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 ABSTRACT 

 

The objectives of the present study were first, to synthesize the literature pertaining 

to artificial intelligence (AI) and machine learning (ML) applications in orthodontics, second 

to evaluate the possibility of predicting mandibular growth using artificial intelligence, third 

to assess the applicability of using artificial intelligence to predict dental treatment outcomes 

among Herbst patients, and finally, to predict skeletal treatment outcomes among Herbst 

patients using artificial intelligence. The first study was a narrative review that assessed the 

orthodontic literature pertaining to applications of AI and ML in orthodontics. The second 

study assessed the applicability of a ML method known as decision trees (DTs) for 

predicting maxillomandibular relationships over a five-year period using radiographs of 

222 untreated subjects. The third study used DTs to predict dental treatment outcomes 

among 150 Herbst patients. The fourth study used a subset of 116 patients from the third 

study to assess possibility of using DTs to predict skeletal outcomes among Herbst patients. 

The first study showed that several applications of AI in orthodontics have been done, and 

more specifically for diagnosis and treatment planning, followed by predicting treatment 

outcomes, and predicting growth. The second study showed that DTs were able to 

successfully classify the growth of untreated subjects 85.4% of the time with the Y-axis 

as the most important variable for prediction. The third study demonstrated that DTs can 

accurately predict dental treatment outcomes among Herbst patients 81.4% of the time, 

and identified SN-MP, followed by overbite, and L1-MP, respectively, as the most 

important variables. The fourth study showed that skeletal outcomes among Herbst 

patients can be accurately predicted approximately 87.9% of the time. It also identified 
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the facial convexity angle, followed by the distance from U1 to facial plane, articular 

angle, and Wits, respectively, as the most important variables. 
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CHAPTER I  

INTRODUCTION  

Statement of the Problem 

The terms artificial intelligence (AI) and machine learning (ML) are being used 

widely in in orthodontics nowadays. They are used interchangeably to describe the new 

tools utilized by orthodontists to help in diagnosis, treatment planning, and predicting 

growth and treatment outcomes. However, these terms do not mean exactly the same 

thing. AI is the general term that includes several subfields like reasoning, natural 

language processing, planning, and machine learning. [1] On the other hand, ML is a 

specific type of AI that is concerned with making computers learn from previous 

examples to perform better when introduced to new data. [2] This confusion among 

clinicians needs to be clarified in order to better understand ML and its different 

subtypes. By doing so, orthodontists can explore the possible applications of ML in 

orthodontics and how can that help the efficiency in the orthodontic clinic. 

Applications of AI and more specifically ML in orthodontics is numerous. One 

area that received much attention is diagnosis and treatment planning. Several studies 

have been done to help orthodontists practice more efficiently and help them decide 

which teeth to extract for example. [3-5] Another area that received some attention is 

growth prediction. Using pre-treatment records, ML was successful in classifying 

patients into favorable and unfavorable growth patterns. [6-8] Moreover, ML models 

have been also used to predict treatment outcomes. [9-11] Unfortunately, there has not 
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been a thorough review of the literature that summarized the work that has been done in 

those areas and how accurate these models can be to traditional statistics.  

Growth Predictions 

 Several studies have attempted to predict growth in the orthodontic literature. 

Earlier studies were not accurate as they assumed that pattern extension is established 

early in life and the same average growth increments should be added to all patients after 

adjustments for age and growth. [12-14] However, this believe was found later to be not 

true when Bjork and coworkers found younger subjects changing from bad 

anteriorposterior (AP) relationships to good AP relationships over time, and vice versa. 

[15] Subsequently, growth predictions using multilevel models were used which 

developed individualized growth curves and worked well with missing data. [16, 17] 

Unfortunately, these methods were very complex and required longitudinal data to 

develop the models and make the predictions.  

AI and Growth Patterns 

            After the successful application of AI and ML in different fields, several 

algorithms have been implemented to help orthodontists classify their patients’ growth 

patterns. [12, 18, 19] For instance, an artificial neural network was developed to help 

classifying the growth of 43 untreated children based on changes in size and shape. [6] 

Nevertheless, the model was not validated on an external sample and the sample size 

was small. Recently, a study developed a model using cephalometric variables to 

classify patients’ craniofacial growth into normal and abnormal. [20] They found that 

support vector machines algorithm could accurately classify abnormal growth patterns 
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99.8% of the time. Unfortunately, this study did not mention the sample size and focused 

on the technical aspect of developing the system. Furthermore, support vector machines 

were also used to classify normal or abnormal skeletal patterns based on craniomaxillary 

measures and they were correct only 74.5% of the time. [7] However, they excluded 

information about the mandible because their aim was to develop a mandibular 

classification system for the skeletonized remains where the mandibular bone is usually 

lost. Including this information in future studies could enhance the accuracy of these 

models. 

          Growth patterns classification of class III subjects has also been done. Using 

longitudinal data of untreated class III subjects who were classified as either good or bad 

growers based on the change in the sagittal relationship, a decision tree (DT) was 

developed. Using the same 11 cephalometric variables, the DT showed a significantly 

lower rate of misclassification (12.0%) than discriminant analysis (40.7%). [8] The 

model was able to successfully identify good and bad growth patterns 64.0% of the time 

when tested on new data. It would be interesting to see the accuracy of a similar 

approach on patients with different growth patterns, such as class I and class II subjects. 

Herbst for Correcting Class II Malocclusions 

One of the most common problems in the US population is bilateral class II 

malocclusion as it has been reported to occur in approximately 15% of the population. 

[21] Among those, approximately 75% of them have also class II skeletal malocclusion. 

[22] Those individuals usually present with mandibular retrusion and facial convexity. 

[23] In order to improve esthetic, the position of the chin need to be brought forward to 
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create less convex or flatter profile. [24] The class II dental malocclusion is generally not 

self-correcting, different treatment modalities that correct this malocclusion should pay 

attention to factors that can affect soft issue esthetic and final dental and skeletal 

treatment outcomes. 

One of the different methods used to correct class II malocclusion includes the 

Herbst. In 1905, Emil Herbst introduced his appliance at the international congress of 

dentistry in Berlin, Germany. However, it did not receive much acceptance at the time. 

In 1979, Pancherz reintroduced the Herbst appliance and brought attention to the 

possibility of mandibular growth stimulation. [25] It works by continuously posturing 

the mandible forward to stimulate or redirect mandibular growth. [26] Over the next 

years, several papers were published that evaluated the biological effects of the Herbst 

appliance [27] and quantified the skeletal, dental, and soft tissue changes associated with 

the correction of class II malocclusion. [28, 29] However, patient’s response to 

functional appliance treatment may vary as has been shown in the literature. [23, 30] 

This could be attributed to several factors such as treatment timing and amount of 

growth remaining, [31, 32] whether the patient is hyper or hypo divergent, [33, 34] the 

pretreatment SNB, [35] and the ANB difference. [36]  

It is clear that orthodontists need to have a tool that can help them distinguish 

between patients who might benefit from treatment with Herbst from those who will get 

worse or not improve. However, there is limited information in the literature about the 

predictability of treatment outcomes in patients treated with Herbst. Only one study 

developed a model for patients treated with Herbst and they were combined with patients 
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treated with Twin blocks to predict changes in mandibular length. [37] They determined 

the gonial angle (Co-Go-Me°) as the only pretreatment predictor for mandibular length 

changes, with patients responding favorably if the gonial angle is below 125.5° and 

responding poorly if the angle is greater than 125.5°. However, their sample included 

subjects treated with 2 different functional appliances which both have been shown to 

have different effects on posterior facial height and maxillomandibular differential. [38] 

In addition, their primary outcome was predicting the change in mandibular length 

which is not the best indicator of treatment success. A subject can show an increase in 

the total mandibular length, but the final outcome might still be considered as 

unsuccessful if the patient is hyperdivergent to begin with and the vertical dimensions 

increase. This could result in backward rotation, and therefore unsuccessful treatment 

outcomes. [33] This has led to the question of what measures should be used to evaluate 

the success of treatment? 

Successful vs Unsuccessful Treatment Outcomes 

It has been stated before that an orthodontic treatment is considered successful 

when both the objective treatment goals and subjective patient desires are achieved. [39] 

In treatment with functional appliances, the definition of successful treatment outcomes 

differed among different studies. Most of the studies used occlusal measurements, 

mainly the correction of overjet and molar relations to distinguish between successful 

and unsuccessful treatment. [34, 36, 40-42] Few studies used a skeletal measure to 

evaluate treatment outcomes with functional appliances. [37, 40] Some studies used a 
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composite treatment outcome with a criterion that have to be met in order to be classified 

as a successful outcome. [42-44]  

One of the studies that used dental measurements reported reduction of overjet as 

an indicator of successful treatment outcome. [45] If the overjet was reduced to 3mm or 

less than one-third of its original value, a treatment was considered successful. Another 

study considered a case to be progressing successfully if the overjet was reduced by 50 

percent or 6mm within 6 months. [41] Success was defined by achieving a bilateral class 

I molar relationship at a specified time (either at the end of phase I or at the end of 

treatment) in one study. [46]  

Few studies used a skeletal measure to evaluate treatment outcomes with 

functional appliances. [37, 40] One study used ANB to determine successful and 

unsuccessful treatment outcomes with functional appliance treatment. [40] They divided 

individuals who demonstrated a reduction in ANB angle of 3.0° or more as favorable 

change, and individuals having a reduction less than 0.5° as less favorable. Their 

primary purpose was to identify any differences in the pretreatment variables important 

for predictions which will be easier to identify by having the two groups at the either 

ends of the spectrum. In another study, the change in total mandibular length (Co-Gn) 

was used to evaluate successful treatment outcomes. [37] Good responders were 

identified as subjects who showed a biannual increase > 5.3mm, while bad responders 

were determined if they had a biannual increase in Co-Gn ≤ 5.3mm. However, total 

mandibular length is not the best indicator of successful skeletal outcomes as explained 
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before. The total mandibular length can increase but the treatment outcome might still be 

considered as unsuccessful especially in hyperdivergent patients. [33]  

Some studies used a composite outcome variable to evaluate treatment. A case 

was considered “satisfactory” if at the end of the treatment a patient had a neutral 

occlusion (± 1mm), overjet and overbite less than 4mm, no observable rotation of upper 

incisors, occlusal contact on all teeth, crowding in lower arch not exceeding 1mm, and 

rotation of cuspids/premolars not exceeding 15 degrees and limited to one tooth. [43] 

Correction of overbite, presence of acceptable profile with upper and lower lips within 1 

SD on Ricketts’ esthetic line, and the absence or little relapse for cases followed up 2-5 

years after the functional appliance therapy in addition to correction of overjet and molar 

relationship were used in a study to evaluate treatment outcomes. [42] In the large 

randomized clinical trial that compared Herbst with twin-block functional appliance, 

they used three different criteria to evaluate treatment outcomes. [44] They used the 

anterorposterior skeletal discrepancy as described by the Pancherz analysis, [25] the 

overjet, and the Peer Assesment Rating (PAR) score to describe treatment outcomes.  

AI and Treatment Outcomes 

Recently, AI was implemented in orthodontics to predict treatment outcomes 

among class II and class III patients. Using artificial neural networks, post-treatment 

Peer Assessment Ratings (PAR) were predicted among class II patients based on their 

pre-treatment PAR index. [10] The neural network model showed better accuracy 

(94.0%) than linear regression (82.0%) at predicting the final PAR score. Another model 

was also developed to predict treatment outcomes among untreated class III patients. 
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[11] A machine learning model was also used to cluster patients as hypermandibular, 

hyperdivergent or balanced based on their cephalometric variables. When the model was 

applied to a treated sample, all of the unsuccessful cases belonged to either the 

hypermandibular or the hyperdivergent cluster. Furthermore, a ML model was found to 

accurately predict the prognosis of class III treatment slightly better than discriminant 

analysis (DA) (97.2% for ML and 92.1% for DA). [47] All these promising results using 

AI encourage us to us it as a prediction tool that can improve the accuracy of treatment 

outcomes using traditional statistical methods. 

Decision Trees 

Decision trees are among the most popular ML models used for classification. A 

major reason for their popularity is their ease of interpretation, even for non-experts. [48, 

49] They can handle a mixture of categorical and continuous variables, even when there 

are missing values. They can also classify multiple groups. [49] A tree is built by asking 

a series of a yes-or-no questions. Each question has a node that leads to two other nodes, 

depending on the answer. The process continues until the terminal node is reached, 

which is the final outcome. [49] The first uppermost node pertains to the most important 

variable, followed by the next most important variable, and so on, until a hierarchy of 

variables is created. [50] For researchers, building decision trees is less time consuming 

than other classification algorithms. [51] Due to these reasons, DTs have often been used 

in medicine and bioinformatics. DTs applied in orthodontics to classify untreated Cass 

III subjects as good or bad growers have shown a significantly lower rate of 

misclassification (12.0%) than discriminant analysis (40.7%). [8] 
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Specific Aims 

The present study will address the following aims:  

Aim 1: To synthesize the literature pertaining to AI and ML in orthodontics. 

Aim 2: To evaluate the possibility of using decision trees to predict favorable and 

unfavorable growth types from a single cephalogram. 

Aim 3: To assess the possibility to predict dental treatment outcomes after orthodontic 

treatment with Herbst in class II patients using decision trees from pre-treatment records. 

Aim 4: To assess the possibility to predict skeletal treatment outcomes after orthodontic 

treatment with Herbst in class II patients using decision trees from pre-treatment records.  
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CHAPTER II  

APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND MACHINE 

LEARNING IN ORTHODONTICS* 

Introduction 

Artificial intelligence (AI) is a subfield of computer science concerned with 

developing computers and programs that have the ability to perceive information, reason 

and ultimately convert that information into intelligent actions. [1-3] AI as a science is 

very broad and encompasses various fields, including reasoning, natural language 

processing, planning and machine learning (ML). [4] Currently, machine learning is the 

most commonly used AI application in the medical and dental fields.1 

Work in AI started back in 1943, [5] but it was not until 1956 that the term 

“artificial intelligence” was first used during a conference held at Dartmouth College. [6] 

A few years later, the term “machine learning” was officially applied to a checkers-

playing program, considered one of the first successful self-learning tools. [7] Drawing 

from other fields such as statistics, mathematics, physics, biology, neuroscience and 

psychology, [8-11] artificial intelligence and machine learning progressed quickly.  

One of the most important aspects of any intelligent system is learning. Learning 

is the process of improving performance or behavior by practice and experience. [12] 

Similarly, ML is concerned with making machines and computers capable of learning 

                                                

* Reprinted with permission from, “Applications of artificial intelligence and machine learning in 
orthodontics”, by Asiri SN, Tadlock LP, Schneiderman E, Buschang PH. APOS Trends in 
Orthodontics, 2020;10(1):17-24. Copyright [2019] by Scientific Scholar on behalf of APOS 
Trends in Orthodontics. 
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from previous experiences, data or examples. By utilizing a mixture of statistical and 

probabilistic tools, machines can learn from previous examples and improve their 

actions when new data is introduced. This could be in the form of predictions, 

identifying new patterns or classifying new data. [8] It is important to note that ML is 

not intended to mimic human behavior. Instead, it supplements human intelligence by 

doing tasks that are beyond human capabilities. [13] This is what makes ML superior to 

the rule-based expert systems that were used in the past.  

Expert systems (ES) are considered among the earliest applications of artificial 

intelligence. As the name implies, the knowledge about a specific field is transferred 

from humans to computers, allowing people to consult the computer. [14] In other 

words, ES act as consultants that can process the input information and provide solutions 

based on if-then rules. ES have been used widely for diagnosis and treatment planning in 

medicine, [15] dentistry, [16] and orthodontics. [17] ES also facilitate the transfer of 

knowledge to different people in different places. However, rule-based ES are limited to 

information available at the time that the system was developed. Continuous updates are 

required to ensure that the information is correct and current. Due to the availability of 

more advanced technologies, such as machine learning, it is now possible to overcome 

the limitations associated with rule-based expert systems.  

Most algorithms used in machine learning are also being used in data mining. 

The difference lies in the algorithm’s goal. If the goal is to optimize decisions, then the 

algorithms are applied to large historical data sets to look for new patterns or 

relationships. [18, 19] This process is called data mining. For example, data mining can 
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help clinical practitioners find valuable information within existing patient records. By 

using this new information, practitioners can optimize future decisions, improve their 

daily practice and increase the quality of care. On the other hand, if the goal is to make 

predictions, then machine learning should be applied. The clinical practitioner uses 

available data about a certain disease to train the machine to make predictions about the 

diagnosis or prognosis of patients that have never been seen before. Importantly, 

machine learning predictive models have proven to be more accurate than statistical 

models. [20] The aim of the present narrative review was twofold: 1) to introduce the 

various types of machine learning 2) and show orthodontists how ML has been and is 

currently being applied. The literature was systematically searched using MEDLINE 

(through PubMed) and ProQuest databases, covering both the published and unpublished 

literature reported in English. The studies covered are comprehensive with respect to 

orthodontic applications. 

Type of Machine Learning 

 Machine learning algorithms are divided into three main categories [10] (Figure 

1) based on the nature of learning and the desired outcome of the algorithm: 

A. Supervised learning: Supervised learning is mainly used for classification when 

the data is discrete (categorical) and for prediction (regression) if the data is continuous. 

It is supervised because it is based on a known outcome. With this type of learning, a 

model is built using a labeled set of training data (independent variables) and a known 

outcome (dependent) variable. [21] Since the final outcome is known, the system learns 

by receiving feedback signals that either confirm or reject its performance. If the 
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algorithm encounters new input data, it will use the training data sets to link the new 

input data to the desired outcome. A very common example of supervised learning for 

classification is e-mail spam detection, where the algorithm is trained to classify newly 

received emails as spam or not spam. For prediction, supervised learning can be used to 

predict the Graduate Record Examinations (GRE) scores, for example, based on several 

independent variables that are related to the outcome variable, such as study time. 

B. Unsupervised learning: This type of learning is mainly used to discover the 

structure of the data in order to find meaningful information. Clustering (sometimes 

called unsupervised classification) is the method used with this type of learning to 

explore the data and then organize them into groups based on similarities or relationships 

between variables. [21] Unlike supervised learning, the data are not labeled, and the final 

outcome is not known. This type of learning allows marketers to develop programs that 

are specific to each group of customers after clustering them based on similar interests 

and features. The clusters could be based on sex, age group or demographics.  

C. Reinforcement learning: This type of learning is similar to supervised learning in 

that the system is provided with a feedback signal. However, the feedback signal does 

not provide the true value. Instead, it rewards the system based on its interaction with a 

dynamic environment (n.b. reinforcement learning is also known as the reward system). 

The system does not know anything about the behavior of the environment. By doing 

multiple exploratory trials-and-errors, the system learns and improves its future 

performance. An example of this type of learning is the chess engine. Depending on the 
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situation (i.e., the environment), the machine decides on certain moves and will be 

rewarded by either winning or losing. [21] 

Major Machine Learning Algorithms and Dentistry 

 There are several machine learning algorithms that have been used in the dental 

fields. Depending on the goal, the type and amount of data, different algorithms can be 

used. For example, if a practitioner wants to distinguish between patients who need 

treatment and those who do not, he/she probably would need to use a classification 

algorithm (e.g., support vector machine, naïve Bayes etc.) (Table 1).  However, if there 

are many variables and a large amount of data, an algorithm like neural networks is 

better suited because it can handle noisy data and perform predictions even if the 

relationships between variables are non-linear.  

 Interestingly, almost all machine learning algorithms applied in orthodontics 

have used the supervised learning method. Most applications have sought to automate 

clinical procedures that perform or facilitate diagnosis and treatment planning. These 

applications require training with data that has a known and desired outcome, so when 

introduced to new data, the ML system will use the training data to predict the new 

input. 

Artificial Intelligence and Orthodontics 

 Dentistry in general and orthodontic specifically has applied artificial intelligence 

to solve many different problems. Earlier attempts to use AI in dentistry and 

orthodontics were in the form of knowledge based expert systems. These systems were 

mainly aimed at helping non-specialist dentists develop diagnoses and treatment plans. 
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[22-25] These expert systems were useful in countries like England, where hospital-

based orthodontists had long waiting lists and were seeing more patients than their 

counterparts in Europe and the US. Due to the decline in the incidence of caries that 

occurred at that time, dentists treated the more straightforward cases identified by the 

expert system and referred the more complex cases to orthodontists. However, these 

systems were limited because they only had been introduced to simple cases (i.e. they 

could not function well with new cases not already stored in the system). Currently, 

general dentists have more advanced ML systems available to them that can diagnose a 

broader range of orthodontic cases and determine treatment needs. [26] Several 

advanced systems have been developed to help orthodontists diagnose and treatment 

plan and evaluate treatment outcomes and growth. 

Machine Learning for Diagnosis and Orthodontic Treatment Planning 

One of the dilemmas during treatment planning is deciding whether or not to 

extract, with substantial variability between the orthodontists’ decisions. [27] This has 

led to the development of several decision-support systems that reduce the subjectivity 

of making these decisions. Artificial neural networks (ANN) [28-30] have been used to 

develop such systems, and they were found to be successful at predicting the extraction 

decision 80% [28] of the time in one study, and 93% [29, 30] of the time in another two 

studies. Prediction of the detailed extraction patterns (i.e., which teeth needed to be 

extracted) was also shown to be possible 84% [29] of the time in one study and 83% [30] 

of the time in another study. Recently, a paper used ANN to also help with identifying 
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the anchorage requirements in the cases that were determined to need extractions by the 

system and it was accurate 83% of the time. [30] 

 X-ray analysis, an integral part of diagnosis and treatment planning, has also 

benefited from machine learning. One of the most important applications of ML in 

orthodontics was the automation of landmark detections. A recent systematic review 

reported 5-15% better accuracy of landmark detection with machine learning than 

traditional methods. [31] Machine learning was also used to automate the diagnosis 

directly from cephalograms, including the sagittal relationships between maxilla and 

mandible, as well as normal and abnormal posterior-anterior facial heights ratios, 

overbite and overjet. [32]  

Automation of x-rays analysis has also been extended to hand and wrist 

radiographs for estimating skeletal age. Determining the growth status of patients is 

essential for deciding whether or not to utilize growth during treatment. [33] A ML 

system applied to a sample of 360 images showed an average difference of 0.39 years 

between its estimate and skeletal age estimated by two expert radiologists. [34] Another 

study using a larger sample of 1100 images reported an average difference of 0.60 years, 

when compared to the readings of two experienced radiologists. [35] One study 

comparing the performance of different algorithms to estimate skeletal age reported a 

root mean square error (RMSE) of 0.24 years with ANN, and 0.25 years with genetic 

algorithm when compared to traditional estimates of skeletal age. [36]  

 Taking panoramic radiographs makes orthodontists legally liable if they overlook 

diagnosing a lesion or a tumor. This has led to the development of an automated neural 
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network system that can correctly diagnose ameloblastomas and keratocystic 

odontogenic tumors from panoramic radiographs 83.0% of the time. [37] Five oral and 

maxillofacial surgeons who examined the same radiographs correctly diagnosed the 

problems 82.9% of the time. The difference lies in the time needed for diagnosis. The 

ML system required an average of 38 seconds, while the surgeons needed 23.1 minutes 

for each diagnosis. Another system was developed that successfully predicted 

odontogenic cysts, dentigurous cysts, osteomyletits, periapical cysts, and ameloblastoms 

90.6%, 90.9%, 99.4 %, 89.6%, and 100% of the time respectively. [38] Currently, more 

and more orthodontists are using cone beam computed tomography (CBCT), which has 

led to the development of an automated system using the support vector machine to 

correctly diagnose periapical cysts and keratocystic odontogenic tumors 100% of the 

time. [39] Neural networks was used to estimate patients’ dental ages from panoramic 

radiographs. [40] Its RMSE was 0.9 for girls and 1.1 for boys, while traditional 

regression had a RMSE of 1.3 and 1.4 for girls and boys, respectively. [40] 

 Panoramic and lateral cephalometric x-rays have also been used to predict 

maxillary canine impactions based on angular and linear measures. [41] The highest 

prediction accuracy was obtained with a random forest algorithm, which correctly 

predicted the actual eruption status of canines 88.3% of the time. 

 One of the challenges for less experienced orthodontists is the selection of the 

appropriate treatment modality and appliance, including headgears. To address this, a 

system was developed to help orthodontists select the headgears that should be used. 

[42] Compared to the selections made by 8 expert orthodontists, the system correctly 
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identified the appropriate headgears 95.6% of the time. Recently, decision support 

systems were developed to determine the geometry of orthodontic springs used to close 

extraction spaces [43] and to determine the forces needed to align teeth, [44] but neither 

system has been applied clinically. 

Another orthodontic challenge during treatment planning is predicting the size of 

unerupted teeth. To address this, a hybrid system using artificial neural networks and 

genetic algorithms was used to predict canines’ and premolars’ sizes. [45] Its maximum 

error was 2.4 mm in the mandible and 1.6 mm in the maxilla. The errors were often half 

as large as the error produced with linear regression prediction models. 

Machine Learning and Treatment Outcomes 

 One of the more useful applications of AI in orthodontics is the prediction of soft 

tissues treatment outcomes. Recently, ANN was used to predict the change in lip 

curvature after orthodontic treatment with or without extractions. [46] Its prediction of 

change and the actual change that occurred differed by 29.6% and 7% for the upper and 

lower lips, respectively. Both predictions were much better than those based on linear 

regression.  

The topic of beauty is controversial because it is subjective and affected by 

factors such as age, sex, and ethnic backgrounds. Using artificial neural networks, facial 

attractiveness was quantified on a scale from 0-100 (0 extremely unattractive; 100 

extremely attractive) before and after orthognathic surgery. [47] The difference between 

the pre-and-post surgery scores was shown to be statistically significant, with facial 

attractiveness improving 74.7%. 
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Prediction of treatment outcomes in class II and class III patients have also been 

reported. Using artificial neural networks, predictive models were developed to predict 

the post-treatment Peer Assessment Rating (PAR) index in class II patients based on 

their pre-treatment PAR index. [48] The neural network model used in this system was 

able to correctly predict the final PAR score 94.0% of the time; linear regression was 

correct only 82.0% of the time. A system has also been developed to predict outcomes in 

untreated class III patients. [49] Unsupervised learning was used to cluster patients as 

hypermandibular, hyperdivergent or balanced based on cephalometric variables. The 

system was then applied to a treated sample and found that all the unsuccessful cases 

belonged to either the hypermandibular or the hyperdivergent cluster. Another system 

was able to correctly predict the prognosis of class III treatment 97.2% of the time, 

which was slightly better than the 92.1% reported for discriminant analysis. [50] 

Machine Learning and Growth Patterns 

            Several methods have been introduced to help orthodontists classify their 

patients’ growth patterns. [51-53] In 1998, an artificial neural network was used to 

classify the growth of 43 untreated children based on size and shape changes. [54] 

However, the system was not validated on an external sample. A recent study used 

cephalometric variables to classify patients’ craniofacial growth into normal and 

abnormal. [55] It showed that support vector machines could correctly classify abnormal 

growth patterns 99.8% of the time. Another study using support vector machines to 

classify normal or abnormal skeletal patterns based on craniofacial measures was correct 

only 74.5% of the time. [56]  
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          Classification of class III growth patterns has also been performed. Based on 

longitudinal data of untreated class III subjects, who were classified as either good or 

bad growers based on the change in the sagittal relationship, a classification tree (CT) 

had a significantly lower rate of misclassification (12.0%) than discriminant analysis 

(40.7%) which was based on 11 cephalometric variables. [57] When the system was 

tested on new data, it was able to successfully identify good and bad growth patterns 

64.0% of the time.  

Conclusions 

Artificial intelligence and machine learning systems applied in orthodontics 

provide promising tools that can improve clinical practice. These clinical decision 

support systems can help orthodontists practice more efficiently, reduce variability and 

subjectivity. [58] The accuracy of most systems presently available is considered good to 

excellent with an accuracy ranging from approximately 64% to 97% in some studies. 

The accuracy of the lower end of this range should be expected to improve in the future 

as sample sizes increase and more information becomes available. Most of the systems 

were developed using restricted samples that reduce their generalizability. For example, 

patients were often excluded because they needed surgery, or had missing teeth, unusual 

extraction patterns or asymmetries. Future studies are needed to build predictive models 

that include different types of patients. Algorithms should also be expected to improve, 

making it possible to handle more complex data such as images. Systems based on 

images require more time, experience and training data than systems based on discrete or 

continuous data values. This is especially important in the era of digital dentistry, where 
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all patients’ records such as dental models, x-rays and facial photos are stored in 

computers in the form of digital images.  

It is important to note that AI models can possess some limitations and 

drawbacks and their recommendations should be taken with careful considerations. 

These ML algorithms have some assumptions and limitations like any statistical model. 

If used incorrectly, they can give incorrect information. In addition, the quality of data is 

important. [59] Data with a lot of noise, missing information, and more variables than 

observations are considered of poor quality and can result in poor models. Moreover, a 

phenomenon called overfitting can happen when a model is trained so many times on a 

data that has few observations. [60] This can result in a model that perform poorly when 

introduced to new data. Keeping that in mind, orthodontists should not trust completely 

the output given by any AI model and should understand that these models are meant to 

help with the clinical judgment and not substitute the knowledge and expertise of 

humans. 
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CHAPTER III  

CAN DECISION TREES ACCURATELY PREDICT ANTERIOPOSTERIOR 

SKELETAL RELATIONS? 

Introduction 

To correct skeletal and dental problems, orthodontists need to be able to predict 

the growth potential of their patients. Most orthodontic patients are growing adolescents, 

comprising approximately 79% of case starts. [1] It is especially important for the 

orthodontists to be able to predict the patients’ maxillomandibular anteroposterior (AP) 

relationships, which can change in either favorable or unfavorable ways. Approximately 

50% of Class I and Class II patients have favorable growth patterns that can help reduce 

and thereby improve AP skeletal and dental relations. The other 50% have unfavorable 

growth patterns that often worsen these relationships. [2] Favorable growth explains why 

end-on or slight mesial step dental relationships in the primary dentition become Class I 

relations in the permanent dentition. [3] When treating Class II patients with favorable 

patterns, the majority (70%) of the molar corrections are due to growth rather than 

treatment. [4] Growth does not much, if any, of the molar corrections in patients with 

unfavorable patterns. On that basis, the ability to predict a patient’s growth potential 

makes it possible to modify treatment plans and thereby improve treatment outcomes.  

The orthodontic literature includes various studies that have attempted to predict 

facial growth, but most are not accurate [5-9] or complex. [10] Among the first methods 

used was the pattern extension, which assumed that each patient’s growth pattern is 

established early in life and does not change. [8, 9] Based on that assumption, pattern 
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extension simply added the same average growth increments to all patients, often times 

with adjustments for age and sex. [5-7] This notion was challenged by Björk and 

coworkers, who found that younger subjects with good AP relationships could develop 

sagittal problems over time, just as the relations of those with horizontal discrepancies 

between the maxilla and the mandible could improve. [11] This has led to the 

development of growth predictions methods using multi-level models, which developed 

individualized growth curves and were able to work well with missing data. [10, 12] 

However, these methods are complex and require longitudinal cephalograms to make 

accurate predictions.  

With the emergence of AI and ML, it has been possible to overcome many of the 

limitations associated with traditional statistical methods and produce simpler, more 

accurate predictions.  These new methods can be used when traditional methods cannot.  

For example, they can use predictor variables that are correlated, which traditional 

statistical models such as logistic regression [13] and multiple regression [14] cannot. 

They also do not have to make the assumptions that traditional statistics must make.  In 

addition, noise in the data caused by errors and missing values, which can affect the 

accuracy of traditional predictive models, have less effects on ML models. When applied 

to the same data, ML models are often more accurate than traditional methods. For 

example, the medical literature has shown that ML outperforms logistic regression by 

approximately 7% [15] and discriminant analysis by 10%. [16] In orthodontics, ML 

correctly predicted the prognosis of class III treatment 97.2% of the time, whereas 
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discriminant analysis was correct 92.1% of the time. [17] One of the best methods used 

in ML for classification are decision trees (DTs).  

Decision trees are among the most popular ML models used for classification. A 

major reason for their popularity is their ease of interpretation, even for non-experts. [18, 

19] They can handle a mixture of categorical and continuous variables, even when there 

are missing values. They can also classify multiple groups. [19] A tree is built by asking 

a series of a yes-or-no questions. Each question has a node that leads to two other nodes, 

depending on the answer. The process continues until the terminal node is reached, 

which is the final outcome. [19] The first uppermost node pertains to the most important 

variable, followed by the next most important variable, and so on, until a hierarchy of 

variables is created. [20] For researchers, building decision trees is less time consuming 

than other classification algorithms. [21] Due to these reasons, DTs have often been used 

in medicine and bioinformatics. DTs applied in orthodontics to classify untreated Cass 

III subjects as good or bad growers have shown a significantly lower rate of 

misclassification (12.0%) than discriminant analysis (40.7%). [22] 

 The purpose of this study was to determine the applicability of DTs for the 

classification of growth patterns in a sample of 222 untreated Cass I and Class II subjects 

who were followed longitudinally. The objective was to develop accurate predictions 

and identify the most important variables contributing to the predictions. 

Materials and Methods 

 The sample includes 222 untreated subjects (116 males, 106 females) with Class 

I or Class II dental occlusion/malocclusion. They were all French-Canadians, drawn 
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from three school districts representing the socioeconomic backgrounds of the Montreal 

area at large. [23] 

Subjects were selected based on the availability of two longitudinal 

cephalograms. The mean ages at T1 and T2 were 10.4 ± 1 years and 15.3 ± 0.6 years, 

respectively. One technician traced and digitized all of the cephalograms. On each 

tracing, twelve landmarks were identified (Table 2). To describe the horizontal and 

vertical positions of landmarks, rectangular coordinates (X, Y) were computed 

registering on sella and orienting 7 degrees below S-N (Figure 2).  Size measurements 

were corrected for radiographic enlargement. Reliability of landmark locations ranged 

between 95% and 98%. [2] The T2 tracing was superimposed onto the T1 tracing using 

stable natural structures in the anterior cranial base and cranium, [24] with a reliability 

greater than 98%. [25] After superimpositioning, the natural reference line (RL) was on 

the T1 was transferred to the T2 tracing and used for orientation.  

The subjects’ skeletal relationships were based on the horizontal distance 

between ANS (the maxillary skeletal base) and Pg (the mandibular base). These 

landmarks were selected because they can be reliably located and are less affected by 

tooth movements. Importantly, these landmarks have been previously validated for 

evaluating maxillomandibular relationships. [2] The horizontal distance between ANS 

and Pg (ANSPgh) was the primary outcome variable of the present study. Each subject’s 

AP relationship at 15 years of age was classified as either favorable and unfavorable 

based on whether ANSPgh15 was below (the favorable group) or above (the unfavorable 

group) his/her sex specific mean value, respectively.  
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Eleven predictor variables, previously used to distinguish between different 

adolescent facial growth patterns, [26-28] were computed at age 10 and used to predict 

favorable and unfavorable relations at age 15 (Table 2). Some of the predictors described 

horizontal and vertical facial patterns, while others pertained to mandibular features, 

such as the shape of the condylar inclination and the symphyseal shape. Due to an 

expected relationship, ANSPgh10 was also included as a potential predictor variable 

(Table 3). 

Decision trees (DTs) are common machine learning algorithms used in medicine 

[29] and dentistry, [30] including orthodontics. [22] As previously indicated, their 

branching structure makes them easier to interpret and understand, even to non-

specialists. In addition, they provide probabilities for each decision at each node. The 

probability of favorable outcome is reported on the left side of each node, while the 

probability of unfavorable outcome is indicated on the right side of each node. The 

percentage of subjects meeting these conditions is presented below each of the nodes. 

Pruning was undertaken due to the possibility of overfitting the data of DTs. [31] 

Pruning identifies the less relevant variables and reduces the number of branches. The 

accuracy of the larger trees can be improved by pruning. [32] 

To ensure that the models apply to other subjects that were not included in the 

training sample, 20% (44 subjects) of the total sample was randomly chosen and used as 

the validation sample.  The remaining 80% (178 subjects) was used for training the 

model. The trees were produced using the R package ‘rpart’ version 4.1-15. [33] 
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Results 

 The DTs for the 178 subjects in the training sample were built using 4 of the 12 

variables, with the most important variable on top (Figure 3). All of them were angular 

measurements (Y-axis, ANS-N-PG, NSB, and MPA), producing 7 terminal nodes. The 

unpruned tree showed that 51.1% of the subjects had a Y-axes smaller than 68.4 degrees, 

while 48.9% had Y-axes greater than or equal to 68.4 degrees.  

If a subject had a Y-axis less than 68.4°, then a favorable growth outcome could 

be expected 73.6% of the time. If the Y-axis is less than 68.4° and ANS-N-PG was less 

than 11.4°, then the likelihood of a favorable outcome increased to 80.5%. It further 

increased to 90% if the subject on had a MPA less than 36.2°. If a subject has a Y-axis 

greater than or equal to 68.4°, then an unfavorable growth outcome was expected 48.9% 

of the time. The probability increased to 81.8% if a subject has also an ANS-N-PG 

greater than or equal to 7.64°. If the NSB angle was greater than or equal to 128°, the 

probability of an unfavorable relationship increased to 89.4%. The accuracy of the 

model was 85.39% on the training data set and 75% on the validation data set (Table 4; 

Figure 4).  

The pruned tree included 3 variables and 5 terminal nodes (Figure 5). If a subject 

had a Y-axis greater than or equal to 68.4°, the branching, the contributing variables and 

the probabilities were the same as in the unpruned tree. If a subject had a Y-axis less 

than 68.4° , the probability of a favorable relationship at 15 years of age was also 73.6%, 

as with the unpruned tree. The probability of a favorable relationship increased to 80.5% 

if the ANS-N-PG angle was less than 11.4°. The accuracy of the pruned model was 
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83.15% on the training data set and 81.82% on the validation data set (Table 4; Figure 

6).  

Discussion 

The horizontal distance between the maxilla and the mandible provides an 

excellent measure of AP basal bone relationships. This measure was used to eliminate 

the problems associated with other measures of maxilomandibular relationship, such as 

the ANB angle and wits appraisal. The ANB angle is based on three landmarks that can 

affect its accuracy; it is also affected by incisor position. [34] The Wits appraisal is also 

affected by tooth position, both horizontally and vertically. [35] Pg and ANS represent 

the anteriormost postions of the jaws. Moreover, the distance ANSPgh has been shown 

to provide a valid measure for determining the jaw responsible for longitudinal changes 

of AP skeletal relationships. [2] As previously indicated, these skeletal landmarks are 

easily located on lateral cephalograms, they are more stable than dental landmarks and 

they are no influenced by in incisor position. [36] 

Favorable and unfavorable growth were easily distinguished using the 15-year 

mean values as cut-offs. Values at 15 years of age were used because they pertain to AP 

relationships after most maxillomandibular growth changes have taken place. The use of 

means made it possible to dichotomize subjects, as previously done to the classify 

patients needing and not needing treatment. [37, 38] This simplifies the comparison and 

makes it possible to use decision trees, which perform better with binary outcomes. [39] 

At 15 years of age, ANSPgh was approximately 7-8 mm smaller among subjects with 

favorably than unfavorably AP relationships, a difference that is both statistically 
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significant and clinically important. Most orthodontists would agree that a 17-18 mm 

distance between ANS and Pg constitutes an unfavorable growth pattern. 

Artificial intelligence (AI) and machine learning (ML) have been recently used to 

classify growth and has shown excellent results. [40-42] The increasing use of these 

methods can be attributed to the previously described advantages they have over 

traditional statistics. The present study used DTs to classify subjects because 1) their 

flow chart structures are easily understood and 2) they hold clear advantages over other 

models. [43] The DTs used in the present study had lower rates of misclassification 

(12.1-24.2%) than previously demonstrated using discriminant analysis (40.7%). [22] 

 Pruning helps to enhance the validity of the DT. There is a risk of overfitting (not 

being able to generalize beyond the training sample) associated with larger unpruned 

trees that include more variables and have more complex branches. [31] In other words, 

overfitting makes it less likely that the model can be applied to other subjects. This risk 

is reduced, and the classification accuracy of the model can be improved by pruning. 

[32] This was clearly seen in the present study, where the misclassification rate in the 

unpruned tree increased from 14.61% in the training sample to 25% in the validation 

sample (Figure 4). In contrast, the pruned tree showed only a slight 1.3% increase in 

misclassification between the training and validation samples (Figure 6). The pruned tree 

is also easier to understand and apply clinically. 

The Y-axis is the most important variable for predicting AP skeletal relations. In 

the present study, the Y-axis alone was able to distinguish between favorable and 

unfavorable relationships almost 75% of the time. It was most important because it 
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incorporates both horizontal and vertical aspects of growth. [2] Ricketts originally 

identified the Y-axis as an important variable to describe the mandible’s future growth 

direction. [9] He found that the Y-axis of prognathic and retrognathic patients decreased 

and increased, respectively, during growth. [44] A recent regression model also reported 

the Y-axis as the most important variable explaining 41% of the variation of the 

horizontal relationship of ANSPgh at T2. [45] 

Including both ANS-N-Pg and the Y-axis increased the probability of identifying 

favorable and unfavorable outcomes from 73.6% to 80.5%. Multiple regression has 

shown that the Y-axis explained 41% of the variation of the horizontal relationship of 

ANSPgh at T2, and ANS-N-Pg explained an additional 16%. [45] If a subject has a 

small (< 68.4) Y-axis and a large (≥ 11.4) ANS-N-Pg angle, the probability of an 

unfavorable AP relationship at 15 years of age was approximately 89% (Figure 3). If a 

subject had a large (≥ 68.40) Y-axis but a small (< 7.64) ANS-N-Pg angle, then the 

probability of favorable outcome was 80%. This shows that there are subjects with 

favorable AP skeletal relations whose mandibular growth is oriented in a more vertical 

direction. 

The cranial base angle further improves the accuracy of identifying subjects with 

unfavorable maxillomandibular relationships. The probability of unfavorable 

relationships increases from approximately 82% to slightly more than 89% among 

subjects with large cranial base angles (i.e., greater than 128 degree). Larger cranial base 

angles have been previously related to retrognathisim. [46-48] Cranial base angles are 

larger among Class II division 1 than Class I and Class III subjects, respectively. [49] 
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Conclusions 

• The unpruned and pruned decision trees were able to successfully classify the 

growth of untreated subjects 85.4% and 83.2% of the time, respectively. 

• The validation sample showed that the pruned decision tree was more accurate 

than the unpruned (81.8% vs 75.0%) tree. 

• The decision trees identified the Y-axis as the most important variable to classify 

growth, followed, in order, by ANS-N-PG, NSB, and MPA. 
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CHAPTER IV  

PREDICTION OF DENTAL TREATMENT OUTCOMES AMONG HERBST 

PATIENTS USING DECISION TREES  

Introduction 

One of the most common problems in the US population is class II dental 

malocclusion, which occurs in approximately 15% of the population. [1] Among those, 

approximately 75% have also class II skeletal malocclusion. [2] Class II subjects usually 

present with mandibular retrusion and facial convexity. [3] In order to improve esthetics, 

the position of the chin need to be brought forward to create less convex or flatter 

profile. [4] The class II skeletal malocclusion is generally not self-correcting. [5, 6] This 

is also true for full step class II dental relationships. Subjects with full step relationships 

in the primary dentition always have Class II dental relationship in the permanent 

dentition. [7] Longitudinal studies also indicates that approximately one third of children 

with end-to-end or slight mesial step deciduous molar relationships develop Class II 

molar relationships in the permanent dentition. [7, 8] The various treatment modalities 

performed to correct this malocclusion should be based on evidence-based information 

of what will and will not correct problems. 

Excluding surgery, there are two common treatment modalities to correct skeletal 

class II problems, headgears and functional appliances, either fixed or removable. Fixed 

functional appliances eliminate the compliance problem associated with the removable 

functional appliances. [9] Herbst is one of the more popular fixed functional appliances 

used to correct class II malocclusion. In 1905, Emil Herbst introduced his appliance at 



 

51 

 

the international congress of dentistry in Berlin, Germany, but it was not accepted until 

1979, when Pancherz reintroduced it. [10] Since then, numerous papers have evaluated 

the biological effects of the Herbst appliance [11-13] and quantified the skeletal and 

dental changes associated with the correction of class II malocclusion. [14-17] A recent 

meta-analysis of the Herbst treatment reported 0.56 ◦ and 1.10 ◦ decreases of the SNA 

and ANB angles, respectively, and 1.1 ◦ and 0.2 ◦ increases of the SNB and mandibular 

plane angles, respectively. [18] Overjet was found to decrease by 4.8 mm, while overbite 

and molar relationships decreased by 1.7 mm and 5.7 mm, respectively.  

Orthodontic treatment is considered successful when both the treatment 

objectives and patient desires have been achieved. [19] In treatment with functional 

appliances, the definition of successful treatment outcomes differed among studies. Most 

studies have used occlusal measurements, mainly the correction of overjet and molar 

relations, to distinguish between successful and unsuccessful treatment. [20-24] Skeletal 

measures have also been used to determine successful treatment outcomes with 

functional appliances. [22, 25] Other studies used a composite treatment outcome that 

had to be met in order to determine successful outcomes. [ 24, 26, 27] Importantly, a 

treatment considered to be successful based on occlusal measurements might not be 

considered as a successful case if the skeletal outcome was evaluated only (Table 5). For 

example, patients successfully treated dentally often become more hyperdivergent 

during Herbst treatment, with little or no improvement in the anteroposterior skeletal 

dimension. On that basis, dental and skeletal outcomes should be evaluated separately.  
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Previous studies have demonstrated that slightly more than 50% of the patients 

treated with functional appliances have unfavorable treatment outcomes. [22, 24] This 

clearly indicates that models are needed to predict treatment outcomes of patients based 

on pre-treatment features. To date, traditional statistics have been used to predict 

treatment outcomes in patients treated with functional appliances without making a clear 

distinguish whether the outcome was entirely skeletal or dental. For example, multiple 

regression model showed that overbite and SNB explained 52% of the variation in 

overjet changes among patients treated with twin block appliance. [23] When 

discriminant analyses were also used to classify successful and unsuccessful outcomes 

among various functional appliances (twin block, stainless steel crown Herbst, and an 

acrylic splint Herbst), the gonial angle (Co-Go-Me◦) was found to be able to correctly 

predict outcomes 80% of the time. [25] In addition, the patients were classified into bad 

and good responders based on changes in the mandibular length which is not the best 

indicator of treatment success. A subject can show an increase in the total mandibular 

length, but the final outcome might still be considered as unsuccessful if the patient is 

hyperdivergent to begin with and the vertical dimensions increases. This could result in 

backward rotation, and therefore unsuccessful treatment outcomes. [28] 

Recently, artificial intelligence (AI) was used to predict treatment outcomes 

among class II and class III patients, with better outcomes than could be attained with 

traditional statistics. Using artificial neural networks (ANN), post-treatment Peer 

Assessment Ratings (PAR) were predicted among class II patients based on their pre-

treatment PAR index. [29] The ANN model used was able to accurately predict the final 
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PAR score 94.0% of the time; which was better than the 82.0% reported for linear 

regression. AI was also used to correctly predict the prognosis of class III treatment 

97.2% of the time, which was slightly better than the 92.1% obtained with discriminant 

analysis. [30]  

Decision trees (DTs), a commonly used AI method, have been used and have 

also shown excellent results at predicting treatment outcomes for dental implants [31] 

and classifying growth in untreated subjects. [32, 33] DTs offer several over other 

methods. They are non-parametric, which means they do not make assumptions about 

the variables’ distributions and the relationship between the independents and dependent 

variables. [34] Moreover, decision trees are non-linear, which allows the same variable 

to be used multiple times. This makes it possible to detect relationships that cannot be 

detected with linear methods. DTs also can handle categorical and numerical variables, 

unlike other machine learning algorithms. [34] Importantly, DTs are relatively easy to 

interpret and understand, even by non-specialists. Their if-then approach makes 

predicting treatment outcomes easy and efficient when new observations are available to 

clinicians. [35] They need to get the new patient’s pretreatment measurements, and then 

follow the path of the tree leading to the final outcome which takes less than a minute. In 

term of accuracy, DTs were recently shown to outperform discriminant analysis for 

predicting growth in untreated subjects. [32]  

 The purpose of the present study was to determine the applicability of DTs for 

predicting dental treatment outcomes among class II patients treated with Herbst 
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previously. The objective was to develop accurate predictions and identify the most 

important variables contributing to the predictions. 

Materials and Methods 

The sample included 150 patients (98 males, 52 females) who had been 

previously treated (within the past 20 years) with the Herbst and fixed appliances. Their 

records were collected from two private practices, and from the Graduate Orthodontic 

Department of Texas A&M University. The study was approved by Texas A&M 

University IRB (approval # 2019-1238D). To be included in the study, each subject had 

to meet the following criteria:  

1) at least half step class II molar and canine relationships (unilateral or bilateral) 

before treatment; 

2) between the ages of 9 and 16 years; 

3) treated previously with the Herbst (for at least 6 months) and fixed appliances; 

4) good quality pretreatment (T1) and posttreatment (T2) radiographs taken with 

lips lightly touching 

5) no syndromes, craniofacial anomalies, or congenitally missing teeth; and 

6) no orthognathic or cosmetic facial surgery. 

The mean ages of the subjects at T1 and T2 were 12.5 ±1.5 years and 15.3 ±1.5 years, 

respectively. All patients were treated using a standard cantilever Herbst appliances with 

full-coverage stainless steel crowns on the maxillary and mandibular first molars, 

telescopic cantilever arms from the mandibular first molars, and 0.040 mm stainless steel 

lower lingual arches with occlusal rests on the mandibular first premolars. During the 
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Herbst phase, fixed appliances were bonded to the maxillary second premolars 5-5 and 

the mandibular canines 3-3. After the Herbst removal, fixed appliances were bonded to 

the remaining teeth (U&L 6-6). The mean treatment time with the Herbst was 12.4 ±2.9 

months and the mean total treatment duration was 32.2 ±7.2 months.  

Evaluations 

All pretreatment and posttreatment cephalograms were digitized by the primary 

investigator using Dolphin Imaging software, version 11.0 (Dolphin Imaging, 

Chatsworth, CA, USA). Nine angular measurements and 7 linear measurements were 

computed from the pretreatment cephalometric as predictor variables. The stage of 

cervical vertebral maturation (CVS) was determined from the pretreatment 

cephalograms, [36] along with 3 additional variables (Class II dental relationships 

[unilateral or bilateral], severity of Class II [full-step, half-step], and the 

presence/absence of posterior crossbite) evaluated on the pretreatment intraoral 

photographs (Table 6 & Figure 7). All linear measurements were adjusted to eliminate 

magnification. For reliability, the lateral cephalograms of 8 randomly selected patients 

were remeasured. The method error ranged between 0.14 and 0.32 for the linear 

measurements and between 0.33 and 0.60 for the angular measurements. 

Subjects were classified as having favorable or unfavorable dental outcomes 

based on their post-treatment (T2) dental relationships. In order to be considered as a 

favorable dental outcome, three dental criteria had to be met: 1) bilateral Class I molar 

relationships (with the maxillary first molar mesiobuccal cusp tip aligning within 1 mm 

of the buccal grooves of the mandibular molars), 2) bilateral Class I canine relationships 
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(with the maxillary canine cusp tip aligning within 1 mm of the embrasure of the 

mandibular canine), and 3) an overjet less than 4 mm (or less than 50% of the initial 

overjet if the pre-treatment overjet was greater than 8 mm). If one or more of these three 

criteria were not satisfied, the subject was classified as having an unfavorable dental 

outcome. Overjet was measured on the final cephalogram, and molar and canine 

relationships were determined from the final intraoral photos.  

Statistical Analyses 

 Decision trees (DTs) are machine learning algorithms that have been shown to be 

successful in making predictions in dentistry [31] and orthodontics. [32] The tree-like 

structure makes it easier to visualize the model and better understand the interactions 

between the different variables. The probability of having a favorable dental outcome is 

depicted at each node of the tree, along with the percentage of subjects satisfying the 

previous condition. When using DTs, there is a process called pruning that eliminates the 

less important variables and reduces the size of the tree to make it less complex. Pruning 

can help improve the accuracy of the model, especially when the DT is complex and has 

many branches that make it prone to overfitting. [37] 

 The DT model was developed using 113 randomly selected subjects (75%). 

These subjects were used as the training data. The remaining 37 subjects (25%) was used 

to validate the model (testing data). The DTs were produced using the R package ‘rpart’ 

version 4.1-15. [38] SPSS version 25 (SPSS Inc, Chicago, Ill) was used for the 

traditional statistical analyses. Based on their skewness and kurtosis, the distributions 

were all normal. Independent sample T-tests were used to compare the pretreatment 
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differences and the change between the favorable and unfavorable groups. Pearson chi-

square test was used to compare the frequencies of favorable and unfavorable outcomes. 

Results  

The unfavorable dental outcomes were primarily due to the inability to achieve 

Class I canine relationships (94.6%), followed by the inability to achieve Class I molar 

relationships (70.3%), and lastly by excessive overjet (21.6%) (Table 7).  

The frequencies of posterior crossbites and full step Class II molar relationships 

were significantly higher frequencies among patients with unfavorable than favorable 

outcomes (Table 8). Favorable treatment outcomes were more likely among patients 

treated at the university clinic (70.0%) than among those treated in the private 

orthodontic practices (Table 9), but the between-group differences were not statistically 

significant (prob=0.06).   

Only the pretreatment between-group difference of SNB was statistically 

significant (Table 10). Differences of SNA and Wits were not statistically significant 

after Bonferroni adjustments for multiple comparisons. None of the treatment changes 

showed statistically significant between-group differences (Table 11). 

Decision Trees 

Based on the 137 subjects in the training sample, the DT identified 7 predictor 

variables as the most important (Figure 8). Four of them were angular measurements 

(SN-MP, L1-MP, U1-NA, U1-SN), two were linear measurements (Overbite, Pg-NB), 

and one was the dichotomous variable describing the severity of pretreatment dental 

Class II relationships (whether it was full step or not).  
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The SN-MP angle, which was the most important variable, called for the first 

decision. The 15% of the patients who had SN-MP angles greater than or equal to 30° 

could expect to have favorable and unfavorable outcomes 12% and 88% of the time, 

respectively. The remaining 85%, who had SN-MP angles less than 30°, could expect 

favorable outcome 56% of the time. None of the 6% of patients who had SN-MP angles 

< 30° and an overbite ≥ 7.3 mm were expected to have favorable outcomes. The 

likelihood of a favorable outcome increases to 61% if the SN-MP angle was < 30° and 

the overbite was < 7.3 mm. Of the 21% who also had L1/MP angle > 99, those that had 

Pg-NB distances ≥ 2.6 were all expected to have unfavorable dental outcomes. Those 

with Pg-NB distances < 2.6 mm had a 59% chance of having favorable outcomes.   

If the subject had a SN-MP angle < 30°, an overbite < 7.3mm, a L1-MP < 99°, 

and a full step Class II molar relationship, a favorable outcome was expected 54% of the 

time. The probability of a favorable outcome increased to 83% if the U1-NA angle was 

< 20°. It decreased to 40% if the U1-NA angle was ≥ 20° and further decreased to 24% 

if the U1-SN angle was < 114°. However, if the U1-SN angle was ≥ 114°, the 

probability of a favorable outcome was 75%. The 25% of patients who had SN-MP 

angles < 30°, overbite < 7.3mm, L1-MP < 99°,and less than a full-step Class II had 

favorable outcomes 86% of the time. The accuracy of the model was 81.4% when 

applied to the training data set and 78.4% when applied to the testing data set (Table 12 

& Figure 9). 

The pruned tree included 3 variables and 4 terminal nodes (Figure 10). The 

branching of the tree, the contribution of the variables, and the probabilities were the 
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same as previously described for the unpruned tree. The pruning process simply 

eliminated the least important variables. The accuracy of the pruned model was 70.8% 

on the training data set and 67.6% on the testing data set (Table 12 & Figure 11). 

The cephalometric measurements of the subjects in each of the 8 terminal nodes 

of the unpruned tree are provided in Table 13. These measurements suggest that subjects 

with Class II division 1 malocclusion and end on molar relationships had the highest 

likelihood of favorable dental outcome (86%) followed by subjects with Class II division 

2 malocclusion and full step molar relationships (83%). Features of Class II division I 

malocclusion were indicated in the 2 groups that had U1-SN ≥ 114◦ and U1-SN < 114◦. 

However, their likelihoods of favorable outcomes differed.  

Discussion 

 Approximately 50% of the Herbst cases should be expected to have unfavorable 

dental treatment outcomes. This is consistent with frequencies previously reported for 

other functional appliances; treatment outcomes of the Herbst have not previously been 

reported. For example, slightly more than half of the patients (15 out of 28 cases) treated 

with 3 different functional appliances had unsuccessful treatment outcomes, based on 

changes in the ANB angle. [22] Based on a composite of dental and skeletal outcome 

variables, slightly more than half of the patients treated with bionator appliances had 

unfavorable outcomes. [24] Given such high proportions of patients with unfavorable 

outcomes, it is imperative to identify pre-treatment features that could help identify the 

patients better suited for other treatments (e.g. surgery). 
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Unfavorable dental outcomes were most commonly due to the inability to 

establish or maintain Class I dental relationships. Unfavorable outcomes could also have 

been due to the severity of the skeletal problems. The patients in the present study had 

smaller SNBs, and higher frequencies of full step Class II molar relationships and 

posterior crossbites, all of which made it more difficult to correct the occlusal 

relationships. Assuming Class I had been attained during treatment, there could have 

been relapse, which is expected after the fixed appliance phase among patients treated 

with Herbst,[39] especially among those with persisting lip-tongue habits and unstable 

cuspal interdigitation at the end of treatment.[40] Finally, the  unfavorable outcomes 

could also have been due to the relatively strict criteria used in the present study (i.e. 

maxillary canine and first molar mesiobuccal cusp tips needed to align within 1 mm of 

the embrasure and the buccal grooves of the mandibular canines and molars, 

respectively) for classification.  

 Overjet was the least likely component contributing to unfavorable dental 

outcomes. Only 21.6% of the patients with unfavorable dental outcomes had insufficient 

overjet correction. This could have been due to the fact that overjet correction with 

Herbst can be achieved several ways, including the restraint of the anterior maxillary 

movement, anterior movement of the mandible, posterior movement of the maxillary 

incisors, and anterior movement of the mandibular incisors. [39] Any or all of these 

movements make it easier to correct overjet than molar and canine relationships. 

 Patients with favorable treatment outcomes had larger pretreatment SNB angles 

than those with unfavorable outcomes. While no other study has focused on 
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posttreatment outcomes, successful reduction in overjet [23] and ANB [22] have been 

associated with smaller SNB angles. This indicates that subjects with less retognathic 

mandibles have better chance of having favorable dental outcomes and that suggests 

with more retrognthic mandibles have greater potential for treatment changes.  

Decision trees provide an excellent and accurate way to predict treatment 

outcomes. [31, 32] In the present study, the accuracy for the unpruned tree was 81.4% 

for the training sample and 78.4 % when validated on the testing sample. Recently, DTs 

have been shown to more accurately predict anterorposterior skeletal relations than 

discriminant analysis. [33] DTs have also been shown to be substantially better at 

predicting favorable and unfavorable growth among untreated Class III subjects than 

discriminant analysis (87.9% vs 59.3%). [32]  

SN-MP angle is the most important variable in determining the success of dental 

outcomes among patients treated with Herbst appliances. In the present study, patients 

who had SN-MP angles ≥ 30° had a 12% chance of a favorable outcome, while those 

with angles < 30° had a 56% chance of having favorable dental outcomes.  Divergence is 

the most important factor because it is directly related to the AP position of the mandible 

and chin. [4, 41] If hyperdivergence results in less anterior chin displacement, it will also 

produce less AP displacements of the molar and canines. In comparison, hypodivergent 

patients should be expected to exhibit greater anterior displacement of the teeth. [42] 

The surgical literature has also shown that the autorotation of the mandible associated 

with Le Fort 1 maxillary impaction to treat open bite can change a class II to class I 
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relationships, and even possibly cause a class III relationship in subjects starting with 

class I relationship. [43] 

In addition to the mandibular plane angle, overbite is an important determinant of 

treatment outcomes. A combination of increased mandibular plane angle and open bite 

has previously been associated with unsuccessful treatment outcomes with activator 

appliances. [21] This association was not identified in the present study because there 

were too few open bite cases. In the present study, patients with overbite < 7.3 mm had 

favorable treatment outcomes 61% of the time. This is consistent with previous studies 

showing favorable treatment outcome after twin block therapy among patients with 

overbite of 4.6 ± 0.6 mm. [23] However, it is important to emphasize that pretreatment 

overbites ≥ 7.3mm lead to unfavorable outcomes all of the time. In other words, there is 

a “sweet spot” between open bite and excessive deep bite that allows for the production 

of successful treatment outcomes.  

The third variable that has to be considered is L1-MP. Patients with proclined 

lower incisors and less prominent chins were less likely to have favorable dental 

treatment outcomes. Patients with L1-MP ≥ 99◦ were less likely to have favorable 

treatment outcomes, especially if the distance Pg-NB was ≥ 2.8 mm. Since overjet 

reduction among Herbst patients is primarily dental, [44] treatment, which proclines the 

mandibular incisors an average 10.8 degrees, [45] may exceed the biological limit 

among those who start treatment with proclined lower incisors. Correction is even more 

difficult if the lower teeth are proclined and the mandible is retrognathic. However, if the 

mandibular incisors are not proclined, the probability of favorable outcome is highly 
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likely (86% of the time), assuming the patients have average or less than average SN-MP 

angles, no more than moderate overbite and less than full-step molar relations.  

Additional considerations are necessary for patients with full-step Class II molar 

relationships. When upper incisor proclination is average or less than average, favorable 

outcomes are expected 83% of the time, suggestive of a Class II division 2 

malocclusions.  In the present study, the 11% of patients who had full-step molar 

relation and retroclined incisors had overbites of 5 mm, interincisal angles of 145°s, and 

SN-MP angle of 23°. 

Full step Class II patients with average or proclined upper incisors are very likely 

(75%) to have favorable treatment outcomes, whereas those with retroclined incisors 

were not. The cephalometric features of these two groups indicated large overjet, slight 

to moderate overbite and small interincisal angles, all of which are suggestive of Class II 

division 1 malocclusions (Table 13). During treatment with functional appliances, the 

maxillary incisors typically retrocline and the mandibular incisors procline. [45, 46]  

The initial inclinations of the incisors affect treatment outcomes because they are 

largely related to how functional appliances work. However, previous studies have not 

examined the relationship between initial incisor positions and treatment outcomes with 

Herbst. The current study had more favorable outcomes among patients who had U1-SN 

angle ≥ 114° than among patients who had U1-SN angle < 114°, despite the fact that 

both groups represented the Class II division 1 patients. These suggest that the first 

group (U1-SN angle ≥ 114°) had more favorable growth patterns compared to the other 

group that had more unfavorable growth patterns. It is well established that favorable 
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mandibular growth can improve the sagittal discrepancies even without treatment. [28, 

47] However, it is difficult to predict which subjects will fall into that category. Using a 

Herbst for patients with unfavorable growth patterns can cause undesirable treatment 

outcomes.[28]  

Conclusions 

• Approximately 50% of the Herbst patients have unfavorable dental treatment 

outcome. 

• Lack of Class I canine relationships (94.6%) is the primary reason for having 

unfavorable dental outcomes.  

• Decision trees can predict successful or unsuccessful dental treatment outcomes 

approximately 80% of the time. 

• The primary variables that determine successful or unsuccessful dental treatment 

outcomes are the SN-MP, followed by overbite, and L1-MP, respectively. 
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CHAPTER V  

PREDICTION OF SKELETAL TREATMENT OUTCOMES AMONG HERBST 

PATIENTS USING DECISION TREES 

Introduction 

Functional appliances are often used to treat class II dental and skeletal 

malocclusions. [1-3] They work by altering the sagittal and vertical positions of the 

mandible, producing both orthopedic and orthodontic changes. [4-6] The Herbst 

appliance, which is among the most widely used functional appliance, works by 

inhibiting maxillary growth, altering mandibular growth, and producing dentoalveolar 

changes. [2, 7, 8] The fact that it is fixed eliminates the compliance concerns associated 

with removable appliances. [4, 9] The skeletal effect of the Herbst appears to be mainly 

on the maxilla (due to the headgear effect), which accounts for a greater amount of ANB 

reduction than the mandible. [1, 10, 11] Importantly, the treatment outcomes with Herbst 

are not always favorable. [11] Some patients finish treatment with mandibles in a worse 

position than if it had been left untreated. This happens to hyperdivergent patients 

treated with Herbst appliances, who typically show true backward rotation, which brings 

the chin and mandible back. [11] Criteria are needed to determine whether Herbst 

patients are likely to have favorable or unfavorable treatment outcomes remain 

unknown. 

Several criteria have been used in the past to classify treatment outcomes with 

functional appliances as favorable or unfavorable. These criteria, whether skeletal or 

dental, have focused primarily on the changes in the anteroposterior (AP) dimension. 
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The most commonly dental criteria for success for class II patients are normal molar and 

canine relationships. [12, 13] A reduction of overjet to less than 3 mm at the end of 

treatment, [14] and a percentage reduction relative to pretreatment overjet, [15] have 

also been used. Skeletally, a 4◦ ANB angle has often been used to distinguish between 

class I and class II patients is well established. [16-19] However, a 4◦ cut-off cannot be 

used for cases with large initial ANB angles, for whom a 50% reduction is considered 

possible and favorable. [20] An ANB change of 3◦ or more [21] and an increase in 

mandibular length of at least 5.3 mm [22] have also been used to describe successful 

treatment, due to the different criteria that have been used, there is substantial variability 

in the proportion of patients reported to have been successfully treated with functional 

appliances (35%-67%). [12, 14, 21, 22] Most often, a cases are successfully treated 

based on occlusal criteria, but remain class II skeletally (Table 14). This indicates that 

skeletal and dental outcomes should be evaluated separately based on a clearly defined 

criterion.  

In addition to the AP dimension, the vertical dimension also has to be considered 

when evaluating skeletal treatment outcomes. Based on a recent meta-analysis, the mean 

changes in SN-MP angle with Herbst appliances range between -0.09° to 0.04°. [23] In 

other words, approximately 50% of the patients should be expected to have an 

unfavorable increase in the SN-MP angle. That being the case, any increase of the SN-

MP angle greater than 1° should be considered unfavorable.  

Studies have identified pre-treatment features that predict treatment outcomes 

with other functional appliances. Overbite and the SNB angle have been shown to 
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explain 52% of the reduction of overjet with twin block appliance. [15] Pretreatment lip 

thicknesses were found to be the most important variables for discriminating between 

the good and poorly treated bionator cases, followed by the FMIA, the U1 to facial 

plane, and the articular angle and the L1 to A-Pg. [12] The one study that attempted to 

predict skeletal treatment outcomes with functional appliances used the change in overall 

mandibular length to classify patients as good or bad responders. [22] However, 

mandibular length does not describe the AP relationship, and it could be misleading. 

Overall mandibular length increases among class II patients due to a redirection of 

condylar growth, with little or no effect on AP skeletal relations, especially among 

hyperdivergent patients. The gonial angle (Co-Go-Me◦) has been identified as the best 

pre-treatment predictor of good and bad responders to Herbst and Twin-Blocks therapy. 

[22] However, Herbst and Twin-Blocks have been shown to have different skeletal 

effects. [24] The prediction of skeletal outcomes among Herbst patients is currently not 

possible because it has not been attempted. 

Previous studies predicting treatment outcomes have relied on traditional 

statistics, which appear to be less accurate than artificial intelligence (AI) and machine 

learning (ML). For example, a ML model was able to accurately predict the prognosis of 

Class III treatment better than discriminant analysis (DA) (97.2% for ML and 92.1% for 

DA). [25] Based on the pre-treatment PAR index, a neural network model was 

successful at predicting the final PAR score 94.0% of the time, whereas linear regression 

was accurate only 82.0% of the time. [26] When used among untreated class III patients, 
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decision trees (DTs) have been shown to be more accurate than discriminant analysis 

(87.9% vs 59.3%) in classifying class III patients as good and bad growers. [27] 

Among the ML algorithms, DTs algorithms are the easiest to understand and 

interpret, even by non-experts. [28, 29] In addition, they can detect non-linear 

relationships between the variables, which is often the case in clinical studies due to 

variable interactions. [30] DTs can be used even when there are missing data and can 

work well with both categorical and numerical variables. [31, 32] Unlike traditional 

statistics, they do not require underlying assumptions because they are non-parametric. 

[33] To date, DTs have not been used to predict skeletal treatment outcomes of class II 

Herbst patients. 

The purpose of the present study was to determine the applicability of DTs for 

predicting skeletal treatment outcomes among class II patients treated with Herbst 

previously. The objective was to develop accurate predictions and identify the most 

important variables contributing to the predictions. 

Materials and Methods 

This retrospective study utilized the cephalometric records of patients who had 

been previously treated with the Herbst and fixed appliances. The records were obtained 

from two private practices, and the Graduate Orthodontic Department of Texas A&M 

University. The study was approved by Texas A&M University IRB (approval # 2019-

1238D). The selection criteria for the study included 1) pretreatment class II skeletal 

relations [ANB > 4◦]; 2) at least half-step pretreatment class II molar and canine 

relationships (unilateral or bilateral); 3) pretreatment ages between 9 and 16 years; 4) 
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treated with the Herbst (for at least 6 months) and fixed appliances; 5) good quality 

pretreatment [T1] and posttreatment [T2] cephalograms taken with lips lightly touching; 

6) no syndromes, craniofacial anomalies, or congenitally missing teeth; and 7) no 

orthognathic or cosmetic facial surgery.  

A total of 116 patients (77 males, 39 females) were selected. The mean ages of 

the subjects at T1 and T2 were 12.51 ± 1.7 years and 15.21 ± 1.6 years, respectively. The 

treatment time with the Herbst was 12.3 ± 2.8 months and the treatment duration was 

31.6 ± 6.7 months. All patients were treated using standard cantilever Herbst appliances 

with full-coverage stainless steel crowns on the maxillary and mandibular first molars, 

telescopic cantilever arms from the mandibular first molars, and 0.040 mm stainless steel 

lower lingual arches with occlusal rests on the mandibular first premolars. During the 

Herbst phase, fixed appliances were bonded from the maxillary second premolar to 

second premolar, and from the mandibular canine to canine. After the Herbst removal, 

fixed appliances were bonded to the remaining teeth (maxillary and mandibular 6-6).  

Evaluations 

Cephalograms were digitized by the primary investigator using Dolphin Imaging 

software, version 11.0 (Dolphin Imaging, Chatsworth, CA, USA). In addition to age, 

sex, and the stage of cervical vertebral maturation (CVS), [34] 22 pre-treatment 

measurements were computed as predictor variables, including 9 angular, 12 linear, and 

one ratio measurements (Table 15 & Figure 12). All linear measurements were adjusted 

to eliminate magnification. For reliability, the lateral cephalograms of 8 randomly 
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selected patients were remeasured. The method errors ranged between 0.14 and 0.32 for 

the linear measurements and between 0.33 and 0.60 for the angular measurements. 

Subjects were classified as having favorable or unfavorable skeletal outcomes 

based on the post-treatment values of ANB and SN-MP. To be considered as a favorable 

skeletal outcome, two criteria had to have been met: 1) a posttreatment ANB angle < 4°, 

or a 50% decrease of the ANB if the pretreatment ANB was greater than 8°, and 2) ≤ 1° 

increase of the SN-MP angle. If either of these criteria was not satisfied, the subject was 

classified as having an unfavorable skeletal outcome.  

Decision Trees and Statistical Analyses 

 Decision trees (DTs) are machine learning algorithms that have been shown to be 

successful in making predictions and understanding interactions among variables in 

dentistry [35] and orthodontics. [27] They classify by asking a series of yes-no 

questions. Each question is located at a node and each node points to another node until 

the terminal node is reached, depending on the answer to that question. A tree-like 

structure develops based on this hierarchy. This structure helps to visualize the variables’ 

relationships and interactions. The most important variable is located at the top of the 

tree, followed by the next important variable and so on, until the terminal node is 

reached. [29] Each node of the tree denotes the outcome (either favorable or 

unfavorable), the probability of that outcome, and the percentage of subjects satisfying 

the previous condition. When using DTs, there is a process called pruning that eliminates 

the less important variables and reduces the size of the tree to make it less complex. 

Pruning can help improve the accuracy of the model, especially when the DT is complex 
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and has many branches that make it prone to overfitting. [36] Confusion matrices are 

used along with the DTs to display the proportions of true positive, true negative, false 

positive, and false negative cases. 

Of the 116 subjects that met the inclusion criteria, 91 (80%) were randomly 

selected and used to develop the DT model (training sample). The remaining 25 subjects 

(20%) were used to validate the model (testing sample). The DTs were produced using 

the R package ‘rpart’ version 4.1-15. SPSS version 25 (SPSS Inc, Chicago, Ill) was used 

for the traditional statistical analyses. Based on their skewness and kurtosis, the 

distributions were all normal. Independent sample T-tests were used to compare the 

pretreatment differences and the changes between the favorable and unfavorable groups. 

Pearson chi-square tests were used to compare the frequencies of favorable and 

unfavorable outcomes. 

Results 

 Of the 63 subjects who had unfavorable skeletal outcomes, the AP dimension 

was the primary determining factor for 51 subjects, the change of SN-MP was 

unfavorable in 39 subjects (Table 16). There were no statistically significant sex and 

maturity stage (CVS) differences between subjects with favorable & unfavorable 

skeletal treatment outcomes (Table 17). There also were no differences in the 

frequencies of favorable skeletal outcomes among the three sites where the records were 

obtained (Table 18). 

After Bonferroni adjustments for multiple comparisons, the pretreatment 

between-group differences showed that the unfavorable group had significantly larger 
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SN-MP, PP-MP, N-A-Pg, and S-Ar-Go angles, along with a significantly smaller 

anteroposterior facial height ratio (Table 19). Three pretreatment linear measurements, 

including ANS-Me, U1-NPg, and L1-NPg, were significantly larger among the 

unfavorable than favorable group. The changes of SNB, SN-MP, PP-MP, S-Go/N-Me, 

Ar-Go, and N-A-Pg showed statistically significant between-group differences, with the 

favorable group having more pronounced changes (Table 20).  

Decision Trees 

Only 4 variables were identified in the unpruned DT predicting the skeletal 

treatment outcomes among Herbst patients (Figure 13). There were two angular (N-A-

Pg◦ and S-Ar-Go◦) and two linear (U1-NPg and Wits) measurements. The angle of facial 

convexity (N-A-Pg◦) was the most important variable. Among the 52% patients having 

facial convexity angle < 10◦, favorable skeletal treatment outcomes were expected 72% 

of the time. The remaining 48% with a facial convexity angle ≥ 10◦ had an 86% chance 

of having unfavorable outcomes.  

The next two variables were U1-NPg and the S-Ar-Go angle, followed by Wits. 

If a patient had a convexity angle ≥ 10◦ and U1-NPg ≥ 6.8mm, the probability of an 

unfavorable treatment outcome was 97.0%. However, the probability of a favorable 

outcome was 62% if the patients’ upper incisor was less than 6.8 mm from the facial 

plane. Patients with N-A-Pg angles < 10◦ and S-Ar-Go angles < 132◦ had a 95% 

probability of having a favorable outcome. This probability decreased to 56% if the S-

Ar-Go ≥ 132◦. If the Wits was ≥ 5 mm, there was a 71% chance of having an 

unfavorable outcome. On the other hand, there was an 85% probability of a favorable 
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outcome if the Wits was < 5 mm. The accuracy of the unpruned model was 87.9% when 

applied to the training data set and 84.0% when applied to the testing data set (Table 21 

& Figure 14). 

The pruned tree included only 3 variables and 4 nodes (Figure 15). The 

branching of the tree, the contribution of the variables, and the probabilities were the 

same as previously described for the unpruned tree. For those with N-A-Pg angles ≥ 10◦, 

the terminal node was reached immediately with an 86% chance of having unfavorable 

skeletal treatment outcome. There was a 95% change of have a favorable outcome when 

N-A-Pg < 10◦ and S-Ar-Go < 132◦.  The accuracy of the pruned model was 85.7% on 

the training data set and 84.0% on the testing data set (Table 21 & Figure 16). 

Discussion 

Most patient (81%) in the present study had unfavorable skeletal treatment 

outcomes, due primarily to the orthodontists’ inability to correct AP relations. Based on 

the criteria applied in the present study, the majority of the previous Herbst studies have 

reported unfavorable skeletal treatment outcomes (Table 14). [37-43] There are several 

possible reasons why most class II Herbst patients end treatment with unfavorable 

skeletal outcomes. The mandibular effects of the Herbst depend on mandibular 

divergence, with the mandibles of hyperdivergent patients rotating backward. [11] Many 

class II patients have unfavorable growth patterns, with AP skeletal relationships 

worsening over time. [44] In addition, the Herbst’s appears to have a greater treatment 

effect on the maxilla than mandible (i.e. it produces a headgear effect). [1, 10, 11] 

Perhaps most importantly, orthodontists typically stop treatment when class I dental 
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relationships (class I molar and canine) have been attained, whether or not the class II 

skeletal problems have been corrected.  

Patients with unfavorable skeletal outcomes usually exhibit hyperdivergent 

growth patterns. Pretreatment between-group differences in the present study showed 

larger mandibular, palatal and gonial angles, greater convexity, longer lower face 

heights, and smaller posterior-to-anterior face height ratios among the unfavorable 

group, all of which are indicative of a hyperdivergent growth pattern. Previous studies 

that examined treatment outcomes of functional appliances have also shown 

hyperdivergent patterns among patients with unfavorable outcomes, including longer 

lower facial heights, [21] larger articular angles, [12] and larger angles of facial 

convexity. [12] Divergence is important because it is closely related to the positions of 

the chin and mandible. [40, 45] The Herbst appliance often reposition the chins and 

mandibles of hyperdivergent patients backward, resulting in unfavorable outcomes. [11] 

This shows that orthodontists must consider the pretreatment vertical dimension, in 

addition to the AP, when determining treatment objectives and evaluating skeletal 

treatment outcomes. 

 The angle of facial convexity and protrusion of the maxillary incisors were the 

two primary factors responsible for unfavorable treatment outcomes. Patients with facial 

convexity angles ≥ 10◦ and maxillary incisors protrusion ≥ 6.8 mm almost always (97% 

of the time) had unfavorable outcomes. These cut-off values are smaller than cut-offs 

previously reported (i.e. 12◦ and 14 mm for N-A-Pg and U1-NPg, respectively) for 

unfavorable functional appliance treatment. [12] However, these cut-offs were based on 
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the means and standard deviations, which could be problematic because the distribution 

might not be normally distributed due to the presence of outliers. [46] With decision 

trees, the cut-off values depend on the interactions between all the variables included in 

the model, which produces a more realistic and more accurate values that relate to the 

outcome variable. [32]  

In contrast, hypodivergent patients treated with the Herbst tend to have favorable 

outcomes. In the present study, patients with favorable outcomes showed significantly 

greater decreases in all measures of divergence and greater chin projection. 

Hypodivergent patients treated with Herbst typically undergo forward true mandibular 

rotation, [11] which reduced divergence and brought the chin and mandible more 

forward. [40, 45] 

The angle of facial convexity and the articular angle are the primary factors 

determining favorable skeletal outcomes. Patients with facial convexity angles < 10◦ and 

articular angles < 132◦ almost always (95%) had favorable outcomes. Significantly 

smaller facial convexity and articular angles have been previously reported among the 

favorably treated group than the unfavorably treated group with functional appliance. 

[12] Both measurements have been used to describe the anteroposterior jaw discrepancy. 

[47, 48] The convexity angle reflects the sagittal protrusion of the maxilla in relation to 

the facial profile (the convex or concave face), while the articular angle reflects the 

degree of retrusion or protrusion of the mandible in relation to the cranial base. Hence, 

class II subjects with less protruded maxillae and less retrognathic mandibles prior to 
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treatment are more likely to have favorable skeletal outcomes. These variables are the 

most important for predicting favorable outcomes. 

When the articular angle is ≥ 132◦, favorable or unfavorable outcomes depend on 

the Wits. There was an 85% chance of a favorable outcome if the pretreatment Wits was 

< 5 mm. Patients with more pronounced skeletal discrepancies (Wits ≥ 5 mm) were more 

likely to have unfavorable skeletal outcomes (71%). It is possible that the larger overjet 

among the group with the larger Wits (overjet of 8.7 mm and 6.4 mm for the unfavorable 

and favorable groups, respectively). Overjet has been positively correlated with the Wits, 

explaining 56% of its variation,[49] which is not surprising since the line of reference for 

the Wits is the functional occlusal plane, which is a dental parameter.  

 Decision trees provide an excellent way to predict treatment outcomes. [35, 50] 

The accuracy of the DT model in the present study was 87.9 %, which makes it the most 

accurate model currently available for predicting treatment outcomes with functional 

appliances. The predictive accuracies of previous studies that used traditional statistics to 

predict treatment outcomes with functional appliance ranged from 52% [15] to 80.4%. 

[22] DTs in the present study could have been more accurate because they can detect 

non-linear relationships among multiple covariates. [30] DTs can handle both numeric 

and categorical data unlike regression models, [31, 32] which gives it an advantage since 

several of the clinical variables are categorical. 

 The overall goal of the present study was to provide orthodontists with a way to 

predict patients’ skeletal treatment outcomes. Both DTs developed in the present study 

(unpruned and pruned) were validated, making them applicable to other patients. They 
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are also easy to apply to individual patients. For example, the pretreatment angles of 

facial convexity (which was the top variable in the DT) for both cases # 1 and 2 were < 

10◦, and their articular angles were < the 132◦ cut-off value, which predicted a favorable 

treatment outcome 95% of the time (Figures 17 and 18). The angles of facial convexity 

of case #3 and case #4 were ≥ than the 10◦ cut off-value, and their maxillary incisors 

were more than 6.8mm from the facial plane, indicating unfavorable skeletal treatment 

outcomes 97% of the time (Figures 19 and 20). Based on just a few variables, skeletal 

outcomes with Herbst treatment can be predicted with high level of accuracy, which 

should help orthodontists practice more efficiently, reduce variability, and eliminate 

subjectivity when treating Class II skeletal patients.   

Conclusions 

• Unfavorable posttreatment’s AP relationship was the primary factor associated 

with having unfavorable skeletal treatment outcomes. 

• Patients with unfavorable outcomes tended to be more hyperdivergent than 

patients in the favorable group. 

• Decision trees can accurately predict favorable and unfavorable skeletal 

treatment outcomes among Herbst patients approximately 87.9% of the time. 

• The most important variables for the prediction of skeletal treatment outcomes is 

N-A-Pg, followed by U1-NPg, S-Ar-Go, and Wits, respectively. 
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CHAPTER VI  

CONCLUSIONS 

Since the present study evaluated several aspects of artificial intelligence and 

machine learning application in orthodontics, the conclusions will be summarized by 

chapters starting with chapter II: 

Based on the literature review regarding the application of artificial intelligence 

and machine learning in orthodontics, the following conclusions can be drawn: 

1. Artificial intelligence and machine learning systems applied in orthodontics 

provide promising tools that can improve clinical practice. 

2. These clinical decision support systems can help orthodontists practice more 

efficiently, reduce variability and subjectivity. 

3. Algorithms should be expected to improve, making it possible to handle more 

complex data such as images. 

4. AI models are meant to help with the clinical judgment and not substitute the 

knowledge and expertise of humans. 

Chapter III evaluated the applicability of decision trees for predicting 

maxillomandibular relationship among untreated Class I and Class II subjects, the 

following conclusions can be drawn: 

1. The unpruned and pruned decision trees were able to successfully classify the 

growth of untreated subjects 85.4% and 83.2% of the time, respectively. 

2. The validation sample showed that the pruned decision tree was more accurate 

than the unpruned (81.8% vs 75.0%) tree. 
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3. The decision trees identified the Y-axis as the most important variable to 

classify growth, followed, in order, by ANS-N-PG, NSB, and MPA. 

Chapter IV investigated the ability of decision trees for predicting dental 

treatment outcomes among patients with Class II dental relationship treated with Herbst, 

and based on the findings of the present study the following conclusions can be drawn: 

1. Approximately 50% of the Herbst patients have unfavorable dental treatment 

outcome. 

2. Lack of Class I canine relationships (94.6%) is the primary reason for having 

unfavorable dental outcomes.  

3. Decision trees can predict successful or unsuccessful treatment outcomes 

approximately 80% of the time. 

4. The primary variables that determine successful or unsuccessful dental 

treatment outcomes are the SN-MP, followed by overbite, and L1-MP, 

respectively. 

Chapter V assessed the possibility of using decision trees for predicting skeletal 

treatment outcomes among patients with Class II skeletal relationship treated with 

Herbst, the following conclusions can be drawn: 

1. Unfavorable posttreatment’s AP relationship was the primary factor 

associated with having unfavorable skeletal treatment outcomes. 

2. Patients with unfavorable outcomes tended to be more hyperdivergent than 

patients in the favorable group. 
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3. Decision trees can accurately predict favorable and unfavorable skeletal 

treatment outcomes among Herbst patients approximately 87.9% of the time. 

4. The most important variables for the prediction of skeletal treatment 

outcomes are N-A-Pg, followed by U1-NPg, S-Ar-Go, and Wits, 

respectively. 
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APPENDIX A 

FIGURES 

 

 

Figure 1. Types of machine learning based on the training method. Reprinted with 
permission from, “Applications of artificial intelligence and machine learning in 
orthodontics”, by Asiri SN, Tadlock LP, Schneiderman E, Buschang PH. APOS Trends 
in Orthodontics, 2020;10(1):17-24. Copyright [2019] by Scientific Scholar on behalf of 
APOS Trends in Orthodontics. 
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Figure 2. Landmarks evaluated on subject cephalograms and the horizontal relationship between ANS and Pg transferred to 
the natural structure reference line. 
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Figure 3. Unpruned tree for the 178 longitudinal untreated class I and class II subjects at age 10 to determine the skeletal 
relationship at age 15. 
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Figure 4. Confusion matrices of the A) training sample, and B) testing sample showing the absolute and the relative (%) 
number of subjects having true positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the 
unpruned model. 
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Figure 5. Pruned tree for the 178 longitudinal untreated class I and class II subjects at age 10 to determine the skeletal 
relationship at age 15. 
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Figure 6. Confusion matrices of the A) training sample, and B) testing sample showing the absolute and the relative (%) 
number of subjects having true positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the 
pruned model. 
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Figure 7. Landmarks and planes used for the growth study 
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Figure 8. Decision tree for the unpruned model with each node showing the type of outcome on top (0 for unfavorable and 1 
for favorable), probability of a favorable outcome in the middle, and the percentage of people satisfying that condition at the 
bottom. 
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Figure 9. Confusion matrices of the A) training sample, and B) testing sample showing the number of subjects having true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the unpruned model. 
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Figure 10. Decision tree for the pruned model with each node showing the type of outcome on top (0 for unfavorable and 1 
for favorable), probability of a favorable outcome in the middle, and the percentage of people satisfying that condition at the 
bottom. 
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Figure 11. Confusion matrices of the A) training sample, and B) testing sample showing the number of subjects having true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the pruned model. 
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Figure 12. Landmarks & planes used to locate the variables used in the skeletal outcome study 
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Figure 13. Decision tree for the unpruned model, with each node showing the type of outcome on top (0 for unfavorable and 
1 for favorable), the probability of a favorable or unfavorable outcome in the middle, and the percentage of patients satisfying 
that condition at the bottom. 
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Figure 14. Confusion matrices of the A) training sample, and B) testing sample showing the number of subjects having true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the unpruned model. 
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Figure 15. Decision tree for the unpruned model, with each node showing the type of outcome on top (0 for unfavorable and 
1 for favorable), the probability of a favorable or unfavorable outcome in the middle, and the percentage of patients satisfying 
that condition at the bottom. 
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Figure 16. Confusion matrices of the A) training sample, and B) testing sample showing the number of subjects having true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN) results of the pruned model. 
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Figure 17. Case #1: Pretreatment (A) and posttreatment (B) lateral cephalometric radiographs and measurements of a patient 
predicted to have favorable skeletal outcomes based on the facial convexity angle (N-A-Pg) and the articular angle (S-Ar-Go). 
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Figure 18. Case #2: Pretreatment (A) and posttreatment (B) lateral cephalometric radiographs and measurements of a patient 
predicted to have favorable skeletal outcomes based on the facial convexity angle (N-A-Pg) and the articular angle (S-Ar-Go).
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Figure 19. Case #3: Pretreatment (A) and posttreatment (B) lateral cephalometric radiographs and measurements of a patient 
predicted to have unfavorable skeletal outcomes based on the facial convexity angle (N-A-Pg) and the U1 to facial plane (U1-
NPg). 
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Figure 20. Case #4: Pretreatment (A) and posttreatment (B) lateral cephalometric radiographs and measurements of a patient 
predicted to have unfavorable skeletal outcomes based on the facial convexity angle (N-A-Pg) and the U1 to facial plane (U1-
NPg). 
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APPENDIX B 

TABLES 

Table 1. Summary of major machine learning algorithms applied in orthodontics. 
Reprinted with permission from, “Applications of artificial intelligence and machine 
learning in orthodontics”, by Asiri SN, Tadlock LP, Schneiderman E, Buschang PH. 
APOS Trends in Orthodontics, 2020;10(1):17-24. Copyright [2019] by Scientific 
Scholar on behalf of APOS Trends in Orthodontics. 
 

Machine learning 

algorithm  

Uses/applications  Pros  Cons  

Decision trees  Used mainly for 
classification  
Applied in medical 
diagnosis [61] and 
manufacturing monitoring 
[62]  

Simple and easy to 
understand even by non-
experts [63]  

They are non-parametric 
and can handle both 
nominal and numeric 
input attributes [63]  

Can be used when data 
are missing, skewed, or 
have errors [64]  

Order of training 
instances is not important 
[65]  

Pruning reduces 
overfitting and improves 
prediction accuracy [65]  

Order of training has no 
effect on training [65]  

Most algorithms require 
the target attribute to have 
only discrete values [63]  

They perform poorly 
when many complex 
interactions exist [63]  

Oversensitivity to the 
training set, irrelevant 
attributes and to noise [66]  

Naïve Bayes  Used mainly for 
classification  
Applied in medicine [67,68] 

and dentistry [69,70] for 
decision support and risk 
assessment  

Simple and easy to 
understand [71]  

Order of training has no 
effect on training [71]  

It is based on statistical 
modeling [71]  

Requires small amount of 
data for training [72]  

Fast and can deal with 
discrete and continuous 
attributes [72]  

Robust to outliers [73]  

Accuracy is affected by 
redundant attributes and 
class frequency [71]  

Normal distribution is 
assumed for numeric 
attributes [71]  

Attributes are assumed to 
be conditionally 
independent [71]  

Neural network  Used for classification 
and regression.  
Applied in dentistry and 
medicine for diagnosis [37]  

Boolean functions (AND, 
OR, and NOT) can be 
used with neural networks  
Can handle noisy inputs 
and allows changing input 
features during data 
collection [74]  

Successful with complex 
non-linear relationships 
between predicted 
variable and input data [74]  

Overfitting is common 
especially with too many 
variables [75]  

Have limited ability to 
identify causal 
relationship [74]  

Require more 
computational resources 
[74]  
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Table 1. Continued. 

 

 

 

 

Support vector machine  Used for classification 
and regression  
Applied in dentistry for 
classification of skeletal 
patterns [56]  

Resistant to overfitting [10]  

Can model nonlinear 
functions [10]  

Can be used with non-
linear relationships 
between predicted 
variable and input data  

Training is slow  
Structure of algorithm is 
difficult to understand  

Genetic algorithm  Used for search and 
optimization problems  
Applied in dentistry and 
medicine mainly for 
prediction  

Simple algorithm and 
easy to apply [76]  

Always try to find the best 
solution  

Not efficient for finding 
the best solution  
There are complications 
in representing training 
and output data  

Fuzzy logic  Concerned with finding 
the truth by approximate 
modes of reasoning rather 
than exact reasoning [77]  

Used to deal with 
imprecision and 
uncertainty present in 
many fields including 
medicine [78]  

Mimics human thinking 
and can be written in a 
form similar to natural 
language [79]  

Allows for the degree of 
belonging to either 0 or 1, 
with 1 representing 
complete membership and 
0 for non-membership  
Can use both numerical 
variables and linguistic 
variables [80]  

Requires a lot of data and 
expertise to develop [81]  

Analysis is difficult 
because fuzzy outputs can 
be interpreted in different 
ways [81] 
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Table 2. Landmark and measurement definitions and abbreviations. 

Name Definition Abbreviation 

Landmarks 

Anterior Nasal 
Spine 

Most anterior point of the 
maxilla 

ANS 

B Point Point of deepest curvature 
between infradentale and 
pogonion  

B 

Basion Midpoint of the anterior 
margin of the foramen 
magnum 

Ba 

C Point Point of deepest curvature 
of the lingual portion of 
the mandibular symphysis 

C 

Condylion Most superior point of the 
mandibular condyle 

Co 

Gonion Midpoint of the angle of 
the mandible, defined by 
bisection of the angle 
formed by the tangents to 
the posterior border of the 
ramus and the inferior 
border of the mandible 

Go 

Infradentale The intersection point of 
the anterior lower incisor 
and the crestal bone 

Id 

Menton The most inferior point of 
the mandibular symphisis 

Me 

Nasion Junction of the frontonasal 
suture at the most posterior 
point on the curve at the 
bridge of the nose 

N 

Pogonion Most anterior point of the 
bony chin 

Pg 

Sella Center of the sella turcica 
of the sphenoid bone by 
inspection 

S 
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Table 2. Continued. 

 

 

 

 

 

 

 

Measurements 

Mandibular plane 
angle 

Angle formed by the 
intersection of line Go-Me 
with line S-N 

MPA 

Y-axis Angle formed by the 
intersection of line S-Gn 
and S-N 

Y-Axis 

Posterior to anterior face 
height 

Ratio of the distance from 
S to Go divided by the 
distance from N to Me 

PAFH 

ANS-N-Pg Angle formed between the 
points ANS, N, and Pg 

ANS-N-Pg 

Condylar Inclination Angle formed between the 
line Go-S and S-N  

CondInc 

Gonial Angle Angle formed between Ar, 
Go, and Me 

GonAng 

Symphysial Ratio Ratio of the distance from 
C to Pg divided by the 
distance from Id to Me  

HVSym 

Symphysial Angle Angle formed between Id, 
B, and Pg  

SymA 

Palatal Plane Angle Angle formed between the 
line ANS-PNS and S-N 

PPA 

Cranial Base Angle Angle formed between N, 
S, and Ba 

NSBa 
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Table 3. The mean and the standard deviation (SD) for the Horizontal relationship between ANS and Pg (mm) in males & 
females at age 10 and 15. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Male 
 

Female  
 

Overall Favorable Unfavorable Overall Favorable Unfavorable 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

ANSPgh 
at 10 

years old 

12.90 
(N= 116) 

4.05 9.70 
(N=55) 

2.49 16.10 
(N=61) 

2.34 13.50 
(N= 106) 

3.81 10.40 
(N=54) 

2.25 16.10 
(N=53) 

2.75 

ANSPgh 
at 15 

years old 

12.70 
(N=116) 

5.03 9.2 
(N=66) 

3.15 17.40 
(N=52) 

2.70 14.70 
(N= 106) 

5.05 11.00 
(N=66) 

3.51 18.20 
(N=40) 

3.33 
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Table 4. Model performance for the unpruned & pruned trees on both the training and testing data sets. 

 

  Unpruned tree Pruned tree 

Data 

Statistics  

Training Test Training Test 

Accuracy % 85.39% 75.0% 83.15% 81.82% 
Kappa 0.71 0.5 0.66 0.64 
Sensitivity 0.85 0.68 0.91 0.86 
Specificity 0.85 0.82 0.75 0.77 
Positive predictive value 0.85 0.79 0.79 0.79 
Negative predictive value 0.85 0.72 0.89 0.85 
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Table 5. Several Herbst studies reporting the correction of dental relationships and 
overjet  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference N Molar 
relationship 

Canine 
relationship 

Overjet 

Burkhardt et al48 30 Corrected N/A Corrected 

Valant and Sinclair16  32 Corrected N/A N/A 

Pancherz and Hensen49 40 Corrected Corrected Corrected 

Pancherz14 22 Corrected Corrected Corrected 

LaHaye et al4 19 Corrected Corrected Corrected 

Wigal et al39 22 Corrected N/A Corrected 

de Almeida et al50 30 Corrected Corrected Corrected 

McNamara et al51 45 Corrected N/A Corrected 

Sidhu et al52 8 Corrected Corrected Corrected 
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Table 6. Pretreatment predictor variables used to build the model 

Variables Units Descriptions 
S-N-A ◦ Angle formed between the landmarks sella, nasion and point A, indicating 

antero-posterior position of maxilla with respect to anterior cranial base 
S-N-B ◦ Angle formed between the landmarks sella, nasion and point B, indicating 

antero-posterior position of mandible with respect to anterior cranial base 
AO-BO mm Wits: the distance between the perpendiculars from landmarks A and B on 

the maxilla and mandible, respectively, onto the occlusal plane. 
SN-MP ◦ Angle formed by the intersection of Go-Me plane with the S-N plane 

OJ mm Overjet: the distance between maxillary incisor most labial and 
mandibular incisor edge parallel to occlusal plane 

OB mm Overbite: the distance between maxillary incisor edge and mandibular 
incisor edge perpendicular to occlusal plane 

U1-SN ◦ The axial inclination of the most labial maxillary central incisor in 
relation to the cranial base. 

U1-NA ◦ The angle formed by the long axis of the upper incisor to a line from 
nasion to point A 

L1-NB mm The perpendicular distance from lower incisor to NB plane 
Pg-NB mm The perpendicular distance from Pg to NB plane 
U1-L1 ◦ The interincisal angle which is formed by the intersection of the long axis 

of the maxillary & mandibular incisors. 
L1-MP ◦ Angle formed by intersection of mandibular incisor to mandibular plane 
FMIA ◦ Angle formed by extending mandibular incisor long axis to the Frankfort 

horizontal plane (Po-Or) 
CVS NA Stages of Cervical Vertebral Maturation1 

Unilateral/bilateral 
Class II 

NA Whether the Class II molar relationship is unilateral or bilateral 

Severity of Class 
II molar 

NA Whether the Class II molar relationship is full step or less than that 

Posterior crossbite NA Whether or not there was a posterior crossbite 
UL- E plane mm The perpendicular distance from the most anterior portion on the margin 

of the upper lip to a line drawn tangent to the tip of the nose and the soft 
tissue chin (E-plane) 

LL- E plane mm The perpendicular distance from the most anterior portion on the margin 
of the lower lip to a line drawn tangent to the tip of the nose and the soft 
tissue chin (E-plane) 

N-A-Pg ◦ Soft tissue convexity which is an acute angle formed by the intersection 
of NA and A-Pg planes 
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Table 7. Frequencies (%) of dental outcomes of subjects classified as having unfavorable outcomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Overjet  Canines  Molars 

Favorable outcome 58 (78.4%) 4 (5.4%) 22 (29.7%) 

Unfavorable outcome 16 (21.6%) 70 (94.6%) 52 (70.3%) 

Total 74 (100%) 
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Table 8. Cervical vertebra stages (CVS), type and severity of Class II malocclusion and the presence or absence of posterior 
crossbite among subjects with favorable & unfavorable treatment outcomes (%). 
 

Subjects with favorable outcome (50.7%) 

CVS  1 (14.5%) 2 (10.5%) 3 (17.1%) 4 (43.4%) 5 (11.8%) 6 (2.6%) 

Class II Unilateral (11.8%) Bilateral (88.2%) 

Severity of Class II 

molar* 

End on (51.3%) Full step (48.7%) 

Posterior crossbite* No (92.1%) Yes (7.9%) 

Subjects with unfavorable outcome (49.3%) 

CVS stage 1 (12.2%) 2 (16.2%) 3 (18.9%) 4 (36.5%) 5 (13.5%) 6 (2.7%) 

Class II Unilateral (9.4%) Bilateral (90.6%) 

Severity of Class II 

molar* 

End on (33.8%) Full step (66.2%) 

Posterior crossbite* No (79.7%) Yes (20.3%) 

 
*Significant differences where the unfavorable group had significantly higher frequencies of full step class II molar relationship and 
posterior crossbite.  
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Table 9. Proportion of favorable & unfavorable dental outcomes among 3 dental sites where records were collected, with A 
and B representing the private practices. 
 

 Dental site Total 

A B C 

Favorable Count 38 17 21 76 

% within Dental office 46.3% 44.7% 70.0% 50.7% 

% of Total 25.3% 11.3% 14.0% 50.7% 

Unfavorable Count 44 21 9 74 

% within Dental office 53.7% 55.3% 30.0% 49.3% 

% of Total 29.3% 14.0% 6.0% 49.3% 

Total Count 82 38 30 150 

% within Dental office 100.0% 100.0% 100.0% 100.0% 

% of Total 54.7% 25.3% 20.0% 100.0% 

- P value of 0.06 showing no significance in term of the frequencies of favorable outcomes among the 3 dental sites.  
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Table 10. Pretreatment differences between groups have favorable and unfavorable 
dental outcomes 
 

*Significant differences were found only in SNB angle after adjustment for multiple 
comparisons. 

 

 

 

 

 Favorable (N=76) Unfavorable (N=74)  

Prob Variable Mean SD Mean SD 

S-N-A (°) 81.8 3.6 80.6 3.7 0.05 

S-N-B (°) 76.9 3.5 75.4 3.4 0.009* 

AO-BO (mm) 4.1 2.5 5.0 2.8 0.042 

SN-MP (°) 24.5 4.3 26.1 6.1 0.077 

OJ (mm) 7.1 2.7 7.7 2.7 0.227 

OB (mm) 4.3 1.5 4.2 2.2 0.694 

U1-SN (°) 102.9 11.5 102.1 10.9 0.661 

U1-NA (°) 21.1 11.7 21.6 10.7 0.787 

L1-NB (mm) 3.7 2.3 3.6 2.3 0.728 

Pg- NB (mm) 2.3 1.7 2.5 1.9 0.392 

Interincisal angle (°) 132.7 13.8 132.5 14.3 0.928 

L1-MP (°) 92.8 6.6 92.3 7.7 0.656 

FMIA (°) 66.1 8.1 65.6 7.8 0.724 

UL-E plane (°) -1.3 2.2 -1.6 2.6 0.368 

LL-E plane (°) -0.7 2.7 -1.2 2.8 0.321 

N-A-Pg (°) 128.2 5.6 127.6 4.7 0.447 
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Table 11.  Mean change & standard deviation (SD) of subjects with favorable & 
unfavorable dental treatment outcomes. 
 

 Favorable dental 

outcome (N=76) 

Unfavorable dental 

outcome (N=74) 

Variable Mean SD Mean SD Prob 

S-N-A (°) -0.9 1.7 -0.9 1.6 .887 

S-N-B (°) 1.1 1.8 1.0 1.5 .650 

AO-BO (mm) -4.3 2.2 -4.3 2.5 .951 

SN-MP (°) -.53 2.2 -0.1 2.5 .274 

OJ (mm) -4.3 2.7 -4.3 2.7 .968 

OB (mm) -2.9 1.4 -2.6 2.1 .435 

U1-SN (°) 3.5 11.7 1.9 11.8 .409 

U1-NA (°) 4.3 11.9 2.7 11.7 .407 

L1-NB (mm) 1.4 1.9 1.2 2.2 .558 

Pg to NB (mm) 0.4 1.0 0.3 1.0 .793 

Interincisal angle (°) -8.3 14.7 -6.5 15.1 .471 

L1-MP (°) 5.5 7.1 4.7 7.1 .527 

FMIA (°) -6.1 8.0 -5.1 7.4 .427 

UL- E plane (°) -2.6 2.0 -2.5 2.1 .888 

LL- E plane (°) -0.9 2.2 -0.9 2.9 .840 

N-A-Pg (°) -0.1 3.0 -0.1 2.9 .860 

 

-  No significant differences were found after adjusting for multiple comparisons. 
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Table 12. Model performance of the unpruned & pruned trees for both the training and 
testing data sets for the dental outcome. 

 

 Unpruned tree Pruned tree 

Data 

Statistics  

Training     Testing Training    Testing 

Accuracy % 81.4% 78.4% 70.8% 67.6% 
Kappa 0.63 0.56 0.42 0.36 
Sensitivity 0.74 0.76 0.63 0.76 
Specificity 0.89 0.80 0.78 0.60 
Positive predictive value 0.87 0.76 0.75 0.62 
Negative predictive 
value 

0.77 0.80 0.68 0.75 
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Table 13. Means and standards deviations (SD) for the subjects at each of the 8 terminal nodes. 

 (A) 

SN-MP ≥ 30 
(B) 

Overbite ≥ 7.3mm  
(C) 

Pg-NB ≥ 2.8mm 
(D) 

Pg-NB < 2.8mm 
(E) 

U1-SN < 114◦ 
(F) 

U1-SN ≥ 114◦ 
(G) 

U1-NA < 20◦ 
(H) 

Class II is full 

step 
Variable Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
SNA (°) 78.9 3.4 83.2 3.5 82.8 2.1 81.5 3.3 81.4 3.4 81.2 2.9 82.3 4.4 81.7 4.7 
SNB (°) 72.8 2.5 77.3 2.5 77.6 2.1 76.4 3.1 76.9 2.1 76.8 4.5 77.3 4.5 77.6 3.9 

Wits 4.9 3.1 5.2 2.4 5.3 1.9 4.4 1.9 4.6 3.1 6.1 3.9 3.9 2.6 3.8 1.9 
SN-MP (°) 33.1 3.1 20.2 5.4 21.5 2.0 23.6 3.8 23.6 3.6 23.4 4.1 23.0 3.6 23.5 4.2 

Overjet 

(mm) 
7.4 3.2 7.0 0.8 6.4 2.1 6.5 2.1 8.1 2.2 10.5 3.5 5.9 1.3 7.2 2.3 

Overbite 

(mm) 
3.1 1.9 8.5 1.2 4 1.1 3.9 1.3 3.7 1.6 4.2 1.9 5.0 1.2 4.3 1.6 

U1-SN (°) 98.2 7.5 86.2 12.2 105.2 5.6 106.9 8.0 106.1 4.3 117.8 4.4 94.5 9.7 104.6 12.7 
U1-NA (°) 19.3 6.8 4.1 11.9 22.4 5.3 25.4 9.1 24.7 3.5 36.6 3.1 12.1 8.2 22.8 12.4 

L1-NB 

(mm) 
5.0 2.6 1.2 2.7 5.1 1.0 5.7 1.0 2.8 1.3 2.8 1.6 2.8 2.0 2.8 1.9 

Pg-NB 

(mm) 
1.2 1.7 3.8 2.5 3.8 0.7 1.7 0.9 2.8 1.5 2.7 1.7 3.1 1.2 2.6 1.8 

Interincisal 

angle (°) 
131.4 11.5 157.3 18.9 124.2 6.2 120.1 8.8 131.9 6.5 119.3 5.2 144.9 10.6 134.1 12.8 

L1-MP (°) 90.2 7.6 89.2 9.3 102.1 2.3 102.4 2.6 91.3 5.2 92.4 4.7 90.6 5.3 90.8 4.9 
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Table 13. Continued 

 

FMIA (°) 61.9 6.2 73.8 11.6 57.7 2.4 57.3 3.9 68.1 6.3 67.7 5.8 70.1 5.6 69.5 5.9 
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Table 14. The means at T2 and the changes for ANB and SN-MP in subjects treated with Herbst and had successful dental 
outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference N ANB 

T2 

Change 
in ANB 

SN-MP 

T2 

Change 
in SN-MP 

Molar 
relationship 

Canine 
relationship 

Overjet 

Burkhardt et al37 30 4.1 -1.4 23.2 -0.3 Corrected N/A Corrected 

Schiavoni et al51 19 N/A -1.8 N/A -1.1 Corrected Corrected Corrected 

Valant and Sinclair38  32 4.0 -1.9 21.4 0.6 Corrected N/A N/A 

Pancherz and Hensen39 40 4.6 -1.5 31.5 0.4 Corrected Corrected Corrected 

Pancherz7  75 N/A -2.0 N/A 0.1 Corrected Corrected Corrected 

Pancherz8 22 3.9 -1.9 31.6 0.2 Corrected Corrected Corrected 

LaHaye et al40 19 5.1 -0.7 34.5 0.3 Corrected Corrected Corrected 

Wigal et al51 22 2.6 -2.0 34.3 0.1 Corrected N/A Corrected 

de Almeida et al41 30 5.2 -1.4 33.9 0.1 Corrected Corrected Corrected 

McNamara et al42 45 4 -1.9 23.7 -0.3 Corrected N/A Corrected 

Sidhu et al43 8 4.4 -2.1 N/A N/A Corrected Corrected Corrected 
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Table 15. Pretreatment predictor variables used to build the model for skeletal outcomes 

 

Variables Units Descriptions 

Age Years Subject’s age before the start of orthodontic treatment 

Sex N/A Whether the patient is male or female 

CVS  N/A Stages of Cervical Vertebral Maturation1 

S-N-A  ° Angle formed between the landmarks sella, nasion and point A, indicating 

antero-posterior position of maxilla with respect to anterior cranial base 

S-N-B  ° Angle formed between the landmarks sella, nasion and point B, indicating 

antero-posterior position of mandible with respect to anterior cranial base 

Wits mm The distance between the perpendiculars from landmarks A and B on the maxilla 

and mandible, respectively, onto the functional occlusal plane. 

SN-MP  ° Angle formed by the intersection of Go-Me plane with the S-N plane 

PP-MP ° Inclination of the palatal plane in relation to the mandible plane 

Mx-Md 

Diff 

mm Maxillomandibular differential is the difference between total mandibular length 

(Co-Gn) and midfacial length (Co-A) 

 

SGo:NMe 

N/A Facial height ratio of the linear measurements from S-Go to N-Me 

N-ANS mm Upper Anterior Facial Height (UAFH): the distance from Nasion (N) to Menton 

(Me) 

ANS-Me mm Lower Anterior Facial Height (LAFH): the distance from Anterior Nasal Spine 

(ANS) to Menton (Me) 

Ar-Go mm Lower posterior facial height (LPFH): the distance between Articluare (Ar) and 

Gonion (Go) 
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Table 15. Continued 

 

 

 

 

Ar-Go-Me ° The gonial angle: formed by line connecting Articulare to Gonion to Gnathion 

S-Ar-Go  ° The articular angle: formed by line connecting Sella to Articulare to Gonion 

Cd-Go  mm Mandibular ramus height, distance between point condylion and point gonion 

Ar-Gn  mm Mandibular length measured from Ar to Gn 

Cd-Gn  mm Effective mandibular length: the distance from the posterior border of the Cond 

to Gn 

Overjet  mm The distance between maxillary incisor most labial and mandibular incisor edge 

parallel to occlusal plane 

Overbite  mm The distance between maxillary incisor edge and mandibular incisor edge 

perpendicular to occlusal plane 

U1- NPg  mm Linear distance from the most prominent anterior point on the labial surface of 

the upper incisor to the facial plane (N-Pg) 

L1- NPg mm Linear distance from the most prominent anterior point on the labial surface of 

the lower incisor to the facial plane N-Pg plane. 

LMIP  ° Angle formed by intersection of mandibular incisor to mandibular plane 

FMIA  ° Angle formed by extending mandibular incisor long axis to the Frankfort 

horizontal plane 

N-A-Pg ° Facial convexity angle which is an acute angle formed by intersection of N-A 

and A-Pg lines 
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Table 16. Frequencies (%) of skeletal outcomes of subjects classified as having 
unfavorable outcomes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Vertical  

Favorable Unfavorable Total 

AP Favorable 53  12  65 (55.2%) 

Unfavorable 24 27 51 (44.8%) 

 Total 77 (66.4%) 39 (33.6%) 116 (100%) 
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Table 17. Frequencies of CVS and sex among subjects with favorable & unfavorable skeletal treatment outcomes (%). 

 

 

 

 

 

 

 

- Both statistically insignificant with prob > .05 

 

 

 

 

 

 

 

 

Subjects with favorable outcome (45.7%) 

CVS  1 (17.0%) 2 (15.1%) 3 (15.1%) 4 (35.8%) 5 (17.0%) 6 (0.0%) 

Sex Male Female 

Subjects with unfavorable outcome (54.3%) 

CVS  1 (9.5%) 2 (15.9%) 3 (15.9%) 4 (46.0%) 5 (9.5%) 6 (3.2%) 

Sex Male  Female 
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Table 18. Proportion of favorable and unfavorable skeletal outcomes among 3 sites where records were collected, with A and 
B representing the private practices. 
 
 

 

 

 

 

 

 

 

 

 

 

 

▪ Chi square insignificant with p value of 0.321.

 Dental Site Total 

A B C 

Favorable Count 28 14 11 53 

% within Dental office 50.9% 35.9% 50.0% 45.7% 

% of Total 24.1% 12.1% 9.5% 45.7% 

Unfavorable Count 27 25 11 63 

% within Dental office 49.1% 64.1% 50.0% 54.3% 

% of Total 23.3% 21.6% 9.5% 54.3% 

Total Count 55 39 22 116 

% within Dental office 100.0% 100.0% 100.0% 100.0% 

% of Total 54.7% 25.3% 20.0% 100.0% 
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Table 19. Pretreatment differences between groups have favorable and unfavorable 
skeletal outcomes 

 

- *Significantly different after adjustment for multiple comparisons. 
 

 

 

 

 

 

 Favorable (N= 53) Unfavorable (N= 63)  
Prob Variable Units Mean SD Mean SD 

Age Years 12.3 1.4 12.7 1.9 0.3 
S-N-A ° 82.2 2.9 82.2 3.3 0.9 
S-N-B ° 77.1 3.2 75.6 3.2 0.013 
Wits mm 4.6 2.2 5.7 2.7 0.016 

Mx-Md Diff mm 20.1 3.9 20.1 2.6 0.971 
SN-MP ° 23.6 4.2 27.7 5.3 <0.001* 
PP-MP  ° 21.9 5.1 25.5 5.9 0.001* 

 S-Go/N-Me N/A 68.7 3.8 65.8 4.8 <0.001* 
N-ANS mm 48.4 3.2 49.0 3.8 0.359 

ANS-Me  mm 61.4 5.1 65.1 6.2 0.001* 
Ar-Go mm 50.1 4.6 49.6 5.5 0.615 

Ar-Go-Me ° 120.6 5.5 121.6 7.1 0.380 
 N-A-Pg ° 7.9 2.6 12.5 3.7 <0.001* 
S-Ar-Go ° 133.5 5.6 137.6 6.3 <0.001* 
Co-Go mm 59.1 4.8 58.9 5.9 0.789 
Co-Gn  mm 109.9 6.2 109.0 8.7 0.545 
Ar-Gn  mm 104.8 6.0 103.4 8.3 0.314 
Overjet  mm 7.0 2.6 7.8 2.8 0.125 
Overbite  mm 4.6 1.4 3.8 2.5 0.040 

LIMP ° 93.5 6.8 93.2 7.7 0.841 
FMIA  ° 65.9 7.4 62.2 7.5 0.010 

U1- NPg mm 8.0 3.3 10.9 3.6 <0.001* 
L1- NPg mm 1.7 2.5 3.7 3.4 <0.001* 
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Table 20. Mean change & standard deviation (SD) of subjects with favorable & 
unfavorable skeletal treatment outcomes. 
 

 

- *Significantly different after adjustment for multiple comparisons. 

 Favorable (N= 53) Unfavorable (N= 
63) 

 
Prob 

Variable Units Mean SD Mean SD 
S-N-A ° -1.0 1.4 -1.7 1.6 0.008 
S-N-B ° 1.6 1.4 0.1 1.6 <0.001* 
Wits mm -4.2 1.9 -4.9 2.6 0.139 

Mx-Md Diff mm 5.0 2.1 4.1 2.6 0.051 
SN-MP ° -1.7 1.8 1.5 2.1 <0.001* 
PP-MP  ° -2.2 2.6 0.8 2.3 <0.001* 

 S-Go/N-Me N/A 2.2 1.8 -0.8 5.4 <0.001* 
N-ANS mm 1.8 2.1 2.2 2.3 0.378 

ANS-Me  mm 0.5 10.5 3.2 2.8 0.049 
Ar-Go mm 4.8 2.9 3.1 2.8 0.002* 

Ar-Go-Me ° -0.9 2.8 0.5 2.1 0.003 
 N-A-Pg ° -6.4 3.1 -4.1 3.2 <0.001* 
S-Ar-Go ° -0.4 4.2 0.5 3.2 0.218 
Co-Go mm 4.6 2.9 3.2 3.1 0.014 
Co-Gn  mm 5.6 3.9 4.8 4.4 0.332 
Ar-Gn  mm 5.8 4.1 3.1 13.2 0.148 
Overjet  mm -4.0 2.6 -4.7 2.7 0.135 

Overbite  mm -3.0 1.4 -2.4 2.4 0.091 
LIMP ° 4.2 7.7 4.5 6.8 0.795 
FMIA  ° -3.2 8.3 -6.2 7.4 0.037 

U1- NPg mm -3.2 3.3 -2.9 3.3 0.726 
L1- NPg mm 0.4 2.3 1.4 2.2 0.016 
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Table 21. Model performance of the unpruned & pruned trees for both the training and testing data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Unpruned tree Pruned tree 

Data 

Statistics  

Training Test Training Test 

Accuracy % 87.9% 84.0% 85.7% 84.0% 
Kappa 0.75 0.68 0.70 0.68 
Sensitivity 0.88 0.83 0.94 0.83 
Specificity 0.87 0.85 0.75 0.85 
Positive predictive value 0.90 0.83 0.83 0.83 
Negative predictive value 0.85 0.85 0.91 0.85 


