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 ABSTRACT 

 

Persistent gender stereotypes, often reinforced by numerical dominance, have 

been shown to negatively influence sense of belonging and personal-professional 

identity development, attributing to the disproportional rate of attrition of women from 

the fields science, technology, engineering, and mathematics (STEM) when compared to 

their male peers. This study sought to identify potential relationships between the central 

personal-professional identities (i.e. Self-Gender, Self-STEM, and STEM-Gender 

associations), measured both explicitly (i.e. survey scales) and implicitly (i.e. Implicit 

Association Tests), using the Balance Identity Theory framework. More specifically, the 

study aimed to understand how the implicit measures of associations might correspond 

with their explicit counterparts, and if this relationship was different for women in 

STEM compared to their male peers. The cross-sectional data for this study is situated 

within a longitudinal study of identity balance among ethnically diverse undergraduate 

STEM majors in their junior and senior years. Participants completed three randomly 

displayed, online Implicit Association Tests and answered explicit survey questions 

measuring perceived gender identity, STEM identity, and STEM-Gender stereotype 

endorsements, from which implicit and explicit balanced identity scores were calculated.  

A series of multiple regression analyses revealed that individual implicit 

association components did not significantly correlate with their explicit counterparts 

and this relationship did not vary by gender. However, a moderation analysis found that 

women exhibited a positive relationship between implicit and explicit balance scores, 
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while the relationship was non-significant among men. Exploratory analyses showed that 

there were significant differences in implicit balance scores depending on participant’s 

major (Biological/Life Sciences or Engineering/Computer Science), but no significant 

differences by major for explicit balance scores. Overall, consistent with previous 

literature, results reaffirm the importance of both implicit and explicit measure of 

identity and emphasize the potential of gender-specific nuances of balanced identities 

within the context of STEM fields. 
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1. INTRODUCTION  

 

Efforts to confront complex and persistent societal problems are hampered by the 

lack of diversity in the science, technology, engineering, and mathematics (STEM) 

enterprises. Researchers have shown that diverse teams will often outperform those 

composed solely for their cognitive abilities (Hong & Page, 2004). Accordingly, 

diversity leads to more equitable and productive science and engineering (Medin & 

Leed, 2012). Consider the design of the seatbelt: Automakers in the 1960’s, 

overwhelmingly male at the time, insisted on using a single crash test dummy 

resembling the average sized man to outfit the standard seatbelt. As a result, female 

drivers were 47% more likely to be severely injured in a car crash. This remained 

unchanged for nearly 50 years until Anna Carlsson, a Swedish female researcher, 

designed the world’s first 50th percentile female crash test dummy, marking a significant 

milestone in vehicle safety (Starr, 2012). The lack of a female perspective in the auto 

industry jeopardized the safety of nearly 50% of the population. Avoiding the mistakes 

of the past and confronting the current societal challenges requires adequate 

representation of diverse perspectives and backgrounds. 

As the demand for a diverse, skilled workforce in the STEM disciplines 

increases, so does the need to recruit and retain highly qualified students from all 

backgrounds (Litzler et al., 2014). Although 52% of the college educated workforce is 

female (National Science Board NSF, 2020), women represent only 28% of practicing 

scientists and engineers (NGC, 2020). Similar disparities are observed at the 
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undergraduate level. Engineering and computer science are more culpable with degrees 

being conferred to men at a rate approximately four times higher than to their female 

peers, while biological and life sciences are near parity (Trapani & Hale, 2019). The 

identification of these gender gaps in male-dominated STEM fields is not novel, 

however, recent efforts have been made to further the understanding of underlying 

contributors to these disparities amongst women’s academic journeys and shed light on 

effective interventions that could increase their persistence (Dennehy & Dasgupta, 2017; 

Diekman et al., 2010).  

Gender gaps in science and math performance have been closing, but gaps in 

STEM self-concept (i.e., confidence and identification with their STEM field) and 

aspirations (i.e., career intentions and alignment with personal-professional goals) 

remain large (Cech et al., 2011; Dasgupta, 2004). Research indicates that exposure to 

persistent gender stereotypes lowers women’s sense of belonging, which in turn leads to 

greater attrition of women from engineering and other male-dominated STEM fields 

(Dasgupta & Stout, 2014; Jones et al., 2013). Further understanding of the influence of 

stereotype endorsement in congruence with the development of personal-professional 

identities is necessary in order to continue the work in changing the culture and 

conceptions of STEM fields to further support those often ostracized by it. The present 

study seeks to understand how men and women in their junior and senior year of 

undergraduate STEM programs hold varying identities and endorsements/rejections of 

persistent gender stereotypes in the field, measured through both implicit and explicit 

associations, and how the balance or imbalance of these identities might vary amongst 
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men and women. Results of this research will better inform future studies of personal-

professional identities on the potential need to utilize both implicit and explicit measures 

in order to tease out the gender-specific nuances of these identities. 

1.1. Literature Review 

1.1.1. Barriers to Identity Development 

A sense of belonging and fit play significant roles in the development of a 

personal-professional STEM identity and are attributed to the attrition rate of those who 

are underrepresented in male-dominated fields (Rainey et al., 2018). Self-identity is 

malleable and subject to contextual factors that can either facilitate or constrain 

development (Markus & Kunda, 1986). For example, research indicates that women and 

racial/ethnic minorities can have their professional STEM identity thwarted by 

stereotype threats and preexisting (mis)conceptions about who can be successful in 

STEM fields (Boston & Cimpian, 2018). Prevailing cultural stereotypes subtly cue what 

type of person can be successful in the workplace or classroom, typically defined as a 

male of European or Asian descent. Recent efforts have been put forth by researchers, 

educators, and career specialists to attempt to change the perceptions of and culture 

within male-dominated STEM fields. For example, an 18-month study conducted by the 

National Academy of Engineering (NAE) studied teachers’, parents’, students’, and 

career specialists’ perceptions of the nature of engineering (2008). The results revealed 

the public’s fundamental misconceptions about the nature of engineering and highlighted 

deleterious societal stereotypes that contribute to the lack of belonging and identification 

amongst women.  
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1.1.1.1. Developmental Emergence of Barriers to STEM Identity 

Researchers have specifically identified the developmental ages at which these 

stereotypes begin to be internalized, noting that childhood and adolescence are crucial 

times for development of a STEM identity (Dasgupta & Stout, 2014; see also 

Christensen & Knezek, 2017; Kim et al., 2018). During childhood, gender stereotypes 

about math and science are ascribed to children by parents, primarily by mothers 

(Bhanot et al., 2005; Leaper et al., 2012) and peers (Dasgupta & Stout, 2014; Diekman 

et al., 2010; Fantz et al., 2011). These stereotypes can influence girls’ (mis)perceptions 

that STEM is primarily for boys and is too challenging to be able to succeed, which 

together reinforce a perceived lack of belonging within the field (Stout et al., 2013). For 

example, recent research found that average or high-achieving high school boys and girls 

have similar intentions to pursue a STEM degree, yet lower-achieving boys intend to 

pursue at a greater rate than similar young women (Cimpian et al., 2020). The disparity 

between the STEM aspirations of lower achieving high school students reveals that 

women receive that message that only the highly capable individuals can succeed in 

STEM, a message that is not being received by young men (Cimpian et al., 2020). If a 

young woman is able to break through the barriers of these impending stereotypes in 

adolescence and continue to pursue further education in STEM, she will, unfortunately, 

more than likely be faced with a resurging dissonance between her developing STEM 

identity and her chosen career path as she enters the stereotype-laden, male-dominated 

STEM program. 
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Similar to the subtle cues that existed in adolescence, women in higher education 

STEM programs continue to face persistent gendered stereotypes about the people, 

work, and values in male-dominated environments (Cheryan, 2009; Clark Blickenstaff, 

2005). The lack of representation amongst faculty in science and engineering disciplines 

contributes to these persistent stereotypes endorsed by many students during their 

academic journey (Nelson, 2017). For example, a recent study among college students 

showed a significant correlation between perceived number of women in STEM with a 

sense of imposterism (i.e., feelings of inadequacies, particularly among women) despite 

students’ having proven success throughout their academic journey (Tao & Gloria, 

2019). 

Contextual cues, such as the visibility of in-group (e.g., same-gender) experts and 

peers are increasingly recognized as levers that can either reinforce stereotypes or 

promote inclusion. Recent advancements in theory and evidence point to the importance 

of positive female role models and mentors in college, in part, because they act as 

“social vaccines” to such stereotype threats and support women as they navigate the 

compatibility of their identities and their professional interests (Dasgupta, 2011; see also 

Dennehy et al., 2018; Dennehy & Dasgupta, 2017; Hernandez et al., 2020; Van Camp et 

al., 2019). As the development of a strong STEM identity is critical to persistence and 

success in STEM (Graham et al., 2013; Perez et al., 2014; Woodcock et al., 2012), it is 

crucial to better understand the influence of the various identities that are held in the 

midst of environments that pose a challenge to underrepresented groups, in this case, 

women in male-dominated STEM majors. 
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1.1.2. Measuring Identity 

Research on self-perceptions and social cognition has established an 

understanding of the dual cognitive processes under which mental faculties operate. The 

dual-system theory of cognition suggests that there are two ways in which information is 

processed: (a) explicit processes, which can be consciously controlled, intentional, and 

made aware, and (b) implicit processes, which are automatic and unconscious or not 

under conscious control (Deutsch & Strack, 2006; Evans, 2008; Strack & Deutsch, 

2004).   

Researchers utilize explicit surveys to measure both the emergence of and the 

association between career and personal identities for students in STEM fields (Chemers 

et al., 2011; Darling et al., 2008; Dou et al., 2018). Self-reported survey methods ask 

participants to respond to questions, usually on a Likert scale, to represent their belief or 

attitude towards a statement. Recent studies in STEM education have further analyzed 

the predictive nature of explicit measures of identity for career/degree choices and the 

variation in this predictive nature for women and men (Godwin et al., 2016; Merolla & 

Serpe, 2013; Vincent-Ruz & Schunn, 2018).  

By contrast, implicit measures of identity and associations with prevailing 

stereotypes utilize Implicit Association Tests (IAT), developed by Greenwald et al., to 

capture the strength of association between pairs of terms (2002). The IAT is a computer 

test that seeks to capture reaction times between pairs of concepts, such as “flowers” and 
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“beautiful” or, in the case of gender-math stereotypes, “male” and “math”. An IAT D-

score is calculated from the latency of reaction from the person between the pairs to 

determine the strength of association. 

Implicit Association Tests have been widely used to measure implicit bias or 

stereotype association with groups, as initially seen in the study “Math = Male…” 

(Dasgupta, 2004; Greenwald, 2002). These implicit associations have been further 

adapted to utilize Heider’s Balance Theory as a framework for measuring individualized 

implicit identity balance (Heider, 1958; Woodcock, Schultz, Hernandez, In Preparation). 

This Individualized Balanced Identity Design (IBID) framework utilizes individual-level 

metrics to capture implicit balance between one’s gender identity (Me = My Gender), 

STEM identity (Me = STEM), and their STEM-Gender association (STEM = My 

Gender), as depicted in Figure 1 (Appendix A). For a woman with positive associations 

between self and STEM, self and gender, and STEM and gender, we would classify her 

identity profile as “balanced.” Additionally, one would be classified as “balanced” if two 

negative associations existed (ex: positive Self-Gender, negative Self-STEM, negative 

STEM-Gender), yet the implications of this profile might suggest that persistence in the 

STEM field may not be as likely as identification with the field has been shown to be a 

predictor of persistence. Classification and quantification of these balanced (or rather 

imbalanced) profiles further allows researchers to understand the tension that exists 

between the predominant identities of an individual in the midst of prevalent stereotypes 

and potential influencers of this balance. 
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1.1.3. Addressing the Gaps 

The question remains: how do implicit associations relate to their explicit 

counterparts? Research has previously shown evidence for an advantage of implicit 

associations over their explicit counterparts in predicting outcomes relevant to retention 

(Dunlap & Barth, 2019; Zitelny et al., 2017), although further research is still required to 

determine the extent of this superiority.  Further studies have examined differences of 

these STEM identities and their relationships to stereotypes predicted by implicit and 

explicit associations and have found that such relationships exist for implicit but not for 

explicit associations (Nosek & Smyth, 2011; Cvencek et al., 2020). Additionally, studies 

suggest the presence of varying strengths of relationship between the implicit and 

explicit attitudes, suggesting this relationship can exist while each method can contribute 

individually to the analysis of these associations (Cunningham et al., 2001; Smyth & 

Nosek, 2015). 

Less well understood is how these relationships between implicit and explicit 

associations might vary amongst the majority (males) and minority (females) in the 

midst of prevailing stereotype contexts. The current study seeks to understand the 

individual-level implicit associations with self and STEM, gender, as well as the gender-

stereotype associations and how these implicit measures might correspond to their 

explicit counterparts; more specifically, if this relationship looks different for women in 

STEM than it does for men. 
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1.2. Current Study 

The current study is situated within a longitudinal study for the proposed 

methodology of individual balanced identity design on the basis of ethnicity and gender 

in STEM undergraduate fields. This particular study utilizes the data regarding gender, 

both implicit and explicit identity measures, to address the relationships between the 

three components of gender-STEM identity profiles and potential moderating effects of 

participant gender. The standardized identity balance (IBID) methodology will also be 

used as a foundation for an explicit standardized identity balance score, and the study 

will explore subsequent relationships between the two, specifically if there are 

differences in these relationships for men and women. The following research questions 

are addressed in this study. 

1.2.1. Research Questions and Hypotheses 

1. To what extent do the components of implicit identity balance 

(self/STEM/gender) correlate with their explicit counterparts? Based on prior 

research, I hypothesize that there will be a small to moderate positive 

correlation between each of the implicit identity balance components with 

their explicit counterparts. 

2. To what degree does this correlation vary as a function of participant gender? 

I hypothesize that this positive relationship will be stronger for women, 

whereas men will have a non-significant relationship between their implicit 

and explicit components. 
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3. To what extent is implicit balanced identity correlated with explicit balanced 

identity? I hypothesize that there will be a small to moderate but significant 

positive correlation between implicit balance scores and explicit balance 

scores. 

4. To what degree does this correlation vary as a function of participant gender? 

Specifically, this relationship will be moderated by participant gender, with 

there being a stronger, more positive relationship between implicit and 

explicit balance for females compared to males. 
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2. METHODS 

 

2.1. Participants 

This longitudinal study included 275 total participants from three California State 

University schools over five semesters beginning in the Fall of 2017. The complete 

sample of 275 participants is composed of 51% females, 43.1% White and 52.6% 

Hispanic/Latinx, and all within various STEM majors (Biological & Life Sciences: 

69.7%, Engineering: 19.7%, and Computer Science: 10.6%). Due to missing data across 

from the explicit survey and IAT measures, the analytic sample size for this study 

includes 146 participants. Similar to the overall sample, the analytic sample was 59% 

Hispanic and 58% female. Participants were declared STEM majors within Biological 

and Life Sciences (73%), Engineering (18%), and Computer Science (9%). 

2.2. Procedures 

An initial screening questionnaire was emailed to potential participants to ensure 

they were currently enrolled in a STEM field, considered junior or senior status, and of 

either White or Hispanic/Latinx ethnicity. Eligible participants were invited to the 

MyCollegePathways study in the Spring of 2017 and were provided with a $20 gift card, 

either Starbucks or Amazon, at the beginning of each of the five survey waves. In 

addition to providing demographic information, participants were asked to complete a 

series of explicit measures of identity with their STEM field, their race/ethnicity (asked 

during waves 0, 2, and 4), their gender (asked during waves 1 and 3), and stereotype 

endorsement with their race/ethnic or gender. After completing questionnaire items, 
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participants completed a series of three randomly displayed, personalized online Implicit 

Association Tests (IAT; Greenwald et al., 1998). Data for the current study came from 

Wave 3 of data collection during the Fall of 2018. 

2.3. Measures 

2.3.1. Explicit Computer Science/Engineering/Science Identity 

To measure explicit STEM identity, a shortened scale of the Science Career 

Identity (Chemers et al., 2011) and an adapted scientific belonging measure, constructed 

by Estrada utilizing theoretical methods from Kelman (2006), Darling et al. (2008), 

Nguyen & Benet-Martinez (2007), and Benet-Martinez & Haritatos (2005) were used. 

The explicit STEM identity scale measures participants’ perceptions of how their 

personal identity aligns with their selected major, specifically as a professional who 

might participate in research activities within their area of study. The 11-question scale 

was adapted for each of the 3 STEM categories in the study (science, engineering, 

computer science). Scale items were measured on a scale of 1 (strongly disagree) to 5 

(strongly agree) and asked questions about belonging (eg. “I have a strong sense of 

belonging to the community of scientists”) and career identity (eg. “Being a scientist is 

an important reflection of who I am”). The 11 scale items were then averaged to produce 

one field specific identity score. A STEM identity score was generated by using the 

individual score (science, engineering, or computer science) and placing that score into a 

new STEM Identity variable. Historically, the Science Career Identity scale has a high 

internal consistency (ɑ=.89 and .90) for undergraduates and graduates, respectively 

(Chemers et al., 2011). The current sample yielded an adequate average alpha value of 
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.88, with each domain having high internal consistency, as shown in Table 1 (Appendix 

B). 

2.3.2. Explicit Gender Identity 

To measure the degree to which the participant identifies with their gender, a 

four-item scale adapted from Luhtanen and Crocker’s (1992) self-esteem subscale was 

used according to the participant’s previously identified gender (e.g. “Being a woman is 

an important part of my self-image” or “Being a man is an important reflection of who I 

am”). Scale items were rated on a scale of 1 (strongly disagree) to 7 (strongly agree) and 

a composite score was developed averaging the item responses. Cronbach’s alpha values 

of reliability historically range from .83 to .88 indicating sufficient levels of internal 

consistency (Luhtanen & Crocker, 1992). Internal consistency was sufficient for the 

current sample with a Cronbach alpha average of .81 across males and females (Table 1; 

Appendix B). 

2.3.3. Explicit Computer Science/Engineering/Science Stereotype Endorsement 

To measure the extent to which the participant endorses various stereotypes 

associated with their gender and their STEM domain, the STEM Stereotype 

Endorsement scale (Schmader et al., 2004) was used (e.g. “In general, men may be better 

than women at Engineering”). This 3-item scale was measured from 1 (strongly 

disagree) to 7 (strongly agree) and each scale item was catered towards the participant’s 

STEM domain (engineering, science, or computer science). A composite score was 

calculated in which higher scores indicated a greater endorsement for gender-STEM 
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stereotypes. The scale has a high internal consistency with a Cronbach alpha value of 

reliability of .88. 

2.3.4. Implicit Identity Balance 

To capture the strength of associations between various identities and stereotype 

endorsements, the Implicit Association Tests (IAT) were used (Greenwald et al., 1998). 

Scores of the reaction-based game are calculated at the individual level, wherein scores 

from the “practice” block (D1) followed by a test block (D2) are averaged to create the 

overall D score (DT). The three constructs utilized in this study as previously outlined 

include STEM identity (Me=STEM), Gender identity (Me=My Gender), and Gender-

Stereotype Endorsement (STEM=My Gender). Because of the nature of the implicit 

association measures, reliability analysis is only feasible through test and repeat 

measures, however this is outside the scope of this particular study. 

Utilizing the Individualized Balanced Identity Design score (IBID), an 

individual-level classification of identity balance allows for the quantification of an 

individual’s personal identities situated within existing stereotypes (Woodcock, Schultz, 

Hernandez, In Preparation). The IBID method calculates standardized identity balance 

scores by dividing the product of each of the three IAT D-scores (ibr (1); individual 

balance numerator) by the absolute value of the ibr plus the ibr multiplied by the 

standard deviation of the ibr, as represented in (2) below. 

 !"#!"#$!%!& 	= 	&'()*(+	-. ∗ &/012	-. ∗ &/&(+(3&4#(	1)*3+5("()& (1) 

()(&!"#$!%!& 	= 	!"#!"#$!%!&/(|!"#!"#$!%!&| + (|!"#!"#$!%!& ∗ ./(!"#!"#$!%!&)|) (2) 
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Implicit IBID scores range from -1 to 1, with negative scores representing imbalance 

profiles and 1 representing optimally balanced profiles.  

2.3.5. Explicit Identity Balance 

Similar to that of the implicit IBID, explicit classification of identity balance is 

utilized in the study. Using the same Balanced Identity framework, explicit measures 

were used to capture STEM identity, Gender identity, and Gender-Stereotype 

Endorsement (scales previously outlined above). Prior to creating the explicit balance 

scores, all measures were converted to proportion of maximum scores (POMS; Little, 

2013), a method which transforms scale scores to all be on a standard metric of 0 to 1. 

Then, the POMS were linearly transformed to adjust the scale from -.50 to .50, with a 

meaningful zero to represent neutrality. The explicit balance scores were then calculated 

similarly to implicit balance, but using the transformed POMS (cPOMS), the process of 

which can be seen in (3) and (4). 

 
!"#(6#$!%!& 	= 	12345'()*(+	-. ∗ 12345/012	-. ∗ 12345/&(+(3&4#(	1)*3+5("()&  (3) 

 
()(&(6#$!%!& 	= 	!"#(6#$!%!&/(|!"#(6#$!%!&| + (|!"#(6#$!%!& ∗ ./(!"#(6#$!%!&)|)      (4) 

 

Explicit IBID scores range from -1 (imbalanced) to 1 (optimally balanced), similar to 

that of implicit scores. 

2.4. Plan of Analysis 

2.4.1. Data Preparation 

Prior to substantive analyses, the data was screened and cleaned in STATA 

version 16.1 (STATCorp, 2019). The categorical gender variable was recoded so that 
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males are utilized as the reference group (male = 0, female = 1). The Gender-STEM 

Stereotype Endorsement scale composite score was reverse coded for females so that 

scores indicated greater stereotype endorsement for each gender (Men: STEM = males; 

Women: STEM = women). Next, IAT scores were screened. Acceptable IAT scores 

typically utilize the DT scores (average of the practice [D1] and test [D2] blocks), when 

the difference between the D1 and D2 scores is relatively small (i.e., the difference 

between D1 and D2 is less than |1|). However, data screening revealed significant 

outliers in the practice blocks (D1), which skewed the DT scores. Removing cases with 

extreme differences between D1 and D2 would have resulted in substantial loss of cases 

(i.e., n = 55 cases dropped). Therefore, in order to preserve sample size and avoid using 

the problems associated with the practice block (D1), only test block scores (D2), instead 

of DT.   

2.4.2. Tests for Outliers and Statistical Assumptions 

Next, several tests were conducted to determine if there were any violations of 

regression assumptions. First, missing data were examined to determine if the 

assumption of data missing complete at random (MCAR) was tenable. Little’s MCAR 

revealed that the data were consistent with missing completely at random (ꭓ
2 df=4 = 7.55, 

p = .11)    . Next, outliers were addressed using a holistic approach across four different 

methods. Added variable plots had no specific patterns or fan shapes amongst the 

residuals (Figures 6-10; Appendix C), there were no predicted leverage values above the 

maximum leverage ([2k+2]/n), all values of Studentized residuals were within a range of 
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-3 to 3, and no predicted Cook’s D values were equal to or larger than (Judd et al., 

2009). These results imply there are no outliers of concern.  

Next, assumptions of normality, linearity, and homoscedasticity were checked, 

again with a holistic approach, by analyzing plots of the residuals and the results of the 

Shapiro-Wilks test (Appendix C). Although the Shapiro-Wilks test was significant 

(zn=146= 2.56, p<.05), suggesting the data are not normally distributed, the Kernel density 

plots and QQ-plots suggest normality, with residuals falling linearly and only slight 

deviation at the tails of the QQ-plot. Additionally, the means of the Studentized and 

standardized residuals were centered around zero and their standard deviations close to 

one. Holistically, the data does not show cause for concern regarding normality. The 

Cook-Weisberg test for heteroskedasticity was not significant (ꭓ
2
=.03, p=.87), as well as 

the Cameron & Trivedi’s decomposition for heteroskedasticity (ꭓ
2
=4.09, p=.54), both 

suggesting the model is homoscedastic. The results also suggest the data is not 

significantly skewed (ꭓ
2
=5.06, p=.17) nor is it significantly kurtotic (ꭓ

2
=1.49, p=.22). 

Lastly, the IAT data were analyzed to test the balance congruity assumption 

using the four-step tests, per Greenwald and colleagues (2002; Appendix C). That is, 

using a series of sequential regression models, each edge of a triadic profile (e.g., 

Me=STEM or STEM Identity) is first regressed on the multiplicative term of the other 

two edges of a triadic profile (e.g., Me=My Gender × STEM = My Gender; or Gender 

Identity × Gender-STEM Stereotype) and second regressed on the two components of 

the multiplicative term (e.g., Gender Identity and Gender-STEM Stereotype). The four-

step test hypotheses that (a) the beta coefficient of the multiplicative term will be 
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positive and explain significant variance in the outcome, (b) the combination of the two 

components will not explain significant variance in the outcome, (c) the multiplicative 

term will remain positive when the two components are entered, and (d) the beta 

coefficients of each component will be non-significant. The results of the analyses imply 

no major concerns for both implicit and explicit assumptions of balance congruity, with 

implicit analyses holding balance congruent patterns more so than explicit congruencies, 

similar to expectations outlined by Cvencek and colleagues (2020). 
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3. RESULTS 

 

3.1. Relationship Between Implicit and Explicit Associations 

Prior to the formal regression analyses, I examined the descriptive statistics and 

bivariate correlations between the implicit and explicit measures (Table 2; Appendix B). 

On average, women explicitly endorsed the STEM = My Gender association more so 

than men. Women also explicitly had slightly higher scores for both STEM identity and 

Gender identity compared to males. Both men and women, on average, held positively 

balanced profiles for both explicit and implicit measures, however men had a higher 

implicit balance score than women, while women had a higher explicit balance score 

than men on average. Men and women both had strong implicit associations with their 

gender identities, with men having stronger implicit associations than women on 

average. Additionally, men and women both had strong implicit associations with their 

STEM disciplines. 

 The bivariate correlation analysis shown in Table 3 (Appendix B) suggests that 

explicit gender identity scores had a small correlation with explicit stereotype 

endorsement (i.e., r=.20), while explicit stereotype endorsement scores had a positive 

correlation with explicit STEM identity scores. The three implicit STEM identity, 

Gender identity, and stereotype endorsement scores were positively correlated. 

Interestingly and consistent with hypotheses, when the correlations were grouped by 

gender (Tables 4 and 5; Appendix B), only the females had significant correlations 

amongst their IAT scores, as well as the explicit STEM identity and explicit Stereotype 
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endorsement scales. Males had no statistically significant correlations amongst any of 

the variables. 

3.1.1. Research Questions 1 and 2 

A bivariate correlational analysis was conducted to examine the extent do the 

components of implicit identity balance (self/STEM/gender) correlate with their explicit 

counterparts (Question 1). Inconsistent with expectations, the overall results indicate that 

implicit measures were not significantly correlated with their explicit counterparts 

(Table 3, e.g., rImplicit-Gender, Explicit-Gender = .04; Appendix B). When the correlation 

analyses were conducted separately by gender, the pattern was similar for males (Table 

4; Appendix B), but females showed a significant moderate positive correlation between 

implicit and explicit gender stereotype endorsement (Table 5; Appendix B). 

Next, a series of two-step sequential multiple regression analyses were conducted 

to determine if relationship between the implicit measures and their explicit varied as a 

function of participant gender (Question 2). For example, explicit gender identity scores 

were regressed on participant gender and implicit gender identity scores in step-1 and a 

gender × implicit gender identity multiplicative term in step-2. The analysis revealed that 

explicit gender identity was uniquely predicted by participant gender (Table 6, Gender 

Identity; Appendix B), such that women reported strong gender identity than men (Table 

7, Gender, b1 = 0.15; Appendix B). However, consistent with expectations the implicit 

gender identity and implicit gender identity by gender interaction effects were not 

statistically significant (Tables 6 and 7; Appendix B). Although the interaction effect 

non-significant, a simple slopes plots were produced for the sake of completeness 
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(Figure 2; Appendix A). The plot further confirms that the relationship between implicit 

gender identity and explicit identity was equivalent among men and women (i.e., parallel 

lines).  

Identical analyses were performed for the explicit stereotype gender-STEM 

stereotype endorsement and STEM identity. As above, the analyses showed that only 

gender predicted stereotype endorsement, such that women reported higher 

STEM=Female stereotypes (Table 6, Table 8, and Figure 3; Appendix A & B). In 

addition, explicit STEM identity was not predicted by gender, implicit gender identity, 

or the multiplicative term (Table 6, Table 9, and Figure 4; Appendix A & B). Thus, the 

series of tests were inconsistent with the expectation that gender may moderate the 

relationship between implicit and explicit components of identity balance. 

3.1.2. Research Questions 3 and 4 

A bivariate correlation analysis was conducted to examine the overall 

relationship between implicit and explicit balanced identity scores. Inconsistent with 

expectations, the results indicated a positive but non-significant overall relationship 

between implicit and explicit balance scores (Table 3, r = .05; Appendix B). When the 

analysis was conducted separately by gender, males showed a similar pattern (Table 4; 

Appendix B), but the positive association approached conventional level of statistical 

significance among females (Table 5; Appendix B).  

As above, a two-step sequential multiple regression analysis was conducted to 

determine if relationship between implicit and explicit balance identity scores varied as a 

function of participant gender (Question 4). Consistent with expectations, the results 
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indicated that gender moderated the relationship between implicit and explicit identity 

(Table 6, Balance Scores – Step 2; Appendix B). That is, implicit balance identity scores 

positively predicted explicit balance identity scores among women, but the relationship 

was non-significant among men (Table 10 and Figure 5; Appendix A & B). 

3.2. Supplemental Exploratory Analyses 

Additional analyses were conducted to determine if there were statistically 

significant differences in the means of predictors and outcome variables due to 

participant major, seeing as the majority of participants were in the Biological and Life 

Science majors. Prior research suggests the influence of sense of belonging for women 

in fields where numeric representation of women is low (i.e. Engineering and Computer 

Science) when compared to groups with higher representation of women, such as 

Biological and Life Sciences (Rainey et al., 2018). Preliminary t-tests suggested no 

significant differences in the means of explicit balance scores between those in 

Biological/Life Sciences (code=1) when compared to those in Engineering and 

Computer Science (code=0) (Mean difference = -.18, tdf=144=-1.29, p=.20). However, 

significant differences in means were found for implicit balance scores between groups 

(Mean difference= -.32, tdf=144=-2.81, p<.01). Bivariate correlations suggest a moderate 

positive correlation between implicit balance and major group (r=.23, p<.01), while 

there was no significant relationship between major group and explicit balance scores 

(r=.11, p=.20). Since there was not a significant relationship between being in 

Biological/Life Sciences and the outcome of interest (explicit balance), a decision was 
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made to exclude the categorical Major variable from the analyses and proceed as 

originally planned. 
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4. DISCUSSION 

 

Prior literature suggests that explicit measures alone do not hold the same 

predictive validity as implicit measures when considering the effects of persistent 

stereotypes on identity profiles for those in STEM fields (Greenwald et al., 2019). 

Results of these relationships between implicit and explicit measures have been found to 

often be conflicting, as more recent studies suggest the possibilities of an existing 

relationship between the two. When considering identity balance and balance congruity, 

previous literature suggests that balance congruity often holds implicitly, while less 

evidence is present to suggest this for explicit balance congruity (Cvencek et al., 2020). 

This study sought to add to the body of literature surrounding the relationships between 

implicit and explicit measures of identity associations and balance congruity and further 

investigate if differences in these relationships exist between male and female 

undergraduates in STEM disciplines.  

Results of the study indicate that, overall within the data, no significant 

correlations exist between implicit and explicit legs of the triangle. When considered 

separately, women had a significant positive correlation between implicit and explicit 

stereotype endorsement measures. However, when considered formally via moderation 

analysis, the association between implicit and explicit stereotype endorsement came 

close to expected levels of statistical significance, with limitations concerning power to 

find a significant effect. Furthermore, the non-significance of the implicit measures 

predicting the explicit measures in the individual legs of the balance profile still has 
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important theoretical implications. Findings may not have supported the original 

hypotheses (i.e. a small to moderate, positive correlation would exist), however they do 

reflect results of some previous literature on the inconsistencies between participants’ 

implicit and explicit attitudes (Greenwald et al., 2019). For researchers, it is important to 

understand the implications of implicit measures when used in studies, as explicit 

measures themselves do not fully reflect various aspects of identity. This further 

suggests the importance of utilizing implicit measures when conducting studies 

involving stereotypes in STEM fields.  

In regard to differences in the relationships between implicit and explicit balance 

scores, no statistically significant differences were found overall. When considered 

separately, women had a significant positive correlation between implicit and explicit 

balance. Consistent with this correlation, the formal moderation analysis showed that the 

association between implicit and explicit balance was only significant for women. This 

finding further supports the idea that both implicit and explicit measures (as well as 

balance calculations) are important in order to capture differences between males and 

females. 

 

4.1. Limitations 

Although results of the study, in part, support various aspects of prior literature, 

it is important to keep in mind potential limitations of the results. First, the study was 

underpowered in all cases, thus reducing the ability to find the hypothesized effects and 

increasing Type II error rates. A larger sample size would not only increase power, but 
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might reduce the standard errors of the parameters, which were relatively large, thus 

reducing the amount of noise within these predictors in predicting the various explicit 

measures. This would be particularly true for the analysis of the relationship between 

implicit and explicit balance, as the moderation term was statistically significant even 

though the parameters that made up the interaction were not. Additionally, adding other 

potential covariates to the model might have explained more of the variance in the 

outcome measures and reduced the standard error in the parameter estimates. 

Specifically speaking on the generalizability of the study, the current sample is 

made up of juniors and seniors and may not be generalizable to all students in 

undergraduate programs. Prior literature suggests that stereotype threat is particularly 

present within the first two years of college, thus influencing self-efficacy and sense of 

belonging. It is possible that the relationships between the predictors and outcome 

variables, more specifically the likelihood of a participant having a balanced profile 

(either implicit or explicit), may have been a result of persisting past their sophomore 

year. At this point in their academic journey, women may be more familiar with existing 

stereotypes and are more likely to hold balanced identity profiles. 

Lastly, construct validity of the stereotype endorsement explicit measure may be 

of concern due to the wording of the scale, which was presented in the same way to both 

males and females (i.e. “It may be possible that men are better at Engineering than 

women.” By reverse coding the composite score for females, we believe we are 

appropriately measuring the explicit association of STEM = Female for women, 
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however future studies would need to present specific phrasing to females to ensure the 

meaning of the scale holds true for both genders. 

4.2. Future Research 

Findings from the study suggest that, if adequately powered to find the effect, 

there may be a potential relationship between some of the implicit and explicit measures, 

specifically for balance scores, for females.  As the current sample consists of juniors 

and seniors, it would be interesting to find out how this pattern might change for women 

in their first or second year of their undergraduate program, when stereotype threat is 

often at its highest. At Texas A&M, engineering students in their first year do not select 

a specific engineering major until after they have finished their freshman year. A 

longitudinal study could examine the changes in implicit and explicit balance (and 

individual constructs) across the first two years of their undergraduate program, during a 

particularly dynamic time for identity development. 

Additionally, there are notable differences in representation amongst different 

majors within STEM fields, specifically within engineering disciplines. For example, 

Biological and Environmental Engineering majors often have similar parity between 

numerical gender representation as the Biological Sciences, while disciplines like 

Electrical and Mechanical Engineering still struggle to recruit and retain women. A 

future study could examine the differences, not only between implicit scores as 

outcomes, but to examine the relationship between implicit and explicit measures for 

women within these different engineering disciplines. Based on prior literature, we 

might expect that females in engineering fields with particularly low representation 
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would have less of a relationship between their implicit and explicit measures, including 

balance, when compared to their female peers in fields that are adequately numerically 

represented (Biological and Life Sciences). 

Additional studies might also seek to see if similar patterns exist amongst other 

minority groups within the STEM fields. The larger study this report comes from 

additionally involves IAT and explicit measures surrounding ethnic (White/Hispanic) 

personal-professional profiles and could be utilized to see if moderations of the 

relationship between implicit and explicit measures exist between ethnic groups. Further 

understanding of the literature surrounding representation of ethnic groups within 

different STEM fields would be important in order to determine if the participant’s 

major would need to be considered as a covariate in the models. Ultimately, this research 

would serve to add to the existing literature of various stereotypes that exist in the fields 

of science, technology, mathematics, and engineering, including how stakeholders can 

best serve students to dampen the effects of stereotype threat during crucial periods of 

identity development. 
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5. CONCLUSION 

As researchers continue to investigate the nature of identity development 

throughout one’s academic journey surrounding prevailing stereotype threats in the 

STEM fields, the importance of multiple measures of associations of academic domains 

and the endorsements of these persistent stereotypes at the center of personal-

professional congruence prevails. Analyses support prior literature that implicit 

measures do not always correlate with their explicit counterparts as explicit measures are 

often subject to deliberate cognitive processes. This further suggests the need for 

multiple methods of assessment, especially when utilizing the measures for predictive 

means of important outcomes such as persistence and academic success in STEM. 

Additionally, results suggest the need for further investigation into the gendered 

differences amongst the implicit and explicit relationships; more specifically, if the 

relationship between implicit and explicit balance congruity is in fact different for 

women in STEM than it is for men. 
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APPENDIX A 

FIGURES 

 

Figure 1. Components of Balanced Identity Framework 
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Figure 2. Simples Slopes Analysis of Gender Identity Moderated by Gender 
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Figure 3. Simples Slopes Analysis of Stereotype Endorsement Moderated by 
Gender 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

43 

 

Figure 4. Simples Slopes Analysis of STEM Identity Moderated by Gender 
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Figure 5. Simples Slopes Analysis of Balance Scores Moderated by Gender 
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APPENDIX B 

TABLES 

Table 1. Reliability of Explicit Measures 
 

Measure ɑ 

Gender Identity .81 

Male .82 

Female .80 

STEM Identity .88 

Science .90 

Engineering .85 

Computer Science .89 

Stereotype Endorsement .79 

Science .72 

Engineering .90 

Computer Science .75 
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Table 2. Summary of Descriptive Statistics for Implicit and Explicit Measures 
 

 Males 

(n=60) 

Females 

(n=86) 

Variable M SD M SD 

Explicit 

Gender Identity 3.34 1.03 3.91 1.03 

Stereotype Endorsement 3.87 2.26 5.82 1.68 

STEM Identity 3.84 .70 4.06 .72 

Standardized Balance .19 .79 .48 .71 

Implicit 

Gender Identity IAT  .80 .52 .57 .55 

Stereotype Endorsement IAT .52 .55 .34 .56 

STEM Identity IAT .57 .56 .56 .55 

Standardized Balance .42 .58 .32 .67 

Note. Sample includes those who have all 3 explicit scale scores and all 3 IAT D2 

scores. Stereotype endorsement (STEM = My Gender) on a scale of 1 (strongly disagree) 

to 7 (strongly agree). Gender Identity and STEM Identity variables on a scale of 1 

(strongly disagree) to 5 (strongly agree). 
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Table 3. Overall Summary of Correlations Among Predictors and Outcomes (N=146) 
 

Variable 1 2 3 4 5 6 7 8 

1. Gender ID Explicit --        

2. Stereotype 

Endorsement Explicit 

.20* --       

3. STEM ID Explicit .09 .28*** --      

4. Gender ID IAT .04 -.09 -.10 --     

5. Stereotype 

Endorsement IAT   

.09 .06 .12 .32*** --    

6. STEM ID IAT .06 .00 .12 .29*** .18* --   

7. Explicit Balance .27** .42*** .22** -.11 .17* .06 --  

8. Implicit Balance -.11 .01 .15† .19* .54*** .29*** .05 -- 

†p<.10, *p<.05, **p<0.01, ***p< 0.001 
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Table 4. Summary of Correlations Among Predictors and Outcomes for Males (n=60) 
 

Variable 1 2 3 4 5 6 7 8 

1. Gender ID Explicit --        

2. Stereotype Endorsement 

Explicit (STEM = My Gender) 

.18 --       

3. STEM ID Explicit -.10 .17 --      

4. Gender ID IAT .09 -.02 -.16 --     

5. Stereotype Endorsement 

IAT (STEM = My Gender)  

.06 -.03 .04 .20 --    

6. STEM ID IAT -.04 -.14 .17 .20 .10 --   

7. Explicit Balance .09 .37** .17 -.19 .02 .01 --  

8. Implicit Balance -.23† -.22† .24† .14 .50*** .45*** -.14 -- 

†p<.10, *p<.05, **p<0.01, ***p< 0.001 
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Table 5. Summary of Correlations Among Predictors and Outcomes for Females (n=86) 
 

Variable 1 2 3 4 5 6 7 8 

1. Gender ID Explicit --        

2. Stereotype Endorsement 

Explicit (STEM = My Gender) 

.04 --       

3. STEM ID Explicit .15 .32** --      

4. Gender ID IAT .10 .02 -.01 --     

5. Stereotype Endorsement 

IAT (STEM = My Gender)  

.20† .30** .21* .37*** --    

6. STEM ID IAT .15 .17 .08 .37*** .24* --   

7. Explicit Balance .35*** .39*** .22* .02 .35** .12 --  

8. Implicit Balance -.004 .27** .12 .20† .56*** .19† .20† -- 

†p<.10, *p<.05, **p<0.01, ***p< 0.001 
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Table 6. Summary of F-Tests for the Direct and Moderated Effect of Gender on 
Implicit and Explicit Relationships (N=146) 
 

Step SS df MS F R2 ΔF Δdf ΔR2 

 Gender Identity 

1 .80 2 .40 6.04** .08    

2 .80 3 .27 4.00** .08 .00 1 .00 

 Stereotype Endorsement 

1 4.03 2 2.01 19.53*** .21    

2 4.33 3 1.44 14.21*** .23 3.03† 1 .02 

 STEM Identity 

1 .17 2 .09 2.74† .04    

2 .18 3 .06 1.87 .04 .16 1 .001 

 Balance Scores 

1 3.20 2 1.60 2.89† .04    

2 5.35 3 1.78 3.28* .06 3.94* 1 .03 

Notes: Variables entered in Step 1 include: Gender and Implicit IAT score. Variables 
entered in Step 2 include: Gender X Implicit IAT score moderation terms.  
†p<.10, *p<.05, **p<0.01, ***p< 0.001
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Table 7. Summary of Parameter Estimates for the Gender Identity Sequential 
Regression (N=146) 
 

 b S.E. 95% CI 

[LL, UL] 

β 

Step 1         

    Gender, b1 .15 .04 [.06, .24] .28 

    Gender IAT, b2 .05 .04 [-.03, .12] .09 

    Intercept, b0 .05 .05 [3.61, 3.97] . 

Step 2         

Gender, b1 .15 .07 [.01, .30] .28 

    Gender IAT, b2 .05 .06 [-.08, .17] .09 

    Gender by Gender IAT 

Interaction, b3 

.00 .08 [-.16, .16] .00 

    Intercept, b0 .05 .06 [-.07, .17] . 

Notes: Gender coded 0 = male, 1 = female. 
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Table 8. Summary of Parameter Estimates for the Stereotype Endorsement 
Sequential Regression (N=146) 
 

 b S.E. 95% CI 

[LL, UL] 

β 

Step 1         

    Gender, b1 .34 .05 [.23, .45] .47 

    Stereotype Endorsement 

IAT, b2 

.08 .05 [-.01, .18] .13 

    Intercept, b0 -.06 .05 [-.16, .03] . 

Step 2         

Gender, b1 .26 .07 [.13, .40] .36 

    Stereotype Endorsement 

IAT, b2 

-.02 .08 [-.17, .13] -.03 

    Gender by Stereotype 

Endorsement IAT Interaction, b3 

.17 .08 [-.02, .36] .22 

    Intercept, b0 -.01 .06 [-.12, .10] . 

Notes: Gender coded 0 = male, 1 = female. 
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Table 9. Summary of Parameter Estimates for the STEM Identity Sequential 
Regression (N=146) 
 

 b S.E. 95% CI 

[LL, UL] 

β 

Step 1         

    Gender, b1 .05 .03 [-.004, .11] .15 

    STEM ID IAT, b2 .04 .03 [-.01, .10] .12 

    Intercept, b0 .19 .03 [.13, .24] . 

Step 2         

Gender, b1 .07 .04 [-.02, .15] .19 

    STEM ID IAT, b2 .05 .04 [-.03, .14] .16 

    Gender by STEM ID IAT 

Interaction, b3 

-.02 .06 [-.14, .09] -.06 

    Intercept, b0 .18 .03 [.12, .24] . 

Notes: Gender coded 0 = male, 1 = female. 
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Table 10. Summary of Parameter Estimates for the Balance Scores Sequential 
Regression (N=146) 
 

 b S.E. 95% CI 

[LL, UL] 

β 

Step 1         

    Gender, b1 .29 .13 [.04, .54] .19 

    Implicit Balance, b2 .08 .10 [-.12, .27] .06 

    Intercept, b0 .16 .10 [-.05, .37] . 

Step 2         

Gender, b1 .13 .15 [-.16, .43] .09 

    Implicit Balance, b2 -.19 .17 [-.52, .14] -.16 

    Gender by Implicit Balance 

Interaction, b3 

.41 .20 [.002, .81] .29 

    Intercept, b0 .27 .12 [.04, .51] . 

Notes: Gender coded 0 = male, 1 = female. 
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APPENDIX C 

SUPPLEMENTAL MATERIALS 

Greenwald et al., (2002) 4-Test for Balance Congruity STATA Output 
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Outlier and Statistical Assumptions Plots 

Figure 6. Added Variable Plot of Gender/STEM Identity Regression Analysis 
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Figure 7. Kernel Density Plot of STEM Identity Regression Residuals 
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Figure 8. QQ Plot of STEM Identity Regression Residuals 
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Figure 9. Scatter Plot of Studentized Residuals from STEM Identity Regression 
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Supplemental Exploratory Analysis Results STATA Output  
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