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ABSTRACT 

 

Maintenance refers to acts undertaken to improve the availability and integrity of 

ageing productive systems, and is at the nexus of the broader concepts of system 

resilience and system effectiveness. Compromised system resilience can reduce 

system effectiveness and can lead to catastrophic consequences such as cost to 

human life due to process safety incidents, lost revenue due to downtime, as well 

as damage to the system and the environment. Data analytics and mathematical 

optimization are key research areas that are well positioned to offer solutions that 

leverage increasing data proliferation and help address the complexities associated 

with process-maintenance interactions. The present work optimizes maintenance at 

multiple time-scales using both data-driven and first-principles methods while 

simultaneously optimizing production. The work is divided into three major areas: 

(1) maintenance planning, which explores the effects of imperfect maintenance and 

uncertainty in model parameters; (2) data-driven prescriptive maintenance, which 

involves future failure prediction via machine learning and optimal process and 

maintenance scheduling; and (3) maintenance-aware predictive control, which lies 

at the interface of predictive maintenance and multi-parametric model predictive 

control. This work makes advances in process safety engineering and process 

systems engineering while also developing advanced, systematic and mathematical 

tools for decision support. 
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1. INTRODUCTION 

1.1. Overview and Motivation 

Maintenance refers to proximate acts undertaken to improve the availability of 

productive systems. These activities may include monitoring, inspection, cleaning, 

lubrication, testing, repair, or replacement depending on requirements. In a more 

general sense, maintenance is at the nexus of the broader concepts of system 

effectiveness and system resilience. 

Maintenance can improve both system effectiveness and system resilience however 

system disruptions and a number of other challenges can lead to catastrophic over-

maintenance or under-maintenance. Maintenance was seen to be a significant factor 

in 44% of process safety incidents examined out of which 69% were related to 

deficient planning, scheduling, and failure diagnosis [1]. Process safety incidents 

can lead to highly undesirable lost production as well as loss of containment of 

process fluids and a number of consequences that include: immense cost to human 

life, destruction of physical company assets, damage to intangible assets such as 

reputation, as well as negative impacts on the environment.  

Research aimed at significantly reducing the likelihood of process safety incidents 

and system disruptions is thus of opportune interest. This research focuses on 

developing holistic approaches to inform decision-making. It leverages machine 

learning and mathematical optimization for data-driven maintenance planning, 

scheduling, and control toward improving the effectiveness and resilience of 

productive systems. 
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1.2. Challenges 

Maintenance has a number of associated challenges which are presently outlined. 

Challenge I: production systems are often dynamic, uncertain, complicated, and 

large. This is worsened by the complexities in failure mode behavior and by how 

safety is an emergent property of systems. Furthermore, decision multiplicity is 

prevalent given that systems can involve a large number of activities and resources. 

As such component criticality and resource prioritization is rendered non-trivial. 

Challenge II: interactions between process conditions and maintenance of system 

components exist, are numerous, and can be nonlinear. This results in systems being 

challenging to model and control and high-fidelity first-principles models are 

intractable for many applications. Systems can also have rapid dynamics, require 

rapid automation for operability, and require non-overly-aggressive control actions.  

Challenge III: maintenance windows and are becoming increasingly shorter and 

less frequent with activities that are increasingly more tightly coupled. This 

exacerbates the challenge of accounting for uncertainty in equipment condition that 

can result in increases in the mean time to repair. Furthermore, there are constraints 

on the amount, availability, and speed at which skilled workers can be attained. 

Challenge IV: maintenance intrinsically results in competing objectives, and 

models traditionally used to plan maintenance have assumptions and employ 

uncertain parameters. This can lead to maintenance plans that are inaccurate and 

under-maintenance or over-maintenance. Furthermore, planning resource 

allocation is constrained and often exhibits diminishing marginal returns. 
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1.3. Research Opportunities 

A number of research opportunities were identified after surveying the literature. 

The selected focus areas are summarized below. 

Opportunity I: optimal prescriptive maintenance involving optimal future failure 

prediction and maintenance scheduling remains underexplored. Furthermore, 

consideration of the added dimension of process safety in prescriptive maintenance 

represents a significant research gap. 

Opportunity II: active optimal control incorporating process and maintenance real-

time optimization trajectories and schedules is an open question in the literature. 

Opportunity III: large-scale optimal turnaround scheduling under resource 

constraints and uncertainty model parameters has witnessed limited exploration. 

Opportunity IV: optimal resource-constrained maintenance planning considering 

uncertainties in reliability models and the effect of imperfect maintenance actions 

represents an area to make contributions. 

Related research opportunities in chemical engineering not selected here include 

the following: failure prediction with reinforcement learning, grey-box 

maintenance scheduling, predictive plant-wide interdependent future failure 

propagation. Research opportunities identified in the surrounding related research 

fields of computer science, statistics, and industrial systems engineering not 

selected here include: uncertainty analysis of predictive algorithms outputs, and 

hierarchical classification using ensemble models.  
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1.4. Research Objectives 

In light of the need for effective maintenance and process decision-making at 

multiple timescales, and recognizing the existence of multiple research 

opportunities, the present research proposes the following research objectives. 

Objective I: Develop a future-fault-aware maintenance scheduling model to 

maximize system effectiveness and system resilience. This objective involves the 

development of ensemble support vector machine classification models for future 

failure prediction, and multi-objective scheduling of maintenance and process 

operations. 

Objective II: Develop and implement an approach to explicit maintenance-aware 

failure-aware predictive control. This objective involves the integration of real-time 

optimization, dynamic simulation, machine learning, and multi-parametric model 

predictive control. 

Objective III: Develop a scheduling model to optimize turnarounds subject to 

workforce constraints and repair time uncertainty. This objective involves the use 

of mixed-integer stochastic programming and reinforcement learning. 

Objective IV: Develop a multi-objective stochastic maintenance planning model. 

This objective involves the consideration of an effective equipment age model and 

uncertainty in reliability model parameters for maintenance capacity planning. 
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1.5. Paradigm 

Maintenance and production are interrelated and exhibit dynamic interactive 

complexity which leads to a number of identified research challenges, 

opportunities, and objectives. 

This dissertation operates within a holistic paradigm that seeks to optimally 

improve the system effectiveness, system  resilience, and sustainability of 

integrated operations. This is termed the Safety-Aware SUstainable MAintenance 

and Process optimization (SASUMAPRO) paradigm and is shown in Figure 1. 

Elements of this paradigm are subsequently demonstrated in turn throughout the 

rest of this dissertation.  

 

 

 

 

Figure 1: SASUMAPRO paradigm  
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2. BACKGROUND 

This research involves several different concepts and an attempt has been made to 

provide background information to help readers contextualize and fully appreciate 

the present research. This section discusses a subset of essential related concepts 

in: (1) system effectiveness, (2) process safety, (3) maintenance, (4) machine 

learning, and (5) mathematical optimization. The chapter then concludes with a 

generalized and holistic safety-aware sustainable maintenance and production 

model that links these concepts together. 

 

2.1. Systems Effectiveness 

System effectiveness is the holistic performance of a system as a function of its 

availability, reliability, and quality characteristics [2]. System effectiveness can be 

applied to individual equipment or extended to a multi-component process system. 

It is noted that system effectiveness is function of equipment effectiveness. System 

effectiveness considers various performance characteristics: availability, which 

characterizes the probability that a piece of equipment will be available at a given 

time; productivity, which relates to the profitability of the process as a function of 

its production rates; and quality, which serves as a lagging indicator by 

characterizing whether products meet standards. It is noted that the cost of low 

availability, low productivity, and poor quality can all be quantified in monetary 

terms.  
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The factors influencing performance characteristics are interdependent, which 

leads the performance characteristics to be interdependent. For example, an 

effective predictive maintenance program resulting in fewer equipment 

breakdowns concomitantly would result in higher production rates and better 

product quality. This example illustrates process-maintenance interactions, as well 

as how the presence of high availability can help enable high productivity. This 

then motivates and shows the value of a systematic approach that considers the 

various interdependent factors in a systematic and holistic fashion.  

System effectiveness quantification is key as it enables a number of different 

technical and organizational aspects: (1) real-time assessment of performance, 

which involves tracking and online performance benchmarking against set 

standards; (2) incorporation of and augmentation of multiple interdependent 

considerations within a single metric; (3) consideration of the expected system 

performance in a probabilistic aspect to avoid making conclusions that are based 

on deterministic single point values; (4) priority management and guided resource 

allocation for continuous improvement through equipment criticality assessment; 

as well as (5) ready communication of performance to multiple stakeholders. 

The utility of system effectiveness as well as system effectiveness quantification is 

well-established and one of its earliest specific formalizations comes from total 

productive maintenance [3]. Total productive maintenance defines overall 

equipment effectiveness as a function of availability, productivity and quality. 

System effectiveness is often formalized as a product or unweighted geometric 

mean of availability, productivity, and quality [4]. However it can also be 
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considered as a weighted arithmetic mean using summations. It is noted that system 

effectiveness can alternatively be considered as a multi-objective problem and 

formalized using methods such as: epsilon-constrained method, analytic 

hierarchical process, multi-attribute utility theory, Bayesian networks. While many 

objective functions can be cast as partial system effectiveness metrics, a select few 

of them relate to maintenance and production optimization at different time scales. 

These objective functions are summarized in Table 1. 

 

 

 

 

Table 1: Partial overview of system effectiveness objective functions 

Reference Objective Function 

[2] 

[5] 

[6] 

Profit 

[7] Cost 

[8] Production Equipment Effectiveness (PEE) 

PEE = Availability!! × Efficiency!" 	× Quality!# 	 

[9] System Survivability Index (SSI) 

SSI = 6
Actual	System	Effectiveness
Required	System	Effectiveness= 
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2.2. Process Safety 

Process safety is a field of research that involves prevention, mitigation, and 

response to dangers associated with industrial processes. The dangers of industrial 

processes are termed hazards. A hazard is defined as a chemical or physical 

condition that can potentially cause damage to people, property, or the environment 

[10]. The level of safety of a process containing hazards is known as risk. Risk is 

defined as a measure of both the probability and severity of human injury, economic 

loss, or unsustainable environmental damage due to process safety incidents that 

include fire, explosion, or toxic release. Process operators collect various types of 

data to help understand process risk. These can be summarized in a safety data 

pyramid [11] as  shown in Figure 2.  

 

 

 

 

Figure 2: Safety data pyramid  

Fatalities
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Property damage
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Metrics
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It is noted that each level of the safety data pyramid can be leveraged help improve 

process safety. Operations and maintenance data can be analyzed to improve 

system effectiveness, however it suffers from high variety, high velocity, high 

volume, and low veracity which motivates the use of big data and machine learning 

techniques. Metrics can be constructed from operations and maintenance for 

performance benchmarking. Near misses are defined hear as an opportunity to learn 

from a near hit or potential catastrophic incident. Loss of containment of process 

fluid and asset damage are defined here as property damage and not near misses. 

The pyramid is capped by data on injuries and fatalities. 

It can be observed that the lower levels of the safety pyramid is are characterized 

by significantly more abundant data than the higher levels of the safety pyramid. 

Data from the lower levels can serve as leading indicators [12] for compromised 

process safety, however these warning signs may be weak signals and are not 

always comprehensible [13]. Research that deciphers safety data effectively to 

anticipate and avoid incidents is thus of value. 

Risk assessment methods aim to leverage this safety data to quantify and explain 

process safety performance using a variety of methods. These risk assessment 

methods can be categorized as: (1) qualitative, through the use of what-if analysis, 

checklist, failure modes and effects analysis, as well as hazard and operability 

studies; (2) semi-quantitative, with methods such as layer of protection analysis; or 

(3) quantitative, with methods that include fault trees and dynamic fault trees, event 

trees and dynamic event trees, bowtie analysis, Bayesian networks and Dynamic 

Bayesian networks, as well as safety metrics [10].  
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Traditional conducted risk assessment can experience a number of limitations. 

These include it being: complex, costly to calculate, time-consuming, often static, 

often purely qualitative, as well as often narrow in scope to not effectively account 

for interactions and socio-organizational factors. Effective use of safety data could 

help by improving both the consequence modeling and probability modeling 

aspects of risk quantification. 

Consequence modeling involves the use of first-principles or data-driven models to 

simulate aspects of process safety incidents and calculate the magnitude and spread 

of their damage [14]. It is driven by safety data and examples of software to perform 

consequence modeling include: ALOHA, PHAST/CANARY, and FLACS. In 

performing consequence modeling key considerations include: location; the type of 

failure; the type of chemicals; and atmospheric conditions such as temperature, 

humidity, wind speed, wind direction, wind stability class [10, 14]. Consequence 

modeling can be computationally challenging and significantly affected by 

epistemic uncertainty however safety data can help improve model accuracy. 

Probability modeling quantifies the likelihood of a process safety incident. 

However processes are highly complex and determining whether a piece of 

equipment  will fail, and going beyond that to quantify the probability of occurrence 

is rendered non-trivial and highly challenging. This leads to a significant amount 

of uncertainty in the probability side of risk. Given that several aspects of 

operations and maintenance impinge upon process safety, approaches that can 

tackle the holism, complexity, and operability of process systems are key. 
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One such method is Bayesian networks. Bayesian networks are directed and acyclic 

graphs that can be used to represent the complex probabilistic relationships in 

systems with interdependent components [15]. Bayesian networks are composed of 

two structural components: nodes and edges. Nodes represent the random variables 

corresponding to system components whereas edges represent the relationships 

between the system components. Commonly used terminology to describe 

Bayesian networks include: parent nodes, the nodes from which the directed edges 

emanate; child nodes, the nodes to which edges are directed; static, non-time-

varying Bayesian networks; and dynamic, Bayesian networks in which the 

influence of past nodes is propagated through the network over time.  

It is noted that Bayesian networks assume that child nodes are assumed to only 

depend on their most proximate parent nodes [15]. It is further noted that as opposed 

to fault trees which primarily use combinations of AND gates and OR gates, 

Bayesian networks use Bayesian inference to determine the probability distribution 

of each child node given the probability distributions of their parent nodes [15] 

An example of a Bayesian network is presented in Figure 3. It depicts child nodes 

(I, J) that characterize the safety of a system that is influenced by parent nodes (X, 

Y, Z), over two discretized time intervals (T1, T2). The Bayesian network depicted 

in the example is relatively simple, however for complex systems the mathematics 

of Bayesian networks becomes highly challenging. 
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Figure 3: Dynamic Bayesian network 
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One alternative approach that is commonly thus used is safety metrics due to their 

lower computational requirements relative to other quantitative risk assessment 

models. The safety metrics are key performance indicators (KPIs) that aggregate 

individual measured indicators  to quantify the state of systems that [12]. Safety 

metrics are of interest because they enable one to: (1) track, analyze, and assess the 

health of barriers in the system as well as to monitor asset productivity; (2) 

anticipate and avoid process safety incidents and their consequences; (3) make 

system states observable so as to take decisions and assist with communication to 

all stakeholders. 

Safety metrics employed should incorporate some knowledge of failure modes 

[16]. As such systematic approaches need to be taken to develop representative 

safety metrics. These approach should consider various aspects provided in Table 

2. Safety metrics also enable benchmarking so as to improve future performance 

against internal targets, and competitors. Safety metrics also help ensure 

compliance with regulatory standards which in effect represent mandatory 

mathematical constraints on operations and maintenance. 

One such standard that in effect summarizes process safety is known as the 

Occupational Safety and Health Administration (OSHA) Process Safety 

Management (PSM) standard [10]. This standard contains information related to 

the 14 process safety elements shown in Table 3 [10]. Maintenance falls under the 

element of mechanical integrity and requires understanding of the other elements 

to be done effectively.  
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Table 2: Categorization of aspects of safety metrics and indicators 

Category Aspects 
time static 

dynamic 
 

horizon lagging 
leading 
 

scale equipment 
unit 
facility 
company 
industry 
 

quality quantitative 
semi-quantitative 
qualitative 
 

type technical 
non-technical 
 

life-cycle segment  design 
operations 

 

Table 3: PSM elements 

# Element 
1 Process safety information 
2 Process hazard analysis 
3 Operating procedures 
4 Employee participation 
5 Training 
6 Contractors 
7 Pre-startup safety review 
8 Mechanical integrity 
9 Hot work permit 
10 Management of change 
11 Incident investigation 
12 Emergency planning and response 
13 Compliance audits 
14 Trade secrets 
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2.3. Maintenance 

Maintenance in an abstract sense refers to sustaining the availability of equipment 

by improving their ability to resist destructive stresses within their material 

continua. More concretely maintenance takes the form various actions which 

include: cleaning; inspection through online, or offline assessment of equipment; 

testing, to physically stimulate equipment to assess performance and integrity; 

repair; as well as replacement. Here maintenance and mechanical integrity are used 

synonymously due to their large degree of overlap. With process-maintenance 

interactions, increases in the resilience of individual equipment can simultaneously 

improve system resilience and can also improve system effectiveness. 

The objective of maintenance departments has traditionally been equipment 

mechanical integrity. Over time, a number of maintenance programs have emerged. 

These are also termed maintenance policies or maintenance philosophies and 

include: risk-based inspection, in which risk-based criticality analysis is performed 

to prioritize which equipment to maintain; total productive maintenance, which 

places a greater focus on the socio-organizational interactions between production 

and maintenance; as well as reliability-centered maintenance, which explicitly 

places reliability at the core of maintenance decision making.  

One of the primary ways that maintenance departments obtain information is 

through inspections. Inspections of equipment are done to: assess current state of 

equipment, by checking factors such as damage and alignment; assess performance 

of equipment; assess rate of degradation; as well as to perform root cause analysis 



 17 

of condition degradation or performance degradation. Inspections generally involve 

taking the equipment offline, however techniques such as visual inspections, 

unusual odor detection, and vibration analysis can be used to perform online 

inspections [13]. Inspections are carried out on a periodic basis at intervals that 

depend on type of equipment, their criticality, standards, and recognized and 

generally accepted best engineering practices. One challenge however is that 

inspections are often done on an arbitrary time basis such as the following: every 

three months for pumps, every six months for process valves, yearly for piping, and 

yearly for relief valves. It is emphasized that the specific intervals provided here 

are arbitrary. 

Mechanical integrity programs can suffer from a number of other known challenges 

which include: difficulties in tailoring the specific practices and procedures at 

individual sites to general standards, siloing of mechanical integrity responsibilities 

to only the maintenance department of companies, improper documentation and 

management of maintenance procedures, as well as expired or undocumented 

qualifications for maintenance technicians [17]. 

These challenges often result in reduced effectiveness of maintenance activities and 

poorly performing maintenance. Key maintenance performance metrics [13]  

include: work orders completed as a percentage of scheduled work orders; overall 

equipment effectiveness; availability; downtime vs uptime; total maintenance cost 

relative to budget; planned maintenance percentage vs total maintenance; ratio of 

planned to unplanned maintenance; maintenance cost per unit; extent of technician 

training; as well as personal safety metrics such as total recordable incident rate and 
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lost workday rate. Maintenance programs also track a set of lagging indicators [12] 

which include: mean time to repair; mean time between failures; maintenance 

response time; personnel utilization; percentage of rework work orders [13]. 

As a result of the challenges of mechanical integrity programs, the current 

philosophy that is beginning to come become predominant and wide-spread is 

condition-based monitoring, in which maintenance is centered around 

measurements of the condition of equipment over time. Condition-based 

monitoring typically refers to measurements directly related to equipment health. 

A partial overview of typical measurements present in condition-based monitoring 

is provided in Table 4. 

Regardless of the underlying maintenance philosophy and mechanical integrity 

program, one central element is maintenance decision-making. This refers to the 

specific basis and techniques used to decide whether or not to take a piece of 

equipment offline for maintenance. Traditionally three archetypes have been used 

to categorize maintenance decision-making namely: (1) corrective, (2) preventive, 

and (3) predictive. Here the following six archetypes are proposed to nuance and 

categorize maintenance decision-making approaches: (1) corrective, (2) fixed 

interval-based, (3) preventive, (4) condition-based, (5) predictive, and (6) 

prescriptive. The decision tree categorizing these archetypes is displayed in Figure 

4 and the archetypes are presented in Figure 5.  
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Table 4: Partial summary of condition measurements for different equipment 

Equipment Measurements 

Pumps visual check of seals 
performance (ex. pressure) 
abnormal vibration 
bearing oil temperature 
bearing oil composition 
abnormal noise 
 

Heat exchangers visible fouling 
temperature difference 
pressure drop 
product composition 
ultrasonic 
 

Towers visible damage to internals  
electrochemical 
thickness 
external infrared thermography 
internal temperature profile 
level 
pressure profile 
 

Vessels visible cracks 
ultrasonic 
electrochemical 
thickness 
painting 
 

Valves acoustics 
actuation time 
seal temperature 
 

Piping electrochemical 
thickness 
external infrared thermography 
pressure profile 
 

Instrumentation latency 
power 
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Figure 4: Maintenance decision making approach classification 

 

 

 

 

 

 

Figure 5: Maintenance decision making approaches 
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These maintenance decision-making approaches are organized into six 

corresponding levels based on the degree of complexity and proactivity that they 

contain. It is noted that different levels have fuzzy interfaces with some specific 

techniques falling into two contiguous approaches. Different approaches may be 

more or less suitable for different pieces of equipment according to their criticality, 

and service. It is further noted that risk analysis and cost-benefit analysis can be 

employed in selecting a maintenance decision-making approach.  

The maintenance decision-making approaches are presently described. In 

corrective maintenance, the decision-making is relatively absent and maintenance 

actions are based on allowing equipment to fail before fixing them. In fixed 

interval-based maintenance, fixed time intervals are used to determine when to 

perform maintenance actions. Traditionally used inspection intervals are an 

example of interval-based maintenance. Preventive maintenance decision-making 

approaches represent a marginal step up in complexity and involve the use of mean 

time between failure data to derive two or three parameter reliability models. An 

example of a preventive maintenance decision-making approach is the use of 

Weibull-type analysis [18].  
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Condition-based maintenance leverages measurement of equipment condition 

obtained from condition-based monitoring programs to decide when to do 

maintenance. This decision is typically based on explicit univariate thresholds that 

are either set based on best judgement, or calculated according to physics-based 

equations. An example of condition-based maintenance is tracking the thickness of 

a pipe wall over time and then replacing the pipe once the pipe thickness falls below 

say 75 % of the original thickness so as to avoid loss of pressure resistance imparted 

by material strength leading to a rupture and loss of containment.  

It is noted that the service, operating conditions, and chemical composition of fluids 

in process equipment could change significantly over long periods of time leading 

to inaccuracies in applying previously determined original equipment manufacturer 

maintenance recommendations or historical condition-based thresholds. 

Predictive maintenance leverages machine learning algorithms to decide when to 

do maintenance based on condition data, time data and other types of data. It is 

noted that in effect predictive maintenance decision-making approaches typically 

tend to extract an implicit condition threshold, and that this threshold is based on 

measured data.  
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Predictive maintenance has a number of advantages. The underlying advantage is 

that it avoids arbitrariness by offering data-driven decision-making capability that 

is customized to equipment based on their specific health, service, and 

environmental condition. From a business perspective, the advantages of 

effectively implemented predictive maintenance are summarized in Table 5. It is 

noted that predictive maintenance is highly reliant on data availability and data 

veracity, however well digitalized operations and maintenance supports the key 

advantage of predictive maintenance to be able to dynamically estimate explicit as 

well as implicit future degradation profiles. 

 

 

 

Table 5: Advantages of predictive maintenance 

Category Advantage 
Time reduced equipment downtime 

increased availability 

Cost decreased number of process safety incidents 
and emergency situations 

decreased labor cost 

Quality reduced risk to customers of compromised 
service quality 
improved product quality 

Human factors increased personnel satisfaction 
better utilization of personnel. 

Socio-organizational factors improved spare part inventory management 
data-driven decision-making  
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Table 6: Partial summary of process measurements 

Approximate Type Measurements 

Mass metal debris mass 
average catalyst mass 
 

Amount gas content 
chemically-attacking species concentration 
 

Temperature process fluid temperature 
ambient temperature 
cooling water temperature 
heating oil temperature 
steam temperature 
 

Length average machine arm displacement 
machine odometer readings 
semiconductor feature size variability 
pipeline position 
 
 

Current current Fourier spectra 
root-mean-squared voltage 
 

Time start-up sequence 
load spikes times 
time since last maintenance 
absolute operational time 
relative operational time 
 

Luminosity solar irradiance 
filament brightness 
 

Force pressure 
friction 
viscosity 
material stress 
 

Nondimensional efficiency 
inlet-to-outlet flow ratio 
stress-strain ratio 
speed ratio 
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Prescriptive maintenance builds upon the advantages of predictive maintenance by 

additional consideration of process decisions and their effect on equipment and 

system failure. Prescriptive maintenance is prediction plus action and it leverages 

process measurements to a significantly greater extent. A partial list of relevant 

process measurements can be found in Table 6. 

Optimal prescriptive maintenance goes a step further to take a holistic approach 

that leverages state-of-the-art machine learning and rigorous mathematical 

optimization techniques to simultaneously maximize system effectiveness and the 

level of system resilience. As such, optimal prescriptive maintenance has the 

capability to account for the nonlinear interactions of process, maintenance, and the 

environment while simultaneously recommending the optimal process actions to 

achieve a precise balance between risky under-maintenance, costly over-

maintenance, and production. 

Optimal prescriptive maintenance thus enables decision makers to determine the 

best maintenance and operational decisions to take for their systems. These 

decisions include: the maintenance schedule; the process operating schedule; 

turnaround duration; turnaround frequency; personnel-equipment task assignment; 

maintenance action type task execution; process operating conditions; capacity 

allocation for maintenance planning; as well as spare-part management. Optimal 

prescriptive maintenance also offers the ability to rigorously consider constraints 

whether they be: constraints on resources required such as utilities, cranes, fork-

lifts, and labor; constraints on safety; constraints from regulations; or process 

inequality and equality constraints. 
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2.4. Machine Learning 

Machine learning is a field within artificial intelligence research that  focuses on 

developing data-driven models and algorithms. As opposed to first-principles 

methods, in machine learning the models do not necessarily have a structure that is 

known a priori but rather have the flexibility to learn model structures from data to 

be able to capture complex physical phenomena such as those that can lead to 

process safety incidents. As a result there has been growing excitement and interest 

in machine learning within the chemical engineering community due to its promise 

in tackling long-standing and highly challenging problems [19]. This dissertation 

focuses on two such challenging problems in the context of data-driven 

maintenance optimization: failure prediction, and fault detection. 

There are three main paradigms in machine learning: (1) supervised learning, (2) 

unsupervised learning, and (3) reinforcement learning [20]. Supervised learning 

deals with columns of data known as features that are each labeled and uses them 

to predict binary outcome vectors through classification methods as well as to 

predict continuously-valued outcome vectors through regression methods. 

Unsupervised learning in contrast deals with data that may not be labelled and has 

primarily focused on identifying underlying clusters of data with models such as 

include k-means, k-nearest neighbors, and hierarchical clustering. Reinforcement 

learning can be conceptualized as data-driven optimization and involves the use of 

algorithms as agents that learn which optimal actions to implement within an 

environment to maximize a mathematical reward with algorithms such as Q-

learning, and generative adversarial networks.  
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Machine learning is leveraged by the present research for disruption prediction and 

this is done through a systematic workflow that consists of a number of steps. 

1. Feature measurement: involves leveraging an established digital data 

collection infrastructure to sample operations and maintenance processes. 

This data include: time measurements such as age, days elapsed since last 

maintenance, and days elapsed since last failure; condition measurements 

such as vibration, temperature, and composition; as well as process 

measurements such as rate, voltage, and power. 

 

2. Feature generation: then involves transforming features to engineer new 

features using physics-based engineering judgement or statistical 

techniques. Generated features can include calculated physical quantities, 

characteristic dimensionless numbers, features that capture absolute 

deviations from baselines, and lag features that are measurements from 

previous time steps. Feature generation techniques [20] include: 

normalization, via taking ratios of features, min-max scaling, and Z-

transformation; aggregation to combine multiple data points via calculating 

quantities such as the rolling mean, median, min, max, and standard 

deviation; signal processing which involves determination of wavelets, root 

mean square, frequency domain transformations, and skew [21]; features 

from dimensionality reduction through principal components analysis; as 

well as discretization to replace continuous-valued data with class labels 

corresponding to different bins. 
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3. Feature selection: involves the use of heuristics, algorithms, and techniques 

to reduce the number of features to the most useful subset for developing 

models. There are two primary categories of feature selection methods: (1) 

filter-based methods which select features independently of models, and (2) 

wrapper methods which select features using algorithms embedded within 

model creation algorithms. Filter-based methods include: correlation 

analysis, and mutual information computation [22]. Wrapper methods 

include genetic-based algorithms, exhaustive feature selection; and 

sequential search over subsets of features [22]. 

 

4. Model creation: involves the use of algorithms to learn the structure of 

models from data and determine values of the model hyperparameters. 

Model creation intrinsically involves parsing the hyperspace of parameter 

values to optimize objectives such as prediction error. It is noted that various 

models can be adapted for use for either classification or regression. 

Classification models include support vector machines, decision trees, naïve 

bayes classifiers. Regression models include random forest, neural 

networks, and lasso regression. In the context of failure prediction and fault 

detection, the created models learn the ways that faults and failures affect 

the feature values. In a sense the created models can thus learn the dynamics 

of the system and the difference between normal operating conditions and 

many abnormal operating conditions. 
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5. Model tuning: then involves refining the optimized hyperparameters to 

improve the performance of the model. This is typically done via two ways: 

(1) grid search, in which a model is created for each combination present in 

the superset of discretized hyperparameter values; and (2) optimization, in 

which typically metaheuristic algorithms are used to iteratively obtain 

hyperparameter values that improve model performance. 

 

6. Model evaluation: involves assessing the performance of the model. It is 

noted that the model training and model tuning steps involve some intrinsic 

assessment of performance, however this is done on the data used to build 

the model. Model evaluation on the other hand is used here to refer to testing 

the model on data that was not used to create it so as to obtain a better sense 

of its generalizability and likely performance. 

 

7. Model deployment: represents the last step of the workflow and involves 

implementing the model for decision support. Model deployment typically 

involves feeding real-time data into the model to obtain insights. It is noted 

that stakeholders should be consulted at all stages of the workflow prior to 

deployment to help ensure buy-in and successful value creating 

deployment. 
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Support vector machines represent one type of model used extensively in this 

dissertation and is thus explained in slightly more detail for the reader’s 

convenience. Support vector machines, in the context of classification, are models 

constructed from historical data that assign class labels to new input data. 

The underlying principle of support vector machines for classification is that data 

can effectively be transformed into a hyper-dimensional feature space to better 

discern class membership [23]. For binary classification, historical data is first 

labelled with +1 or -1 to describe sample class membership. The labelled historical 

data is then effectively transformed into a hyper-dimensional feature space using a 

selected kernel function, and then used to obtain the optimal hyperplane that 

separates the data such that the majority of samples belonging to different classes 

are on opposite sides of the separating hyperplane. The process of obtaining the 

optimal hyperplane involves formulation of the machine learning problem as a 

mathematical optimization problem, deriving the corresponding dual formulation, 

and then solving the resulting convex optimization problem to global optimality. In 

the model deployment step, class membership of a new input data point is assigned 

by determining which side of the hyperplane the data point falls. 
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2.5. Mathematical Optimization 

It is of great interest to optimize maintenance decision-making so as to minimize 

cost and maximize system effectiveness to help improve overall system resilience. 

Mathematical optimization is a field of research that employs mathematical models 

of systems, and algorithms, to obtain optimal solutions to problems to assist with 

decision-making. Specifically, mathematical optimization refers to modeling using 

equations, inequalities, and algorithms to take the binary, integer and/or continuous 

decisions that cause objective(s) to take on their optimal value. This research 

leverages a number of different types of optimization including: (1) stochastic 

optimization, (2) integer programming, (3) nonlinear programming, and (4) multi-

objective optimization. Each of these is summarily described. 

Stochastic optimization involves consideration of uncertainty in the parameters 

used in optimization models. This is in contrast with deterministic optimization in 

which the parameters are treated as being known with certainty. One type of 

stochastic optimization used here is known as scenario-based stochastic 

programming in which the probability distributions of the random variables are 

approximated using discrete distributions [24]. Consider the average price of 

electricity as an optimization model parameter for example: deterministic 

optimization would treat it as being a known fixed value of say $0.12/ Kwh, 

whereas scenario-based stochastic programming would treat it as being an 

uncertain distributed value by introducing different scenarios characterized by a 

value vector of say [$0.10, $0.12, $0.15] with concomitant realization probabilities 

of [30%, 40%, 30%]. It is noted that there are other stochastic programming 
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methods that involve the use of chance constraints, and fuzzy logic [24]. It is further 

noted that scenario-based stochastic programming typically leads to larger and 

more challenging optimization problems. In the context of multi-period problems 

especially, this imparts a significant degree of additional solution complexity 

leading to the necessity of leveraging extensive computational resources, scenario 

reduction algorithms, or iterative bilevel algorithms. 

Integer programming involves the use of binary variables and algorithms to more 

readily formulate and solve optimization problems that exhibit discrete decisions. 

An example of a discrete decision is whether or not to perform maintenance on a 

centrifugal pump within a given time interval. Integer programming is facilitated 

with the use of propositional logic which systematically encode the different logical 

relations between different propositions corresponding to binary variables into 

inequalities. It is noted that the space of different discrete decision combinations 

can be exponentially large and that inequalities such as integer cuts, and algorithms 

such as branch and bound [25] enable intelligent parsing of the discrete decisions 

spaces so as to avoid the computational intractability associated with exhaustive 

enumeration. 

Nonlinear programming involves the reformulations and algorithms to seek global 

optima. Nonlinear functions can exhibit optima multiplicity and nonlinear 

programming specifically seeks rigorous ways to help optimization algorithms 

escape local optimal to find the best overall solution in the decision space. This is 

traditionally done by creating surrogate functions known as convex envelopes to 

approximate the nonlinear functions. One such convex envelope is known as the 
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McCormick relaxation [25]. It is noted that an awareness is needed of the domain 

of the functions in relation to the maximum separation distance between the convex 

envelopes and the original nonlinear functions. It is further noted that methods such 

as stochastic gradient descent can be used for nonlinear programming problems to 

obtain good feasible solutions. 

Multi-objective optimization involves the systematic solution of problems that 

simultaneously involve multiple and possibly competing objective functions. This 

is formalized through the field of multi-objective optimization with a general form 

shown in (1). 

min
𝐱,			𝐲

	 𝐟(𝐱, 𝐲) = [f&(𝐱, 𝐲), f'(𝐱, 𝐲), … , f((𝐱, 𝐲)] (1) 

s. t. 𝐠(𝐱, 𝐲) = 0 

𝐡(𝐱, 𝐲) ≤ 	0 

𝐱	 ∈ 𝐗	 ⊆ Â) 

𝐲 ∈ 𝐘	{0,1}* 

Multi-objective problems can be solved using a variety of methods. These include 

lexicographic goal programming, and the use of weighted-averaging. Weighted-

averaging scales each objective function and then combines them via an arithmetic 

or geometric average into a single objective function that can be solved with 

standard methods. Weighted-averaging however suffers from uncertainty in 

selecting which weight factors to use and difficulty in interpreting different weight 

factor combinations. The epsilon-constrained method has consequently emerged as 

a way of tackling multi-objective problems [26]. This method is done by first 



 34 

solving the multi-objective problem using each objective function at a time without 

the other objective functions to help define narrow ranges for the objective 

functions. Each of the objective function ranges is then discretized to obtain all 

combinations of objective function values (E). A single objective function is then 

selected to be optimized for each combination subject to the other objective 

functions constrained by the obtained objective function values. The additional 

constraints that result from this method are known as ε-constraints (ε	 ∈ E). This is 

shown for a generic bi-objective optimization problem in (2). 

min
𝐱,			𝐲

	 f&(𝐱, 𝐲) (2) 

s. t. f'(𝐱, 𝐲) ≤ ε 

 𝐠(𝐱, 𝐲) = 0 

𝐡(𝐱, 𝐲) ≤ 	0 

𝐱	 ∈ 𝐗	 ⊆ Â) 

𝐲 ∈ 𝐘	{0,1}* 

 

It is noted that correct application of the epsilon-constrained method results in a set 

of solutions called a Pareto front an example of which is shown in Figure 6. The 

solutions have the desirable characteristic of being nondominated, which means 

that selecting a different solution with a better value of one objective function 

results in a worse value of other objective function(s). In other words the solution 

to the transformed multi-objective problem is a set of optimal decision vectors that 

are true alternatives. The decision maker can then select from the solutions by 

trading off the alternatives qualitatively based on their desired criteria. 
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Figure 6: Pareto front of solutions to a multi-objective optimization problem 

 

 

 

 

2.6. Generalized Model  

Optimal prescriptive maintenance is consistent with the holistic paradigm and is at 

the nexus of system effectiveness, process safety, maintenance, machine learning, 

and mathematical optimization. These aspects can be combined into a generalized 

model with system effectiveness as an objective, process safety as an objective and 

constraints, as well as maintenance and production as constraints. Machine learning 

helps with quantifying fault and failure probability and mathematical optimization 

helps with obtaining decisions. This chapter concludes with the generalized model 

shown in Table 7. 
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Table 7: Safety-aware sustainable maintenance and production model elements 

Facet Elements 
Objectives system effectiveness 

system resilience 
sustainability 
 

Process Model 
 

mass balances 
heat balances 
reaction equilibrium relations 
utility balances 
 
process specifications 
product quality specifications 
demand constraints 
supply constraints 
storage and inventory constraints 
 
sequence constraints 
cycle time constraints 
logical constraints 
startup and shutdown constraints 
 

Maintenance Model 
 

concurrent maintenance constraints 
regulatory maintenance constraints 
inspection constraints 
cleaning time considerations 
repair time considerations 
equipment age constraints 
scheduled downtime constraints 
 

Safety Model 
 

probability quantification 
consequence quantification 
risk model structure 
 

Sustainability Model 
 

emissions model 
energy use 
products biodegradability considerations  
 

 

  



 37 

3. LITERATURE REVIEW 

3.1. Overview and Meta-Analysis 

This section contains a summary of research related to data-driven maintenance 

planning, scheduling, and control. It begins with meta-analysis, and then continues 

with an indicative exposition of selected research efforts. These research efforts are 

categorized into the following research areas: (1) data-driven modeling, which 

focuses on the use of surrogate models for fault and failure prediction; (2) 

maintenance optimization, which spans optimal planning and scheduling; (3) 

process control, with emphasis on explicit model predictive control; and (4) process 

safety quantification, focusing on dynamic quantitative risk assessment. 

Meta-analysis was performed using Web of Science on related topics in the 

literature. As reflected in Figure 7, publications related to optimization and 

involving the use of grey-box, surrogate, or data-driven models have seen a 

significant increase over time. This trend has been accompanied by an  exponential 

explosion of interest in machine learning in recent years shown in Figure 8. 

Machine learning can be seen to span several research areas and has emerged to 

become a multinational phenomenon as evidenced in Figure 9 and Figure 10. 

Interestingly as seen in Figure 11 and Figure 12, predictive maintenance involving 

machine learning continues to grow exponentially and is poised to overtake the 

preceding saturating research area of preventive maintenance. The meta-analysis 

shows that research into maintenance involving data-driven models and machine 

learning is of worthwhile interest.  
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Figure 7: Data-driven modeling research publications over time 

 

 

Figure 8: Machine learning research publications over time  
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Figure 9: Machine learning research areas 

 

 

 

 

Figure 10: Machine learning research done in various countries and regions 
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Figure 11: Predictive maintenance research publications over time 

 

 

 

Figure 12: Preventive maintenance research publications over time 
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3.2. Data-Driven Modeling 

Decision-making models for the planning, scheduling and control of maintenance 

can involve a number of different components which include: resource allocation, 

logical constraints, and cost quantification. However one component that is 

prevalent in all maintenance models to varying extents is failure modeling. 

Accurate modeling of failure phenomena is challenging due to a high degree of 

intrinsic complexity, variability, and interaction. Nevertheless, two main 

approaches have emerged: (1) physics-based modeling, and (2) data-driven 

modeling. Physics-based modeling involves the use of first-principles constitutive 

equations to capture the dynamic behavior of material, energy, pressure, stress, and 

momentum within failure-prone systems. While one can formulate physics-based 

models for failure in principle and obtain accurate results using methods such as 

finite element analysis and computational fluid dynamics, in practice their 

implementation suffers from intractability. This stems from solving possibly stiff 

systems of differential-algebraic equations over fine grids leading to a large amount 

of computational time being required. Data-driven modeling on the other hand can 

obtain accurate results in less computational time and involves the use of data to 

construct surrogate models of the failure phenomena. Table 8 summarizes the 

related literature [9, 21, 27-127].  
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Table 8: Detailed indicative summary of data-driven failure modeling research 

Inputs condition data: vibration, acoustic, current, voltage, torque, power,  
displacement, temperature, thickness, chemical composition 
 
maintenance data: errors, failure and maintenance times 
 
process data: overload times , pressure fluctuations, flowrates, fuel-air-
ratio, pumped volume, speed, concentrations, fuel consumption 
 
product data: quality, thickness 
 
environmental data: wind speed, humidity, air temperature, holidays 
  

Methods classification: logistic regression, naïve bayes, decision tree, random 
forest, support vector machine, one-class classification, neural 
networks 
 
regression: linear regression, auto regressive integrated moving 
average, Markov-chain Monte Carlo, gaussian process regression, 
decision tree, random forest, neural networks, self-organizing maps 
 
dimensionality reduction : principal components analysis 
 
clustering: k-means, k-nearest neighbors 
 
miscellaneous: physics-based extended Kalman filter, dynamic time 
warping, Bayesian networks 
  

Outputs discrete: failure occurrence, failure type, failure cause 
 
continuous: failure time, remaining useful life, failure probability, 
future condition,  degradation rate 
  

Fields extractive: oil & gas, mining 
 
manufacturing: car, steel, semiconductors, chemicals 
 
power: wind, nuclear, transmission 
 
transportation: aviation, trucking 
 
miscellaneous: building, agriculture  
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The majority of research efforts have involved classification using individual 

models to determine whether or not failure would occur in a given time period. In 

other words, the output of the prediction is discrete. Prytz and coworkers [89] used 

vehicle air compressor operational data to determine whether a failure would occur 

before the next scheduled service visit. They performed feature selection using a 

beam search wrapper method as well as a Kolmogorov-Smirnov filter method, 

balancing using Synthetic Minority Over-sampling Technique (SMOTE), and 

classification using a random forest algorithm with an average accuracy of 

approximately  68%. They observed that automated feature selection yielded better 

results than feature selection by human experts. Zeng and coworkers [123] used 

support vector machine classification with simultaneous feature selection involving 

hyperparameter optimization using fuzzy adaptive particle swarm optimization to 

determine whether or not to do maintenance. They leveraged a large variety of 

rotating car manufacturing machinery data such as overload times, date of last 

maintenance, vibration, humidity and showed that support vector machine 

classification with an accuracy of 85% had a higher performance than logistic 

regression with an accuracy of 65%. Classification methods are not restricted to the 

manufacturing industry and for example Robles-Velasco and coworkers [94] 

demonstrated an application of logistic regression and support vector machine 

classification to a pipe network and predicted breakage in a year with a 75-80% 

accuracy and 73-87% recall. 
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Other efforts have involved regression to predict a continuous output. This has 

typically been done via the creation of data-driven parametric models such as linear 

regression models. An example of a parametric regression model is the Weibull 

model used in preventive maintenance which has been used to develop a two-

parameter model of the failure probability distribution of equipment from time-to-

failure data. Gebraeel and coworkers [50] used regression to determine the 

parameters of an exponential degradation signal model from vibration data to model 

the remaining useful life distribution of a bearing. Non-traditional regression 

models such as support vector regression in which the model structure and 

parameters are expressed more terms of data points also exist. Hong and coworkers 

[56] employ Gaussian process regression (GPR) and wavelet neural network 

models on bearing vibration data. They performed feature extraction to obtain the 

signal kurtosis as well as crest factor and select root mean squared (RMS) as the 

degradation indicator to predict. They showed that the Gaussian process regression 

model had a higher accuracy than the wavelet neural network model, and that both 

models had an error of 0.1% - 6.3% on their system. 

Dimensionality reduction techniques have been employed extensively to perform 

fault detection, however for predictive maintenance these techniques have mainly 

been used as a feature extraction as well as feature selection pre-processing steps 

prior to using other methods for model creation. Baptista and coworkers [33] used 

principal components analysis as an intermediate step to generate new features for 

forecasting the time to fault using a variety of regression methods (support vector 

regression, random forest, generalized linear regression, neural networks) and 
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unsupervised learning (k-nearest neighbors). Sun and coworkers [108] on the other 

hand used analysis of the principal components for selection of rolling element 

bearing vibration signal features to input into support vector machine regression. 

They then optimized the support vector machine hyperparameters with particle 

swarm optimization and obtained a model that had a 5% error on testing data. 

Unsupervised learning techniques such as clustering have been employed for direct 

fault classification, however more often than not, they have been used for multi-

class fault type classification to partition the data such that models can be built for 

each cluster. This has the advantage of improving model accuracy because models 

are customized to a narrower data distribution. Pinto and coworkers [87] used k-

nearest neighbors and other methods for direct fault classification to determine 

which robots would break in a manufacturing context. Of interest is their use of 

specific load data such as the number of times robot arm rotated more than 200 

degrees which gave an indication of overloading and extra stresses that could lead 

to enhanced degradation and premature failure. The results of their study were that 

the k-nearest neighbors had an accuracy of 98%, a precision of 98%, and a recall 

of 98%. Yang and coworkers [120] built clusters corresponding to different faults 

using ambient air and engine exhaust gas temperature via k-means clustering. They 

then constructed a different support vector machine regression model for each 

cluster to estimate the time to failure. This research was one example of different 

data-driven modeling paradigms being combined and in this case involved 

unsupervised learning and supervised learning to improve accuracy of future failure 

prediction.  
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Data-driven methods dominate the literature but a few but significant research 

efforts into the use of first-principles physics-based models exist. One such effort 

was carried out by Engeler and coworkers [47] who plugged measurements into 

first-principles equations to simulate condition variables of interest. Specifically, 

they performed parameter estimation by feeding online measurements of the 

current, torque, and position of a rotating manufacturing machine tool with a motor 

to determine the condition indicator of friction. This condition indicator was then 

used to label the equipment as being in a normal or degraded state based on whether 

was within exponentially weighted moving average (EWMA) control limits. 

However in practice such first-principles methods often requires the use of reduced 

order models such as the extended Kalman filter (EKF) employed by Wang and 

coworkers [121]. They used a state-space observer to determine whether or not to 

repair fuselage panels based on aircraft fuselage geometry measurements. They 

showed that the condition-based method was cheaper than scheduled or threshold-

based maintenance. 

Recently, ensemble methods have emerged as a way to improve the accuracy of 

predictions. A distinction is made here between individual models, which is used 

to denote standalone data-driven models, and ensemble models, which is used to 

denote a system of individual models. The underlying principle of ensemble models 

is to generate a prediction based upon some form of consensus. In other words, 

input data is fed to each individual model in the group, each of the individual 

models returns a prediction, and then some decision logic is employed to aggregate 

the individual predictions into a group prediction. In the context of binary 
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classification, ensemble classification can take the form of simple majority voting 

in which each classifier is given one vote and the output of the ensemble classifier 

is the class with the most number of votes, or weighted majority voting in which 

each vote is weighted more or less according to some criteria. In the case of 

regression, the majority vote can be thought of as a simple or weighted arithmetic 

or geometric average of each of the individual regression model predictions. Nozari 

and coworkers [80] used an ensemble of classifiers consisting of random forest, 

support vector machine, partial-least squares, and naïve Bayes to determine the 

existence a fault on a simulated spacecraft. They observed that the ensemble of 

classifiers outperformed the individual classifiers. Pashazadeh and coworkers [85] 

reported an ensemble accuracy of 97% for their wind turbine application and 

employed an ensemble consisting of neural network, radial basis function, decision 

tree, and k-nearest neighbors classifiers. Gutschi and coworkers [53] extended the 

ensemble approach to construct multiple ensemble random forest classifiers that 

were each based on different sample horizons. They used this approach to predict 

the failure of milling machines with a prediction horizon of 168 hours with an 

average precision of up to 88%. 

These data-driven models are then used to provide explicit prediction via 

parameters, or implicit predictions via equations in maintenance optimization 

models. 
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3.3. Maintenance Optimization 

Maintenance optimization involves the development of models that assist with 

decision-making related to how to carry out maintenance activities on a set of assets 

subject to time and resource constraints. This decision-making is typically done in 

two overlapping but distinguishable approaches: (1) maintenance planning, in 

which time horizons span multiple months or years and decisions often relate to 

capacity, and (2) maintenance scheduling in which time horizons span multiple 

hours or weeks and decisions often relate to task allocation. Maintenance 

optimization methods seek to determine the sequence of maintenance actions that 

best minimizes the overall cost, maximizes the overall availability, and maximizes 

the overall effectiveness of performing maintenance. There are a variety of ways in 

which the optimization can be conceptualized and this has given rise to a large 

amount of research over the past three decades [2, 5-7, 128-225] spanning various 

aspects mapped out in Table 9. 

Generally speaking, maintenance optimization can be further categorized along 

four major axes: (1) deterministic vs stochastic, in which approaches vary 

depending on the extent to which uncertainty in parameters is accounted for; (2) 

single objective vs multi-objective optimization, in which approaches consider 

either one objective function or consider tradeoffs; (3) mathematical vs 

metaheuristic optimization, in which approaches differ in rigor, optimality gap, and 

guarantee of optimality; and (4) perfect vs imperfect renewal, in which approaches 

differ in the extent to which maintenance reduces the effective age of equipment. 

Selected research in each of these axes is subsequently elucidated. 
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Table 9: Detailed indicative summary of maintenance optimization research 

Planning objective functions: long-term overall cost, availability, system 
effectiveness 
 
decision variables: manpower allocation, test intervals, maintenance 
cycles, inventory, maintenance type, maintenance policy, availability 
thresholds 
 
  

Scheduling objective functions: schedule cost, availability, system effectiveness, 
job tardiness,  
 
decision variables: manpower allocation, skill-type allocation, test 
intervals, maintenance cycles, task sequences, production rates, 
throughputs 
  

Common 
Methods 

age renewal: as-good-as-new, imperfect 
 
stochastic optimization: deterministic, chance-constrained, stochastic 
programming  
 
mathematical formulation: mixed-integer programming, mixed-integer 
linear programming, mixed-integer nonlinear programming, state-task 
network, Markov chain, fault tree, reverse fault tree 
 
metaheuristic optimization: genetic algorithm, particle swarm 
optimization, simulated annealing, reinforcement learning 
 
multi-objective optimization: none, lexicographic goal programming, 
epsilon-constrained 
 

Fields energy: wind, oil and gas 
 
manufacturing: job shop, batch, car, subtractive, semiconductor, 
chemicals, refining, air separation 
 
transportation: naval, rail, power 
 
miscellaneous: generic, buildings, farming, cloud computing 
 

 

Deterministic maintenance optimization is seen to dominate the research space with 

fairly limited work done on stochastic maintenance optimization. As such two 
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seminal works in stochastic maintenance optimization are provided and the 

subsequent other works described all involve deterministic optimization. 

Dedopoulos and Shah [145] used stochastic programming and mixed-integer linear 

programming to determine  whether or not to perform maintenance on multipurpose 

equipment over the horizon. The uncertainty they considered at each time stage was 

equipment failure discretized into two scenarios: failure, or no failure. They 

formulated their system in state-task network representation and solved it via a 

multistage approach over a scheduling horizon of 1 week and a planning horizon 

of 5 years to obtain an optimal preventive maintenance plan that was periodic in 

nature. Duffuaa and Al-Sultan [149] also introduced a stochastic component to their 

maintenance model formulation by accounting for uncertainty in a task being 

required via consideration of the possibility of a job arriving with a certain 

probability. They used mixed-integer linear programming to determine the best 

way to allocate differently-skilled technicians to tasks and how much reserve 

manpower to keep on hand. They compared the stochastic maintenance 

optimization approach to the deterministic maintenance optimization approach and 

showed that value of the stochastic solution approach was a 10.6% reduction in 

maintenance cost. 

The two seminal works also represent single-objective problems, however these 

approaches can be extended to multi-objective problems. Marseguerra and 

coworkers [174] simultaneously optimized system availability and variability of 

system availability using a genetic algorithm to determine an inspection interval 

sequence. Moghaddam and coworkers [179] used a data-driven Weibull model to 
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capture system reliability and assist in determining an optimal preventive 

maintenance plan. They used a simulated annealing algorithm to determine the 

times at which to maintain and replace different components so as to 

simultaneously optimize cost and reliability. 

Maintenance optimization has continued in recent years and has extended previous 

work to maintenance optimization integrated with design and/or production. Ye and 

coworkers [213] developed a mixed-integer nonlinear programming model and 

algorithm to solve a continuous-time Markov chain to decide which parallel units 

to install and their inspection intervals. This work represented simultaneous optimal 

system design and maintenance planning. Pan and coworkers [183] used 

mathematical programming to do integrated scheduling of production and 

maintenance so as to minimize the maximum job tardiness. They incorporated a 

condition-based data-driven multivariate linear regression degradation model to 

guide the optimization towards decisions that prevented degradation from 

exceeding user-specified degradation thresholds. Kopanos and coworkers [160] 

used a power consumption regression function in a resource-constrained mixed-

integer linear programming scheduling model to minimize the cost running the 

compressors of an air separation plant. They considered operational decisions such 

as start-up, shutdown, and header assignment as well as maintenance decisions. 

They showed that using a flexible maintenance policy on their system with 

optimized non-periodic maintenance times led to a lower maintenance cost than a 

rigid maintenance policy with fixed maintenance times. Mathematical optimization 

methods have the benefits of being systematic and having a theoretically proven 
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guarantee of optimality, however their use for extended multi-period problems for 

large complex systems can be challenging with large amounts of computational 

power potentially required to combat combinatorial explosion induced by all the 

possible combinations of binary variables despite algorithmic advances. 

Metaheuristic optimization methods have shown promise in obtaining good 

feasible solutions to complex maintenance problems despite the absence of a 

theoretical guarantee of optimality. Amelian and coworkers [132] used a genetic 

algorithm in tandem with a particle swarm optimization algorithm to optimize the 

job sequence, production rate, and preventive maintenance time of a single-

machine system. Wang and coworkers [205] leveraged recent advances in machine 

learning to obtain the optimized maintenance policy for a single generic machine 

using a semi-Markov model recast as a Q-P learning problem and solved it with a 

reinforcement learning algorithm. Yang and coworkers [211] used a genetic 

algorithm to obtain an optimized maintenance schedule for a manufacturing system 

of ten machines. They also compared corrective, scheduled, condition-based, and 

predictive maintenance approaches and showed that predictive maintenance had the 

highest net value. It can be noted that many metaheuristic methods are 

unconstrained optimization methods and as such do not have constraints naturally 

built into them. However maintenance and production optimization involves 

considerations relating to resource capacity, unit availability, mass balances, safety, 

and logical maintenance constraints. As such, the use of mathematical optimization 

methods lends itself more readily and naturally to planning and scheduling 
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maintenance in higher fidelity through the use of equality and inequality constraints 

to capture these various maintenance considerations. 

One such consideration is the maintenance imperfection, or the idea that the action 

of repairing equipment only restores equipment partially. The vast majority of 

literature including many of the works mentioned here assume maintenance to 

perfectly restore equipment to an as-good-as-new condition so as to help simplify 

the mathematical formulation and improve computational tractability. Sachdeva 

and coworkers’ work [190] for instance leveraged the as-good-as-new assumption 

in using a genetic algorithm for multi-objective nonlinear programming to 

determine optimized preventive maintenance intervals. Their results showed that 

optimization resulted in a 1.3% increase in steady-state system availability, a 31% 

decrease in average maintenance time, and a 56% decrease in maintenance cost. 

Sanchez and coworkers [191] on the other hand considered maintenance as being 

imperfect. They compared two imperfect maintenance models: proportional age 

setback in which maintenance can reduce the entire age of the equipment by a 

fraction, and proportional age reduction in which maintenance can reduce the age 

the equipment gained only since the last maintenance by a fraction. They fed both 

models into a genetic algorithm to optimize test and maintenance intervals and 

showed that the proportional age setback model was slightly more conservative in 

describing unavailability but resulted in a lower maintenance cost than the 

proportional age reduction model. It is noted that this highlights the possibility of 

epistemic uncertainty in traditional maintenance models. 
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Parametric uncertainty in terms of the extent to which maintenance reduces the 

effective age of equipment can also observed. There is also significant amount of 

uncertainty in the parameters used in surrogate models in preventive maintenance 

research. This uncertainty stems from the data and methods used to construct these 

models. In practice the data used is solely time data, and is typically collected for a 

fleet of assets and/or for a single piece of equipment over a long time horizon. The 

challenge is that different assets in the fleet, and indeed a single piece of equipment 

over a long enough time, can experience different service conditions. This in effect 

ensemble-averages and time-averages the failure behavior of equipment. Maximum 

likelihood estimation is then done to estimate the parameters of the preventive 

maintenance surrogate models and these parameters are then stored in databases to 

aid decision-making. However it should be noted that these databases contain 

generic data from the viewpoint of application, and that they often do not take the 

state and context of individual equipment into account. This can result in 

practitioners often using this data in different services than originally measured. 

This can additionally result in assuming worst-case scenarios for numbers and 

excessive and costly conservatism. In other words, the parameters underlying the 

failure behavior of equipment are themselves time-dependent and condition-

dependent distributions but are often treated as single-point deterministic values. 

This further motivates the use of data-driven models to enable accurate and 

customized failure and maintenance modeling with enough of the right data. 
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3.4. Process Control 

Failure is an inherently dynamic process and process control represents another 

layer of protection for system resilience. Several related primarily model-based 

approaches existing in the literature [226-294] can be mapped out in Table 10. 

One key underlying consideration is when to solve the control problem. This can 

be done in two ways: (1) online, via model predictive control; or (2) offline via 

explicit model predictive control. Model predictive control aims to optimize control 

actions in real time by using an embedded dynamical system model to predict the 

desired future evolution of the system at each time step. However model predictive 

control for large scale or nonlinear systems can suffer from computational 

challenges leading to slow latency [295]. Explicit model predictive control seeks to 

avoid this challenge by shifting the computational burden ahead of time instead. 

Multiparametric explicit model predictive control has emerged as a key research 

area [270] and offers a number of advantages such as: (1) the optimization problem 

is solved offline once; (2) obtaining of optimal control actions is reduced to rapid 

map-reading and function evaluation; (3) a priori possession of the full map of 

control solutions imparts additional knowledge for decision-making; and (4) having 

an explicit control solution enables integration with other levels of optimization 

without having to solve an embedded dynamic optimization problem. 
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Table 10: Detailed indicative summary of related process control research 

Scope objective functions: setpoint tracking, extent of input changes, 
constraint prioritization, disturbance rejection, average production rate 
 
decision variable trajectories: rotational speed, drug infusion rate, 
cooling, power,   
 
single-unit systems: reactors, batch bioreactors, tanks, distillation 
columns, air separation units, heat exchangers, simulated human 
patients, fuel cells, turbine 
 
multi-unit systems: coupled reactors, heat and power networks, solar 
fields, wind farm,  
 
multi-level integration: none, with scheduling, with design 
  

Methods model reduction: Kalman-type observer, system identification, 
autoregressive with extra input, data-driven regression, neural networks 
 
state estimation: model predictive control for moving horizon 
estimation, support vector machine, random forest, auto regressive 
integrated moving average, ensemble classification, ensemble 
regression 
 
solution: mixed integer linear programming, graph-based algorithms, 
reinforcement learning 
  

Variants types: proportional-integral-derivative, state-feedback, model 
predictive control, robust model predictive control, economic model 
predictive control, multiparametric model predictive control, data-
driven regression, fault-tolerant control 

Fields energy: cogeneration, refining, wind, hydrogen, fuel cells 
 
manufacturing: chemical, pharmaceuticals, medicine 
 
miscellaneous: building ventilation 
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Other related considerations are subsequently elucidated: (1) model reduction, (2) 

state estimation, (3) fault-tolerant control; and (4) multi-level optimization. 

The high-fidelity differential and algebraic equations used to accurately describe 

dynamical systems are often intractable for control applications which motivates of 

model reduction to obtain surrogate models. Georgiadis and coworkers [247] 

modeled a metal-hydride tank with a spiral heat exchanger from first principles and 

then used system identification to obtain an autoregressive with extra input 

surrogate process dynamical model. They then used the PARametric Optimisation 

and Control (PAROC) framework to obtain an optimal cooling flowrate profile to 

achieve high storage efficiency within a relatively  short time. Katz and coworkers 

[252] explored the non-traditional use of machine learning for surrogate reduce-

order model development in process control. They embedded a neural network with 

a rectified linear unit activation function within the control formulation by 

reformulation using mixed-integer linear programming and were able to control a 

bioreactor explicitly to maximize biomass concentration. Another interesting effort 

from the perspective of integrating a surrogate model for safety into process control 

was carried out by Albalawi and coworkers [226]. They used a safeness index based 

on normalized weighted magnitude of deviations from concentration and 

temperature setpoints, and used it to maximize average production rate. 

State estimation methods represent an alternative to embedding the entire high 

fidelity model into the control formulation. While state estimators can themselves 

be embedded, state estimation is used here to denote standalone models that act as 

soft-sensors to models selected aspects of the high fidelity model behavior and 
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thereby provide measurements of system outputs. Nașcu and Pistikopoulos [264] 

demonstrated an approach to solving the traditional state estimation problem by 

using multiparametric programming for moving horizon estimation. They 

estimated the anesthesia concentration within a simulated patient  and optimized 

the trajectory of pumped anesthesia flowrate control actions. It was shown that the 

multiparametric moving horizon approach had better performance than Kalman 

estimators or traditional moving horizon estimation. Onel and coworkers [267] 

used time-specific random forest algorithms to estimate the magnitude of sensor 

and actuator faults after performing simultaneous fault detection and diagnosis 

using support vector machine classification. They then fed the estimates of the fault 

states into a multiparametric model predictive controller to manipulate water 

flowrate so as to control the temperature of a penicillin batch reactor. 

It is noted that although data-driven methods are often used for model reduction 

and state estimation in conjugation with model predictive control, recent efforts 

have shown promise in using them to more deeply complement model predictive 

control. Reinforcement learning for instance is emerging as a way to overcome the 

computational challenges associated with solving online model predictive control 

models. Supervised learning has additionally been demonstrated to be able to 

approximate an entire model predictive controller as demonstrated by Shokry and 

coworkers [286]. They started by developing sets of input-output open loop data on 

states and their optimal control actions. They then created machine learning 

regression models to obtain explicit control laws. The models had a root mean 

squared error of less than 4%, took 77-99% less time. 
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One interface between maintenance and process control can be found in the field 

of fault-tolerant control. The objective of fault-tolerant control is to obtain 

optimized trajectories of control actions that are able to reject process disturbances 

induced by faults while maintaining system performance and closed loop stability. 

Bernardi and coworkers [232] considered actuator faults as inducing a process 

disturbance and  use model predictive control for fault-tolerant control. They 

developed a state-space model for a heat exchanger and for a CSTR via the 

parameterized Jacobian linearized technique and estimated fault magnitude using a 

reduced-order observer. They observed for their application that in the presence of 

faults, non-fault-tolerant model predictive control was not able to achieve desired 

setpoint tracking in contrast with fault-tolerant model predictive control. Kettunen 

and coworkers [254] explored three methods of introducing sensor fault tolerance 

into control: (1) replacing the measurement entirely, (2) correcting the 

measurement slightly, and (3) correcting the reference trajectory. They did fault 

detection using principal components analysis, partial least squares, and subspace 

identification together with an alarm policy. They then compared the use of 

proportional-integral control and model predictive control for a heavy oil 

fractionator process and showed that model predictive control had a better 

performance than model predictive control. Chillin and coworkers [239] 

investigated the control of a benzene catalytic alkylation process with the aid of 

fault magnitude estimation using a parameter estimation approach. They observed 

that fault-tolerant control led to fewer wasted control actions than with non-fault-

tolerant control and was cheaper. 
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Another pertinent aspect of process control in this space is its demonstrated 

potential for integration with other levels of optimization such as scheduling and 

planning. Baldea and Harjunkoski [230] described the integrated scheduling and 

control problem and demonstrated it with a multi-product CSTR scheduling 

example. They also introduced the concepts of time-scale bridging, and 

distinguished between sequential and simultaneous approaches to tackling the 

integrated scheduling and control problem. This was followed by work on reducing 

computational time through the integration of scheduling and explicit 

multiparametric model predictive control by Burnak and coworkers [237]. They 

used a high fidelity multi-product CSTR model together with the PAROC 

framework to obtain a piecewise affine function for the optimal control actions 

depicted as a control map. They then leveraged a surrogate time-scale bridging 

model to incorporate the optimal control actions into an multiparametric mixed 

integer quadratic programming scheduling model for two CSTR's in parallel. In 

effect their work can be conceptualized as follows: (1) a control-aware scheduling 

model providing optimal setpoints to a scheduling-aware control model, and (2) 

that scheduling-aware control model determining the optimal way to transition 

between scheduled continuous setpoints. Process control can also be integrated 

with design as shown by Diangelakis and coworkers [241] who obtained the 

optimal designs and control schemes for a tank, CSTR, distillation column, as well 

as a combined heat and power network. They demonstrated a proof of concept for 

solving challenging integrated design-control problems with this approach and 

simultaneously obtained closed loop stability and cost optimal designs.  
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3.5. Process Safety Quantification 

Maintenance directly affects the level of safety present in productive processes. 

This is due to the fact that when it is absent, the levels of degradation of process 

equipment are allowed to increase unchecked leading to failures of process units. 

These failures of process units can engender domino effects of events that can lead 

to catastrophic consequences. Of note is that the way that the process is operated 

can also help avoid process incidents. As such there has been great interest in the 

literature in developing numerical methods to quantify the level of safety so as to 

increase it by changing process and maintenance variables [12, 295-339]. Selected 

approaches have been provided in Table 11 in lieu of a detailed exposition. 

The currently accepted gold standard in the process safety community is the use of 

Bayesian networks for process safety quantification. Adedigba and coworkers 

[297] investigated the dynamic failure analysis of a crude oil distillation unit by 

combining a fault tree for barriers and event tree for consequences into a Bayesian 

network to predict system probability of failure. It is however noted that use of 

Bayesian networks in optimization is challenging due to their mathematical 

complexity leading to slow computational times. This motivates the development 

of process safety metrics simple enough to be used for maintenance optimization 

with mathematically complex dynamical system aspects described by data-driven 

models. 

This chapter covered a variety of different aspects. The identified research gaps 

were provided in the introduction. This concludes the literature review. 
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Table 11: Overview of dynamic process safety quantification research  

Reference Approach 

[226] Safeness Index (ASI) 

[299] Dynamic Bayesian Network 

[301] Bayesian Network 

[302] Risk index (CRI) 

[303] Safety Resilience Index (SRI) 

[304] Dynamic Fault Tree 

[306] Stochastic Hybrid Fault Tree Automaton (SHyFTA) 

[307] System dynamics causal graph and HAZOP 

[340] Functional Resonance Analysis Method (FRAM) 

[311] Process Resilience Analysis Framework (PRAF) 

[312] Fuzzy dynamic fault tree 

[313] Event tree analysis with Bayesian probability updating 

[314] Dynamic Bayesian Network 

[316] Quantitative Bow-tie Analysis 

[317] Integrated inherent safety index (I2SI) 

[318] Safety Weighted Hazard Index (SWeHI) 

[323] PROCedure for the Evaluation of Operational Safety 

[324] Real-time probabilistic risk analysis 

[325] Dynamic Bayesian Network 

[328] Dynamic procedure for atypical scenarios identification  

[330] Quantitative Index of Inherently Safer Design (QI2SD) 

[331] Event Sequence Diagram 

[195] Flexibility-reliability-criticality index (FRC) 

[332] Domino Hazard Index (DHI) 

[336] Dynamic operational risk assessment (DORA) 

[334] Hierarchical Bayesian Approach (HBA) 

 

  



 63 

4. DATA-DRIVEN PREVENTIVE MAINTENANCE 

PLANNING 

4.1. Summary 

Maintenance is an essential part of mechanical integrity programs and aims to 

prevent the occurrence of process safety incidents and costly unplanned shutdowns. 

Maintenance can increase the availability of equipment in productive systems and 

effective preventive maintenance programs enable maintenance activities to be 

planned proactively. However, maintenance planning is subject to resource scarcity 

and is rendered nontrivial due to system complexity, reliability model nonlinearity, 

and parametric uncertainty. Multi-objective stochastic mixed-integer nonlinear 

programming is well suited to addressing these challenges and is adopted here to 

optimize when to perform maintenance on different pieces of equipment.  

A model is formulated and optimized accounting for: the effect of imperfect repair 

using an effective age model, equipment failure behavior using a data-driven 

Weibull reliability model, endogenous uncertainty in reliability model parameters, 

and the simultaneous need to satisfy the competing objectives of cost minimization 

and reliability maximization. The results of the research consist of optimal 

maintenance plans, plots of resultant equipment and system reliability over time, 

and a frontier of optimal solutions from which the decision maker can select. The 

approach adopted here is illustrated with two case studies and can be extended to 

improving the overall availability, effectiveness, and resilience of a variety of 

productive systems. 
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4.2. Introduction 

Maintenance refers to activities designed to improve system resilience and system 

availability and avoid the failure of system components. Unplanned system 

shutdowns and slowdowns due to failed system components can be costly and result 

in significant losses in productive capacity due to downtime. Crucially however, 

the reduction of system resilience due to ineffective maintenance can lead to 

catastrophic process safety incidents such as the Texas City refinery incident in 

which there were 15 fatalities, 180 injuries, and over $1.5 billion in financial losses 

[341]. The allocation of finite resources in complex systems to improve system 

resilience often exhibits diminishing marginal returns and is further complicated by 

the presence of parametric uncertainty. This research contributes to meeting this 

challenge and presents a systematic approach to address the multi-objective and 

stochastic nature of maintenance planning using optimization. 

Maintenance encapsulates a plurality of technical and socio-organizational 

concepts. As used here, maintenance activities refer to proximate acts undertaken 

to improve the availability of system components and thereby increase the 

availability of ageing productive systems. These activities may include monitoring, 

inspection, cleaning, lubrication, testing, repair, or replacement depending on 

requirements. Maintenance can help to improve mechanical integrity, aid in 

preventing process safety incidents, and avoid costly downtime due to unplanned 

shutdowns and slowdowns. Maintenance involves optimal resource allocation and 

the decisions of when, where and how to do maintenance are key. 
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Commonly adopted maintenance policies in industry include: (i) basing decisions 

on mean time to failure (MTTF) recommendations from original equipment 

manufacturers (OEM), (ii) scheduling maintenance at fixed intervals based on 

internal company data, (iii) corrective maintenance in which selected equipment 

are run to failure, (iv) condition-based monitoring and predictive maintenance, (v) 

risk-based inspection, and (vi) reliability-centered preventive maintenance.  

Selection of the appropriate maintenance policy is in part informed by data 

availability, company culture, and the level of expertise available to create and 

provide support for developed solutions. It is noted here that the time horizon over 

which maintenance decisions are made influences maintenance policy selection. 

Planning is used here to denote high-level decisions taken over months or years and 

is distinguished from scheduling in which decisions are taken over hours, days, and 

weeks.  

 

 

 

 

Figure 13: Generic maintenance plan  
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This research deals with optimal maintenance planning in which high-level discrete 

and continuous decisions are made in the absence of detailed information over 

relatively over long time horizons using a time discretization on the order of months 

or years. This is distinct from maintenance scheduling in which lower-level 

decisions are taken over shorter time scales on the order of weeks or days. A generic 

example of a maintenance plan is provided in Figure 13 in which different 

equipment are tested (T) and replaced (R) over a five-year planning horizon. 

Regardless of the maintenance policy selected, certain factors affect optimal 

resource allocation: 

1. Company resources are limited and need to be carefully allocated among 

operations; business improvement projects; and health, safety and 

environmental (HSE) projects. The portion of the budget allocated to 

maintenance is consequently finite and must be decided a priori. 

2. There are monetary costs associated with maintenance actions and 

increasing maintenance expenditure leads to diminishing marginal gains in 

reliability. In other words, the objectives of minimizing cost and 

maximizing reliability are conflicting and maintenance planning is multi-

objective in nature. 

3. Maintenance actions may be imperfect and do not necessarily restore 

equipment to either an ‘as good as new’ or an ‘as bad as old’ condition. 

4. The functions used to rigorously estimate equipment and system reliability 

are nonlinear and their parameters are not known with absolute certainty. 
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A selected subset of related literature was provided in the preceding chapter. The 

objective of this research is to extend the previous efforts in the area by 

simultaneously considering imperfect maintenance, nonlinear reliability modeling, 

stochastic optimization, and multi-objective optimization. To this end: (1) the 

Weibull distribution is used to more accurately and consistently model the 

component reliability; (2) maximum likelihood estimation is used to rigorously 

estimate the imperfect maintenance factor, the Weibull scale parameter, and the 

Weibull shape parameter; and (3) uncertainties in the parameter estimates are 

considered and addressed using stochastic programming. The resulting model is a 

constrained stochastic multi-period mixed-integer nonlinear programming 

(MINLP) model. The objectives considered here are cost minimization and 

reliability maximization. The key decision variables include: the expected number 

of repairs, the expected number of replacements, whether or not to do maintenance 

in a time interval, and the sequence of maintenance actions over the time horizon. 

The result of this research is a general framework for multi-objective stochastic 

preventive maintenance planning which can be used as a tool to determine plots of 

equipment and system reliability over time, the expected maintenance budget, the 

number of spare parts to keep in inventory, and a front of optimal maintenance 

plans corresponding to different system reliability thresholds. 
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4.3. Methodology 

The maintenance model used here is data-driven and as such the first step of the 

methodology is estimating the reliability model parameters and their uncertainties. 

This can be done by obtaining equipment failure data and doing maximum 

likelihood estimation (MLE), or by expert judgement. Here the reliability model 

parameters are treated as an known inputs. 

Following estimation of the reliability model parameters, the optimization model is 

formulated. The model is a multi-period multi-objective stochastic mixed-integer 

nonlinear mathematical programming model. This model is then optimized to 

obtain a maintenance plan. It is noted that McCormick relaxations and piece-wise 

linear approximations can be employed to help address nonlinearities. The model 

was implemented on two case studies. 

 

4.4. Results 

4.4.1. Case Study 1 

4.4.1.1. Description 

The system considered for the first case study consists of three identical centrifugal 

pumps in series shown in Figure 14. Case study parameters are shown in Table 12.   

An assumption is made in this case study that repair maintenance actions extend 

the life of equipment by directly increasing the nominal value of the Weibull scale 

parameter (τ+).as shown in Figure 15. 
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Table 12: Case Study 1 – Maintenance planning model parameters 

Parameter Symbol Value 

Equipment age lower bound, yr age, 0 

Equipment age upper bound, yr age- 5 

Time interval, yr t. 0.5 

Scale parameter scenarios, yr τ(ζ) 2.6, 3.0, 3.4 

Scale parameter upper bound, yr τ- 3.6 

Number of replacements upper bound n/0123/-  10 

Number of repairs upper bound n230142/-  10 

Normalized cost per repair C! 1 

Normalized cost per replacement c/0123/ 10 

System reliability thresholds R3X  0.9, 0.95, 0.99, 0.995, 0.999 

Imperfect maintenance factors α! 1, 0.1, 0 

Shape parameter β(i) 1.5, 1.5, 1.5 

 

 

 

 

 

 

Figure 14: Pump system 
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It is further taken that the scale parameter is uncertain and assumed that this 

uncertainty follows a triangular probability distribution discretized into three 

scenarios. The triangular probability distribution is characterized by a minimum 

(a), maximum (b), as well as a nominal value (c) and was selected due to the relative 

ease of soliciting the parameter values from industry maintenance experts. It can 

thus be seen that under these assumptions, a repair maintenance action that would 

shift the nominal scale parameter from 𝑐& to 𝑐'. This has the effect here of skewing 

the distribution and increasing the probability of realization of scenarios with a 

higher scale parameter value. It is noted that this represents endogenous 

uncertainty.  

The probability distribution of the scale parameter under the assumptions was 

computed for different numbers of repair actions and then regressed as shown in  

Figure 16. These models were then implemented in the model formulation. 

 

 

 

 

 

 
 

Figure 15: Case Study 1 - The modeled effect of repairs   
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Figure 16: Case Study 1 - The modeled effect of the number of repairs  

 

 

 

 

4.4.1.2. Model Formulation 

Equipment are indexed by i = 1, 2, … , I. Maintenance actions are indexed by k =

1, 2, … , K, where k& is used to denote the absence of a maintenance action, k' is 

used to denote repair, and k5 is used to denote replacement. Time intervals are 

indexed by t = 1	,2, … , T and scenarios by ζ	ϵ	Z. 

The decision variables used in the model are the Weibull scale parameter, τ, the 

effective age, age, the number replacements, n/0123/, the number of repairs, 

n230142/, and whether or not to perform a maintenance action in a time interval, m.  
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The first objective, is minimization of cost, J&. The cost considered here is a 

function of the maintenance actions, and is parameterized by the cost coefficients 

C! and c/0123/. The second objective is the implicit maximization of system 

reliability, R/6/. The multi-objective method used here is smilar to the ε-constraint 

method with predefined reliability thresholds, Rc(e) where e = 1,2, … , ξ. A 

logarithmic transformation has been used here on system reliability and the system 

reliability thresholds to reduce nonlinearity. It is noted as that the resultant 

constraint on system reliability is linear and convex. These objectives are optimized 

subject to scalar and vector equality and inequality constraints. 

min J& = 	eeeC!m(i, k, t)
7

8

9

!

:

4

+ 	eec/0123/m(i, k5, t)
7

8

:

4

 
 

(3) 

lnR/6/(tg ≥ lnRc(e) ∀	t	ϵ	T, e	ϵ	ξ (4) 

The execution of at most one type of maintenance action in each time interval is 

enforced by (5). The expected cumulative number of repairs and replacements 

performed over the time horizon respectively is determined by (6) and (7). 

em(i, k, t) ≤ 1
9

!

 ∀	iϵ	I, t	ϵ	T (5) 

n230142/(i, t) = 	em(i, k', t;)
8

8$
 ∀	iϵ	I, tϵ	T (6) 

n/0123/(i) = 	em(i, k5, t)
7

8

 ∀	iϵ	I (7) 

 



 73 

An effective age model is used to capture the effect of the different maintenance 

actions on equipment condition as shown in (8) and (9). This is done through a 

nonconvex bilinear-integer-continuous (BIC) term that introduces an imperfect 

maintenance factor, α! that scales the age increase. It can be seen that given a time 

discretization (t.), the increase in effective age is equivalent to the increase in 

actual age when there is either no maintenance or it is as-bad-as old (α! = 1). 

age(i, t) = [age(i, t − 1) + t.] −eBIC(i, k, t) 
9

!

 ∀	iϵ	I, 	t	ϵ	T (8) 

BIC(i, k, t) = m(i, k, t)(1	– α!)[age(i, t − 1) + t.] ∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (9) 

 

Constraint (9) is replaced by a set of constraints for tractability. 

m(i, k, t)age, ≤ BIC(i, k, t) ∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (10) 

BIC(i, k, t) ≤ m(i, k, t)age-							∀	iϵ	I, 	k	ϵ	K, t	ϵ	T ∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (11) 

[(1 − α!)(age(i, t) + t.)] − m1 − m(i, k, t)gage-

≤ BIC(i, k, t) 
∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (12) 

BIC(i, k, t) ≤ [(1 − α!)(age(i, t) + t.)]

− m1 − m(i, k, t)gage,	 
∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (13) 
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The scale parameter distribution is determined via (14) as previously described, and 

then used to calculate an effective scale parameter in (15). This then allows for the 

components and system reliability to be defined by (16) and (17) respectively. 

p(ζ, t) = f(n230142/(i, t)) ∀	iϵ	I, t	ϵ	T (14) 

τ<(i, t) = ep(ζ, t)τ(ζ)
=

>

 ∀	iϵ	I, t	ϵ	T, ζ	ϵ	Z (15) 

lnmR(i, t)g = 	 6
1

τ<(i)?(4)
= age(i, t)?(4) ∀	iϵ	I, t	ϵ	T (16) 

lnR/6/(tg =elnR(i, t)
:

4

 
∀	t	ϵ	T (17) 

 

The model formulation is completed by a set of constraints that bound the variables. 

age, ≤ age(i, t) ≤ age- ∀	iϵ	I, t	ϵ	T (18) 

0 ≤ τ<(i) ≤ τ- ∀	iϵ	I (19) 

n/0123/(i) ≤ n/0123/-  ∀	iϵ	I (20) 

n230142/(i) ≤ n230142/-  ∀	iϵ	I (21) 

m(i, k, t) = {0,1} ∀	iϵ	I, 	k	ϵ	K, t	ϵ	T (22) 

It is noted that formulated model represents a theoretical system. It can however be 

modified for use with series-parallel and other system configurations. 
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4.4.1.3. Maintenance Planning 

Two sets of preliminary optimization results are provided here. The results consist 

of maintenance plans showing the optimal sequence of repairs (I) and replacements 

(P), plots of the corresponding equipment and system reliability against time, and 

a sensitivity analysis in the form of a curve showing different maintenance plans.  

The first set of results corresponds to a maintenance policy in which a 

recommendation of a manufacturer to repair equipment once every three years is 

followed. The maintenance plan corresponding to this policy is shown in Table 13. 

It was observed that this policy rendered the model infeasible until the system 

reliability thresholds (J2) were relaxed. In less mathematical terms, this 

maintenance policy was inconsistent with the goal of maintaining system reliability 

above set thresholds over the entire time horizon. This is visualized in Figure 17, 

from which it can be observed that the equipment and system reliability profiles are 

below 90%, and by extension 99.5%, over the majority of the time horizon. 

The second set of results corresponds to maintenance performed according to the 

methodology presented in this paper. The maintenance plan corresponding to a 

system reliability threshold of 99.5% is presented in Table 14. The equipment and 

system reliability profiles are visualized in Figure 18 and system reliability is seen 

to be maintained above the set threshold over the entire time horizon. 
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Table 13: Maintenance plan based on a manufacturer recommendation 

 

 

 

 

 

 

 

 

 

 

Table 14: Maintenance plan based on present methodology 

 

  



 77 

 

Figure 17: Reliability plot based on a manufacturer recommendation 

 

 

 

 

 

 

Figure 18: Reliability plot based on the present methodology  
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The  results are dependent on the parameters used. The effect of changing the 

system reliability threshold is shown in Figure 19 in which each point corresponds 

to a different optimal maintenance plan and a trade-off between cost and reliability 

is observed.  

It is noted that the curvature of the plotted set of solutions is a characteristic of the 

reliability thresholds used. 

 

 

 

 

 

Figure 19:  Case Study 1 - Optimal maintenance plans  
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4.4.2. Case Study 2 

4.4.2.1. Description 

The system considered for the second case study consists of a complex series-

parallel arrangement of equipment used as part of an offshore cooling water system. 

The system is shown in Figure 20 and its corresponding parameters are provided in 

Table 15.  

The function of the system is to reliably provide cooling water for downstream 

units. This is done using ten components i	 ∈ I which consist of centrifugal pumps 

(i1, i2), check valves (i3, i4), isolation valves (i5, i6, i7, i9), an automated control 

valve (i8), and a manual control valve (i10). The components can be seen to belong 

to four subsets P1 = 	i1, i3, i5, P2 = 	i2, i4, i6, A = 	i7, i8, i9, and M = 	i10 that 

correspond to different subsystems. It is noted in passing that this system exhibits 

redundancy which is desirable from a reliability perspective. 

 

 

Figure 20: Case Study 2 - Offshore cooling water system 
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The focus of the second case study is on exploring the uncertainty of the imperfect 

maintenance factor. The imperfect maintenance factor is taken to be a given 

stochastic parameter that follows a discrete distribution with fixed realization 

probabilities. This corresponds to capturing uncertainty in the extent to which 

component degradation can be reversed. 

It is noted that the approach to maintenance modeling in the second case study 

differs markedly from the first case study. Here, maintenance actions are not 

assumed to affect the reliability model parameters. The directionality of the 

imperfect maintenance factor is also different in that that a value of one corresponds 

to restoration to an as-good-as -new condition. 

The maintenance planning horizon is three years with a time discretization of three 

months. The key maintenance actions considered here are repair and replacement. 

The absence of maintenance actions is an implicit additional action. The set of 

components that undergo repair is restricted to components i1, i2, i8, and i10 with 

the reliability of the other components taken as known time-varying parameters. 

This case study was selected to illustrate the power of the approach on a more 

complex system. The system exhibits: (1) nonlinearity, due to the Weibull 

reliability model being an exponential function, (2) non-convexity, due to the power 

term in its exponent, and (3) component interactions, which are present in the 

system reliability function which is characterized by a 4th order polynomial.  
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Table 15: Case Study 2 – Maintenance planning model parameters 

Parameter Symbol Value(s) 

Equipment age lower bound, yr age, 0 

Equipment age upper bound, yr age- 3 

Time interval, yr t. 0.25 

Imperfect maintenance factor 
for inspection α4,&,/ 0 

Imperfect maintenance factor 
for testing α4,',/ 0 

Imperfect maintenance factor 
for pump repair α4,5,/ [0.8, 0.9, 0.95] 

Imperfect maintenance factor 
for repair of other components α4,5,/ 0.9 

Imperfect maintenance factor 
for replacement α4,B,/ 1 

Imperfect maintenance factor 
for doing nothing α4,C,/ 0 

System reliability thresholds RcD [0.5, 0.6, 0.7, 0.8, 0.9] 

Maintenance cost, $ 𝑐! [50, 200, 1000, 1500, 0] 

Component procurement cost, $ ϕ4 
[2380, 2380, 249, 249, 309, 
309, 309, 1429, 309, 548] 

Scenario probabilities 𝑝E [0.3, 0.5, 0.2] 

Time interval duration, yr 𝛿 0.25 

Shape parameter β(i) [2.12, 2.12, 1.44, 1.44, 1.05, 
1.05, 1.05, 1.35, 1.05, 1.1] 

Scale parameter, yr γ(i) 
[1.14, 1.13, 349.32, 349.32, 
12.86, 12.86, i7 12.86, 11.8, 
12.86, 2.64] 
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4.4.2.2. Model Formulation 

The model formulation involves components i	 ∈ I, scenarios s	 ∈ S, maintenance 

actions k	 ∈ K, and reliability thresholds e	 ∈ E. 

The major decisions that the planning model seeks to inform are dived into two: (1) 

the first-stage here-and-now decisions of how many spares to procure ahead of time 

to keep on hand; and (2) the second-stage wait-and-see decisions of repair and 

replacement maintenance actions. 

The first objective function considered is overall expected cost (J&). This is divided 

into here-and-now procurement cost (Z&) and a wait-and-see cost (Z') that is 

informed by maintenance actions (m4,!,8,/) performed in the scenarios. 

min J& = 	Z& + Z'  (23) 

Z& =eϕ4
4	∈:

n4,!B  (24) 

Z' =	ep/
/	∈G

eeec!m4,!,8,/
8	∈7!	∈94	∈:

  (25) 

The second objective function is system reliability (R8,/
/6/). It is noted that a 

conservative stochastic optimization approach has been employed here in which 

the reliability of the system is constrained to be above a threshold in every scenario. 

R8,/
/6/ ≥ Rc3 ∀t ∈ T, ∀s ∈ S (26) 



 83 

The cost and reliability are subject to a set of constraints that relate to the usage of 

resources, effective age, component reliability and subsystem reliability. The cost 

is dictated by the maintenance actions. The maintenance actions affect the effective 

age increase (Δ4,8,/) which affects the age of the components (τ4,8,/). This in turn 

affects component reliability (R4,8,/) and system reliability. 

Replacement is constrained to not be able to occur if no components have been 

procured by (27). It is noted that this is a linking constraint from a stochastic 

optimization perspective. The effective component age resulting from maintenance 

actions is defined by (28) and (29). In the case of replacement, the component age 

is reset by (30). Variable bounds are omitted for brevity. 

m4,!,8,/ ≤ n4,!B ∀i ∈ I,	k = 4, ∀t ∈ T, ∀s ∈ S (27) 

τ4,8,/ = τ4,8H&,/ + δ − Δ4,8,/ ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (28) 

Δ4,8,/ = e α4,!,/δm4,!,8,/
!	∈9

 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (29) 

0 ≤ τ4,8,/ ≤ m1 −m4,!B,8,/gage-	 ∀i ∈ I, ∀t ∈ T, ∀s ∈ S (30) 

 
The component and subsystem reliability are then defined and used to compute 

the system reliability. 
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R4,8,/ = eHI
J%,',(
K%

L
)%

 ∀i ∈ I,	∀t ∈ T,	∀s ∈ S  (31) 

R8,/M& = } R4,8,/
4	∈:*!

 	∀t ∈ T,	∀s ∈ S  (32) 

R8,/M' = } R4,8,/
4	∈:*"

 	∀t ∈ T,	∀s ∈ S  (33) 

R8,/N =}R4,8,/
4	∈:+

 	∀t ∈ T,	∀s ∈ S  (34) 

R8,/O = }R4,8,/
4	∈:,

 	∀t ∈ T,	∀s ∈ S  (35) 

R8,/
/6/ = mR8,/M& + R8,/M' − R8,/M&R8,/M'gmR8,/N + R8,/O − R8,/N R8,/O g 	∀t ∈ T,	∀s ∈ S  (36) 

It is noted that three implementation strategies were employed to help reduce 

computational intractability. These were (1) bounding variables, (2) introducing 

McCormick envelopes successively for bilinear terms to obtain a mixed-integer 

linear programming model, and (3) performing piece-wise linear delta 

approximations on the individual reliability functions of the components subject to 

repair. The piece wise linear delta approximation approach used employed 

surrogate piecewise affine functions defined over breakpoints to model the 

nonlinear reliability functions with a guaranteed margin of error [342]. It optimized: 

(1) the number of breakpoints, and (2)  the location of the breakpoints. The 

nonlinear reliability functions were approximated within an absolute margin of 0.02 

and they are displayed in Figure 21, Figure 22, Figure 23, and Figure 24.  
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Figure 21: Centrifugal pump reliability curve 

 

 

 
Figure 22: Isolation valve reliability curve 
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Figure 23: Automated control valve reliability curve 

 
 
 
 
 
 

 
Figure 24: Manual control valve reliability curve 
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4.4.2.3. Maintenance Planning 

The use of scenarios makes representation of the maintenance plan non-intuitive 

due to the maintenance actions being scenario-dependent binary variables in the 

second case study. However, insights can be seen from the resultant system 

reliability curves. A reliability curve for the intermediate reliability threshold of 0.8 

is thus provided in Figure 25 to illustrate the results. 

The system reliability is observed to decrease over time until it approaches the set 

reliability threshold. It is noted that the initial age of the components was set to zero 

however this adjustable. It can be seen that the scenarios with a higher degree of 

imperfect maintenance correspond to lower system reliability. It can be seen that 

the system reliability is maintained above the threshold in all three scenarios over 

the time horizon. Given that the optimal solution for this threshold showed that no 

replacement actions were required, this represents a useful insight for decision 

makers to avoid any unnecessary procurement expenditure. In the offshore 

environment which additionally suffers from limited storage space, limiting 

procurement without sacrificing reliability is highly desirable. 

The model was run for different levels of system reliability as shown in  Figure 26. 

It was observed that a significant increase in system reliability could be obtained 

via marginal increases in cost at lower levels of reliability. This method thus 

provides the decision maker with sensitivity analysis to assist them in visualizing 

the cost of different maintenance plans while accounting for variability in the 

quality of maintenance actions. 
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Figure 25: Case Study 2 – System reliability curve 

 

 
Figure 26: Case Study 2 - Optimal maintenance plans 
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4.5. Conclusion 

Maintenance planning is complicated by resource scarcity, system complexity, 

reliability nonlinearity and parametric uncertainty. This paper presents a employs 

multi-objective optimization under uncertainty to help guide resource allocation.  

The approach was illustrated with a theoretical three-pump system and an offshore 

cooling water system.  

The results showed that application of the techniques adopted in this paper can 

result in improvements in equipment and system reliability as compared to 

implementation of a manufacturer recommendation. The results also helped 

illustrate the tradeoffs between expected cost and system reliability. 

The maintenance planning optimization approach used here can be adapted to 

ageing productive systems in different industries inclusive of refining, chemical 

production, and manufacturing both onshore as well as offshore. 

It is noted that this approach can lead to significant complexity, combinatorial 

explosion, and computational intractability for series-parallel and other system 

configurations with a significant number of components. However, this 

methodology is amenable to the use of rolling horizon algorithms to help address 

such computational burdens. It is also further noted that data-driven failure 

prediction methods represent an alternative to tackling the uncertainty in reliability 

through their ability to develop custom equipment reliability models from non-

generic condition and operational data using machine learning.  
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5. DATA-DRIVEN FAILURE PREDICTION FOR 

MAINTENANCE AND PRODUCTION SCHEDULING* 

5.1. Summary 

Maintenance can improve the availability of ageing production systems and prevent 

process safety incidents. However due to system complexity, resource allocation is 

non-trivial. This research developed and applied a framework to obtain optimal 

future-failure aware and safety-conscious production and maintenance schedules. 

Ensembles of nonlinear support vector machine classification models were 

leveraged to predict the time and probability of future equipment failure from 

equipment condition data. Multi-objective optimization of expected profit and a 

safety metric was then used to determine optimal process and maintenance 

schedules. The results of this research were that the ensemble models had an 

average accuracy and F1-score of 0.987, that the ensemble models were more 

accurate and sensitive than the individual classifiers by 3 percentage points, and 

that Pareto-optimal process and maintenance schedules were obtained providing 

alternative solutions to the decision maker. This research involved optimal resource 

allocation to help improve safety and system effectiveness.1 

  

 
1* The text, tables as well as figures in chapter are reprinted with permission and modified from 
Gordon, C. A. K.; Burnak, B.; Onel, M.; Pistikopoulos, E. N. Data-Driven Prescriptive 
Maintenance: Failure Prediction using Ensemble Support Vector Classification for Optimal Process 
and Maintenance Scheduling. Industrial & Engineering Chemistry Research 2020, 58, 19607-
19622. Copyright 2020 American Chemical Society. 
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5.2. Introduction 

System resilience refers to the ability of system to responds to failures and prevent, 

mitigate, and respond to process safety incidents [343]. System effectiveness is the 

holistic performance of a system as a function of its availability, reliability, and 

quality characteristics [2]. Compromised system effectiveness and system 

resilience can be catastrophic with costly consequences such as injuries, fatalities, 

asset damage, and losses to reputation.  

Maintenance is at the nexus of system effectiveness and system resilience and is 

one way to improve overall system performance. Equipment failure occurs as a 

result of degradation due to usage and environmental conditions. The aim of 

maintenance is to counteract degradation and improve the availability of productive 

systems. Examples of maintenance actions include cleaning, repair, and 

replacement. 

 

 

Figure 27: Types of maintenance. Reprinted with permission from [52]. 
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The decisions of when and where to maintain are often non-trivial. At the 

component level, equipment failure behavior can be challenging to anticipate, and 

difficult to capture with high-fidelity first-principles models. At the system level, 

numerous nonlinear component interactions lead to complexity and decision 

multiplicity. These are exacerbated by resource limitations. As such, several 

approaches to maintenance have emerged and are shown in Figure 27. 

Maintenance decision approaches can be categorized based on the data they 

leverage and their underlying mechanisms. Although some overlap occurs between 

them, they can be organized based on their degree of proactivity, complexity, and 

accuracy. Corrective maintenance is an approach in which actions are reactively 

done after equipment failure. The other approaches can be described as proactive 

with actions taken ahead of equipment failure. Interval-based maintenance involves 

actions taken on fixed intervals based on failure time data and engineering 

judgement. Preventive maintenance involves the use of nonlinear parametric 

models derived from equipment failure times to determine maintenance times. 

Condition-based maintenance involves statistical trend analysis of measurements 

of equipment health such as thickness, vibration signals, or temperature to forecast 

degradation and determine failure times based on a threshold. 

Predictive maintenance uses machine learning and statistical models to determine 

future equipment degradation, and failure times based on multiple types of data, 

namely both time and condition data, as well as other types of data such as data on 

work orders, environmental conditions, and process measurements. In the 

manufacturing industry, unplanned downtime translates to an estimated $50 billion 
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per year [344]. Predictive maintenance is projected to be able to improve equipment 

uptime by 10-20%, reduce overall maintenance costs by 5-10%, and reduce time 

spent planning maintenance by 20-50% [344]. Prescriptive maintenance builds 

upon predictive maintenance by using predictions to recommend operating and 

maintenance decisions to counteract future equipment degradation and failure. 

Data-driven prescriptive maintenance scheduling and production optimization 

touches upon several fields of research including process systems engineering and 

process safety. A focused and indicative summary of related research in the fields 

of process and maintenance optimization, risk-based maintenance, and failure 

prediction is highlighted in Table 16. 

A number of approaches have been developed to quantify the level of safety 

associated with production. These include safety indices [318, 323], dynamic fault 

trees [304], Bayesian methods [297, 316], and simulation [336]. It is noted that 

dynamic systems can exhibit both time-dependence and spatial-dependence and 

that the present approach solely considers time-dependence. Ahmed and coworkers 

[130] combined failure probability and consequence into an index to determine a 

set of maintenance schedules for a gas absorption system. Similarly, Hameed and 

coworkers  [155] developed a safety index to optimize the maintenance schedule of 

a liquid natural gas sweetening unit using a genetic algorithm.  
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Table 16: Selected related previous work. Reprinted with permission from [52]. 
Reference Description 
Process and Maintenance Optimization 
[145] Planning and scheduling of production and 

preventive maintenance under uncertainty 
[187] Batch plant design under uncertainty via Markov 

analysis 
[2] Optimal planning and design of production and 

maintenance for system effectiveness 
[199] Condition-based maintenance scheduling using 

a gamma process minimizing cost 
[216] Data-driven maintenance scheduling 
[118] Planning and scheduling of operations and 

condition-based maintenance using degradation 
modeling and robust optimization 

[9] Maintenance policy selection, process 
optimization, and resilience analysis 

  
Risk-Based Maintenance 
[158] Maintenance optimization involving reverse 

fault tree analysis 
[130] Goal programming to optimize maintenance 

cost, availability, and reliability 
[300] Dynamic maintenance planning using a 

Bayesian network 
[155] Risk-based maintenance scheduling using a 

genetic algorithm 
[345] Risk-based multi-objective maintenance 

optimization 
  
Failure Prediction  
[152] Failure prediction and maintenance scheduling 

using neural networks 
[164] Data-driven predictive maintenance scheduling 

using a genetic algorithm 
[29] Asset health prediction using random forest 
[133] Data-driven predictive maintenance scheduling 

using classifiers and a genetic algorithm 
[33] Time to failure prediction using principal 

component analysis and regression algorithms 
[135] Production and maintenance scheduling under 

uncertainty using a degradation signal model 
[346] Simultaneous fault detection and diagnosis via 

nonlinear support vector machines 
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This research presents a process-agnostic framework for optimal prescriptive 

maintenance. The framework involves equipment failure prediction using machine 

learning, consideration of process safety using a safety metric, and process and 

maintenance scheduling using mathematical optimization. The framework is 

applied on a motivating example and on a case study to simultaneously maximize 

system effectiveness and system resilience to determine optimal operations and 

maintenance decisions using multi-objective mixed-integer nonlinear 

programming. New features of the methodology include: the use of probabilistic 

ensemble voting for failure prediction, and the explicit incorporation of safety into 

prescriptive maintenance scheduling. Key features of the proposed methodology 

include: development of ensembles of support vector machine classification 

models, the use of a k-out-of-n alarm policy, and multi-objective optimization of 

maintenance and process conditions to obtain a Pareto-optimal set of solutions. 

This section concludes with a problem statement. The remainder of this paper is 

organized as follows. Section 2 introduces the framework and details the 

methodology. Section 3 illustrates the work with an example and a case study. 

Section 4 then concludes the paper. 
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5.2.1. Problem Statement  

The problem that the present research seeks to address is summarized below. 

Generalized System 

A process network involving species i	 ∈ I, equipment j	 ∈ J, process streams s	 ∈

S, utilities u	 ∈ U, time intervals t	 ∈ T, and system resilience thresholds l	 ∈ L. 

Objectives 

• Maximize system effectiveness 

• Maximize system resilience 

 

Given 

• Process network design 

• Equipment condition, maintenance, failure, and error data 

• Equipment mean time to repair (MTTR) 

• Production parameters 

• Economic parameters 

• Electricity, material, and human resource capacities 

 

Determine 

• Equipment failure time 

• Production and maintenance schedules 

 
Aspects of the problem are described through a simplified motivating example 

shown in Figure 28 and taken from [347]. The process network consists of a 

reactor in which a first-order exothermic reaction A → B occurs, a pump, and a 

water-cooled counter-flow heat exchanger.   



 97 

 

Figure 28: Motivating example. Reprinted with permission from [52]. 

 
 

 

It is desired to determine sets of flowrate, reactor temperature, and pump 

maintenance decisions that maximize expected profit subject to safety thresholds. 

It is noted that the interactions of production and maintenance decisions affect 

system effectiveness through their impact on conversion of A and expected profit, 

as well as affect system resilience through their impact on safety.  

The approach used here seeks to perform future-failure aware and safety-conscious 

optimal prescriptive maintenance and process scheduling. Given pump data, the 

failure time of the pump can be predicted and used to prescribe an optimal sequence 

of flowrate, and temperature production decisions, as well as when pump repair is 

scheduled. This is done accounting for the safety consideration of  maintaining the 

temperature of the reactor below given thresholds. 
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5.3.  Methodology 

5.3.1. Framework 

The present approach is illustrated in the Prescriptive Optimization of Maintenance 

and Process Scheduling (PROMAPS) framework shown in Figure 29. Domain 

knowledge and data are fed in parallel to a safety model, and to a failure prediction 

model. The results from the safety model and failure prediction model are then used 

in a mathematical optimization model to obtain a set of optimized maintenance and 

process schedules. It is noted that the approach focuses on failure prediction and 

mathematical optimization. Each of the models is subsequently described in detail. 

5.3.2. Safety 

Process and maintenance decisions impact the level of safety associated with 

production. Safety metrics (SAM) can be introduced to help quantify the effect of 

process and maintenance decisions. A safety metric (λ8) and aggregated safety 

metric (Λ) are used here in which the probability of failure (P8P) is obtained with the 

failure prediction, and the consequence of failure (C8P) is determined using a 

process-dependent consequence model [10]. The safety model consists of the 

functional form of the safety metrics, and is fed to the maintenance scheduling and 

process optimization model. 

λ8 = P8PC8P ∀t ∈ T (37) 

Λ =eλ8
8	∈7

  (38) 
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Figure 29: PROMAPS framework. Reprinted with permission from [52]. 

 

 

 

Figure 30: Overview of failure prediction methodology. Reprinted with permission 

from [52]. 
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5.3.3. Failure Prediction 

Support vector machine (SVM) classification is leveraged to predict future 

equipment failure. SVM classification has a number of advantages over other 

methods due to its ability to handle non-Gaussian distributed process data, 

categorize nonlinearly separable data through transformation to a higher-

dimensional space, and to be represented as a convex optimization problem and 

solved to global optimality [346]. Readers interested in further details on support 

vector machines are directed to relevant resources [20, 23]. 

An overview of the failure prediction model development and use is shown in 

Figure 30. The approach consists of two phases: an offline development phase, and 

an online prediction phase.  

The offline development phase begins with importing, assessing, and consolidating 

historical data. It is stressed that the input to the models are multiple types of data 

such as time, condition, process, and maintenance data. The data can consist of 

multiple data sets from different sources and time scales. The data sets used here 

were tabular and had a common feature of sample time. This was leveraged to pool 

the data into single data set with features sampled over shorter time scales repeated. 

In the event of missing data due to sensor error or underreporting, data can be 

cleaned by removing samples, or augmented via imputation.  
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The output of the data pooling step is a larger data set describing the historical 

trajectory of a piece of equipment. Each sample of the larger data set contains input 

features such as condition and maintenance features, and output features such as 

the time that the equipment would fail next.  

The input feature data is subjected to feature generation and data transformation 

steps. Feature generation is used to create complementary additional features from 

the initial set of input features. The generated features are of two types: (1) features 

generated from domain knowledge such as the time since the last maintenance 

(TsLM) and leading indicators such as the number of errors since the last 

maintenance (EsLM); and (2) statistical features for each of the initial numeric input 

features to capture trends in the data such as mean, min, max, standard deviation, 

and root mean squared (RMS) computed over a sliding window. The generated 

feature data is then appended to the original initial input features to create an 

augmented input feature data set. The data is then transformed using Z-score 

normalization to facilitate analysis by including information about deviation from 

baseline operating conditions relative to average process variability. 

The output feature data, namely the next time to failure data, is subjected to an 

outcome extraction step. This step involves the creation of a set of N! features, each 

of which is a binary outcome vector (𝐘𝐤) that indicates whether or not each sample 

would correspond to a failure within the next k hours where k	 ∈ K = {1,2, … , N!}. 

For example, for N! = 168, this corresponds to determining whether or not there 

would be a failure in the week following the time of the sample. 



 102 

The augmented input feature data is then combined with each of the N! extracted 

binary outcome vectors to create N! data sets. Each of these data sets is then fed 

through a feature selection step. The feature selection consists of statistical feature 

selection, through removal of any transformed generated features on the basis of 

variance, and wrapper feature selection via recursive feature elimination using a 

random forest classification algorithm. Random forest classification involves the 

construction of multiple decision trees, and was leveraged for feature selection due 

to its inherent ability to successively select the features on which to branch upon 

[20]. It is noted that the N! classifiers can have different sets of selected features. 

The result of the feature selection step is N! preprocessed data sets that each have 

one of the N! outcome vectors and the corresponding selected augmented input 

features. 

The final steps prior to model creation are balancing, and splitting. The 

preprocessed data sets are balanced by extracting all the samples that would 

correspond to failures, and then extracting an equal number of samples that would 

not correspond to failures based on random sampling from a uniform distribution. 

These balanced data sets are then split into training sets and validation sets using a 

75:25 ratio. The training set is used for model creation, whereas the validation set 

is not used for model creation but instead for model evaluation. 

Model creation was done on the basis of accuracy using nonlinear support vector 

machines with a radial basis function kernel and three repetitions of 10-fold cross 

validation. The models were tuned using grid search with accuracy as a model 

selection metric. A total of N! models were created using each of the N! training 
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sets. For example, with N! = 168, A total of 168 classifiers are created to predict 

failure within the each of the next k	 = 	1, 2, … , 168	hours. These models were then 

evaluated to determine their performance on unseen data using the validation data 

sets with performance metrics of accuracy, sensitivity, specificity, and kappa. 

The online prediction phase uses the created and evaluated models to predict the 

hour in which the equipment will next fail. N/ samples constituting a sampling 

horizon are aggregated and then fed to each of the N! SVM classifiers. The 

classifiers output N! binary numbers indicating whether or not failure is predicted 

to occur within each prediction horizon, as well as a corresponding N! cumulative 

probabilities of failure based on Platt scaling [348].  

To improve the robustness of predictions and reduce false positives, ensemble 

models are used. Each ensemble model consists of NR successive individual models 

γ	 ∈ Γ = {1,2… , NR}, and the individual models used for the ensemble models are 

subsets of the N! individual SVM classifiers. Ensemble models (GS) are 

constructed for time periods q = 1,2, … , (N! 	− 	NR + 1). Each ensemble is used 

to obtain an ensemble probability of failure (P3P) by combining the individual 

probabilities of failure (PKP). The ensemble probability of no failure is the product 

of the individual probabilities of no failure within the ensemble, in an approach 

similar to considering the models in the ensemble as systems in parallel [18]. 

P3P = 1 −}m1 − PKPg
K

 (39) 
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A failure alarm signal is generated if the ensemble probability of failure exceeds a 

threshold of 99.9999%. It is noted that this relatively strict threshold was selected 

to help avoid false positives and that other thresholds can be defined. Multiple 

failure alarm signals are combined using a k-out-of-n voting policy in which if k 

alarm signals are generated within a shifting horizon of n time periods, the first of 

the n time periods is outputted as the failure time prediction. 

The outputs of the online prediction phase are a failure time prediction, and a 

cumulative probability of failure distribution. It is noted that the output is an 

implicit degradation trajectory, and corresponds to a remaining useful life 

distribution. 

5.3.4. Mathematical Optimization  

The mathematical optimization approach involves the development of a 

constrained multi-objective mixed-integer programming model. Objective 

functions (J& and J') represent a selected  system effectiveness metric and a system 

resilience metric respectively. The model involves continuous decisions (𝐱) and 

binary decisions (𝐲) related to production and maintenance. These decision 

variables are related by equations (𝐠), maintenance constraints (𝐡&), safety 

constraints (𝐡'), and process constraints (𝐡5). A generalized model is shown in 

(40). 

It is stressed that the constraints in (40) are general and process-agnostic and that 

constraints relating to specific individual case studies, such as material balances 

and resource constraints, can be added to set of process constraints. 
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max	𝐉(𝐱, 𝐲) = [J&(𝐱, 𝐲), J'(𝐱, 𝐲)] 

(40) 

s. t. 

𝐠(𝐱, 𝐲) = 0 

𝐡&(𝐱, 𝐲) ≤ 0 

𝐡'(𝐱, 𝐲) ≤ 0 

𝐡5(𝐱, 𝐲) ≤ 0 

𝐱	 ∈ 𝐗	 ⊆ Â) 

𝐲 ∈ 𝐘	{0,1}* 

 

The outputs of the failure prediction methodology are a predicted future equipment 

failure time, and a probability of failure distribution. These outputs are fed to the 

mathematical optimization model as parameters to influence scheduled 

maintenance actions through the maintenance constraints. The output of the safety 

methodology are functions, and these are used to construct the safety constraints. 

This model is then solved using the epsilon-constraint method [26] to generate a set 

of safety thresholds, and process and maintenance schedules that contain optimized 

process and maintenance decisions. The major steps of the approach are 

summarized in Table 17. 
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Table 17: Summary of key aspects of the overall methodology. Reprinted with 
permission from [52].  

# Phase Input Steps Output 

1 Preprocessing Historical data Quality assessment, 
pooling, feature 
generation, Z-score 
normalization, outcome 
extraction 

N! data sets 

2 Feature 
Selection 

N! data sets Recursive feature 
elimination  

N! data sets, 
with fewer 
features 

3 Balancing and 
Splitting 

N! data sets, 
with fewer 
features 

Sampling, 75:25 data 
splitting 

N! training 
and 
validation 
data sets  

4 Model 
Creation 

N! training 
sets 

Nonlinear SVM, 10-fold 
cross-validation, tuning 

Individual 
models 

5 Prediction NR individual 
models, data 

Ensemble creation via 
equation (39), use of 
probability threshold 
and k-out-of-n alarm 
policy 

Probability 
of failure 
trajectory 
and failure 
time 

6 Safety 
Quantification 

Process 
description 

Safety metric selection Safety metric 
function 

7 Scheduling Failure 
prediction, 
safety metric 
function 

Mathematical 
optimization, epsilon-
constraint method 

Future-
failure aware 
safety-
conscious 
process and 
maintenance 
schedules 
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5.4. Results 

The first case study is the previously presented motivating example, and focuses on 

providing a summary of implementation of the main aspects of methodology on a 

hypothetical system. The interested reader is directed to the supporting information 

for additional details. The second case study is a more complex hydrocarbon 

separation system example, and focuses on illustrating the methodology in greater 

depth. The failure prediction models and data used for the hydrocarbon separation 

system pump are used for the hypothetical motivating example pump, and it is 

noted that there is an implicit assumption that the mechanical failure behavior of 

the pumps would be similar. In both case studies, the failure prediction was 

performed in R, and the mathematical optimization was done in GAMS 27.1.0   

directly using the ANTIGONE solver [349]. This section proceeds by presenting 

the model creation results, followed by the two case studies. 

 

5.4.1. Failure Prediction Model Creation 

5.4.1.1. Feature Selection 

The failure prediction methodology was applied to simulated historical data [350] 

to generate future equipment mechanical failure predictions. The data describes the 

mechanical failure of a generic piece of rotating equipment with similar mechanical 

failure behavior to that of a pump and is used for illustration purposes to 

demonstrate the approach. It consists of data on equipment error, failure and 

maintenance time, as well as condition data collected over a time horizon of one 
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year. The condition data used consists of voltage, rotation, and vibration data and 

was sampled hourly. Twelve samples were selected from the data for each of the 

case studies to mimic online data for the prediction phase. Once consolidated and 

pre-processed, the data was split into two according to a 3:1 ratio. The first and 

larger set resulting from the split was the training set used to create the models. The 

second and smaller set from the split was the test set used to evaluate the models.  

The data was used to build 168 classifiers. Feature generation led to a total of 30 

features with features and transformations shown in Table 18. Feature selection via 

recursive feature elimination and random forest classification yielded a reduced set 

of features for each classifier with a median of 18 selected features across the 168 

classifiers. A summary of the different features, and their prevalence across the 

classifiers is shown in Figure 31. The features selected most often were the rolling 

minimum of vibration, the features relating to the time since last maintenance, and 

the features relating to the number of errors since the last maintenance. 

 

5.4.1.1. Model Evaluation 

The failure prediction models were evaluated on validation data that was not used 

to train the models. The performance of the models across the prediction horizon 

can be seen in Figure 32 and Figure 33. It is noted that the performance of the first 

few individual models is worse than that of the others, and this could be due to them 

being trained with less sampled data. On the other hand, the performance of the 

ensemble models is observed to be more consistent than the individual models. 
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Table 18: Overview of features. Reprinted with permission from [52]. 

Original Features Transformations 

Voltage Min 

Rotation Max 

Vibration Mean 

Errors since last maintenance (ESLM) Standard deviation (stdev) 

Time since last maintenance (TSLM) Root-mean squared (RMS) 

 

 

 

 

 

 

Figure 31: Aggregated feature selection results. Reprinted with permission from 

[52]. 
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Figure 32: Performance of the individual models. Reprinted with permission from 

[52]. 
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Figure 33: Performance of the ensemble models. Reprinted with permission from 
[52]. 
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Table 19 reports the average model performance of the 168 individual models, as 

well as the average model performance of the 157 ensemble models created 

according to the described methodology.  The results show that across all selected 

model evaluation metrics, the average performance of the ensemble models was 

higher than that of the average performance of the individual models. In particular, 

the use of the ensemble models increased accuracy by 3 percentage points, 

increased the sensitivity by 3.3 percentage points, and increased the specificity by 

2.7 percentage points. The increases in these model performance metric values is 

significant, as they would correspond to cost-savings due to fewer false alarms and 

fewer missed threats. These results highlight the additional robustness imparted by 

the present methodology.  

The ensembles of failure prediction models were then used to predict failure times 

in the case studies for use in production and maintenance scheduling. 

 

Table 19: Aggregated model performance. Reprinted with permission from [52]. 

Metric Individual Models Ensemble Models 

Accuracy 95.7% 98.7% 

Kappa 91.4% 97.4% 

Sensitivity 96.6% 100.0% 

Specificity 94.7% 97.4% 

F1 95.9% 98.7% 

Precision 95.3 97.5% 
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5.4.2. Case Study 1 

5.4.2.1. Description 

The process system used for this case study was shown in Figure 28 and consist of 

a reactor, pump, and heat exchanger. The scheduling horizon is one week (168 

hours), with an hourly time discretization. Parameters used for the case study can 

be found in the supporting information. 

5.4.2.2. Failure Prediction 

The developed failure prediction models were applied to online data to generate 

insights into failure. The predicted probability of failure trajectory is shown in 

Figure 34 for the individual models and in Figure 35 for the ensemble models. It 

can be observed that the ensemble model trajectory is smoother and the incidence 

of failure more evident. Application of a 9-out-of-10 alarm policy at a certainty 

threshold of 99.9999% yielded a failure time of 129 hours which has been shown 

on the figures. 

5.4.2.3. Model Formulation 

The problem statement for the optimization model is provided as follows. Given a 

predicted pump failure time and the system parameters defined in the supporting 

information, it is desired to determine a set of process and maintenance schedules 

that optimize expected profit and safety. It is assumed that feed flowrate is constant, 

repair restores equipment to an as-good-as-new condition, and that the outlet stream 

conditions are the same as the conditions within the reactor. 
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Figure 34: Case Study 1 – Individual model failure probabilities. Reprinted with 
permission from [52]. 
 

 

 

 

 

Figure 35: Case Study 1 – Ensemble model failure probabilities. Reprinted with 
permission from [52].  
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The model formulation involves species i	 ∈ I = {A, B}, process streams s	 ∈ S =

{1,2, … , N/}, equipment j	 ∈ J = �1,2, … , NT�, time intervals t	 ∈ T = {1,2, … , N7}, 

utilities u	 ∈ U = {1,2, … , NU}, and system resilience thresholds l	 ∈ L =

{1,2, … , NV}.  The expected profit (Φ) is described as a function of the probability 

that the pump does not fail (P8
/,/6/), feed flowrate (F+,8), conversion (χ8), cooling 

water flowrate (FW,8), and pumped recycle flowrate (F',8). The key continuous 

decision variable is reactor temperature (𝕋8), and the key discrete decision variable 

is pump maintenance (m8). Application of the epsilon-constraint method to 

maximize expected profit and safety leads to (42). The safety consideration here is 

for the temperature of the reactor to be below a temperature threshold (𝕋8-) by given 

margins (𝕋8X). The rest of the formulation consists of  (43) - (57) and involves sets 

of time intervals leading up to and including the current time interval (T8∗), the 

number of intervals leading up to and including the current time interval (T8∗���), and 

sets of time intervals the length of the mean time to repair (T�8). 

 Once implemented, the model consists of 2185 variables, comprising 1681 

continuous variables and 504 binary variables, and 2690 constraints and is a mixed-

integer nonlinear programming model. 
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maxΦ =eP8
/,/6/�100F+,8χ8 − 1.76FW,8 − 7.056F',8�

8	∈7

	  (41) 

𝕋8- − 𝕋8 ≥ 𝕋8X  (42) 

χ8 = 1 − CN,8/CN+ ∀t ∈ T (43) 

F+,8χ8 = VkeI
H<
Z𝕋'

LCN,8 
∀t ∈ T (44) 

−ΔH82\)F+,8χ8 = F+,8C0m𝕋8 − 𝕋+,8g + Q8]< ∀t ∈ T (45) 

F',8C0m𝕋',8 − 𝕋5,8g = 	FW,8C0Wm𝕋W',8 − 𝕋W&g ∀t ∈ T (46) 

Q8]< = AU �
m𝕋',8 − 𝕋W',8g − (𝕋5,8 − 𝕋W&)

log	[m𝕋',8 − 𝕋W',8g/(𝕋5,8 − 𝕋W&)]
� 

∀t ∈ T (47) 

𝕋',8 = 𝕋8 ∀t ∈ T (48) 

𝕋',8 − 𝕋W',8 ≥ 11.1 ∀t ∈ T (49) 

𝕋5,8 − 𝕋W& ≥ 11.1 ∀t ∈ T (50) 

F,(1 − m8) ≤ F',8 ≤ F-(1 − m8) ∀t ∈ T (51) 

FW, (1 − m8) ≤ FW,8 ≤ FW-(1 − m8) ∀t ∈ T (52) 

em8
/8128

8∈7̂

= 1  (53) 

m8
024_2 ≥ e mJ

/8128

J∈7'
∗

 ∀t ∈ T (54) 

e 1−mJ
024_2

J∈7'
∗

≥ mT8∗��� − 1gm8
/8128 ∀t ∈ T (55) 

emJ
J∈7̀'

≥ m8
/8128MTTR ∀t ∈ T (56) 

em8
8	∈7

≤ MTTR  (57) 
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5.4.2.4. Maintenance Scheduling and Process Optimization 

The optimization model was implemented to obtain optimal values for the process 

and maintenance variables over the time horizon. It is noted that for this simplified 

system, the process schedules are effectively piecewise constant, and as such the 

results are summarized in Table 20. It can first be observed that increasing the 

safety margin generally decreased the conversion, reactor temperature, and 

expected profit. With the upper bound on temperature set at 389 K, it can further 

be observed that the solutions were non-dominated which corresponds to the 

epsilon constraints being active. In all the solutions, maintenance was scheduled 

sufficiently ahead of the predicted failure time.  

This example explored multiple aspects of process variables, maintenance, and 

safety and it is expected that increased benefits of a prescriptive maintenance 

approach would be realized for larger systems with interacting failure-prone 

equipment. The paper proceeds with application of the methodology to a larger and 

more complex system. 

 

Table 20: Case Study 1 – Results. Reprinted with permission from [52]. 

Margin 
(K) 

Conversion Reactor 
Temperature 

(K) 

Maintenance 
Start Time 

(hr) 

Expected 
Profit  

($/week) 
20 0.797 369 1 5.295e5 
30 0.789 359 1 5.241e5 
35 0.786 354 6 5.190e5 
40 0.782 349 24 5.146e5 
50 0.774 339 15 5.098e5 
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5.4.3. Case Study 2 

5.4.3.1. Description 

The process system used for this case study is a hydrocarbon separation system. An 

overview of the system is shown in Figure 36.  

The feed stream (S1) to the overall system is a mixture of hydrocarbon species (A, 

B, C, and D) along with impurities (E). The hydrocarbon mixture is fed to a tower 

(T1) to be separated into distillate (S3), and a bottoms outlet stream (S2) rich in 

species C and D which undergo further downstream processing after passing 

through a reboiler (E2). The distillate is fed to a shell and tube heat exchanger (E1) 

where it is cooled, and used to preheat a process fluid. It then goes to a flash drum 

(V1) where it is separated into a gaseous phase and a liquid phase. The gaseous 

phase is vented through two rotary gas turbines (B1 & B2) to recover energy and 

then to a vessel (V2) for intermediate storage, removal of impurities to a waste 

management system, as well as controlled recycle of hydrocarbon fluid to the flash 

drum. The liquid phase is fed to two pumps (P1 & P2) and then split into a reflux 

stream, and into an outlet stream (S17) enriched in species B.  

Pump integrity is critical to the overall safety of the hydrocarbon system. The two 

pumps are in parallel and alternately operated: when the primary pump (P1) is taken 

offline for testing or maintenance, the secondary pump (P2) is brought online. The 

failure mode considered is seal failure induced by mechanical failure of the primary 

pump. Mechanical failure can result in misdirection of force and resultant damage 

to pump seals. The scenario considered is the loss of containment of process fluid 

leading to a vapor cloud explosion. 
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The scheduling horizon is one week (168 hours), with an hourly time discretization. 

A summary of the parameters used for the case study can be found in the supporting 

information and include process parameters from Schenk and coworkers [351]. 

 

 

 

 

 

Figure 36. Hydrocarbon separation system. Reprinted with permission from [52]. 
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5.4.3.2. Failure Prediction 

The developed failure prediction models were applied to online data to generate 

insights into failure. The resultant failure probability trajectories are shown in 

Figure 37 for the individual classifiers and in Figure 38 for the ensemble models. 

A failure time prediction of 61 hours was determined using the described ensemble 

model methodology and the k-out-of-n alarm policy. It was seen that the predicted 

failure probabilities were generally low before the failure time, but then increased. 

It was also observed that the failure probability predictions were uniformly high 

after the predicted failure time. The likely incidence of failure at the predicted time 

due to accumulated degradation was then fed into the maintenance scheduling and 

process model for proactive and optimized action to prevent the equipment failure. 

5.4.3.3. Model Formulation 

The problem statement for the production and maintenance scheduling model is 

provided as follows. The objectives are to maximize system effectiveness and 

system resilience. It is assumed that: mean time to repair is deterministic, 

maintenance does not induce failures, and that the secondary pump experiences 

failure at a baseline rate. Information taken as being given are: the predicted failure 

time of the primary pump; the process network design; pump mean time to repair; 

production parameters; cost and revenue parameters; and electricity, material, and 

human resource capacities. The key continuous decision variables are the flowrates, 

and the key discrete decision variables considered are maintenance and availability 

of the primary pump. 
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Figure 37: Case Study 2 – Individual model failure probabilities. Reprinted with 
permission from [52]. 

 

 

 

 

Figure 38: Case Study 2 – Ensemble model failure probabilities. Reprinted with 
permission from [52].  
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The model formulation involves species i	 ∈ I = {A, B, C, D, E}, process streams 

s	 ∈ S = {1,2, … , N/}, equipment j	 ∈ J = �1,2, … , NT�, time intervals t	 ∈ T =

{1,2, … , N7}, utilities u	 ∈ U = {1,2, … , NU}, and system resilience thresholds l	 ∈

L = {1,2, … , NV}. The set of pumps is a subset of the set of equipment and is denoted 

j	 ∈ JM. Once implemented, the model contains 6627 variables, comprising 4189 

continuous variables and 2438 binary variables, and 10249 constraints. It is noted 

that McCormick relaxations are used for bilinear terms resulting in additional 

constraints and a mixed-integer linear programming model. 

 

Objective 

The multi-objective problem is transformed into single-objective problems 

maximizing system effectiveness subject to different system resilience constraints. 

The system effectiveness criterion considered here is expected profit. 

maxΦ =eP8
/,/6/ �eV4F4,8_U8

4	∈:

− CVHRU8 − C*MRU8 − C3ERU88_81V
8	∈7

+eC3ERG8
8	∈7

− e CUQU,8
U	∈-

�	 

 (58) 

The expected profit objective function contains six terms. The first term is the 

equivalent value of the species leaving the system, and consists of their marginal 

value (VT) and flowrate of streams exiting the system (FT,8_U8). The second term is 

human resource cost, and consists of unit human resource cost (CV), and human 

resources used (HRU8). The third term is maintenance cost, and consists of unit 
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maintenance cost (C*), and maintenance resources used (MRU!). The fourth term is 

electricity cost, and consists of unit electricity cost (C3) and electricity resource 

used (ERU8). The fifth term captures the power gained from the energy recovery 

turbines, and consists of unit electricity cost (C3) and electricity resource gained 

(ERG8). The sixth term is utility cost and consists of the unit utility cost (CU), and 

the energy exchanged by the utility stream (QU,8). The probability of the system 

being in a non-failure state is denoted (P8
/,/6/) and is obtained using the predicted 

probability of failure of the pumps which are key system components. It is noted 

that maximizing the expected profit of the system corresponds to determining the 

set of decisions that maximize production revenue and minimize costs. 

Safety constraints are obtained using the epsilon-constraint method. The obtained 

thresholds are reported in the supporting information and the constraints are shown 

in constraint (59). It is noted that use of the different thresholds corresponds to the 

addition of different safety constraints to the optimization problem. It is further 

noted that there are NV single-objective problems, each of which correspond to 

determining the optimal maintenance and production schedules that maximize 

expected profit such that the aggregated safety metric (Λ) is less than a given 

threshold (Λ�V).  

Λ ≤ Λ�V ∀l ∈ L (59) 
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The formulation is further constrained by process constraints, safety constraints, 

maintenance constraints, resource constraints, and variable bounds. 

 

Process constraints 

The equality and inequality constraints relating to production are defined for the 

overall process, and for each unit in turn. It is recalled that the process involves 

equipment j	 ∈ J and process streams s	 ∈ S. Furthermore, a set of all equipment 

except for the tower (J�), the sets of inlet streams to individual equipment (ST4)) and 

outlet streams from individual equipment (ST_U8) are defined. The molar flowrates 

(F) of species entering and leaving equipment are described by (60). 

 

e F4,/,84)

/∈	G.
%/

= e F4,/,8_U8

/∈	G.
01'

 ∀i ∈ I, ∀j ∈ J�, t ∈ T (60) 

 

The outlet flowrate of B is constrained to be between lower production targets 

(PROD_TARGET8,) and upper production targets (PROD_TARGET8-) by (61). 

 

PROD_TARGET8, ≤ Fa,8_U8 ≤ PROD_TARGET8- ∀t ∈ T (61) 
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The species molar feed flowrate (F/&,4,8) is defined by a fixed molar feed 

composition (FEED_X:), and a variable feed flowrate (F/&,8) constrained within 

design bounds (FEED,, FEED-) of ±10% of the nominal flowrates. 

 

F/&,4,8 = (FEED_X:)F/&,8 ∀i ∈ I, ∀t ∈ T (62) 

	F/&,8 	= 	e 	F/&,4,8
4	∈:

 		∀t ∈ T (63) 

FEED, ≤ F/&,8 ≤	FEED- ∀t ∈ T (64) 

 

Surrogate modeling was used to describe the tower. This was done by constructing 

a high-fidelity model with nonlinear material, equilibrium, summation, and heat 

(MESH) equations in Aspen Plus, and then then performing Global Sensitivity 

Analysis (GSA) to obtain surrogate models for outcome variables as a function of 

input covariates within ±10% of their nominal values. The outcome variables were 

distillate species molar flow rates (F/5,N, F/5,N, F/5,N) and temperature (T/5). The 

input covariates were feed species molar flowrate (F/&,N, F/&,a, F/&,b, F/&,c, F/&,<), 

feed temperature (T/&), bottoms flowrate (FE' ), and reflux ratio (R). 

The data for developing the surrogate models was obtained via Latin Hypercube 

Sampling (LHS) implemented in R using the lhs package. A sample hyperspace 

was defined using ±10% of the nominal values of the input parameters. A 
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metaheuristic genetic algorithm with five generations and mutation probability of 

0.125 was then used to maximize a harmonic-mean distance based S-optimality 

criterion, and obtain 100 sets of input covariate values to use in simulating 100 

corresponding sets of outcome variables. 

The surrogate models were then constructed using multivariate linear regression. 

Model training was done with 90% data, and 10% of the data was reserved for 

testing. The covariates for each of the surrogate models were selected based on their 

p-values at a significance threshold of 0.001, and based on their absolute magnitude 

at a size threshold of 0.001. The average mean-normalized root mean squared error 

for all the surrogate models was 2.8%. It is noted that the developed multivariate 

linear regression models are only valid within ±10% of the nominal values of the 

input parameters. The surrogate models were added as equality constraints. 

 

F/&,N,8 = β&F/&,N,8 +	β'R8 + β5 ∀t ∈ T (65) 

F/5,a,8 = βBF/&,a,8 + βCF/&,b,8 + βdF/&,c,8 + βeR8 − βfF/',8 + βg ∀t ∈ T (66) 

F/5,<,8 = β&+F/&,<,8 	+ 	β&&R8 +	β&' ∀t ∈ T (67) 

T/5,8 	= β&5F/&,b,8 	− 	β&BF/',8 	+ 	β&C ∀t ∈ T (68) 

 
An overall material balance for the tower is shown in (69). A slack variable (δ8) 

was added to help model convergence and was observed to be on the order of 1% 
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in magnitude relative to the other total molar flows. Furthermore, equipment 

availability (a	 ∈ {0,1}) is introduced to constrain flow through the pumps. 

 

F/&,8 + F/&d,8 = F/',8 + F/5,8 + δ8 ∀t ∈ T (69) 

aM&,8F, ≤ F/&5,8 ≤	aM&,8F- ∀t ∈ T (70) 

aM',8F, ≤ F/&B,8 ≤	aM',8F- ∀t ∈ T (71) 

 

Safety constraints 

The safety metric used for vapor cloud explosion is quantified through the TNT-

equivalency method and the determined probability of failure [10, 14]. The safety 

metric (λ8) is a function of flowrate (F/&C,8), release time (t2), generic probability of 

seal failure (P/,P), the predicted probability of mechanical failure (P*,P), and other 

parameters reported in the supporting information. It is noted that a linear 

approximation to (74) is implemented within the range of flowrates corresponding 

to the design bounds. The dynamic safety metric is computed as a function of 

probability and consequence in (75) for each pump. The consequence of failure (C8P) 

selected here is scaled overpressure and corresponds to explosion damage and 

costs. The primary pump failure probability is calculated in (76), and the secondary 

pump failure probability is assumed to be baseline. It is noted that (76) corresponds 

to repair that is almost as-good-as-new. Furthermore, the column vapor flowrate 

exiting the first tray is constrained by (77) to avoid flooding. 
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m8
7(7 	=

1000η3\	F/&C,8t2C0a
E7(7  

∀t ∈ T (72) 

z87(7 	=
r7(7

[m8
7(7]&/5

 
∀t ∈ T (73) 

C8P =
1616 ¡1 + ¢

z7(7,8
4.5 £¤

'

¥1 + ¢
z7(7,8
0.048£

'
¥1 + ¢

z7(7,8
0.32 £

'
¥1 + ¢

z7(7,8
1.35 £

'
 ∀t ∈ T (74) 

λ8 = P/,P ∙ PM&P C8P + P/,P ∙ Pi1/3V4)3C8P 	∀t ∈ T (75) 

PM&P = P*,Pm1 − mM&,8
024_2g + Pi1/3V4)3mM&,8

024_2 	∀t ∈ T (76) 

F/5,8 ≤ F-,PV__. ∀t ∈ T (77) 

 

Maintenance constraints 

A number of constraints define whether or not to do maintenance on the pumps 

within a time interval (mT,8 ∈ {0,1}). Constraint (78) enforces that at most one pump 

is maintained at a time to avoid interrupting production. Maintenance is started at 

most once during the time horizon for each pump as shown in (79). Constraint (80) 

enforces that maintenance is started before the predicted failure time. Constraints 

(81) and (82) indicate whether maintenance has previously been performed within 

the time horizon. Once maintenance is started, it is constrained to last for the mean 

time to repair (MTTR) by inequalities (83) and (84). A pump is unavailable if it is 
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under maintenance as seen in (85). Constraints (86) - (90) restrict the number of 

pump changeovers (sT,8). Additional subsets of time intervals are introduced: the set 

of time intervals leading up to immediately before the predicted failure time (T§ ), 

the set of all time intervals except the last time interval (Tc), sets of time intervals 

the length of the mean time to repair (T�8), sets of time intervals leading up to and 

including the current time interval (T8∗) where T8∗��� is the number of intervals leading 

up to and including the current time interval, the sets of the 8 time intervals after 

each time interval (T̈8), and the set of all but the last κ time intervals (Tª). 

mM&,8 +mM',8 ≤ 1 ∀t ∈ T (78) 

emT,8
/8128

8	∈7

≤ 1 ∀j ∈ JM, ∀t ∈ T (79) 

emM&,8
/8128

8∈7̂

= 1  (80) 

mM&,8
024_2 ≥ e mM&,J

/8128

J∈7'
∗

 ∀t ∈ T (81) 

e 1−mM&,J
024_2

J∈7'
∗

≥ mT8∗��� − 1gmM&,8
/8128 ∀t ∈ T (82) 

emM&,J
J∈7̀'

≥ mM&,8
/8128MTTR ∀t ∈ T (83) 

emM&,8
8	∈7

≤ MTTR  (84) 
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1	–	aT,8 ≥	mT,8 ∀j ∈ JM, ∀t ∈ T (85) 

sT,8 ≤	aT,8 	+ 	aT,8j& ∀j ∈ JM, ∀t ∈ Tc (86) 

sT,8 ≥	aT,8j&	–	aT,8 ∀j ∈ JM, ∀t ∈ Tc (87) 

	sT,8 ≥	aT,8	–	aT,8j& ∀j ∈ JM, ∀t ∈ Tc (88) 

	sT,8 ≤ 	2	–	aT,8	–	aT,8j& ∀j ∈ JM, ∀t ∈ Tc (89) 

e sT,8
J	∈7k'

≤ 1 ∀j ∈ JM, ∀t ∈ Tª (90) 

 

The constraints on maintaining the pumps are complemented by a set of constraints 

on equipment inspections (uT,8) during the scheduling horizon. At most one 

inspection on each equipment during the horizon is enforced by (91), with each 

equipment to be inspected once (92). For safety, (93) enforces that no inspections 

be performed at the same time as pump repair. At most one equipment is to be 

inspected per shift where the sets of 12 time intervals after each time interval (T« ), 

and the set of all but the last 12 time intervals (T¬) are defined (94).  

The set of time intervals before the predicted failure time except the last MTTR 

time intervals is Tl. If there is a prediction of failure within the time horizon, (95) 

ensures that an inspection is scheduled. 
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euT,8
8	∈7

≤ 1 ∀j ∈ J (91) 

euT,8
T	∈m

= 1 ∀t ∈ T (92) 

m1 − uT,8g ≥ mM&,8 +mM',8 ∀j ∈ J, ∀t ∈ T (93) 

euT,J
J∈7n

≤ 1 ∀t ∈ T¬ (94) 

e uM&,8
8∈72

= 1  (95) 

 

Resource constraints and variable bounds 

The human, maintenance, and electricity resources used in relation to their 

requirements and capacities are computed via (96) - (103). Equations (102) and 

(103) describe the power consumption of the pumps [14]. Performance 

relationships for the turbines, condenser, and reboiler are obtained via high-fidelity 

simulation and regression and shown in (104)-(107). Bounds are shown in 

equations (108)-(113). 

HRU8 	= 	eHRRTZmT,8
T	∈	m

+eHRRT:uT,8
T	∈	m

 ∀t ∈ T (96) 

HRU8 ≤	HRC8 ∀t ∈ T (97) 
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MRU8 =eMRRTmT,8
T	∈m

 ∀t ∈ T (98) 

MRU8 ≤	MRC8 ∀t ∈ T (99) 

ERU88_81V 	= 	 ERUM&,8 	+ 	ERUM',8 	− 	ERGa&,8 	− 	ERGa',8 ∀t ∈ T (100) 

ERU8 ≤ 	ERC ∀t ∈ T (101) 

ERUM&,8 	=
F/&5,8ρgH
XηM&

 ∀t ∈ T (102) 

ERUM',8 	=
F/&B,8ρgH
X ∗ ηM'

 ∀t ∈ T (103) 

ERGa&,8 	= α&F/C,8 	+ α' ∀t ∈ T (104) 

ERGa',8 	= α5F/d,8 	+ αB ∀t ∈ T (105) 

Q<&,8 	= αCR8 	+ αd ∀t ∈ T (106) 

Q<',8 	= αeF/',8 	+ αf ∀t ∈ T (107) 

0 ≤ F/,8 ≤ F- ∀s ∈ S, ∀t ∈ T (108) 

0 ≤ F4,/,8 ≤ F- ∀s ∈ S, ∀t ∈ T (109) 

0 ≤ T/5,8 ≤ T- ∀s ∈ S, ∀t ∈ T (110) 

R, ≤ R8 ≤ R-	 ∀t ∈ T (111) 

0 ≤ m8
7(7 ≤ m7(7,- ∀t ∈ T (112) 

0 ≤ z87(7 ≤ z7(7,- ∀t ∈ T (113) 
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5.4.3.4. Maintenance Scheduling and Process Optimization 

The predicted failure time and probability of failure distribution were input into the 

maintenance scheduling and process optimization model. The model was optimized 

for multiple levels of the thresholds. This yielded a set of corresponding system 

effectiveness metrics. The full set of obtained set of solutions is shown in Figure 

39. Each plotted point corresponds to a different combination of decision variables, 

and the decision maker can then select from the solutions to obtain an optimized 

trajectory of maintenance and process decisions.  

 

 

 

 Figure 39: Case Study 2 - Pareto optimal maintenance and process solutions. 

Reprinted with permission from [52]. 
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It is noted that the directionality of the aggregated safety metric is such that lower 

values are desired. It is further noted that the solution set is Pareto optimal with the 

epsilon-constraint for each of the solutions is active and no points being dominated. 

The maximum expected profit case, a solution selected from qualitative assessment 

of the Pareto frontier, and the minimum expected profit case have been selected for 

further analysis. The optimized outlet flowrate of species B is presented in Figure 

40 to illustrate process operating conditions for the cases.  

 

 

 

Figure 40: Optimized B flowrate. Reprinted with permission from [52]. 
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It is observed that the maximum expected profit case has the highest flowrates over 

the time horizon and this is a result of the optimization recovering the upper 

production targets. The selected solution behaves similarly to the minimum 

expected profit case initially but then behaves similarly to the maximum expected 

profit case. The behavior of the selected solution is due to flowrates having been 

reduced sufficiently early in the scheduling horizon to allow for increased flowrates 

later in the horizon without adversely impacting the safety metric. The minimum 

expected profit case has the lowest flowrates over the time horizon with an initially 

reduced flowrate to the more costly and less energy-efficient secondary pump. It 

can be noted that a relatively modest change to production takes the system from  

the maximum expected profit solution to the selected solution, and that this change 

has a significant impact on the safety metric. 

The maintenance schedules corresponding to the three selected cases are shown in 

Figure 41. It can be observed that in all three cases, the primary pump is repaired 

before the failure time, and that the other units are inspected at different spread out 

points in the horizon. It is noted that alternative inspection schedules can be 

obtained through the introduction of additional integer cuts if desired. 
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Minimum expected profit 

 

Selected solution 

 

Maximum expected profit 

  

Figure 41: Optimized maintenance schedules. Reprinted with permission from [52]. 
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5.4.3.5. Approach Comparison 

This section contains a comparison between three approaches: corrective 

maintenance (CM), an example preventive maintenance (PM) approach, and the 

described prescriptive maintenance (PsM) approach.  

In order to provide a common reference, it is assumed that maintenance on the 

primary pump has been conducted similarly until the start of the horizon and that 

the horizon occurs in the fourth quarter of the year, that the process operating 

conditions within the horizon would be the same, and that the equipment failure 

would occur at the predicted failure time. In the CM approach, the maintenance is 

done immediately after the failure time. In the PM approach, the maintenance time 

is determined from maintenance intervals calculated assuming as-good-as-new 

(AGAN) maintenance and the Weibull parameters reported in the supporting 

information. In the PsM approach, failure probability post-prescriptive 

maintenance is considered to be baseline. It is noted that more complex failure and 

repair models exist to capture specificities of processing systems, and that risk-

based maintenance approaches could alternatively be used, however the specified 

methods have been used to avoid imparting additional complexity and lengthiness. 

The metrics selected are overall equipment effectiveness (OEE) which would 

correspond to the availability over the horizon, and relative aggregated safety 

metric (Λc) as defined in (114) and (115).  
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OEET = 6
1
168=eaT,8

8∈7

 ∀j ∈ JM (114) 

Λc =
Λ
ΛbO  (115) 

 

In all approaches, the relative aggregated safety metric is obtained from the 

predicted failure probability trajectory, and the failure probability post-failure is 

considered to be one. The results can be found in Figure 42 and Table 21. 

It can be observed that corrective maintenance would potentially have resulted in a 

process safety incident and that preventive maintenance and prescriptive 

maintenance would have resulted in the process safety incident being avoided. It 

can also be observed that prescriptive maintenance has a better relative aggregated 

safety metric value. Given that preventive maintenance does not consider process 

information and prescriptive maintenance considers process information, this 

comparison illustrates the added value of considering process operating conditions 

in scheduling maintenance as prescriptive maintenance would accordingly have a 

higher expected profit than the other approaches. It is finally noted that different 

maintenance approaches may be more or less appropriate for different equipment 

in different services and processes. 
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Figure 42: Maintenance schedules for different approaches. Reprinted with 
permission from [52]. 

 

 

 

 

 

Table 21: Comparison of different maintenance approaches. Reprinted from with 
permission [52]. 

Approach Incident OEE 𝚲c 

Corrective Yes 36.3% 1 

Preventive No 97.6% 0.014 

Prescriptive No 97.6% 0.001 
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5.5. Conclusions 

Optimized resource allocation, process optimization, and scheduling can help 

improve system effectiveness and system resilience. This paper contributes a 

framework that combines process safety, machine learning for failure prediction, 

and mathematical optimization. The framework was illustrated through a 

motivating example and a case study, and used for integrated maintenance 

scheduling and process optimization. 

Equipment mechanical failure prediction was done using ensembles of support 

vector machine classifiers. The classifiers were evaluated on validation data not 

used to train the models. The individual classifiers had an overall F1-score of 95.9% 

and an overall accuracy of 95.7%. The ensemble classifiers had a overall F1-score 

of 98.7% and an overall accuracy of 98.7%. It is noted that different model 

performance metric values can be expected for different input historical data. It was 

seen here that the ensemble classifiers performed better than the individual 

classifiers.  

The ensemble classifiers were used to predict a failure probability trajectory and 

failure time. The failure prediction outputs were fed as parameters to a multi-

objective mixed-integer nonlinear programming model to determine sets of process 

and maintenance decisions that simultaneously optimized profit and a safety metric.  

Future work will be focused on weighted tuning via cost-sensitive support vector 

machine classification to improve model performance, comparing the performance 

of the approach on multiple data sets, incremental learning, comparing the approach 
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to risk-based maintenance, and on safety-aware maintenance-aware fault-aware 

multiparametric model predictive control to link fault detection with maintenance 

scheduling and control. 

The developed framework is process-agnostic as well as safety metric-agnostic, and 

can be adapted for use with other failure prediction, safety quantification, and 

optimization methods. 
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6. DATA-DRIVEN PRESCRIPTIVE MAINTENANCE 

TOWARD FAULT-TOLERANT MULTI-PARAMETRIC 

CONTROL* 

6.1. Summary 

Prescriptive maintenance can improve system effectiveness and system safety via 

integrated production and maintenance optimization. However due to system 

disruptions there is potential for abnormal operations and an undesirable increased 

occurrence of process safety incidents. This research provides a multi-parametric-

based framework for safety-aware maintenance-aware and disruption-aware 

process control. It leverages ensemble classification via machine learning 

classifiers for fault detection, mixed-integer nonlinear programming for integrated 

safety-aware production and maintenance scheduling, as well as hybrid multi-

parametric model predictive control for fault-tolerant setpoint tracking. The results 

show that the ensemble classifier outperforms the individual classifiers in terms of 

fault detection accuracy, sensitivity, and specificity. Furthermore, it is seen that the 

developed controllers are able to reconfigure the control actions based on process 

disruption information. The framework is illustrated with a chemical complex 

system, and a cooling water system. The approach can be used to help improve the 

safety and productivity of industrial processes.2 

  

 
2* This chapter was submitted as Gordon, C. A. K.; Pistikopoulos, E. N. Data-Driven Prescriptive 
Maintenance toward Fault-Tolerant Multi-Parametric Control. AIChE Journal. Copyright American 
Institute of Chemical Engineers. 
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6.2. Introduction 

Prescriptive maintenance seeks to determine the set of integrated maintenance and 

production decisions that improve the effectiveness of process systems. These 

decisions can be complex as they: interact, impinge upon multiple time scales, and 

affect the level of system safety.  

Disruptions pose challenges to system effectiveness and safety. From a process 

monitoring perspective, these disruptions can be classified as: (1) faults, which are 

deviations in system parameters from nominal values and can be countered via 

process actions; (2) failures, which are severe functionality interruptions that can 

be countered by maintenance actions but not by process actions; and (3) 

disturbances, which are uncontrolled system inputs.[281] These disruptions have 

the potential to lead to abnormal operations and an undesirable increased 

occurrence of process safety incidents. It is thus of great interest to leverage state-

of-the art techniques to support decision-making. 

This research draws upon a number of research areas to tackle the challenges 

associated with process disruptions. Machine learning is a field of artificial 

intelligence that can help account for the complexity of process disruptions through 

data-centric and methodological inference of relationships between system 

variables.[19, 281] Mathematical optimization is used to tackle the associated 

problem of constrained resource allocation through its ability to account for 

nonlinear and discrete system phenomena via rigorous algorithms.[25] Multi-

parametric model predictive control (mpMPC) is leveraged to provide rapid 
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controller response through its shifting of the computational optimization burden 

offline to yield explicit optimal control laws as a function of system 

parameters.[352] A summary of the related literature is provided in Table 22. 

This research presents a framework for prescriptive maintenance. The framework 

involves: equipment failure prediction using machine learning, maintenance and 

production scheduling with safety constraints using mathematical optimization, 

high-fidelity dynamic simulation, as well as multi-parametric model predictive 

control. The framework is applied to a chemical complex case study as well as a 

cooling system case study. It is stressed that the framework considers the two time 

scales of scheduling and control as well as both faults and failures. 

This research builds upon previous efforts and develops a methodology which 

includes the consideration of maintenance for multi-parametric model predictive 

control. Key features of the proposed methodology include development of: a 

diverse ensemble classifier for fault detection consisting of an artificial neural 

network, decision tree, and support vector machine model; constrained mixed-

integer nonlinear programming to maximize profit and minimize cost; as well as 

fault-tolerant multi-parametric model predictive control towards maintaining 

setpoint tracking in the presence of system disruptions. 
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Table 22: Indicative summary of related previous work 

Reference(s) Description 
 Fault Detection 
[353] Principal component analysis for fault detection and discriminant 

methods for fault diagnosis 
[354] Feature extraction and random forest classification 
[74] Feature selection and one-class support vector machine 

classification 
[115] Outlier detection via Gaussian process regression and classification 
[81, 267, 346] Simultaneous fault detection and diagnosis using support vector 

machines 
  
 Process and Maintenance Scheduling 
[145] Overall profitability maximization of multipurpose equipment  
[204] System effectiveness optimization considering environmental 

impact 
[143] Short-term preventive maintenance scheduling using mixed-integer 

linear programming 
[118] Robust mixed-integer linear programming involving equipment 

condition degradation modeling 
[52] Multiobjective profit and safety optimization and ensemble support 

vector classification failure prediction 
 Fault-aware Control 
[267] Multi-parametric model predictive control with estimated fault 

magnitudes as parameters 
[254] Post-sensor fault measurement correction with process control 
[239] Fault magnitude quantification via parameter estimation 
[253] Reconfiguration of the model predictive control objective function 

coefficient matrix 
[232] Disturbance-aware model predictive control and observer-based 

fault detection 
  
 Hybrid Model Predictive Control 
[355] Modeling and control of mixed logical dynamical systems 
[356] Branch and bound algorithm for multi-parametric mixed-integer 

quadratic programming problems 
[357] Online model predictive control considering a piecewise-defined 

state-to-input matrix and reduced number of state transitions  
[358-361] Hybrid multi-parametric model predictive control algorithms and 

applications 
[289] Online model predictive control using a tree traversal algorithm 
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6.2.1. Problem Statement 

This research seeks to address the problem defined by the following components: 

Generalized System 

A process network involving species i	 ∈ I, equipment j	 ∈ J, process streams s	 ∈

S, utilities u	 ∈ U, scheduling time intervals tG 	 ∈ TG, and control time intervals 

tb 	 ∈ Tb. 

Objectives 

• Maximize system effectiveness 

• Setpoint tracking 

Given 

• Process network design 

• High-fidelity dynamical model 

• Equipment condition, failure, and error data 

• Production, atmospheric, maintenance, and economic data 

• Species supply and demand parameters 

• Safe operating limits 

• Process deviation measurements 

Determine 

• Failure prediction 

• Production and maintenance schedule 

• Fault existence 

• Sequence of optimal control actions 
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6.3. Methodology 

6.3.1. mpSAMADA Framework 

This research presents as well as implements a multi-parametric-based safety-

aware, maintenance-aware, and disruption-aware (mpSAMADA) framework for 

prescriptive maintenance. The framework spans a number of different aspects as 

shown in Figure 43. 

 

 

 

 

 

 

 
Figure 43: mpSAMADA framework  
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The scheduling model is based on mathematical programming. It is safety-aware 

via inclusion of process safety constraints. It is maintenance-aware via inclusion of 

maintenance constraints. It is disruption-aware via use of the time (TP) and 

probability trajectory (PP) of failure for scheduling.  

The control model is based on multi-parametric model predictive control. It is 

developed using a surrogate model created from dynamic simulation measurements 

(y). It is safety-aware via constraints on system states, inputs, and input changes. It 

is maintenance-aware via use of discrete-valued equipment availabilities (aT) as 

state-transition indicators. The corresponding continuous-valued scheduled 

production decisions are used as controller setpoints (y/0∗ ). It is disruption-aware 

via consideration of a fault parameter (Δ) that captures a detected fault magnitude. 

The key outputs of the mpSAMADA framework are a production schedule, a 

maintenance schedule, and control actions (u∗).  

The key aspects of the overall methodology are summarized in Table 23 and this 

chapter proceeds to describe each of them in more detail. 
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Table 23: Summary of methodology 

# Aspect Input Output 

1 Failure 
Prediction 

Historical data Failure probability 
trajectory 

Failure time 

2 Scheduling Failure probability 
trajectory 

Failure time 

System parameters 

 

Continuous-valued 
production setpoints 

Discrete-valued 
equipment availabilities 

3 Fault Detection Process measurements 

 

Fault parameter 

4 Control Surrogate state-space 
model  

Continuous-valued 
production setpoints 

Discrete-valued equipment 
availabilities  

Fault parameter 

 

Explicit hybrid control 
laws 
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6.3.2. Failure Prediction and Scheduling 

The failure prediction and scheduling models follow a similar paradigm to that of 

the authors’ previous work to which researchers interested in implementing are 

kindly referred.[52] This subsection summarizes the essential aspects for brevity 

and links them to the other framework components. It is noted that the scheduling 

and control problems are treated separately here and that it is assumed that 

transitions to new operating points are mostly resolved within the scheduling time 

discretization. It is further noted that work related to the integrated scheduling and 

control problem has been done for systems in which this assumption does not 

hold.[230, 237, 362] 

The objective of failure prediction is to estimate when a piece of equipment will 

likely fail. The authors used five key steps to predict failure in their previous work: 

(1) preprocessing of diverse system data, involving statistical feature generation 

and Z-score normalization; (2) feature selection, involving recursive feature 

elimination; (3) splitting, to divide data into training and test sets; (4) model 

creation, using multiple nonlinear support vector classifiers; and (5) prediction, 

consolidating individual support vector machine models into ensemble models over 

rolling prediction horizons.[52] It is noted that the mpSAMADA framework is 

flexible for use with alternative failure prediction methods. The present work uses 

a two-parameter sigmoid function to model failure probability and illustrate the 

framework. The outputs of the failure prediction are: (1) the estimated time of 

failure, and (2) a vector containing the predicted probabilities of failure. 
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The scheduling model leverages the failure prediction model outputs to optimize 

maintenance and production. This is done by formulating the problem as a 

constrained mixed-integer nonlinear programming model subject to production, 

maintenance, availability, and safety constraints. The scheduling model is solved 

and then used to inform the optimal control model. 

 

6.3.3. Fault Detection 

The fault detection model methodology consists of two phases: (1) an offline phase, 

and (2) an online phase.  

An overview of the offline phase is provided in Figure 44. Historical training and 

test data are imported. The rows of the data are termed samples, and the columns 

of the data are termed features. The data is labelled and consists of both normal and 

faulty samples. The data is first preprocessed via Z-transformation. Wrapper feature 

selection is then performed on the transformed data via recursive feature 

elimination. A random forest classification algorithm is leveraged for this due to its 

intrinsic ability to rank features based upon their importance. The selected features 

are then used to filter the data and provide a smaller data set for faster and more 

accurate training.  

Data-driven model creation then proceeds. Three classifiers are created: (1) an 

artificial neural network (ANN) model; (2) a decision tree (DT) model; and (3) a 

cost-sensitive C-parametrized support vector machine (SVM) model. Background 

information about these models can be found in another study [20].  
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Figure 44: Overview of fault detection methodology – Offline phase 

 

 

 

 

 
Figure 45: Overview of fault detection methodology – Online phase 
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One distinguishing feature of the present research is the combination of these 

multiple different models into ensemble for fault detection. This has the advantage 

of improving prediction accuracy due to being able to average the votes of 

individual classifiers, provide a better approximation to the phenomena being 

modeled, and model a more diverse range of phenomena.[363] 

An overview of the online phase is provided in Figure 45. The ensemble model 

makes a determination as to whether or not a sample of online data corresponds to 

a fault based upon simple majority voting. The output of the fault detection 

methodology is thus an ensemble fault detection model that predicts fault existence 

if two out of the three constituent individual classifiers each label a given sample 

as faulty. 

 

6.3.4. Explicit Control 

An explicit control model is developed for each major piece of equipment. The 

following discussion touches upon how the present research addresses disruptions 

and hybrid explicit controller creation. 

The control methodology accounts for both failures and faults. Predicted equipment 

failures directly affect production and maintenance scheduling which indirectly 

affects control by influencing set points and state transitions. Predicted faults 

directly affect control through the use of a fault parameter (Δ). This fault parameter 

is comprised of: (1) fault magnitude (δ), the deviation of a process measurement 
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from its nominal value, and (2) fault existence (yP ∈ 0,1), which is obtained from 

the fault detection model. It is noted that this research focuses on process faults as 

well as actuator faults but does not consider sensor faults. An assumption is made 

here that after fault detection, either a sensor fault magnitude estimator is available 

or that sensor measurements can be trusted to provide a measure of the fault 

magnitude. The functional form of the fault parameter (Δ) is shown in (116).  

Δ = δyP  (116) 

The fault parameter thus takes on two values: (1) the fault magnitude, if a faulty 

situation is predicted, or (2) zero, if a non-faulty situation is predicted. From the 

perspective of process control, this fault parameter is then used as a disturbance 

magnitude. 

The control methodology continues with the use of multi-parametric model 

predictive control to build hybrid explicit controllers. This is done using the 

PARametric Optimisation and Control (PAROC) framework for optimal and 

explicit control of dynamic processes subject to uncertainty and varying 

parameters.[352]. This framework allows the computational burden of determining 

optimal model-based control laws to be transferred offline, and reduces the online 

computational effort of model predictive control to point location and function 

evaluation. The steps of the PAROC framework are summarized in Figure 46 and 

then described. 
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Figure 46: PARametric Optimisation and Control (PAROC) framework  

 

 

 

 

Step 1: involves dynamic high-fidelity process modeling. This leverages a system 

of differential-algebraic equations to capture system phenomena. 

Step 2: involves surrogate model development. This involves the development of 

reduced-order models that are more tractable for control applications. It is noted 

that the PAROC framework extends to systems with discrete events such as 

equipment becoming unavailable due to maintenance being performed. These 

events can lead to system state transitions and different regimes of system dynamics 

k ∈ K. The output of the second step in this context is a piecewise affine (PWA) 

surrogate model in which states (x8), inputs (u8), disturbances (d8), and outputs (y8) 

have regime-dependent state-space matrices (117). 
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x8j& = A!x8 + B!u8 + C!d8 

y8 = D!x8 + E!u! 

 (117) 

 

Step 3: involves multi-parametric programming. This involves using the surrogate 

model together with offline solution of the model predictive control problem. The 

output of this step is a control map. Each region of the control map contains an 

explicit control law that maps system measurements and the fault parameter to 

optimal control actions. 

Step 4: involves closed-loop validation. This involves the use of the developed 

controller with the high-fidelity model to assess its performance. 

It is noted in passing that the mpSAMADA framework is in line with recent trends 

towards smart manufacturing, digitalization, and artificial intelligence. Of 

particular note is the ability to embed the explicit control laws resulting from the 

multi-parametric model predictive control on a chip which is of interest for next-

generation edge computing and rapid control actions.  

The paper then proceeds to apply the approach on two case studies. 
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6.4. Results 

6.4.1. Overview of Model Implementation 

This research used a number of different software environments. The failure 

prediction model and outputs were generated in MATLAB R2020a. The 

maintenance and production scheduling was carried out in GAMS 27.1.0 using 

BARON.[364] The fault detection was done in R 3.5.1. The high fidelity dynamic 

models were implemented in gPROMS ModelBuilder 6.0. MATLAB R2020a was 

used to build the surrogate state-space models using the System Identification 

Toolbox as well as to build the multi-parametric model predictive control models 

using  the POP Toolbox.[365] The cross-validation was done by integrating 

gPROMS and MATLAB using gO:MATLAB. Both case studies were implemented 

in the same software environments. 

6.4.2. Case Study 1 – Chemical Complex 

6.4.2.1. Description 

The system used for the first case study is a chemical complex and was taken from 

Vassiliadis and Pistikopoulos.[7] The objective of the first case study is to illustrate 

how the different components of the framework link. In this illustrating example, 

the failure prediction and fault detection are effectively treated as given inputs and 

the focus is on the scheduling and control aspects of the framework. It is noted that 

this example involves multiple processing routes as well as multiple units which 

enables elucidation of maintenance and production interactions.  
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The system is depicted in Figure 47 and its scheduling parameters are provided in 

the Appendix. The overall objective of the system is to convert species A to species 

C to satisfy downstream demand. Feed is supplied to reactors one, two and three in 

the top branch and to reactor four in the bottom branch. In the top branch, reactors 

one and two convert A to an intermediate species B which is then converted to 

species C by reactor three. In the bottom branch, reactor four converts species A to 

species C directly. 

 

 

 

 

 

Figure 47: Case Study 1 – Chemical complex system 
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6.4.2.2. Maintenance and Production Scheduling 

The problem statement for the process optimization and maintenance scheduling 

model is provided as follows. The objective is to maximize the system effectiveness 

metric of expected profit. The scheduling horizon is one day. It is assumed that only 

one type of maintenance is performed, mean time to repair (MTTR) is fixed, there 

are no resource constraints on maintenance, and that maintenance repairs 

equipment to an as-good-as-new (AGAN) condition. The inputs that are given 

include the design of the process network, cost parameters, and failure information. 

The key binary variables are the availability of the first reactor unit and whether or 

not to maintain it in a given time interval. The key continuous variables considered 

are flowrates (F). The model formulation involves four equipment j	 ∈ J, eleven 

streams s	 ∈ S, twenty-four hourly time intervals t	 ∈ T,  and an aggregated utility 

u	 ∈ U.  

The expected profit objective function (Φ) is shown in (118). It consists of product 

revenue, feed cost, maintenance cost, and utility cost terms as well as the 

probability of the system being in a non-failure state which is taken to be the system 

reliability (R8
/6/). The objective function is subject to process constraints, 

availability constraints, and maintenance constraints. 

maxΦ =eR8
/6/ °CZF&&,8 − CbF&,8 −eCTOm8,T

T	∈m

−ee CT-F/,8
/	∈G.T	∈m

±
8	∈7

 (118) 

 



 160 

The process constraints are taken from another study. [7] 

F&,8 = F',8 + F5,8 ∀t ∈ T (119) 

F5,8 = FB,8 + FC,8 ∀t ∈ T (120) 

Fd,8 = α&FB,8 ∀t ∈ T (121) 

Fe,8 = α'FC,8 ∀t ∈ T (122) 

Fd,8 + Fe,8 = Ff,8 ∀t ∈ T (123) 

Fg,8 = α5Ff,8 ∀t ∈ T (124) 

F&+,8 = αBF',8 ∀t ∈ T (125) 

F&&,8 = Fg,8 + F&+,8 ∀t ∈ T (126) 

Fc ≤ F&,8 ≤ FG ∀t ∈ T (127) 

 

The availability (aT,8) constraints prevent flow to the reactors if they are unavailable 

due to being maintained (m8,T). 

FB,8 ≤ FZ&- a&,8 ∀t ∈ T (128) 

FC,8 ≤ FZ'- a',8 ∀t ∈ T (129) 

Ff,8 ≤ FZ5- a5,8 ∀t ∈ T (130) 

F',8 ≤ FZB- aB,8 ∀t ∈ T (131) 

1 − aT,8 ≥ mT,8  ∀j	 ∈ J, ∀t ∈ T (132) 
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The maintenance constraints impact maintenance and availability. A failure time 

prediction of 16 hr for reactor one is fed as an input parameter to the maintenance 

constraints. It is assumed that this failure does not result in loss of containment. 

Maintenance is constrained to start once before the failure time by (133) where the 

time intervals before the predicted failure time are denoted T&. 

e m,8
/8128

8	∈7!
= 1  (133) 

 

Maintenance is further constrained to: not occur simultaneously on reactors one and 

two by (134) for safety, as well as to continue contiguously once started for only 

the repair time by (135) and (136). Constraints (137) - (139) help indicate if prior 

maintenance was done in the time horizon. A number of subsets are defined: the 

equipment maintenance list J& consisting of the first reactor, MTTR time intervals 

after and including each possible m start time (T'), all time intervals except the last 

(MTTR - 1) time intervals (T5), all time intervals except the last time interval (TB), 

and sets of time intervals before each given time interval (TC). 

mZ&,8 +mZ',8 ≤ 1 ∀t	 ∈ T (134) 

e mT,J
J∈7"

≥ MTTRTmT,8
/8128	 t	 ∈ T5	∀j	 ∈ J& (135) 

emT,8
8	∈7

≤ MTTRT	 t	 ∈ T	∀j	 ∈ J& (136) 
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mT,8j&
024_2 ≥ mT,8

/8128 ∀t	 ∈ TB∀j	 ∈ J& (137) 

mT,8j&
024_2 ≥ mT,8

024_2 ∀t	 ∈ TB∀j	 ∈ J& (138) 

e mT,J
/8128

J∈7'
=

≥ mT,8j&
024_2 t ∈ TB	∀j	 ∈ J& (139) 

 

Maintenance is linked to component reliability, system reliability, as well as 

expected profit by safety constraints (140) - (142). A predicted failure probability 

trajectory for reactor one is input to the scheduling model as a corresponding 

predicted reliability (R&,8
023.) defined by parameters (λ& and λ'). It is assumed that 

the other reactors have been outfitted with predictive maintenance (PdM) systems 

which returned constant reliabilities over the scheduling horizon of one day. It is 

thus noted that system reliability here reduces to an affine function of the reliability 

of reactor (R&,8). 

R&,8
023. =

1
1 + eHo!(8Ho")

 ∀t	 ∈ T (140) 

R&,8 = R&,8
023.m1 − m&,8

024_2g + (1)m&,8
024_2 ∀t	 ∈ TB (141) 

R8
/6/ = R&,8R5 + R'R5 − R&,8R'R5 + RB − R&,8R5RB

− R'R5RB + R&,8R'R5RB 

∀t	 ∈ T (142) 

 

The scheduling model has 457 continuous variables, 311 binary variables, as well 

as 733 constraints. It is solved and the results are summarized in Figure 48.  
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Figure 48: Case Study 1 – Production trajectories 

 

 

 

It can be seen that before maintenance the production is optimized by using both 

the top branch and the bottom branch. It is noted that reactor four has a higher 

capacity, higher utility cost, and lower conversion than reactors one and two 

combined. Consequently, it is seen that more feed is provided to reactors one and 

two than reactor four to increase expected profit. It is observed that reactor one is 

maintained before the failure time. The system reconfigures to a state in which there 

is a cessation of flow to reactor one, reactor one is made unavailable, and the load 

of the other reactors is adjusted. Specifically during maintenance, reactor two takes 
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on the maximum additional feed possible and reactor four has an increased inlet 

flowrate. This is reflective of the top branch having a lower utility cost and a slightly 

higher overall conversion than the bottom branch. After maintenance, the system 

returns to its previous regime. The scheduling results are then used to inform the 

control of the system.  

 

6.4.2.3. Explicit Control 

The results presented here correspond to the system regime in which reactor one is 

unavailable and the other reactors are available. The scope of the subsequent 

discussion is for reactor two. 

The outputs are concentration (CN), and reactor temperature (T). The manipulated 

input is cooling jacket water temperature (Tp). The unmanipulated input or 

disturbance is cooling water flowrate (mp). The fault parameter is taken as a given 

input corresponding to a 5% decrease in the cooling water flowrate. The control 

objective is to maintain conversion near 90% which corresponds to a concentration 

setpoint of 1 mol/L. The mpMPC design follows the PAROC framework steps.  

 

Step 1: High-fidelity dynamic modeling 

The reactor model was adapted from another study,[241] and the parameters used 

are provided in the Supporting Information. It is assumed that all components are 

in liquid phase, there is perfect mixing, and that all states are measurable. 
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dCN
dt =

m
ρV mCN,+ − CNg − k+e

H<>Z7CN (143) 

dT
dt =

mC0(T+ − T) + VΔH2\)k+e
H<>Z7CN + UAmp(Tp − T)

ρVC0
 (144) 

 

Step 2: Model approximation 

The surrogate state-space model was developed from input-output data. This was 

generated by initializing the high-fidelity model at steady-state, perturbing the 

cooling temperature by ± 5 °C, and then perturbing the cooling flowrate by ± 1 kg/s 

at a sample time of 1 s. Model approximation was done in MATLAB using the 

System Identification Toolbox to construct a surrogate state-space model. The fit 

of the surrogate model to the data was 83.64% for concentration and 97.75% for 

temperature as shown in the Supporting Information.  

The identified state-space model took the form of (145). The state-space model 

contains pseudo-states (x8), cooling water temperature as an input (u8), as well as 

cooling flowrate as a disturbance (d8). It is stressed that while the pseudo-states do 

not correspond directly to the physical states, the outputs (y8) of the surrogate model 

correspond to the physical outputs. 

x8j& = Ax8 + Bu8 + Cd8 

y8 = Dx8 

 (145) 
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Step 3: Multi-parametric programming 

The identified state-space model was then used to build a mpMPC controller in 

MATLAB. The control model and tuning parameters can be found in Appendix C. 

The parameter (θ) vector is shown in (146) and consists of the pseudo-states, the 

magnitude of the cooling water flowrate disturbance, and the conversion setpoint. 

θ ∶= [θ&, θ', θ5, θB] = �x&8q+, x'8q+, d8q+, y8
/0�  (146) 

 

The control model was optimized using the POP toolbox to yield 12 critical regions 

over the entire parameter space. A slice of the control map for certain parameters 

fixed at nominal values is shown in Figure 49. It is noted that each critical region 

corresponds to an explicit control law that links the jacket temperature to the 

parameters.  

Step 4: Closed-loop validation 

The controller was then validated against the high-fidelity model. As shown in 

Figure 50, it can be seen that although there is some variation concentration, the 

controller is able to maintain the conversion near the setpoint. It is further noted 

that the controller is able to safely maintain the reactor temperature despite the 

cooling flowrate disruption.  

Online application of the controller involves simply locating points in the control 

map and then evaluating the control laws to get the control actions. 
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Figure 49: Case Study 1 - Control map  

 

 

 

Figure 50: Case Study 1 - Closed-loop validation  
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6.4.3. Case Study 2 – Cooling System 

6.4.3.1. Description 

A cooling system was used for the second case study. It adapts fault information, 

[242] system structure, [9] and constraints [366] from other work. The objective of 

the second case study is to illustrate the fault detection component of the framework 

in greater depth. In this example, the failure prediction is treated as a given input. 

The focus here is on the fault detection and control aspects of the framework. It is 

noted that the process data used in example involves a large number of features that 

exhibit high variability which render fault detection non-trivial. The system is 

depicted in Figure 51 and its scheduling parameters are shown in the Supporting 

Information. 

 

 

 

 
Figure 51: Case Study 2 – Cooling system  
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The overall objective of the system is to provide an fixed and uninterrupted supply 

of cooling water for the reactor in the Tennessee Eastman Process (TEP).[242] 

Warm recycled water is sprayed onto the film fills of a mechanical forced draft 

cooling tower to bring it into contact with a fan-induced counterflow air steam to 

reduce the temperature to process requirements. The cooled water is accumulated 

in a basin and then returned to the reactor by a pump network. 

 

6.4.3.2. Maintenance and Process Scheduling 

The problem statement for the process scheduling and maintenance scheduling 

model is provided as follows. The objective is to minimize expected cost. The 

scheduling horizon is one day, with an hourly time discretization. The model 

formulation for the process and maintenance scheduling proceeds similarly to the 

first case study and can be found in the Supporting Information. Similarly, a failure 

time prediction of 8 hr for pump one and corresponding failure probability 

trajectory are input to the scheduling model as parameters. The key binary variables 

are the availabilities of the first pump and whether or not to maintain it in a given 

time interval. The key continuous variables considered are flowrates. The 

scheduling model has a combined total of 1201 continuous variables, 263 binary 

variables, as well as 1695 constraints. The optimization results are summarized in 

Figure 52. 
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Figure 52: Case Study 2 – Process trajectories 

 

 

 

The optimization results reflect the maintenance and process decisions that 

minimize the overall expected cost of the cooling process. These decisions are 

embedded within the pump flowrate trajectories. It can be seen that maintenance is 

performed on the first pump early on in the time horizon. During the repair time, 

the first pump is made unavailable. This leads to no flowrate through the first pump 

and the other two pumps taking on the load and experiencing higher flowrates. It is 

noted that having three parallel pumps operating at reduced capacity helps avoid 

single-point failures that could shut down entire processes. 
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The system experiences a regime transition in moving from running two pumps to 

running three pumps after maintenance is completed. Operating the other two 

pumps at higher flowrates corresponds to operating them away from their best-

efficiency points (BEP). This results in a reduced pump energy efficiency and 

higher energy cost. As such after maintenance the load is redistributed so that the 

three pumps share the flow.  

It is noted in passing that from a process safety perspective, excessive operation of 

pumps away from their BEP can lead to an increased probability of failure. It is 

further noted that operating two pumps imparts less process flexibility than 

operating three pumps due to the negative impact on the downstream process if an 

additional pump were to experience failure within the maintenance window. It can 

finally be observed that the total flowrate of cooled water remains constant over the 

time horizon as is desired. This however is not always the case due to faults which 

can result in the supply of cold utility being disrupted.  

Production setpoints and availabilities are used to inform the control of the system. 
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6.4.3.3. Fault Detection 

6.4.3.3.1. Dataset Description 

The process disruption considered here is a cooling water valve sticking. The data 

used for fault detection was data corresponding to  the Tennessee Eastman 

Process.[242] The data used consisted of three datasets: a training set of 980 

samples, comprising 500 normal and 480 faulty samples; a test set of 960 samples, 

comprising 480 normal and 480 faulty samples; and an ‘online’ set sampled from 

the test set, comprising 1 faulty sample. These datasets were used as follows: the 

training set was used to create the models, the test set was not shown to the models 

but rather used to evaluate the models, and  the ‘online’ set was used to make a fault 

prediction. The 52 features of the data are listed in the Supporting Information.  

6.4.3.3.2. Feature Selection 

Feature selection assessed the performance of progressively smaller subsets of 

features as shown in Figure 53 and Figure 54. It can be observed that using more 

features does not necessarily correspond to increased model performance and that 

a comparable or even better level of performance can be achieved with fewer 

features here. It is noted that fewer features desirable for quicker training, as well 

as useful in considering fewer measurements for fault-aware control. 

It was observed that features 9, 21, and 51 which correspond to reactor temperature, 

reactor cooling water outlet temperature, and reactor cooling water flowrate 

respectively were significantly more important in detecting this fault than others. 

These three features were used to create the described classification models.  
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Figure 53: Average fault detection accuracy for different feature subsets  

 

 

 

 

 

 
Figure 54: Average feature importance  
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6.4.3.3.3. Model Evaluation 

A summary of the performance of the individual models and the ensemble model 

is shown in Table 24. It was observed that for this fault and for this data set, the 

models had an accuracy of over 90%. It was seen that ANN and SVM outperformed 

DT. It is noted that the relatively high detection performance for this fault is 

consistent with other work done in the literature. It is further noted that while the 

ensemble model performing better than the individual models could generally be 

expected, the absolute performance of the models would vary according to fault 

type and process.  

 

 

 

 

Table 24: Summary of the fault detection performance of the models 

Metric ANN (%) DT (%) SVM (%) Ensemble (%) 

Accuracy 99.90 93.44 100.00 100.00 

Sensitivity 99.88 92.25           100.00 100.00 

Specificity 100.00 99.38   100.00 100.00 
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6.4.3.4. Explicit Control 

The results presented here are for a system regime in which all three pumps are 

available under a pump 1 outlet cooling water valve sticking scenario. This scenario 

was taken to translate to a 5% decrease in pump 1 outlet flowrate from the nominal 

value. This effectively corresponds to the rotational speed of pump 1 being fixed at 

95%. The scope of the subsequent discussion is thus for the development of a 

controller for pump 2, and a controller for pump 3. The output is flowrate (Q). The 

manipulated input is pump rotational speed (ω). The control objective is to maintain 

the total flowrate near 93.375 m3/hr. It is noted that in the second case study, the 

controllers are made fault-aware by adjusting the flowrate setpoint of each of the 

other two pumps. This is shown in (147) with a fault parameter Δ of 1.55625 m3/hr. 

It is further noted that the setpoints would remain unchanged in the absence of a 

fault. 

y8
/0,)3W = y8

/0,_V. +
Δ
2  (147) 

The mpMPC design follows the PAROC framework steps.  

 

Step 1: High-fidelity dynamic modeling 

A high-fidelity model of the cooling tower basin and pump network was 

constructed. The model equations and parameters are provided in the Supporting 

Information for brevity. 
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Step 2: Model approximation 

Input-output data was generated by initializing the high-fidelity model at steady 

state; and then successively perturbing the rotational speed of each pump by ± 4.2% 

from nominal values. Surrogate model development proceeded similarly to case 

study 1 and resulted in a fit of 100%. It is noted that the relatively high fit 

performance was due to the pump affinity law between rotational speed and 

flowrate being linear. A plot of the surrogate model against the data, the identified 

state-space model, and the state-space model matrices can be found in the 

Supporting Information.  

 

Step 3: Multi-parametric programming 

The identified state-space model was then used to build a mpMPC controller. The 

parameter vector is shown in (148) and consists of a pseudo-state, and the 

flowrate setpoint for each pump. 

θ ∶= [θ&, θ'] = �x&8q+, y8
/0�  (148) 

 

The control model was optimized and yielded three critical regions as shown in 

Figure 55. 
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Figure 55: Case Study 2 – Control map 

 

 

 

Step 4: Closed-loop validation 

The controller was then validated against the high-fidelity model. Figure 56 shows 

the system in open loop and Figure 57 shows the system in closed loop. It can be 

seen that the fault-aware controller is able to reconfigure its control actions based 

on a detected process disruption. 
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Figure 56: Case Study 2 – Non-fault aware 

 
 
 
 

 
Figure 57: Case Study 2 – Closed-loop validation 
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6.5. Conclusions 

Maintenance and production optimization can help improve the effectiveness of 

process systems. This paper implements a prescriptive maintenance framework for 

scheduling and control. The framework involves equipment failure prediction, fault 

detection, maintenance and production scheduling, high-fidelity dynamic 

simulation, and multi-parametric model predictive control. The framework was 

illustrated through a chemical complex case study and a cooling system case study. 

Maintenance and production scheduling was done using mixed-integer nonlinear 

programming. Fault detection was done using an ensemble of classifiers consisting 

of an artificial neural network, a decision tree, and a support vector machine. It was 

shown that the performance of the ensemble model was equal to or better than the 

performance of the individual models. The scheduling and fault detection results 

were fed to multi-parametric model predictive controllers to obtain optimal 

trajectories of control actions.  

Future work will be focused on extending the framework to consider simultaneous 

scheduling and control, startup and shutdown times, other types of faults, as well 

as fault diagnosis. 
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7. NEXT-GENERATION MAINTENANCE 

7.1. Summary 

This chapter provides an overview of work towards next-generation maintenance 

efforts and concludes with some suggestions for future work. 

 

7.2. Biometric Data-Driven Human Reliability Analysis 

7.2.1. Summary 

Human and socio-organizational factors impact maintenance error probability and 

the overall effectiveness  of production systems. However, quantifying this impact 

is non-trivial. Digitalization advances have led to the availability of inexpensive 

fitness watches and sensors that produce biometric data such as electrodermal 

activity data. A methodology is developed and illustrated in this section to predict 

maintenance error probability. This was done using a nonlinear support vector 

machine model to do multiclass classification on the data to predict the stress level 

from preprocessed electrodermal activity data. The predicted stress level was then 

treated as a performance shaping factor in standardized plant analysis risk human 

reliability analysis (SPAR-H). This yielded a stress-dependent probability of repair 

failure that was input into a Bayesian network to calculate the maintenance error 

probability. The results of the research for the system considered were a 

classification accuracy of 99.88% and that a high stress level increased maintenance 

error probability by 62.36% relative to a nominal stress level. 
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7.2.2. Introduction 

Maintenance helps ensure process resilience and maintain system availability and 

avoid process safety incidents and costly losses in production. Planning and 

scheduling of maintenance is key, however  maintenance can be erroneously 

executed as a result of a variety of human factors and this can influence the failure 

rate of plant equipment [367]. These human factors can include training, 

compliance, fatigue, and procedures. 

Maintenance error can lead to process safety incidents. It resulted in 13% of storage 

tank incidents [305] and 59% of human errors in pipeline incidents [368]. In 

particular, maintenance error was a key factor in the 1989 Phillips 66 Pasadena, TX 

incident in which a valve was left open in the course of maintenance leading to the 

loss of containment of flammable reactor contents [369]. The resultant dispersion 

ignited and caused a vapor cloud explosion and severe consequences of 23 deaths, 

over 100 injuries, and  over $500 million in economic losses [368]. As such 

consideration of human factors can help improve maintenance programs and 

system safety. 

The challenge however is that human factors have a nontrivial impact on human 

reliability. Several human reliability analysis methods (HRAM) exist in light of this 

and these are summarized in Table 25. In particular, correct assignment of 

performance shaping factors via expert judgement is challenging. Machine learning 

is well positioned to assist human reliability analysis by leveraging data to improve 

quantification of human error probability.  
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Table 25: Indicative summary of related human reliability analysis literature 

Reference Technique/Description 

[370] Technique for human error rate prediction (THERP) 

[371] Human error assessment and reduction technique 

(HEART) 

[372] Cognitive reliability and error analysis method 

(CREAM) 

[373] A technique for human event analysis (ATHEANA) 

[374] Standardized plant analysis of risk-human reliability 

analysis (SPAR-H) to reflect the effect of performance 

shaping factors such as overall stress and fatigue on 

human error probability 

[375] Petro-HRA involving event trees and human error 

probability adjusted by performance shaping factors 

such as threat stress 

[376] Consider the effect of safety barriers and develop a 

human error probability index (HEPI)  

[377] Bayesian Networks linking mental and physiological 

fatigue to errors 

[378] Bayesian updating of human error probability  

[379] Ensemble support vector machine classification to 

predict operator performance 
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In this research, the performance shaping factor (PSF) of stress is determined from 

biometric data. This is then transformed into a human error probability of diagnostic 

failure using standardized plant analysis risk human reliability analysis (SPAR-H). 

A Bayesian network is then developed to determine maintenance effectiveness via 

quantification of overall maintenance error probability. The novelty of this 

approach is biometric data-driven human reliability analysis to help estimate 

maintenance error probability (MEP) via data-driven selection of PSF weights 

using a nonlinear support vector machine multiclass classification model. Other key 

features of the approach are the ability to leverage multiple data, the ability to 

update the Bayesian network for dynamic quantitative risk assessment, as well as 

the ability to tailor the predictions to individual conditions of people. 

 

 
7.2.3. Problem Statement 

Objectives 

• Predict stress level and quantify maintenance error probability 

Given 

• Preprocessed electrodermal activity data 

• HRAM, and PSF weights 

Determine 

• Stress level 

• Probability of diagnostic repair error and overall MEP  
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7.2.4. Methodology 

7.2.4.1. Machine Learning 

Electrodermal activity data samples with labels corresponding to a mental state of 

different very high, high, nominal, or low stress levels are used to build a nonlinear 

support vector machine model. This model is then used for multiclass classification 

to determine the stress level of data samples without labels. 

 

7.2.4.2.  Human Reliability Analysis 

SPAR-H is used to link performance shaping factors (PSF) n ∈	N to human error 

probability (HEP) [374]. 

HEP = HEP+}PSF)
)∈(

 

The nominal HEP is denoted HEP+ and the performance shaping factor weights are 

denoted (PSF)). Here stress is considered as the sole performance shaping factor 

and the determined stress levels from the multi-class classification are used to select 

the performance shaping factor weights. 

 

7.2.4.3. Bayesian Network Analysis 

A fault tree is developed for a scenario in which a maintenance action is being 

performed. This fault tree is then transformed into a Bayesian network (BN). The 

stress-dependent HEP is then used in the BN to determine the overall MEP.  
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7.2.5. Results 

7.2.5.1. Description 

The data used was preprocessed biometric electrodermal activity data [380] that 

was generated from the Wearable Stress and Affect Detection (WESAD) dataset 

[381]. The electrodermal activity data was preprocessed by signal processing, 

feature extraction, feature selection, and balancing, and splitting [380]. The data 

consists of approximately 30,000 samples of 45 biometric-related features. The 

outcome variable is stress level and it consists of four levels which can be described 

as being: ‘low’, ‘nominal, ‘high’, and ‘very high’. The data was split according to 

a 8:1 ratio into a training dataset and a test data set. A sample was taken randomly 

from the test set to use for prediction and human reliability computation. The focus 

of this work is purely on the model training, model evaluation, and prediction for 

human reliability analysis and overall maintenance error probability analysis. 

 

7.2.5.2. Machine Learning 

The support vector machine model was built on the training set with 

hyperparameters sigma = 0.02668296 and C = 1 using all the features. It was then 

evaluated on the unseen data of the test set. It had an accuracy of  99.88%, an 

average sensitivity  of 99.49%, and an average specificity of 99.95%. The output 

of the machine learning step was a model. This model was used on the random 

sample to predict the corresponding stress level based on the feature data. The 

predicted stress level was ‘high’ and this was used to inform the human reliability 

analysis. 
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7.2.5.3. Human Reliability Analysis 

The nominal human error probability was taken as 0.01 to reflect the default value 

used in SPAR-H for thinking-related diagnosis tasks [374]. The performance 

shaping factor values [374] for stress reflect the negative effect that it can have on 

tasks. It is noted that a low stress level with an arbitrarily selected weight factor has 

been added here to account for the positive effect of low stress on quality. It is 

further noted that the magnitude of this and other weight factors can be tuned. 

PSF/823// = µ

5, Very	High
2, High

1, Nominal
0.5, Low

 

The prediction from the machine learning was used to select the corresponding 

performance shaping factor value and calculate the human error probability. 

HEP = HEP+PSF/823// = 0.01(2) = 0.02 

This stress-dependent HEP was then used to determine the overall failure 

probability via BN. 

 
7.2.5.4. Bayesian Network 

The overall maintenance error probability analysis was done by first constructing a 

fault tree and then converting the fault tree into a Bayesian network. The fault tree 

deduces the probability of the top event of maintenance failure (M) from base 

events (D, E, A, T) and is shown in Figure 58.  
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Figure 58: Maintenance error fault tree  

 

 

 

 

Figure 59: Maintenance error Bayesian network - Structure  
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Figure 60: Maintenance error Bayesian network – Nominal stress level 

 

 

Figure 61: Maintenance error Bayesian network – High stress level 
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It is noted that the term maintenance failure is used here instead of maintenance 

error to help facilitate understanding of the fault tree and corresponding Bayesian 

network. It is further noted that the fault tree is highly simplified. The key base 

event is diagnosis failure (D) and its probability is the aforementioned stress-

dependent human error probability. The other base events are human action failure 

(A) and tool failure (T) which contribute to task execution failure (E). The 

probabilities of A and T are taken as 0.001 and 0.0005 respectively. 

The fault tree was converted to a Bayesian network by representing the events as 

Boolean variables and building in the OR gate logic into the intermediate event and 

top event nodes. The corresponding Bayesian network parallels the fault tree and is 

shown in Figure 59. 

The Bayesian networks were implemented as shown in Figure 60 and Figure 61. 

For this example, the maintenance failure probability at a nominal stress level was 

1.594% and the maintenance failure probability at a high stress level was 2.588%. 

It can be seen that increasing the stress level from ‘nominal’ to ‘high’ results in a 

62.36% increase in maintenance failure probability. 

7.2.6. Conclusions 

This research developed a next-generation predictive tool for data-driven, dynamic 

and tailored quantitative analysis of maintenance error probability. The results of 

the research highlight the importance of human condition-monitoring and a human 

factor for maintenance effectiveness, system effectiveness, and system resilience. 
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7.3. Turnaround Scheduling 

7.3.1. Summary 

Plant turnarounds are complex endeavors that can translate to lost revenue on the 

order of $1 million per day. It is thus of great concern to complete all allotted tasks 

within the shortest time possible. This is challenging however due to uncertainty in 

the condition of equipment which can result in uncertain task durations, schedule 

overrun, and overspending. This research formulated a stochastic multi-objective 

optimization problem to schedule safe and cost-effective plant turnarounds while 

accounting for resource constraints, as well as uncertainty in task durations. This 

was done by solving a multi-objective discrete-time optimization model to 

optimality using the ε-constrained method. The model considered multiple and 

competing objectives of turnaround duration and resource use, considers resource 

constraints, and accounted for uncertainty in the mean time to repair (MTTR). The 

result of the research was a turnaround schedule that provided the optimal start and 

end times of all allotted turnaround tasks. 

 

7.3.2. Introduction 

Plant turnarounds are complex endeavors that require the completion of thousands 

of activities, ranging from preventive maintenance to retrofitting, by thousands of 

people. Plants experience partial or complete shutdowns while turnarounds are 

underway which can translate to lost revenue on the order of $1 million per day. As 

such, completing all allotted tasks within the shortest time possible is highly 
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desirable to minimize lost revenue. Turnarounds are traditionally planned with 

resource management software which are driven by critical path method (CPM) 

algorithms which consider time, but which may not explicitly consider resource 

constraints. This work thus leveraged mixed-integer linear programming (MILP) 

to obtain optimal maintenance schedules that take resources needed into account. 

 

7.3.3. Problem Statement 

 
A system involving units j	 ∈ J, maintenance tasks k ∈ K, time intervals t ∈ T, and 

repair time scenarios s	 ∈ S.  

Objectives 

• Minimize turnaround duration 

• Minimize resource use 

Given 

• Equipment mean time to repair (MTTR) 

• Resource capacities 

Determine 

• Turnaround schedule 

 

 

7.3.4. Methodology 

This research uses MILP and the epsilon-constrained method. 
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7.3.5. Case Study 

7.3.5.1. Description 

The selected motivating example was a refinery with seven major production units. 

A single maintenance task type of generic repair was considered. A time horizon of 

22 days was implemented with a time discretization of one day.  

7.3.5.2. Model Formulation 

Turnaround scheduling is a large resource-constrained dynamic unit task 

assignment problem. The model formulation involved units j	 ∈ J = �1,2, … , NT�, 

maintenance tasks k ∈ K = {1,2, … , N!}, time intervals t ∈ T = {0, 1,2, … , N8}, and 

repair time scenarios s	 ∈ S = {1,2, … , N/}.  

The model was a multi-stage stochastic programming model with integer recourse. 

The first-stage “here-and-now” decisions were the regular maintenance schedule, 

and the workforce capacity. The second-stage “wait-and-see” decisions were the 

extra recourse maintenance. Three repair time scenarios were considered consisting 

of the seventh production unit requiring an extra time to repair of one, two, and 

three days accordingly with all other unit extra repair times fixed at one day. The 

probability of the three scenarios were 0.2, 0.5, and 0.3 respectively. 

Modeling was informed by the following considerations: (1) that unit repair time 

can vary, (2) that variations in repair time are accounted for by scheduling extra 

recourse maintenance, (3) transit and set-up time is built into the repair time 

distributions, and (4) that maintenance can be either regular maintenance, mT,!,8 ∈

{0,1}, or extra recourse maintenance, eT,!,8,/ ∈ {0,1}. 
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The objective was to minimize the expected turnaround duration or makespan (MS) 

which was calculated based on the last ongoing maintenance activity (z8,/_ ), a 

corresponding time parameter (τ8), and probability of each scenario (p/). Attaining 

this objective was subject to a set of constraints. 

minMS  (149) 

z8,/_ ≥ mT,!,8 + eT,!,8,/ ∀j ∈ J, ∀k ∈ K, ∀t ∈ T, ∀s ∈ S (150) 

MS ≥ep/e(τ8 − 1)

(.

Tq&

z8,/_
((

/q&

 ∀t ∈ T (151) 

 

No regular or recourse maintenance was permitted to occur during the first time 

interval, at most one type of maintenance was permitted to occur in each time 

interval, and at most one maintenance task type could occur on a unit at a time. 

mT,!,8 = 0 ∀j ∈ J, ∀k ∈ K, ∀t = 0, ∀s ∈ S (152) 

eT,!,8,/ = 0 ∀j ∈ J, ∀k ∈ K, ∀t = 0, ∀s ∈ S (153) 

mT,!,8 + eT,!,8,/ ≤ 1 ∀j ∈ J, ∀k ∈ K, ∀t ∈ T, ∀s ∈ S (154) 

emT,!,8 ≤ 1
(?

!q&

 
∀j ∈ J, ∀t ∈ T (155) 

eeT,!,8,/ ≤ 1
(?

!q&

 
∀j ∈ J, ∀t ∈ T, ∀s ∈ S (156) 
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The mean time to repair was split into a nominal component (NTTRT,!), and a 

scenario-dependent component (ETTRT,!,/). Regular and recourse maintenance was 

coerced to occur for a duration equal to the corresponding repair times. 

emT,!,8

('

8q&

= NTTRT,! ∀j ∈ J, ∀t ∈ T (157) 

eeT,!,8,/

('

8q&

= ETTRT,!,/ ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (158) 

 

Propositional logic was used to define the start and completion of maintenance 

activities. P& was used to denote maintenance at time interval t, P' denoted no 

maintenance at time interval t + 1, and P5 denoted maintenance completion. 

Additionally a set of binary variables (y&, y' and y5) corresponding to the 

propositions was defined. It can be observed that these satisfied the following 

propositional logic. 

[P& ∧ P'] → P5  (159) 

¬[P& ∧ P'] → P5  (160) 

[¬P&	⋁	¬P']	⋁	P5  (161) 

1 − y& + 1 − y' + y5 ≥ 1  (162) 
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Application of the derived relationship resulted in the following set of constraints. 
 
mT,!,8
/8128 ≥ mT,!,8 −mT,!,8H& ∀j ∈ J, ∀k ∈ K, ∀t > 1 ∈ T (163) 

mT,!,8
/8_0 ≥ mT,!,8 −mT,!,8j& ∀j ∈ J, ∀k ∈ K, ∀t < N8 ∈ T (164) 

eT,!,8,//8128 ≥ eT,!,8,/ − eT,!,8H&,/ ∀j ∈ J, ∀k ∈ K, ∀t > 1 ∈ T, ∀t ∈ S (165) 

 
 

The obtained maintenance start and completion times enabled the following 

constraints which enforced contiguity of maintenance activities and linked the start 

of recourse maintenance to the completion of regular maintenance. 

emT,!,8
/8128

('

8q&

= 1 
∀j ∈ J, ∀k ∈ K (166) 

emT,!,8
/8_0

('

8q&

= 1 ∀j ∈ J, ∀k ∈ K (167) 

eeT,!,8,//8128

('

8q&

≤ 1 
∀j ∈ J, ∀k ∈ K (168) 

eT,!,8,//8128 ≥ mT,!,8H&
/8_0  ∀j ∈ J, ∀k ∈ K, ∀t > 1 ∈ T, ∀t ∈ S (169) 
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The resources in terms of labor required were a function of the unit and task specific 

resource requirements (lT,!). It is noted that the resources required could also be 

treated as being stochastic in nature, resulting in right-hand uncertainty but here the 

nominal value was used. The expected total resource requirements (R88_8) were then 

calculated and constrained to be less than total resource capacity (R8_8,-). It is noted 

that the constraint on the total resources used at a time corresponded to the 

reformulation of a the multi-objective problem involving the simultaneous 

minimization of makespan and resources employed at a time using the epsilon-

constrained method. 

RT,!,8,/ = lT,!�mT,!,8 + eT,!,8,/� ∀j ∈ J, ∀k ∈ K, ∀t ∈ T, ∀s ∈ S (170) 

R88_8 =ep/eeRT,!,8,/

(?

!q&

(.

Tq&

((

/q&

 ∀t ∈ T (171) 

R88_8 ≤ R8_8,- ∀t ∈ T (172) 

 

The formulated overall set of equations constituted a deterministic equivalent 

problem (DEP) and the mixed-integer linear programming model was solved using 

CPLEX via General Algebraic Modeling System (GAMS). 
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Figure 62: Turnaround schedule - Case 1 

 

 

 

 

 

 

Figure 63: Turnaround schedule – Case 2 

T = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

j1, NTTR = 3, l = 50

j3, NTTR = 5, l = 75

j2, NTTR = 5, l = 75

j4, NTTR = 8, l = 150

j5, NTTR = 8, l = 200

j6, NTTR = 10, l = 250

j7, NTTR = 15, l = 300

T = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

j1, NTTR = 3, l = 50

j3, NTTR = 5, l = 75

j2, NTTR = 5, l = 75

j4, NTTR = 8, l = 150

j5, NTTR = 8, l = 200

j6, NTTR = 10, l = 250

j7, NTTR = 15, l = 300
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7.3.5.1. Results 

Optimal turnaround schedules for the motivating example were obtained. Two 

cases are presented here, (1) the maximally resource constrained case shown in 

Figure 62, and (2) a minimally constrained case shown in Figure 63. Expected 

trends can be seen with Case 1 requiring more time than Case 2, and more 

simultaneous maintenance activities present in Case 2 than in Case 1. 

It is noted that discretizing in days instead of hours resulted in an significantly 

smaller and more computationally tractable problem. The tradeoff however would 

be that scheduling smaller units requiring mean times to repair of less than a day, 

or scheduling non-discrete times, would result in sub-optimality. 

 

7.3.6. Conclusions 

The partial or complete shutdowns that plants experience during turnarounds can 

result in significant amounts of lost revenue. This is exacerbated by the presence of 

uncertainty in equipment condition that translates to uncertainty in the mean time 

to repair. 

This research leveraged mixed-integer linear programming and the epsilon-

constrained method for turnround scheduling. Scheduling results were obtained for 

a maximally resource constrained case and a minimally resource constrained case. 

It was seen that the turnaround activity start and end times were optimized and this 

research can be used to inform resource allocation and turnround decision-making.  
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7.4. Future Work 

The data-driven approach to maintenance planning, scheduling, and control lends 

itself to several promising research avenues due to its predictive, simultaneous, 

holistic, and systematic nature. These research avenues are presently summarized. 

1. Data-driven prescriptive maintenance and production planning toward 

environmental impact minimization: it is desirable to quantify the impact of 

system decisions on sustainability and develop optimal maintenance and 

production plans that are conscious of the environment. A sustainability-

weighted expected profit metric can be developed to integrate system 

effectiveness with environmental impact. This would specifically involve 

the incorporation of a neural network into the mixed-integer nonlinear 

planning model to provide data-driven equipment failure probability 

estimates. Initial steps towards this were taken by modifying a biodiesel 

process [382], and simulating it in Aspen Plus as shown in Figure 64. 

 

2. Safety-aware feature selection: the identification of the most salient 

measurements is typically done via the computation of an importance 

metric. This approach could be extended to quantify the criticality of each 

feature to the safety of the entire process. Specifically, this could be done 

by exploring the impact of the variance of each feature on a safety metric. 

This approach could thus involve sensitivity analysis, and or principal 

components analysis. 
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Figure 64: Biodiesel production process   
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3. Explicit multi-level process and maintenance optimization: it is challenging 

to account for uncertain parameters. These include: (1) process-related 

uncertainties, such as feed composition, impurities, or demand; and (2) 

maintenance-related uncertainties such as repair time or failure. 

Multiparametric optimization is well positioned to obtain optimal solutions 

that are a function of the uncertain parameters so as to enable rapid decision-

making. However, the integrated process and maintenance optimization 

problem can be computationally challenging for complicated systems. As 

such, the process optimization problem can be considered to be a 

subproblem of the maintenance optimization problem and solved by adding 

availability to the set of process-related uncertainties. The solution to the 

resulting maintenance-aware multiparametric mixed integer linear 

programming model can be fed as affine constraints into the upper level 

maintenance multiparametric mixed integer linear programming model. 

This can be extended to add safety via trilevel optimization or constraints. 

 

4. Hierarchical ensemble multi-class failure classification: a staggered 

machine learning approach can be adopted for failure prediction. 

Specifically, one could say develop a decision tree to first predict which 

quarter a failure would occur in, then predict which month of that quarter 

and so on. The prediction at each level could be done using ensemble 

classification models. The advantage of this approach is to improve 

predictive accuracy through tighter modeling of failure dynamics that 
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realize at different time scales. This approach can equally be conceptualized 

as coarse-graining or piecewise approximation of a nonlinear function. 

 

5. Maintenance optimization via reinforcement learning with regret: 

reinforcement learning can obtain good feasible solutions to complex 

optimization problems. However computational time remains a challenge. 

As such, reinforcement learning with regret can be used to solve large 

mixed-integer linear programming models faster. This is done by 

identifying the missed benefit of alternative maintenance choices along 

each trajectory of decisions in each iteration and then implementing those 

choices on subsequent iterations to converge faster. 

 

6. Prescriptive maintenance-aware process design: process design involves 

selection between alternative production routes and steady-state process 

flowsheet optimization. Prescriptive maintenance is complementary to this 

process synthesis, and allows simultaneous consideration of maintenance 

and disruptions to help constrain the design space and avoid sub-optimality.  

 

7. Data-driven prescriptive maintenance toward financial risk mitigation: can 

help tailor the probability distributions in conditional value at risk metrics 

by making them both equipment condition-dependent and endogenous. This 

would enable better quantification of nonlinear impacts on financial losses 

for improved resource allocation over planning and scheduling horizons. 
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8. ‘Crystal’ fault propagation and safety metric: from a material science 

perspective, the faults and failures of process monitoring and prescriptive 

maintenance can be considered as defects in a crystal lattice. In this way, a 

hybrid approach combining techniques from the field of fault propagation 

and materials science concepts can be developed. Specifically, the system 

could be modelled as being like a slice of graphite with three inter-

connected and intra-connected layers: (1) a mass flow layer, (2) an energy 

flow layer, and (3) an information flow layer. The system is thus represented 

as a graph with nodes representing equipment and edges representing mass-

energy-information interactions between equipment. A failure can thus be 

considered as a defect in the crystal lattice such as the absence of a node or 

edge. A fault can thus be conceptualized as a dislocation or change in the 

edge interaction strength. Graph theory could be used to help quantify, and 

elucidate complex, nonlinear, and emergent interdependencies and this 

could involve centrality metrics and cliques. Statistics and transfer entropy 

could be used to quantify the strength of dynamic, probabilistic, and 

nonlinear interactions to infer causality, fault propagation, and failure 

propagation. Furthermore, this approach could develop a safety metric by 

leveraging thermodynamic concepts to have a ‘reference’ term based on 

system design, and an ‘excess’ term based on process and maintenance 

decisions. This crystalline thermodynamic safety metric would change with 

process-maintenance interactions and could then be used for holistic 

planning, dynamic scheduling, and/or hybrid process control. 
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8. SUMMARY 

This research presented a new holistic safety-aware sustainable maintenance and 

process optimization (SASUMAPRO) paradigm for data-driven and optimal 

prescriptive maintenance. It involved the development of novel methodologies to 

support proactive decision-making at multiple time-scales and leveraged advanced 

data analytics and mathematical optimization techniques. In particular it showed 

how machine learning could be combined with mixed-integer nonlinear 

programming for data-driven maintenance planning, scheduling, and control.  

Planning aspects were elucidated through work on optimal multi-objective 

stochastic planning of preventive maintenance. This involved solving a novel 

multi-objective stochastic mixed-integer nonlinear optimization model to minimize 

cost and maximize system reliability. A set of preventive maintenance plans were 

obtained for use in capacity planning and inventory management. 

Scheduling aspects were addressed through a novel prescriptive optimization of 

maintenance and process scheduling (PROMAPS) framework. This involved the 

development of ensembles of nonlinear support vector machine classification 

models for future failure prediction. Process safety was characterized through the 

use of a dynamic quantitative risk function that coupled consequence modeling of 

a vapor cloud explosion with the predicted future failure probability. The future 

failure prediction and risk function were then used by a multi-objective mixed-

integer nonlinear programming dynamic optimization model to obtain a set of 

Pareto optimal solutions. 
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Control aspects were introduced through a novel multi-parametric-based safety-

aware, maintenance-aware, and disruption-aware (mpSAMADA) framework. 

Failure information was used to do maintenance and production scheduling via 

mixed-integer nonlinear programming. Fault detection was done using an ensemble 

of classifiers consisting of an artificial neural network, a decision tree, and a support 

vector machine. It was shown that the performance of the ensemble model was 

equal to or better than the performance of the individual models. Multi-parametric 

model predictive controllers were then developed to leverage information about 

faults to optimal trajectories of control actions. 

Next-generation maintenance research avenues were then explored. Biometric 

data-driven human reliability analysis via multi-class support vector machine 

classification was introduced for maintenance error probability prediction. 

Turnaround scheduling via stochastic programming and multi-objective 

optimization was done to minimize turnaround duration. Data-driven prescriptive 

maintenance and production planning towards environmental impact minimization 

and other ideas for future work were also presented. 

This research explored the nexus of process safety engineering and process systems 

engineering and demonstrated steps towards the smart manufacturing industry of 

tomorrow. It introduced predictive approaches to proactively account for process 

disruptions and help reduce the likelihood of process safety incidents and their 

catastrophic consequences. This research contributed data-driven and optimal 

prescriptive maintenance approaches for simultaneous process and maintenance 

decision-making to help improve system resilience and system effectiveness.  
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10. APPENDIX 

10.1. Literature Review Methodology 

A literature review has three main goals: (1) to learn, via establishing a good 

knowledge base of the subject matter; (2) to scope, via identification of best 

practices of researchers as well as industry professionals; and (3) to identify 

research gaps, by providing a framework to help position future research.  

Although it is impossible to have a comprehensive review of all the papers, it is 

possible to construct the review in such a way that it is representative. Databases 

leveraged included: SCOPUS, EBSCO, Web of Science, Compendex, and 

ScienceDirect. 

Advanced searching techniques include: (1) intersecting searches, (2) using tags or 

controlled terms so that articles can be found regardless of if the abstract contains 

terms of interest, (3) proximity searches, to return articles with terms that are within 

a certain number of words of each other, and (4) wildcard operators. 

After an initial subset of papers is defined, it is useful to update the search by 

looking backward to see which papers have been cited by other papers. 

It is recommended to use a reference database management software such as 

Endnote, Refworks, Mendeley, or Rayyan. 
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10.2. General System Reliability Function Derivations 

10.2.1. Series and Parallel 

R/6/,/3243/ =}R4

(

4q&

 

R/6/,0121VV3V = 1 −}(1 − R4)
(

4q&

 

 

10.2.2. Series-Parallel 

R/6/ = R&R'5 = R&[1 − (1 − R')(1 − R5)] = R&[1 − (1 − R5 − R' + R'R5)] 

R/6/ = R&[R5 + R' − R'R5] = R&[R' + R5 − R'R5] 

R/6/ = R&R' + R&R5 − R&R'R5 

 

 

 

 

Figure S1: Series-parallel system  

1

2

3
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10.2.3. Low-Level Redundancy 

R/6/ = R&'R5B = [1 − (1 − R&)(1 − R')][1 − (1 − R5)(1 − RB)] 

R/6/ = [R' + R& − R&R')][RB + R5 − R5RB)] 

R/6/ = [R'RB + R'R5 − R'R5RB)] + [R&RB + R&R5 − R&R5RB)]

− [R&R'RB + R&R'R5 − R&R'R5RB)] 

R/6/ = R&R5 + R&RB + R'R5 +	R'RB − R&R5RB − R'R5RB −	R&R'R5

−	R&R'RB + R&R'R5RB 

 

 

 

 

 

 

 

Figure S2: Low-level redundancy system  
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10.2.4. High-Level Redundancy 

R/6/ = 1 − (1 − 	R&5)(1 − R'B) = 1 − (1 − 	R&R5)(1 − R'RB) 

R/6/ = 1 − (1 − R'RB − R&R5 + R&R5R'RB) 

R/6/ = R&R5 + R'RB − R&R5R'RB) 

 

 

 

 

 

 

 

 

 

 

Figure S3: High-level redundancy system  
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10.3. Convex Envelope Derivations 

10.3.1. Bilinear Convex Envelope Derivation 

The bilinear term (BCC) of two continuous variables x& = [x&,, x&-] and x' =

[x',, x'-], is bounded from below by a convex underestimator (BCCr) and from 

above by a concave overestimator (BCCs). 

 

The following convex underestimator was used [383]: 

BCCr = max	[x'-x& + x&-x' − x&-x'-, x',x& + x&,x' − x&,x',] 

 

The following concave overestimator was used [384]: 

BCCs = min	[x'-x& + x&,x' − x&,x'-, x',x& + x&-x' − x&-x',] 

 

The bilinear term is thus approximated by the following set of inequalities 

BCC ≥ x'-x& + x&-x' − x&-x'-	 

BCC ≥ x',x& + x&,x' − x&,x', 

BCC ≤ x'-x& + x&,x' − x&,x'- 

BCC ≤ x',x& + x&-x' − x&-x', 
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10.3.2. Trilinear Convex Envelope Derivation 

Given a trilinear term term (TCCC) of three continuous variables x& = [x&,, x&-], 

x' = [x',, x'-], and x5 = [x5,, x5-] satisfying the following relations [385]: 

x& ≥ 0 

x' ≥ 0 

x5 ≥ 0 

x&-x',x5, + x&,x'-x5- ≤ x&,x'-x5, + x&-x',x5- 

x&-x',x5, + x&,x'-x5- ≤ x&-x'-x5, + x&,x',x5- 

 

Defining φ& = x&-x'-x5, − x&,x'-x5- − x&-x',x5, + x&-x',x5-, and φ' = x&,x',x5- −

x&-x',x5, − x&,x'-x5- + x&,x'-x5,, the trilinear term is thus approximated by the 

following inequalities:  

 

TCCC ≥ x',x5,x& + x&,x5,x' + x&,x',x5 − 2x&,x',x5,	

TCCC ≥ x'-x5-x& + x&-x5-x' + x&-x'-x5 − 2x&-x'-x5-	

TCCC ≥ x',x5-x& + x&,x5-x' + x&-x',x5 − x&,x',x5- − x&-x',x5-	

TCCC ≥ x'-x5,x& + x&-x5,x' + x&,x'-x5 − x&-x'-x5, − x&,x'-x5,	
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TCCC ≥ 	
φ&

x&- − x&,
x& + x&-x5,x' + x&-x',x5

+ ¿−
φ&x&,

x&- − x&,
− x&-x'-x5, − x&-x',x5- + x&,x'-x5-À 

TCCC ≥ 	
φ'

x&, − x&-
x& + x&,x5-x' + x&,x'-x5

+ ¿−
φ'x&-

x&, − x&-
− x&,x',x5- − x&,x'-x5, + x&-x',x5,À 

TCCC ≤ x',x5,x& + x&-x5,x' + x&-x'-x5 − x&-x'-x5, − x&-x',x5, 

TCCC ≤ x'-x5,x& + x&,x5,x' + x&-x'-x5 − x&-x'-x5, − x&,x'-x5, 

TCCC ≤ x',x5,x& + x&-x5-x' + x&-x',x5 − x&-x',x5- − x&-x',x5, 

TCCC ≤ x'-x5-x& + x&,x5,x' + x&,x'-x5 − x&,x'-x5- − x&,x'-x5, 

TCCC ≤ x',x5-x& + x&-x5-x' + x&,x',x5 − x&-x',x5- − x&,x',x5- 

TCCC ≤ x'-x5-x& + x&,x5-x' + x&,x',x5 − x&,x'-x5- − x&,x',x5- 
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10.3.3. Simplified Bilinear and Trilinear Convex Envelope Derivation 

The aforementioned bilinear and trilinear convex envelopes can be simplified. 

For x& = [x&,, x&-] = 	 [0,1] and x' = �x',, x'-� = 	 [0,1], the convex envelope of a 

bilinear term can be represented by the following set of linear inequalities: 

BCC ≥ x& + x' − 1	 

BCC ≥ 0 

BCC ≤ x& 

BCC ≤ x' 

 

For x& = [x&,, x&-] = 	 [0,1], x' = �x',, x'-� = 	 [0,1], and x5 = �x5,, x5-� = 	 [0,1] and 

with redundant inequalities removed, the convex envelope of a trilinear term can 

be represented by the following set of linear inequalities: 

TCCC ≥ 0 

TCCC ≥ x& + x' + x5 − 2 

TCCC ≤ x5 

TCCC ≤ x' 

TCCC ≤ x&  
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10.4. Supporting Information for Chapter 5 

10.4.1. Event Tree Analysis 

It is desired to prevent, mitigate, and respond (PMR) to process safety incidents. In 

the event of failure of prevention measures leading to a loss of containment (LOC) 

and release of process fluid, various event sequences can occur and can be analyzed 

using an event tree. Scenario analysis was first done considering leak as the 

initiating event. The pump subsystem has a series of mitigation measures which 

serve as event propagation barriers, and they consist of an automatic and remotely 

operated emergency shut-off valve (ESV) that relies on the activation of a gas 

detection system. 

Qualitative event tree analysis provides a succinct representation of the possible 

event sequences and can be used for communication as well as to enable 

quantitative analysis. The immediate event following the loss of containment of 

process fluid would be the formation of a pool of flammable liquid which lead to a 

pool fire if a nearby ignition source is found. Given that some of the released 

process fluid would flash immediately at ambient conditions, and that some of the 

liquid pool would vaporize, there would be the formation of a vapor cloud. The 

ESV serves to limit the amount of process fluid lost and if activated, leads to the 

formation of a smaller vapor cloud and a larger vapor cloud otherwise. Depending 

on atmospheric conditions, the vapor cloud can be eventually dispersed, however 

if an ignition source is found, there can be delayed ignition of the vapor cloud and 

a vapor cloud explosion (VCE).  
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Figure S4: Hydrocarbon system event tree 

 

 

 

The event tree analysis identified outcome events of environmental release, fire, 

vapor cloud explosion (VCE). The intermediate event probabilities for ignition, gas 

detection, ESV activation, flammable dispersion formation and delayed ignition 

were taken to be 0.05, 0.95, 0.99, 1, and 0.1 respectively. Quantitative event tree 

analysis resulted in outcome event probabilities for environmental release, VCE, 

and fire being 0.847, 0.094, and 0.050 respectively. It was assumed that the 

environmental release without ignition would disperse to the atmosphere. VCE was 

thus selected for further analysis. 
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10.4.2. Parameters 

Table S1: Case Study 1 – Parameters 

Parameter Symbol Value 
Heat transfer area, m2 A 13.5 
Process stream inlet concentration, kmol/m3 CN+ 32.04 
Mixture heat capacity, kJ/(kmol K) C0 167.4 
Water heat capacity, kJ/(kg K) C0W 4.18 
Minimum flowrate, kmol/hr F, 10 
Maximum flowrate, kmol/hr F- 100000 
Minimum water flowrate, kg/hr FW,, 227.1 
Maximum water flowrate, kg/hr FW,- 5000 
Maximum temperature, K 𝕋*1\ 389 
Safety margins, K 𝕋X [20 , 30, 35, 

40, 50] 
Ratio of activation energy to gas constant, K E/R 555.6 
Arrhenius rate factor, hr-1 k 0.6242 
Mean time to repair, hr MTTR 4 
Sampling horizon N/ 12 
Ensemble size NR 12 
Heat of reaction, kJ/kmol ΔH2\) 23260 
Minimum process temperature  𝕋, 311 
Temperature threshold, K 𝕋- 389 
Process stream inlet temperature, K 𝕋+ 333.3 
Water inlet temperature, K 𝕋W& 300 
Minimum water outlet temperature, K 𝕋W&,  301 
Maximum water outlet temperature, K 𝕋W'-  356 
Heat transfer coefficient, kJ/(m2 hr K) U 1635.34 
Reactor volume, m3 V 40 
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Table S2: Case Study 2 – Parameters 

Parameter Symbol Value 
Process   
Feed composition FEED_X: [0.09, 0.3, 0.5, 

0.1, 0.01] 
Feed nominal flowrates, kmol/hr F4) [324, 1080, 1800, 

360, 36] 
Feed flow bounds, kmol/hr FEED,, FEED- [3240, 3960] 
Feed temperature, °C T/& 25 
Flow bounds, kmol/hr F,, F- [0,6300] 
Reflux ratio bounds R,, R- [2.25, 2.75] 
Pump efficiency ηT [0.7, 0.65] 
Density, kg/m3 ρ 484 
Acceleration due to gravity, m/s2 g 9.81 

Average head, m H 124 
Conversion constant χ 3.6×106 
Lower production targets, kmol/hr PROD_TARGET8, [1000, 1025, 

1050, 1025, 
1025, 1050, 
1050] 

Upper production targets, kmol/hr PROD_TARGET8- [1075, 1100, 
1125, 1100, 
1100, 1125, 
1125] 

   
Safety   
Conditional probability of seal failure, 
yr-1 

PP 0.00068 

Probability of standby pump failure PM'
*,P 0.001 

Explosion efficiency η3\ 0.02 
Release duration, hr t2 0.016667 
TNT explosion energy, kJ E7(7 4686 
Heat of combustion, kJ/mol C0a 2219.2 
Overpressure distance, m r7(7 20 
Scaled distance bounds, m/kg1/3 z7(7,,, z7(7,- [0,35] 
Equivalent mass of TNT bounds, kg m7(7,,, m7(7,- [0,25000] 
Thresholds (10-4) Λ�V [1.696, 1.694, 

1.693, 1.691, 
1.690 
1.689, 1.687, 
1.686, 1.685, 
1.683] 
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Table S2: Continued 

Parameter Symbol Value 
Maintenance   
Sampling horizon N/ 12 
Ensemble size NR 12 
Mean time to repair, hr MTTR 4 
Periods before pump changeover  κ 8 
Weibull scale parameter α 2 
Weibull shape parameter β 1.25 
   
Economic   
Value of species, $/kmol V4 [3.05, 8.79, 

14.97, 30.09, 0] 
Labor cost, $/hr CV 16 
Maintenance cost, $/hr C* 200 
Coldwater cost, $/kJ CU& 2×10-7 
MP steam cost, $/kJ CU' 2.5×10-6 
Electricity cost, $/kWh C3 0.12 
   
Resources   
Power capacity, kWh ERC 10000 
Human resource capacity HRC 3 
Human resources required HRR 1 
Maintenance resource capacity MRC 2 
Maintenance resources required MRR 1 

* Each specified production targets is for 24 hours  
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10.4.3. Phase 1 - Preprocessing 

Table S3: Head of raw pooled data 

Time Voltage Rotation Vibration 
Next time 
of failure 

Last time of 
maintenance 

Errors 
to date 

1/1/15 6:00 176.22 418.50 45.09 1/5/15 6:00 7/16/14 6:00 0  
1/1/15 7:00 162.88 402.75 43.41 1/5/15 6:00 7/16/14 6:00 0  
1/1/15 8:00 170.99 527.35 34.18 1/5/15 6:00 7/16/14 6:00 0  
1/1/15 9:00 162.46 346.15 41.12 1/5/15 6:00 7/16/14 6:00 0  

1/1/15 10:00 157.61 435.38 25.99 1/5/15 6:00 7/16/14 6:00 0  
 

 

 

 

 

 

 

 

Table S4: Head of processed pooled data 

volt volt_mean volt_min volt_max volt_stdev volt_RMS 

-0.6977 -0.7124 1.1310 -2.0609 -2.5436 -0.7957 

-1.1492 -1.0538 0.7716 -2.1586 -2.4239 -1.1343 

0.7708 -0.7573 0.7716 -1.3475 -1.9095 -0.8257 

-0.0396 -0.7671 0.7716 -1.3475 -1.9184 -0.8357 
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Table S4: Continued 

rotation rotation_mean rotation_min rotation_max rotation_stdev rotation_RMS 
0.0239 -0.8662 -0.6299 -0.0533 0.0771 -0.8743 
0.8484 -0.5586 -0.6299 -0.0533 0.3475 -0.5492 

-0.5547 -0.4927 -0.6299 -0.0533 0.2790 -0.4869 

-0.8593 -1.0250 -0.6299 -0.9561 -0.4793 -1.0638 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S4: Continued 

vibration vibration_mean vibration_min vibration_max vibration_stdev vibration_RMS 
-0.3732 -0.5366 -1.8628 -0.8839 0.5802 -0.5074 
0.6272 -0.5672 -1.8628 -0.8839 0.5013 -0.5419 
0.1344 -0.6313 -1.8628 -0.8839 0.3975 -0.6107 

-0.1582 -0.4573 -1.8628 -0.8839 0.2066 -0.4483 
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Table S4: Continued 

TSLM TSLM_mean TSLM_min TSLM_max TSLM_stdev TSLM_RMS 
0.7854 0.7849 0.7927 0.7731 -0.0873 0.7823 
0.7858 0.7853 0.7932 0.7735 -0.0873 0.7827 
0.7862 0.7857 0.7936 0.7739 -0.0873 0.7831 
0.7867 0.7862 0.7940 0.7744 -0.0873 0.7835 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S4: Continued 

ESLM ESLM_mean ESLM_min ESLM_max ESLM_stdev ESLM_RMS 
-0.9852 -0.9889 -0.9783 -0.9949 -0.1404 -0.9913 
-0.9852 -0.9889 -0.9783 -0.9949 -0.1404 -0.9913 
-0.9852 -0.9889 -0.9783 -0.9949 -0.1404 -0.9913 
-0.9852 -0.9889 -0.9783 -0.9949 -0.1404 -0.9913 
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Table S4: Continued 

Y1…Y80 Y_81 Y_82 Y_83 Y_84 Y_85 Y86…Y168 
0 0 0 0 0 1 1 
0 0 0 0 1 1 1 
0 0 0 1 1 1 1 
0 0 1 1 1 1 1 

 

 

It is noted that that here, N! = 168, and that the processed pooled data set is split 

into 168 data sets by pairing the input features with each extracted outcome (Y!). 

Feature selection and model creation proceed by considering each data set k in turn. 

 

 

 

 

10.4.4. Phase 2 – Feature Selection 

10.4.4.1. Overview 

It can be observed above that there are 30 input features as shown above. The 

coefficient of variation was used for statistical feature selection. It was observed 

that the variation of the features was similar with the exception of two features 

(TSLM_stdev, and ESLM_stdev) which were dropped from all data sets resulting 

in 28 features. 
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Table S5:Feature coefficients of variation 

Feature CV = 𝜎/𝜇 
volt 0.0895 
volt_mean 0.0326 
volt_min 0.0608 
volt_max 0.0469 
volt_stdev 0.2084 
volt_RMS 0.0325 
rotation 0.1156 
rotation_mean 0.0438 
rotation_min 0.0852 
rotation_max 0.0592 
rotation_stdev 0.2106 
rotation_RMS 0.0430 
vibration 0.1369 
vibration_mean 0.0656 
vibration_min 0.1040 
vibration_max 0.0787 
vibration_stdev 0.2214 
vibration_RMS 0.0652 
TSLM 1.0933 
TSLM_mean 1.0906 
TSLM_min 1.1019 
TSLM_max 1.0850 
TSLM_stdev 9.3017 
TSLM_RMS 1.0887 
ESLM 1.0150 
ESLM_mean 1.0112 
ESLM_min 1.0221 
ESLM_max 1.0051 
ESLM_stdev 7.1235 
ESLM_RMS 1.0088 
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10.4.4.2. Recursive Feature Elimination 

After statistical feature selection, a recursive feature elimination algorithm was 

used for additional feature selection. A summary of the feature selection algorithm 

is shown below. 

 

 

Figure S2: Overview of recursive feature elimination algorithm 

 

Source: R caret documentation 
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This algorithm was implemented using a random forest model with three repetitions 

of five-fold cross validation on each of the 168 data sets and default 

hyperparameters in R using the caret package. The selected features for each of the 

data sets are shown on the next two pages with black indicating that a feature was 

selected. It is observed that the number of features is fewer for each of the data sets, 

and this has the additional advantage of reduced training time. 

Each of the 168 data sets was filtered by removing feature data of features that were 

not selected. This yielded 168 filtered data sets, each of which underwent further 

processing. 
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10.4.4.3. Selected Features 

Table S6: Overview of selected features 
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1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
3 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1
4 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1
6 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1
7 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1
8 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1
9 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
11 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
12 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
13 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
14 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1
15 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
16 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1
17 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1
18 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
19 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1
20 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1
21 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
22 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1
23 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1
24 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1
25 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1
26 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
27 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0
28 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1
29 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
30 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
31 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1
32 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0
33 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
34 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
35 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0
36 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
37 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1
38 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0
39 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
40 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
41 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
42 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
43 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
44 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
45 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
46 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
47 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
48 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
49 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
50 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0
51 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
52 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
53 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
54 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
55 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
56 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
57 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
58 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1
60 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
61 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
62 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
63 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
64 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1
65 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
66 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
67 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
68 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
69 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
70 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
71 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
72 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1
73 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
74 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
75 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
76 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
77 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
78 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
79 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1
80 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
81 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
82 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
84 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
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Table S6: Continued
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85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
86 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
87 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
89 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
90 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
92 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
93 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
94 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
95 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
96 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
97 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
98 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
99 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
100 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
101 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
102 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
103 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
104 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
105 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
107 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
108 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
109 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
110 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
111 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
112 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
113 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
115 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1
116 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
117 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
118 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
119 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
120 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
121 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
122 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
123 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
124 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
125 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
126 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
127 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
128 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
129 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
130 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
131 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
132 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
133 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
134 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
135 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
136 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
137 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
138 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
139 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
140 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
141 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
142 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
143 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
144 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
145 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
146 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
147 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
148 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
149 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
150 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
151 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
152 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
153 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
154 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
155 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
156 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
157 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
158 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
159 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
160 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
161 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
162 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
163 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
164 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
165 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
166 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
167 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
168 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
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10.4.5. Phase 3 – Balancing and Splitting 

Red is used to indicate samples corresponding to failures, and green used to indicate 

samples that do not correspond to failures. 

 

Unbalanced 

 

 

 

 

 

 

 

 

Balanced 

 

 

Split 

 

 

Training 

 

 

Validation 

 

Figure S5: Overview of balancing and splitting 

This phase yielded 168 pairs of training and validation sets. Each of the models was 

created using its corresponding training set, and evaluated using its corresponding 

validation set. 
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10.4.6. Phase 4 – Model Creation 

Models were trained in R using caret. The algorithm used was nonlinear support 

vector machine classification with a radial basis function kernel. The 

hyperparameters C and σ were tuned on a grid produced by 441 = 212 pairs of the 

following values [2-10, 2-9,…,29, 210]. This was done using 3 repetitions of 10-fold 

cross-validation. A total of 2,222,640 = 3*10*441*168 models were trained, 

however the overall output was one model with the best hyperparameters for each 

training set. As such, 168 models were created. 

10.4.7. Phase 5 – Prediction 

10.4.7.1. Overview 

Three aspects of the future failure prediction approach that together help distinguish 

the methodology from other approaches are elucidated here. (1) ensemble creation, 

as opposed to using one model to predict future failure time, the present approach 

uses 12 models at a time as an ensemble of models to predict future failure; (2) 

probability threshold; the individual classification models output a probability of 

failure when applied, and an alarm is corresponds to an ensemble probability of 

failure exceeding a 99.999% threshold.; (3) k-out-of-n alarm policy, this is further 

complemented with a 9-out-of-10 alarm policy in which a future failure is predicted 

if and only if there are 9 alarms triggered in a group of 10 ensembles.The three 

aspects of the failure prediction approach are illustrated with a table on a subsequent 

page. The output of the models is a future failure time of 129 hours corresponding 

to the first time the 9-out-of-10 policy is satisfied. 
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10.4.7.1. Model Evaluation Metrics 

The metrics used to evaluate the performance of the models are defined here. The 

metrics involve true positives (TP), true negatives (TN), false positives (FP), false 

negatives (FN), probability of accurate agreement (p&), and probability of chance 

agreement (p'). 

 

Accuracy	 =
TP + TN

TP + FP + TN + FN	 

Kappa = 1 −
1 −	p&
1 − p'

	 

Sensitivity = Recall =
TP

TP + FN 

Precision =
TP

TP + FP 

Specificity =
TN

TN + FP	 

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall 	 
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Table S7: Overview of individual and ensemble probabilities 

Classifer P!" 1 − P!" P#" P#"> 99.9999% ? 
9-out-of-
10 alarms ? 

1 0.062913 0.937087 0.598066 No No 
2 0.131847 0.868153 0.607285 No No 
3 0.437723 0.562277 0.576630 No No 
4 0.029158 0.970842 0.248422 No No 
5 0.018865 0.981135 0.227404 No No 
6 0.025219 0.974781 0.213331 No No 
7 0.018498 0.981502 0.195388 No No 
8 0.021749 0.978251 0.180944 No No 
9 0.010804 0.989196 0.207781 No No 

10 0.002233 0.997767 0.202745 No No 
11 0.001085 0.998915 0.216976 No No 
12 0.000316 0.999684 0.217843 No No 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

123 0.149036 0.850964 0.996355 No No 
124 0.325410 0.674590 0.999289 No No 
125 0.033409 0.966591 0.999124 No No 
126 0.091854 0.908146 0.999972 No No 
127 0.085693 0.914307 0.999994 No No 
128 0.075597 0.924403 0.999995 No No 
129 0.858849 0.141151 0.999999 Yes Yes 
130 0.445651 0.554349 0.999999 No Yes 
131 0.356005 0.643995 1.000000 Yes Yes 
132 0.453462 0.546538 1.000000 Yes Yes 
133 0.386458 0.613542 1.000000 Yes Yes 
134 0.493439 0.506561 1.000000 Yes Yes 
135 0.834096 0.165904 1.000000 Yes Yes 
136 0.168157 0.831843 1.000000 Yes Yes 
137 0.969376 0.030624 1.000000 Yes Yes 
138 0.812382 0.187618 1.000000 Yes Yes 
139 0.254292 0.745708 1.000000 Yes Yes 
140 0.868205 0.131795 1.000000 Yes Yes 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
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10.4.8. Phase 6 - Safety Quantification 

A simplified safety metric is selected for the motivating example while a more 

complex one is selected for the second case study. The idea underlying the selected 

safety metric for the motivating example is that a reactor is less safe the closer it is 

to its maximum operating temperature is employed. This results in the following 

function which is input into the scheduling model. 

(𝕋8- − 𝕋8) ≥ 𝕋8X 

 

10.4.9. Phase 7 – Scheduling 

The model formulation is described in detail in the paper. Given that the models 

are relatively complex, additional pieces of information used for the 

implementation were: initializing the values of variables near the midpoint of their 

ranges, reformulating fractions as products where possible, and solving using an 

optimality gap threshold of 0.1 and time limit of 3600 s for both case studies. 

The derivation of the pump switching constraints is presently described. A binary 

variable sT,8 is defined to represent a switch in the status of a pump between two 

successive time periods for pumps 𝑗 ∈ 𝐽 time periods 𝑡 ∈ 𝑇. When there has been a 

switch, sT,8 = 1, when the pump status has remained off or remained on then sT,8 = 

0. Defining propositions P& as pump 1 active in time t, P' as pump 2 active in time 

t + 1, and P5 as a switch occurring, this can be represented using propositional logic 

as follows: 



 257 

[¬P&⋀P']⋁[P&⋀¬P'] → P5 

[P&⋀P']⋁[¬P&⋀¬P'] → ¬P5 

 

Associating P& with aT,8, P' with aT,8j&, and P5 with sT,8, the following set of 

inequalities encoding the different possibilities can be defined: 

sT,8 ≤ aT,8 + aT,8j& 

sT,8 ≥ aT,8j& − aT,8 

sT,8 ≥ aT,8 − aT,8j& 

sT,8 ≤ 2 − aT,8 − aT,8j& 

 

The following constraint can then be defined to limit the number of switches over 

the time horizon for a given pump. 

esT,8
8∈7

≤ 	1 
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10.5. Supporting Information for Chapter 6 

10.5.1. Dynamic Simulation Model Examples 

This section presents two examples of dynamic simulation models that were 

developed and then proceeds to provide additional information related to the multi-

parametric-based safety-aware, maintenance-aware, and disruption-aware 

(mpSAMADA) framework. 

10.5.1.1. Dynamic Simulation of a Continuous Production Process 

The selected continuous process involves the production of methyl acetate in a 

homogenous liquid medium and was taken from a gPROMS tutorial. Methanol 

(MeOH) and acetic acid (HAc) are combined in a continuous stirred tank reactor 

(CSTR) to form methyl acetate (MeAc) and water (H2O). There are two reactions 

(1) a forward esterification reaction, and (2) a reverse hydrolysis reaction. This is 

shown below:  

CH5OH + CH5COOH ⇌ CH5COOCH5 + H'O	 

This motivating example illustrates the dynamic operation of a well-stirred 

isothermal continuous production system. The initial liquid level in the reactor is 2 

m and the outlet line is located at a height of 5 m. Reactants are fed in causing the 

level to rise and products to be formed, and  the system exhibits a state transition 

once the liquid level reaches the outlet line level. 
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Figure S6: CSTR liquid level 

 

 

Figure S7: CSTR outlet flowrate 
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Figure S8: CSTR species compositions 

 

10.5.1.2. Dynamic Simulation of a Multi-Product Batch 

Production Process 

The selected batch process involves a multiproduct batch plant with a mixing stage 

and a reaction stage and was adapted from [187] and a gPROMS tutorial. The 

process is a fed batch process in which one set of chemical species is mixed in one 

tank, and a second set of chemical species is mixed in a second tank before being 

fed to a reactor. Modeling considerations include perfect mixing, limited reaction 

in the mixing tanks, isothermal process behavior, and controlled outlet flowrates 

from the mixing tanks once the outlet valves are opened. An overview of the 

operating procedures and system states is provided. 
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This motivating example captures more complex operating procedures such as 

sequential feeds, and the influence of valve control. This enables the elucidation of 

process and maintenance scheduling as well as fault prediction. In particular, 

equipment faults such as valve stiction or agitator failure can lead to a process fault, 

and this can be captured through a fault prediction model and then used to obtain 

maintenance-aware fault-aware optimal predictive control strategies. 

 

 

 

 

 

Figure S8: Multi-product batch process flowsheet 
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Figure S9: Primary mixing tank outlet flowrate 

 

 

Figure S10: Secondary mixing tank outlet flowrate 
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Figure S11: Primary mixing tank volume 

 

 

Figure S12: Secondary mixing tank volume 
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Figure S13: Batch reactor volume 

 

 

Figure S14: Batch reactor species concentrations 
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10.5.2. Case Study 1 – System Reliability Function Derivation 

The overall system can be iteratively subdivided into subsystems A, B, and C such 

that RN = f(R&, R'), Ra = f(RN, R5), Rb = f(RB), and R/6/ = f(Ra, Rb). 

R/3243/ = } RT
T∈m(@A%@(

 

R0121VV3V = 1 − } m1 − RTg
T∈mB>A>CC@C

 

 

For two components, R/3243/ = R&R' and R0121VV3V = R& + R' − R&R'. The system 

reliability function can thus be determined. 

RN = R& + R' − R&R' 

Ra = RNR5 = R&R5 + R'R5 − R&R'R5 

Rb = RB 

R/6/ = Ra + Rb − RaRb 

R/6/ = R&R5 + R'R5 − R&R'R5 + RB + R&R5RB − R'R5RB + R&R'R5RB 
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10.5.3. Case Study 1 – Model Approximation 

(a) 

 

(b) 

 

Figure S15: Case Study 1 – Model approximation for state space model with 

disturbances (a) concentration, and (b) temperature 

 

 

 

10.5.4. Case Study 1 – State-Space Model Matrices 

A = ¡ 1 2.433eHB
8.579eHC 0.999

¤ 

B = ¡ 8.320e
He

−2.255eHd
¤ 

C = ¡−1.312e
Hd

3.518eHd
¤ 

D = ¡ −66.516 0.0446
−314.049 −314.243¤ 
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10.5.5. Case Study 1 – mpMPC Model and Tuning Parameters 

min
U

e y!7QR!y!7
t]H&

!q&

 

s. t. x!j& = Ax! + Bu! + Cd! 

y! = Dx! 

u*4) ≤ u! ≤ u*1\ 

Δu*4) ≤ Δu! ≤ Δu*1\ 

x*4) ≤ x! ≤ x*1\ 

y*4) ≤ y! ≤ y*1\ 

Table S8: Case Study 1 - Tuning parameters of the mpMPC controller 

Parameter Value 

OH 5 

NC 1 

QR 104 

u*4) 350 

u*1\ 370 

Δu*4) -0.01 

Δu*1\ 0.01 

x*4) [−1 −2]7 

x*1\ [0 0]7 

y*4) [0 300]7 

y*1\ [0 500]7 
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10.5.1. Case Study 2 – Air Temperature and Humidity Profiles 

The second case study used the approximate air temperature and humidity profiles 

for Kingsport, TN, USA on Apr 6th, 2020. American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) formulas were used on 

https://www.kwangu.com/work/psychrometric.htm to calculate the corresponding 

wet-bulb temperatures. 

 

 

 

(a) 

 

(b) 

 

Figure S16: Profiles of (a) air temperature, and (b) humidity 
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10.5.2. Case Study 2 – Scheduling 

The monolithic process and maintenance scheduling model was computationally 

demanding so it was solved by formulating it as two problems: (1) a cooling tower 

scheduling problem, and (2) a pump network problem. The cooling tower model 

was adapted from previous work in the literature. 

 

10.5.2.1. Cooling Tower Model 

Sets:  

• time intervals, t	 ∈ T 

 

Continuous Variables:  

• air flowrate (m8
142) 

• inlet air wet-bulb temperature (T8
142,Wi,4)) 

• inlet water temperature (TW,4)) 

• inlet vapor pressure (P8
u10,Wi,4)) 

• inlet air-vapor flowrate (m8
1u,4)) 

• inlet air water mass fraction (w8
4)) 

• inlet air density (ρ8142) 

• inlet air enthalpy (h142,4)) 

• mean air-vapor flowrate (m8
1u,*) 

• mean air density (ρ8
142,*) 

• mass flowrate of evaporated water (m8
W3u) 

• mass of makeup water (m8
*W) 
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• outlet water temperature (T8
W,_U8) 

• outlet air water mass fraction (w8
_U8) 

• outlet air temperature (T8
142,_U8) 

• outlet air-vapor flowrate (m8
1u,_U8) 

• outlet air density (ρ8142) 

• outlet vapor pressure (Pu10,_U8) 

• power (P8) 

• pressure difference (ΔP8) 

• miscellaneous pressure difference (ΔP8*4/p) 

• pressure difference due to fills (ΔP8P4) 

• saturated air enthalpy (h8/1) 

• water flowrate (m8
W) 

 

min(c$3600m%
&$ + c# .

P%

1000/
%∈(

 
 (173) 

P%
)*+,$-,./ = 0.00090238315T%

*.0,$-,./7
1
	− 	0.02608537885T%

*.0,$-,./7
2

+ 	3.47384307955T%
*.0,$-,./7

3
	

+ 	9.2228935076T%
*.0,$-,./ + 	822.0620060852 

t ∈ T (174) 

w%
./ = .

2501.6 − 2.3263T%
$-,./

2506 + 1.8577T%
*.0,./ − 4.184T%

$-,.//?
0.62509P%

)*+,$-,./

P%4% − 1.005P%
)*+,$-,./@

− .
1.00416(T%

*.0,./ − T%
$-,./)

2506 + 1.8577T%
*.0,./ − 4.184T%

$-,.// 

t ∈ T (175) 

ρ%
*.0,./ =

P%4%

287.08T%
*.0,./ + 273.15

.1 −
w%
*.0,./

w%
*.0,./ + 0.62198

/ 51 + w%
*.0,./7 

t ∈ T (176) 

h*.0,./ = −6.38887667	 + 	0.86581791T$*%#0,./ 	
+ 	15.7153617e5.5712899(!"#$%,'( 

t ∈ T (177) 

m%
&$ =

n:;:<#=

n:;:<#= − 1
m%
$#) 

t ∈ T (178) 
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m%
$#) = m%

*.0(w%
4>% −w%

./) t ∈ T (179) 

w%
4>% =

0.62509P%
)*+,4>%

P%4%  
t ∈ T (180) 

P%
)*+,4>% = 0.00090238315T%

*.0,4>%7
1
	− 	0.02608537885T%

*.0,4>%7
2

+ 	3.47384307955T%
*.0,4>%7

3
	+ 	9.2228935076T%

*.0,4>%

+ 	822.0620060852 

t ∈ T (181) 

h%=* = h*.0,./ +
C+$m%

$

m%
*.0 5T$*%#0,./ − T%

$*%#0,4>%7 
t ∈ T (182) 

T%
$*%#0,4>% = T$*%#0,? t ∈ T (183) 

P% =
m%
*),./ΔP%
ρ%
*.0,./η"

 
t ∈ T (184) 

ΔP% = 1.667(ΔP%". + ΔP%&.=:) t ∈ T (185) 

ΔP%". = K".L".
(m%

*),&)3

2ρ%
*.0,&(A"0)3

	 
t ∈ T (186) 

ΔP%&.=: = 6.5
(m%

*),&)3

2ρ%
*.0,&(A"0)3

 
t ∈ T (187) 

m%
*),& =

m%
*),./ +m%

*),4>%

2  
t ∈ T (188) 

m%
*),./ = m%

*.0 +w%
./m%

*.0 t ∈ T (189) 

m%
*),4>% = m%

*.0 +w%
4>%m%

*.0 t ∈ T (190) 

1
ρ%
*.0,& =

1
ρ%
*.0,./ +

1
ρ%
*.0,4>% 

t ∈ T (191) 

ρ%
*.0,4>% =

P%4%

287.08T%
*.0,./ + 273.15

.1 −
w%
*.0,4>%

w%
*.0,4>% + 0.62198

/ 51

+ w%
*.0,4>%7 

t ∈ T (192) 

1.2 ≤
m%
*.0

A"0
≤ 4.25 

t ∈ T (193) 

2.9 ≤
m%
$

A"0
≤ 5.96 t ∈ T (194) 
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0.5 ≤
m%
$

m%
*.0 ≤ 2.5 t ∈ T (195) 

T%
*.0,4>% ≥ T%

*.0,./ t ∈ T (196) 

T$*%#0,./ ≥ T$*%#0,4>% t ∈ T (197) 

T$*%#0,4>% ≥ 2.8 + T*.0,$-,./ t ∈ T (198) 

m%
&$ ≥ 0.01m%

$ t ∈ T (199) 

 

10.5.2.2. Pump Network Model 

Sets:  

• pumps, j	 ∈ J 

• streams, s	 ∈ S 

• time intervals, t	 ∈ T 

• miscellaneous time intervals t	 ∈ T&, t	 ∈ T', t	 ∈ T5, t	 ∈ TB,	t	 ∈ TC 

Continuous Variables:  

• predicted pump reliability (RT,8
023.) 

• pump efficiency (ηT,8) 

• pump power (PT,8
0U*0),  

Binary Variables: 

• availability (aT,8) 

• maintenance (mT,8) 

• prior maintenance (mT,8
024_2) 

• started maintenance (mT,8
/8128) 

• switch (σT,8) 
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mine°c3ePT,8
0U*0

T∈m

+ ¢1 − R&,8
023.£c*m&,8±

8∈7

 
 (200) 

F',8 = FG t ∈ T (201) 

F',8 = F5,8 + Fg,8 t ∈ T (202) 

F5,8 = FB,8 + FC,8 t ∈ T (203) 

FB,8 = Fd,8 t ∈ T (204) 

FC,8 = Fe,8 t ∈ T (205) 

Fd,8 + Fe,8 = Ff,8 t ∈ T (206) 

Fg,8 = F&+,8 t ∈ T (207) 

Ff,8 + F&+,8 = F&&,8 t ∈ T (208) 

η&,8 = γ&mFd,8g
' + γ'Fd,8 + γ5 t ∈ T (209) 

η',8 = γ&mFe,8g
' + γ'Fe,8 + γ5 t ∈ T (210) 

η5,8 = γ&mF&+,8g
' + γ'F&+,8 + γ5 t ∈ T (211) 

P&,8
0U*0 =

Fd,8ρgH
χη&,8

 t ∈ T (212) 

P',8
0U*0 =

Fe,8ρgH
χη',8

 t ∈ T (213) 

P5,8
0U*0 =

F&+,8ρgH
χη5,8

 t ∈ T (214) 

a&,8F&, ≤ Fd,8 ≤ a&,8F&- t ∈ T (215) 

a',8F', ≤ Fe,8 ≤ a',8F'- t ∈ T (216) 

a5,8F5, ≤ F&+,8 ≤ a5,8F5- t ∈ T (217) 

1 − aT,8 ≥ mT,8 t ∈ T (218) 
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em&,8
/8128

8∈7!
= 1  (219) 

emT,8
T∈m

≤ 1 t ∈ T (220) 

e mT,J
J∈7"

≥ MTTRTmT,8
/8128	 t	 ∈ T5	∀j	 ∈ J& (221) 

emT,8
8	∈7

≤ MTTRT	 t	 ∈ T	∀j	 ∈ J& (222) 

σT,8 ≤ aT,8 + aT,8j&  (223) 

σT,8 ≥ aT,8j& − aT,8  (224) 

σT,8 ≥ aT,8 − aT,8j&  (225) 

σT,8 ≤ 2 − aT,8 − aT,8j&  (226) 

eσT,8
8∈7

≤ κT/ t ∈ T j ∈ J (227) 

m&,8j&
024_2 ≥ m&,8

/8128 ∀t	 ∈ TB (228) 

m&,8j&
024_2 ≥ m&,8

024_2 ∀t	 ∈ TB (229) 

e m&,J
/8128

J∈7'
=

≥ m&,8j&
024_2 t ∈ TB	 (230) 

R&,8
023. = 1 −

1
1 + eHo!(8Ho")

 t ∈ T (231) 

R&,8 = R&,8
023.m1 − m&,8

024_2g + (1)m&,8
024_2 t ∈ T (232) 
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10.5.3. Case Study 2 - Features 

Table S9: Case Study 2 – List of features 

Feature Description  Feature Description 

F1 A Feed Flowrate  F27 Composition of E in Reactor Feed 

F2 D Feed Flowrate  F28 Composition of F in Reactor Feed 

F3 E Feed Flowrate  F29 Composition of A in Purge Feed 

F4 Total Feed Flowrate  F30 Composition of B in Purge Feed 

F5 Recycle Flowrate  F31 Composition of C in Purge Feed 

F6 Reactor Feed Flowrate  F32 Composition of D in Purge Feed 

F7 Reactor Pressure  F33 Composition of E in Purge Feed 

F8 Reactor Level  F34 Composition of F in Purge Feed 

F9 Reactor Temperature  F35 Composition of G in Purge Feed 

F10 Purge Flowrate  F36 Composition of H in Purge Feed 

F11 Product Separator Temperature  F37 Composition of D in Product Stream 

F12 Product Separator Level  F38 Composition of E in Product Stream 

F13 Product Separator Pressure  F39 Composition of F in Product Stream 

F14 Product Separator Underflow Flowrate  F40 Composition of G in Product Stream 

F15 Stripper Level  F41 Composition of H in Product Stream 

F16 Stripper Pressure  F42 Feed Flowrate of D 

F17 Stripper Underflow Flowrate  F43 Feed Flowrate of E 

F18 Stripper Temperature  F44 Feed Flowrate of A 

F19 Stripper Stream Flow  F45 Total Feed Flowrate 

F20 Compressor Work  F46 Compressor Recycle Valve Position 

F21 
Reactor Cooling Water Outlet 
Temperature 

 
F47 Purge Valve Position 

F22 
Separator Cooling Water Outlet 
Temperature 

 
F48 Separator Pot Liquid Flowrate 

F23 Composition of A in Reactor Feed  F49 Stripper Liquid Product Flowrate 

F24 Composition of B in Reactor Feed  F50 Stripper Steam Valve Position 

F25 Composition of C in Reactor Feed  F51 Reactor Cooling Water Flowrate 

F26 Composition of D in Reactor Feed  F52 Condenser Cooling Water Flowrate 
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10.5.4. Model Evaluation Metrics 

The metrics used to evaluate the performance of the models are defined here. The 

metrics involve true positives (TP), true negatives (TN), false positives (FP), false 

negatives (FN). 

Accuracy =
TP + TN

TP + FP + TN + FN 

Sensitivity = Recall =
TP

TP + FN 

Specificity =
TN

TN + FP 

10.5.5. Recursive Feature Elimination Algorithm 

A summary of the feature selection algorithm is shown below and has been taken 

from the R caret documentation. 

Algorithm S1: Overview of recursive feature elimination algorithm 
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Table S10: Case Study 2 – Feature importance values 

Feature Importance  Feature Importance 
F1 2.55  F27 3.92 
F2 1.52  F28 5.01 
F3 3.27  F29 3.68 
F4 0.70  F30 2.84 
F5 0.45  F31 3.57 
F6 1.06  F32 2.25 
F7 6.64  F33 3.69 
F8 0.96  F34 3.71 
F9 28.47  F35 3.63 
F10 2.98  F36 2.82 
F11 2.87  F37 5.74 
F12 1.06  F38 7.61 
F13 6.62  F39 6.21 
F14 0.12  F40 5.52 
F15 1.60  F41 7.94 
F16 5.34  F42 1.03 
F17 0.77  F43 1.60 
F18 7.02  F44 2.42 
F19 5.82  F45 0.64 
F20 7.50  F46 4.55 
F21 27.73  F47 2.33 
F22 0.44  F48 0.66 
F23 2.30  F49 1.59 
F24 2.67  F50 6.48 
F25 3.34  F51 28.17 
F26 2.90  F52 0.91 
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10.5.6. Case Study 2 – Model Creation Training Details 

The data was used to create three classification models to label samples of data as 

being either normal or faulty. A summary of the implementation details for each 

algorithm is provided here. It is noted that the illustrations of each algorithm do not 

necessarily correspond to the fault detection decision logic. 

10.5.6.1. Artificial Neural Network Model (ANN) 

The ANN model was built on the training data with 5 repeats of 10-fold cross-

validation and has a 3/5/2 structure. Rectified linear unit (ReLU) and softmax were 

used as activation functions for the hidden layer and output layer nodes 

respectively. Training was done to optimize cross-entropy via stochastic gradient 

descent with the hyperparameter lr = 0.01. 

 

 

 

 

Figure S17: Generalized ANN depiction 
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10.5.6.2. Decision Tree (DT) 

The DT was built on the training data with 5 repeats of 10-fold cross-validation and 

a complexity hyperparameter of 0.01. 

 

 

 

 

 

 

Figure S18: Generalized DT depiction  
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10.5.6.3. Support Vector Machine (SVM) 

The SVM was built on the training data with 5 repeats of 10-fold cross-validation. 

The cost-sensitive weight factor used was 1.041667.The radial basis function was 

used as the kernel and hyperparameters σ and C were trained on a [2-10, 210] grid. 

 

 

 

 

 

 

 

 

 

Figure S19: Generalized SVM depiction 
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10.5.7. Case Study 2 – High-Fidelity Model 

dMi1/4)

dt = mi1/4),4) −m_U8 +m*1!3U0 −m3u10 

m3u10 = m142(w_U8 −w4)) 

w4) =
0.62509Pu10,Wi,4)

P8_8 − 1.05Pu10,Wi,4)
 

w3\48 =
0.62509P3\48

P8_8 − 1.05P3\48
 

P%
)*+,$-,./ = 0.00090238315T%

*.0,$-,./7
1
	− 	0.02608537885T%

*.0,$-,./7
2

+ 	3.47384307955T%
*.0,$-,./7

3
	+ 	9.2228935076T%

*.0,$-,./

+ 	822.0620060852 

P%
)*+,4>% = 0.00090238315T%

*.0,4>%7
1
	− 	0.02608537885T%

*.0,4>%7
2

+ 	3.47384307955T%
*.0,4>%7

3
	+ 	9.2228935076T%

*.0,4>%

+ 	822.0620060852 

m*1!3U0 = m3u10 

m_U8 = ρWQ& + ρWQ' + ρWQ5	 

ω& =
Q&
Q)_*ω

)_* 

ω' =
Q'
Q)_*ω

)_* 
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ω5 =
Q5
Q)_*ω

)_* 

η& = β&Q&B + β'Q&5 + β5Q&' + βBQ& + βC 

η' = β&Q'B + β'Q'5 + β5Q'' + βBQ' + βC 

η5 = β&Q5B + β'Q55 + β5Q5' + βBQ5 + βC 

Q = Q& + Q' + Q5 

 

 

Table S11: Case Study 2 – High-fidelity model parameters 

Parameter Symbol Value 

Ambient pressure, Pa P8_8 101325 

Density of water, kg/m3 𝜌v 1000 

Inlet air dry-bulb temperature, °C T142,4) 17 

Inlet air wet-bulb temperature, °C T142,Wi,4) 12 

Nominal pump 1 rotational speed, RPM  𝜔& 2407 

Nominal pump 1 rotational speed, RPM 𝜔' 2407 

Nominal pump 1 rotational speed, RPM 𝜔5 2407 

Reference rotational speed, RPM 𝜔wxy 2900 

Reference flowrate, m3/hr 𝑄wxy 35.5 

Number of cycles np6pV3/ 4 
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10.5.8. Case Study 2 – Model Approximation 

 

Figure S20: Model approximation for state-space model 

 

 

 

10.5.9. Case Study 2 – State-Space Model and State-Space Model 

Matrices 

x8j& = Ax8 + Bu8 

y8 = Dx8 + Eu8 

A = [1.0000] 

B = [7.4307eH&+] 

D = [1.4366eHC] 

E = [0.0129] 
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10.5.10. Case Study 2 – mpMPC Model and Tuning Parameters 

min
U

e y!7QR!y!7
t]H&

!q&

 

s. t. x!j& = Ax! + Bu! 

y! = Dx! + Eu8 

u*4) ≤ u! ≤ u*1\ 

x*4) ≤ x! ≤ x*1\ 

y*4) ≤ y! ≤ y*1\ 

 

 

Table S12: Case Study 2 - Tuning parameters of the mpMPC controller 

Parameter Value 

OH 3 

NC 1 

QR 104 

u*4) 0 

u*1\ 4000 

x*4) -109 

x*1\ 109 

y*4) 0 

y*1\ 50 

 


