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 ABSTRACT 

 

Rising global temperatures are a threat to Arctic ecosystems. Thawing permafrost 

is expected to expose previously frozen carbon to microbial decomposition, an action 

that will promote further warming and have consequences for both the natural 

environment and human communities. However, there is a critical gap in the ability of 

current permafrost models to simulate permafrost thaw under future projected climate 

conditions. A model based on Bayesian methods may help address existing limitations in 

the representation of physically complex processes and availability of observational data. 

A particular strength of Bayesian methods over more traditional methods is the ability to 

integrate various types of evidence (e.g., observations, model outputs, or expert 

assessments) into a single model through probability and statistics. This ability is 

particularly helpful in regions such as the Arctic that have sparse or no data. Here, I 

outline a new modeling framework using a Bayesian network (PermaBN) to simulate 

permafrost thaw in the continuous permafrost region of the Arctic. The PermaBN model 

development process involves: (1) identifying variables relevant to permafrost thaw via 

extensive literature review and collaboration with experts at Texas A&M University, (2) 

pre-validating and validating the model via expert assessment, and (3) evaluating the 

model with physical observations from a local case study. Pre-validation and expert 

assessment validation results show that, as expected, increases in thaw depth are 

expected to be low under initial conditions favoring lower temperatures, increased soil 

moisture conditions, and high active layer ice content while changes are expected to be 
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high under initial conditions favoring higher temperatures, decreased soil moisture 

conditions, and low active layer ice content. Model evaluation shows that performance 

of PermaBN is enhanced when system conditions are known. Future work includes 

refining the model probabilities, calibrating the model, and evaluating the model 

performance using a pan-Arctic case study. Results from this study are expected to 

provide better predictions of permafrost thaw that can then be applied to carbon 

modeling studies, infrastructure hazard assessments, and policy decisions aimed at 

mitigation of and adaptation to permafrost thaw. 
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1. INTRODUCTION  

 

1.1. Context and Problem Statement 

In the face of warming global temperatures, the Arctic is undergoing rapid 

change, with important effects on the cryosphere, ocean, and terrestrial ecosystems 

(IPCC, 2013, Schuur and Mack, 2018, Serreze and Barry, 2014). The cryosphere, which 

encapsulates all portions of Earth’s surface that are covered in frozen water, is 

particularly vulnerable to current and future warming. Decreasing trends and record lows 

in sea ice extents and thicknesses have been observed in recent decades, in addition to 

prolonged summer melt seasons and ice sheet loss (Comiso et al., 2008, Hanna et al., 

2020, Kwok et al., 2009, Serreze et al., 2007, Serreze and Meier, 2019, Stroeve et al., 

2014). In marine ecosystems, the consequences of sea ice loss include increased sea 

surface temperatures (Stroeve et al., 2014), habitat loss for marine mammals (Laidre et 

al., 2008), and the amplification of Arctic temperatures (Pistone et al., 2014, Screen and 

Simmonds, 2010, Serreze et al., 2009). On land, permafrost is increasingly vulnerable to 

thaw (Biskaborn et al., 2019, Jorgenson et al., 2010, Koven et al., 2013). Permafrost 

thaw has direct consequences for both the natural environment and human communities 

(Schuur and Mack, 2018), including damage to built infrastructure (Hjort et al., 2018, 

Karjalainen et al., 2019), landscape change through the creation of thermokarst terrain 

(Kokelj and Jorgenson, 2013, Olefeldt et al., 2016), and release of previously frozen soil 

carbon (Schuur et al., 2015, Schuur et al., 2009). 
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Permafrost soils are an important and dynamic component of the global climate 

system. Permafrost is perennially frozen ground (soil, rock, or sediment) that remains at 

or below 0°C for at least two years (Permafrost Subcommittee, 1988). Permafrost, which 

covers almost a quarter of the Northern Hemisphere’s land surface at 22.79 × 106 km2 

(excluding permafrost under glaciers and ice sheets) (Zhang et al., 2003), occurs both on 

land and beneath arctic continental shelves and is classified as continuous (90-100% 

area), discontinuous (50-90% area), sporadic (10-50% area), or isolated (0-10% area) 

(Brown et al., 1997). This frozen ground can be further characterized by the percent by 

volume of its ground ice content (Brown et al., 1997). An important component of 

permafrost is its active layer, which is the top layer of the frozen ground subject to 

annual thawing and freezing (Permafrost Subcommittee, 1988). Northern peatlands, 

which have accumulated large stocks of carbon and nitrogen over time, are estimated to 

occupy 1.7 ± 0.5 × 106 km2 of the permafrost region (Hugelius et al., 2020). 

In recent decades, the temperatures of circumpolar permafrost have increased by 

2 – 4°C (Kokelj and Jorgenson, 2013) as a result of Earth’s northernmost latitudes 

warming at a rate twice as fast as the global average (IPCC, 2013). Warming 

temperatures are often associated with permafrost thaw and degradation, but permafrost 

is not directly connected to the atmosphere. Instead, the ground thermal regime, along 

with soil properties, snow, surface and subsurface hydrology, vegetation, and 

topography, mediate permafrost stability (Gockede et al., 2019, Jorgenson et al., 2010, 

Stiegler et al., 2016, Zhang et al., 2018). Likewise, just as these factors control 

permafrost stability, permafrost also controls these properties and processes. Despite 
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decades of observations and modeling efforts (e.g., Biskaborn et al. (2015), Jafarov et al. 

(2012), and Nelson and Outcalt (1987)), there is much that remains unknown about 

Arctic permafrost systems and processes. For instance, the total northern permafrost soil 

organic carbon (SOC) pool remains uncertain, with estimates ranging from 1140 – 1476 

Pg (Hugelius et al., 2014) to 1672 Pg (Tarnocai et al., 2009). In permafrost-affected 

peatlands alone, the organic carbon stock is estimated at 185 ± 66 Pg (Hugelius et al., 

2020). The range in uncertainty is a result of difficulties with estimating organic soil 

area, thickness, and carbon density (Loisel et al., 2017). Estimates are further limited by 

the lack of observations in the northern latitudes due to their remoteness and harsh 

climate (Serreze and Barry, 2014); there are also limitations pertaining to soil carbon 

stock and flux representations in Earth system models (ESMs) (Tian et al., 2015). 

The exposure of previously frozen carbon to microbial decomposition via 

permafrost thaw is expected to promote further warming, and subsequently further thaw, 

through a positive feedback loop between carbon emissions and the atmosphere (Schuur 

et al., 2015). Depending on the thaw conditions, the previously frozen ground – and the 

soil organic matter (SOM) it contains – could be exposed to either aerobic or anaerobic 

conditions (Parmentier et al., 2017, Schuur et al., 2015). In the case of the former, 

carbon dioxide (CO2) would be released to the atmosphere through intensive microbial 

decomposition of that SOM under drier conditions, while the latter would allow for 

methane (CH4) to be produced and released to the atmosphere under saturated conditions 

(Parmentier et al., 2017, Schuur et al., 2015). CH4 has a global warming potential 34 

times greater than CO2 on a century time scale (Myhre et al., 2013), which would allow 
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for warming to be further enhanced. At the same time, recent shrub expansion trends in 

the Arctic (Myers-Smith et al., 2011) may help offset some of this carbon release 

through a negative feedback loop involving increased carbon uptake by vascular plants 

(Sweet et al., 2015) and shading of ground underlain by permafrost in the summer (Blok 

et al., 2010). However, the warming that is driving the Arctic greening trends is 

ultimately expected to increase rather than decrease the vulnerability of carbon release 

from terrestrial ecosystems due to surface albedo changes related to the protrusion of 

shrub stems above the spring snowpack that lead to warmer soil temperatures and deeper 

active layers (Lawrence and Swenson, 2011). Other predicted Arctic changes with 

indirect impacts on carbon cycling include changes in precipitation patterns (Bintanja 

and Andry, 2017, Bintanja et al., 2020, Screen and Simmonds, 2012), shifts in 

vegetation and ecoregion patterns (Feng et al., 2012, Myers-Smith et al., 2011, Myers-

Smith et al., 2020), intensification of the hydrological cycle (Box et al., 2019), increased 

occurrence of fires (Hu et al., 2015), and insect outbreaks (Barrio et al., 2017). 

To gain a better understanding of how the Arctic will change in a warming world 

and assess the consequences of permafrost degradation, many researchers and 

stakeholders rely on models to inform their studies or decisions (Flynn et al., 2019, 

Koven et al., 2013). While there is a general understanding of how permafrost thaw is 

impacted by various feedbacks and surface properties (Gockede et al., 2019, Jorgenson 

et al., 2010, Schuur and Mack, 2018, Stiegler et al., 2016, Zhang et al., 2018), current 

research emphasizes the need to further improve permafrost modeling and address model 

shortcomings (Lawrence et al., 2008, Riseborough, 2007, Tao et al., 2017). Often-cited 
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shortcomings include difficulties with (or lack of) the representation of the ground 

thermal regime and vegetation dynamics, limitations inherent to the modeling approach 

adopted (e.g., fixed temporal domain in equilibrium models or requirement of spatial 

data for numerical models), and heterogeneity in variable conditions (Lawrence et al., 

2008, Riseborough, 2007, Tao et al., 2017). Many studies aim at addressing these known 

issues and improving existing models or modeling approaches (e.g., Jafarov et al. 

(2012), Tao et al. (2017), Westermann et al. (2016)). While these advancements are 

essential, alternative modeling methods that allow for the integration of different data 

types should be further explored.  

To address the difficulty in simulating permafrost thaw under future projected 

climate conditions with current models, this paper presents a new modeling technique 

based on Bayesian methods. This approach allows explicit representation of the 

variables related to permafrost thaw and simulation of changes in permafrost thaw depth 

with quantification of uncertainty. Based on cause-effect relationships and the 

integration of multiple types of evidence (here, observational data and expert 

assessments), the method links four major components of the Arctic ecosystem to 

permafrost thaw depth: geological, atmospheric, surface insulation, and soil 

characteristics. 

1.2. Research Questions and Associated Objectives 

The purpose of this research is to develop a new modeling framework 

(PermaBN) in the form of a Bayesian Network (BN) to simulate permafrost thaw in the 

Arctic and evaluate how the BN performs relative to an existing observational case 
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study. A BN framework combines physics- and empirically-based modeling approaches 

with statistics and probability in order to link various components of a system (e.g., the 

Arctic) together and make predictions (e.g., permafrost thaw depth). The framework 

allows for the integration of multiple types of evidence, such as model outputs, 

observations, and expert assessments. This integration of evidence is significant in that it 

may help address the limitations and gaps of current permafrost models. It also reduces 

uncertainty in simulations of future permafrost thaw by quantifying uncertainties 

pertaining to each variable on those predictions. Further, this modeling approach is 

transparent in that the interactions between variables in the BN are explicitly 

represented. Few studies have utilized Bayesian methods to assess environmental 

changes in the Arctic (e.g., Qin et al. (2018) and Wainwright et al. (2017)), and the most 

comprehensive Arctic BN study only includes evidence in the form of expert assessment 

(Webster and McLaughlin, 2014). This research will expand upon these studies and 

include comparison of the PermaBN results to in situ observations. 

The primary objective of this research is to develop a new method for assessing 

permafrost thaw in the Arctic. The secondary objective is to evaluate the performance of 

this new method in relation to an observational case study. The outcome of the primary 

objective is a BN model validated through expert assessment that produces estimations 

of permafrost thaw depth that are consistent with current research. The outcome of the 

secondary objective is that the BN model output agrees with physical observations of 

permafrost thaw depth from a local case study. Results from this study could be applied 
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to future carbon modeling studies, infrastructure hazard assessments, and policy 

decisions aimed at mitigation of and adaptation to permafrost thaw. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

2.1. Geomorphic and Ecological Processes that Influence Permafrost Thaw 

The Arctic, defined here as the land area north of the Arctic Circle 

(approximately 66.5°N) (McGuire et al., 2006), is a complex, interconnected system. 

Permafrost soils are an important and dynamic component of this system and a 

distinctive feature of the northern polar region. For instance, permafrost acts as a 

structural component for regulating ecosystems through its impact on temperature, 

water, and nutrients. Active layer depth controls the temperature regime of soil layers, 

with soil near the bottom of the active layer remaining only a degree or two above 

freezing when thawed; temperature also affects SOM decomposition and plant and 

animal physiology (Schuur and Mack, 2018). The presence of permafrost, especially ice-

rich permafrost, affects water flowpaths and water availability by decreasing infiltration 

and increasing evaporation and runoff when water sits on the surface of the upper thaw 

layer; this has implications for plant access to water and whether heterotrophic 

organisms are exposed to aerobic or anaerobic conditions (Schuur and Mack, 2018). 

Permafrost also controls nutrient availability, primarily of nitrogen, through seasonal 

thaw depth and permafrost temperature; near-freezing temperatures inhibit nitrogen 

release by microorganisms (Schuur and Mack, 2018).  

The distribution of permafrost is strongly latitudinal (Figure 2.1), with 

continuous permafrost (> 90% of area underlain by permafrost) in the north followed by 
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discontinuous permafrost, sporadic permafrost, and isolated patches (< 10% of area 

underlain by permafrost) as one moves farther south (Brown et al., 1997).  

 
 

 
Figure 2.1 Continuous, discontinuous, sporadic, and isolated permafrost 
distribution across the Northern Hemisphere. Reprinted from Rekacewicz (2005). 
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Continuous permafrost occupies ~84.5% of the northern permafrost region while 

discontinuous permafrost occupies ~15% (Brown et al., 2002). Aside from differences in 

percent of frozen ground, these two permafrost types also primarily occupy different 

ecoregions. Continuous permafrost is commonly found in the tundra while discontinuous 

permafrost is more characteristic of the boreal region (Brown et al., 2002, The Nature 

Conservancy, 2009). The extent of permafrost alters water movement, surface 

topography, and the distribution of vegetation communities across landscapes. For 

example, in the tundra, water infiltration is limited due to the frozen ground, which 

restricts plant growth from both water availability and rooting perspectives; as such, 

vegetation is primarily limited to nonvascular mosses and lichens that lack root systems 

(Schuur and Mack, 2018). In the boreal region, conditions are more favorable for water 

infiltration, contributing to taller vegetation coverage; ground subsidence due to thawing 

of ice-rich ground is also less common than in the tundra (Jorgenson and Osterkamp, 

2005). Along those lines, factors that control permafrost thaw may differ between these 

two regions. For instance, taller vegetation can contribute to higher snow depths, thereby 

altering the ground thermal regime and accelerating permafrost degradation; increased 

surface water coverage can also accelerate permafrost degradation through surface 

energy fluxes (Burn and Kokelj, 2009).  

In my research, the emphasis is on the geomorphic and ecological processes that 

influence permafrost thaw in the continuous permafrost region. While I recognize that 

hydrological processes such as river dynamics and the presence of surface water (e.g., 

lakes) also exert an important control on permafrost thaw (Burn and Kokelj, 2009, 
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Kokelj and Jorgenson, 2013, Zheng et al., 2019), my model, along with the majority of 

existing permafrost models (e.g., Kudryavtsev model by Anisimov et al. (1997), GIPL2-

MPI by Jafarov et al. (2012), and Catchment Land Surface Model (CLSM) by Tao et al. 

(2017)), implicitly include hydrological processes through the representation of ground 

heat fluxes and thermal conductivity. The following subsections define and review key 

processes that influence continuous permafrost thaw:    

(1) Topography: landscape-scale geologic and topographic characteristics and 

processes typically remain consistent, at the human timescale, in their influence on other 

system components such as vegetation communities, snow depth, and soil moisture. As 

such, local topography can influence snow distribution, incident radiation, and wind 

exposure, which can impact soil moisture and soil temperature (Aalto et al., 2013, 

Serreze and Barry, 2014, Young et al., 1997). In the northern hemisphere, northerly 

aspects tend to be snowier, cooler, and receive less intense incoming radiation than 

southerly aspects (Evans et al., 1989, Petzold and Mulhern, 1987, Wilcox et al., 2019). 

The effects of aspect on radiation are lessened at higher latitudes, particularly for east 

and west aspects (Holland and Steyn, 1975). Nonetheless, the differences between north 

and south slopes can still be significant. In the Brooks Range northern foothills of 

Alaska, Evans et al. (1989) found that dry-type vegetation communities (e.g., dry dwarf-

shrubs and fruticose-lichen tundra such as Dryas octopetala, Arctous alpina, Vaccinium 

uliginosum, and Cassiope tetragona) dominate south- and southwest-facing slopes, 

while dry-type moist vegetation assemblages (e.g., moist dwarf-shrub, moss, fruticose-

lichen tundra such as Cassiope tetragnoa or Salix rotundifolia) dominate north- and 
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northwest-facing slopes. Similarly, Myers-Smith et al. (2020) found that shrub cover 

throughout the Arctic has been noticeably increasing on south-facing slopes. 

(2) Soil texture and density: the effects of soil particle size and density on soil 

moisture and soil temperature are considered. Soil particle size, also referred to as soil 

texture, influences soil moisture by controlling the moisture retention rate and thermal 

conductivity of the soil (Arya and Paris, 1981, Young et al., 1997). For instance, finer 

particles such as clay can retain more moisture than coarser particles such as sand 

(Meentemeyer and Zippin, 1981). Meentemeyer and Zippin (1981) found that higher net 

moisture was required to produce needle ice when the percentage of fine soil particles 

decreased. However, too high of a fine particle content can also inhibit ice growth, 

indicating that a mixture of fine and coarse particles is optimal for ice growth. Soil 

texture can also be considered from the perspective of soil bulk (dry) density, which is 

the measure of the amount of dry solid particles per unit volume. In this case, a sandy 

soil has a higher dry density than a silty or clayey soil; organic soils generally have very 

low dry densities (Abu-Hamdeh and Reeder, 2000). Dry bulk density influences soil 

thermal conductivity, such that an increase in density at a given soil moisture content 

increases the thermal conductivity of that soil (Abu-Hamdeh and Reeder, 2000). 

Thermal conductivity therefore tends to be highest in sandy (i.e., high bulk density) soils 

and lowest in organic (i.e., low bulk density) soils. A study by Xu et al. (2020) noted that 

the effect of density on thermal conductivity is weaker when temperatures are positive as 

opposed to negative. It should also be noted that sandy soils have a high infiltration rate, 
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but low available water content, while clayey and organic soils have the highest 

volumetric water contents (Abu-Hamdeh and Reeder, 2000). 

(3) Surface air temperature and precipitation regimes: surface air temperature and 

precipitation exert direct and important influences on soil and vegetation properties. For 

instance, warmer surface air temperatures are expected to increase the length of the 

growing season, which may contribute to shrub expansion and increased photosynthetic 

activity across the tundra (Myers-Smith et al., 2011, Myers-Smith et al., 2020). 

Increased air temperatures have also been linked to changes in soil temperature, soil 

moisture, and precipitation. The relationship between increased surface air temperatures 

and increased soil temperatures is well documented (Boike et al., 2003, Oelke and 

Zhang, 2004, Park et al., 2014, Zhang et al., 2018). Many studies have also identified 

surface characteristics that work to modulate the relationship between air and soil 

temperatures, such as snow and water cover (Kokelj and Jorgenson, 2013, Zhang et al., 

2018). As for precipitation, atmospheric air temperatures affect the ratio of precipitation 

that falls as rain vs. snow, and as temperatures continue to warm, a higher ratio of 

precipitation falling as rain is expected (Bintanja and Andry, 2017). A higher ratio of 

rainfall would impact snow depths by not only reducing snowfall amounts but also by 

melting existing snow cover (Boike et al., 2003, Screen and Simmonds, 2012). As for 

precipitation regimes, the Arctic is expected to experience increased precipitation totals 

throughout the 21st century (Bintanja and Andry, 2017). This may be due to reduced sea 

ice cover, which allows for increased evaporation, cloud formation, and precipitation 

(Bintanja and Andry, 2017), and/or changes in poleward moisture transport (Bintanja et 
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al., 2020). Despite the projected increase in Arctic precipitation, however, decreased 

amounts of snow are also expected, primarily as a result of warming temperatures 

(Bintanja and Andry, 2017). Precipitation also contributes directly and indirectly to soil 

moisture, primarily through snowmelt and rainfall, with air temperature moderating the 

moisture content via evaporative processes (Rouse et al., 1997, Young et al., 1997).  

(4) Biota: vegetation properties considered here include vegetation cover and 

height. Height has known influences on ground insulation via shading in the summer and 

increased snow depth in the winter (Grunberg et al., 2020, Myers-Smith et al., 2011, 

Wilcox et al., 2019), which has implications for soil temperatures and permafrost thaw 

depths. More is known about winter vegetation influences on active layer thickness 

(ALT) than summer vegetation influences. In winter, increased vegetation density and 

height have been shown to locally increase snow depths by trapping snow in branches 

(Gockede et al., 2019, Grunberg et al., 2020, Myers-Smith et al., 2011, Wilcox et al., 

2019), and the insulative properties of snow contribute to warmer winter soil 

temperatures (Gockede et al., 2019, Myers-Smith et al., 2011, Park et al., 2014, Zhang et 

al., 2018). This slows down, or prevents, the active layer from refreezing during the cold 

season (Jan and Painter, 2020, Zhang et al., 1996). In the summer, vegetation cover 

shades the ground and reduces the thermal gradient into the ground, thereby leading to 

cooler summer soil temperatures and reduced active layer depths (Aalto et al., 2013, 

Blok et al., 2010, Grunberg et al., 2020, Myers-Smith et al., 2011, Young et al., 1997). 

Some studies, such as the field observation study by Blok et al. (2010), have suggested 

that vegetation shading may help protect permafrost from thaw by offsetting some of the 
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influences of increased air temperatures. However, other studies, such as another field 

observation study by Lawrence and Swenson (2011), argue that the warming-induced 

increase in shrub cover will ultimately offset the local cooling influence due to surface 

albedo changes related to the protrusion of shrub stems above the spring snowpack that 

lead to warmer soil temperatures and deeper active layers. In this latter case, the 

vulnerability of permafrost to thaw could be increased.  

(5) Soil temperature and moisture: soil moisture content influences soil 

temperature, as it alters the thermal dynamics of the soil (Oelke and Zhang, 2004, 

Zwieback et al., 2019). Increased soil moisture, which would be more characteristic of 

lower bulk density (i.e., organic or clayey) soils than high bulk density (i.e., sandy) soils, 

typically leads to decreased soil temperatures since it increases the heat capacity of the 

soil, and evaporation consumes a large amount of energy. However, soil moisture and 

high bulk density also increase the thermal conductivity of soil, allowing heat to 

penetrate the ground more effectively and increase active layer depths (Frauenfeld et al., 

2004). Many recent studies suggest that the influence of soil moisture is stronger on 

thermal conductivity than on conductive heat transfers, though it is also noted that this 

influence may not hold at deeper soil depths and in continuous permafrost areas that 

have a higher concentration of mineral soils (Douglas et al., 2020, Fisher et al., 2016, 

Loranty et al., 2018). The relationship between soil temperature and permafrost thaw is 

well established. Increased soil temperatures lead to increased ALT through increases in 

the ground heat flux (Frauenfeld et al., 2004, Liljedahl et al., 2016, Loranty et al., 2018, 

Schuur and Mack, 2018).  
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(6) Ground ice content within the active layer: another important aspect of Arctic 

sub-surface processes. Similar to permafrost, ground ice is vulnerable to degradation as a 

result of increased soil temperatures (Jorgenson et al., 2015, Liljedahl et al., 2016). 

While soil moisture is a critical variable in ground ice growth, with wet sites more likely 

to have high ice concentrations than dry sites (Meentemeyer and Zippin, 1981, O'Neill 

and Burn, 2012), the presence of ground ice can help delay active layer thickening due to 

the large amount of latent heat required to melt the ice (Jorgenson et al., 2015, Lee et al., 

2014, Loranty et al., 2018, Schuur and Mack, 2018). Conversely, high ground ice 

content can lead to pronounced ground subsidence when that ice melts, further 

promoting permafrost thaw (Jorgenson et al., 2015, Kokelj and Jorgenson, 2013). 

2.2. Permafrost Modeling and Observational Data 

There is a substantial research interest in gaining a greater understanding of how 

the Arctic will change in a warming world. As permafrost is a key component of the 

terrestrial Arctic system, there is a long history of observations, experiments, and models 

that have been made to better understand its spatial and temporal dynamics. It is well 

known that consequences of permafrost thaw include soil carbon emissions (Schuur et 

al., 2015, Schuur et al., 2009), landscape transformation through lake formation and 

drainage (Haynes et al., 2018, Nitze et al., 2018), and infrastructure damage (Hjort et al., 

2018, Karjalainen et al., 2019). While Arctic observational networks have improved over 

the years, many regions remain undersampled and understudied (Biskaborn et al., 2015, 

Gruber, 2012, Serreze and Barry, 2014); models are often relied on to fill these data and 

knowledge gaps and to make future estimations and predictions. In general, models 
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allow for an approximate physical, conceptual, or mathematical representation of a 

phenomenon that is difficult to observe directly, whether that is due to the remote nature 

of a region or the time scale over which the phenomena of interest operate. As such, 

models can allow researchers to untangle the different cross-scale interactions between 

climate, topography, hydrology, biota, and permafrost dynamics. That said, 

observational data are still necessary for validation of these permafrost models and are 

an important component of the model development process (Gruber, 2012, Rykiel, 

1996). 

Non-modeling methods for monitoring permafrost changes include field 

measurements and remote sensing data. Field measurements vary greatly across studies. 

They can consist, for example, of highly localized, repeated frost table depth 

measurements as seen in Wilcox et al. (2019), or of boreholes from which permafrost 

temperatures can be measured at various ground depths. Prior to the establishment of the 

Global Terrestrial Network for Permafrost (GTN-P) (Biskaborn et al., 2015), boreholes 

were scattered across permafrost regions with no globally organized permafrost data 

network or reference baseline to compare temperatures to (Biskaborn et al., 2019). 

Russia has the most boreholes, followed by the United States (Alaska) and Canada 

(Biskaborn et al., 2015). As for remote sensing, a relatively new application of 

interferometric synthetic aperture radar (InSAR) measurements allows for the detection 

of ground subsidence related to the seasonal thaw of the active layer; this method 

provides the benefit of being able to capture a wider area of measurement than 

traditional in situ methods (Dutta and Barnhart, 2020, Liu et al., 2010, Zhao et al., 2016). 
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The breadth and complexity of existing permafrost models varies. Some of the 

first permafrost models used empirical, analytical, and/or equilibrium modeling 

approaches. Empirical models are developed using observations and focused on 

describing data, such as relationships that can be used for forecasting; they can be either 

deterministic or probabilistic. Empirical models include N Factors (Lunardini, 1978), the 

Frost Index (Nelson and Outcalt, 1987), and the statistical-empirical model 

PERMAKART (Keller, 1992). In contrast, analytical models are based on mathematical 

formulations (analytic functions) that have a closed-form solution; these models describe 

changes in a system, such as the thermal behavior of the ground when freezing or 

thawing occurs. There are few purely analytic permafrost models, although a commonly 

used analytic equation is the Stefan model (Lunardini, 1981). Analytic equations can be 

validated with empirical observations, as seen in the Kudryavtsev model that serves as 

an alternative to the Stefan model (Kudryavtsev et al., 1974); an analytical-empirical 

variation of the Kudryavtsev solution was used by Anisimov et al. (1997) where they 

combined the Kudryavtsev predictions of thaw depth with climatic data from general 

circulation models (GCMs) to provide ALT estimates for a variety of soil conditions. 

Meanwhile, equilibrium models are process- and physics-based models that define 

equilibrium permafrost conditions for a given annual regime by assuming a stationary 

temperature and snow cover climate; variations in either of these assumptions produce a 

range of mean annual ground temperatures (MAGTs) that cause permafrost conditions to 

deviate from equilibrium (Riseborough et al., 2008, Riseborough, 2007). Examples of 

equilibrium models include the Frost Number model (Nelson, 1986), TTOP model 
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(Smith and Riseborough, 1996), and variations of the Kudryavtsev model (Anisimov et 

al., 1997).  

More recent modeling efforts have adopted numerical and statistical approaches. 

Similar to equilibrium models, numerical models are also physics-based and are a type 

of mathematical model that relies on computational techniques to represent the behavior 

of a process over time. For example, numerical models can simulate the evolution of 

permafrost and ground thermal regimes over continental and decadal scales 

(Riseborough et al., 2008). They differ from the closed-form solutions of analytical 

models in that they are flexible enough to accommodate highly variable materials, 

geometries, and boundary conditions (Riseborough et al., 2008). Examples of numerical 

models include a one-dimensional finite-difference model (Goodrich, 1982, Goodrich, 

1978), the Northern Ecosystem Soil Temperature (NEST) model (Zhang et al., 2006), 

the GIPL2-MPI model (Jafarov et al., 2012), the NASA CLSM (Tao et al., 2017), and 

the work of Nicolsky and Romanovsky (2018). Lastly, statistical models are 

mathematical models based on a set of statistical assumptions that were made on a 

particular dataset. Statistical modeling studies tend to include a limited number of 

variables. Examples of statistical models include an analysis of the relationship between 

MAGT and ALT developed by Aalto et al. (2018), a permafrost infrastructure hazard 

assessment developed by Hjort et al. (2018), and an evaluation of the spatial and 

temporal influence of shrub expansion on frost table depth developed by Wilcox et al. 

(2019). A table comparing the input and output parameters of the models listed above 

can be seen in Table 2.1. 
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Table 2.1 Table of select permafrost models detailing their model type 
classification, select input parameters, and outputs. Ten of the most common input 
parameters were selected for comparison, with an “X” denoting if a model includes 
that input parameter. Type abbreviations: EQ (equilibrium), A (analytical), N 
(numerical), EM (empirical), S (statistical). Refer to text for references. 
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Frost Number EQ X   X X  X  X  

Depth of 
frost; 
surface 
frost 
number 

TTOP EQ X  X      X  

Mean 
annual 
temp. at 
base of 
active layer 

Kudryavtsev 
EQ; 
A - 
EM 

X  X  X X X  X X 

Depth of 
seasonal 
freezing/ 
thawing 

One-
dimensional 

finite-difference 
model 

N     X X X  X  

Position of 
freezing/ 
thawing 
interface 

Northern 
Ecosystem Soil 

Temperature 
(NEST) 

N X   X  X  X X X 

ALT; 
depth to 
permafrost 
table 

GIPL2-MPI N X  X X X  X  X  
MAGT; 
ALT 

Catchment Land 
Surface Model 

(CLSM) 
N X  X X    X X X 

ALT; soil 
temp. 
profile 
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Table 2.1 Continued. 
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Numerical 
Experiments by 

Nicolsky and 
Romanovsky 

(2018) 

N   X   X X  X  
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thaw 

Stefan model A X        X  

Phase 
change 
boundary 

N Factors EM X  X        n-factor 

Frost Index EQ; 
EM X  X X X X X  X  

Stefan frost 
number 

PERMAKART S - 
EM X X X  X   X   

Map of 
permafrost 
distribution 

Aalto et al. 
(2018) S X   X    X   

MAGT; 
ALT 

Hjort et al. 
(2018) S   X   X     

Geohazard 
indices 

Wilcox et al. 
(2019) S  X   X     X 

Quantifica-
tion of 
micro-scale 
variables 
on frost 
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Models can also be coupled or uncoupled. ESMs are coupled, which means that 

different subsystems (e.g., ocean, atmosphere, biosphere) are represented by sub-models 

that communicate with each other to represent feedbacks and fluxes in all directions. In 

contrast, uncoupled or standalone models do not exchange information between models. 

In the Arctic, an example of a coupled model would include a set of sub-models that 

dynamically link changes in atmospheric conditions with sea ice conditions and 

vegetation dynamics. One of the most commonly used coupled land surface models 

(LSMs) in permafrost modeling studies is the Community Land Model version 4 

(CLM4) (Oleson et al., 2010). This LSM is used within the Community Earth System 

Model (CESM) and reflects the philosophy that terrestrial ecosystems are key 

determinants of climate (Bonan, 2008). Conversely, an uncoupled atmospheric model 

may be initialized with sea surface temperature or sea ice extent information, but the 

ocean itself is not modeled. In the Permafrost Modeling Toolbox by the Community 

Surface Dynamics Modeling System (CSDMS), the Frost Index (Nelson and Outcalt, 

1987) and Kudryavtsev (Anisimov et al., 1997) models can be coupled to other CSDMS 

models, while the GIPL2-MPI (Jafarov et al., 2012) model is currently standalone 

(Overeem et al., 2018). Serreze and Barry (2014) discuss other uncoupled land surface, 

global climate, regional climate, and ecosystem models used in the study of the Arctic 

climate system. As for coupled models, a thorough review of models participating in the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) and their performance in 

regards to permafrost modeling can be found in Koven et al. (2013). A table of the 

models used in their analysis is shown in Table 2.2, and a table of the modeled current 
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and future permafrost extent in the upper 3 meters of soil for each model is shown in 

Table 2.3. This modeling study concluded that the models included in CMIP5 differ in 

their degree of warming and the response of permafrost to warming (Koven et al., 2013). 

While all models showed a loss of permafrost, the percentage of loss ranged from 6 – 

29% (Koven et al., 2013). Many of the differences in the model results can be attributed 

to the representation of ground thermal relationships between surface air temperature 

and the land surface, particularly in regards to snow cover (Koven et al., 2013).  

 

Table 2.2 Some key models relevant to soil physics at high latitudes (e.g., snow 
properties, differing frozen- and unfrozen-soil thermal conductivity); model 
attributes and model references used are also presented. Reprinted from Koven et 
al. (2013). 
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Table 2.3 Modeled current and future permafrost extent in the upper 3 m of soil. 
For qualitative comparison, the 50% of models with the least bias for the present 
time period are noted in boldface type. Reprinted from Koven et al. (2013). 
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There are advantages and disadvantages to every model development approach. 

For instance, while analytical models can provide closed-form solutions based on 

mathematical representations, they cannot integrate site-specific, real-world conditions 

such as snow cover time series (Riseborough et al., 2008). Conversely, numerical models 

can address this limitation, but they require the input of spatial data to set up initial 

conditions and subsequent model spin up; this can be an issue, as data are not always 

readily available to initialize every model component (Biskaborn et al., 2015, Gruber, 

2012, Serreze and Barry, 2014). In these cases, modelers revert to alternative 

mathematical representations or parameterizations and/or do not fully validate their 

models (Gruber, 2012, Riseborough et al., 2008). In the permafrost modeling realm, the 

representation of ground thermal regime and/or vegetation dynamics can be very limited. 

Other key limitations include those inherent to the chosen modeling approach adopted 

and data variability (Lawrence et al., 2008, Riseborough et al., 2008, Tao et al., 2017). 

Along those lines, the models can only be as good as the data available; in the case of 

permafrost, there remains large uncertainties that pertain to permafrost distribution, 

thickness, and ice content, among many more (Gruber, 2012). 

Permafrost models commonly include the following input parameters (Table 

2.1): air temperature, precipitation (particularly snow cover and/or depth), soil 

temperature, and soil moisture. Vegetation cover, topography, and soil texture are less 

common, albeit important additions. A difficulty in assessing permafrost model 

performance and representation is that most model simulations are conducted in Alaska, 

as that is where there are the most and highest quality observations that allow for model 
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calibration. By limiting the spatial domain for model development and/or testing, it is 

possible that the model may not be as applicable to other regions, such as Canada or 

Siberia. As a result, current research emphasizes the need to further improve permafrost 

modeling, and many studies are aimed at improving existing models or modeling 

approaches to fill the aforementioned gaps and limitations (e.g., Jafarov et al. (2012), 

Tao et al. (2017), Westermann et al. (2016)). While this is important work, it is possible 

that an alternative type of model – one that would allow for the integration of different 

data types and a novel representation of permafrost thaw dynamics – would provide the 

community with new benchmarks against which to compare and contrast model outputs. 

2.3. Bayesian Methods 

BNs are probabilistic, cause-effect frameworks and mathematical tools; they are 

constructed to represent variables (“nodes”) and the relationships (“arcs”) between these 

variables. Variables may be classified as “parent” (cause) or “child” (effect) nodes. 

Variables can also be further classified by their “type,” such as “decision” or “chance” 

nodes. Decision nodes are those that are non-random or non-variable (e.g., topographic 

aspect), while chance nodes are those that have a random component to them (e.g., air 

temperature). A number of “states” are then attributed to each node; these states are 

typically represented as categories that capture the current state the variable is in and the 

states that the variable can shift to. For instance, a variable may exist in a low, medium, 

or high state. Decision nodes do not have probabilities associated with them, and the 

user sets the states. The inclusion of decision nodes aids in the exploratory analysis of 

different scenarios. For chance nodes, on the other hand, a probability is assigned to each 
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one of these states based on existing evidence, such as physical observations, model 

outputs, or expert assessment.  

BNs are based on a specific case of Bayes’ theorem that describes the probability 

of an event given prior conditions and how beliefs change to account for new evidence 

(Korb and Nicholson, 2004). The concept of Bayesian inference is formalized in the 

equation: 

𝑃 𝐻 𝐸 =
𝑃 𝐸 𝐻 𝑃(𝐻)

𝑃(𝐸)  

where the probability of a hypothesis H given some evidence E is equal to its likelihood 

P(E|H) times its probability prior to any evidence P(H), normalized by the probability of 

the evidence P(E) being true (Korb and Nicholson, 2004). A graphical representation of 

the causal relationship between H and E is seen in Figure 2.2.  

 

 

 
 
Figure 2.2 Graphical (BN) representation of the casual relationship between the 
hypothesis (H) and evidence (E). Note that there could be multiple parent nodes. 
Adapted from Varela Gonzalez (2017). 
 

A BN with a synthetic case containing three chance nodes (air temperature, soil 

temperature, and thaw depth) is seen in Figure 2.3. Parentless nodes, such as air 

temperature, are quantified by marginal probabilities. Assume that it is known that air 

temperature has a 75% marginal probability of being low, 15% probability of being 

medium, and 10% probability of being high. Arcs represent the causal dependencies 

𝑃(𝐸) 𝑃(𝐻|𝐸) =  
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)  
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between nodes; they help build the conditional probability table (CPT) that links a parent 

node to a child node. In a BN with n nodes, 𝑋!…𝑋!, the joint distribution is represented 

by 𝑃(𝑋! = 𝑥!,𝑋! = 𝑥!,… ,𝑋! = 𝑥!), or 𝑃(𝑥!, 𝑥!,… , 𝑥!). Using the chain rule of 

probability theory, this factorizes to 𝑃 𝑥!, 𝑥!,… , 𝑥! = 𝑃 𝑥! ×𝑃 𝑥! 𝑥! … ,×

𝑃 𝑥! 𝑥!,… , 𝑥!!! = 𝑃(𝑥!|𝑥!,… , 𝑥!!!)! ; when the value of a particular node is 

conditional only on the values of the parent nodes, this reduces to 𝑃 𝑥!, 𝑥!,… , 𝑥! =

𝑃(𝑥!|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋! )!  (Korb and Nicholson, 2004). 
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Air Temperature P(E) 
 P(H1|E) 

Air Temperature P(E) 

Low 0.75 
 

Low Medium High 
Medium 0.15 

 Soil Temperature 
P(H1) 

Low 0.80 0.25 0.10 
High 0.10 

 
Medium 0.10 0.60 0.10 

   
High 0.10 0.15 0.80 

 

0.75 0.15 0.10 !
0.80 0.25 0.10
0.10 0.60 0.10
0.10 0.15 0.80

=
0.75 ∗ 0.80 + 0.15 ∗ .25 + (0.10 ∗ 0.10)
0.75 ∗ 0.10 + 0.15 ∗ 0.60 + 0.10 ∗ 0.10
0.75 ∗ 0.10 + 0.15 ∗ 0.15 + 0.10 ∗ 0.80

=
0.6475
0.175
0.1775

 

Soil Temperature 
P(H1) 

 
P(H2|H1) 

Soil Temperature P(H1) 

Low 0.65 
 

Low Medium High 
Medium 0.18 

 Thaw Depth P(H2) 
Low 0.85 0.25 0.10 

High 0.18 
 

Medium 0.10 0.50 0.10 

   
High 0.05 0.25 0.80 

 

0.65 0.18 0.18 !
0.85 0.25 0.10
0.10 0.50 0.10
0.05 0.25 0.80

=
0.65 ∗ 0.85 + 0.18 ∗ 0.25 + 0.18 ∗ 0.10
0.65 ∗ 0.10 + 0.18 ∗ 0.50 + 0.18 ∗ 0.10
0.65 ∗ 0.05 + 0.18 ∗ 0.25 + 0.18 ∗ 0.80

=
0.6155
0.173
0.2215

 

Figure 2.3 Example of a BN with three chance nodes: air temperature, soil 
temperature, and thaw depth. Probabilities represent synthetic cases of the 
marginal (air temperature) and joint (soil temperature and thaw depth) 
probabilities. Tables show the marginal or conditional probabilities followed by the 
equations calculating the joint probabilities. 
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In this example, the arc between air temperature and soil temperature builds the 

soil temperature CPT, and the arc between soil temperature and thaw depth builds the 

thaw depth CPT. The topology of the network captures qualitative relationships between 

the variables, while the probabilities provide a quantification of the relationships 

(Aguilera et al., 2011, Korb and Nicholson, 2004). It is important to note that BNs are 

directed acyclic graphs, meaning that nodes and arcs cannot be connected in a directly 

cyclic manner. As such, the relationships between nodes and arcs represent the causal 

evidence for a process that cascades through the model, from parent to children, in a 

cause-effect manner, within a given “step” in space and time (Varela Gonzalez, 2017). 

Within each model step, feedbacks are not allowed between nodes. For instance, if high 

thaw depth is considered a proxy for carbon release, an arc from thaw depth to air 

temperature cannot be made to represent the effects of increased carbon release on air 

temperature. Instead, the BN model would have to be run again with updated marginal 

probabilities for air temperature to reflect the new increased carbon conditions. 

Alternatively, a dynamic BN could be used to represent feedbacks (Chen and Pollino, 

2012, Kjaerulff, 1995).   

A primary advantage to using a BN approach is the ability to incorporate three 

types of evidence (i.e., observational data, model outputs, and expert assessments) into a 

single model. This is particularly helpful to represent the Arctic system, as data 

observations or model outputs may be regionally limited, incomplete, or inexistent. The 

BN approach also tends to be more transparent than traditional modeling methods by 

reducing the black-box aspect commonly seen in traditional models through explicit 
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representation of the interaction between variables in the BN (Chen and Pollino, 2012). 

In addition, the BN approach allows for quantification of uncertainties; uncertainties in 

the model and the system are expressed through the distribution of probabilities assigned 

to each node state, and the uncertainties are propagated through the network to the final 

model endpoint (Chen and Pollino, 2012). Lastly, by employing the principle of 

Occam’s Razor, which here means aiming for the simplest model that still accurately 

represents the process being modeled, BNs may be more suitable than other modeling 

approaches for scenarios where it is important to engage stakeholders in the modeling 

process of a system (Chen and Pollino, 2012). Keeping the BN as simple as possible is 

also necessary for maintaining sensitivity of outputs to inputs and for avoiding additional 

uncertainty propagation in the model (Chen and Pollino, 2012). Despite appearing 

simpler than other models, BNs are well suited for modeling complex systems with a 

large number of variables (Getoor et al., 2004) or being integrated into larger models as 

sub-models (Chen and Pollino, 2012).  

Another unique advantage to BNs is their capability for both forward 

(prognosis/cause to effect) and inverse (diagnosis/effect to cause) modeling. The 

synthetic case in Figure 2.3 can be used as a basis for explaining examples of prognosis 

(Figure 2.4) and diagnosis (Figure 2.5). In prognosis, the state of the parent node is set to 

the model scenario of interest. In Figure 2.4, the scenario being modeled is low air 

temperature. The 100% chance of low air temperature determines which probabilities are 

used in the soil temperature CPT, and the joint probabilities of soil temperature are then 

propagated to thaw depth. Conversely, the 100% chance of high thaw depth in the 
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diagnosis scenario in Figure 2.5 back propagates through the model, first determining 

the soil temperature probabilities and then those of air temperature. 

 

 

 
Air Temperature P(E) 

 P(H1|E) 
Air Temperature P(E) 

Low 0.75 
 

Low Medium High 
Medium 0.15 

 Soil Temperature 
P(H1) 

Low 0.80 0.25 0.10 
High 0.10 

 
Medium 0.10 0.60 0.10 

   
High 0.10 0.15 0.80 

 
Soil Temperature 

P(H1) 
 

P(H2|H1) 
Soil Temperature P(H1) 

Low 0.80 
 

Low Medium High 
Medium 0.10 

 Thaw Depth P(H2) 
Low 0.85 0.25 0.10 

High 0.10 
 

Medium 0.10 0.50 0.10 

   
High 0.05 0.25 0.80 

 

0.80 0.10 0.10 !
0.85 0.25 0.10
0.10 0.50 0.10
0.05 0.25 0.80

=
0.80 ∗ 0.85 + 0.10 ∗ 0.25 + 0.10 ∗ 0.10
0.80 ∗ 0.10 + 0.10 ∗ 0.50 + 0.10 ∗ 0.10
0.80 ∗ 0.05 + 0.10 ∗ 0.25 + 0.10 ∗ 0.80

=
0.715
0.14
0.145

 

Figure 2.4 Synthetic prognosis case exploring likely thaw depth states under low air 
temperature. Low air temperature contributes to predominately low soil 
temperature, which then contributes to predominately low thaw depth. The bolded 
values in the tables show which air temperature state and soil temperature 
probabilities are being propagated through the BN to thaw depth. 
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Soil Temperature 
P(H1) 

 
P(H2|H1) 

Soil Temperature P(H1) 

Low 0.15 
 

Low Medium High 
Medium 0.20 

 Thaw Depth P(H2) 
Low 0.85 0.25 0.10 

High 0.65 
 

Medium 0.10 0.50 0.10 

   
High 0.05 0.25 0.80 

 
Air Temperature P(E) 

 P(H1|E) 
Air Temperature P(E) 

Low 0.50 
 

Low Medium High 
Medium 0.19 

 Soil Temperature 
P(H1) 

Low 0.80 0.25 0.10 
High 0.31 

 
Medium 0.10 0.60 0.10 

   
High 0.10 0.15 0.80 

 
 

𝑃 𝐻!!"#! 𝐻!!"#!

=  
𝑃 𝐻!!"#! 𝐻!!"#! ∗ 𝑃(𝐻!!"#!)

𝑃 𝐻!!"#! 𝐻!!"# ∗ 𝑃 𝐻!!"# + 𝑃 𝐻!!"#! 𝐻!!"# ∗ 𝑃 𝐻!!"# + 𝑃 𝐻!!"#! 𝐻!!"#! ∗ 𝑃(𝐻!!"#!)
 

 

𝑃 𝐻!!"#! 𝐻!!"#! =
0.80 ∗ 0.18

0.05 ∗ 0.65 + 0.25 ∗ 0.18 + 0.80 ∗ 0.18 =
0.144
0.2215 = 0.65 

 
Figure 2.5 Synthetic diagnosis case exploring likely soil and air temperature states 
under high thaw depth. High thaw depth is conditional on predominately high soil 
temperatures, which can occur under warmer air temperature conditions. 
Equations demonstrate an example of calculating high soil temperature given high 
thaw depth. Probabilities for low and medium soil temperature given high thaw 
depth, and low, medium, and high air temperature given low, medium, and high 
soil temperature can be calculated similarly. 
 

As with all methodologies, there are a number of limitations to the BN 

approach. One such limitation is that non-dynamic BNs are not strong at representing 

processes at varying temporal scales (i.e., feedbacks) due to their acyclic nature (Chen 
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and Pollino, 2012, Uusitalo, 2007). Instead, processes are represented at a single moment 

in time, unless the time steps are directly integrated into the model itself. BNs are also 

not well suited for non-discrete data, as discretization of continuous variables may lead 

to a loss of statistical power (Chen and Pollino, 2012, Uusitalo, 2007). Development of 

BNs is also hindered by the lack of a universally accepted methodology and use of 

terminology (Weber et al., 2012), and reliable expert elicitation is a known challenge 

(Kaikkonen et al., 2021, Uusitalo, 2007). Another limitation arises when experts must 

validate the model; the size of a node’s CPT increases 𝑆 𝑃!!
!!!  where 𝑆 = the number 

of states and 𝑃! = the number of states in the ith parent node (Marcot et al., 2006), 

meaning that limiting the size of the node’s CPT is especially important in BNs where 

CPTs are defined through expert assessment since the CPT can quickly become too large 

for the human brain to adequately comprehend. Despite these limitations, the unique 

advantages of this approach hold great potential for application to the environmental 

sciences. 

Recent reviews by Aguilera et al. (2011) and Kaikkonen et al. (2021) show that 

few BN studies have been applied to environmental modeling and environmental risk 

assessment (ERA), respectively. Aguilera et al. (2011)’s review found that only 4.2% of 

papers published about the applications of BNs fell under the environmental modeling 

category. BNs are most commonly applied to problems in the computer sciences, 

mathematics, and engineering (Aguilera et al., 2011). While an exact percentage was not 

given, Kaikkonen et al. (2021)’s review also concluded that the methodology is not 

commonly used in ERA. In ERA, BNs were used in the fields of ecology, environmental 
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chemistry, environmental toxicology, hydrology, and more to assess (1) the risk of a 

specific stressor to the environment in general, (2) the risk from various stressors to 

specific species or areas, or (3) both; most ERAs focused on freshwater and marine 

environments (Kaikkonen et al., 2021). Reflecting these trends, the use of BNs in Arctic 

studies appears to be rather limited. Several studies have applied BNs to Arctic shipping, 

transportation, and aquatic life (Afenyo et al., 2017, Fahd et al., 2020, Zhang et al., 

2020), but most terrestrial studies that used Bayesian statistics did not use a BN 

framework. For instance, a Bayesian model was developed to predict the maximum 

thickness of seasonally frozen ground in the Yellow River source region of northwestern 

China using historical air temperature and precipitation observations (Qin et al., 2018). 

Likewise, a Bayesian approach was recently used to integrate LiDAR digital elevation 

model (DEM) and multiscale snow depth and ground penetrating radar (GPR) probe 

datasets to estimate snow depth in the tundra of Arctic Alaska (Wainwright et al., 2017). 

The former study found that the results of their stochastic approach was consistent with 

results obtained from traditional deterministic methods, while the latter study allowed 

for consistent integration of three disparate datasets as well as estimation of uncertainty.  

So far, the most comprehensive use of a BN in the context of the Arctic and 

permafrost is a study by Webster and McLaughlin (2014) that assesses the vulnerability 

of permafrost to thaw and estimates the impacts of permafrost thaw on greenhouse gas 

(GHG) emissions and climate feedbacks in the Canadian Arctic and Hudson Plain 

regions using a Bayesian belief network (BBN). The objective of the study was to create 

a tool that aids policy makers in understanding the vulnerability of permafrost to thaw 
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and resulting carbon emissions (Webster and McLaughlin, 2014). The BBN is arranged 

in a hierarchical manner to reflect the vulnerability assessment components of 

sensitivity, exposure, and adaptive capacity; however, the adaptive capacity component 

is not explicitly represented in the version of the model presented in the study. Nodes in 

the BBN represent the themes of future and current mean annual air temperature and 

ground conditions, heat transfer, carbon susceptibility, permafrost thaw, GHGs, and 

feedback to climate change. Although Bayesian networks are capable of integrating 

various types of evidence, the study by Webster and McLaughlin (2014) only included 

evidence from expert assessment. It is arguable that their findings could have been 

augmented by the integration of observational data and/or model outputs, as the authors 

recognize that the expert assessment approach can lead to accurate, but not precise, 

predictions. That said, their study is a convincing example of how observational data are 

not necessarily required in order to generate useful predictions of permafrost thaw and 

demonstrated the usefulness of BBNs as potential policy tools, as the model allows for 

various future scenarios and consequences to be analyzed.  
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3. PERMABN DEVELOPMENT AND METHODS 

 

The PermaBN is a Bayesian network designed to assess permafrost thaw in the 

continuous permafrost region of the Arctic. It provides an alternative modeling 

technique for assessing permafrost thaw in the Arctic, and expands upon the work of 

Webster and McLaughlin (2014) by supplementing their expert assessments with 

physical observations. Following the best practices in BN modeling outlined by Chen 

and Pollino (2012), the model development process (Figure 3.1) entails: 

1.  Defining model objectives and scope 

2.  Creating a conceptual model of the system to form the structure of the BN 

3.  Defining states and conditional probabilities of all variables 

4.  Evaluating the BN using a suite of both quantitative and qualitative model 

evaluation methods 

5.  Documenting assumptions, uncertainties, descriptions and reasoning for each 

node and linkage, data and information sources, and evaluation results 

  

 

Figure 3.1 Workflow diagram of the PermaBN model development process. 

 

Identify	
variables	via	
literature	
review	

Pre-Validation	
via	Synthetic	
Informed	Case	

Study	

Validation	via	
Expert	

Assessment	

Evaluation	via	
Local	Case	
Study	with	
Physical	

Observations	



 

38 

 

The objectives of PermaBN are to: 

1.  Provide an alternative permafrost modeling framework that improves 

understanding and prediction of permafrost dynamics under various climate or 

ecosystem conditions (i.e., provide a method that allows for exploratory and 

scenario analysis) 

2.  Identify knowledge and data gaps that hinder our understanding (and modeling 

capabilities) of permafrost dynamics 

3.  Facilitate participatory modeling amongst researchers and/or stakeholders 

In this proof-of-concept stage, the scope of PermaBN is limited to the prediction 

of permafrost thaw depth in the continuous permafrost region as a result of a handful of 

key terrestrial factors. The initial conceptual models were designed with the assumption 

of a multiyear time scale. While hydrological influences on permafrost thaw are 

important at this temporal scale, the emphasis here is on the geomorphic and ecological 

processes that influence continuous permafrost thaw in order to better compare 

PermaBN results to existing modeling efforts. That said, future development of 

PermaBN could introduce hydrological factors. Another limiting assumption that was 

made in the model developmental phase was that the variable selection was limited to a 

few key terrestrial processes. This was done to reduce the size of the BN and the CPTs, 

which are desirable features (Chen and Pollino, 2012, Marcot et al., 2006). In its current 

form, PermaBN is not meant to be viewed as a true environmental risk assessment model 

since it lacks the quantification of utility associated with the consequences of permafrost 

thaw. Instead, it should be viewed as a model aimed at predicting environmental 
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impacts. Future development could use PermaBN as a sub-module that would be 

included into a comprehensive Arctic ecosystem risk framework. It should also be noted 

that, in its current form, PermaBN might not be applicable to non-continuous permafrost 

regions or transitional permafrost regions due to differing drainage patterns, vegetation 

types, and ground temperature/permafrost relationships (Burn and Kokelj, 2009).  

3.1. Pre-Validation 

After defining the objectives and scope of the PermaBN model, a conceptual 

model of the Arctic terrestrial system was created to form the structure of the BN. The 

“nodes” and “arcs” of BNs are easy to represent graphically in a BN software program; 

these graphical networks provide a means to visualize hypotheses in the form of 

conceptual models. Here, the conceptual model was created using the software program 

GeNIe (BayesFusion, 2019). In the case of PermaBN, the network represents a 

hypothesis about the terrestrial variables that control permafrost thaw depth. Multiple 

BNs could be created to reflect different hypotheses or spatiotemporal domains, if 

desired. In other words, PermaBN is by no means a unique or “be-all and end-all” 

representation; rather, it is the best initial attempt at representing the key terrestrial 

processes at play in permafrost thaw. Ultimately, the goals of the conceptual model are 

to provide a structure for the BN and identify the causal relationships across the system. 

In environmental BNs, node and arc selection and definition are typically determined 

through literature review or expert judgment (Kaikkonen et al., 2021). For this reason, 

the variables included in my conceptual model were determined primarily through 

extensive review of peer-reviewed scientific literature and collaboration with other 
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researchers and scientists during two workshops that took place in 2019 at Texas A&M 

University. 

Following the background and review in Section 2.1, the following variables 

were selected for the PermaBN model because they are thought to be most impactful on 

permafrost thaw: (1) geological setting (aspect and soil particle size) (Arya and Paris, 

1981, Wilcox et al., 2019), (2) atmospheric conditions (air temperature, rain, snow, and 

season) (Bintanja and Andry, 2017, Bintanja and Selten, 2014, IPCC, 2013), (3) surface 

insulation (vegetation density/height, snow depth, and insulation) (Gockede et al., 2019, 

Wilcox et al., 2019), and (4) soil properties (soil moisture, soil water input, soil 

temperature, and ground ice volume) (Gockede et al., 2019, Jorgenson et al., 2015, 

Oelke and Zhang, 2004, Schuur and Mack, 2018, Westermann et al., 2011, Zhang et al., 

2018, Zwieback et al., 2019). ALT is the final variable in the network and is the 

response, or endpoint, of the system. The influencing variables were identified explicitly 

for their known impacts on permafrost thaw. Other variables, such as soil thermal 

conductivity, are implicit to the model through the causal relationships between nodes. 

For instance, soil particle size influences soil moisture and insulation, which are known 

to influence thermal conductivity, and hence, soil temperatures. Similarly, some 

hydrological processes could be considered implicit to the soil moisture node (Woodard 

et al., 2021). For example, snow melt contributes to soil water input, and soil particle 

size controls infiltration rates, and hence, soil moisture content. 

Variables in the model are classified as either “decision” or “chance” nodes. As 

discussed in Section 2.3, decision nodes are those that are non-random or non-variable. 
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For instance, topographic aspect and season only exist in set states, such as 

north/east/south/west or snow-free/snow, respectively. These decision nodes are set by 

the user; they do not have probabilities associated with them. The inclusion of decision 

nodes aids in the exploratory analysis of different scenarios. In the case of PermaBN, 

each decision node is determined by a set of two to four states. Conversely, chance 

nodes are those that have a random component to them. Variations in air temperature or 

amount of precipitation are examples of these chance nodes, which contain probabilities; 

a set of three states is determined for each chance node. These possible states (low, 

medium, and high) capture the current state the variable is in and the states that the 

variable can shift to. When incorporating physical observations or modeling results, low, 

medium, and high could correspond to 0 - 33%, 33 - 66%, and 66 - 100% cumulative 

probabilities, respectively, from the empirical cumulative density function for the 

variable; states could alternatively be defined by average conditions identified in the 

literature.  

Determination of the CPTs followed characterization of each node and associated 

possible states; the maximum number of parent nodes for any node was limited to five in 

order to limit the size of the CPTs while still allowing for as many causal relationships to 

be explicitly represented as possible. It is ideal to include as much evidence as possible 

when creating the CPTs (Medina-Cetina and Nadim, 2008), but evidence can sometimes 

be sparse in environmental studies. In that case, the CPTs can be derived through expert 

judgment. One method for initially determining the CPTs for any given node is to assign 

a uniform distribution; this is commonly the case if the variable conditions are unknown. 
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CPT values can then be adjusted as necessary when evidence becomes available for the 

variable, whether it is from physical observations, model outputs, or expert assessments 

(Marcot et al., 2006). It is also common to initially determine the CPTs in a symmetric 

manner when using expert assessments as the evidence source (McLaughlin and 

Packalen, In Review). In a symmetric CPT, the probability of the “lowest” scenario 

would be equal to the probability of the “highest” scenario. In the pre-validation version 

of the PermaBN model, probability values were selected to represent trends rather than 

true probabilities of what may occur in reality. For example, a high probability (60%) 

was given to the medium air temperature scenario, indicating the state of knowledge that 

it is more likely that a moderate amount of warming will occur in the Arctic over the 

coming decades as opposed to no/little warming or extreme warming; similarly, extreme 

warming is more likely than no/little warming (Meredith et al., 2019).  

To test the accuracy or representativeness of the CPTs (Appendix A), 46 

prognostic experiments (Appendix B) were designed to illustrate how the incorporation 

of evidence affected children nodes in the model, particularly the model endpoint 

(prediction of ALT). The first set of experiments was conducted on a model where all 

the nodes were set to a uniform distribution. Then, informed nodes at varying levels of 

the model were introduced. The final set of experiments was conducted on a model 

where all the nodes were informed. In each of the experiment sets, a combination of the 

primary parent nodes (i.e., those nodes with no preceding nodes or incoming arcs) were 

set to the extreme scenarios that could be encountered in the system (e.g., low air 

temperatures, solar radiation, and soil particle size or high air temperatures, solar 
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radiation, and soil particle size). A set of 13 diagnostic experiments (Appendix B) was 

also designed to check for consistency in the model. In contrast to the prognosis 

experiments, these effect-to-cause experiments focused on setting the response variable 

(ALT) to each of its states in a fully informed model to see if the parent node 

distributions responded as expected.  Some of the diagnostic experiments also set 

intermediate parent nodes to different states to assess whether a node seems to be a 

primary driver of change in the model. 

Collectively, these prognostic and diagnostic experiments represent the process 

of pre-validation. Pre-validation, or pre-reliability analysis, is the process of assessing 

the extreme or likely scenarios that could be experienced in the system (Medina-Cetina 

and Nadim, 2008). It allows for a check on the consistency of the model at the lower and 

upper bounds; for instance, if thaw depth does not respond as expected given the state of 

the parent nodes in the prognostic experiments, it is possible that: (1) the CPTs may not 

be well defined, and/or (2) the variables and connections between them may not 

sufficiently represent the process of permafrost thaw. In the event of the former, the 

CPTs simply need to be adjusted through further expert judgment, or ideally, through the 

incorporation of physical observations or model outputs. In the event of the latter, the 

model may need to be redesigned. When the system responds as expected per the 

modeler’s judgment, the model can be considered pre-validated, and the results can be 

used for further validation of the model. 
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3.2. Validation – Expert Assessment 

With the model pre-validated, the model moved into the validation stage. Here, 

validation first entailed meeting with a group of four experts at Texas A&M University 

to review the conceptual model and the results of the prognostic and diagnostic 

experiments. This validation stage is a fairly unique attribute of the PermaBN model 

development process, as most BN studies exclude validation from the development 

process (Aguilera et al., 2011, Kaikkonen et al., 2021). Of the studies that do conduct 

validation, the most common method for doing so is through expert assessment 

(Kaikkonen et al., 2021). Since the experts were familiar with both Arctic climates and 

introductory Bayesian modeling principles, only a brief overview of the current state of 

permafrost modeling research and of the statistical methods behind the two types of 

experiments was provided. The feedback and suggestions from the validation session 

were then used to refine the BN conceptual model. Refinements included: (1) renaming 

or redefining of nodes in the pre-validation conceptual model, (2) considering differing 

soil moisture and soil temperature relationships dependent on location and/or season, (3) 

correcting known errors in the soil moisture CPT, and (4) implementing a qualitative 

threshold for passing the CPTs defined in the pre-validation prognosis and diagnosis 

experiments. 

The nodes that were renamed and redefined are: (1) “soil particle size” to “soil 

density,” (2) “vegetation density/height” to “vegetation height,” (3) “ground ice volume” 

to “active layer ice content,” and (4) “active layer thickness” to “thaw depth.” An 

additional arc from “soil density” to “insulation” was added following the redefinition of 
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state names from clay, silt, and sand to low, medium, and high; the air temperature nodes 

was also redefined from the RCP scenarios to the corresponding low, medium, and high 

states (e.g., the RCP 2.6 scenario was redefined to low). As for the relationship between 

soil moisture and soil temperature on annual and seasonal time scales, it was further 

investigated to establish whether those variables are positively correlated. Statistical 

analyses revealed a positive relationship in the snow season (i.e., higher moisture leads 

to warmer temperatures), indicating the dominance of thermal conductivity over 

evaporative processes, but a negative correlation between the two soil variables in the 

snow free season (i.e., higher moisture leads to cooler temperatures); see Appendix C for 

details. While modifying the soil moisture and soil temperature CPTs to reflect these 

findings, errors were resolved in the soil moisture CPT where soil moisture conditions 

for certain aspects under low soil water input conditions were swapped. Lastly, a 

qualitative assessment of the experiments was introduced, where at least 75% (i.e., 9 out 

of the 12) chance nodes had to respond as expected to the prognosis and diagnosis 

experiments prior to informing the model with physical observations.  

Before testing PermaBN with physical observations, the prognostic and 

diagnostic synthetic informed case study experiments were repeated with the updated 

conceptual model. The number of prognostic experiments was increased to 50, and the 

number of diagnostic experiments was increased to 32 in order to capture additional test 

cases (Appendix B). Similar to the pre-validation experiments, the trend in the node 

responses was given higher priority than the magnitude of the response for determining 

whether the model responds as expected. If the extreme, fully informed prognosis and 
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diagnosis experiments fail the qualitative validation method, then the nodes, their CPTs, 

and connections should be closely evaluated prior to informing the model with physical 

observations. 

3.3. Evaluation – Case Study with Physical Observations 

Integrating physical observations from a local case study was the final step in the 

PermaBN development process. The criteria for determining which local case study to 

use were: (1) high spatiotemporal density of thaw depth observations, and (2) 

availability of additional variables at the same spatial and temporal scales. One site that 

meets these criteria is the Siksik Creek Basin in Trail Valley Creek, Northwest 

Territories, Canada (Figure 3.2) where Wilcox et al. (2019) collected 1528 aspect, 

vegetation height, and frost table depth (i.e., thaw depth) measurements over the time 

period 2015-06-11 to 2015-08-20 across 10 transects.  
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Figure 3.2 Siksik Creek Basin study area detailing the observational transect and 
grid locations in addition to creek locations and spatial distribution of the 
vegetation classes. Reprinted from Wilcox et al. (2019). 
 

The general Trail Valley Creek area is described in detail by Wilcox et al. (2019) 

and Grunberg et al. (2020). In summary, it is located approximately 45 km north of 

Inuvik (or 80 km south of Tuktoyaktuk) and characterized by an 8-month-long snow 

cover period. The mean annual air temperature is about -7.9°C to -10°C, and mean 

annual precipitation is ~266 mm, of which ~66% falls as snow. Vegetation ranges from 

0.5 – 3 m in height, with the primary vegetation classes being tundra, birch, alder, and 

channel. The “tundra” plant community is characterized by low-lying vegetation such as 
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reindeer lichen (Cladonia rangiferina L.), Sphagnum moss (Sphagnum L.), and tussock 

and non-tussock sedges (Carex L.) that range from 5 – 25 cm in height. As for the 

“channel” community, it is dominated by alder and willow (Salix L.) that range from 150 

– 250 cm in height. The “birch” community primarily consists of dwarf birch (Betula 

glandulosa Michx.) ranging from 40 – 60 cm in height, and the “alder” community is 

comprised of alder (Alnus alnobetula (Ehrh.)  K. Koch.) ranging from 80 – 150 cm in 

height. The total thickness of ice-rich permafrost in the region is between 350 – 500 m, 

with the ALT varying between 0.5 – 0.8 m (Burn and Kokelj, 2009). 

Wilcox et al. (2019) took environmental measurements along 10 transects and 

grids. These transects are several hundred meters apart (Figure 3.2) and observation 

dates for each sampling campaign range by 2 – 3 days. Therefore, descriptive statistics 

were calculated for each transect separately (see Appendix D for examples). The 

probability distribution of thaw depth from each transect was then compared to see 

which transects could be grouped together for use in PermaBN. Only two transects (ss1 

and ss1lys) had similar frost table depth (i.e., thaw depth) probability distributions 

(Figure 3.3) for the entire June  – August 2015 time period; these two transects also had 

their thaw depth measurements collected on the same days (Julian days 168, 173, 190, 

194, 208, 222, and 232). A total of 146 observations were made along transect ss1, 

whereas 216 observations were made along transect ss1lys. It should be noted that aspect 

and vegetation height remained constant at this time scale; in other words, frost table 

depth is the only value to change throughout the study period. It should also be noted 

that the observations only represent the snow-free season in PermaBN, as observations 
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were all made during the summer season. Therefore, physical observations that would be 

used to refine the snow season probabilities are not available. 

 

 
Figure 3.3 Empirical cumulative density function (eCDF) for the combined ss1 and 
ss1lys transects with best-fit distributions. Best-fits were determined with curve 
fitting and AIC analysis in the programming language R. At a seasonal (June – 
August) time scale, both transects exhibit a log-normal distribution (green line), 
with a gamma distribution (blue line) as the next best fit. A normal distribution 
(red) line is provided for comparison. 
 

The datasets for aspect and vegetation height were binned for direct use with the 

model as evidence for the vegetation height node. In the case of aspect, which is a 
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decision node, observations were simply categorized as north, east, south, or west based 

on their degree value, where 0° – 45° and 315° – 360° is north, 45° – 135° is east, 135° – 

225° is south, and 225° – 315° is west. As for vegetation height, since only three of the 

four vegetation classes were present in the ss1 and ss1lys transects, “tundra” (5 – 25 cm 

in height) was considered low, “alder” (80 – 150 cm) was considered medium, and 

“channel” (150 – 200 cm) was considered high. Probabilities for the vegetation height 

node were determined by counting how many low, medium, and high vegetation height 

values coincided with north, east, south, or west aspects, and then dividing by the total 

number within each aspect state. For example, if 25 of the 29 vegetation observations 

that were made on eastern aspects were classified as “tundra” (i.e., low vegetation 

height), then the probability of there being low vegetation on an east aspect is 25/29, or 

86%. While air temperature data are not available for the Siksik Creek Basin, I argue 

that they would not affect vegetation growth enough on this temporal scale (i.e., June – 

August 2015) to change the vegetation class of a particular observation; likewise, air 

temperature is not expected to vary substantially along transects. Therefore, the 

vegetation height probabilities are only dependent on aspect in this stage of the 

PermaBN model. 

Since physical observations are not available for the frost table depth variable’s 

parent nodes of soil moisture, soil temperature, and active layer ice content, the frost 

table depth measurements could not be used to directly inform the model. Instead, the 

measurements for both the ss1 and ss1lys transects were binned according to the average 

Trail Valley Creek ALT range of 50 – 80 cm cited in Wilcox et al. (2019), where low 
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thaw depth was less than 50 cm, medium thaw depth was between 50 – 80 cm, and high 

thaw depth was greater than 80 cm; this yielded a distribution of 87% low, 13% medium, 

and 0% high thaw depths to be used as a benchmark for evaluating the performance of 

PermaBN. A set of 20 prognosis experiments (Appendix B) testing the effects of 

aspect/vegetation height, the extreme low and high scenarios, and the most likely Siksik 

Creek Basin aspect, soil density, air temperature, and soil temperature conditions were 

conducted to evaluate the ability of PermaBN to match the expected thaw depth 

distributions. A set of 15 diagnosis experiments (Appendix B) were also defined simply 

for exploratory purposes, as there is no way to conclusively evaluate the diagnosis 

performance given the limited parent node evidence available. 
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4. RESULTS 

 

4.1. Pre-Validation 

The pre-validation conceptual model is shown in Figure 4.1. Table 4.1 provides a 

description of each node and possible states, while Table 4.2 provides a summary of and 

references for the causal relationships used to build the conceptual model; the CPTs for 

each node can be found in Appendix A. Arcs appear grey when the corresponding nodes 

are non-informed and dark blue when the corresponding nodes are informed. A node is 

considered non-informed when its CPT is set to a uniform distribution. In other words, 

each state of the node has an equal probability of occurring. Likewise, a node is 

considered informed when its CPT is not uniform due to the introduction of evidence. In 

an informative case, each state of a node may have a different probability of occurring.  
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Figure 4.1 Pre-validation conceptual model, which includes 14 nodes, 26 arcs, and 
43 states. Geological variables are represented in light green, atmospheric variables 
in teal, surface insulation variables in dark green, soil variables in light orange, and 
ALT in dark orange. Decision nodes are represented as boxes; chance nodes are 
ovals. 
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Table 4.1 Definition of nodes and associated possible states included in the pre-
validation version of PermaBN. 
Node Type Definition States 

Active Layer 
Thickness Chance 

The depth/thickness of the layer of ground 
subject to annual thawing and freezing in 
areas underlain by permafrost 

Low, Medium, High 

Air Temperature Chance 
Temperature of the air near the surface of 
the Earth based on 2081-2100 RCP future 
warming projections 

RCP 2.6, RCP 4.5, 
RCP 8.5 

Aspect Decision 

The arrangement of the natural and 
artificial physical features of an area, or 
more particularly, the aspect, or 
positioning of a feature in a specified 
direction 

North, East, South, 
West 

Ground Ice 
Volume Chance 

Volume of all types of ice contained in 
freezing and frozen ground, which includes 
bedrock, sediment, organic matter, and 
water 

Low, Medium, High 

Insulation Chance 
The state of something being insulated, or 
protection of something by interposing 
material that prevents the loss of heat 

Low, Medium, High 

Rain Chance Moisture condensed from the atmosphere 
that falls visibly in separate drops Low, Medium, High 

Season Decision Division of the year marked by the 
presence or absence of snow Snow Free, Snow 

Snow Chance 
Atmospheric water vapor frozen into ice 
crystals and falling in light white flakes or 
lying on the ground as a white layer 

Low, Medium, High 

Snow Depth Chance Measurement of snow that has fallen 
during previous weather events Low, Medium, High 

Soil Moisture Chance Water that is held in the pore spaces 
between soil particles Low, Medium, High 

Soil Particle 
Size Chance Composition of mineral soil by relative 

soil particle size Clay, Silt, Sand 

Soil 
Temperature Chance Measurement of the warmth of the soil Low, Medium, High 

Soil Water Input Chance The ratio of precipitation to evaporation Low, Medium, High 

Vegetation 
Density/Height Chance 

Percentage of soil which is covered by 
green vegetation, or height of the dominant 
vegetation classes 

Low, Medium, High 
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Table 4.2 List of causal relationships (i.e., arcs) in the pre-validation version of 
PermaBN with select references. Refer to Section 2.1 for additional references. 
Parent Node Child Node Reference 

Air Temperature 

Rain Bintanja and Andry (2017) 
Snow Bintanja and Andry (2017) 
Soil Temperature Park et al. (2014)  
Soil Water Input Young et al. (1997)  
Vegetation 
Height/Density 

Myers-Smith et al. (2020) 

Aspect 

Snow Depth Evans et al. (1989) 
Soil Moisture Young et al. (1997)  
Vegetation 
Height/Density 

Evans et al. (1989) 

Ground Ice Volume Active Layer 
Thickness 

Schuur and Mack (2018) 

Insulation Soil Temperature Zhang et al. (2018) 

Rain Snow Depth Screen and Simmonds (2012)  
Soil Water Input Rouse et al. (1997) 

Season Snow Depth  N/A – node used to control CPT 
Soil Temperature  N/A – node used to control CPT 

Snow Snow Depth Bintanja and Andry (2017) 
Soil Water Input Rouse et al. (1997) 

Snow Depth Insulation Zhang et al. (2018) 

Soil Moisture 

Active Layer 
Thickness 

Lee et al. (2014) 

Ground Ice 
Volume O'Neill and Burn (2012) 

Soil Temperature Frauenfeld et al. (2004) 
Soil Particle Size Soil Moisture Abu-Hamdeh and Reeder (2000) 

Soil Temperature 

Active Layer 
Thickness Frauenfeld et al. (2004) 

Ground Ice 
Volume Jorgenson et al. (2015) 

Soil Water Input Soil Moisture  N/A – aggregate node 
Vegetation 

Density/Height 
Insulation Lawrence and Swenson (2011) 
Snow Depth Wilcox et al. (2019) 
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A total of 46 prognosis experiments (Appendix B) were conducted in the pre-

validation stage to assess the response of the model to the introduction of evidence. 

Experiments started with a completely non-informed model and gradually incorporated 

evidence, starting with the parent nodes until the model was completely informed. In 

every experiment, both of the decision nodes (i.e., aspect and season) and one or both of 

the chance parent nodes (i.e., soil particle size and air temperature) were set to a state. 

State combinations were meant to reflect scenarios where changes in ALT (i.e., thaw 

depth) were expected to be low or high. In the following paragraphs, some of the key 

prognosis runs are presented. 

In the completely non-informed, or uniform, model run, changing the states of 

any of the nodes did not result in a change in any of the other nodes (Figure 4.2). This is 

an illustration of the Bayesian principle of Markov conditions. The principle states that a 

node does not influence nodes that do not descend from it. Another way of stating this is 

that each node relies on what its prior nodes know. This principle is also illustrated in the 

experiments where only the four parent nodes are informed and, in many of the 

experiments, where only the uppermost children nodes are informed. For example, when 

only the air temperature and rain nodes are informed, rain will respond to changes in air 

temperature, but any children of rain will not exhibit any responses. 
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Figure 4.2 Non-informative prognosis experiments using the (A) extreme low (i.e., 
north aspect, clay soil particle size, RCP 2.6 scenario for air temperature, and snow 
season) and (B) extreme high (i.e., south aspect, sand soil particle size, RCP 8.5 
scenario for air temperature, and snow free season) scenarios. 
 

(A) 

(B) 
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Similarly, if every node is informed except for ALT, the ALT node will not 

respond to changes in the parent nodes until it has been informed (Figure 4.3). That said, 

it is possible for children nodes to respond if the child node and one or more of its prior 

nodes are informed. For instance, if the air and soil temperature nodes are informed, soil 

temperature will respond to changes in air temperature. However, if the insulation node 

is informed, it will still show a uniform conditional distribution since its parent nodes of 

vegetation density/height and snow depth are not informed. Thus, insulation will not 

affect soil temperature. 

Increasing the number of informed nodes decreases the uncertainty in thaw depth 

(i.e., ALT) predictions. Uncertainties in the model and the system are expressed through 

the distribution of probabilities assigned to each node state, and the uncertainties are 

propagated through the network to the final model endpoint (Chen and Pollino, 2012). In 

the experiments where all nodes except for soil temperature and snow depth were 

informed, ALT responded very little to changes in the primary parent nodes (Figure 4.4). 
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Figure 4.3 Prognosis experiments where every node except ALT is informed using 
the (A) extreme low (i.e., north aspect, clay soil particle size, RCP 2.6 scenario for 
air temperature, and snow season) and (B) extreme high (i.e., south aspect, sand 
soil particle size, RCP 8.5 scenario for air temperature, and snow free season) 
scenarios. 
 

(A) 

(B) 
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Figure 4.4 Prognosis experiments where every node except snow depth and soil 
temperature are informed using the (A) extreme low (i.e., north aspect, clay soil 
particle size, RCP 2.6 scenario for air temperature, and snow season) and (B) 
extreme high (i.e., south aspect, sand soil particle size, RCP 8.5 scenario for air 
temperature, and snow free season) scenarios. 
 

(A) 

(B) 
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However, when soil temperature and snow depth were informed, ALT responded 

as expected to the low and high scenarios of the parent nodes. Figure 4.5 shows the 

prognosis results for the low and high “extreme” scenarios of changes in ALT. In the 

case where aspect was set to north, soil particle size to clay, air temperature to the RCP 

2.6 scenario, and season to snow, there was a high probability that ALT would be in a 

low state. This indicates a high probability that permafrost thaw would be low in 

scenarios promoting cooler temperatures and increased soil moisture. Similarly, in the 

case where aspect was set to south, soil particle size to sand, air temperature to the RCP 

8.5 scenario, and the season to snow-free, there was a high probability that ALT would 

be in a high state. This indicated a high probability that permafrost thaw would be high 

in scenarios promoting warmer temperatures and decreased soil moisture. While the 

model responds as expected at this stage in the context of trends (e.g., cooler 

temperatures promote less thaw while warmer temperatures promote more thaw), further 

adjustments of the CPTs, especially for snow depth, vegetation height/density, 

insulation, and soil moisture, are needed for the magnitudes of the probabilities to reflect 

reality. 
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Figure 4.5 Prognosis experiments where all nodes are informed using the (A) 
extreme low (i.e., north aspect, clay soil particle size, RCP 2.6 scenario for air 
temperature, and snow season) and (B) extreme high (i.e., south aspect, sand soil 
particle size, RCP 8.5 scenario for air temperature, and snow free season) 
scenarios. 
 

(A) 

(B) 
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Next, 13 diagnosis experiments (Appendix B) were conducted in the pre-

validation stage to assess the response of the model to changes in ALT. Experiments 

started with simply setting ALT (i.e., the response of the system) to low, medium, and 

high. Then, different combinations of aspect, season, and ALT were used to further 

assess the model response. Key diagnosis runs are described in the following paragraphs. 

Overall, the system responds as expected. When changes to thaw depth (i.e., 

ALT) are low, ground ice volume and soil moisture are high while soil temperature is 

low (Figure 4.6). Conversely, when changes to ALT are high, ground ice volume and 

soil moisture are low while soil temperature is high (Figure 4.7).  

 

 
Figure 4.6 Diagnosis experiment testing the extreme low scenario where the 
response of the system (i.e., ALT) is low, aspect is north, and season is snow.  
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Figure 4.7 Diagnosis experiment testing the extreme high scenario where the 
response of the system (i.e., ALT) is high, aspect is south, and season is snow free.  
 

Even though the probability distributions for high changes to ALT are more 

uniform than in the low case, the general trend upholds. However, in both cases, air 

temperature is predicted to fall within the RCP 4.5 scenario. While it is unsurprising that 

the RCP 4.5 scenario is considered the most likely air temperature scenario to occur 

given the air temperature CPT, higher probabilities for the RCP 2.6 and 8.5 were 

expected for the low and high ALT scenarios respectively. Air temperature appears to 

respond better when the node is set to a uniform distribution (Figure 4.8). This indicates 

that CPTs in the middle nodes of the model may need further refinement. Additional 

testing revealed that soil temperature and snow depth seem to be driving many of the 

responses in the model. Improving these distributions may improve the model response 

as a whole. 
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Figure 4.8 Diagnosis experiment testing air temperature with a uniform 
distribution for the (A) extreme low scenario where the response of the system (i.e., 
ALT) is low, aspect is north, and the season is snow and (B) extreme high scenario 
where the response of the system (i.e., ALT) is high, aspect is south, and season is 
snow free.  
 

(A) 

(B) 
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4.2. Validation – Expert Assessment 

An updated version of the PermaBN conceptual model using the feedback from 

the experts is seen in Figure 4.9. Key changes to the pre-validation conceptual model 

include: (1) re-characterizing the “soil particle size” node into “soil density,” (2) adding 

an additional arc from “soil density” to “insulation,” (3) renaming the “vegetation 

density/height” node to “vegetation height,” (4) renaming the “ground ice volume” node 

to “active layer ice content”, (5) renaming the “active layer thickness” node to “thaw 

depth,” (6) redefining the air temperature state names, and (7) reorganizing the graphical 

structure of the model. 
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Figure 4.9 PermaBN conceptual model after validation via expert assessment. In 
comparison to the pre-validation conceptual model, several nodes have been 
renamed, and an additional causal relationship has been added. There are now 27 
arcs connecting the 14 nodes.  
 

In the pre-validation conceptual model, “soil particle size” only accounted for the 

mineral soil states of sand, silt, or clay and their respective moisture retention properties. 

With the revised “soil density” definition and additional arc to “insulation,” the effects 

of soil organic content on moisture retention, thermal conductivity, and insulation can be 

accounted for. The vegetation node was renamed to “vegetation height” in order to 

reflect the variable that is more often reported in physical observation datasets or in the 

literature, while the renaming of ground ice volume to “active layer ice content” better 
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reflects the assumption of ground ice limited to the upper layer of the soil column. 

Finally, renaming the endpoint node to “thaw depth” allows for a more accurate 

interpretation of the node in the context of seasonal dynamics represented in the model. 

Redefining the air temperature from using three RCP scenarios (2.6, 4.5, and 8.5) to only 

low, medium, and high was done to enhance the consistency of terminology in the model 

as well as to generalize the node for use with physical observations. Finally, the 

graphical structure of the nodes and arcs was re-organized to emphasize the cause-effect 

nature of the model. For instance, it is now easier to see the distinct tiers (parents at the 

top, intermediate children in the middle, and the response of the system at the bottom) in 

the model. It should be noted, however, that even though thaw depth is in the seventh 

row of the model, it is only a minimum of two or three arcs away from any of the parent 

nodes. Table 4.3 provides a revised description of each node and possible states; as there 

is only one additional arc (i.e., soil density to insulation from Abu-Hamdeh and Reeder 

(2000)) in the expert assessment validation model, an updated table for the causal 

relationships is not provided. 
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Table 4.3 Definition of nodes and associated possible states included in the expert 
assessment validation version of PermaBN. Changes from the pre-validation 
version are bolded. 
Node Type Definition States 

Thaw Depth Chance 
The depth/thickness of the layer of ground 
subject to annual thawing and freezing in 
areas underlain by permafrost 

Low, Medium, 
High 

Air 
Temperature Chance Temperature of the air near the surface of 

the Earth  
Low, Medium, 
High 

Aspect Decision 

The arrangement of the natural and artificial 
physical features of an area, or more 
particularly, the aspect, or positioning of a 
feature in a specified direction 

North, East, 
South, West 

Active Layer 
Ice Content Chance 

Volume of all types of ice contained in the 
upper portion of the soil column that is 
subject to annual thawing and freezing 

Low, Medium, 
High 

Insulation Chance 
The state of something being insulated, or 
protection of something by interposing material 
that prevents the loss of heat 

Low, Medium, 
High 

Rain Chance Moisture condensed from the atmosphere that 
falls visibly in separate drops 

Low, Medium, 
High 

Season Decision Division of the year marked by the presence or 
absence of snow Snow Free, Snow 

Snow Chance 
Atmospheric water vapor frozen into ice 
crystals and falling in light white flakes or 
lying on the ground as a white layer 

Low, Medium, 
High 

Snow Depth Chance Measurement of snow that has fallen during 
previous weather events 

Low, Medium, 
High 

Soil Moisture Chance Water that is held in the pore spaces between 
soil particles 

Low, Medium, 
High 

Soil Density Chance 
Organic and mineral composition of soil per 
the measure of the amount of dry solid 
particles per unit volume 

Low, Medium, 
High 

Soil 
Temperature Chance Measurement of the warmth of the soil Low, Medium, 

High 
Soil Water 
Input Chance The ratio of precipitation to evaporation Low, Medium, 

High 
Vegetation 
Height Chance Height of the dominant vegetation classes Low, Medium, 

High 
 

CPTs for the conceptual model in Figure 4.9 are the same as those for the pre-

validation conceptual model, with the exception of: (1) the revised CPT for insulation to 

accommodate its relationship with soil density, (2) the revised CPT for soil moisture to 
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reflect the re-characterization of soil particle size to soil density and a few updates to the 

relationships, and (3) modification to the CPT for soil temperature based on additional 

analysis into the annual and seasonal trends between soil moisture and soil temperature 

at two continuous permafrost sites in addition to better definition of the cases given 

medium air temperature (Appendix A). Values were updated in the insulation CPT to 

accommodate the new arc with soil density. In this revised table, insulation is low when 

vegetation height is low, snow depth is low, and soil density is high (i.e., has a low soil 

organic content); insulation is high when vegetation height and snow depth are high and 

soil density is low (i.e., has a high soil organic content). Also, to reflect the modified soil 

density node, low and high values in the CPT for soil moisture were flipped such that the 

soil particle size state of “sand” was redefined as “high” soil density and the soil particle 

size state of “clay” was redefined as “low” soil density. Additional updates in the soil 

moisture and soil temperature CPTs were made: (1) north aspects now contribute to 

higher rather than lower soil moisture under low soil water input conditions, and (2) soil 

temperature is now low when there is low air temperature, high insulation, and high soil 

moisture in the snow free season, and low when there is low air temperature, low 

insulation, and low soil moisture in the snow season.  

A total of 50 prognosis experiments (Appendix B) were conducted in the expert 

assessment validation stage to assess the response of the model to the introduction of 

evidence. These 50 experiments reflect the 46 pre-validation prognosis experiments that 

start with a completely non-informed model and gradually incorporate evidence, with 

the addition of 4 experiments that test thaw depth as the only informed variable at 
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extreme low/high conditions and setting only the decision nodes to extreme low/high 

conditions when every variable is informed. The following paragraphs describe the key 

expert assessment validation experiments. 

As with the pre-validation experiments, the Bayesian principle of Markov 

conditions is illustrated in the non-informed, or uniform, experiments, and increasing the 

number of informed nodes decreases the uncertainty in thaw depth predictions. Since the 

changes made to the conceptual model in response to the expert assessment validation 

were largely related to terminology, results are similar to those of the pre-validation 

prognosis experiments. Key differences include the modification of the soil moisture and 

soil temperature CPTs to reflect a positive correlation in the snow season and negative 

correlation in the snow free season and re-interpretation of the soil density and air 

temperature states. Results from the additional experiments show that informing only the 

endpoint node (i.e., thaw depth) results in a fairly uniform distribution that is slightly 

skewed towards high thaw depth in both the extreme low and high scenarios (Figure 

4.10) and that only setting the decision parent nodes to the low and high scenarios results 

in distinctly low and high thaw depth, respectively (Figure 4.11).  
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Figure 4.10 Prognosis experiments where thaw depth is the only informed node for 
the (A) extreme low (i.e., north aspect, low soil density, low air temperature, and 
snow season) and (B) extreme high (i.e., south aspect, high soil density, high air 
temperature, and snow free season) scenarios.  
 

(A) 

(B) 
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Figure 4.11 Prognosis experiments where all nodes are informed and only the 
decision parent nodes are set to (A) north aspect and snow season and (B) south 
aspect and snow free season.  
 

(A) 

(B) 
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Setting soil density and air temperature to their respective low and high states 

further increases the magnitude of these expected trends (Figure 4.12). Flipping the 

season of each extreme scenario (i.e., snow free instead of snow season for the north 

aspect, low soil density, and low air temperature scenario and vice versa) also responds 

as expected by having a lower percentage of high thaw in the north/snow free scenario as 

compared to the south/snow free scenario, and a lower percentage of low thaw in the 

south/snow scenario as compared to the north/snow scenario (Figure 4.13).  

As with the pre-validation prognosis experiments, results show high probability 

that permafrost thaw would be low in scenarios promoting cooler temperatures and 

increased soil moisture and high in scenarios promoting warmer temperatures and 

decreased soil moisture. The results also indicate that even further adjustments of the 

CPTs are needed for the magnitudes of the probabilities to reflect reality. 
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Figure 4.12 Prognosis experiments where all nodes are informed and all parents are 
set to the (A) extreme low (i.e., north aspect, low soil density, low air temperature, 
and snow season) and (B) extreme high (i.e., south aspect, high soil density, high air 
temperature, and snow free season) scenarios.  
 

(A) 

(B) 



 

76 

 

 

 
Figure 4.13 Prognosis experiments where all nodes are informed and all parents are 
set to the (A) extreme low (i.e., north aspect, low soil density, and low air 
temperature) with (opposite) snow free season and (B) extreme high (i.e., south 
aspect, high soil density, and high air temperature) with (opposite) snow season 
scenarios.  

(A) 

(B) 
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Next, 32 diagnosis experiments (Appendix B) were conducted in the expert 

assessment validation stage to assess the response of the model to changes in ALT. 

These 32 diagnosis experiments reflect the 13 pre-validation prognosis experiments 

while greatly expanding the initial experiments to include more robust testing of 

differing seasons and the effects of only informing the endpoint node. The key diagnosis 

experiment results are described in the following paragraphs. 

The first set of experiments tested various combinations of north aspect during 

the snow season at low, medium, and high thaw depth, with thaw depth as the only 

informed node; the opposite combination (south aspect during the snow free season) was 

also tested (Figure 4.14). In each case, soil moisture, soil temperature, and ground ice 

volume nodes reflected non-uniform probabilities. Soil temperatures are lower for low 

thaw depths and higher for high thaw depths; conversely, ground ice volumes are higher 

for low thaw depths and lower for high thaw depths. In the all-informative cases, there is 

still a strong favoring of medium or high air temperature, regardless of aspect, season, or 

thaw depth state. Soil temperature and ground ice volume distributions are as expected 

(i.e., low soil temperature and high ground ice volume for low thaw depth and vice 

versa) with fairly uniform soil moisture distributions in each case. 
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Figure 4.14 Diagnosis experiments with thaw depth as the only informed node for 
(A) low thaw depth, north aspect, and snow season and (B) high thaw depth, south 
aspect, and snow free season.  

 

(A) 

(B) 
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Experiments setting air temperature to a uniform distribution (Figures 4.15 and 

4.16) show that air temperature is skewed slightly lower for low thaw depth and still 

favor a medium state for high thaw depth in the north aspect/snow season scenario. A 

slightly higher probability for low air temperature under low thaw depth conditions is 

also seen for the south aspect/snow free season scenario, though the same scenario 

yielded almost equal probabilities for low and high air temperature under high thaw 

depth. 

Experiments setting the state of soil temperature to low (or high) under the 

various aspect, season, and thaw depth scenarios (Figure 4.17) show that soil moisture 

and insulation probabilities are appropriately higher in the snow season for both low and 

high soil temperatures while soil moisture is lower for high soil temperatures and higher 

for low soil temperatures in the snow free season. Insulation is high in the snow free, 

low soil temperature, low thaw depth scenario and low in the snow free, high soil 

temperature, low thaw depth scenario, but in the corresponding high thaw depth 

scenarios, insulation is split between low and high. 
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Figure 4.15 Diagnosis experiments with all nodes informed except for air 
temperature for (A) low thaw depth, north aspect, and snow season and (B) low 
thaw depth, south aspect, and snow free season.  
 

(A) 

(B) 



 

81 

 

 

 
Figure 4.16 Diagnosis experiments with all nodes informed except for air 
temperature for (A) high thaw depth, north aspect, and snow season and (B) high 
thaw depth, south aspect, and snow free season.  
 

(A) 

(B) 
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Figure 4.17 Diagnosis experiments with all nodes informed and setting soil 
temperature states for (A) low thaw depth, north aspect, snow season, and low soil 
temperature and (B) high thaw depth, south aspect, snow free season, and high soil 
temperature.  
 

(A) 

(B) 
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The final set of experiments set the state of snow depth along with various 

aspect, season, and thaw depth state combinations (Figure 4.18). In the case for north 

aspect, snow season, low thaw depth, and low snow depth, there was high soil water 

input, high rain, low/medium snow, low insulation, high soil moisture, low soil 

temperature, and high active layer ice content; for high snow depth, this changed to low 

soil water input, low rain, low/medium snow, fairly uniform insulation, low soil 

moisture, low soil temperature, and high active layer ice content. In the case for south 

aspect, snow free season, and high thaw depth, there was lower soil water input, lower 

rain, low or high insulation, lower soil moisture, high soil temperature, and low active 

layer ice content; snow depth was not set for the snow free season, as by definition there 

is a 100% chance of no snow for this season. 
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Figure 4.18 Diagnosis experiments with all nodes informed and setting snow depth 
states for (A) low thaw depth, north aspect, snow season, and low snow depth and 
(B) high thaw depth, south aspect, snow free season, and no snow depth.  
 

(A) 

(B) 
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In order for the model to be considered validated, 9 out of the 12 chance nodes 

for the extreme low and high scenarios had to perform as expected before moving onto 

evaluation. Using Figures 4.12 and 4.15 as guides, the 75% majority is met when both 

prognosis and diagnosis scenarios are considered. Overall, there is more rain and soil 

water input and taller vegetation under warmer temperatures. The snow depth node 

performs as expected, where there is no snow in the snow free season and probabilities 

add up to 100% for the snow season. While it would be expected that snow would be 

lower or non-existent for the snow free season, it cannot be controlled for without an arc 

to the season node or two separate CPTs that are dependent on season. Soil moisture is 

higher for north aspects, as expected, and soil temperature responds to low and high 

forcing factors such as air temperature and season appropriately (e.g., low soil 

temperature with low air temperature and snow season and high soil temperature with 

high air temperature and snow free season). Similarly, active layer ice content responds 

with less ice under warmer air and soil temperature conditions and more ice under cooler 

air and soil temperature conditions. Finally, thaw depth is sensitive to soil temperature 

and ice content by being low under high ice, low temperature conditions and being high 

under low ice, high temperature conditions. The fairly uniform distribution of soil 

moisture obscures its influence on thaw depth, but low soil moisture contributes to 

higher soil temperatures in the snow season and low temperatures in the snow season. 

While insulation does not vary much between experiments, it is generally lower when 

there is low vegetation and low snow depth and higher when there is higher snow depth 

and vegetation. 
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4.3. Evaluation – Case Study with Physical Observations 

Evaluation was conducted using the validated conceptual model in Figure 4.9 

and corresponding CPTs. The vegetation height node was informed with the 

probabilities determined from the physical observations. This resulted in a 100% 

probability of low vegetation on north and west aspects, 86%/10%/3% probability of 

low/medium/high vegetation on east aspects, and 83%/17%/0% probability of 

low/medium/high vegetation on south aspects, regardless of air temperature. Since 

observations are only available for the snow free season, the soil temperature CPT was 

modified to reflect that the snow and snow free seasons can have independent low, 

medium, and high probabilities, or in other words, that the boundaries for low, medium, 

and high soil temperature can differ depending on the season. A set of 20 prognosis 

experiments (Appendix B) were conducted to evaluate the ability of PermaBN to 

accurately predict the expected thaw depth distribution of 87% low thaw depth, 13% 

medium thaw depth, and 0% high thaw depth. The following paragraphs describe the 

key evaluation experiments. 

Figure 4.19 shows the thaw depth predictions for the snow free season for all 

aspects. For this season, PermaBN predicts a 48% chance of low thaw depth, 22% of 

medium thaw depth, and 29% thaw depth, for a margin of error of 39%, 5%, and 29%, 

respectively. Setting the aspect state only causes a slight shift in the thaw depth 

probabilities, with only a 1% increase in high thaw depth for north aspects, and 1% 

increase in low thaw depth for east and south aspects; west aspects retain the same 

overall distribution.  
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Figure 4.19 PermaBN with informed vegetation height node prognosis predictions 
for snow free season.  
 

For the extreme low and high scenarios (Figure 4.20), a north aspect, low soil 

density, low air temperature, and snow free season results in a 60% chance of low thaw 

depth, 19% chance of medium thaw depth, and 21% chance of high thaw depth, for a 

margin of error of 27%, 2%, and 21%, respectively. A south aspect, high soil density, 

high air temperature, and snow free season results in a 54% chance of low thaw depth, 

19% chance of medium thaw depth, and 27% high thaw depth, for a margin of error of 

33%, 2%, and 27%, respectively. 
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Figure 4.20 PermaBN with informed vegetation height node predictions prognosis 
for (A) north aspect, low soil density, low air temperature, and snow free season 
and (B) south aspect, high soil density, high air temperature, and snow free season.  

 

(A) 

(B) 
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Experiments also tested the most likely June – August conditions for the Siksik 

Creek Basin. A south aspect was selected based on the mean aspect for the ss1 and 

ss1lys transects (Appendix D), a low soil density based on site characterization by 

Grunberg et al. (2020) stating a ~5 cm soil organic layer and approximately equal 

mineral soil composition of clay, silt, and sand, and medium air temperature based on 

Grunberg et al. (2020)’s definition of summer as the time period with an average air 

temperature greater than or equal to 8°C, their 1999 – 2018 mean annual cycle plot for 

summer air temperatures, and 2015 air temperature data from Inuvik station 

(Environment and Climate Change Canada, 2015). As seen in Figure 4.21, this results in 

a 44% chance of low thaw depth, 24% chance of medium thaw depth, and 32% chance 

of high thaw depth, which is a margin of error of 43%, 7%, and 32%, respectively. 

However, when soil temperature is set to low in addition to the south aspect, low soil 

density, and medium air temperature (Figure 4.22), there is a 74% chance of low thaw 

depth, 16% chance of medium thaw depth, and 10% chance of high thaw depth, for a 

margin of error of 13%, 1%, and 10%, respectively. A final set of prognosis experiments 

testing the effects of a uniform soil temperature distribution were also conducted, with 

all tested aspect, soil density, and air temperature combinations yielding an 

approximately 34% chance of low thaw depth, 22% chance of medium thaw depth, and 

44% chance of high thaw depth, for a margin of error of 53%, 5%, and 44%, 

respectively. 
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Figure 4.21 PermaBN with informed vegetation height node prognosis predictions 
for south aspect, low soil density, medium air temperature, and snow free season.  

 

 
Figure 4.22 PermaBN with informed vegetation height node prognosis predictions 
for south aspect, low soil density, medium air temperature, low soil temperature, 
and snow free season.  
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A set of 15 diagnosis experiments (Appendix B) were also conducted. These 

experiments are primarily for exploratory purposes, as there is insufficient evidence 

within the parent nodes to properly evaluate the response of model. For all thaw depths 

in the snow free season (low and high thaw depth experiments shown in Figure 2.23), 

there is strong favoring of medium air temperature, low insulation, fairly uniform soil 

moisture, low or medium soil temperature, and varying active layer ice content (high for 

low thaw depth, medium or high for medium thaw depth, and low or medium for high 

thaw depth). Similarly, experiments for low and high thaw depth for all aspects yielded 

medium air temperature, low insulation, uniform or high skewed soil moisture, low or 

high soil temperature (low or high thaw depth, respectively), and high or low active 

layer ice content (low or high thaw depth, respectively).  
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Figure 4.23 PermaBN with informed vegetation height node diagnosis analysis for 
(A) low thaw depth and (B) high thaw depth for the snow free season.  
 

(A) 

(B) 
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Remaining experiments continued to favor medium air temperatures, low 

insulation, and low or high active layer ice content depending on thaw depth; depending 

on the soil temperature scenario, soil moisture was either slightly low skewed (high soil 

temperature) or high skewed (low soil temperature). Finally, experiments testing likely 

aspect (south) and thaw depth (low or medium) conditions (Figure 4.24) showed 

favoring of medium air temperature, fairy uniform soil density and soil moisture, low 

insulation, low or medium soil temperature (low or medium thaw depth, respectively), 

and high or medium active layer ice content (low or medium thaw depth, respectively). 

It is interesting to note that the south aspect and low thaw depth scenario yields a 12% 

chance of low air temperature, 54% chance of medium air temperature, and 33% chance 

of high air temperature, which is very close to the expected 17%, 53%, and 30% chance 

of low, medium, and high air temperatures for 2015-06-15 (Julian day 168) to 2015-08-

20 (Julian day 232) at Inuvik station.  
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Figure 4.24 PermaBN with informed vegetation height node diagnosis analysis for 
(A) south aspect and low thaw depth and (B) south aspect and medium thaw depth 
for the snow free season.  
 

(A) 

(B) 
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5. DISCUSSION 

 

5.1. Case Study 

The results of the Siksik Creek Basin case study demonstrate the ability of 

PermaBN to integrate multiple types of evidence into a single model. Limited 

availability of physical observations overlapping both spatially and temporally proved to 

be a significant challenge in fully validating and evaluating the model, since missing 

parent nodes make it difficult to quantitatively define the children CPTs in a robust 

manner. For example, the thaw depth node could not be determined through quantitative 

binning like the vegetation height node. It was also not possible to evaluate the snow 

season predictions since the data only spanned the June – August 2015 snow free period. 

Manual adjustment of and expertly assessed CPTs also come with the caveat that the 

solutions are not unique, providing further uncertainty in the node distributions as well 

as the specific cases within the CPT (e.g., the probability that thaw depth is low given 

low soil moisture, active layer ice content, and soil temperature). Another caveat to 

consider with this case study is that PermaBN was initially designed with the pan-Arctic 

and multiyear time scales in mind, such that the case study may not accurately reflect 

that initial design. For example, the air temperature joint distribution was initially 

defined with the assumption of warming temperatures in the Arctic, hence the higher 

probabilities for medium and high air temperatures as compared to low air temperatures. 

Without physical observations to determine the probability table, however, it is uncertain 
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how accurate or inaccurate this assumption is for the Siksik Creek Basin for the June – 

August 2015 time period.  

Nonetheless, the results of the most likely conditions prognosis and diagnosis 

experiments (i.e., those setting aspect as south, soil density as low, air temperature as 

medium, and/or soil temperature as low) suggest that PermaBN could perform relatively 

well when system conditions are known and that, in the case of the Siksik Creek Basin, 

air temperatures for Inuvik and soil temperatures from elsewhere in Trail Valley Creek 

could be used to provide more informed expert assessment in the model. For instance, 

combining estimated boundaries of less than 8°C for low air temperature, 8 – 15°C for 

medium air temperature, and greater than 15°C for high air temperature based on the 

work of Grunberg et al. (2020) with weather station data from Inuvik provided an 

estimated 17% chance of low air temperature, 53% chance of medium air temperature, 

and 30% chance of high air temperature. These estimations are quite similar to the 

original expert assessment values of a 10% chance for low, 60% chance of medium, and 

30% chance of high air temperatures, as well as the diagnosis experiment with a south 

aspect, snow free season, and low thaw depth that yielded a 12% chance of low, 54% 

chance of medium, and 33% chance of high air temperatures. Further, when analyzing 

Trail Valley Creek soil temperature measurements made in June – August 2017 and 

2018 by Boike et al. (2020) that were collected at 2, 5, 10, and 20 cm depths, the mean 

soil temperature over the 2 – 2 cm column was 8°C; soil temperatures varied from 

~2.6°C in mid-June to nearly 11°C in July through early August. While there were no 

values from either Wilcox et al. (2019) or Grunberg et al. (2020) to base binning 
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boundaries on, it is likely that soil temperatures would be considered low or medium, 

especially if deeper depths are considered. Conversely, if only topsoil measurements 

were considered, soil temperatures would likely be high. As for soil density, Grunberg et 

al. (2020) and Quinton et al. (2000) state that Trail Valley Creek soil has a  ~5 cm thick 

soil organic layer underlain by approximately equal percentages of clay, silt, and sand 

mineral soil; while approximately equal, silt is slightly more common than clay, and 

both are more common than sand. This latter finding supports the probabilities of 33% 

chance of low, 38% chance of medium, and 29% chance of high soil density that were 

defined through expert assessment. 

 It is important to note that the studies by Boike et al. (2020) and Grunberg et al. 

(2020) do not have the same spatiotemporal resolution as the physical observations by 

Wilcox et al. (2019), but it is interesting nonetheless that setting node states based on the 

estimated likely scenarios of a south aspect, low soil density, medium air temperature, 

and low soil temperature in one of the prognosis experiments yielded the closest 

prediction (74% chance of low, 16% chance of medium, and 10% chance of high thaw 

depth) to the expected values of 87% chance of low and 13% chance of medium thaw 

depth. With refinement of the thaw depth parent nodes, it is likely that PermaBN could 

generate more accurate predictions. However, it was unexpected that the thaw depths 

strongly favored less thaw. Even when applying the thaw depth boundaries of less than 

50 cm, 50 – 80 cm, and greater than 80 cm to all transects in the Siksik Creek Basin 

dataset, only 3% of depth measurements were expected to be high (i.e., greater than 80 

cm), and 78% of measurements were expected to be low (i.e., less than 50 cm). This may 
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indicate that permafrost in the Siksik Creek Basin has experienced less thaw than 

elsewhere in the broader Trail Valley Creek area or that the boundaries based on ALT 

for Trail Valley Creek are not as representative of the Siksik Creek Basin.  

A final observation about the model evaluation stage is that aspect was not found 

to impact thaw depth by more than 1 – 2% between the different states. This may be due 

to the fact that aspect’s primary contribution was to the vegetation height node and 

subsequently vegetation height’s contribution to insulation. Since vegetation height for 

all aspects had an 83 – 100% chance of being low, and soil density had a fairly uniform 

distribution, insulation was always predominately low. The limited variability in 

insulation contributed to less influence on the soil temperature node, which is a key 

driver of thaw depth in the model. Likewise, the limited variability in the fairly uniform 

soil moisture node resulted in less influence on the soil temperature and thaw depths. 

Despite the limitations in the validation and evaluation approaches adopted, 

namely the need for more thorough expert assessment and the lack of physical 

observations to characterize each node in the model for both seasons, PermaBN is a 

unique proof-of-concept of a modeling approach that combines topography, 

meteorological conditions, soil characteristics, and vegetation into a single model. As 

seen in Table 2.1, there is no one model that accounts for all of the variables present in 

PermaBN. While the statistical model by Wilcox et al. (2019) accounts for vegetation 

and aspect, it does not include air temperature, precipitation, and soil parameters. 

Likewise, the statistical model by Hjort et al. (2018) accounts for certain soil parameters 

and slope, but excludes vegetation, air temperature, and precipitation, and the one by 
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Aalto et al. (2018) accounts for air temperature, precipitation, SOC, and potential 

incoming solar radiation, but not vegetation or additional soil characteristics. Older, 

predominantly non-statistical models thoroughly account for soil characteristics or 

thermal dynamics related to snow depth and moisture conditions but largely lack the 

inclusion of vegetation or atmospheric components other than air temperature. The 

closest model match appears to be the NEST model by Zhang et al. (2006) which 

includes vegetation, air temperature, precipitation, solar radiation, ground ice content, 

mineral vs. organic soil, and other soil thermal properties (i.e., thermal conductivity and 

geothermal heat flux), though it omits the explicit representation of soil moisture and 

soil temperature. Future testing of PermaBN could be done by comparing the results of 

the two models. 

5.2. Limitations 

As outlined in Chen and Pollino (2012), uncertainties in BNs can originate from 

incomplete understanding of the process(es) being modeled, incomplete data, or 

subjective biases in the expert assessments. BNs allow for explicit representation of 

uncertainty, but they cannot differentiate between different types of uncertainty, such as 

uncertainties with input data and model structure (Chen and Pollino, 2012). While expert 

assessment datasets can help reduce uncertainties in model structure in particular (Chen 

and Pollino, 2012), they are prone to introducing bias and epistemic uncertainty and may 

yield results that are accurate but not necessarily precise (Kuhnert et al., 2010, Webster 

and McLaughlin, 2014). Following proper methods and procedures when eliciting expert 

assessment datasets may help reduce these uncertainties. Exploring alternative 
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quantitative methods for determining the CPTs could also help reduce uncertainties in 

the model. For instance, sensitivity analysis can allow for identification of missing or 

unneeded linkages, and act as an alternative evaluation method for determining which 

variables in the model are most influential; conditional probabilities can also be learned 

from algorithms, such as the Lauritzen – Spiegelhalter algorithm or Gibbs sampling 

(Chen and Pollino, 2012). Finally, the inclusion of decision nodes can limit the tools and 

algorithms available for use in the GeNIe software program. The inclusion of decision 

nodes results in the BN being classified as an “influence diagram,” and some tools, such 

as the “sensitivity analysis” tool, are unavailable for use with influence diagrams within 

the software. The decision nodes would either need to be removed or converted to 

chance nodes prior to running these tools in GeNIe. 

5.3. Future Work 

As development of BNs is often seen as an on-going process (Chen and Pollino, 

2012), there are many avenues of future work that can be undertaken with PermaBN. 

Foremost could be addressing the limitations previously discussed by: (1) aiming to 

reduce uncertainty in the expertly assessed CPTs through more robust elicitation 

procedures, (2) conducting sensitivity analysis, (3) exploring algorithms for determining 

the CPTs, (4) re-characterizing the BN to remove the decision nodes to allow for more 

analysis options within the BN software, and (5) improving validation by finding or 

creating new datasets for evaluation. Related to the point on exploring algorithms for 

determining CPTs is calibration of the BN. Three types of calibration could be 

considered: (1) manual calibration, (2) optimization, and (3) probabilistic calibration. 
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Manual calibration would entail manually manipulating the CPTs until the parent node 

yields the expected thaw depth response. Optimization would entail having an algorithm 

solve for the most likely scenario amongst the parent nodes given a particular state of the 

thaw depth node; optimization would yield a single, unique result. In contrast, 

probabilistic calibration would explore many different scenarios for the parent nodes and 

report which of the scenarios are most likely. These methods of calibration are unique to 

BNs and would allow for the BN to perform better the next time it is run. Since manual 

calibration is time consuming and does not yield unique results, the recommended next 

step would be conducting optimization. 

Once the methodological development of PermaBN is refined, the next steps 

could entail: (1) integration of hydrological variables, (2) integration of PermaBN into a 

larger risk framework as a sub-model, and (3) application to a pan-Arctic case study. If 

PermaBN is only intended to function as an ecological or predictive model, hydrological 

variables such as sub-surface and surface water flow rates, water temperature, presence 

of lakes and rivers, and river discharge could be directly integrated into the model. 

Alternatively, PermaBN and corresponding hydrological influences could be integrated 

as sub-models into a larger BN framework aimed at quantifying social, economic, and 

environmental consequences of a warming Arctic (Loisel and Medina-Cetina, 2019). 

Whether as a stand-alone ecological model or integrated risk framework sub-model, 

PermaBN could also be applied to a multitude of pan-Arctic case studies, and its 

predictions could be compared to existing permafrost models for evaluation of 

performance. Overall, the relative simplicity of the PermaBN framework allows for the 
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identification and exploration of multiple science questions, as it can be cheaply and 

quickly run using a large number and combination of variables.  
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6. CONCLUSIONS 

PermaBN is a Bayesian network designed to assess permafrost thaw in the 

continuous permafrost region of the Arctic. It provides an alternative method for 

assessing permafrost thaw that allows for the integration of multiple types of evidence 

(e.g., physical observations, model outputs, and expert assessments) into a single model. 

This study outlines and discusses best BN model practices while providing a proof-of-

concept of this unique modeling method. The framework presented offers a transparent 

modeling approach that is able to represent systems in data sparse regions such as the 

Arctic. Further, it facilitates the quantification of uncertainty through the use of 

probabilities.  

The case study that was selected to further evaluate PermaBN also shed light on 

important aspects of both the model development and field data collection. For instance, 

physical observations allow for reduction in uncertainty for those nodes that have data 

available; here, aspect and vegetation height data allowed for uncertainty in vegetation 

height conditions to be reduced since it was known which aspects contributed to which 

vegetation classes. Conversely, the model highlighted data gaps, such as long-term thaw 

depth measurements with concurrent meteorological and soil measurements. Filling 

these data gaps would certainly help validating models and furthering their development. 

Aside from the benefits this modeling approach provides in data sparse regions, 

BNs also have the ability to engage a wider audience than traditional modeling 

approaches. Users without highly technical modeling skills can build BNs, and the 

graphical structure can easily be understood by and communicated to non-technical 
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stakeholders. This is valuable in the context of interdisciplinary and participatory 

endeavors. With future development of PermaBN to include a more robust validation 

procedure, hydrological variables, and/or integration with a risk assessment framework, 

PermaBN could be applied to carbon modeling studies, infrastructure hazard 

assessments, and policy decisions aimed at mitigation of and adaptation to permafrost 

thaw. 
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APPENDIX A 

CONDITIONAL PROBABILITY TABLES USED IN PERMABN 

 

The conditional probability tables (CPTs) used in the pre-validation, expert assessment 

validation, and evaluation stages of the PermaBN model development process can be 

found in an external file accompanying this document.  
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APPENDIX B 

PROGNOSIS AND DIAGNOSIS EXPERIMENTS 

 

A full list of the prognosis and diagnosis experiments and their results can be found in an 

external file accompanying this document. 
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APPENDIX C 

ANALYSIS OF SOIL MOISTURE AND SOIL TEMPERATURE CONDITIONS IN 

TRAIL VALLEY CREEK, NORTHWEST TERRITORIES, CANADA 

 

Summary 

Soil moisture and soil temperature are key drivers of ecosystem functioning in 

the Arctic, as changes in these variables can initiate secondary impacts in vegetation, 

permafrost, and more. While soil moisture is known to alter soil thermal dynamics, it is 

uncertain whether the influence of soil moisture on thermal conductivity or evaporative 

processes, which would increase and decrease soil temperatures, respectively, is 

dominant. It is also uncertain whether the influences of soil moisture on soil temperature 

are consistent across space (i.e., depth and site location) and time (i.e., season). 

Regression analyses were conducted for two sites in the continuous permafrost region of 

the Arctic to assess the sign and significance of correlations between soil moisture and 

soil temperature by depth, season, and location. Results showed that there is an overall 

positive, significant correlation between soil moisture and soil temperature at both Trail 

Valley Creek, Northwest Territories, and Prudhoe Bay, Alaska, indicating the 

dominance of thermal conductivity over evaporative processes at both sites. Seasonal 

correlations vary in sign and significant, but there are suggestions that evaporative 

processes may be dominant in the summer, particularly at Trail Valley Creek. 

Comparisons between the two sites also revealed that the soil conditions are statistically 

different throughout the year at each site, which in combination with the regression 
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analyses suggest the importance of local conditions on soil properties. This has 

implications for the inclusion of soil dynamics in Arctic ecosystem modeling efforts and 

underscores the need for thoroughly characterizing the conditions of the application 

domain when developing those models. The methods and results for Trail Valley Creek 

are detailed below.  

 

Methods 

Study Area: The relationship between soil moisture and soil temperature is 

analyzed at the continuous permafrost region site of Trail Valley Creek, Northwest 

Territories, Canada (Figure C-1). For a general description of the Trail Valley Creek 

area, please refer to Section 3.3.  

 

 
Figure C-1 Google Earth imagery showing the position of the Trail Valley Creek 
measurements. 



 

127 

 

Datasets: Boike et al. (2020) collected hourly single-point volumetric soil 

moisture content and soil temperature observations from 27 August 2016 – 2 August 

2019 at 2, 5, 10, and 20 cm depths at the Trail Valley Creek site. The dataset was 

aggregated to a mean weekly temporal scale in order to smooth out the data, which 

occasionally had missing hourly values. The weekly data were also assigned a season 

(e.g., winter, spring, summer, or autumn) based on the solstices and equinoxes. For 

instance, winter is defined as those weeks including the winter solstice (i.e., December 

21 or 22) through the spring equinox (i.e., March 20). This division allows for both an 

annual weekly analysis as well as an additional seasonal analysis that aims to roughly 

capture the snow versus snow-free seasons. For analysis, the annual time scales 

considered are Winter 2016 – Autumn 2017, Winter 2017 – Autumn 2018, and Winter 

2018 – Summer 2019. The final year is shorter due to the early end of the Trail Valley 

Creek observations. 

Regression Analyses and Comparison of Trends: Prior to regression analysis, 

the data were checked for normality and homoscedasticity. Residual analysis in 

combination with the results of Shapiro and Levene’s tests showed that the dataset was 

both non-normal and heteroscedastic. It should be noted that the appearance of a pattern 

in the residual analysis indicates that additional predictor variables may be missing; 

while adding additional predictor variables, such as air temperature or precipitation, may 

enhance the regression analyses ability to predict soil temperatures, that was outside the 

scope of this analysis. Since the basic assumptions of linear regression analysis were 

violated, a non-linear regression using a 3rd order polynomial fit, which was determined 
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through an AIC analysis, and Spearman correlations were used to assess soil temperature 

as a function of soil moisture for each depth at both annual and seasonal time scales. 

Trends between the two Trail Valley Creek and Prudhoe Bay sites (latter not shown or 

detailed) were compared by assessing the correlation coefficients and p-values from each 

plot and conducting Friedman tests between variables and sites. Here, a p-value less than 

0.05 was considered significant. In the Friedman test to assess differences in the 

variables by season at each site, groups were defined by week and blocks were defined 

by year. Similarly, to assess differences in the variables by location for each year, groups 

were defined by location and blocks were defined by week. 

 

Results 

Soil Observations: Trail Valley Creek yearly soil temperature and soil moisture 

trends for 5 cm and 20 cm depths are seen in Figure C-2. Values are plotted for 2016 – 

2019, and the dotted lines represent the weekly seasonal divisions where weeks 51 – 

52/1 – 12 are winter, 13 – 24 are spring, 25 – 38 are summer, and 39 – 50 are autumn. 

While the 2016 and 2019 time series are incomplete, they appear to be within a similar 

range as the other years. Winter/autumn temperatures also appear to vary more from 

year to year than summer/spring temperatures. 
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Figure C-2 Weekly soil temperature and soil moisture plots for Trail Valley Creek. 
Dotted black lines indicate seasonal divisions. The soil records for 2016 and 2019 
are incomplete at Trail Valley Creek. 
 

Soil temperatures steadily increase through the spring before peaking in early to mid-

summer. Temperatures steadily decrease through autumn before reaching their minimum 

in winter. At Trail Valley Creek, the soil temperature generally decreases with depth, 

from -1.72°C near the surface (2 cm) to -2.35°C further beneath the surface (20 cm).  

Soil moisture rapidly increases beginning in mid-spring and rapidly decreases at the 

beginning of autumn. The 5 cm trend is more variable than that of the 20 cm, as two 

peaks in soil moisture are seen – one in late spring and a smaller one in late 

summer/early autumn. Soil moisture values closer to the surface are also not as constant 

through the summer as they are farther down the soil column. At Trail Valley Creek, the 

soil moisture content generally increases with depth, from 7.96% at 2 cm to 22.05% at 

20 cm.  
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Annual Regressions: The annual non-linear regressions for the 5 cm and 20 cm 

depths are shown in Figure C-3. For each year, seasonal correlations and p-values are 

given. Overall, negative correlations are seen in the summer, and positive correlations 

are seen in autumn, winter, and spring. While the correlations and p-values need to be 

regarded with caution as a result of the non-normal and non-homoscedastic nature of the 

data, it appears that the only year where summer correlations are significant was Winter 

2016 – Autumn 2017. Correlations for all other seasons are significant for each of the 

three years. When the observations are considered collectively (i.e., not divided by 

season), the correlations between soil moisture and soil temperature are positive and 

significant for all years. 

 

 
Figure C-3 Annual non-linear regressions for 5 cm and 20 cm soil observations at 
Trail Valley Creek. Correlations and significance values for each season are 
included. 
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Seasonal Regressions for Entire Record: Non-linear regressions combining all 

years for each available depth are shown in Figure C-4. Summer trends are negative and 

significant for all depths while the autumn, winter, and spring trends are positive and 

significant for all depths. However, the strength of the correlations is generally quite low 

for the summer. In addition, correlation strength is moderately low for winter, with the 

exception of the 20 cm depth where the winter correlation is very low. Similar to the 

winter correlations, the 20 cm spring correlations are also low. The most consistent 

trends are in autumn, the R2 and R values of which vary by at most 0.02 or 0.03 across 

the soil column. 

 

 
Figure C-4 Seasonal non-linear regressions for Trail Valley Creek for the period 27 
August 2016 to 2 August 2019. Correlations and significance values for each season 
are included. 
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Limitations 

Limitations of this study include the limited (annual) time series, single point 

observations, general lack of Arctic soil observations, and data distributions. The study 

of Arctic soil characteristics in particular is especially hindered by spare observational 

data in the region. Limited annual time series hinder the ability to clearly see whether 

there is interannual variability in soil moisture and/or soil temperature trends, but annual 

time series of soil moisture and soil temperature are uncommon, as most observations 

are only collected for individual years and/or in the summer months. Comprehensive soil 

datasets that overlap temporally with field observations in other locations are also 

uncommon. Limited spatial coverage is also a problem, as the heterogeneity in soil 

moisture and temperature conditions for a particular location cannot be as accurately 

characterized. Observational data sparsity also extends to meteorological data, though to 

a lesser extent. At Trail Valley Creek, for instance, there are no publicly available local 

air temperature and precipitation datasets. Instead, some studies use air temperature and 

precipitation data from the Inuvik and/or Tuktoyaktuk weather stations, which are 

approximately 45 km south and 80 km north of Trail Valley Creek, respectively (Wilcox 

et al., 2019). This lack of meteorological data hinders the ability to compare soil 

conditions to weather conditions that may have influenced the soil properties, such as 

unusually high air temperatures or amounts of precipitation. Finally, the non-normal and 

heteroskedastic data violates the assumptions of many statistical methods, namely, 

common parametric tests such as linear regression and ANOVA. 
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Conclusions 

The results of this study show that there is a positive correlation between soil 

temperature and soil moisture at Trail Valley Creek, though the sign and significance of 

the correlation can vary by depth and/or season. This suggests that the influence of 

thermal conductivity dominates in most or all seasons, though the dominance of 

evaporative processes in the summer cannot be conclusively ruled out despite the mostly 

insignificant summer correlations. Ultimately, this study highlights the complicated, 

non-linear relationship between soil moisture and soil temperature and the importance of 

understanding the local conditions of a study site or region in order to fully understand 

how soil conditions may change in a warming Arctic. Further research is needed to 

conclusively determine the correlation(s) between soil moisture and soil temperature. 

This may be aided by assessing the influence of additional variables, such as air 

temperature, precipitation, and vegetation along with the soil conditions. Nonetheless, 

the results here were used to update the relationships between the soil moisture and soil 

temperature nodes in the PermaBN model given the relative proximity between these 

measurements and those taken in the Siksik Creek Basin. 
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APPENDIX D 

DESCRIPTIVE STATISTICS FOR SIKSIK CREEK BASIN PHYISICAL 

OBSERVATIONS 

 

As stated in the text, physical observations are available for aspect, vegetation height, 

and frost table depth (i.e., thaw depth) in the Siksik Creek Basin. Measures of central 

tendency (mean, median, and mode), variance (standard deviation), and eCDFs for the 

ss1 and ss1lys transects are shown here to provide justification for the decision to group 

the two transects together. It should again be noted that frost table depth was the only 

variable to change over the course of the 2015-06-11 to 2015-08-20 study period and 

also the only purely continuous variable. Frost table depth, which coincides with the 

permafrost table when the active layer is completely thawed and is the upper limit of 

permafrost, is calculated as the average between the hummock and interhummock frost 

table depth heights.  
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Measures of Central Tendency 

 

Figure D-1 Histogram (bins = 10) for aspect (degrees) along transect ss1. On 
average, slopes along this transect are south-facing with a high frequency of north-
facing slopes. 
 

Table D-1 Mean, median, mode, and standard deviation of aspect along transect 
ss1. 

Mean Median Mode Standard 
Deviation 

204.9353 209.744 350.751 101.7632 
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Figure D-2 Histogram (bins = 10) for aspect (degrees) along transect ss1lys. On 
average, slopes along this transect are east-facing with a high frequency of south-
facing slopes. 
 
Table D-2 Mean, median, mode, and standard deviation of aspect along transect 
ss1lys. 

Mean Median Mode Standard 
Deviation 

100.7391 87.7088 150.944 54.33444 
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Figure D-3 Histogram (bins = 10) for aspect (degrees) along both transect ss1 and 
ss1lys. On average, slopes along this transect are south-facing with a high 
frequency of north-facing slopes; the median aspect is east-facing. 
 
Table D-3 Mean, median, mode, and standard deviation of aspect along transects 
ss1 and ss1lys. 

Mean Median Mode Standard 
Deviation 

142.763 106.388 350.751 92.39982 
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Figure D-4 Histogram (bins = 10) for average vegetation height (cm) along transect 
ss1. The average vegetation heights equate to predominantly tundra vegetation 
(average 15 cm in height) with some channel vegetation (average 200 cm in height). 
 

Note: measures of central tendency are not provided due to the discrete nature of the 

vegetation height variable. 
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Figure D-5 Histogram (bins = 10) for average vegetation height (cm) along transect 
ss1lys. The average vegetation heights equate to predominantly tundra vegetation 
(average 15 cm in height) with some alder vegetation (average 115 cm in height). 
 

Note: measures of central tendency are not provided due to the discrete nature of the 

vegetation height variable. 
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Figure D-6 Histogram (bins = 10) for average vegetation height (cm) along both 
transect ss1 and ss1lys. Tundra vegetation is most common, followed by alder and 
channel vegetation.  
 

Note: measures of central tendency are not provided due to the discrete nature of the 

vegetation height variable. 
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Figure D-7 Histogram (bins = 10) for frost table depth (cm) along transect ss1. The 
distribution of depths appears to be approximately normal with a slight right skew.  
 

Table D-4 Mean, median, mode, and standard deviation of frost table depth along 
transect ss1. 

Mean Median Mode Standard 
Deviation 

32.41267 31 23.5 10.83352 
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Figure D-8 Histogram (bins = 10) for frost table depth (cm) along transect ss1lys. 
The distribution of depths appears to be right skewed.  
 

Table D-5 Mean, median, mode, and standard deviation of frost table depth along 
transect ss1lys. 

Mean Median Mode Standard 
Deviation 

35.19444 32.5 18 15.53403 
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Figure D-9 Histogram (bins = 10) for frost table depth (cm) along both transect ss1 
and ss1lys. The distribution of depths appears to be right skewed.  
 

Table D-6 Mean, median, mode, and standard deviation of frost table depth along 
transect ss1 and ss1lys. 

Mean Median Mode Standard 
Deviation 

34.07251 32 26 13.88246 
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eCDFs 

 

Figure D-10 eCDF for transect ss1 frost table depth (cm) from June – August 2015. 
Based on AIC analysis, a gamma distribution (blue line) is the best distribution fit 
followed closely by a log-normal distribution (green line); when analyzing the 
transect on a daily level (e.g., Julian day 168, 173, 190, 194, 208, 222, or 232), a log-
normal distribution is the better fit, closely followed by a gamma distribution. A 
normal distribution (red line) is included for comparison. 
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Figure D-11 eCDF for transect ss1lys frost table depth (cm) from June – August 
2015. Based on AIC analysis, a gamma distribution (blue line) is the best 
distribution fit followed closely by a log-normal distribution (green line); when 
analyzing the transect on a daily level (e.g., Julian day 168, 173, 190, 194, 208, 222, 
or 232), a log-normal distribution is the better fit, closely followed by a gamma 
distribution. A normal distribution (red line) is included for comparison. 
 

 


