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ABSTRACT

Hypertension is a chronic disease that one has higher blood pressure than normal. Since it is

highly related to cardiovascular diseases, which is the culprit of death over the world, it is important

to study hypertension, and it has been treated as an important topic for several decades.

In this study, we formulate nonlinear elasticity equations in the current configuration to model

an idealized arterial wall under hypertension, using two material models. Under the conjectures

that nature tries to adjust the circumferential stress arising from hypertension by growth and re-

modeling, we illustrate the growth and remodeling reduce the elevated circumferential stress and

see the outcome of controlling the stress.

We made a conclusion that in order to have the preferred circumferential hoop stress, which

is the circumferential hoop stress at the normal blood pressure, remodeling and growth are both

needed.
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1. INTRODUCTION

Hypertension is a chronic disease that one has higher blood pressure than normal blood pres-

sure. There are several standards to diagnose hypertension depending on organizations or coun-

tries. In 2017, the American College of Cardiology (ACC) and the American Heart Associa-

tion (AHA) released new guidelines for hypertension; having systolic and diastolic blood pressure

above 130/80 mmHg is stage 1 hypertension, above 140/90mmHg is stage 2 hypertension, and

above 180/120 mmHg is hypertensive crisis. Previously, they define hypertension if systolic and

diastolic pressure is above 140/90 mmHg. European and Korean Organizations still define hyper-

tension as having systolic/diastolic blood pressure greater than 140/90 mmHg.

Hypertension is a common public health problem. According to AHA, it is estimated that

over 100 million Americans have hypertension. This is not a problem only of the American or

Western countries. Many Asian countries have developed hypertension problems as well. For

example, South Korea has 49.2% prevalence of hypertension if it applies the AHA/ACC guideline

[1], which is nearly half of the adults in Korea, [2] .

While many people underestimate the importance of hypertension in the sense that hyperten-

sion does not have severe symptoms for some cases, it is highly important to study hypertension

since it increases the incidence and the risk of cardiovascular diseases. It is well known that many

cardiovascular diseases are affected by elevated blood pressure [3]. High blood pressure raises the

mortality rate of cardiovascular diseases such as aneurysms, strokes, and heart attacks. Moreover,

those cardiovascular diseases are leading causes of death over the world [4].

Therefore, studying hypertension is an important subject that may benefit plenty of people as

well as is associated with the most dangerous diseases. In my dissertation, I intend to provide a

mathematical model about the growth and remodeling of the artery due to hypertension.
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1.1 Histology of Arteries [5, 6, 7, 8, 9]

There are roughly two types of arteries: elastic and muscular arteries. Elastic arteries are usu-

ally located near the heart so that it may take blood from the heart directly and have a comparatively

large diameter. For example, the aorta and the pulmonary artery are elastic arteries. Muscular ar-

teries are positioned closer to the arteriole, which means it is far away from the heart, and it has

a relatively smaller diameter. The radial arteries and femoral arteries are examples of muscular

arteries.

Both types of arteries have three layers: the intima, the media, and the adventitia. The intima,

which is the innermost layer of the artery, consists of the endothelial cells, the basal lamina, and

the subendothelial layer. Endothelial cells play a role in regulating the transport of substance

between the arterial wall and the lumen, which means the internal space of the tubular structure

in biology. The basal lamina, which is composed of collagen type IV, supports the structure, and

the subendothelial layer has layers comprised of smooth muscle cells, collagen, and elastin. The

middle layer is called the media. Components of the media are also smooth muscle cells, collagen

fibrils, and elastin. While the intima is structurally similar regardless of types of arteries, the media

of the elastic artery has different structures from those of the muscular artery. In the elastic artery,

the media has several sublayers. The basic unit is made up of one layer of an elastic lamina,

smooth muscle cells, and the second layer of elastic lamina. Over this unit, there is another unit,

and collagen fibers are embedded between those units. However, there is a single thicker smooth

muscle cell layer between the internal elastic lamina and the external elastic lamina in the muscular

artery. The smooth muscle cells in the media align helix-like but almost circumferential, so they

help to sustain circumferential loads. The volume of media is about 80 percent of the arterial wall,

which is the thickest among these layers. Lastly, the outermost layer is called the adventitia, the

components of which are collagen (mostly type I), elastin, nerves, fibroblasts, and vasa vasorum,

which feed the wall of the artery. Its boundary is obscure but smoothly attached to its outside

tissues. The adventitia of an elastic artery takes about 10 percent of the whole artery wall, and

muscular arteries have a bit thicker adventitia layer than what elastic arteries have.
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1.2 Literature Review

Mechanobiology is the study of a biological process arising from mechanical stimuli. Many

researchers investigate the growth and remodeling of biological tissues in the sense of mechanobi-

ology [10, 11, 5, 12, 13, 14, 15, 9, 16, 17, 18, 19, 20]. Plant growth, bone growth, remodeling of

heart and tumor all these subjects are involved in mechanobiology. This project, which focuses on

how much the arterial wall gets thicker and/or changeable in response to high blood pressure, is

also one example of mechanobiology.

Among those topics, let me introduce some studies which are more closely related to the arterial

wall.

Residual stress is a stress when the body does not have external loads. It has been studied for

decades experimentally [21] and theoretically [22, 23], whereas it is sometimes disregarded for

setting a model due to difficulty and ignorance of computing residual stress. Fung [21] showed the

existence of residual stress by cutting a thin slice of arterial wall segments radially. Once cutting

the specimen, it opens up despite any external loads not given. Hoger et al. [22, 23, 24, 25] explain

the importance of the virtual stress-free configuration in order to handle residual stress.

The Holzapfel-Ogden model [10] considers arteries as composites, which is that two families of

collagen fibers are embedded in isotropic base materials, which are called the extracellular matrix

in biology. The strain energy function of the Holzapfel-Ogden model consists of two parts. The

isotropic part corresponds to the neo-Hookean model, and the anisotropic part corresponds to an

exponential stiffness form.

Taber and Humphrey [12] discussed a model of how residual stress in soft tissue arises as a

natural process of growth; by comparing their model result and experimental data, they show the

growth of arteries depends on stress.

Zulliger et al. [26] proposed a new strain energy function that is similar to the Holapfel-Ogden

model but includes the waviness feature of collagens.

In [11], Hariton et al. present a stress-modulated remodeling model of an artery. They consid-

ered that circumferential stress affects the reorientation of the collagen families in an artery. That

3



is the angle of the fibers are considered in the model.

In addition, the review paper [27] handled biological growth and remodeling ranging from

current developments to avenues to further developments. They especially mentioned the issue of

choosing a configuration when a biological tissue is growing. The use of elasticity formulated in

the current configuration helps tackle the issue of incompatible growth of soft tissues.

A constrained mixture theory, which was proposed by Rajagopal and Humphrey in 2002, [16]

assumes that the soft tissue and each component in it deformed together, but each constituent has

its own properties, including natural configuration separately. Based on [16], there were many

following studies [28, 29, 30].

1.3 Thesis Outline

If arteries undergo chronic hypertension, arteries may add mass or change the mechanical prop-

erties such as residual stress in order to handle abnormal blood pressure, as a part of homeostases

(the state that living tissues maintain the steady internal conditions.) Here, adding mass is usually

referred to as growth, and changing the mechanical properties of an artery (with little change in

mass) is referred to as remodeling. To explain a series of this process, I compose the sections as

follows.

In section 2, I describe basic elasticity. It starts with providing a basic definition of mechanical

concepts. Two constitutive relations are described: the neo-Hookean and the Holzapfel-Ogden

model. Residual stress, which is an unavoidable mechanical property of the arterial wall, is ex-

plained in the section.

Section 3 gives us the governing equation. By the balance of linear momentum, we have the

partial differential equation. We use the boundary conditions in this project to be traction-free

at the inner and outer wall at the intermediate configuration and pressurized at the inner wall,

and traction-free at the outer wall at the current configuration. In vitro, the surrounding of the

specimen is air, and no external force is given; it is natural to take the traction-free condition at the

intermediate configuration, and we can control to impose pressure at the inner and outer wall for

the current configuration since we simulate the in vitro experiments. Other soft tissues surround

4



the blood vessels in vivo so that they may have different boundary conditions.

In section 4, numerical experiments are conducted. For both the neo-Hookean and the Holzapfel-

Ogden models, I mainly show how much growth and residual stress changed to bring down the

hoop stress (circumferential stress) when mildly to highly pressurized at the inner wall. We end up

get the results that one of growth and remodeling can still cope with the increased hoop stress, but

a more effective way to tackle this issue is combining both growth and remodeling.

In section 5, I summarize the numerical experiments and provide the discussion.

1.4 Purpose and Goal

Having a mathematical model serves the following purposes in general. First, we can under-

stand more and better the given situation. Secondly, one can predict after the event happens. Lastly,

one may be able to control the event or to provide treatments for the event or issue. My goal for

this project is to provide a mathematical model for the growth and stiffening of the arterial wall

caused by hypertension. I would mainly focus on describing the situation using the mathematical

model. Better understanding will help us move forward to prediction, control, and treatments for

hypertension.

Many studies show that arteries are layered, anisotropic, heterogeneous, slightly compressible

[31, 32, 33, 34], elastic or viscoelastic bodies [35, 36]. As mentioned in section 1.2 histology, an

arterial wall has three layers, but depending on research, some researchers choose a one-layered,

or two-layered model [8]. Sometimes, slightly compressible bodies are treated as incompressible

bodies [35].

To set up our mathematical model, we idealize that arteries are one-layered, isotropic/anisotropic

(depending on constitutive model), incompressible hyperelastic body, and the geometry we take

for this project is an axisymmetric cylindrical tube. This is mainly because of simplicity. In detail,

a one-layered model comes from the feature that the media takes the most of the arteries in terms

of volume, and there is experimental evidence that the media changes the most among three layers

depending on hypertension [9]. An axisymmetric cylindrical geometry will give us a way to handle

our PDE for writing in terms of r, in the current configuration. One can choose an isotropic model

5



if only the extracellular matrix of arteries is taken into account. An anisotropic model such as the

Holzapfel-Ogden model is used here when considering the arterial wall to be a composite material

consisting of fiber-reinforced extracellular matrix.

To sum up, in this work, a hyperelastic, isotropic/anisotropic, incompressible model on an

axisymmetric cylindrical tube will be utilized in order to see how hypertension affects growth

(change in mass of an artery) and remodeling (change in residual stress of an artery) in the current

configuration.

6



2. MECHANICS : ELASTICITY

Soft tissues are often modeled by elastic bodies, [5, 7, 11, 27, 33]. Likewise, the arterial wall

in our project is assumed as an elastic material. Especially, the stress-strain relationship of the

arterial wall is derived from the strain energy function. That is, the arterial wall is hyperelastic. In

this section, we start with classic concepts of continuum mechanics and those will be helpful tools

to understand the force and deformation of elastic bodies.

2.1 Kinematics and Kenetics

Let B be a reference configuration, and Bt be the current configuration, which are embedded

in a three dimensional Euclidean Space. A point X ∈ B and x ∈ Bt are a material point, and

the spatial point according to the X at time t by a mapping, respectively. The smooth mapping

χ : B → Bt such that x = χ(X, t) where x ∈ Bt,X ∈ B is called a motion. Then, the

deformation gradient we denoted by F is defined as F (X) := ∇χ(X, t). Also, the displacement

is u = x−X . In the spatial description of the displacement is, ũ = x− χ−1(x).

The Cauchy stress tensor T , is given by the function of the deformation gradient. i.e. T =

T̂ (F ). Arteries are hyperelastic, which means the Cauchy stress tensor, T , is defined as a function

of the gradient of strain energy function, W = Ŵ (F ). The Cauchy stress is

T = J−1∂F Ŵ (F )F T , (2.1)

where J = detF .

2.2 Constitutive Relation

Constitutive relations in solid mechanics relate stresses and strains. If we define the strain

energy function of the material, then we can get the relation between stress and strain, by the

hyperelasticity. Although mechanically real arteries are slightly incompressible, we idealize that

an arterial wall is incompressible like many previous works ([37, 38, 19, 32, 39, 40, 41]). The
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reason why we choose the arterial wall to be incompressible is that the soft tissue is composed

largely of water and it leads to simplification of certain key computations. We’ll use the neo-

Hookean Model ([34]) for assuming arteries isotropic, and the Holzapfel-Ogden Model ([10]) for

assuming arteries anisotropic to illustrate how the arterial wall reacts to the hypertensive blood

pressure.

2.2.1 Incompressible Neo-Hookean Model

The neo-Hookean model is frequently chosen as a simplistic model of soft tissue. In particular,

the extracelluler matrix is often modeled as neo-Hookean. Also, it gives us intuition about the

stress-strain relation and how much remodeling/stiffening is needed to control the stresses. A

strain energy function of the incompressible neo-Hookean material is

W (F ) =
µ

2
tr(FF T ) (2.2)

along with the incompressibility constraint detF = 1. Note that tr(·) is the trace of the input.

By the hyperelasticity (2.1) and the tensoral derivative (A.1), the Cauchy Stress T is

T (F ) = µFF T − p(r)I (2.3)

where p is the Lagrange multiplier enforcing the incompressibility.

2.2.2 Incompressible Holzapfel-Ogden Model

The Holzapfel-Ogden Model is for an anisotropic material. Areteries are commonly considered

as anisotropic since components like fibers are not isotropically oriented over the cell. Especially,

Holzapfel et al. [10] considered the arterial wall structures in a way that in the extracellular matrix

which is an isotropic material, two collagen fiber families are embedded, which lead to anisotropic

property of the artery. Those two families of the collagen fibers are placed in a helix-like shape,

and the angle between them differs depending on arteries. Here, we choose the angle between

them 29◦ from the data in Holzapfel’s, [10].
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The strain energy function for the Holzapfel-Ogden model is defined as

Ψ(I1, I4, I6) = Ψiso(I1) + Ψaniso(I4, I6)

where

I1 = trC, I4 = C · A1, I6 = C · A2, C = F TF .

Ai’s are obtained by the following process.

Ai = ai ⊗ ai, i = 1, 2.

ai = F āi, i = 1, 2,

where

ā1 =


0

cos β

sin β

 ,

and

ā2 =


0

cos β

− sin β

 .

Here, āi’s are unit vectors in the direction of fibers in the reference configuration and β is the angle

between those unit vectors. Additionally, the anisotropic contribution of the strain energy function

is a Fung-type exponential model. The anisotropic contribution of the strain energy function is,

Ψaniso(I4, I6) =
k1

2k2

∑
i=4,6

{exp[k2(Ii − 1)2]− 1}.
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Ψaniso(C) =
k1

2k2

∑
i=1,2

{exp[k2(C · Ai − 1)2]− 1}.

We can rewrite the function in terms of deformation gradient F :

Ψaniso(F ) =
k1

2k2

∑
i=1,2

{exp[k2(F TF · Ai − 1)2]− 1}.

The isotropic part of strain energy function is the same as the neo-Hookean, Ψiso(F ) =

c

2
trFF T .

Therefore, the Cauchy stress is

T =
1

J
[∂FΨiso(F ) + ∂FΨaniso(F )]F T − p(r)I,

where J = detF and p is a Lagrange multiplier.

T (F ) = cFF T

+ 2k1

∑
i=1,2

{(tr[FAiF T ]− 1)× exp[k2(tr[FAiF
T ]− 1)2]FAiF

T} − p(r)I.
(2.4)

2.3 Residual Stress

When stress still exists but there is no involved strain, we say the body is residually stressed.

Residual stress in biological materials is important since it is well known that residual stress in

elastic arteries is not negligible [33], and it highly affects the stress-strain relation of the elastic

body.

τ := T̂ (I) where I is the identity tensor is called the residual stress in B. If T̂ (I) = 0,

then B is called a natural configuration. In other words, a natural configuration is in a stress-free

condition. In addition, in this work, a natural configuration is also load-free; there are no external

traction and body forces. The residual stress τ satisfies the equilibrium condition; Divτ = 0 in the
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body B, and traction-free on the boundary of the body; τn = 0 on ∂B, where n is normal unit

vector to the boundary ∂B.

Gorb and Walton [33] bring the concept of the natural response function (with subscript N) and

for a multiplicative model like Fung-type model, use the following natural strain energy function

ŴN(·).

ŴR(C; τ) = ŴN(F T
RCFR)

where FR = T−1
N (τ) where τ is a residual stress. Once we apply this idea to (2.3) and (2.4), the

equation (2.3) becomes

T (FFR) = µFFR(FFR)T − p(r)I, (2.5)

and the equation (2.4) becomes

T (FFR) = cFFR(FFR)T

+ 2k1

∑
i=1,2

{(tr[FFRAi(FFR)T ]− 1)× exp[k2(tr[FFRAi(FFR)T ]− 1)2]FFRAi(FFR)T}

− p(r)I.

(2.6)

The existence of residual stress can be confirmed by experiment ([21, 42]). In particular, Fung

and colleague collected specimens from animals. They take thin slices of arteries in a ring shape.

Then, they cut those rings radially, and the sliced arteries open up as a result. Since the arteries are

intact and unloaded in the experimental setting, this result shows us that residual stress leads to the

arterial wall open up.

An idealized model of the Fung experiments visualizes arterial rings as slices from an axisym-

metric cylindrical tube, Figure 2.1. Let (R,Θ, Z) be the natural configuration (stress free), (ρ, ϑ, ζ)

be the intermediate configuration (residually stressed but not loaded) and (r, θ, z) be the current

configuration (loaded), represented as figure (a), (b), and (c) respectively. In short, Fung’s exper-

iments are the process of figure (b) to figure (a). They cut the intact unloaded artery (figure (b)
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Θo

(a) (R,Θ, Z) (b) (ρ, ϑ, ζ)

Pi

(c) (r, θ, z)

Figure 2.1: Diagram of Cross Section of the Arterial Wall

in Figure 2.1 ) radially. Then the vessel opens up until the residual stress is released (figure(a) in

Figure 2.1). Although in order to release all residual stress, several cuts might be needed [12, 43],

we assume that a single radial cut produces a natural configuration. Θo is called an opening angle,

where we put the center of an artery at the origin and choose the angle between the negative x-axis

to the ray passing the cutting segment of the artery for easier computation. From figure (b) to (c) is

the process of pressurizing, which is needed for our numerical experiment, not related to Fung’s.

Pi is pressure given in the inner wall. Fung et al. assumed that the residual stress in the intermedi-

ate configuration can be modeled by the following deformation from the natural configuration (a)

to the intermediate configuration (b).

ρ = ρ(R)

ϑ =
π

Θ0

Θ

ζ = ΛZ.

2.4 Semi-inverse Approach

The semi-inverse approach is a method of simplifying challenging nonlinear elastic boundary

value problems [5]. As mentioned above, we idealize the artery wall as an axisymmetric cylindrical

tube. In addition, applying the semi-inverse approach to the problem under consideration, we

12



modeled the deformation from the intermediate configuration to the current configuration (the

motion from figure(b) to figure(c)) is

r = r(ρ)

θ = ϑ

z = λ̃ζ

where λ̃ is the axial stretch from the intermediate configuration to the current configuration.

The residual deformation gradient FR is

FR =


∂ρ

∂R
0 0

0
ρπ

RΘ0

0

0 0 Λ

 .

The deformation gradient F from intermediate configuration to current configuration is

F =


∂r

∂ρ
0 0

0
r

ρ
0

0 0 λ̃

 .

In addition, by the incompressibility, we have det(FR) = 1 and det(F ) = 1. Thus, we get the

relation between R , ρ and r as follows.

∂ρ

∂R
=
RΘ0

ρπΛ
.

∂r

∂ρ
=

ρ

rλ̃
.
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R(ρ) = [R2
i +

(ρ2 − ρ2
i )πΛ

Θo

]1/2. (2.7)

2.4.1 Elasticity in the Current Configuration

Historically and most commonly, the governing equations in nonlinear elasticity are formu-

lated to relative to a reference configuration. As mentioned, in the important survey paper [27],

it would be very advantageous to formulate mechanical equations modeling soft biological tissue

in the deformed (current) configuration. A key contribution of this dissertation is to carry out that

challenge. Consequently, from here on, we formulate our model of the mechanics of the arterial

wall in the current configuration. To that end, we apply the semi-inverse approach to modeling the

deformation from the intermediate configuration (b) to the current configuration (c), by assuming

the displacement from the intermediate configuration to the current configuration has the form

ũ(r, θ, z) = η(r)j1(θ) + λzj3

where {j1(θ), j2(θ), j3} is a basis for cylindrical coordinates on the current configuration (c). That

is,

j1(θ) = cos(θ)e1 + sin(θ)e2, j2(θ) = − sin(θ)e1 + cos(θ)e2, j3 = e3

where {e1, e2, e3} denotes the natural basis for the Euclidean space.

Since F = (I − gradũ)−1, and

gradũ = η′j1 ⊗ j1 + (
η

r
)j2 ⊗ j2 + λj3 ⊗ j3,

the deformation gradient F can be written in terms of displacement as the following.

F = F T =
1

1− η′
j1 ⊗ j1 +

1

(1− η
r
)
j2 ⊗ j2 +

1

1− λ
j3 ⊗ j3. (2.8)

Again, the incompressibility, detF = 1 along with the equation (2.8) gives us
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1

(1− η′)(1− η
r
)(1− λ)

= 1. (2.9)

Then we can obtain the algebraic formula for η by solving the differential equation (2.9).

η(r, c) = r −
√
c+

r2

1− λ
. (2.10)

In Johnson’s dissertation [13], the integration constant c is fixed by r2
oλ/(1 − λ) because she

assumed that there is no displacement at the outer wall. However, in this dissertation, we don’t

assume the outer wall is not moving. Rather, we take a traction-free condition after pressurized as

well, which will be given in the section 3. Therefore, we keep integration constant c.

Lastly, consider the definition of the displacement,

ρ(r) = r − η(r, c), (2.11)

we can get the ρ in terms of r and c.

We plug the deformation gradient, transpose of the deformation gradient (2.8), and the defi-

nition of displacement (2.11) in the Cauchy stress using the neo-Hookean relation (2.5) and the

Holzapfel-Ogden relation (2.6). Finally, the extra term of the Cauchy stress T (the term not in-

volving Lagrange multiplier) becomes in terms of r, η (including integration constant c), which is

presented in the current configuration.

The Cauchy Stress for the incompressible neo-Hookean Model in terms of r is

T (r) = µ


1

1− η′
ρ(r)π

R(ρ(r))Θ0Λ
0 0

0
1

(1− η
r
)

ρ(r)π

R(ρ(r))Θ0

0

0 0
1

1− λ
Λ



2

− p(r)I. (2.12)

The Cauchy Stress for the incompressible Holzapfel-Ogden Model in terms of r is obtained by
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the same way, and we omit writing.

2.5 Manage Stress : Growth and Remodeling

How does an arterial wall behave if hypertension continues? We conjecture that the artery

originally has preferred circumferential stress, and the arterial wall tries to bring the circumferential

stress down to the preferred stress when it detects chronic hypertension. Since it is well known

that hypertension accompanies with arterial wall thickening and stiffening in many cases from the

many clinical data [44], the reasonable guesses about how arterial wall handle abnormal stress is

growth and remodeling.

The opening angle in the Fung model of residual stress can be viewed as a measure of a level

of residual stress. In this work, a change in residual stress without changing mass is what is meant

by remodeling.

Adding mass or volume corresponds to growth. We show that the arterial wall can mitigate the

increase in circumferential stress due to hypertension through thickening resulting from growth. A

major result in this present work is to analyze the effectiveness of both growth and remodeling in

reducing the elevated circumferential stress due to hypertension.
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3. BALANCE OF LINEAR MOMENTUM

By the balance of linear momentum, divT = 0.

∂T rr

∂r
+

1

r

∂T θr

∂θ
+
∂T zr

∂z
+
T rr − T θθ

r
= 0

∂T rθ

∂r
+

1

r

∂T θθ

∂θ
+
∂T zθ

∂z
+

2T rθ

r
= 0

∂T rz

∂r
+

1

r

∂T θz

∂θ
+
∂T zz

∂z
+
T rz − T θθ

r
= 0.

Since T is a diagonal matrix in our case, we only have

∂T rr

∂r
=
T θθ − T rr

r
. (3.1)

The boundary conditions that we have in the current configuration are pressure, Pi, which is

given at the inner wall (which imitates blood pressure in vivo), and traction-free at the outer wall.

T rr(ri) = −Pi, (3.2)

and

T rr(ro) = 0. (3.3)

By taking the integration with respect to r,

T rr(r)− T rr(ri) =

∫ r

ri

T θθ − T rr

x
dx. (3.4)

Now, T is a function of c and r since the displacement η depends on c and r. Then plugging

r = ro in equation (3.4) with the boundary conditions (3.2) and (3.3) gives us the following.
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Pi =

∫ ro

ri

T θθ − T rr

x
dx. (3.5)

The left hand side of the equation (3.5) is a function of ri, ro, and c. Additionally, ro depends on

ri by the incompressibility. Thus, we have two unknowns ri, c in equation (3.5). If we assume the

inner radius in the intermediate configuration can be measured by the experiment, then one can get

one more equation for finding ri and c. Consider the definition of the displacement, ρ = r − η(r),

then the second equation is

ρi = ri − η(ri, c). (3.6)

Then we solve this system of equations (3.5) and (3.6).

Lagrange multiplier is derived from the equation (3.4). With boundary condition T rr(ri) =

−Pi, and the Cauchy stress in terms of r, the equation (2.12) , we have

(
1

1− η′
ρ(r)π

R(ρ(r))Θ0Λ

)2

− p(r) =

∫ r

ri

T θθ − T rr

x
dx− Pi,

if we use neo-Hookean Model.

For convenience, let denote the extra term of Cauchy stress by T ex.

T ex
rr(r)− p(r) =

∫ r

ri

T θθ − T rr

x
dx− Pi.

Then, Lagrange multiplier is

p(r) = T ex
rr(r)−

∫ r

ri

T θθ − T rr

x
dx+ Pi, (3.7)

and the integrand of the right hand side of the equation (3.7) is actually written as only extra term

of Cauchy stress.

T θθ − T rr

x
=
T ex
θθ − p(r)− (T ex

rr − p(r))
x

=
T ex
θθ − T ex

rr

x
.
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Hoop stress function is finally defined in terms of fully r and c. Therefore, we can get the hoop

stress at a point in the current configuration.

T θθ(r) = T ex
θθ(r)− p(r). (3.8)
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4. NUMERICAL EXPERIMENT

When we conduct the numerical experiment, we set a hypothetical arterial wall. The first

thing to know is we assume we know the radii at the intermediate configuration. It is reasonable

to assume that one knows the geometry of intermediate configuration since one could measure

the inner and outer radii from experiments in vitro. Here we adopt some values from page 337 in

Humphrey’s book [5]; ρi = 0.00139 m and ρo = 0.00199 m. Then we choose axial stretches Λ = 1

and λ̃ = 1 for our intuitive and computational convenience. Lastly, we choose the initial opening

angle Θo =
3

4
π. We are using two material models: the neo-Hookean and the Holzapfel-Ogden

Models, but they are non-dimensionalized by the shear modulus.

4.1 Result using Neo-Hookean Model

To complete the knowledge of residual stress, we need to compute the inner and outer radii

(Ri, Ro) of the natural configuration. It should start with the deformation from the natural con-

figuration to the intermediate configuration. This deformation also needs to satisfy the relation of

equation (3.5). Thus, we have the following.

0 =

∫ ρo

ρi

T ϑϑ − T ρρ

x
dx. (4.1)

Also, the integrand in the equation (4.1) is a function of (Ri, Ro), then it becomes in terms

of only Ri due to the incompressibility (see equation (2.7).) We can get Ri and Ro if we solve

the equation (4.1) with incompressibility. Finally, we fully achieve information about the residual

stress of the beginning stage. The following figure 4.1 is the circumferential stress at the interme-

diate configuration through the arterial wall. i.e., it is when zero pressure is given at the inner wall

of arteries. As we can see in this graph, the inner half of the arterial wall is compressive, and the

outer of it is tensile.
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Figure 4.1: Hoop stress vs. radius at the intermediate configuration using Neo-Hookean Model

Secondly, we need to set up a target value, so called preferred stress. We assign 0.06 as normal

blood pressure for the neo-Hookean model since the hoop stress graph after loaded 0.06 is non-

negative; in other words, the minimum hoop stress when applying pressure 0.06 is above zero,

which means the arterial wall after pressurizing is totally tensile. Note that the upper line in figure

4.2 is the hoop stress with the normal blood pressure, and the lower line is the hoop stress graph at

the intermediate configuration (i.e. the same line with figure 4.1) for comparison. If we compute

the hoop stress values , the minimum hoop stress value at the loaded configuration applying normal

blood pressure is 0, and the maximum hoop stress value at the loaded configuration applying

normal blood pressure is 0.2908. These minimum and maximum hoop stress values are set to be

our target values.
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Figure 4.2: Hoop stress vs. radius when pressure 0 and 0.06 using Neo-Hookean Model

Now, we are applying higher pressures than our normal blood pressure, which are 0.075, 0.09,

and 0.12. Figure 4.3 shows that the arterial wall has a higher maximum hoop stress as pressure

increases. The bottom two lines are the same as figure 4.3 for comparison, and the upper three

lines are as pressure increased by 25%, 50% and 100% respectively from the middle line to the

most upper line.

Figure 4.3: Hoop stress vs. radius when pressure 0, 0.06, 0.075, 0.09, and 0.12 using Neo-Hookean
Model
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Initially, we want to control the elevated maximum hoop stress by growth and remodeling. Our

goal is to find how much growth or remodeling is needed to bring the increased maximum hoop

stress arising from hypertension down to the target maximum hoop stress value.

4.1.1 Growth

As we mentioned above, because we simplify the arterial wall as homogeneous, growth can be

represented by adding mass/volume if we assume the density of arteries is a constant. Especially

if we set the axial stretch as 1, then adding an area of the cross-section of an artery is enough to

illustrate a growth. Thus, after pressurizing, we increase the area of the cross-section of the arterial

wall. Then, we obtain new inner and outer wall radii in the following two ways. If growth happens

only at the inner wall,

rnewi = ri − x, rnewo = ro

where x such that

IncreasedArea = ((ro)
2 − (ri − x)2) · λ̃,

and if growth happens at both the inner and outer wall with a same length,

rnewi = ri − x, rnewo = ro + x

where x such that

IncreasedArea = ((ro + x)2 − (ri − x)2) · λ̃.

These new radii allow us to find the hoop stress using equation (3.8).

The following graphs are hoop stresses at a certain level of load along with increasing area.

Note that I present only when pressure is 0.09, but other cases with different pressures also have

similar trends.
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Figure 4.4: Hoop stress vs. radius when growth happens at the inner wall, by 0%, 5%, 10% using
Neo-Hookean Model

Figure 4.5: Hoop stress vs. radius when growth happens at both the inner and outer wall, by 0%,
5%, 10% using Neo-Hookean Model
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As we can see in figure 4.4, as growth happens at only the inner wall, the hoop stress graphs are

shifting down and the maximum hoop stress decreases. Growth doesn’t guarantee that maximum

hoop stress is always getting smaller due to where the growth happens. Figure 4.5 shows that when

the arterial wall growth occurs at both the inner and outer wall, the maximum hoop stress reduces

in the beginning stage of growth, but later it does not bring down maximum hoop stress.

Secondly, only growth may bring down maximum hoop stress to our target value. However,

often it brings hoop stress too much down so that the arterial wall is compressive partly, which is

represented by the negative values of the lefthand side of the green line in Figure 4.5.

4.1.2 Remodeling : Change Opening Angle

As mentioned in the previous sections, we treat changing opening angle as a type of remodel-

ing. So, we conduct numerical experiments according to having different opening angles.

Figure 4.6 displays that the hoop stress vs. radius as opening angle changed by 0% (i.e. before

remodeling happens), 5% and 10% when having fixed pressure and no growth. This figure shows

that when there is no growth, but only changes in opening angle (remodeling,) the hoop stress

graph has a less steep slope, which means increasing opening angle leads to reducing maximum

hoop stress but making the minimum hoop stress increase.
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Figure 4.6: Hoop stress vs. radius as opening angle varying with fixed pressure and area using
Neo-Hookean Model

4.1.3 Both Growth and Remodeling

As we can see in the previous sections, growth and remodeling individually have an impact on

reducing the maximum hoop stress, but using only one of them cannot bring hoop stress down to

the target value. Therefore, we conduct experiments with both growth and remodeling. Figure 4.7

shows the hoop stress at the certain level of pressure and growth by changing opening angles.
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(a) 1.25Pressure, 1.035Area

(b) 1.5Pressure, 1.06Area

(c) 2.0Pressure, 1.12Area

Figure 4.7: How much angle changes for each pressure and increased area using Neo-Hookean
Model

Table 4.1 displays the values of how much area and opening angle need to be increased to

match the target values as pressure increased from the experiments of figure 4.7. Here, the target
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values are the maximum and minimum hoop stress under normal pressure.

Pressure 0.06 0.075 0.09 0.12

Area A 1.035A 1.06A 1.12A

Opening Angle Θo 1.0408Θo 1.0712Θo 1.1025Θo

Table 4.1: Triplet (Pressure, Area, Opening Angle) having target hoop stress using Neo-Hookean
Model

When pressure is 25% increased, if area increased by 3.5% and opening angle increased 4.08%,

then the hoop stress value will match to the target values. When pressure is 50% increased, if area

increased by 6% and opening angle increased 7.12%, then the hoop stress value will match to

the target values. When pressure is 100% increased, if area increased by 12% and opening angle

increased 10.2%, then the hoop stress value will match to the target values.

4.2 Result using Holzapfel-Ogden Model

Holzapfel and Ogden used c = 3 kPa, k1 = 2.3632 kPa, and k2 = 0.8393 (no dimension)

in their paper [10]. So here we choose the same values but non-dimensionalize the equation by

c. In code, we use c = 1, and k1 = 2.3632/3 = 0.7877. Figure 4.8 has 5 hoop stress lines;

the lowest line is hoop stress distribution at the intermediate configuration, and the second lowest

line is when the pressure is normal. Note that we choose 0.25 as the normal pressure for the same

reason as the neo-Hookean model; the arteries are tensile through the wall after pressurizing. Thus,

we set a normal blood pressure for Holzapfel-Ogden model as 0.25. Also, the top three lines are

when pressure is increased by 25%, 50% and 100% from the bottom, respectively. Basically, we

carry out the same experiments as the neo-Hooken model but using the above constants and the

Holzapfel-Ogden model.
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Figure 4.8: Hoop stress vs. radius when pressure 0, 0.25, 0.3125, 0.375, and 0.5 using Holzapfel-
Ogden Model

4.2.1 Growth

Figure 4.9 and figure 4.10 show that the hoop stress graphs while growing happens at a certain

level of pressure and an opening angle using the Holzapfel-Ogden model. Similar to the result of

using the neo-Hookean model, as area increases (i.e., growth), the maximum hoop stress values

get smaller than the previous level of growth in general. However, either it is not enough to reach

the hoop stress value at the normal pressure or the arterial wall becomes compressive at the inner

wall.
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Figure 4.9: Hoop stress vs. radius when growth happens at the inner wall using Holzapfel-Ogden
Model

In particular, if growth occurs at both the inner and outer wall (see figure 4.10), the maximum

hoop stress decreases in the early stage, but at some point, the wall grows too much so that it is

beyond the preferred maximum hoop stress.
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Figure 4.10: Hoop stress vs. radius when growth happens both the inner and outer wall using
Holzapfel-Ogden Model

4.2.2 Remodeling : Change Opening Angle

Holzapfel-Ogden Model shows a similar result for the remodeling as well; as opening angle

increases, hoop stress decreases. Figure 4.11 is hoop stress as the opening angle increased by

5% and 10% when pressure is 0.375 without growth. Likewise, the cases of other pressures have

similar trends, so we skip presenting.
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Figure 4.11: Hoop stress vs. radius as opening angle varying with fixed pressure and area using
Holzapfel-Ogden Model

4.2.3 Both Growth and Remodeling

Figure 4.12 represents the hoop stress at a certain level of pressure and growth according to the

change of opening angle.
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(a) 1.25Pressure, 1.035Area

(b) 1.5Pressure, 1.06Area

(c) 2.0Pressure, 1.11Area

Figure 4.12: How much angle changes for each pressure and increased area using Holzapfel-Ogden
Model

Table 4.2 shows that the area, opening angle and pressure which are needed to reach the max-

imum and minimum hoop stress of the setting that area is A, opening angle is Θo and pressure is

normal. As pressure increased, the area and opening angle need to be increased to get the same
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value of hoop stress of normal pressure. That is, growth and remodeling both are necessary.

Pressure 0.25 0.3125 0.375 0.5

Area A 1.035A 1.06A 1.11A

Opening Angle Θo 1.048Θo 1.075Θo 1.11Θo

Table 4.2: Triplet (Pressure, Area, Opening Angle) having target hoop stress using Holzapfel-
Ogden Model
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5. CONCLUDING REMARK

We have discussed ways that the arterial wall controls elevated hoop stresses due to hyperten-

sion. First, we formulate a stress-strain relation using nonlinear elasticity. Our material body is

incompressible, isotropic and anisotropic, and residually stressed. Also, the geometry we used is

an axisymmetric cylindrical tube. Then semi-inverse approach helps us formulate the circumfer-

ential stress function in terms of r, which is in the current configuration. In particular, we simulate

the situation that the arterial wall is traction-free at the boundary of the intermediate configuration,

and the internal pressure is given at the inner wall of the current configuration and traction-free at

the outer wall.

5.1 Summary of the experiments

In both isotropic and anisotropic cases, in general, growth can reduce the circumferential stress,

but whether or not it does can be influenced by where growth occurs. When growth happens, the

inner and outer radii in the deformed configuration can change. We consider two possibilities.

One is during growth, the outer radius remains fixed, and only the inner radius changes in the

deformed configuration. The second case is that during growth, the inner and outer radii change

at the same rate. In our results, if growth only changes the inner radius, then the maximum hoop

stress decreases with growth. In contrast, if both inner and outer radii change at the same rate, in

the initial face of growth, the maximum hoop stress reduces; if growth exceeds a certain level, then

the maximum hoop stress increases again. It shows that growth alone cannot bring the maximum

hoop stress to the target value. Also, growing mostly gives us a compressive arterial wall near the

inner wall while pressurizing.

Secondly, if the opening angle increases, which we define as remodeling in this dissertation,

then the maximum hoop stress decreases. Precisely, the hoop stress graph is flatter than that of the

previous level of opening angle. In other words, changing the opening angle is not only reducing

the maximum hoop stress but also increasing the minimum hoop stress.
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Therefore, we start to combine growth and remodeling, and it successfully restores the max-

imum hoop stress when we use both methods together. Also, it leads to the arterial wall not

compressive at the inner wall, which is the desired state after loading.

5.2 Future Work

5.2.1 Future work for more directly related to this dissertation

The easiest thing we can do next is to release our idealization. For example, the followings are

all our options: using the generalized tube, taking the mechanical features like slightly compress-

ible, and/or introducing the two-layered, three-layered model, using different constitutive relations.

We have talked about there exists a triplet (pressure, growth, and remodeling) that makes ar-

teries have normal circumferential pressure. We have not confirmed there are other triplets to have

the same situation. If they exist, choosing the “best” triplet will be the next question.

We may complexify the geometry of an artery from a cylinder to a tube having bifurcation,

which is actually the location that vascular diseases like aneurysms take place. As another option,

we can implement numerical experiments using a periodic function of pressure instead of having

a constant inner pressure, which is a closer simulation of heart pumping.

It will be interesting to couple modeling the arterial wall with blood flow as the review pa-

per [45] suggested. In this case, the advantage of the usage of the current configuration will be

emphasized.

5.2.2 Requirement/Request for the Ultimate Future work

More work is needed to better understand the mechanobiology of residual stress in the arterial

wall. In particular, it is insufficiently understood how the cells (fibroblasts and smooth muscle

cells) in the arterial wall modify the residual stress through the synthesis of collagen and cell

hypertrophy (cell growth) and hyperplasia (cell division). Once we better understand these pro-

cesses, we can then create more complex models for making predictions of the rate at which these

mechanobiological mechanisms can mitigate the effects of chronic hypertension. If there were

studies about the rates of growth in an arterial wall under hypertension or the rates of remodeling,
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we could build a time-dependent model so that we can get a more precise prediction in terms of

time. The rate of adding/increasing mass may replace the rate of growth like in [12, 13]. Studying

the rate of remodeling can be demanding because there is no consistent definition of remodeling

over the field, and there are too many factors that can change the mechanical properties.

All the above cases are ultimately to simulate and illustrate the event more realistically to

predict the next steps or the next outcomes. More accurate models eventually provide proper

treatments or prevent disease outbreaks, and so on. The mathematical framework is more indis-

pensable when it comes to predict events without expensive experiments or inevitable damages on

specimens. However, to be confirmed the framework is reasonable, we must cooperate with exper-

iments in the laboratory. It will be important that collaborating with mathematical, experimental,

and clinical studies.
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APPENDIX A

DETAILS OF COMPUTATIONS

A.1 Derivative of a tensoral valued function

DF φ(F )[H ] = ∂F φ(F ) ·H , for everyH ∈ T 2.

If φ(A) = tr(A), then DAtr(A)[H ] = trH .

If φ(A) = AAT , then DAφ(A)[H ] = AHT +HAT .

If ψ(A) = tr(AAT ), then

DAψ(A)[H ] = tr(AHT +HAT ) = 2A ·H

Thus,

∂Aψ(A) = 2A. (A.1)

A.2 Gradient of the vector valued function in the cylindrical coordinates

A vector values function v = vrj1(θ) + vθj2(θ) + vzj3, where {j1(θ), j2(θ), j3} is a basis for

cylindrical coordinates.

∇v =
∂vr
∂r
j1(θ)⊗ j1(θ) +

1

r
(
∂vr
∂θ
− vθ)j1(θ)⊗ j2(θ) +

∂vr
∂z
j1(θ)⊗ j3

+
∂vθ
∂r
j2(θ)⊗ j1(θ) +

1

r
(
∂vθ
∂θ

+ vr)j2(θ)⊗ j2(θ) +
∂vθ
∂z
j2(θ)⊗ j3

+
∂vz
∂r
j3 ⊗ j1(θ) +

1

r

∂vz
∂θ
j3 ⊗ j2(θ) +

∂vz
∂z
j3 ⊗ j3.
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A.3 Solve the equation (2.9)

1

(1− η′)(1− η
r
)(1− λ)

= 1.

(1− η′)(1− η

r
) =

1

(1− λ)
.

Let η̃ = r − η.

η̃′η̃ =
r

(1− λ)
.

(η̃2)′

2
=

r

(1− λ)
.

Take integral with respect to r,

η̃2 =
r2

(1− λ)
+ c.

η̃ = ±

√
r2

(1− λ)
+ c.

r − η = ±

√
r2

(1− λ)
+ c.

η = r ∓

√
r2

(1− λ)
+ c.

We need to choose − sign since the definition of displacement is η(r) = r − ρ,

The square root part is positive, and 0 < ρi ≤ ρ ≤ ρo.

Therefore,

η = r −

√
r2

(1− λ)
+ c.
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