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ABSTRACT

We extend recent results in order to construct projective resolutions for modules over twisted

tensor products of truncated polynomial rings. We begin by taking note of the conditions necessary

to think of these algebras as a type of Ore extension. We then use this parallel with Ore extensions

to develop a method for constructing projective resolutions. Finally we use the new construction

to compute a resolution for a family of examples.
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1. INTRODUCTION

Wanting to generalize the Eilenberg-Zilber Theorem to fiber spaces, Edgar Brown published a

paper in 1959 on the study of the singular cohomology of fiber spaces arising in algebraic topology.

In the process of doing so he introduced what he called a twisted tensor product of algebras. The

definition arose naturally out of his attempts to give an algebraic description of certain fibrations

[1]. His construction focused on tensor products of differential graded augmented algebras, or

DGA algebras, where the twisting maps were induced by the differentiation maps.

In 1995, motivated by a question from non-commutative differential geometry, Čap, Schichl,

and Vanžura revisited the idea of a twisted tensor product of algebras. Given two algebras that

describe two spaces, they wanted to know what would be an appropriate notion of the product of

those spaces. Intuition from the non-commutative case allowed them to introduce a more general

and much more useful definition for a twisted tensor product of unital algebras. This definition gave

a new way of thinking about many common non-commutative algebras. In particular any algebra

which is isomorphic as a vector space to the tensor product of two of its subalgebras under the

canonical inclusion maps is also isomorphic to some twisted tensor product of those subalgebras

[2]. In the same paper they also gave the conditions needed for the multiplication induced by a

twisted tensor product to be associative.

For quite some time the majority of the study of the homology theory of twisted tensor prod-

ucts focused on calculating the co/homology of some particular examples. However in 2008 Bergh

and Opperman obtained very strong results concerning the cohomology of a large class of twisted

tensor products. They were interested in the cohomology groups over a quantum complete in-

tersection and so looked at twisted tensor products of graded algebras whose twisting maps arise

from a bicharacter on the grading groups. In [3] they showed that the Ext-algebra of this family of

twisted tensor products can be constructed by taking a twisted tensor product of the Ext-algebras of

the factors. Later Shepler and Witherspoon were looking to study deformations of twisted tensor

product algebras and in order to do so they wished to be able to describe the homology theory of

1



such algebras in terms of the homology theory of their factors. So in 2019 they published a paper

giving the conditions necessary for resolutions of modules of the factor algebras to be compati-

ble with twisting maps [4]. They then, in the same paper, showed how to use these compatible

resolutions to construct resolutions for the twisted tensor product of the factor algebras.

Included in [4] are some homological methods for a class of twisted tensor products called Ore

extensions. In 1933, Øystein Ore introduced a new class of noncommutative rings by generalizing

earlier work by Hilbert and Schlessinger [5]. These rings and their algebra counterparts came to be

known as Ore extensions. The noncommutative multiplication in these algebras arises from the use

of an automorphism and a derivation. By 1966 Gopalakrishnan and Sridharan were studying the

homological properties of Ore extensions [6]. They were able to construct resolutions for certain

classes of Ore extensions. In the mentioned paper of Shepler and Witherspoon is a method for

constructing projective resolutions for any Ore extension.

In this paper we give a definition for a class of associative algebras which share many similar-

ities with Ore extensions. In [7], Guccione, Guccione, and Valqui study these algebras and refer

to them as noncommutative truncated polynomial extensions. They classify a large collection of

these algebras by their twisting maps and show how to extend the twisting map from one algebra

to a similar algebra. Throughout the remainder of this paper we will call these algebras truncated

Ore extensions and in fact one may think of these algebras as quotients of Ore extensions. Some

examples include Uq(sl2)+, the positive part of the quantized universal enveloping algebra of sl2,

the family of quantum algebras Aq(0|2) ∼= k[x, y]/(xy − qyx, x2, y2), and the family of Nichols

algebras R ∼= k〈x, y〉/(xp, yp, yx − xy − 1
2
x2) used in [8]. We will use this parallel with stan-

dard Ore extensions to adapt the methods of [4] in order to construct projective resolutions for

truncated Ore extensions. The projective resolution our construction gives for the Nichols algebra

R ∼= k〈x, y〉/(xp, yp, yx−xy− 1
2
x2) is the same as the one constructed in [8] and in the last portion

of this paper we construct a resolution for a family of algebras which include R.
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2. Preliminary Information

Throughout this paper we assume k is a field and n is a positive integer, n ≥ 2. We use the

common notation x = x + (xn) ∈ k[x]/(xn) and ⊗ = ⊗k. Let A,B be associative k-algebras

with multiplication maps mA and mB. In this paper we will also denote function composition by

concatenation.

2.1 Algebra Preliminaries

Definition 2.1.1. Let τ be a bijective k-linear map, τ : B ⊗ A→ A⊗B, such that

τ(1B ⊗ a) = a⊗ 1B , τ(b⊗ 1A) = 1A ⊗ b for all a ∈ A, b ∈ B and for which

τ(mB ⊗mA) = (mA ⊗mB)(1⊗ τ ⊗ 1)(τ ⊗ τ)(1⊗ τ ⊗ 1) (2.1.2)

as maps from B ⊗B ⊗ A⊗ A to A⊗B. Then τ is called a twisting map.

Definition 2.1.3. Let τ be a twisting map. The twisted tensor product algebra, A ⊗τ B, is the

vector space A⊗B with multiplication given by the map

(mA ⊗mB)(1⊗ τ ⊗ 1) (2.1.4)

on A⊗B ⊗ A⊗B.

It is shown in [2] that multiplication given by a twisting map is associative as a consequence

of relation (2.1.2). We also note that since τ is bijective, τ−1 exists and there is a natural k-algebra

isomorphism A⊗τ B ∼= B ⊗τ−1 A.

Ore extensions are a specific class of twisted tensor products constructed in the following way.

Let A be any associative algebra. Let σ be a k-linear automorphism of A, that is σ ∈ Autk(A).

Finally let δ be a left σ-derivation of A, i.e. δ : A→ A such that

δ(aa′) = δ(a)a′ + σ(a)δ(a′) for all a, a′ ∈ A.
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Definition 2.1.5. The Ore extension A[x;σ, δ] is the associative algebra with underlying vector

space A[x] and multiplication determined by that of A and k[x] with the additional Ore relation

xa = σ(a)x+ δ(a) for all a ∈ A.

Thus if we let B = k[x] and τ be the twisting map induced by τ(x⊗ a) = σ(a)⊗x+ δ(a)⊗ 1

then A[x;σ, δ] ∼= A⊗τ B.

In this paper we wish to take the idea of an Ore extension and modify it slightly to cover a

family of twisted tensor products who share a similar algebraic structure with Ore extensions. We

thus define an algebra whose multiplication is determined similarly to an Ore extension but has

A[x]/(xn) as an underlying vector space for some integer n instead of simply A[x].

We note that when using a quotient as our underlying vector space in order for a map τ gen-

erated by the Ore relation above to be a twisting map we must impose conditions on σ and δ. In

order for τ to induce a well-defined map on the quotient, (xn)⊗A must be in ker(τ). We will first

define our new class of algebras and then afterward in Theorem 2.1.7 we derive the conditions on

σ and δ necessary for τ to induce a well defined associative multiplication.

Definition 2.1.6. A truncated Ore extension A[x;σ, δ] is an associative algebra with underlying

vector space A[x]/(xn) and multiplication determined by that of A and of k[x]/(xn) with the

additional Ore relation

xa = σ(a)x+ δ(a) for all a ∈ A

for some σ ∈ Autk(A) and δ a left σ-derivation of A.

In a similar fashion as above we see that if B = k[x]/(xn) and τ is the twisting map induced

by τ(x ⊗ a) = σ(a) ⊗ x + δ(a) ⊗ 1 for any a ∈ A, then the twisted tensor product of A and B

under τ , A⊗τ B, is isomorphic to the truncated Ore extension A[x;σ, δ].

Now before we present the conditions on σ and δ we mentioned earlier we must first introduce

some notation in order to succinctly express these relations. Let s(i1,i2,...,ik)(x1, x2, ..., xk) be the

sum of all permutations without repetition of a multiset X containing i1 copies of x1, i2 copies of
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x2, ..., and ik copies of xk. Alternatively, s(i1,i2,...,ik)(x1, x2, ..., xk) is the polynomial in k noncom-

muting variables, x1, x2, ..., xk, that is a sum of all possible products of i1 copies of x1, i2 copies

of x2, ..., and ik copies of xk. Hence, we have

s(i1,i2,...,ik)(x1, x2, ..., xk) =
∑

σ∈S(X)

σ

where X = {xi11 , xi22 ..., x
ik
k } and S(X) is the set of all permutations without repetition of X . For

example

s(2,2)(x1, x2) = x2
1x

2
2 + x1x

2
2x1 + x1x2x1x2 + x2x1x2x1 + x2x

2
1x2 + x2

2x
2
1.

Thus through a slight abuse of our newly introduced notation we interpret s(1,2)(σ, δ) to be the map

s(1,2)(σ, δ) = σδ2 + δσδ + δ2σ

where the product is defined to be composition of maps.

Theorem 2.1.7. Let A be an associative algebra and A[x;σ, δ] be an Ore extension. Let τ be the

twisting map associated with A[x;σ, δ]. If the maps σ, δ : A→ A satisfy the relations

s(i,j)(σ, δ) = 0 (2.1.8)

for all i = 0, 1, ..., n − 1, and j = 1, 2, ...., n such that i + j = n, then τ induces a well defined

multiplication on A[x;σ, δ] = A⊗τ k[x]/(xn).

Proof. Let A be any associative algebra, B̂ = k[x], B = k[x]/(xn), and τ be a twisting map from

B̂ ⊗ A to A ⊗ B̂ given by τ(x ⊗ a) = σ(a) ⊗ x + δ(a) ⊗ 1 . Suppose b0, b1 ∈ B̂ such that

b0 + (xn) = b1 + (xn) ∈ B. Since multiplication in A[x;σ, δ] is given by (2.1.2). then in order for

τ to induce a well defined twisting map from B ⊗ A to A⊗ B we must have (xn)⊗ A ⊂ ker(τ).

Since such a τ is a k-linear twisting map it is sufficient to show that τ(xn ⊗ a) = 0 for all a ∈ A.
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We will now show by induction on l that

τ(xl ⊗ a) =
∑
i+j=l

s(i,j)(σ, δ)(a)⊗ xi. (2.1.9)

By definition

τ(x⊗ a) = σ(a)⊗ x+ δ(a)⊗ 1 = s(1,0)(σ, δ)(a)⊗ x+ s(0,1)(σ, δ)(a)⊗ 1.

Now assume for k ≤ l − 1 that

τ(xk ⊗ a) =
∑
i+j=k

s(i,j)(σ, δ)(a)⊗ xi.

Then

τ(xl ⊗ a) = τ(mB ⊗mA)(x⊗ xl−1 ⊗ a⊗ 1)

= (mA ⊗mB)(1⊗ τ ⊗ 1)(τ ⊗ τ)(1⊗ τ ⊗ 1)(x⊗ xl−1 ⊗ a⊗ 1)

= (mA ⊗mB)(1⊗ τ ⊗ 1)(τ ⊗ τ)(x⊗ (
∑

i+j=l−1

s(i,j)(σ, δ)(a)⊗ xi)⊗ 1)

= (mA ⊗mB)(1⊗ τ ⊗ 1)(τ ⊗ τ)(
∑

i+j=l−1

x⊗ s(i,j)(σ, δ)(a)⊗ xi ⊗ 1)

= (mA ⊗mB)(1⊗ τ ⊗ 1)(
∑

i+j=l−1

(σ(s(i,j)(σ, δ)(a))⊗ x+ δ(s(i,j)(σ, δ)(a))⊗ 1)⊗ 1⊗ xi)

= (mA ⊗mB)(1⊗ τ ⊗ 1)(
∑

i+j=l−1

σ(s(i,j)(σ, δ)(a)⊗ x⊗ 1⊗ xi

+
∑

i+j=l−1

δ(s(i,j)(σ, δ)(a))⊗ 1⊗ 1⊗ xi)

= (mA ⊗mB)(
∑

i+j=l−1

σ(s(i,j)(σ, δ)(a)⊗ 1⊗ x⊗ xi +
∑

i+j=l−1

δ(s(i,j)(σ, δ)(a))⊗ 1⊗ 1⊗ xi)
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=
∑

i+j=l−1

σ(s(i,j)(σ, δ)(a)⊗ xi+1 +
∑

i+j=l−1

δ(s(i,j)(σ, δ)(a))⊗ xi

=
∑
i+j=l

(σ(s(i−1,j)(σ, δ)) + δ(s(i,j−1)(σ, δ)))(a)⊗ xi

where we interpret s(−1,n)(σ, δ) = s(n,−1)(σ, δ) = 0. Now s(i,j)(σ, δ) is an expression which has

as terms all possible arrangements of i σ’s and j δ’s. We can group the terms into two sets, one

that has all the terms which start with σ and one that has all the terms which start with δ. Since

s(i,j)(σ, δ) covers all possible arrangements then the terms that start with σ contain all possible

arrangements of i − 1 σ’s and j δ’s. Similarly the terms that start with δ contain all possible

arrangements of i σ’s and j− 1 δ’s. Thus we may rewrite the expression s(i,j)(σ, δ) in terms of this

grouping to see that

s(i,j)(σ, δ) = σ(s(i−1,j)(σ, δ)) + δ(s(i,j−1)(σ, δ))

with s(0,j)(σ, δ) = δ(s(0,j−1)(σ, δ)) and s(i,0)(σ, δ) = σ(s(i−1,0)(σ, δ)). Hence

τ(xl ⊗ a) =
∑
i+j=l

(σ(s(i−1,j)(σ, δ)) + δ(s(i,j−1)(σ, δ)))(a)⊗ xi

=
∑
i+j=l

s(i,j)(σ, δ)(a)⊗ xi.

Therefore equation (2.1.9) holds and we see that if s(i,j)(σ, δ) = 0 for i + j = n then τ induces a

well defined multiplication on A[x;σ, δ].

2.2 Module Preliminaries

We end this section with some remarks on modules over twisted tensor products.

Definition 2.2.1. LetA⊗τB be a twisted tensor product algebra. A leftA-moduleM is compatible with

τ if there is a bijective k-linear map τB,M : B ⊗M → M ⊗ B that commutes with the module

structure of M and multiplication in B. That is τB,M satisfies the relations

τB,M(mB ⊗ 1) = (1⊗mB)(τB,M ⊗ 1)(1⊗ τB,M) (2.2.2)
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τB,M(1⊗ ρA,M) = (ρA,M ⊗ 1)(1⊗ τB,M)(τ ⊗ 1) (2.2.3)

where ρA,M : A⊗M →M is the left A-module structure map.

Note that a similar definition holds for a left B-module N and the twisting map τ−1.

If M is a left A-module compatible with τ and N is a left B-module then by [2, Thm. 3.8] we

may give M ⊗N the structure of an A⊗τ B-left module via the composition of maps

(A⊗τ B)⊗M ⊗N A⊗M ⊗B ⊗N M ⊗N.
1⊗τB,M⊗1 ρA,M⊗ρB,N

The definition of compatibility with τ can also be extended to resolutions of modules as well.

Definition 2.2.4. LetM be a leftA-module compatible with τ and P q(M) be a projective resolution

of M . The resolution P q(M) is said to be compatible with τ if there is a chain map τB, q : B ⊗

P q(M) → P q(M) ⊗ B such that each Pi(M) is compatible with τ via τB,i : B ⊗ Pi(M) →

Pi(M)⊗B and τB, q lifts τB,M .

We note that this definition has an analog for B-module resolutions.

8



3. Truncated Ore Extensions

3.1 Left Modules over Truncated Ore Extensions

Given M , a left module over some truncated Ore extension A[x;σ, δ], we wish to construct a

projective resolution forM . To do this we will adapt methods from [4]. These methods first depend

upon our ability to view A[x;σ, δ] as a twisted tensor product. Then we must show that, upon

restriction to a left A-module, M is compatible with the associated twisting map τ . Finally using a

resolution of M as a left A-module we will construct a resolution of M as a A⊗τ B ∼= A[x;σ, δ]-

module.

LetA be an associative algebra andB = k[x]/(xn) for some n ∈ N. Let σ ∈ Autk(A) and δ be

a left σ-derivation of A satisfying the conditions of Theorem 2.1.7. Hence we may view A[x;σ, δ]

as the twisted tensor product A⊗τ B where τ is the twisting map induced by the Ore relation.

To show that M is compatible with τ we construct a bijective k-linear map τB,M : B ⊗M →

M ⊗ B. We define Mσ to be the k-vector space M equipped with A-module action given by

a ·σ m = σ(a) ·m for all a ∈ A and m ∈ M . Now suppose that upon restriction to A, there is an

A-module isomorphism

φ : M →Mσ. (3.1.1)

Theorem 3.1.4 will show that under certain conditions similar to the ones imposed on σ and δ, M

will be compatible with τ via the k-linear map defined by setting

τB,M(1⊗m) = m⊗ 1 (3.1.2)

τB,M(x⊗m) = φ(m)⊗ x+ x ·m⊗ 1 , for all m ∈M (3.1.3)

9



and then iterating with respect to relation (2.2.2) to define τB,M(xk ⊗m) for 2 ≤ k ≤ n− 1.

Theorem 3.1.4. If φ and x· satisfy the relations

s(i,j)(φ, x·) = 0 (3.1.5)

as maps from M to M for all i + j = n with 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1, then M is

compatible with τ via τB,M . That is, τB,M satisfies relations (2.2.2) and (2.2.3). Note that here we

are identifying Mσ with M as vector spaces for the purposes of notation.

Proof. Using the above definition for τB,M , iterating with respect to (2.2.2), and following an

inductive proof similar to the one given in the proof of Theorem 2.1.7 gives the following

τB,M(xk ⊗m) =
∑
i+j=k

s(i,j)(φ, x·)(m)⊗ xi for all k ≤ n.

Thus τB,M satisfies relation (2.2.2) if

τB,M(xa+b ⊗m) = τB,M(mB ⊗ 1)(xa ⊗ xb ⊗m)

=
∑

i+j=a+b

s(i,j)(φ, x·)(m)⊗ xi.

for all postive integers a and b. Since xn = 0, it follows that s(i,j)(φ, x·) is identically 0 when

j ≥ n. Also since xn = 0 we see that s(i,0)(φ, x·)(m) ⊗ xi = 0 for all i ≥ n. Finally by

assumption we have that s(i,j)(φ, x·) = 0 for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1 and hence τB,M

satisfies relation (2.2.2).

We now consider the diagram corresponding to relation (2.2.3):

10



B ⊗ A⊗M B ⊗M

A⊗B ⊗M A⊗M ⊗B M ⊗B

τ⊗1

1⊗ρA,M

τB,M

1⊗τB,M ρA,M⊗1

Since τ , τB,M , and ρA,M are all k-linear, in order to prove the diagram commutes it is sufficient to

check that the compositions of maps agree on elements of the form xk ⊗ a⊗m for all k,

0 ≤ k ≤ n− 1, and all a ∈ A, m ∈M . For k = 1 we have

(ρA,M ⊗ 1)(1⊗ τB,M)(τ ⊗ 1)(x⊗ a⊗m)

= (ρA,M ⊗ 1)(1⊗ τB,M)(σ(a)⊗ x⊗m+ δ(a)⊗ 1⊗m)

= (ρA,M ⊗ 1)(σ(a)⊗ φ(m)⊗ x+ σ(a)⊗ x ·m⊗ 1 + δ(a)⊗m⊗ 1)

= σ(a) · φ(m)⊗ x+ (σ(a)x+ δ(a)) ·m⊗ 1

= φ(a ·m)⊗ x+ xa ·m⊗ 1

= τB,M(x⊗ a ·m) = τB,M(1⊗ ρA,M)(x⊗ a⊗m).

Now we assume that k > 1 and for all l < k we have

τB,M(1⊗ ρA,M)(xl ⊗ a⊗m) = (ρA,M ⊗ 1)(1⊗ τB,M)(τ ⊗ 1)(xl ⊗ a⊗m).

We consider the following diagram

B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

B ⊗B ⊗ A⊗M B ⊗M ⊗B

B ⊗ A⊗M B ⊗M M ⊗B ⊗B

A⊗B ⊗M A⊗M ⊗B M ⊗B

1⊗1⊗τB,M

1⊗ρA,M⊗11⊗τ⊗1

mB⊗1⊗1 τB,M⊗1

τ⊗1

1⊗ρA,M

τB,M
1⊗mB

1⊗τB,M ρA,M⊗1

Now since the map mB is surjective then for any xk ⊗ a ⊗ m we have that xk ⊗ a ⊗ m ∈
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im(mB⊗1⊗1). In particular since k > 1 we may think of xk⊗a⊗m as the image of the element

xu⊗ xv ⊗ a⊗m ∈ B ⊗B ⊗A⊗M for some u+ v = k with u, v < k. Thus given an element of

the form xu⊗xv⊗ a⊗m ∈ B⊗B⊗A⊗M , commutativity in the bottom portion of the diagram

implies conditon (2.2.3) for an element of the form xk⊗a⊗m. We will first use a diagram chasing

argument to show that the maps along the outside of the diagram take the same values on elements

of the form xu ⊗ xv ⊗ a⊗m. We will do so by showing that the maps of some sub-diagrams take

the same values on such elements. Consider the following diagram

B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

B ⊗B ⊗ A⊗M A⊗B ⊗B ⊗M A⊗B ⊗M ⊗B B ⊗M ⊗B

B ⊗ A⊗M A⊗M ⊗B ⊗B M ⊗B ⊗B

A⊗B ⊗M A⊗M ⊗B M ⊗B

τ⊗1⊗1

1⊗1⊗τB,M

1⊗ρA,M⊗1
τ⊗1⊗1

1⊗τ⊗1

mB⊗1⊗1

1⊗mB⊗1

1⊗1⊗τB,M

1⊗τB,M⊗1 τB,M⊗1

τ⊗1
1⊗1⊗mB 1⊗mB

1⊗τB,M ρA,M⊗1

We see that in the following sub-diagram the m in xu ⊗ xv ⊗ a⊗m remains untouched.

B ⊗ A⊗B ⊗M

B ⊗B ⊗ A⊗M A⊗B ⊗B ⊗M

B ⊗ A⊗M

A⊗B ⊗M

τ⊗1⊗1
1⊗τ⊗1

mB⊗1⊗1

1⊗mB⊗1

τ⊗1

Hence we may show that the indicated composition of maps takes the same value on an element

of the form xu⊗xv⊗a⊗m by applying relation (2.1.2) to an element of the form xu⊗xv⊗a⊗1.

We also have that the indicated composition of maps of the following diagram
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B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

A⊗B ⊗B ⊗M A⊗B ⊗M ⊗B

τ⊗1⊗1

1⊗1⊗τB,M

τ⊗1⊗1

1⊗1⊗τB,M

take the same value on our element because the vertical and horizontal maps act on different factors.

Hence regardless of the direction taken the same maps are applied to the same elements. The maps

in the diagram

A⊗B ⊗B ⊗M A⊗B ⊗M ⊗B

A⊗M ⊗B ⊗B

A⊗B ⊗M A⊗M ⊗B

1⊗mB⊗1

1⊗1⊗τB,M

1⊗τB,M⊗1

1⊗1⊗mB

1⊗τB,M

take the same value on the element xu ⊗ xv ⊗ a ⊗ m as a result of using the relation (2.2.2) to

define τB,M . To show that the maps in the diagram

B ⊗ A⊗M ⊗B

A⊗B ⊗M ⊗B B ⊗M ⊗B

A⊗M ⊗B ⊗B M ⊗B ⊗B

A⊗M ⊗B M ⊗B

1⊗ρA,M⊗1
τ⊗1⊗1

1⊗τB,M⊗1 τB,M⊗1

1⊗1⊗mB 1⊗mB

ρA,M⊗1

take the same value we break it into two parts. We start with the following:

B ⊗ A⊗M ⊗B

A⊗B ⊗M ⊗B B ⊗M ⊗B

A⊗M ⊗B ⊗B M ⊗B ⊗B

1⊗ρA,M⊗1
τ⊗1⊗1

1⊗τB,M⊗1 τB,M⊗1

ρA,M⊗1⊗1

13



Again assuming we started in B⊗B⊗A⊗M with the element xu⊗xv⊗a⊗m and mapping

throughB⊗A⊗B⊗M and intoB⊗A⊗M⊗B by the map (1⊗1⊗τB,M)(1⊗τ⊗1) we see that

the xu factor remains untouched. Thus the element in B ⊗A⊗M ⊗B that we will be computing

with will be a sum of elements of the form xu ⊗ a′ ⊗m′ ⊗ b for some a′ ∈ A,m′ ∈ M, b ∈ B .

And since τ and τB,M are k-linear it is enough to show that the compositions take the same values

on xu ⊗ a′ ⊗m′ ⊗ b. But this is easily shown by a direct application of the induction hypothesis

and the fact that b remains untouched in the diagram. Finally we see that the composition of maps

in

A⊗M ⊗B ⊗B M ⊗B ⊗B

A⊗M ⊗B M ⊗B

ρA,M⊗1⊗1

1⊗1⊗mB 1⊗mB

ρA,M⊗1

take the same value on our element because the vertical and horizontal maps act on separate factors.

Hence regardless of the direction taken the same maps are applied to the same elements. We now

note that by letting a and m range across all basis elements of A and M respectively we may form

a vector space basis of B ⊗B ⊗A⊗M consisting of elements of the form xu ⊗ xv ⊗ a⊗m with

0 ≤ u ≤ n − 1, 0 ≤ v ≤ n − 1. Putting all these results together with the linearity of our maps,

establishes the fact that the following diagram commutes.

B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

B ⊗B ⊗ A⊗M B ⊗M ⊗B

B ⊗ A⊗M M ⊗B ⊗B

A⊗B ⊗M A⊗M ⊗B M ⊗B

1⊗1⊗τB,M

1⊗ρA,M⊗11⊗τ⊗1

mB⊗1⊗1 τB,M⊗1

τ⊗1
1⊗mB

1⊗τB,M ρA,M⊗1

Now we consider the following diagram
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B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

B ⊗B ⊗ A⊗M B ⊗B ⊗M B ⊗M ⊗B

B ⊗ A⊗M B ⊗M M ⊗B ⊗B

A⊗B ⊗M A⊗M ⊗B M ⊗B

1⊗1⊗τB,M

1⊗ρA,M⊗11⊗τ⊗1

mB⊗1⊗1

1⊗1⊗ρA,M 1⊗τB,M

mB⊗1 τB,M⊗1

τ⊗1

1⊗ρA,M

τB,M
1⊗mB

1⊗τB,M ρA,M⊗1

If we again start with an element of the form xu ⊗ xv ⊗ a⊗m in B ⊗B ⊗A⊗M then the maps

of

B ⊗ A⊗B ⊗M B ⊗ A⊗M ⊗B

B ⊗B ⊗ A⊗M B ⊗B ⊗M B ⊗M ⊗B

1⊗1⊗τB,M

1⊗ρA,M⊗11⊗τ⊗1

1⊗1⊗ρA,M 1⊗τB,M

give the same result because of the induction hypothesis and the fact that the xu factor goes un-

touched. The maps of the diagram

B ⊗B ⊗ A⊗M B ⊗B ⊗M

B ⊗ A⊗M B ⊗M

mB⊗1⊗1

1⊗1⊗ρA,M

mB⊗1

1⊗ρA,M

clearly give the same result on our element. And finally the maps in

B ⊗B ⊗M B ⊗M ⊗B

B ⊗M M ⊗B ⊗B

M ⊗B

1⊗τB,M

mB⊗1 τB,M⊗1

τB,M
1⊗mB
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give the same result on our element because we used condition (2.2.2) to construct τB,M . Now

given that the maps on the outside of the diagram commute, the fact that compositions of maps of

the previous three sub-diagrams give the same results on our element, and the surjectivity of mB

we see that the following diagram commutes.

B ⊗ A⊗M B ⊗M

A⊗B ⊗M A⊗M ⊗B M ⊗B

τ⊗1

1⊗ρA,M

τB,M

1⊗τB,M ρA,M⊗1

Thus τB,M satisfies property (2.2.3).

Hence we now have conditions on M which guarantee that it will be compatible with τ .

Namely from here out we will assume that M is an A[x;σ, δ]-module for which the A-module

isomorphism (3.1.1), φ : M → Mσ, exists such that si,j(φ, x·) = 0 for all i + j = n with

1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.

3.2 Resolutions of Left Modules

Let P q(M) be a free resolution of M as a left A-module

P q(M) : · · · P1(M) P0(M) M 0.
d2 d1 µ

Our next step in the construction involves taking this resolution and showing that it is compatible

with τ . To do so we need a chain map τB, q : B ⊗ P q(M)→ P q(M)⊗ B. In particular we will use

a chain map that takes inspiration from our twisting map τ and uses two other chain maps we will

call σ q and δ q. We proceed by first constructing σ q.
Using the above resolution P q(M), we construct another free resolution of M

P σq (M) : · · · P σ
1 (M) P σ

0 (M) M 0
d2 d1 φ−1µ

by using the module action a ·σm = σ(a) ·m and setting P σ
i (M) = (Pi(M))σ for each i. Then by
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the comparison theorem there exists an A-module chain map from P q(M) to P σq (M) which lifts

the identity map on M . We may view this map as a k-linear chain map

σ q : P q(M)→ P σq (M) (3.2.1)

and note that σi(a · z) = σ(a) · σi(z) for all i ≥ 0, a ∈ A, and z ∈ Pi(M).

Before we construct our chain map τB, q, we must first define a left A[x;σ, δ]-module action on

the free A-modules P q(M). The following two lemmas mirror lemmas found in [4] and [6]. We

show that the results still hold in the case of truncated Ore extensions. The first lemma is modeled

after [4, Lemma 6.3] and gives the method for extending the A-module action to an A[x;σ, δ]-

action. The second is modeled after [4, Lemma 6.4] and gives the existence of the chain map δ q
that we need to define τB, q.
Lemma 3.2.2. Let A be an associative algebra and A[x;σ, δ] be a truncated Ore extension. For

any free A-module, P , there is an A[x;σ, δ]-module structure on P that extends the action of A.

Proof. We begin by first taking P to be the free A-module A. As in [4] we define a left A[x;σ, δ]-

module action by letting x act on A by x · a = δ(a) for all a ∈ A. Since A[x;σ, δ] is a truncated

Ore extension we have that δn(a) = 0 for all a ∈ A thus xn · a = δn(a) = 0. Hence the action

factors through A[x;σ, δ] to the quotient A[x;σ, δ]. Also we have

xa · a′ = x · (a · a′) = x · (aa′) = δ(aa′)

= δ(a)a′ + σ(a)δ(a′) = δ(a) · a′ + σ(a)(x · a′)

= (σ(a)x+ δ(a)) · a′

for all a, a′ ∈ A.

Now if P is an arbitrary free A-module then P ∼= A⊕I for some index set I and thus we let

x act on each summand in the manner shown above. We note as above that if we think about the

action as coming from A[x;σ, δ] then xn · z = 0 since xn acts on any given z ∈ P by acting with
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xn in each summand. Hence again the action factors through the quotient A[x;σ, δ]. Also since x

acts in each summand it is trivial to show that xa acts as σ(a)x + δ(a) on P for all a ∈ A. Hence

every free A-module P also has an A[x;σ, δ] structure which extends the action of A.

Let M be an A[x;σ, δ]-module as above and P q(M) be a free resolution of M as an A-module.

Let f : M → M be the function given by the action of x on M , i.e. f(m) = x ·m. For our chain

map τB, q we require a chain map δ q which lifts f and also plays nicely with the A[x;σ, δ]-module

action given in Lemma 3.2.2. The following lemma not only proves the existence of such a chain

map but the body of the proof constitutes a method for constructing such a map.

Lemma 3.2.3. There exists a k-linear chain map δ q : P q(M) → P q(M) lifting f : M → M such

that for each j ≥ 0, δj(a · z) = σ(a)δj(z) + δ(a)z for all a ∈ A and z ∈ Pj(M).

Proof. We let P q(M) be the free resolution given by

P q(M) : · · · P1(M) P0(M) M 0
d2 d1 µ

and f : M → M be defined as above. We will now construct the maps, δi, by first constructing

two other maps δ′i and δ′′i then setting δi = δ′i− δ′′i . Let j = 0 and δ′0 be the map given by the action

of x on P0(M) as defined in Lemma 3.2.2. That is δ′0(z) = x · z for all z ∈ P0(M). If we again

as in Lemma 3.2.2 interpret the module actions as coming from A[x;σ, δ] and factoring through

A[x;σ, δ], then a straightforward calculation shows that δ′n0 (z) = 0.

Given a ∈ A and z ∈ P0(M) we have δ′0(az) = x · az. We identify the free A-module P0(M)

with AI for some index set I . By Lemma 3.2.2, x · az is given by applying the action of x on A in

each summand. Hence for each i ∈ I we will have x · azi where zi ∈ A is the ith component of z.

Since δ is a σ derivation we have

x · azi = δ(azi) = δ(a)zi + σ(a)δ(zi)
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for each i ∈ I . Thus

δ′0(az) = x · az

= δ(a)z + σ(a)(x · z)

= δ(a)z + σ(a)δ′0(z)

Now consider the map µδ′0−fµ : P0(M)→Mσ. We may show that µδ′0−fµ is an A-module

homomorphism via the calculations

(µδ′0 − fµ)(z + y) = µδ′0(z + y)− fµ(z + y) = µ(x · (z + y))− f(µ(z + y))

= µ(x · z) + µ(x · y)− x · (µ(z) + µ(y))

= (µ(x · z)− x · µ(z)) + (µ(x · y)− x · µ(y))

= (µδ′0 − fµ)(z) + (µδ′0 − fµ)(y)

and

(µδ′0 − fµ)(az) = µ(δ′0(az))− f(µ(az)) = µ(x · az)− x · µ(az)

= µ(xa · z)− xa · µ(z) = µ((σ(a)x+ δ(a)) · z)− (σ(a)x+ δ(a)) · µ(z)

= µ(σ(a)x · z) + δ(a) · µ(z)− σ(a)x · µ(z)− δ(a) · µ(z)

= σ(a) · µ(x · z)− σ(a) · (x · µ(z)) = a ·σ µ(x · z)− a ·σ (x · µ(z))

= a ·σ (µ(δ′0(z))− a ·σ f(µ(z)) = a ·σ (µδ′0 − fµ)(z)

for all a ∈ A and z, y ∈ P0(M). Since P0(M) is projective there exists an A-module homomor-

phism δ′′0 : P0(M)→ P σ
0 (M) such that (µδ′0 − fµ) = µδ′′0 . Set δ0 = δ′0 − δ′′0 . Then

µδ0 = µ(δ′0 − δ′′0) = µδ′0 − µδ′′0

= µδ′0 − (µδ′0 − fµ) = fµ
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and thus δ0 lifts f . Since both δ′0 and δ′′0 are k-linear, δ0 is k-linear by construction. Finally

δ0(az) = δ′0(az)− δ′′0(az) = (σ(a)δ′0(z) + δ(a)z)− a ·σ δ′′0(z)

= σ(a) · (δ′0(z)− δ′′0(z)) + δ(a)z

= σ(a)δ0(z) + δ(a)z

for all a ∈ A, z ∈ P0(M). We proceed with a proof by induction. Let j > 0 and assume that for

all 0 ≤ l < j there exist k-linear maps δl : Pl(M)→ Pl(M) such that δl(az) = σ(a)δl(z) + δ(a)z

and dlδl = δl−1dl for all a ∈ A, z ∈ Pl(M). Like before we define δ′j : Pj(M)→ Pj(M) to be the

action of x on Pj(M) given by Lemma 3.2.2. Again a straightforward calculation shows

δ′j(az) = xa · z = (σ(a)x+ δ(a)) · z

= σ(a)δ′j(z) + δ(a)z.

for all a ∈ A, z ∈ Pj(M). Consider the map djδ′j − δj−1dj : Pj(M)→ P σ
j−1(M). We first see that

it is an A-module homomorphism by

(djδ
′
j − δj−1dj)(z + y) = djδ

′
j(z + y)− δj−1dj(z + y) = dj(x · (z + y))− δj−1(dj(z) + dj(y))

= dj(x · z) + dj(x · y)− δj−1(dj(z))− δj−1(dj(y))

= (djδ
′
j − δj−1dj)(z) + (djδ

′
j − δj−1dj)(y)
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and

(djδ
′
j − δj−1dj)(az) = dj(xa · z)− δj−1(dj(az))

= dj((σ(a)x+ δ(a)) · z)− δj−1(a · dj(z))

= dj(σ(a)x · z) + dj(δ(a) · z)− δj−1(a · dj(z))

= σ(a) · dj(x · z) + δ(a) · dj(z)− (σ(a)δj−1(dj(z)) + δ(a)dj(z))

= σ(a) · dj(x · z)− σ(a) · δj−1(dj(z))

= a ·σ (djδ
′
j − δj−1dj)(z).

for all a ∈ A, y, z ∈ Pj(M). By the induction hypothesis we have that δj−1 is a chain map and

(dj−1δj−1)dj = (δj−2dj−1)dj = 0. Hence dj−1(djδ
′
j − δj−1dj) = 0 and Im(djδ

′
j − δj−1dj) ⊂

Ker(dj−1) = Im(dj). Since Pj(M) is projective there exists an A-module homomorphism δ′′j :

Pj(M) → P σ
j (M) such that djδ′j − δj−1dj = djδ

′′
j . Let δj = δ′j − δ′′j , then by construction δj is

k-linear and

djδj = dj(δ
′
j − δ′′) = djδ

′
j − djδ′′j

= djδ
′
j − (djδ

′
j − δj−1dj)

= δj−1dj.

Finally for all a ∈ A and z ∈ Pj(M),

δj(az) = δ′j(az)− δ′′j (az) = xa · z − σ(a) · δ′′j (z)

= σ(a)x · z + δ(a) · z − σ(a) · δ′′j (z)

= σ(a) · (δ′j(z)− δ′′j (z)) + δ(a) · z

= σ(a)δj(z) + δ(a)z.
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Now finally we are ready to construct our chain map τB, q. Since our chain map will draw

inspiration from the standard Ore relation we end up with restrictions on σ q and δ q which mirror

the restrictions that we encountered when dealing with τ and τB,M . The following lemma serves

the same purpose as [4, Lemma 6.5] with the only change being our restrictions on σ q and δ q.
Lemma 3.2.4. Let A[x;σ, δ], M , P q(M), and τB,M be defined as above. We assume M is compati-

ble with τ via τB,M . Let σ q be the chain map (3.2.1) and δ q be the chain map constructed in Lemma

3.2.3. If σ q and δ q satisfy the relations

s(k,j)(σ q, δ q) = 0

for all k+ j = n with 0 ≤ k ≤ n− 1 and 1 ≤ j ≤ n then the resolution P q(M) is compatible with

the twisting map τ .

Proof. We define a k-linear map τB,i : B ⊗ Pi(M)→ Pi(M)⊗B by taking

τB,i(x⊗ z) = σi(z)⊗ x+ δi(z)⊗ 1

for all z ∈ Pi(M) where we then use relation (2.2.2) to extend the map and obtain

τB,i(x
l ⊗ z) =

∑
k+j=l

s(k,j)(σi, δi)(z)⊗ xk. (3.2.5)

Thus in a situation similar to Theorems 2.1.7 and 3.1.4, τB,i satisfies relation (2.2.2) if s(k,j)(σ q, δ q) =

0 for all k + j = n with 0 ≤ k ≤ n − 1 and 1 ≤ j ≤ n. All that remains is to show that τB,i

satisfies relation (2.2.3). Now for any a ∈ A and z ∈ Pi(M)

τB,i(x⊗ az) = σi(az)⊗ x+ δi(az)⊗ 1 = σ(a)σi(z)⊗ x+ σ(a)δi(z)⊗ 1 + δ(a)z ⊗ 1
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by the properties of σ q and δ q. Then a straightforward calculation gives

(ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)(x⊗ a⊗ z)

= (ρA,i ⊗ 1)(1⊗ τB,i)(σ(a)⊗ x⊗ z + δ(a)⊗ 1⊗ z)

= (ρA,i ⊗ 1)(σ(a)⊗ σi(z)⊗ x+ σ(a)⊗ δi(z)⊗ 1 + δ(a)⊗ z ⊗ 1)

= σ(a)σi(z)⊗ x+ σ(a)δi(z)⊗ 1 + δ(a)z ⊗ 1)

for all a ∈ A, z ∈ Pi(M). Assume that for all t < l we have

τB,i(1⊗ ρA,i)(xt ⊗ a⊗ z) = (ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)(xt ⊗ a⊗ z).

Then by a diagram chasing argument similar to the one found in Theorem 3.1.4 we may show that

τB,i(1⊗ ρA,i)(xl ⊗ a⊗ z) = (ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)(xl ⊗ a⊗ z)

and thus by induction on l we see that condition (2.2.3) holds for all elements of the form xl ⊗ az.

Finally since elements of the form xl form a basis ofB then condition (2.2.3) holds for all elements

of the form b⊗ az for all b ∈ B.

Hence we have shown that given an A[x;σ, δ]-module M such that M ∼= Mσ and a free reso-

lution P q(M) of M as a left A-module we may construct maps τB,M , τB, q such that M and P q(M)

are compatible with τ . Before the proof of our final theorem we introduce one more definition.

Definition 3.2.6. Let A⊗τ B be a twisted tensor product of k-algebras. Let M be a left A-module

and N be a left B-module. Let P q(M) and P q(N) be projective A- and B-module resolutions of

M and N respectively. We denote the differentials of P q(M) by d′i and the differentials of P q(N)

by d′′j . The twisted product complex, X q, of P q(M) and P q(N) is the complex

· · · X2 X1 X0 M ⊗N 0.
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where

Xk =
⊕
i+j=k

Pi(M)⊗ Pj(N)

with the differentials given by

dk =
∑
i+j=k

(d′i ⊗ 1 + (−1)i ⊗ d′′j ).

Let P q(B) be the standard projective resolution of k as a module over B = k[x]/(xn) with εB

the augmentation map that takes x to 0:

· · · k[x]/(xn) k[x]/(xn) k[x]/(xn) k 0.x· xn−1· x· εB

We now prove our main result which mirrors [4, Thm. 6.6].

Theorem 3.2.7. Let A[x;σ, δ] = A⊗τ B be a truncated Ore extension. Let M be a left A[x;σ, δ]-

module compatible with τ via τB,M for which M ∼= Mσ as A-modules. Let P q(M) be a free

resolution of M as a left A-module. Let σ q be the chain map of (3.2.1), δ q be the chain map of

Lemma 3.2.3, and assume P q(M) is compatible with τ via τB, q, the chain map of Lemma 3.2.4.

Suppose that σi : Pi(M) → Pi(M) is bijective for each i ≥ 0. Then the twisted product complex

of P q(M) and P q(B) gives a projective resolution of M as a left A[x;σ, δ]-module.

Proof. Let X q be the twisted product complex of P q(M) and P q(B). By assumption, M and P q(M)

are compatible with τ and thus by [4, Thm. 5.8] and [4, Thm. 5.9] the twisted product complex X q
is an exact complex of left A⊗τ B = A[x;σ, δ]-modules. All that remains is to prove projectivity

of the modules of X q .
In the following we prove the projectivity of the modules ofX q in three steps. We first establish

that as a leftA[x;σ, δ]-module,A[x;σ, δ]⊗APi(M) is isomorphic toB⊗Pi(M). We then show that

B⊗Pi(M) is isomorphic as left A[x;σ, δ]-module to Pi(M)⊗B via the map τB,i. Then we finally

show that A[x;σ, δ] ⊗A Pi(M) is a free left A[x;σ, δ]-module by showing that it is isomorphic to
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the free left A[x;σ, δ]-module A[x;σ, δ]⊕ni . Putting all this together we will establish that

Xi,j = Pi(M)⊗B ∼= B ⊗ Pi(M) ∼= A[x;σ, δ]⊗A Pi(M) ∼= A[x;σ, δ]⊕ni

as left A[x;σ, δ]-modules.

It is clear that as A[x;σ, δ]-modules

A[x;σ, δ]⊗A Pi(M) ∼= (A⊗τ B)⊗A Pi(M) ∼= (B ⊗τ−1 A)⊗A Pi(M) ∼= B ⊗ Pi(M).

Since σi is bijective then we have that as vector spaces B⊗Pi(M) ∼= Pi(M)⊗B via the map τB,i

whose inverse is given by

z ⊗ x 7→ x⊗ σ−1
i (z)− 1⊗ δi(σ−1

i (z)).

We now show that τB,i is a module homomorphism by showing that it preserves the module

structure. Consider the following diagram

(A⊗τ B)⊗B ⊗ Pi(M) (A⊗τ B)⊗ Pi(M)⊗B

A⊗B ⊗ Pi(M) A⊗ Pi(M)⊗B A⊗ Pi(M)⊗B ⊗B

B ⊗ A⊗ Pi(M) B ⊗ Pi(M) Pi(M)⊗B

1⊗mB⊗1

1⊗1⊗τB,i

1⊗τB,i⊗1

τ−1⊗1

1⊗τB,i

ρA,i⊗1

1⊗1⊗mB

ρA,i⊗mB

1⊗ρA,i τB,i

The diagram
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A⊗ Pi(M)⊗B A⊗ Pi(M)⊗B ⊗B

Pi(M)⊗B

ρA,i⊗1

1⊗1⊗mB

ρA,i⊗mB

commutes because the maps act on different factors. The diagram

(A⊗τ B)⊗B ⊗ Pi(M) (A⊗τ B)⊗ Pi(M)⊗B

A⊗B ⊗ Pi(M) A⊗ Pi(M)⊗B A⊗ Pi(M)⊗B ⊗B

1⊗mB⊗1

1⊗1⊗τB,i

1⊗τB,i⊗1

1⊗τB,i 1⊗1⊗mB

commutes because Pi(M) is compatible with τ and thus τB,i satisfies relation (2.2.2). The diagram

A⊗B ⊗ Pi(M) A⊗ Pi(M)⊗B

B ⊗ A⊗ Pi(M) B ⊗ Pi(M) Pi(M)⊗B

1⊗τB,i

ρA,i⊗1
τ⊗1

1⊗ρA,i τB,i

commutes because Pi(M) is compatible with τ and thus τB,i satisfies relation (2.2.3). Now putting

these together and noting that (τ−1 ⊗ 1)(τ ⊗ 1) is the identity map we see that

(A⊗τ B)⊗B ⊗ Pi(M) (A⊗τ B)⊗ Pi(M)⊗B

A⊗B ⊗ Pi(M) A⊗ Pi(M)⊗B ⊗B

B ⊗ A⊗ Pi(M) B ⊗ Pi(M) Pi(M)⊗B

1⊗mB⊗1

1⊗1⊗τB,i

1⊗τB,i⊗1

τ−1⊗1 ρA,i⊗mB

1⊗ρA,i τB,i
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commutes. Therefore τB,i preserves the module structure and is thus an A[x;σ, δ]-module isomor-

phism. Hence we have that for every i ≥ 0,

A[x;σ, δ]⊗A Pi(M) ∼= B ⊗ Pi(M) ∼= Pi(M)⊗B = Xi,j

as left A[x;σ, δ]-modules. Since Pi(M) is a free A-module for each i then we have that Pi(M) ∼=

A⊕J for some index set J . This gives the following

A[x;σ, δ]⊗A Pi(M) ∼= A[x;σ, δ]⊗A A⊕ni ∼= (A[x;σ, δ]⊗A A)⊕ni ∼= A[x;σ, δ]⊕ni

and we see that A[x;σ, δ]⊗A Pi(M) is a free A[x;σ, δ]-module. Thus we have established that for

all i we have

Xi,j = Pi(M)⊗B ∼= B ⊗ Pi(M) ∼= A[x;σ, δ]⊗A Pi(M) ∼= A[x;σ, δ]⊕ni

as left A[x;σ, δ]-modules and thus Xi,j is a projective module for all i and j.
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4. Example

For our example we will construct a resolution for a class of truncated Ore extensions which

includes the Nichols algebras that were used in [8] to prove a finite generation of cohomology

result.

4.1 A Family of Truncated Ore Extensions

Let k be a field of prime characteristic p, A = k[x1]/(xp1), and B = k[x2]/(xp2). We wish to

consider a family of truncated Ore extensions as twisted tensor products of A and B. However as

we saw in Section 2 in order to do so we must work through some details involving our twisting

map τ . We will first construct a twisting map τ : k[x2]⊗A→ A⊗ k[x2] then we will show that it

induces a well defined multiplication on A⊗τ B.

Let σ be the identity map on A. We construct a derivation on A by first defining a k-linear map

δ : A→ A using

δ(1) = 0 and δ(x1) = αx1
t (4.1.1)

for some α ∈ k and 2 ≤ t ≤ p− 1, and then extending δ by the Leibniz Law

δ(aa′) = a(δ(a′)) + δ(a)a′ (4.1.2)

for all a, a′ ∈ A. Now we may make a calculation that will come in handy later. Through repeated

application of δ we obtain

δp(x1) = (

p∏
i=1

[(i− 1)t− (i− 2)])α2x1
p(t−1)+1

= (

p−1∏
i=0

[1 + i(t− 1)])α2x1
p(t−1)+1 = (1)[p]α2x1

p(t−1)+1
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where we use the notation (s)[j] to represent the generalized rising factorial

(s)[j] =

j−1∏
i=0

(s+ i(t− 1)), (s)[0] = 1.

We now define a twisting map τ using the Ore relation:

τ(x2 ⊗ x1) = σ(x1)⊗ x2 + δ(x1)⊗ 1 = x1 ⊗ x2 + δ(x1)⊗ 1

and then extend with respect to relation (2.1.2) to obtain

τ(xr2 ⊗ x1
s) =

r∑
j=0

(
r

j

)
(s)[j]x1

s−jδ(x1)j ⊗ xr−j2 for all r, s ∈ N (4.1.3)

=
r∑
j=0

(
r

j

)
(s)[j]αjx1

s+j(t−1) ⊗ xr−j2 (4.1.4)

Now that we have a formula for τ our next step is to show that it induces a well defined

multiplication on A ⊗τ B. We must show that σ and δ satisfy relation (2.1.8) of Theorem 2.1.7.

To do so we will first prove a lemma for arbitrary associative algebras over a field k such that the

character of k is p. We then will use that lemma to show that in our special case where σ = idA,

and δp = 0 the standard twisting map generated by the Ore relation

a⊗ b = σ(a)⊗ x2 + δ(a)⊗ 1

will satisfy relation (2.1.8).

Lemma 4.1.5. Let k be a field of characteristic p, Λ be any associative k-algebra, σ = idΛ be the

identity automorphism of Λ, and δ : Λ→ Λ be any derivation for which δp = 0. Then the standard

twisting map τ of Λ[x;σ, δ] induces a well defined multiplication on Λ[x;σ, δ].
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Proof. Since σ = idΛ it follows that

s(i,j)(σ, δ) =

(
p

j

)
δj.

For j = 1, ..., p− 1, p divides
(
p
j

)
and since char(k) = p, s(i,j)(σ, δ) = 0. Thus by Theorem 2.1.7,

τ induces a well defined multiplication on Λ[x;σ, δ].

We next show that Lemma 4.1.5 applies to our family of truncated Ore extensions.

Lemma 4.1.6. Let k be a field of characteristic p. Let A = k[x1]/(xp1). Let σ be the identity

map on A and δ be given by (4.1.1) and (4.1.2). Let τ : k[x2] ⊗ A → A ⊗ k[x2] be the twisting

map generated by the Ore relation on σ and δ. Then τ induces a well defined multiplication on

k[x1]/(xp1)⊗τ k[x2]/(xp2) and thus it is a truncated Ore extension A[x2;σ, δ].

Proof. By the previous lemma we need only show that δp = 0. Also our previous calculation gives

us

δp(x1) = (

p∏
i=1

[(i− 1)t− (i− 2)])α2x1
p(t−1)+1.

Finally since t ≥ 2 implies that p(t− 1) + 1 > p we see that δp = 0.

4.2 Construction of a Resolution

By the work of the previous section we may, from here on out, think of the truncated Ore

extension A[x;σ, δ] as a twisted tensor product with an associated twisting map τ . We next wish to

construct a projective resolution of k as an A ⊗τ B-module. To do so we follow the construction

laid out in Section 3.

Let εA : A→ k and εB : B → k be the standard augmentation maps for A and B induced by

εA(x1) = 0

εB(x2) = 0.
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Since A = k[x1]/(xp1) and B = k[x2]/(xp2), it follows that a A[x;σ, δ]-module action on k is given

by the augmentation map ε(a⊗ b) = εA(a)εB(b) for all a ∈ A and b ∈ B.

Now we restrict k to an A-module and show that it is compatible with τ . Since σ = idA we

have that for any z ∈ k, σ(a) · z = a · z and thus k is trivially isomorphic to kσ. Following the

construction from Section 3 and noting that x2 acts as 0 on k we define τB,k : B ⊗ k→ k⊗B by

τB,k(1⊗ z) = z ⊗ 1

for all z ∈ k. Clearly φ = idM and x2· satisfy relation (3.1.5) and thus by Theorem 3.1.4, k is

compatible with τ via the map τB,k(b⊗ z) = z⊗ b for all b ∈ B, z ∈ k. In particular we may note

the following:

Lemma 4.2.1. Let k be a field, Λ be any associative k-algebra, and A[x;σ, δ] be a truncated Ore

extension of Λ with σ = idA. Let M be a left A[x;σ, δ]-module. If x acts as 0 on M then τB,M as

defined in (3.1.2) and (3.1.3) is compatible with τ .

Proof. The proof follows directly from Theorem 3.1.4 and the fact that σ = idA implies that

φ = idM .

We now construct our chain map τB, q lifting τB,k by first letting P q(A) be the standard resolution

of k as an A-module.

P q(A) : · · · A A A k 0
x1· x1p−1· x1· εA

Since σ = idA we may let

σ q : P q(A)→ P q(A)

be given by σi = idPi(A) for every i. Also since Pi(A) = A for every i we may set the A[x2;σ, δ]-

31



module action on Pi(A) = A to be given by

x2 · a = δ(a)

for every i and all a ∈ A.

We now have our σ q and an A[x;σ, δ]-module action on our projective resolution. The next

step in the construction of τB, q is to construct δ q. We do so by constructing two maps, δ′i and δ′′i

for each i and then letting δi be the difference of those two maps. Hence for each i we will have

δi = δ′i − δ′′i . We proceed with the construction of δ0, δ1, and δ2 given in the proof of Lemma 3.2.3

and note that the construction of δj will be similar to δ1 if j is odd and will be similar to δ2 if j is

even.

Let f : k → k be the map given by the action of x2 on k. Then f(z) = 0 for all z ∈ k. Thus

we have

δ′0(z) = x2 · z = δ(z)

(εAδ − fεA)(z) = εA(δ(z))− 0

but since δ(z) ∈ (x2), εA(δ(z)) = 0. Hence δ′′0 = 0 and δ0 = δ′0 − δ′′0 = δ. Therefore

τB,0(x2 ⊗ x1) = σ0(x1)⊗ x2 + δ0(x1)⊗ 1 = x1 ⊗ x2 + δ(x1)⊗ 1 = τ(x2 ⊗ x1).

Then extending by conditions (2.2.2) and (2.2.3) we obtain

τB,0(x2
r ⊗ x1

s) =
r∑
j=0

(
r

j

)
(s)[j](αx1

t)jx1
s−j ⊗ x2

r−j. (4.2.2)
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Starting on δ1 we set δ′1(z) = x2 · z = δ(z). Now let g =
∑n

i=0 βix1
i ∈ A then

(d1δ
′
1 − δ0d1)(g) = (x1 · δ − δx1·)(g)

= x1 · δ(g)− δ(x1 · g)

= x1 · (
n∑
i=0

βiδ(x1
i))− δ(

n∑
i=0

βix1
i+1)

= x1(
n∑
i=0

βi[(i)αx1
t+(i−1))]−

n∑
i=0

βi(i+ 1)αx1
t+i

=
n∑
i=0

βi(i)αx1
t+i −

n∑
i=0

βi(i+ 1)αx1
t+i

= −(
n∑
i=0

βiαx1
t+i).

We need a map δ′′1 such that (d1δ
′
1 − δ0d1)(g) = x1 · δ′′1(g) hence we define δ′′1 on x1

i by

δ′′1(x1
i) = −αx1

t+(i−1)

and then extend linearly to all elements of A. Thus letting δ1 = δ′1 − δ′′1 we have

δ1(g) = δ′1(g)− δ′′1(g)

=
n∑
i=0

βi(i)αx1
t+(i−1) − (−

n∑
i=0

βiαx1
t+(i−1))

=
n∑
i=0

βi(i+ 1)αx1
t+(i−1).
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Therefore

τB,1(x2 ⊗ x1) = σ1(x1)⊗ x2 + δ1(x1)⊗ 1

= x1 ⊗ x2 + δ(x1)⊗ 1− δ′′1(x1)⊗ 1

= x1 ⊗ x2 + δ(x1)⊗ 1− (−αx1
t)⊗ 1

= x1 ⊗ x2 + 2δ(x1)⊗ 1.

We then extend the map using conditions (2.2.2) and (2.2.3) to obtain

τB,1(x2
r ⊗ x1

s) =
r∑
j=0

(
r

j

)
(s+ 1)[j](αx1

t)jx1
s−j ⊗ x2

r−j. (4.2.3)

Then starting on δ2 we let δ′2(z) = δ(z). And since im(δ) ⊂ (x1) and t ≥ 2 we have

d2δ
′
2 − δ1d2 = x1

p−1 · δ − (δ′1 − δ′′1)x1
p−1·

= x1
p−1 · δ − δx1

p−1 ·+δ′′1x1
p−1·

= 0

Hence we may choose δ′′2 = 0, δ2 = δ and thus τB,2 = τ . Finally we note that since the differentials

of our projective resolution alternate between x· and xp−1· then the chain maps τB,i themselves will

also alternate. Hence these calculations of τB,i repeat for all remaining i and we therefore give the

following formula

τB,i(x2
r ⊗ x1

s) =


τ(x2

r ⊗ x1
s) =

∑r
j=0

(
r
j

)
(s)[j](αx1

t)jx1
s−j ⊗ x2

r−j i is even∑r
j=0

(
r
j

)
(s+ 1)[j](αx1

t)jx1
s−j ⊗ x2

r−j i is odd.

(4.2.4)

We now prove three seperate lemmas concerning our maps τB,i in order to show that P q(A) is
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compatible with τ via τB, q. We start by showing each τB,i is bijective.

Lemma 4.2.5. Let the map τB, q be defined as above. Then each τB,i is a bijective map whose

inverse is

τ−1
B,i(x1

s ⊗ x2
r) =


∑r

j=0

(
r
j

)
(s)[j]x2

r−j ⊗ (−αx1
t)jx1

s−j i is even∑r
j=0

(
r
j

)
(s+ 1)[j]x2

r−j ⊗ (−αx1
t)jx1

s−j i is odd

Proof. Let τB,i be defined as above and β = (t − 1). We first make a useful calculation. For any

j, k ∈ N

(x)[j+k] =

j+k−1∏
i=0

(x+ iβ) = x(x+ β)....(x+ (j + k − 1)β) = [

j−1∏
i=0

(x+ iβ)][

j+k−1∏
i=j

(x+ iβ)]

= [

j−1∏
i=0

(x+ iβ)][
k−1∏
i=0

(x+ jβ + iβ)] = (x)[j](x+ jβ)[k]

Also we will use the following fact

(
r

h

)(
h

j

)
=

r!

(r − h)!h!
· h!

(h− j)!j!
=

r!

(r − h)!(h− j)!j!

r!

j!(r − j)!
· (r − j)!

(h− j)!(r − h)!
=

(
r

j

)(
r − j
h− j

)
for all r, h, j ∈ N.

Now by construction τB,i is k-linear. We will show τB,iτ
−1
B,i = 1A⊗B for the case when i is
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even. The proof of the remaining case is similar.

ττ−1(x1
s ⊗ x2

r) = τ(
r∑
j=0

(
r

j

)
(−α)j(s)[j]x2

r−j ⊗ x1
s+jα)

=
r∑
j=0

(
r

j

)
(−α)j(s)[j](

r−j∑
k=0

(
r − j
k

)
(s+ jβ))[k]αkx1

ktx1
s+j(t−1)−k ⊗ x2

r−(j+k))

=
r∑
j=0

r−j∑
k=0

(
r

j

)(
r − j
k

)
(−1)jαj+k(s)[j](s+ jβ)[k]x1

s+(j+k)t−(j+k) ⊗ x2
r−(j+k)

=
r∑

h=0

(
∑
j+k=h

(
r

j

)(
r − j
k

)
(−1)jαh(s)[h]x1

s+hβ ⊗ x2
r−h)

Thus to show that τB,iτ−1
B,i = 1A⊗B it suffices to show that

∑
j+k=h

(
r

j

)(
r − j
k

)
(−1)jαh(s)[h] =


1 h = 0

0 h 6= 0

Now if h = 0 then both j and k must be 0 and hence the sum is clearly equal to 1. Now suppose

h 6= 0. Then we have

∑
j+k=h

(
r

j

)(
r − j
k

)
(−1)jαh(s)[h] = αh(s)[h](

h∑
j=0

(−1)j
(
r

j

)(
r − j
h− j

)
)

= αh(s)[h](
h∑
j=0

(−1)j
(
r

h

)(
h

j

)
) = αh(s)[h]

(
r

h

)
(
h∑
j=0

(−1)j
(
h

j

)
) = 0

and hence τB,iτ−1
B,i = 1A⊗B.

Now we will show that τB, q is compatible with τ .

Lemma 4.2.6. Let the map τB, q be defined as above. Then τB, q is compatible with τ . That is for

every i, τB,i satisfies the following relations

τB,i(mB ⊗ 1) = (1⊗mB)(τB,i ⊗ 1)(1⊗ τB,i) (4.2.7)
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τB,i(1⊗ ρA,i) = (ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1) (4.2.8)

Proof. We show the case for i odd. The remaining case is similar. For relation (4.2.7) we have

τB,i(mB ⊗ 1)(x2
r1 ⊗ x2

r2 ⊗ x1
s) = τB,i(x2

r1+r2 ⊗ x1
s)

=

r1+r2∑
j=0

(
r1 + r2

j

)
(s+ 1)[j]x1

s−j(αx1
t)j ⊗ x2

r1+r2−j

and

(1⊗mB)(τB,i ⊗ 1)(1⊗ τB,i)(x2
r1 ⊗ x2

r2 ⊗ x1
s)

= (1⊗mB)(τB,i ⊗ 1)(x2
r1 ⊗ [

r2∑
j=0

(
r2

j

)
(s+ 1)[j]x1

s−j(αx1
t)j ⊗ x2

r2−j])

= (1⊗mB)(τB,i ⊗ 1)(

r2∑
j=0

(
r2

j

)
(s+ 1)[j]αjx2

r1 ⊗ x1
s+jβ ⊗ x2

r2−j)

= (1⊗mB)(

r2∑
j=0

(
r2

j

)
(s+ 1)[j]αj[

r1∑
k=0

(
r1

k

)
(s+ jβ + 1)[k]x1

s+jβ−kδ(x1)k ⊗ x2
r1−k]⊗ x2

r2−j)

=

r2∑
j=0

(
r2

j

)
(s+ 1)[j]αj(

r1∑
k=0

(
r1

k

)
(s+ jβ + 1)[k]x1

s+j(t−1)−k(αx1
t)k ⊗ x2

r1+r2−(j+k))

=

r2∑
j=0

(
r2

j

)
(s+ 1)[j](

r1∑
k=0

(
r1

k

)
(s+ jβ + 1)[k]x1

s−(j+k)αj+kx1
(j+k)t ⊗ x2

r1+r2−(j+k))

=

r1+r2∑
h=0

∑
j+k=h

(
r2

j

)(
r1

k

)
(s+ 1)[j](s+ jβ + 1)[k]x1

s−h(αx1
t)h ⊗ x2

r1+r2−h.

Thus to show that τB,i(mB ⊗ 1) = (1⊗mB)(τB,i ⊗ 1)(1⊗ τB,i) it is sufficient to show

(
r1 + r2

h

)
(s+ 1)[h] =

∑
j+k=h

(
r2

j

)(
r1

k

)
(s+ 1)[j](s+ jβ + 1)[k].

Our calculation from Lemma 4.2.5 gives us (s + 1)[h] = (s + 1)[j](s + jβ + 1)[k]. Finally by a
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simple re-indexing and use of a well known identity we have

∑
j+k=h

(
r2

j

)(
r1

k

)
=

h∑
j=0

(
r2

j

)(
r1

h− j

)
=

(
r1 + r2

h

)
.

Therefore τB,i(mB ⊗ 1) = (1⊗mB)(τB,i ⊗ 1)(1⊗ τB,i) for i odd.

For relation (4.2.8) we have

τB,i(1⊗ ρA,i)(x2
r ⊗ x1

s1 ⊗ x1
s2) = τB,i(x2

r ⊗ x1
s1+s2)

=
r∑
j=0

(
r

j

)
(s1 + s2 + 1)[j]x1

s1+s2−j(αx1
t)j ⊗ x2

r−j

and

(ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)(x2
r ⊗ x1

s1 ⊗ x1
s2)

= (ρA,i ⊗ 1)(1⊗ τB,i)([
r∑
j=0

(
r

j

)
(s1)[j]x1

s1−j(αx1
t)j ⊗ x2

r−j]⊗ x1
s2)

= (ρA,i ⊗ 1)(
r∑
j=0

(
r

j

)
(s1)[j]x1

s1−j(αx1
t)j ⊗ [

r−j∑
k=0

(
r − j
k

)
(s2 + 1)[k]x1

s2−k(αx1
t)k ⊗ x2

r−j−k])

=
r∑
j=0

r−j∑
k=0

(
r

j

)(
r − j
k

)
(s1)[j](s2 + 1)[k]x1

s1+s2−(j+k)(αx1
t)j+k ⊗ x2

r−(j+k)

=
r∑

h=0

(
∑
j+k=h

(
r

j

)(
r − j
k

)
(s1)[j](s2 + 1)[k])x1

s1+s2−h(αx1
t)h ⊗ x2

r−h.

Now since
(
r
h

)(
h
j

)
=
(
r
j

)(
r−j
h−j

)
, we have that

∑
j+k=h

(
r

j

)(
r − j
k

)
(s1)[j](s2 + 1)[k] =

h∑
j=0

(
r

j

)(
r − j
h− j

)
(s1)[j](s2 + 1)[h−j]

=
h∑
j=0

(
r

h

)(
h

j

)
(s1)[j](s2 + 1)[h−j].
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Hence to show that τB,i(1⊗ ρA,i) = (ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1) we simply need to show that

(s1 + s2 + 1)[h] =
h∑
j=0

(
h

j

)
(s1)[j](s2 + 1)[h−j].

Let x, y ∈ N. In the following we will use the calculation from Lemma 4.2.5 that (x)[j+1] =

x(x+ β)[j]. Now we proceed by induction on n to show that

(x+ y)[n] =
n∑
j=0

(
n

j

)
(x)[j](y)[n−j].

The case n = 1 is given by a straightforward calculation:

(x+ y)[1] = x+ y = 1(y)[1] + (x)[1]1 =
1∑
j=0

(
1

j

)
(x)[j](y)[1−j].

Assume that for n = h− 1 we have (x+ y)[h−1] =
∑h−1

j=0

(
h−1
j

)
(x)[j](y)[h−1−j]

Then for n = h we have

h∑
j=0

(
h

j

)
(x)[j](y)[h−j] =

h−1∑
j=0

(
h

j

)
(x)[j](y)[h−j] + (x)[h]

=
h−1∑
j=0

(

(
h− 1

j − 1

)
+

(
h− 1

j

)
)(x)[j](y)[h−j] + (x)[h]

=
h−1∑
j=0

(
h− 1

j − 1

)
(x)[j](y)[h−j] +

h−1∑
j=0

(
h− 1

j

)
(x)[j](y)[h−j] + (x)[h]

=
h−1∑
j=1

(
h− 1

j − 1

)
(x)[j](y)[h−j] +

h−1∑
j=0

(
h− 1

j

)
(x)[j](y)[h−j] + (x)[h]

=
h−2∑
j=0

(
h− 1

j

)
(x)[j+1](y)[h−1−j] +

h−1∑
j=0

(
h− 1

j

)
(x)[j](y)[h−j] + (x)[h]

=
h−1∑
j=0

(
h− 1

j

)
(x)[j+1](y)[h−1−j] +

h−1∑
j=0

(
h− 1

j

)
(x)[j](y)[h−j]

= x

h−1∑
j=0

(
h− 1

j

)
(x+ β)[j](y)[h−1−j] + y

h−1∑
j=0

(
h− 1

j

)
(x)[j](y + β)[h−1−j]
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By the induction hypothesis,

h∑
j=0

(
h

j

)
(x)[j](y)[h−j] = x(x+ β + y)[h−1] + y(x+ y + β)[h−1]

= (x+ y)(x+ y + β)[h−1] = (x+ y)[h]

and therefore (s1 + s2 + 1)[h] =
∑h

j=0

(
h
j

)
(s1)[j](s2 + 1)[h−j]. Hence

τB,i(1⊗ ρA,i) = (ρA,i ⊗ 1)(1⊗ τB,i)(τ ⊗ 1)

for i odd.

Finally we show that τB, q is in fact a chain map.

Lemma 4.2.9. Let the map τB, q be defined as above. Then τB, q : B ⊗ P q(A) → P q(A) ⊗ B is a

chain map.

Proof. Consider the following diagram where i is odd

B ⊗ A B ⊗ A B ⊗ A

A⊗B A⊗B A⊗B

1⊗x1p−1·

τ

1⊗x1·

τB,i τ

x1p−1·⊗1 x1·⊗1
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Evaluating the right square of the diagram gives us

τ(1⊗ x1)(x2
r ⊗ x1

s) = τ(x2
r ⊗ x1

s+1)

=
r∑
j=0

(
r

j

)
(s+ 1)[j]x1

s+1−j(αx1
t)j ⊗ x2

r−j

= (x1 ⊗ 1)(
r∑
j=0

(
r

j

)
(s+ 1)[j]x1

s−j(αx1
t)j ⊗ x2

r−j)

= (x1 ⊗ 1)τB,1(x2
r ⊗ x1

s).

Evaluating the left square of the diagram gives us

τB,i(1⊗ x1
p−1)(x2

r ⊗ x1
s) = τB,i(x2

r ⊗ x1
s+p−1)

=
r∑
j=0

(
r

j

)
(s+ p)[j]x1

s+p−1−j(αx1
t)j ⊗ x2

r−j.

Thus we have

τB,i(1⊗ x1
p−1)(x2

r ⊗ x1
s) =


0 for s 6= 0∑r

j=0

(
r
j

)
(p)[j]x1

p−1−j(αx1
t)j ⊗ x2

r−j

=


0 s > 0

x1
p−1 ⊗ x2

r s = 0
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and

(x1
p−1 ⊗ 1)τ(x2

r ⊗ x1
s) = (x1

p−1 ⊗ 1)(
r∑
j=0

(
r

j

)
(s)[j]x1

s−j(αx1
t)j ⊗ x2

r−j)

=
r∑
j=0

(
r

j

)
(s)[j]x1

s+(p−1)−j(αx1
t)j ⊗ x2

r−j

=


0 s > 0

x1
p−1 ⊗ x2

r s = 0

.

Therefore
B ⊗ A B ⊗ A B ⊗ A

A⊗B A⊗B A⊗B

1⊗x1p−1·

τ

1⊗x1·

τB,i τ

x1p−1·⊗1 x1·⊗1

commutes. Hence by repeated application of this calculation we see that τB, q is a chain map.

Hence putting Lemmas 4.2.5, 4.2.6, and 4.2.9 together we have that P q(A) is compatible with

τ via τB, q. Thus by Theorem 3.2.7 if we are given the standard projective resolution of k as a left

A = k[x1]/(xp1)-module

P q(A) : · · · A A k 0
x1p−1· x1· εA

and the standard projective resolution of k as a left B = k[x2]/(xp2)-module

P q(B) : · · · B B k 0
x2p−1· x2· εB

we may construct a projective resolution of k using the twisted product complex of the two reso-
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lutions. That is our projective resolution of k as a left A⊗τ B-module is given by:

Y q(k) : · · · Y1 Y0 k 0
d2 d1 εA

where

Yn = ⊕i+j=nYi,j for Yi,j = Pi(A)⊗ Pj(B) = A⊗B

and

dn =
∑
i+j=n

di,j for di,j = dhi,j + dvi,j

with dhi,j = x1 · ⊗1 for i odd, dhi,j = x1
p−1 · ⊗1 for i even, dvi,j = (−1)i ⊗ x2· for j odd, and finally

dvi,j = (−1)i ⊗ x2
p−1· for j even. Doing so gives the following projective resolution;

· · · (A⊗B)⊕3 (A⊗B)⊕2 A⊗B k 0.
d3 d2 d1
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