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ABSTRACT

A core aspect of human-like artificial intelligence is the awareness of emotions. Recognizing

emotions in conversations (ERC) is especially difficult to solve because of several challenges like

contextual modeling, interlocutor profiling, recognizing emotion shifts, and multiparty conversa-

tions. Analyzing the results from the state-of-the-art techniques reveal that ERC models could be

improved by using common-sense knowledge. Once incorporated correctly, the advancements in

general common-sense knowledge models could be leveraged directly in ERC models. Further-

more, insights from these experiments will be applicable in other language tasks as well.

In this work, I propose two approaches for incorporating common-sense knowledge in ERC

models: first, implicit incorporation by fine-tuning language models using the common-sense

inferences for the given data, and second, explicit incorporation by applying cross-attention on

common-sense knowledge for each utterance. I demonstrate that the proposed methods perform

well on IEMOCAP, a widely used dyadic conversation dataset with human-annotated emotions.
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1. INTRODUCTION

Emotion is fundamental to humans and therefore, the awareness of emotions in human con-

versations is an important aspect of human-like artificial intelligence. Conversational data is now

being increasingly available due to the advent of social platforms. Utilizing this data for emotion

recognition in conversations (ERC) can help analyze the fine-grained sentiments in multifarious

scenarios. With more affective dialogue systems, applications like online health programs, court

trials, interviews, social networking websites, recommendation systems, etc. shall all benefit as

well.

Emotion recognition in computational linguistics is the method of recognizing distinct emo-

tions reflected in the text. This discipline has not yet achieved the popularity and pervasiveness of

the broader field of sentiment analysis - and a way to tackle this problem would be to address its

research challenges as outlined in further sections.

Current state-of-the-art approaches use contextual modelling and feature representations from

language models to achieve high accuracy on the ERC task. Additional information about the emo-

tion of an utterance can be obtained from automatic common-sense knowledge (CSK) generators.

Like for the utterance 8 in Fig. 1.1, common-sense knowledge would suggest that Chandler is

regretful and help in inferring his emotion to be sad. However, the current state-of-the-art models

seem to be lacking common-sense reasoning in some cases. In this work, I explore two approaches

for leveraging automatically generated common-sense knowledge for recognizing emotion in tex-

tual conversation. The first approach is implicit incorporation by fine-tuning language models

using the common-sense knowledge for the given utterance, and the second approach is explicit

incorporation by applying cross-attention on common-sense knowledge representation vector for

each utterance. The results for different combinations of these approaches are compiled and ana-

lyzed to draw material insights for incorporating common-sense knowledge. The implicit method

of CSK incorporation improves performance over the baseline models and is better at predicting

emotion shifts, a key challenge in the ERC task.
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Figure 1.1: Reprinted from [1]. An excerpt of a conversation with each utterance tagged with
corresponding emotion and sentiment label (which can be either positive, negative, or neutral sen-
timent). This is a simple example of a conversation between two parties. The task holds for
multi-party conversations as well [1, 2].

This thesis is organized as follows: This chapter first gives an overview of the ERC task,

states its problem definition, and details about the research challenges. Chapter 2 reviews the key

contributions and prior work in the ERC domain. Chapter 3 elaborates on the proposed framework.

Chapter 4 describes the training and testing setup for the analysis of the methodologies. Inferences

are drawn in Chapter 5. The thesis concludes by discussing the results, challenges and future scope

in Chapter 6.

1.1 Problem Definition

The ERC (Emotion Recognition in Conversation) task aims to learn a function that would take

as input the transcript of a conversation and speaker information for each constituent utterance and

identify the emotion of each utterance from a set of predefined emotions. An utterance is defined

as a unit of speech bound by breathes or pauses in a conversation [5]. Any conversational unit -

phrases, clauses or sentences can be an utterance.

Mathematically, the objective is to predict the emotion label ei of each utterance ui, provided

the input sequence of N utterances [(u1, p1), (u2, p2), ..., (uN , pN)], where each utterance ui =

2



[ui1, ui2, ..., uiT ] consists of T words uij spoken by party pi.

Classification of Emotions

Emotions can be represented in two ways: either as discrete types or as a point in multi-

dimensional continuous space. In the first kind of representation, there are two widely known

emotion category models: Plutchik’s wheel of emotions defining eight emotion types [6] and Ek-

man’s model of six basic emotions [7]. Emotions are mapped to one of the discrete emotion labels

present in the model. In the second representation, emotions are a measure of the two or three

dimensions which can be levels of arousal, pleasure, relaxation etc [8]. Although the dimensional

approach can map an emotion more precisely using vectors, they are hard to be annotated.

In this thesis, we use IEMOCAP [9] dataset which categorize utterances into six emotion labels:

angry, frustrated, happy, sad, excited, and neutral. However, the research works referenced may

use a different set of emotions.

1.2 Research Challenges

ERC is an arduous task to address because of its many research challenges. The following

sub-sections describe the challenges as well as the factors governing the emotion of an utterance.

These factors inherently also drive the conversation.

1.2.1 Annotation of emotion labels in datasets

While building a corpus, labeling of emotions depends on the annotator’s perspective. This

adds a complication in annotation. Real-time labeling of unscripted interactions is potentially

impractical because that would hinder the communication flow. To resolve this, multiple annotators

are involved to label an emotion. Hence, improving inter-annotator agreement is also an ongoing

research problem [10].

1.2.2 Context Modelling

Initial research treated individual utterances independently while predicting the emotion of

that utterance. Later studies showed that the structure of the dialogue, the neighboring sentences,

3



and previous utterances play a major role in determining the emotion conveyed in a particular

utterance. The preceding utterances at time < t along with its temporal sequence can be viewed as

a context of the utterance at time t. The computation and representation of this context experience

considerable difficulties due to the emotional dynamics involved. Research studies have made it

apparent that the information derived from the textual representations of the context of an utterance

has helped ERC models to elevate their prediction accuracies. It has also helped in generalizing

the overall model of emotion recognition [11].

1.2.3 Interlocutor Profiling

People have their own subtle ways of communicating their sentiments. Depending on the char-

acter of the speaker, the personalities, motives, perspectives of the interlocutors, behavior towards

each other, etc., a phrase or an utterance can carry different emotional strength and polarity. This

highlights the need to do user profiling for better results because this shall provide the appropriate

prior knowledge about the interlocutor [3, 12, 13].

1.2.4 Emotion Shift

Emotions can fluctuate with each dialogue and misidentifying such labels is found to be a sig-

nificant limitation causing reduced accuracies of ERC models. Fig 1.1 shows the shifts in emotions

of Joey and Chandler throughout their conversation. It is observed that current ERC models are un-

able to discern spontaneous emotional changes and thus are not capable to comprehend the subtle

distinctions between classes of emotions that are closely linked to each other [14, 15]. Examples

of such emotions include anger v/s frustration, happy v/s excited, etc.

1.2.5 Reasoning

In conversational history, emotion reasoning not only discovers the contextual utterances that

activate that emotion but also decides the role of such contextual utterances on the target utterance.

An opinion-holder may also have an emotional bias against the entity/topic in question. For ex-

ample, in Fig. 1.1, the knowledge of Joey being angry comes from him discerning that Chandler

deceived him which is not evident from the utterances. The lack of rich annotated datasets con-
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taining the cause of emotion makes it very difficult to frame meaningful structures of conversation

that would have made the AI dialogue systems more empathetic.

1.2.6 Multi-modal Analysis

Our day-to-day conversations are not always explicit. This ambiguity is dealt with by facial

gestures and/or the tone of the dialogue. Hence in some cases, multi-modal data becomes essen-

tial for drawing the emotion predictions. Using only textual data for such conversation can result

in false classifications of emotions. User-generated videos are now available through online plat-

forms aiding in the development of multi-modal datasets. Fusion techniques of these multi-modal

features are being actively researched. Some studies have proved enhancement of emotion recog-

nition employing the multi-modal conversation as input features compared to baseline text-based

models [15, 16, 17].
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2. RELATED WORKS

For several years, emotion recognition has become an active research area and has been studied

in interdisciplinary areas. Recently, a growing number of models for solving ERC using various

deep learning structures have been proposed. Traditionally, convolutional neural network (CNNs)

architectures [18] were used for utterance level emotion detection but they failed to model the

contextual information. The recent trend in the identification of conversational emotions is to

conduct context modeling using deep-learning-based algorithms in either textual or multi-modal

environments. The advent of recurrent neural networks (RNNs) made it seem easier to model

context due to the sequential nature but has been unsuccessful in the literature [11] owing to its

poor performance to capture long distance contextual information. However, memory networks,

RNNs, and attention mechanisms in a hybrid architecture have been used to comprehend contextual

knowledge [3, 13].

CMN [19] used memory networks in dyadic conversations for emotion recognition, where two

different memory networks enabled inter-speaker interaction. Further, to model emotional dynam-

ics, DialogueRNN [3] proposed a GRU-based model focussing on party state and global state,

employing an attention mechanism to extract information for each target utterance. A recent work

by Sheng et al. [20] has focused on phrase-level semantic relations to understand emotion changes.

Combating the issue of long sequences, GCN [21] as well as transformer [22] architectures became

popular as they were able to exploit contextualized utterance representations.

In KET [23], its ERC model uses an external knowledge base to enrich an utterance with its

related entities which aides in determine the emotion associated with the utterance. Such incor-

poration of knowledge is being in done in other related NLP tasks like dialogue systems [24],

sentiment analysis [25]. Thus it can be said that humans also rely on some common-sense knowl-

edge to convey feelings. Awareness of common-sense is important for interpreting discussions and

producing effective answers [12]. It has been seen in many studies that transformers can effectively

integrate contextual data as well as external information bases in the ERC models. Competitive

6



performance against advanced state-of-the-art techniques has been demonstrated by simple base-

lines using BERT [26, 27]. Several works have investigated strengthening the structure of transfer

learning through model pretraining by either changing the learning method or adapting weight in

the ERC downstream task [12, 28].

2.1 Experiments and Analysis

In our experiments, DialogueRNN with utterance embeddings extracted from RoBERTa [29]

fine-tuned for the emotion recognition task have shown promising results. However, in some

cases the model lacks common sense reasoning. One such example is shown in Table 2.1. This

indicates that there is scope for improving performance by explicitly incorporating Common-Sense

Knowledge (CSK). This is attempted in COSMIC [12].

Table 2.1: Misclassifications by DialogueRNN with textual features from RoBERTa.

COSMIC uses COMET [4], an automatic knowledge graph generation language model, to

extract CSK from the speaker’s utterance. For a given subject, COMET can generate objects for

nine different relations. Figure 2.1 shows COMET’s response for three relations when given the
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prompt, ’My luggage was lost’.

COSMIC incorporated this knowledge by maintaining the speaker’s internal states as per CSK.

They intend to model the speaker’s intent, their reaction, and how they are perceived by others

using GRUs and update them using CSK relations. All these relations are present in COMET and

are taken as input in the COSMIC model. The state vectors from these GRUs are then concatenated

to update the emotional state of individual parties in the conversation. Finally, a fully connected

layer is used to determine the emotion of the party.

Figure 2.1: Reprinted from demo web page of Mosaic Knowledge Graphs built by Allen Institute
for AI. The diagram shows the COMET Output for three relations for ‘My luggage was lost’
subject. Web Link: Mosaic KG

.

The results from COSMIC show a marginal improvement over the DialogueRNN with features

extracted from RoBERTa (shown in Table 2.2). Only a marginal improvement is observed over the

DialogueRNN results. Moreover, the accuracy of identifying emotion shifts has degraded. Possible

justifications for COSMIC’s underwhelming performance could be noisy common-sense attributes

or incorrect method of incorporating them. In this work, I study and explore ways to incorporate

common-sense knowledge differently and effectively.

8
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Model Accuracy Accuracy on Emotion Shifts
DRNNGlove 63.40 47.50

DRNNRoBERTa 64.66 51.14

COSMIC 65.11 50.63

Table 2.2: ERC results comparison between DialogueRNN_RoBERTa and COSMIC.

Common-sense knowledge incorporation is attempted by Chang et al. (2020) [30] for So-

cialIQA, a social commonsense reasoning task. They present two approaches for incorporating

CSK into their model. In the first approach, they fine-tune RoBERTa with the tuples acquired from

large common-sense knowledge graphs like ATOMIC [31] and ConceptNet [32]. In the second

approach, they attend over different common sense tuples acquired from the graphs to incorporate

common sense knowledge selectively. Their experiments show promising results and improvement

upon the corresponding baseline models.

In my proposed models, I adapt the approaches used by Chang et al. for ERC to incorpo-

rate common sense knowledge more effectively. For implicit incorporation we fine-tune language

models using the common-sense knowledge for the given utterance. For explicit incorporation, we

apply cross-attention on common-sense knowledge representation vector for each utterance. We

empirically show that implicit incorporation improves performance over the baseline models and

is better at predicting emotion shifts, a key challenge in ERC task.
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3. METHODOLOGY

In conversational emotion recognition, the task is to classify each of the constituting utterances

into their appropriate emotion category. Like most modern NLP tasks, ERC involves two main

stages. First stage is generating context-independent representation vector for the utterance. Being

context-independent indicates that it doesn’t utilize any other utterances from the dialogue. The

second stage is contextual modelling. Here, we use recurrent neural models that uses information

from the previous utterances to make use of the context in predicting emotions.

Our framework proposes changes in both these stages for incorporating common-sense knowl-

edge (CSK) in ERC. First, we propose implicitly incorporating CSK by directly embedding it in

the vector representations of the utterances. This will help us use natural language CSK thereby

making it extendable to enhancements or changes in external CSK. Furthermore, it provides more

visibility in the CSK being incorporated. Also, we can filter noisy CSK before incorporation

through pertinent NLP models.

Incorporating CSK explicitly in the model is the second approach. In this, we use the vector

representation of CSK as a feature in the model. The intention is to use a particular relation in CSK

that give the effect on speaker directly in the model. This also allows us to use relevant CSK from

previous utterances in determining the emotion through attention networks. We believe that given

the nature of the conversations, the effect from the central event shows up after a few utterances.

Finally, we want to check how well do the two methods compliment each other.

3.1 Implicit Incorporation of CSK

In this approach, we attempt to incorporate CSK in the context-independent vector representa-

tions of utterances. For extracting CSK, this work uses COMET [4], an automatic common-sense

generation model trained on ATOMIC [31]. ATOMIC is an collection of common-sense if-then

descriptions in the form of a knowledge graph. It contains 877K tuples covering a variety of so-

cial CSK around specific event prompts (e.g., “X brings gifts”). Each event prompt has nine CSK
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dimensions covering the event’s causes (e.g., “X needs to purchase them”), its effects on the agent

(e.g., “X feels good about themselves”) and its effect on other direct (or implied) participants (e.g.,

“Others feel grateful”). The dimensions in ATOMIC are detailed in Table 3.1.

Table 3.1: Reprinted from [4]. Definition of the relations in ATOMIC. Events in ATOMIC center
around the personal situations of a central figure, Person X, with potentially more participants.
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For training COMET, the event prompt from ATOMIC tuple is taken as the subject s , the

dimensions are treated as relations r and the causes/effects are the objects o. COMET is trained to

generate the object phrase o from concatenated subject phrase s and relation phrase r for a triplet

{s, r, o}. Sample output from COMET was presented in Figure 2.1.

Each utterance is fed as a subject and objects for four relations, xIntent, xAttr, xNeed,

and xWant, are extracted. xIntent and xNeed are the causes for the subject and could also

be the causes behind speaker’s emotion. xAttr is the speaker’s attributes based on the utterance

which could help in implicitly modelling the personality of the speaker. The intention behind

including xWant is to allow capturing turns in emotion, for e.g. regret. The objects extracted

from COMET for the utterances are then appended to pre-defined templates for each relation to

form meaningful sentences ( See Table 3.2 for templates with example sentences). When COMET

cannot find a suitable object for the subject relation pair, it returns none as the object and that CSK

tuple is filtered out.

Relation Template Example

xIntent I am trying ... I am trying to be trusting

xNeed I needed ... I needed to be friends with Person Y

xAttr I am ... I am trying to be trusting

xWant I want ... I want to rely on Person Y

Table 3.2: Sentence templates for the relations with examples. Examples uses objects for prompt
’Person X puts Person X’s trust in Person Y’.

Finally, the generated CSK sentences are appended with the utterance to form an extended

utterance. Few extended utterances are shown in Table 3.3.

RoBERTa model [29] is used to extract context independent utterance level feature vectors.

RoBERTa is based on the BERT model [26] which is a deep bidirectional transformer intended to

pre-train over huge unlabelled text corpus to learn language representations. BERT uses novel pre-
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Utterance Extended Utterance

I will do no such thing. I will do no such thing. I am trying to be a good
person. I am stubborn. I want to be left alone.

Is that your phone? Is that your phone? I am curious. I want to call
someone.

Do you want my jacket? Do you want my jacket? I am trying to be warm.
I am cold. I want to go outside.

Awesome. We’re both going
to be in L.A.

Awesome. We’re both going to be in L.A. I am
trying to be in a different place. I am adventur-
ous. I needed to buy a plane ticket. I want to go
to the beach.

Table 3.3: Sentence templates for the relations with examples. Examples uses objects for prompt
’Person X puts Person X’s trust in Person Y’.

training tasks called Masked Language Modelling (MLM) and Next Sentence Prediction (NSP).

RoBERTa Large follows the original BERT Large architecture having 24 layers, 16 self-attention

heads in each block and a hidden dimension of 1024, resulting in a total of 355M parameters.

RoBERTa improves upon BERT by removing NSP objective and training for more epochs with

much larger mini-batches and learning rates.

RoBERTa model was pre-trained on five large unlabelled language datasets for the MLM task:

BookCorpus, a dataset of 11K unpublished books, English Wikipedia , CC-News, a dataset of

63 millions crawled news articles, OpenWebText, an opensource WebText dataset, and Stories, a

subset of CommonCrawl filtered for story-like texts. The combined training corpus size of these

datasets turns out to 160 GB. MLM pre-training task converts the text into tokens and uses the

token representation as an input and output for the training. A random subset of the tokens (15%)

are masked, i.e. hidden during the training, and the objective function is to predict the correct

identities of the tokens.

For fine-tuning RoBERTa on the ERC task, two approaches are proposed: first, fine-tuning for

MLM task using the utterances and second, fine-tuning for context independent emotion recog-

nition task. In the first approach, the CSK appended extended utterances are used as indepen-
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dent textual documents to fine-tune RoBERTa Large pre-trained on the 160 GB language corpus

(See Figure 3.1). Extended utterances are generated from the training split of ERC datasets using

COMET. A subset of tokens from the extended utterances are masked and RoBERTa is trained to

predict those masked labels. The language model is expected to implicitly learn common-sense

knowledge specific to our task through this approach.

Figure 3.1: Implicitly incorporating CSK for utterances by fine-tuning RoBERTa using extended
utterances generated by appending CSK retreived from COMET to the utterances.

The second approach is a more generalized approach for fine-tuning RoBERTa on any su-

pervised classification task. In this, RoBERTa is fine-tuned by training to predict the emotion

of a given extended utterance. Let an extended utterance x consists of a sequence of tokens

x1, x2, ...., xN , with emotion label Ex. A special token [CLS] is appended at the beginning of

the extended utterance to create the input sequence for the model: [CLS], x1, x2, ...., xN . This se-

quence is passed through the model. The [CLS] token activation from the last layer are then used

in a feed-forward network to classify it into its emotion class Ex. The errors are back-propagated

through RoBERTa to update the weights. I experiment with the pre-trained weights from the large

language corpus and the MLM fine-tuned RoBERTa as the initial RoBERTa weights for the emo-

tion classification fine-tuning.

To extract the feature representations of the utterances, [CLS] is appended to the utterance and

passed to fine-tuned RoBERTa model. Activations from the final four layers for the [CLS] token

are averaged out to get a 1024 dimensional feature vector for the utterance.
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3.2 Explicit Incorporation of CSK

In the second approach, CSK is used in the ERC model explicitly. A state vector kX,t is

introduced to model the common-sense effect on a person X at a particular utterance t. It is

obtained by attending over all the previous common-sense effect vectors using the current context

vector. Finally, it is used to update the party state in DialogueRNN model.

COMET is a generative model and it produces a discrete sequence of tokens conditioned on the

subject and relation phrase. But for explictily using CSK, vector representations are required. For

that, we take the pre-trained COMET model on ATOMIC knowledge graph and discard the phrase

generating decoder module. The utterance t is treated as the subject and is concatenated with

relations xReact and oReact separately and passed through the COMET encoder. Activations

from the last stage of the encoder are extracted for each relation. This gives two different vectors,

one for the effect on self for the utterance obtained using xReact and one for the effect on others

for the utterance obtained using oReact. These vectors have 768 dimensional.

Let us introduce nomenclature for our CSK effect vectors. Let the two parties in the conver-

sation be, Person A and Person B and let fX,t be the common-sense effect on person X by the

utterance t. If person X is the speaker of utterance t, fX,t is the effect on self (xReact) vector

retrieved from COMET and if the person X is the listner, fX,t is the effect on others (oReact)

vector. An example is shown in the figure. Here, Person A is the speaker which implies Person B

is the listner as we are dealing with just dyadic conversations. Thus, effect on self is Person A’s

CSK effect vector fA,t and effect on others is Person B’s CSK effect vector fB,t (See Figure 3.2).

Person X’s common-sense effect vectors for from utterance 1 to t− 1 , (fX,1, fX,2, ...., fX,t−1),

are concatenated to generate person X’s common-sense effect matrix, FX . We attend over FX

using the current context vector from DialogueRNN model. This gives higher weightage to the

effect vectors that are relevant to the current context. The rationale behind introducing an attention

network is that the effect of certain utterances show up a bit later in the conversation. Also, strong

effects alter the emotional state throughout the remaining conversation. To capture these, we utilize

the history of effect vectors for person X in determining their emotional state as per CSK. The
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Figure 3.2: Extracting common-sense effect feature vectors for utterance t from COMET. These
feature vectors are used to explicitly incorporate CSK in the model.

attended common-sense vector for person X is denoted as kX,t as shown in Figure 3.3.

Figure 3.3: Attention network used to generate context relevant common-sense effect vector kX,t.

DialogueRNN is used as the baseline model for our experiments. DialogueRNN is designed

based on the assumption that there are three major factors affecting the emotion of an utterance: the

speaker, the context of the conversation and the emotions of preceding utterances. DialogueRNN

attempts to model these factor using GRUs. Figure 3.4 shows DialogueRNN architecture with the

additional vectors added in our approach shown as red arrows.

• GRUP is the party state GRU intended to track the emotional dynamics of individual parties’

involved in the conversation. Each party/person has its individual party state GRU and it is

updated when that person utters. GRUP is updated using the utterance representation ut and
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Figure 3.4: Adapted from [3]. Modified DialogueRNN architecture for a dyadic conversation
between Person A and Person B. Note that although represented separately, the emotional state
GRUE is shared between the parties. Contextual CSK knowledge vectors kA,t and kB,t are added
for explicit incorporation of CSK.

the contextual vector ct. Attention is applied over all the preceding global states using the

current utterance ut to generate context vector ct. This give higher weightage to the global

states that are more relevant to the current utterance.

• GRUG is the global state GRU which captures the conversation context. It is shared amongst

all the parties and updated on each utterance. GRUG uses the current utterance ut and the

speaker’s state qX,t to update the global state gt. As it is updated using the states of all

the parties involved, it captures inter-speaker dependencies to produce improved contextual

representations.
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• GRUE is the emotional state GRU which tracks the emotional state et of the conversation.

This models the final important factor of the emotion of an utterance which is the emotions

of preceding utterances. A single GRUE is used to track the emotions for all the parties. The

emotional state et is inferred from the from the speaker’s state qX,t and the previous emo-

tional state et−1. As the previous emotional state was inferred from the previous speaker’s

state, the inter-party emotional dynamics are captured through GRUE .

Finally, a two-layer feed-forward network with a soft-max output layer is used to calculate

emotion-class probabilities from emotion representation et. Then the utterance ut is assigned the

emotion class with the highest probability.

The specific variant of DialogueRNN that performs the best and is used in our experiments

is the bi-directional DialogueRNN with emotional attention. In Bidirectional DialogueRNN two

different DialogueRNN cells are used for forward and backward pass of the input sequence. For the

backward DialogueRNN, the utterance sequence of the dialogue is reversed. The output emotion

representations et from both the forward and backward cells are concatenated at the utterance

level before passing into the feed-forward network for emotion classification. This concatenated

emotion representation contains information from both the past as well as future utterances in

the dialogue, similar to a bidirectional RNN. Another addition in this variant is the emotional

attention. Instead of directly using the emotion representation et, attention is applied over all the

emotion representations in the dialogue. Experiment results show significant improvement in final

emotion prediction on using emotional attention [3].

To explicitly incorporate CSK in DialogueRNN, the attended common-sense vector kX,t will

be used to update the party state GRU. It is appended with the context vector ct and the utterance ut

to update GRUP . For a conversation between Person A and Person B, two common-sense vectors

kA,t and kB,t respectively are added to DialogueRNN architecture. These are in-turn generated by

attending over common-sense matrices FA and FB using the context vector ct. The motivation

behind incorporating common-sense vectors for party state update is that the use of common-sense

knowledge about how a person feels at time t would augment the contextual modelling.
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4. EXPERIMENTAL SETUP

4.1 Dataset

IEMOCAP, SEMAINE, Emotionlines, MELD, DailyDialog, EmoContext are a few publicly

accessible datasets for the task of conversational emotion recognition.

We shall use IEMOCAP corpus for our experiments. Interactive emotional dyadic motion cap-

ture database (IEMOCAP) [9] is published by the Speech Analysis and Interpretation Laboratory

(SAIL) at the University of Southern California (USC). It contains videos of two-way conversa-

tions of ten unique actors. The actors engage in scripted as well as spontaneous conversations for

hypothetical scenarios designed to elicit specific emotions. The dialogues are between two parties

only and are separated into utterances. Each utterances is annotated with one of the following

emotion labels - happy, sad, neutral, angry, excited, and frustrated by three human annotators. Al-

though this is a multi-modal corpus containing textual, audio and visual features, we will be using

only textual modality in our experiments.

IEMOCAP contain 151 dialogues which have a total of 7433 utterances. Train and test split

strategy is adopted from DialogueRNN where they do a 80/20 split with no overlapping speaker

among the train and test dialogues. The final train set contains 120 dialogues with 5810 utterances

and test set contains 30 dialogues with 1539 utterances. The distribution of emotions in the training

and test sets are shown in Figure 4.1.

4.2 Baselines

DialogueRNN [21]: This work models the individual speakers separately using GRUs along

with a global state GRU and emotional state GRU. Bidirectional variant of the model along with

additional attention on emotion is reported to give the best results and is used for comparison.

Originally, it used glove vectors to extract textual feature vectors for the utterances. The baseline

that we compare against uses textual features extracted from RoBERTa fine-tuned for labelled

emotion classification task on the IEMOCAP dataset.
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Figure 4.1: Percentage of each emotion in the train and test split of IEMOCAP dataset.

COSMIC [12]: This paper attempts to utilize common-sense knowledge in emotion recog-

nition. The authors of this work intend to model additional states for each party involved in the

conversation to capture the common-sense knowledge of their latent emotional state and their emo-

tional state as observed by others. For this, common-sense knowledge from COMET is extracted

using specific relations. It gives a marginal improvement above the DialogueRNN with RoBERTa

textual features as reported in the paper.

4.3 Feature Extraction

We are just using the textual modality from IEMOCAP dataset. Thus, we need to extract

representation vectors for the utterances present in the dataset. Also, for explicit incorporation of

CSK in the model, the common-sense feature vectors for each utterance are required. The process

followed to extract them is detailed chronologically in this section.

4.3.1 Common-sense knowledge extraction

We implicitly incorporate CSK in the utterance representations during the fine-tuning phase.

Thus, first of all we query COMET to extract the necessary CSK relations. We use the released pre-

trained COMET weights on the ATOMIC knowledge graph. COMET is queried for xIntent,

xAttr, xNeed and xWant reactions using a greedy sampling algorithm. The returned objects

are appended with the sentence templates shown in Table 3.2. Finally, all the generated sentences
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are appended to the utterance to form an extended utterance.

4.3.2 Fine-tuning: MLM

We use RoBERTa for textual feature extraction with different fine-tuning setups. Facebook’s

open-source library, fairseq [33], is used to do all the RoBERTa specific tasks. A pre-trained

RoBERTa Large released with the fairseq is used as the initial weights for all the experiments.

Fine-tuning RoBERTa on MLM task is undertaken to incorporate implicit CSK in the utter-

ance representations. For this, extended utterances for all the utterances along with the appended

CSK sentences are dumped in raw text files. The train, valid and test utterances are dumped in

separate text files and encoded using the GPT-2 BPE encoder. Finally, they are binarized using the

fairseq GPT2 dictionary to make them RoBERTa compatible. RoBERTa is trained on the training

utterances corpus for masked token prediction task for 12500 updates with a peak learning rate

of 5 × 10−4 and a 0.2 dropout rate. Details about all the other hyper-parameters are provided in

the Appendix. The evaluation at checkpoints is done using the validation set and the weights at

checkpoint with the best accuracy are saved for use in the next step of fine-tuning.

4.3.3 Fine-tuning: Labelled emotion classification

We perform RoBERTa fine-tuning for labelled emotion classification in all the experiments.

The difference is in the utterances that we use for the task. In the base labelled fine-tuning we

use the utterances as it from the IEMOCAP dataset. In the CSK labelled fine-tuning, we use the

extended utterances generated by appending the CSK sentences from COMET.

For both the cases, the process for fine-tuning is similar. First, we extract out the utterances

from IEMOCAP and write them to a new file with every utterance on a single line. A label file is

also generated with the true emotions of the utterances on the corresponding lines. This is done

for all the train, valid and test splits. RoBERTa implementation by fairseq expects data in this

format for training on the classification task. Similar to MLM training, the data and labels are BPE

encoded using the GPT-2 encoder and binarized using the GPT-2 dictionary. RoBERTa is trained

to predict the emotion classes on the training set for 30 epochs through the IEMOCAP dataset with
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a peak learning rate of 1×10−6 and a 0.2 dropout rate. All the other hyper-parameters are provided

in the Appendix. The weights at checkpoint that gives the best validation accuracy are saved for

extracting textual features.

4.3.4 Utterance representation extraction

To extract the representation vectors for the utterances, we use the RoBERTa model in evalu-

ation mode. First, RoBERTa is initialized with the desired fine-tuning weights. Utterances from

IEMOCAP dialogues are encoded and a [CLS] token is appended at the start of each utterance. We

use the same utterances that were use to fine-tune RoBERTa for the labelled emotion classification

task. The processed utterances are then passed to the language model. Activations from the last 4

layers for the [CLS] token are extracted and passed as features to be used in the ERC models.

4.3.5 Common-sense representation extraction

COMET is an encoder-decoder model and returns objects in the form of texts. To explicitly

incorporate common-sense effect knowledge, we need representation vectors for them. To get

that, we ignore the decoder head of COMET and extract the internal activations as common-sense

representation vectors. For each utterance, we append the desired relations separately and pass

them to the COMET encoder. The activations returned by the encoder are directly used as common-

sense representation vectors. Utterances with multiple sentences are broken down into individual

sentences. The common-sense activations for the constituent sentences are averaged to get the

representation for the utterance. Representation vectors for all nine available relations are extracted

this way for each utterance. These are then used as needed in the ERC models.

4.4 Training

We use DialogueRNN for all the experiments of incorporating implicit CSK. For, explicit in-

corporation, placeholder for CSK feature vectors and the attention network are added to the Di-

alogueRNN model and the attended common-sense vector is concatenated with the party GRU

update vectors. In the DialogueRNN model, the party state dimension is 500, the global state GRU

is 500 and the emotional state GRU is 300. For incorporating the textual features from RoBERTa,
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we added 1d batch normalization layers for each of the four layer activations. The final input to

DialogueRNN is the average of the normalized RoBERTa vectors. Same setup is used for all exper-

iments with implicit CSK incorporation. DialogueRNN is trained for 60 epochs 1× 10−4 learning

rate and 0.1 dropout rate. All hyper-parameters are kept consistent through all the experiments and

are provided in Appendix for reproduction.

COSMIC uses smaller dimensions for party state (150) and global state (150) internal represen-

tations introduces two new states of the same dimension with the intention of capturing common-

sense knowledge about the speaker. For training COSMIC, the extracted CSK vectors are used in

conjunction with the utterance feature vectors. COSMIC utilizes five relations from the total nine

relations available from COMET. COSMIC is trained for 60 epochs 1 × 10−4 learning rate and

0.25 dropout rate. All hyper-parameters are kept consistent through all the experiments and are

provided in Appendix for reproduction.

COMET and RoBERTa feature extractions are performed only once per setup. The model

training is performed 10 times and the results are averaged to compute the final results. Random

seeds are not controlled to get a better approximation of the true expected values for metrics.

4.5 Evaluation

F1 score is calculated and recorded for each emotion label. The weighted average of these F1

scores is the metric we use to evaluate models. Taking a weighted average gives classes importance

in proportion to their sizes in the dataset. Confusion matrix gives us the information about which

emotions are mixed up more by the models. Overall accuracy of the predictions is also tracked for

each experiment.

Predicting the emotions correctly when the emotions of a person change during the conversa-

tion is particularly tricky. Moreover, there are additional applications that capturing emotion turns

enable. Thus, in the post modelling step, we calculate the model’s accuracy in capturing the cor-

rect emotion after emotion shifts. An emotion shift happens when a particular person’s emotion

changes from their previous emotion during the conversation. After predicting the labels, we filter

out the test utterances where the speaker’s emotion has shifted and observe the accuracy of the
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predicted emotions for that subset.

Another challenge pertaining to ERC tasks is the ability of models to distinguish between

fine-grained emotions. From the emotions available in IEMOCAP dataset, (Happy/Excited) and

(Angry/Frustrated) are two such pair’s which are most often confused by the model. In an attempt

to gain more understanding about this problem, we track the model’s accuracy at fine-grained

emotion prediction. A confusion matrix involving only the fine grained classes is generated and

the total correctly predicted count is divide by the total count of samples that involved only the pair

of emotions. The results from both (Happy/Excited) and (Angry/Frustrated) pairs are combined to

get the final fine-grained emotion accuracy for the predictions.
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5. RESULTS

5.1 COMET Common-Sense Knowledge

The results of Common-Sense Knowledge extraction for utterances from COMET are dis-

cussed below. Table 5.1 summarize the results across all the relations. For each utterance in the

train, valid and test split of IEMOCAP dataset, COMET is queried for each of the nine relations.

The relations intended to capture effects on others namely oWant, oEffect and oReact, have

high percentage of no results each. A no result indicate that the decoder algorithm could not sam-

ple an appropriate object. COMET is not able to provide much useful information regarding the

effect on others from the utterances. These relations are not used in implicit CSK incorporation.

oEffect is used in explicit CSK incorporation with the rationale that although the sampling al-

gorithm couldn’t provide an object, the internal representation does constitute CSK that could be

leveraged.

Relation Count of
unique
objects

Mean of
object fre-
quencies

S.D. of
object fre-
quencies

No re-
sult%

xNeed 419 2.3 3.5 87.1

xIntent 443 6.5 24.7 61.4

xAttr 409 16.7 39.8 0.2

xWant 1249 5.5 22.1 0.9

xEffect 419 2.0 4.3 87.8

xReact 164 24.2 86.1 1.6

oWant 142 3.0 5.7 94.2

oEffect 6 2.0 2.2 99.6

oReact 15 21.4 32.4 95.9

Table 5.1: COMET result summary for IEMOCAP dataset. Total utterances in the train, valid and
test splits combined are 7433. No results count are excluded while counting mean and standard
deviation (S.D.).
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The self relations, xNeed, xIntent and xEffect, have a good percentage of no-results

as well. However, they do provide substantial unique objects with a good distribution as seen

from the mean and standard deviation of the object frequencies. These relations, when present,

provides unique common-sense inferences for the utterances. xNeed and xIntent are causal

relations, while xEffect is an effect relation. xNeed and xIntent are used for implict CSK

incorporation and xEffect is used for explicit incorporation.

xAttr and xWant have negligible no-results (<1%) and return a diverse object distribution.

Especially, xWant provides variegated common-sense reasoning for the utterances with an object

repeating only 5.5 times throughout the dataset. Both of these relations are used in implicit CSK

incorporation to augment in language model fine-tuning. xReact although providing results for

most of the utterances, is often repetitive. Many of the frequently repeated objects are overlapping

the emotions that we intend to predict, as shown in Table 5.2. As a result, this relation is avoided

from both implicit and explicit knowledge incorporation as it might end up inducing noise.

xNeed xIntent xAttr

none 6468 none 4562 determined 610

to have a job 42 to be a good friend 393 careless 398

to have a phone 29 to be a good person 210 curious 352

to get in the car 23 to be helpful 175 smart 278

xEffect xWant xReact

to be successful 625 none 6523 happy 3492

gets yelled at 54 to get a drink 585 sad 922

gets drunk 33 to be left alone 224 relieved 336

cries 32 to be a good person 185 satisfied 301

Table 5.2: Top-4 objects results per relation from COMET for IEMOCAP dataset utterances.

26



5.2 Implicit CSK incorporation

Incorporating CSK implicitly is attempted by fine tuning RoBERTa using two different tasks,

MLM training and labelled emotion classification. The baseline is obtained by fine-tuning RoBERTa

on basic IEMOCAP without CSK for labelled emotion classification task. In all the experiments,

vector representations of utterances are extracted from RoBERTa and DialogueRNN model is

trained on them to generate the output. The results are shown in Table 5.3.

Model Fine-tuning Per emotion F1 score Total

MLM Labelled Happy Sad Neutral Angry Excited Frustrated W.Avg. F1 Acc.

DRNNGlove - - 36.61 78.80 59.21 65.28 71.86 58.91 63.40 62.75

DRNNRoBERTa - Base 51.56 83.14 67.26 59.56 64.22 57.47 64.58 64.66

DRNNImpl.CSK CSK Base 49.89 77.05 64.91 59.42 61.98 56.93 62.42 62.43

DRNNImpl.CSK CSK CSK 44.98 82.00 65.89 60.31 66.10 55.11 63.39 63.48

DRNNImpl.CSK - CSK 47.56 85.16 68.16 61.41 64.53 58.23 65.15 65.06

Table 5.3: Implicit CSK incorporation results for DialogueRNN on IEMOCAP. Fine-tuning shows
the data used for two stages of RoBERTa fine-tuning, MLM and Labelled emotion classification.
Base denotes just the utterances and CSK denotes extended utterances appended with CSK knowl-
edge from COMET. All results are average of 10 runs. Test scores are calculated on the best
validation F-score.

MLM training using the extended utterances hurts the performance of the model and it dips be-

low the baseline model. The intuition behind MLM not working might be noisy CSK. The analysis

of CSK extraction results (Table 5.1) showed repetitive and overlapping common-sense objects for

many input utterances. These would introduce unnecessary biases in the language representations

and that ends up degrading the performance compared to the baseline which performs only labelled

emotion classification fine-tuning using the utterances. Performing labelled emotion classification

using CSK appended utterances after the MLM fine-tuning seems to abate part of the negative

impact from MLM.

In the last experiment, the MLM training is skipped. RoBERTa is fine-tuned directly on the la-

belled emotion classification task using the CSK appended utterances. This setup outperforms the
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baseline by a small margin in both weighted average F1 score (0.57) and accuracy (0.40) metrics.

Further, it improves the F1-score across all but one emotions. As we perform labelled emotion

classification training using the CSK extended utterances, RoBERTa fine-tuning is aided by the

additional diversity in the dataset. Previously ambiguous utterances will now have more tokens in

them. These tokens would be different enough for RoBERTa to manipulate the utterance repre-

sentations significantly. As we use the same extended utterance for feature extraction, previously

ambiguous utterances are now more easily distinguishable. Thus, the marginal improvement in

performance when using CSK appended utterances can be attributed to the addition of new diverse

set of tokens. Table 5.4 shows an example where the correct label was predicted with the help of

appended CSK.

Table 5.4: Excerpt from a test set dialogue with emotion prediction with and without CSK (im-
plicit). The actual CSK sentences appended to the utterance are shown as well.

5.3 Explicit CSK incorporation

We explicitly incorporate CSK in models by extracting and using CSK feature vectors directly.

Explicit incorporation of CSK in model is attempted by COSMIC. They maintain a person’s in-

ternal states using GRUs and update them using CSK vectors from COMET. Our approach is to

apply contextual attention on the CSK knowledge throughout the conversation to get a relevant

CSK state vector. Then, we use it to update the single party state. IEMOCAP results on apply-
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ing explicit CSK are summarized in Table 5.5. We compare the baseline with the two methods for

incorporating CSK. We also experiment explicit CSK models with the feature vectors that have im-

plicit CSK incorporated. Based on the results from the Implicit incorporation experiments, we use

the feature vectors extracted from RoBERTa fine-tuned for labelled emotion classification using

utterances extended with CSK.

Model Happy Sad Neutral Angry Excited Frustrated W.Avg. F1 Acc.
DRNNRoBERTa 51.56 83.14 67.26 59.56 64.22 57.47 64.66 64.58

DRNNImpl.CSK 47.56 85.16 68.16 61.41 64.53 58.23 65.15 65.06

COSMIC 42.56 81.70 63.83 57.79 69.15 63.41 64.87 65.11
COSMICImpl.CSK 43.16 80.63 64.50 58.73 67.92 62.47 64.56 64.67

DRNNExpl.CSK 49.75 84.64 66.15 58.24 61.56 56.10 63.42 63.44

DRNNImpl.+Expl.CSK 45.85 85.33 66.73 60.29 61.42 56.59 63.59 63.57

Table 5.5: Explicit CSK incorporation results comparison with Implicit CSK and COSMIC. All
results are average of 10 runs. Test scores are calculated on the best validation F-score.

When we use explicit CSK incorporation using the attention method proposed in this work,

the performance degrades over baseline. Both the accuracy and weighted F1-score are impacted.

However, COSMIC is able to improve upon the baseline model by utilizing explicit CSK. This

corroborates that the CSK knowledge, albeit noisy, is useful in emotion classification. Hence, we

attribute the performance degradation to our method of CSK incorporation. The attention network

might be redundant given that the global state GRU is already attended over and it is inferred from

the party state. Further, noisy nature of CSK seems to be affecting the performance of the model

adversely. Particularly, in the party state GRU, the update vector size has increased substantially on

introducing the 768 dimensional CSK vector. This forces approximations to a lower order thereby

losing valuable information from the feature vectors.

Using implicit and explicit incorporation together degrades the performance of the COSMIC

model. One contrasting observation is that the base DialogueRNN model with implicit CSK out-

performs both methods where we attempt to incorporate explicit CSK above implicit CSK. Once

29



incorporated implicitly, the explicit CSK information seems to be redundant to the model.

5.4 Implicit vs Explicit

Best results through explicit CSK incorporation are observed from COSMIC and the best re-

sults using implicit CSK incorporation are observed by labelled fine-tuning on utterances extended

with CSK. Comparing the results from these two methods, shows marginal differences. Weighted

F1 score of the implicit method is more than explicit method by a small percentage while accuracy

show negligible difference.

Analyzing the differences in CSK extraction for these two methods might give us intuition

about the difference in F1-score. For implicit incorporation we use a greedy sampler and discard

all the none results thereby filtering huge portion of low confidence CSK. This is not the case with

explicit CSK incorporation where we use internal activations with no way of knowing the model’s

confidence in the CSK for particular utterances. Even with this difference, the performance of the

two methods is comparable in our experimental setup.

5.5 Emotion Shift

Model Emotion shift Fine-grained
emotions

Emotion shifts in
predictions (%)

DRNNRoBERTa 51.14 69.46 19.0

COSMIC 50.63 72.90 20.5
DRNNImpl.CSK 52.37 68.67 17.9

Table 5.6: Accuracy in predicting emotion shifts of a speaker and distinguishing fine-grained emo-
tions (Happy, Excited) and (Angry, Frustrated) of different ERC models.

Emotion shifts are utterances where the emotion of the speaker changes. These are partic-

ularly challenging to capture as sometimes the evidence for emotion change is subtle. The ac-

curacy in predicting emotion shifts of the implicit CSK model improves compared to COSMIC

and DialogueRNN (See Table 5.6). The model itself relies heavily on the context and requires
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strong evidence for shifting the predicted emotion of an utterance from the person’s preceding

emotion. Our understanding is that the context-independent common-sense knowledge about how

the speaker feels biases the features more towards their true label during fine-tuning. This helps

the downstream model in identifying a shift in speaker’s emotion.

5.6 Fine-grained emotion analysis

The emotion pairs (Happy,Excited) and (Angry, Frustrated) are difficult to distinguish between

and pose a challenge in emotion classification task. Table 5.6 shows accuracy results in distin-

guishing pairs of fine-grained emotions. COSMIC is significantly better than DialogueRNN and

implicit CSK incorporation is worse than DialogueRNN. It is observed that the performance on

fine-tuned emotions is inverse of the performance on emotion shifts. To get more insight into what

might be happening here, we take a look at the % of emotion turns in the predictions of the mod-

els. COSMIC has the most turns in its prediction and implicit CSK has the least. COSMIC has

a greater tendency to shift emotions, often to a close emotion. This flexibility seems to helping

COSMIC in distinguishing fine-grained emotions.
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6. SUMMARY

6.1 Conclusion

Incorporating automatically generated common-sense is a difficult task due to the challenges

posed by the noise in generated knowledge and interfacing it with the many stages in the down-

stream NLP task. Despite of these challenges, incorporating CSK does improve results over the

baseline in our experiments. This substantiate the fact that common-sense inclusion is useful in

the conversational emotion recognition task. Interacting with the different experiment stages and

analyzing the results has afforded us several conclusions which are detailed in this section.

Common-sense knowledge generation has not yet matured and has limited distribution in terms

of output samples. This exacerbates when the knowledge base used for training the common-sense

knowledge generator differs from the target domain. However, good sampling algorithms acting

as filters could be used to query quality common-sense inferences. These instances, albeit small in

number, has the potential of adding value to the input features.

Fine-tuning language models for masked token prediction on fabricated data is best avoided

as they are extremely prone to noise. However, fine-tuning for labelled sentence classification

task is much more robust to noisy data. Even with noisy common-sense knowledge and rudimen-

tary sentence formation, fine-tuning language model on labelled emotion classification improves

performance in the downstream task.

Our experiments show that implicit incorporation of common-sense knowledge is fairly simple

and way of leveraging common-sense. It gives comparable results to complex explicit incorpora-

tion methods. Fine-tuning language models for labelled classification task helps in subsiding the

noise in generated common-sense thus freeing the model from this responsibility. Thus, it lever-

ages future advances in automatic knowledge-generation directly without substantial modelling

efforts.

Incorporating common-sense knowledge explicitly has to be carefully modelled with a proper
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understanding of the inferences that can be made from the available common-sense knowledge.

When implemented alongside implicit CSK incorporation, explicit CSK incorporation ends up

being redundant and even degrades the model’s performance. As the input features have to compete

with the CSK features for relevance in inference, some information infused into the feature vectors

through language models is dropped impacting the overall performance.

6.2 Challenges

High variance was observed in results of subsequent runs of the same model. Because of this,

it is particularly hard to attribute predictions on particular utterances to the models. As a lot of

information is incorporated in the feature vectors itself using language models, the results from

changes in modelling approach provide very little insight. Validating the correctness of different

modelling approaches like speaker state modelling, listener modelling, global context modelling,

etc have to rely heavily on the final result. Also, validating the effectiveness of these factors

independently require ablation techniques for analysis.

IEMOCAP dataset is a small dataset for training large language models like RoBERTa espe-

cially for training on MLM task. The size of the dataset becomes a challenge as the model starts

over-fitting after a few epochs given the high dimensionality compared to the number of samples.

6.3 Future Scope

• The approaches mentioned in this work should be tested on other ERC datasets like MELD,

DailyDialog, EmoContext, etc. to solidify the findings and gather more insights.

• Better common-sense knowledge has to be incorporated to truly understand its impact in

ERC task. COMET has the ability to train on any knowledge graph. Using a conversation

specific knowledge graph with relations like ATOMIC that captures the causes and effect

of the utterance would be an ideal approach to develop rich common-sense knowledge for

ERC. From COMET, combinations of different relations would help in segregating a highly

effective set of relations specific to ERC. Currently, sentence formation using CSK from

comet is rudimentary. Generating more coherent sentences with the CSK and utterances
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could help in fine-tuning using MLM task.

• To comprehend the effect of explicit CSK incorporation, the internal state changes and their

impact on emotion classification shall be studied in depth. This is will help in understanding

the interactions between the utterances and CSK features. An effective approach could then

be devised for explicit incorporation of common-sense in the ERC task.

• ERC task could take a huge leap in performance if emotion shifts could be predicted more

accurately. Experiments with the model could be accompanied with experiments in data

sampling thereby putting more emphasis on dialogues with emotion shifts. Auxiliary net-

work intended to capture just emotion shifts, with integration in the contextual models, could

be explored.
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APPENDIX A

REPRODUCTION DETAILS

A.1 Hyperparameters

A.1.1 Fine-tuning RoBERTa MLM

Parameter Value
Total # of training steps 12500
# of updates for learning rate warmup 1000
Max sequence length 512
# of positional embeddings 512
# of sequences per batch 8
Update frequency 4
Dropout 0.2
Weight decay 0.1
Clip norm 0.0
Peak learning rate 0.0005
Optimizer Adam
Adam coefficients 0.9, 0.98

Table A.1: Hyperparameters for fine tuning RoBERTa for MLM task
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A.1.2 RoBERTa Labelled Emotion Classification

Parameter Value
Total # of training steps 4840
# of updates for learning rate warmup 290
# of classes 6
# of sequences per batch 8
Max positions 512
Max positions 5000
Max epochs 30
Update frequency 4
Dropout 0.2
Weight decay 0.1
Clip norm 0.0
Peak learning rate 1e-6
Optimizer Adam
Adam coefficients 0.9, 0.98

Table A.2: Hyperparameters for fine tuning RoBERTa for labelled emotion classification task
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A.1.3 DialogueRNN

Parameter Value
active_listener False
attention ’general’
batch_size 30
class_weight True
dropout 0.1
epochs 60
l2 1e-05
lr 0.0001
no_cuda False
rec_dropout 0.1
tensorboard False

Table A.3: Training parameters for DialogueRNN
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A.1.4 COSMIC

Parameter Value
active_listener False
attention ’general2’
batch_size 16
class_weight False
dropout 0.25
epochs 60
l2 0.0003
lr 0.0001
mode1 2
no_cuda False
norm 3
rec_dropout 0.1
residual False
seed 100
tensorboard False

Table A.4: Training parameters for COSMIC
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