S(Z',LQ) (O'7 5)) Hence

T(a:l ®a) = Z (U(S(iq,j)(a, 9)) + 5(3(1',3‘71)(0’ 9)))(a) ® !

itj=l

=Y sup(e.8)(a) @

itj=l

Therefore equation (2.1.9) holds and we see that if s; ;) (0,0) = 0 for i + j = n then 7 induces a

well defined multiplication on A[Z; o, ¢]. O

2.2 Module Preliminaries

We end this section with some remarks on modules over twisted tensor products.

Definition 2.2.1. Let A®, B be a twisted tensor product algebra. A left A-module M is compatible with
7 if there is a bijective k-linear map 75 s : B ® M — M ® B that commutes with the module

structure of M and multiplication in B. That is 7p js satisfies the relations

Tem(mp ®1) = (1@mp)(T8,m @ 1)(1 @ Tp,M) (2.2.2)



Tem(1® pan) = (pan @ 1)1 @ 715M)(T®1) (2.2.3)
where pa a0 A® M — M is the left A-module structure map.

Note that a similar definition holds for a left B-module N and the twisting map 7.
If M is a left A-module compatible with 7 and [V is a left B-module then by [2, Thm. 3.8] we

may give M ® N the structure of an A ®, B-left module via the composition of maps

1®7B,M®1 PA,MRPPB,N

(A®, By M ® N A®M&B®N M N.

The definition of compatibility with 7 can also be extended to resolutions of modules as well.

Definition 2.2.4. Let M be a left A-module compatible with 7 and P,()M) be a projective resolution
of M. The resolution P,(M) is said to be compatible with 7 if there is a chain map 75, : B ®
P (M) — P.(M) ® B such that each P;(M) is compatible with 7 via 75, : B ® P,(M) —
P,(M) ® B and 73, lifts 75 .

We note that this definition has an analog for B-module resolutions.



3. Truncated Ore Extensions

3.1 Left Modules over Truncated Ore Extensions

Given M, a left module over some truncated Ore extension A[T; o, d], we wish to construct a
projective resolution for M. To do this we will adapt methods from [4]. These methods first depend
upon our ability to view A[T;0,d] as a twisted tensor product. Then we must show that, upon
restriction to a left A-module, M is compatible with the associated twisting map 7. Finally using a
resolution of M as a left A-module we will construct a resolution of M as a A ®, B = A[T; 0, §]-
module.

Let A be an associative algebra and B = k[z]|/(x™) for some n € N. Let o € Auty(A) and § be
a left o-derivation of A satisfying the conditions of Theorem 2.1.7. Hence we may view A[Z; o, ¢|
as the twisted tensor product A ®, B where 7 is the twisting map induced by the Ore relation.

To show that M is compatible with 7 we construct a bijective k-linear map 755 : B ® M —
M ® B. We define M? to be the k-vector space M equipped with A-module action given by
a-,m=c(a)-mforalla € Aand m € M. Now suppose that upon restriction to A, there is an

A-module isomorphism

¢ M — M°. 3.1.1)

Theorem 3.1.4 will show that under certain conditions similar to the ones imposed on ¢ and 9, M

will be compatible with 7 via the k-linear map defined by setting

am(l®@m)=m®1 (3.1.2)

u(T@m)=¢(m)RT+T-m®1, forall me M (3.1.3)



and then iterating with respect to relation (2.2.2) to define 75, M(Ek @m)for2 <k<n-—1.

Theorem 3.1.4. If ¢ and - satisfy the relations

8i.j)(9,T) =0 (3.1.5)

as maps from M to M foralli + 7 =nwithl <i<n—1and1 < j < n—1, then M is
compatible with T via T pr. That is, T ar satisfies relations (2.2.2) and (2.2.3). Note that here we

are identifying M° with M as vector spaces for the purposes of notation.

Proof. Using the above definition for 75 3/, iterating with respect to (2.2.2), and following an

inductive proof similar to the one given in the proof of Theorem 2.1.7 gives the following

(@ @m) = D sap(6.T)(m)@F  for all k< n.
itj=k

Thus 75 ) satisfies relation (2.2.2) if

(T @m) = 5 (mp @ 1)(T* @7 @ m)

- Z s (6, T)(m) @ T

i+j=a-+b

for all postive integers a and b. Since Z" = 0, it follows that s(; ;(¢,Z-) is identically 0 when
j > n. Also since 7" = 0 we see that s(;0)(¢,Z-)(m) ® T = 0 for all ¢ > n. Finally by
assumption we have that s(; ;(¢,7-) = 0for1 <7 <mn —1land1 < j <n — 1 and hence 75
satisfies relation (2.2.2).

We now consider the diagram corresponding to relation (2.2.3):

10



1®pa,m

B AR M > B M

lr@l lTB,M

1®7B,Mm pPAM®L

AR BRM —— AQM®B —— M®B

Since 7, 7 a, and p 4 are all k-linear, in order to prove the diagram commutes it is sufficient to
check that the compositions of maps agree on elements of the form 7* ® a ® m for all ,

0<k<n-—1,andalla € A, m € M. For k = 1 we have

(parr @)1 @750)(T®1)(T@a®m)

= (pam @)1 @7 1m)(c(a) ®T@m + 6(a) ® 1 @ m)

= (pan @ 1)(0(a) @p(m) QT+ 0(a) ®T-m @1+ 6(a) @m @ 1)
=o(a) - ¢(m) T+ (c(a)T+6(a)) - m®1
=¢la-m)RT+Ta-m®1

= TB,M@@ a- m) = TB7M(1 ® ,OA,M)(EQZ) a® m).
Now we assume that £ > 1 and for all [ < £ we have
Tep(1® par)@ @a®@m) = (pay @ 1)(1 @ 750) (T @ 1)(@ @ a @ m).

We consider the following diagram

R1RTB, M

BRARBOM 2o Ao M ® B

BRBRARM B M®B
lm3®1®1 lTB,M®1
Bo Ao M [Opa y Bo M M®B®B
T®1 TB,M l1®mB
A9BOM —22" L Ao Mo B -1 5 e B

Now since the map mjp is surjective then for any 78 ® a ® m we have that T8 ® a @ m €

11



im(mp®1®1). In particular since k > 1 we may think of Z*¥ ® a ® m as the image of the element
T'RT' ®a®@m e B B®A® M for some u+ v = k with u,v < k. Thus given an element of
the form 7" ® 7" ®a®m € B® B® A® M, commutativity in the bottom portion of the diagram
implies conditon (2.2.3) for an element of the form Z* ® a ® m. We will first use a diagram chasing
argument to show that the maps along the outside of the diagram take the same values on elements
of the form 7" ® 7" ® a ® m. We will do so by showing that the maps of some sub-diagrams take

the same values on such elements. Consider the following diagram

1R1®TB M

BRAXKBIM — BRA®MRB

V rolel r®1®\@m’f®l
BeBo A M ARB@BoM 249 Bo M ® B BeM® B
lm3®1®1 1®7p,M®1 lTB,M®1
BRQRARQXM 1®@mp®1 AXMRIBR B M® B®B
7®1 1®19mz ll@mB
e 1®71B,M v pA,MOL
AQRBQRM AR MR B M®B

We see that in the following sub-diagram the m in 7% ® 7 ® a ® m remains untouched.

B A®B®®M

W TRIR1L
BoBRA®M A®BéB®M
lm3®1®1

B A M 1®@mpe1

AR B®®M

Hence we may show that the indicated composition of maps takes the same value on an element
of the form " ® ¥ ® a ® m by applying relation (2.1.2) to an element of the form 7" ® 7" ® a ® 1.

We also have that the indicated composition of maps of the following diagram

12



1107 M

BRAXBIM — BRA®M®B

l7'®1®1 l‘r®1®1

A9BOBoOM 2™MA o Bo M ® B

take the same value on our element because the vertical and horizontal maps act on different factors.
Hence regardless of the direction taken the same maps are applied to the same elements. The maps

in the diagram

A9BOBoOM 2" Ao Bo M ® B

l1®TB,A{®1
1@mp®1 A MRBRB
ll@l@mB

AM®B

1®7B,Mm

AR B M
take the same value on the element " ® 7% ® a ® m as a result of using the relation (2.2.2) to

define 75 )7. To show that the maps in the diagram

BRARM®B
®1®W”®1
AR B® M ® B BM®DB
1®7p,M®1 lTB,IM@l
AR M® B® B M®B®B
1®1®mp ll@mB
A®M®B pA,M®L M B

take the same value we break it into two parts. We start with the following:

B A® M ®B
l W[@l
TR®1I®1
AR B® M ® B BM®DB
l1®7'8,]b[®1 lTB,IVI®1

A Mo Be B '« Bo B

13



Again assuming we started in B® B ® A ® M with the element Z% ® T¥ ® a ® m and mapping
through B& A®@ B® M and into B A® M ® Bbythemap (1®1®75)(1®@7®1) we see that
the 7" factor remains untouched. Thus the element in B ® A ® M ® B that we will be computing
with will be a sum of elements of the form 7" ® ' @ m’ ® b for some o’ € A,m’ € M,b € B .
And since 7 and 75 )/ are k-linear it is enough to show that the compositions take the same values
onT" ® a’ ® m’ ® b. But this is easily shown by a direct application of the induction hypothesis
and the fact that b remains untouched in the diagram. Finally we see that the composition of maps
in

AsMeBe B2 e Be B

ll@l@mB l1®mB

Ao M® B pPA,MPL M B

take the same value on our element because the vertical and horizontal maps act on separate factors.
Hence regardless of the direction taken the same maps are applied to the same elements. We now
note that by letting a and m range across all basis elements of A and M respectively we may form
a vector space basis of B® B ® A ® M consisting of elements of the form 7" ® T¥ ® a ® m with
0<u<n-—1,0 < v <n— 1. Putting all these results together with the linearity of our maps,

establishes the fact that the following diagram commutes.

BRASBOM 2B o Ao M ® B

W Wf@l

B BRA®M B® M® B
lm3®1®1 lTB,]M@l
B A M M B® B
T®1
ll@mg
ARBRM —22M Ao Mo B -2 s Ve B

Now we consider the following diagram

14



BRARBOM 2B o Ao M ® B

W W@l

BoBR A® M ~B180a,u s BR B M —", B M ® B

lmB®1®1 lm3®1 lTB,JW@l

BoA® M 1Bpam , Bo M M®B® B
T®1 TB,M l1®mB
ARBRM —2M Ao Mo B -2 5 e B

If we again start with an element of the form 7" ® 7" ® a ® min B ® B ® A ® M then the maps

of
1Q1Q7TB, Mm
BoARBOM 2B Aw M ® B
BoBo A M 1B18pa.u s BB M -2, Bo M® B

give the same result because of the induction hypothesis and the fact that the =* factor goes un-

touched. The maps of the diagram

181®pa, m

BRBRXAQM BRB®M
lm3®1®1 lmB@l
Bo AR M Grar  Be M

clearly give the same result on our element. And finally the maps in

1®TB,M

BRBRM — BIM®DB

lm3®1 J/TB,]W@]«

B M M®B®B

TB,M
\ ll@mB

M® B

15



give the same result on our element because we used condition (2.2.2) to construct 75 ;. Now
given that the maps on the outside of the diagram commute, the fact that compositions of maps of
the previous three sub-diagrams give the same results on our element, and the surjectivity of mpg

we see that the following diagram commutes.

1®pa,m

B A M » B M

r.@ 1 lTB M

1®78,Mm pA,M®L

AR BRM —— AQM®B —— M®B

Thus 75 )/ satisfies property (2.2.3). 0

Hence we now have conditions on M which guarantee that it will be compatible with 7.
Namely from here out we will assume that M is an A[T; o, d]-module for which the A-module
isomorphism (3.1.1), ¢ : M — M7, exists such that s; ;(¢,7-) = 0 for all i + j = n with

1<i<n—land1 <3< n—1.
3.2 Resolutions of Left Modules

Let P.(M) be a free resolution of M as a left A-module

v
e

P(M):- —25 P(M) —2 Py(M) —L M

Our next step in the construction involves taking this resolution and showing that it is compatible
with 7. To do so we need a chain map 75, : B® P,(M) — P,(M) ® B. In particular we will use
a chain map that takes inspiration from our twisting map 7 and uses two other chain maps we will
call o, and 6,. We proceed by first constructing o,.

Using the above resolution P,(M), we construct another free resolution of M/

-1
¢ .U>M

~
o

Pr(M): -~ PY(M) —"= Py (M)

by using the module action a -, m = o(a) - m and setting P (M) = (P;(M))? for each i. Then by
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the comparison theorem there exists an A-module chain map from P.(M) to P?(M) which lifts

the identity map on M. We may view this map as a k-linear chain map

o.: P.(M) — P°(M) (3.2.1)

and note that o;(a - 2) = o(a) - 04(2) foralli > 0,a € A, and z € P,(M).

Before we construct our chain map 7., we must first define a left A[T; o, §]-module action on
the free A-modules P,(M). The following two lemmas mirror lemmas found in [4] and [6]. We
show that the results still hold in the case of truncated Ore extensions. The first lemma is modeled
after [4, Lemma 6.3] and gives the method for extending the A-module action to an A[Z; 0, d]-
action. The second is modeled after [4, Lemma 6.4] and gives the existence of the chain map 9,

that we need to define 75..

Lemma 3.2.2. Let A be an associative algebra and A[T;0,0) be a truncated Ore extension. For

any free A-module, P, there is an A[T; 0, d|-module structure on P that extends the action of A.

Proof. We begin by first taking P to be the free A-module A. As in [4] we define a left A[x; o, §]-
module action by letting x act on A by = - a = d(a) for all a € A. Since A[T; 0, 4] is a truncated
Ore extension we have that "(a) = 0 for all a € A thus 2" - a = ¢"(a) = 0. Hence the action

factors through A[z; o, ] to the quotient A[Z; o, 0]. Also we have

Za-a' =T (a-d)=7"(ad) = d(ad’)
=d(a)a’ + a(a)d(a’) = 6(a) -d' + o(a)(T-ad)

= (o(a)T+6(a)) - d

forall a,d’ € A.
Now if P is an arbitrary free A-module then P = A®! for some index set I and thus we let
7 act on each summand in the manner shown above. We note as above that if we think about the

action as coming from A[x; o, 4] then 2" - z = 0 since 2™ acts on any given z € P by acting with
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2™ in each summand. Hence again the action factors through the quotient A[Z; o, §]. Also since T
acts in each summand it is trivial to show that Za acts as o(a)Z + d(a) on P for all a € A. Hence

every free A-module P also has an A[T; o, 0] structure which extends the action of A. ]

Let M be an A[7; 0, 6]-module as above and P,(M) be a free resolution of A/ as an A-module.
Let f : M — M be the function given by the action of Z on M, i.e. f(m) = T - m. For our chain
map 75, we require a chain map o, which lifts f and also plays nicely with the A[Z; o, d]-module
action given in Lemma 3.2.2. The following lemma not only proves the existence of such a chain

map but the body of the proof constitutes a method for constructing such a map.

Lemma 3.2.3. There exists a k-linear chain map §. : P.(M) — P.(M) lifting f : M — M such
that for each j > 0, 0;(a - z) = 0(a)d;(z) + 0(a)z foralla € A and z € P;(M).

Proof. We let P,(M) be the free resolution given by

P(M):- =25 p(M) -2 py(M) —— M » 0

and f : M — M be defined as above. We will now construct the maps, ¢;, by first constructing
two other maps ¢, and ¢! then setting 6; = 0; — §. Let j = 0 and J{, be the map given by the action
of T on Py(M) as defined in Lemma 3.2.2. That is 0j(z) = T - z for all z € Py(M). If we again
as in Lemma 3.2.2 interpret the module actions as coming from A[z; o, §] and factoring through
A[Z; 0, 6], then a straightforward calculation shows that §(*(z) = 0.

Givena € A and z € Py(M) we have §(az) = T - az. We identify the free A-module P,(M)
with A for some index set /. By Lemma 3.2.2, T - az is given by applying the action of Z on A in
each summand. Hence for each i € I we will have 7 - az; where 2; € A is the i*" component of z.

Since § is a o derivation we have

T-az; =0(az) =0(a)z; + o(a)d(z)
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foreach 7 € I. Thus

do(az) =T - az
=d(a)z +0(a)(T- z)

=d(a)z + o(a)dy(z)

Now consider the map pd), — fu : Po(M) — M. We may show that pd; — fp is an A-module

homomorphism via the calculations

(oo — fu)(z +y) = uoy(z +y) — fu(z +y) = w(@- (2 +y)) — fu(z +y))
=@ 2) +pu@-y) =7 (1(z) + p(y))
=@ 2) =T p(2) + @@ y) -7 puy))

= (udo — fu)(2) + (ubg — 1) ()

and

(udh — fi)(az) = p(3h(az)) — f(u(az)) = u(E - az) — 7 - plaz)
— j(@a-z) —Fa- ul(z) = p((0(a)E + 5(a)) - 2) — (o(@)T + 5(a)) - u(2)
= (o (@)T - 2) + 8(a) - u(=) — (@) - (=) — 8(a) - (2)
— 0(a) - (T 2) — 0(a) - (- () = a-g pE - 2) — a-o (7~ u(2)

= a5 ((0o(2)) —a o f(1(2)) = a o (udy — f11)(2)

forall a € A and z,y € Py(M). Since Py(M) is projective there exists an A-module homomor-

phism d; : Py(M) — BJ(M) such that (ud), — fu) = udg. Set 69 = &, — &;. Then

1100 = p(dy — dg) = pdy — pdy

= pdy — (udo — fu) = fu
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and thus ¢ lifts f. Since both §{, and J(; are k-linear, J; is k-linear by construction. Finally

So(az) = dh(az) — 8y(az) = (o(a)h(2) + 6(a)2) — a- 64(2)
— o(a) - (5(2) — (=) + 3(a)z

=o(a)do(z) +d(a)z

foralla € A, z € Py(M). We proceed with a proof by induction. Let j > 0 and assume that for
all 0 <[ < j there exist k-linear maps ¢, : P,(M) — P,(M) such that §;(az) = o(a)d(z) + d(a)z
and d;6; = 6;_1d; foralla € A, z € Pj(M). Like before we define 0’; : P;(M) — P;(M) to be the

action of T on P;(M) given by Lemma 3.2.2. Again a straightforward calculation shows

05(az) =Ta -z = (0(a)T + d(a)) - 2

= 0(a)dj(z) + d(a)z.

foralla € A, 2 € P;(M). Consider the map d;0; — 6;_1d; : Pj(M) — P7,(M). We first see that

it is an A-module homomorphism by

(dj0} — 051d;)(2 +y) = d;d0j(z +y) — 051d(2 +y) = dj(T - (2 +y)) — ;-1(d;(2) + d;(y))
=d;j(T-2) +di(T-y) — §;-1(d;(2)) — d;-1(d;(y))

= (d;0; — 0;_1d;)(2) + (d;0; — 6;-1d;)(y)

20



and

(d;0; — dj-1d;)(az) = d;j(Fa - 2) — 0;-1(d;(az))
= dj((0(a)T + 6(a)) - 2) — 6;-1(a - d;(2))
= dj(0(a)T - 2) + d;(0(a) - z) — dj-1(a - d;(2))
=o(a) - dj(T - z) +6(a) - d;j(z) — (0(a)dj-1(d;(2)) + 0(a)d;(2))
=o(a) - d;(T - z) — o(a) - §;-1(d;(2))

=a-s (djdé — 5j71dj)(z)'

foralla € A, y,z € P;(M). By the induction hypothesis we have that §;_; is a chain map and
(dj_léj_l)dj = (6j—2dj—1)dj = (. Hence dj_l(djéé- — 5j—1dj) = 0 and Im(dj5; — 5j—1dj) C
Ker(d;_1) = Im(d;). Since P;(M) is projective there exists an A-module homomorphism §7 :

J

P;j(M) — P7(M) such that d;0 — §;_1d; = d;07. Let 0; = &; — 07, then by construction J; is

Kk-linear and

d;8; = di(8) — 8") = d;0, — ;!

= d]5; — (dﬁ; — 5j—1dj)

= j—ldj-

Finally for all « € A and z € P;(M),

dj(az) = di(az) — 0% (az) = Ta -z — o(a) - 6} ()
=0(a)T-z+0d(a) -z —o(a)-05(2)
=o(a) - (5;(2) — (5;’(2)) +d(a) -z

=o(a)d;(z) + 0(a)z.
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Now finally we are ready to construct our chain map 75,.. Since our chain map will draw
inspiration from the standard Ore relation we end up with restrictions on o, and d, which mirror
the restrictions that we encountered when dealing with 7 and 75 5. The following lemma serves

the same purpose as [4, Lemma 6.5] with the only change being our restrictions on ¢, and é,.

Lemma 3.2.4. Let A[T;0,6], M, P.(M), and 7 5 be defined as above. We assume M is compati-
ble with T via Tp ). Let 0, be the chain map (3.2.1) and 6. be the chain map constructed in Lemma

3.2.3. If 0. and 6, satisfy the relations
S(kJ)(U., (5.) =0

forallk+j=nwith0 <k <n-—1and1 < j < nthen the resolution P,(M) is compatible with

the twisting map .

Proof. We define a k-linear map 75, : B ® P,(M) — P,(M) ® B by taking
for all z € P;(M) where we then use relation (2.2.2) to extend the map and obtain

(T ®2) = > sppl04,6:)(2) @ T, (3.2.5)

k+j=1

Thus in a situation similar to Theorems 2.1.7 and 3.1.4, 75 ; satisfies relation (2.2.2) if s, ;) (0.,0.) =
Oforallk+ 7 =nwith0 <k <n—-1and1 < j < n. All that remains is to show that 75 ;

satisfies relation (2.2.3). Now for any a € A and z € P;(M)

T5(T®az) =0,(az) ®T + 0;(az) @ 1 = 0(a)oi(z) ®T + 0(a)di(z) ® 1+ d(a)z ® 1
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by the properties of ¢, and o,. Then a straightforward calculation gives

(P2, @)1 7,)(T®1)(T®a® z)
=(pa;i®@1)(1®@7p,:)(0(a) T @ 2+ 0(a) ®1 X 2)
=(pa;®1)(0(a) ®0i(2) T+ 0(a) ®4(2) ®1+d(a) ® 2@ 1)

= 0(a)oi(2) @T +0(a)di(z) ©1+6(a)z @ 1)

foralla € A, z € P;(M). Assume that for all £ < [ we have

781 ®pa) (T @a®2) = (pa; @ N1 @ 75:) (7@ 1)(7T @ a® 2).

Then by a diagram chasing argument similar to the one found in Theorem 3.1.4 we may show that

310 pa:) T ®a®2) = (pa;, @11 @ 7,) (TR 1T ®a® 2)

and thus by induction on [ we see that condition (2.2.3) holds for all elements of the form 7! ® az.
Finally since elements of the form Z! form a basis of B then condition (2.2.3) holds for all elements

of the form b ® az forall b € B. O

Hence we have shown that given an A[Z; 0, j]-module M such that M = M? and a free reso-
lution P,(M) of M as a left A-module we may construct maps 7 »s, 75, such that M and P,(M)

are compatible with 7. Before the proof of our final theorem we introduce one more definition.

Definition 3.2.6. Let A ®. B be a twisted tensor product of k-algebras. Let M be a left A-module
and N be a left B-module. Let P,(M) and P,(N) be projective A- and B-module resolutions of
M and N respectively. We denote the differentials of P,(M ) by d; and the differentials of P,(XV)

by d. The twisted product complex, X., of P.(M) and P.(N) is the complex

> Xo . ¢ y Xog —— M N —— 0.
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where

Xi= P P(M)® Py(N)

with the differentials given by

de= Y (d@1+(-1)'®d)).

itj=k

Let P.(B) be the standard projective resolution of k as a module over B = k|z]/(z") with eg

the augmentation map that takes z to 0:

- k(2] /(2") = Kk[z]/(2™) —=— Kk[z]/(z") Lk s (0.

We now prove our main result which mirrors [4, Thm. 6.6].

Theorem 3.2.7. Let A[T;0,0] = A ®, B be a truncated Ore extension. Let M be a left A[T; 0, 0]-
module compatible with T via Tp ) for which M = M as A-modules. Let P.(M) be a free
resolution of M as a left A-module. Let o, be the chain map of (3.2.1), 6, be the chain map of
Lemma 3.2.3, and assume P,(M) is compatible with T via Tp., the chain map of Lemma 3.2.4.
Suppose that o; : P;(M) — P,(M) is bijective for each i > 0. Then the twisted product complex

of P.(M) and P.(B) gives a projective resolution of M as a left A[T; o, §]-module.

Proof. Let X, be the twisted product complex of P.(M) and P,(B). By assumption, M and P,(M)
are compatible with 7 and thus by [4, Thm. 5.8] and [4, Thm. 5.9] the twisted product complex X,
is an exact complex of left A ®, B = A[T; 0, 0]-modules. All that remains is to prove projectivity
of the modules of X, .

In the following we prove the projectivity of the modules of X, in three steps. We first establish
that as a left A[Z; o, §]-module, A[T; 0, 6]® 4 P;(M) is isomorphic to B® P,(M ). We then show that
B ® P,(M) is isomorphic as left A[Z; o, §]-module to P;(M)® B via the map 7 ;. Then we finally

show that A[Z; 0,0] @4 P;(M) is a free left A[T; o, §]-module by showing that it is isomorphic to
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the free left A[Z; o, §]-module A[T; o, 6]%™. Putting all this together we will establish that

Xij=P(M)® B2 B® P(M) = A[T;0,0] @4 Pi(M) = Alz; 0,0]"™

as left A[7; o, ]-modules.

It is clear that as A[Z; 0, ]-modules

AlT;0,0] @4 (M) = (A®: B) @4 Pi(M) = (B ®.-1 A) ®4 Fi(M) = B® F(M).

~Y

Since o; is bijective then we have that as vector spaces B ® P;(M) = P,(M) ® B via the map 75,

whose inverse is given by

2T TR0, (2) - 1®6(0;1(2)).

We now show that 75 ; is a module homomorphism by showing that it preserves the module

structure. Consider the following diagram

11T i
(A®, B)® B® Py(M) ST » (A®, B)® B(M)® B
l1®m5®1 ll@TB,i@l
A®B®B(M) —25 5 A P(M)® B 22" A P(M)® B® B
PA,i®1
lr—1®1 pPAOMB
B®A® P(M) —2* B P(M) —2— P(M)® B

The diagram
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A® P(M)®B'&%™ A9 P(M)® B® B

pAi®1
PA,iOMmpB

P(M)® B

commutes because the maps act on different factors. The diagram

(A®, B)® B® P(M) (oo, s (A®, B)® B,(M)® B

l1®m5®1 J/1®T372'®1

A®B®P(M) — s A B(M)® B 22" A@ P(M)® B® B

commutes because P;(M) is compatible with 7 and thus 75 ; satisfies relation (2.2.2). The diagram

1®7—B,i

AR B® P(M) — A P(M)® B

pA,i®l
T®1

B® A® B(M) —* B P(M) —2"— P(M)® B

commutes because P;(M ) is compatible with 7 and thus 75 ; satisfies relation (2.2.3). Now putting

these together and noting that (77! ® 1)(7 ® 1) is the identity map we see that

(A®, B)® B® P(M) T » (A®, B)® P,(M)® B
l1®m3®1 ll@m,i@l
A® B® P(M) A® P,(M)® B® B
[ |pasems
B®A® P(M) — B P(M) — 2 P(M)® B
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commutes. Therefore 75 ; preserves the module structure and is thus an A[Z; o, ]-module isomor-

phism. Hence we have that for every i > 0,

AlT;0,0] @4 P(M) = B® P(M) = P(M)® B =X,

as left A[T; o, 0]-modules. Since P;(M) is a free A-module for each i then we have that P;(M) =

A%’ for some index set J. This gives the following

AlT;0,0] @4 P;(M) =2 A[T;0,0] @4 A% = (A[T;0,0] @4 A)®™ = Alz; 0, 0]%™

and we see that A[T; 0, 0] ®4 P;(M) is a free A[T; 0, §]-module. Thus we have established that for

all 7 we have

X,;=P(M)® B~ B® P(M) = Alz;0,0| @4 P;(M) = Alz; 0, )%™

as left A[7; 0, ]-modules and thus X; ; is a projective module for all 7 and j. O
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4. Example

For our example we will construct a resolution for a class of truncated Ore extensions which
includes the Nichols algebras that were used in [8] to prove a finite generation of cohomology

result.
4.1 A Family of Truncated Ore Extensions

Let k be a field of prime characteristic p, A = k[z1]/(2}), and B = k[z3]/(x}). We wish to
consider a family of truncated Ore extensions as twisted tensor products of A and B. However as
we saw in Section 2 in order to do so we must work through some details involving our twisting
map 7. We will first construct a twisting map 7 : k[zs] ® A — A ® k[z5] then we will show that it
induces a well defined multiplication on A ®, B.

Let o be the identity map on A. We construct a derivation on A by first defining a k-linear map

0:A— Ausing
§(1) =0 and 6(77) = oz’ (4.1.1)
for some o € kand 2 <t < p — 1, and then extending ¢ by the Leibniz Law
d(aa’) = a(d(a")) + 6(a)d (4.1.2)

for all a,a’ € A. Now we may make a calculation that will come in handy later. Through repeated

application of § we obtain

(@) = ([T = 1t = (= 2t HH

= ([11 +i(t = DD’z D* = ()Plagre-D

1=0
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where we use the notation (s)V! to represent the generalized rising factorial

J—1

() =J(s+itt =1, =1
=0
We now define a twisting map 7 using the Ore relation:

T2 7)) =0(T7) Qa2+ 0(T1) @1 =TT @ as + 0(T7) ® 1

and then extend with respect to relation (2.1.2) to obtain

Ty @T) =) (7? (\z5(z) @} 7 for all s € N (4.1.3)
— \j
7=0
= (T) () /T @ (4.1.4)
J

I
o

J

Now that we have a formula for 7 our next step is to show that it induces a well defined
multiplication on A ®, B. We must show that o and ¢ satisfy relation (2.1.8) of Theorem 2.1.7.
To do so we will first prove a lemma for arbitrary associative algebras over a field k such that the
character of k is p. We then will use that lemma to show that in our special case where o = id 4,

and 0” = ( the standard twisting map generated by the Ore relation

a®b=0c(a) Ty +d(a) ® 1

will satisfy relation (2.1.8).

Lemma 4.1.5. Let k be a field of characteristic p, A be any associative k-algebra, o = idy be the
identity automorphism of A, and § : A — A be any derivation for which 6? = 0. Then the standard

twisting map 7 of A[x; 0, 0| induces a well defined multiplication on A[T; o, d].
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Proof. Since o = id, it follows that

Forj=1,...,p— 1, p divides (?) and since char(k) = p, 5(;;(0,9) = 0. Thus by Theorem 2.1.7,

7 induces a well defined multiplication on A[Z; o, d]. O
We next show that Lemma 4.1.5 applies to our family of truncated Ore extensions.

Lemma 4.1.6. Let k be a field of characteristic p. Let A = k[x1]/(x}). Let o be the identity
map on A and 0 be given by (4.1.1) and (4.1.2). Let 7 : k[xs] ® A — A ® Kk[xs] be the twisting
map generated by the Ore relation on o and §. Then T induces a well defined multiplication on

kl[z1]/(2}) @, k[xo]/(2h) and thus it is a truncated Ore extension A[T3; 0, 4.

Proof. By the previous lemma we need only show that 6” = 0. Also our previous calculation gives

us

oF(zr) = (H[(%’ — Dt = (i = 2)))a’z" I

Finally since ¢t > 2 implies that p(t — 1) + 1 > p we see that ” = 0. O

4.2 Construction of a Resolution

By the work of the previous section we may, from here on out, think of the truncated Ore
extension A[T; o, d] as a twisted tensor product with an associated twisting map 7. We next wish to
construct a projective resolution of k as an A ®, B-module. To do so we follow the construction
laid out in Section 3.

Letes: A — kand eg : B — k be the standard augmentation maps for A and B induced by

6,4(5) =0

EB(JI_Q) =0.
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Since A = k[z;]/(2]) and B = k[xzy]/(a%), it follows that a A[Z; o, §]-module action on k is given
by the augmentation map €(a ® b) = e4(a)eg(b) foralla € Aand b € B.

Now we restrict k to an A-module and show that it is compatible with 7. Since 0 = id4 we
have that for any z € k, o(a) - z = a - z and thus k is trivially isomorphic to k?. Following the

construction from Section 3 and noting that 75 acts as 0 on k we define 75 : B ® k = k ® B by
7'37]1{(1@2) =2zQ® 1

for all z € k. Clearly ¢ = id;; and 73- satisfy relation (3.1.5) and thus by Theorem 3.1.4, k is
compatible with 7 via the map 75 (b® 2) = z® bforall b € B, z € k. In particular we may note

the following:

Lemma 4.2.1. Let k be a field, A be any associative k-algebra, and A[T; o, 0| be a truncated Ore
extension of A with o = id . Let M be a left A[T;0,0]-module. If T acts as 0 on M then Tp yr as

defined in (3.1.2) and (3.1.3) is compatible with T.

Proof. The proof follows directly from Theorem 3.1.4 and the fact that 0 = id4 implies that
¢ =idyy.
O

We now construct our chain map 75, lifting 75 j by first letting P,(A) be the standard resolution

of k as an A-module.

P(A):-- AT Tk > 0

Since o = id 4 we may let

o.: P(A) — P.(A)

be given by 0; = idp,a) for every i. Also since P;(A) = A for every ¢ we may set the A[Z3; o, 0]-
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module action on P;(A) = A to be given by
Tz-a=0(a)

for every 7 and all a € A.

We now have our o, and an A[Z; 0, ]-module action on our projective resolution. The next
step in the construction of 7, is to construct .. We do so by constructing two maps, J; and 9;
for each i and then letting §; be the difference of those two maps. Hence for each i we will have
9; = 0, — 0!'. We proceed with the construction of &y, d1, and d, given in the proof of Lemma 3.2.3
and note that the construction of ¢; will be similar to ¢; if 7 is odd and will be similar to J; if j is
even.

Let f : k — k be the map given by the action of 73 on k. Then f(z) = 0 for all z € k. Thus

we have

5y(2) = T3 2 = 3(2)

(€ad — fea)(z) = €a(6(2)) = 0

but since §(z) € (73), €4(d(2)) = 0. Hence §) = 0 and dy = ), — d; = J. Therefore

To(T2 ®@T1) = 00(T1) ®T2 + 0p(T1) ¥ 1 =T1 @ T2+ 6(77) ® 1 = 7(T2 @ T7).
Then extending by conditions (2.2.2) and (2.2.3) we obtain

" r . . . .
Tho(T ®TT) =) (J) ()N oz Y7 @7 . (4.2.2)
§=0
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Starting on §; we set 0j(z) =Tz -z = 0(z). Now letg = > 3;71" € A then

(d10y = Sod)(9) = (T1 - 0 — 671)(9)

=71-6(9) — (1 g)

=T (Z Bid (71 Z Bt
i=0
73 Al0)amr D) = 37 6+ Daar'™
=0 i=0

- Zﬁl (D)o — Zﬂz(l + Daz"™"

=0 =0

~(3 Bz,

i=0
We need a map 67 such that (d1d] — dod1)(g) = T1 - 7(g) hence we define 67 on 77" by
51’(1‘_11) = _ax—t‘f'(l 1)

and then extend linearly to all elements of A. Thus letting §; = ] — 07 we have

_Zﬁzl—’—l )
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Therefore

Tp1(T2 @ T1) = 01(T1) @ T2 + 61(T1) ® 1
=TI®T +0(T1) ®1—-06/(71) ®1
=TT +0(T1)®1— (—ar") @1

— T ® T3 4 20(T7) ® 1.

We then extend the map using conditions (2.2.2) and (2.2.3) to obtain

T

e OT) = ) (;) (s + Pz Yz @ 7. (4.2.3)
j=0

Then starting on 0, we let 95(z) = d(z). And since im () C (1) and t > 2 we have

oSl — S1dy = TPL -5 — (8, — TP
=77 S = omPt oEr

=0

Hence we may choose ¢, = 0, 0, = ¢ and thus 75 » = 7. Finally we note that since the differentials
of our projective resolution alternate between T+ and 77~ !- then the chain maps 75 ; themselves will
also alternate. Hence these calculations of 75 ; repeat for all remaining ¢ and we therefore give the
following formula

(T @T) =Yy (D () az Va7 @@ 7 iis even

(T @ TT) = 7moN (4.2.4)

>0 () (s + Doz T @ w5 i is odd.

We now prove three seperate lemmas concerning our maps 7p; in order to show that P,(A) is
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compatible with 7 via 75,. We start by showing each 75 ; is bijective.

Lemma 4.2.5. Let the map g, be defined as above. Then each Tp; is a bijective map whose

inverse is

" (M (VT @ (—am ) T iis even
BV >0 (5)(9)
TB,i(xls ®T") =
> i (;) (s + Dz~ @ (—a@tyT*™7  iis odd

Proof. Let 1, be defined as above and 5 = (¢ — 1). We first make a useful calculation. For any

J,keN
@V = ] @+if) =w(@+ B).(w+ G+ k=10 = [ +id][ ] (+i8)
= ([Te + L + 368+ i8] = () + )

Also we will use the following fact

(2) (?) G —Tf!z)!h! (n —h;’)!j! T - h)!z;z — )

j!(rrij)! (n —(Z')T(i)i DI (J) <h:§)

forall r, h, 5 € N.

Now by construction 75 ; is k-linear. We will show TB,iTgé = 1agp for the case when i is
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even. The proof of the remaining case is similar.

@ o) = (3 () (o o

=0 \J
[r , LI r—j A '
= ( ) (—a)ﬂ(s)b]( ( N )(3 _,_]ﬂ))[k]akx—lktx—lsﬂ(t—l)—k ®w_2’“_(3+’“))
~ J
J=0 k=0
T r—7 .
— Z Z (7“) (r — J) (—1) 00T (5)) (s + jB) Wt UHRIEGHh) @ 5= +h)
: J k
=0 k=0

—~

Thus to show that TBJ'TB?; = lagp it suffices to show that
_ 4 1 h=0

> ()77 )t -
J 0 h+£0

Now if A = 0 then both j and k£ must be 0 and hence the sum is clearly equal to 1. Now suppose

h # 0. Then we have

> () (") ewaron =awrsew () (20)

- ah<s>[h}<§hg<—1v () (0 =arer(}) Qi;(—l)f (") =0
and hence 75,75 ; = Lags. O

Now we will show that 75, 1s compatible with 7.

Lemma 4.2.6. Let the map 7. be defined as above. Then T, is compatible with 7. That is for

every i, Tp; satisfies the following relations

mBi(mp ®1) = (1@ mp)(15,; ® 1)(1 ® 78,) (4.2.7)
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7,i(1 ® pai) = (pa; @ 1)1 @ 7p,) (T ®1) (4.2.8)

Proof. We show the case for 7 odd. The remaining case is similar. For relation (4.2.7) we have

Tpi(mp ® 1) (T2 QT @71°) = 15,(T2 T @ T1°)
r1+r2

= Z (7”1 j TQ) (S + 1)[j]$_15_j(0é33_1t)j ® w—2T1+7"2—j
=0

and

(1@mp) (T ® 1)(1 ® 75,) (72" @72 @71°)
o

= (1 ®@mp)(t; ® 1)(72" ® [Z (7;) (s + 1)[j}x—lsfj((m—1t)j ® 75" 7))

r 4 . .
= (1 (039 mB)(TB,i X 1)(2 (;) (8 —+ 1)[]104]$—2T1 ® l,—ls-f—]ﬁ ® w—zm—])
j=0

= ema(3 (") 03 ()64 Dbt o 7 8 )

=0 k=0
T . —s+j(t—1)— —7" T
—Z (7)o + e 0> (k>(8+Jﬁ+1)[k]$1 D0zt o g U)
k=0

=30 ()6 DS (1) 6+ 8+ DM U k0988 g -0t

=0 \J k=0

r1+7r2 )

Z Z ( )( > S+1)M(8+jﬁ+1)[k]lflsfh(ax—1t)h ®x—27“1+7‘27h.

h=0 j+k=h

Thus to show that 75 ;(mp ® 1) = (1 ® mp) (78, ® 1)(1 ® 7,;) it is sufficient to show

(“Z”)(SH)W: 3 (ZQ> (;)(Hl)[ (s+j8+ 1M,

j+k=h

Our calculation from Lemma 4.2.5 gives us (s + 1) = (s + 1)Vl(s 4 j3 + 1)!*.. Finally by a
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simple re-indexing and use of a well known identity we have

h
> (G)) =206 = (3")
et VAN = A PN h
Therefore 75 ,;(mp ® 1) = (1 @ mp)(75,; ® 1)(1 ® T5;) for i odd.

For relation (4.2.8) we have

TB:i(l ® pA,i)(Zv_f ® 513_151 ® 513—182> = TBi,i (5132 & £U1sl+32)

<;> (81 + 59 + 1)[]] Fs1+s2 J(ax—lt)j ®x—2T*J’
0

j=

and

(Pa; @)1 @ 71p,) (7@ 1) (7" @71 @ T77)

~ (o DL (1) o0ty @ 73] o 75%)

J=0

PSS () etime ety = 3 (77 oot e )

j=0 k=0
-SSH(O)( ) es pp ayn o -0e
7=0 k=0
=2.(2 C) (T;j)(sﬁ”(sﬁl)”) b (o7 @ 7
h=0 j+k=h

Now since (}) (?) = (;) (,’;_Z ), we have that

= ()t £ ) oo

j+k=h j
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Hence to show that 75 (1 ® pa;) = (pa; ® 1)(1 ® 75,)(7 ® 1) we simply need to show that
" (h
(s1+s2+ DM =" ( ) (1) (sq + 1)1,
— \J
J
Let 7,y € N. In the following we will use the calculation from Lemma 4.2.5 that (z)V+1 =
x(z + ). Now we proceed by induction on n to show that
n n . .
(z +y)l" = Z ( ) ()17 ()70,

J=0 J

The case n = 1 is given by a straightforward calculation:

M-

Il
=)

@+l =z +y=10)"+ ()1 =

C) () ()1,

Assume that for n = h — 1 we have (z + y)!"~1 = Z?;é (h;.l) ()l (gy)th=1=]

J

Then for n = h we have

[]-
N\
. =
~~
&
N
—~
s
=
<,
Il
M
N\
>
~~
&
S
—~
s
=
<,
+
s
S~—
=

.

I I
;_‘O

N

N\

>
|

= =

~_
+

VR

>
|

[—
&
S
—~
s
=
<,
+
w
S~—
=

Il Il
> . > .
M I

> .
|
[\ -

I
/\/}/‘\/‘\
|
—_
~ ~ ~—
&
<0
+
=
S
=
AN
|
i
+
>
L
N
>
<
—_
~~
—
&
=
S
S~—
=
4
+
&
=

=0 e
h—1 1
=3 (" @i + <h | 1) ()1 ()7
3=0 J =0 J
el 1
=z ( )(x + B)M (y)[h -] 4 yz ( )($)[j]<y + B)[h—l—j]
3=0 =0
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By the induction hypothesis,

ZICﬁwmehﬂ=Ax+ﬁ+wm”+y@+y+ﬁW1]

=0 M

= (@ +y)(a+y+ )= (@ 4y

and therefore (s + s5 + 1) = Z?:o (?)(31)“](32 + 1)Ih=31, Hence

T5i(1 @ pai) = (pa;i®@1)(1@7,;)(T® 1)

for ¢ odd. [
Finally we show that 75, is in fact a chain map.

Lemma 4.2.9. Let the map 7, be defined as above. Then 175, : B® P.(A) - P.(A)® Bisa

chain map.

Proof. Consider the following diagram where 7 is odd

BoA S Boa 9T, oA

|

| |

| ) |

T 1 TB,i |
| |

|

I
I
I
1 T
I

N N

AoB 29 Aeop —TC, A9 B
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Evaluating the right square of the diagram gives us

(1T (T2 @77°) = 1(T" @ 77" )

= (71 ® 1)<i (;) (s + Dz~ (az') © 7"

Jj=0

= (T1®@ )71p1(75" @ T71°).
Evaluating the left square of the diagram gives us

il O TP )@ @ 1) = 7T @ TP

C) (s + p)lzr 1 (a7 @ 7" .
0

j=

Thus we have

:(1@T ) (7T @7°) =
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and
@' e (@ o) = @ e 1)) (T) (Vz I (azpt) @ T3 )
. J
7=0

= Z (;) (S)[ﬂx—lsﬂp—l)—j (CY,CE_lt)j ® x—QT—j
=0

0 s>0

Therefore
BoA X"y BoA 9" . BoA

T

AoB T, Ao B

commutes. Hence by repeated application of this calculation we see that 7, is a chain map. [

Hence putting Lemmas 4.2.5, 4.2.6, and 4.2.9 together we have that P,(A) is compatible with
7 via 7p.. Thus by Theorem 3.2.7 if we are given the standard projective resolution of k as a left

A = k[z1]/(2})-module

and the standard projective resolution of k as a left B = k[z5]/(2%)-module

TP~ L.

P(B):--- B 25 B,k > 0

we may construct a projective resolution of k using the twisted product complex of the two reso-
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lutions. That is our projective resolution of k as a left A ®, B-module is given by:

where

Yo=®uyoYsy  for Y, =P(A) @ PB(B)=As B

and
dy= Y di;  for di;=d;+d,
i+j=n
with dﬁfj = 77 - ®1 for i odd, d?’j =777 - @1 forieven, dj; = (—1)' ® T3- for j odd, and finally

di; = (—1)! ® TP~ for j even. Doing so gives the following projective resolution;

B, (A®B)® —25 (A9 B)®? —% A® DB > k

e
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