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ABSTRACT 

 

In this study, I introduce an organ-specific scalable, multimodal, wireless 

optoelectronic device for precise and chronic optogenetic manipulations in vivo. When 

combined with an advanced, coil-antenna system and a multiplexing strategy for 

powering eight individual home cages using a single radio-frequency transmitter, the 

proposed wireless telemetry enables low cost, high-throughput, and precise functional 

mapping of peripheral neural circuits, including long-term behavioral and physiological 

measurements. Deployment of these technologies revealed an unexpected role for the 

stomach, non-stretch vagal sensory fibers in suppressing appetite, and demonstrated the 

durability of the miniature wireless device inside harsh gastric conditions. Together with 

an advanced machine learning algorithm and a novel switching mechanism, it enables 

experiments that can anatomically and physiologically map the functions of each 

targeted organ on the feeding control system in a freely behaving animal in a high-

throughput manner. 
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1. INTRODUCTION  

 

Optogenetics encompasses a technology that can rapidly control the function 

(gain or loss) of well-defined events within specific cells of complex biological systems, 

such as freely moving mammals[1]–[5]. This technology introduces microbial opsin 

genes to allow optical control of defined action potential patterns with the speed 

(millisecond-scale) and precision (cell-type-specific) required for biological processing 

in specific targeted neuron populations of living tissues. Therefore, optogenetics 

fundamentally requires an interdisciplinary perspective: engineered control tools that can 

easily target interesting cells, technology for light delivery into the tissue, and 

compatible readouts and analysis on how the optical control has been integrated. 

From a biological perspective, since the first bacteriorhodopsin was recognized 

as a microbial single-component light-activated ion pump decades ago[6], many studies 

have not only reported a deeper understanding of bacteriorhodopsin, but also identified 

numerous microbial opsins. The microbial opsin family includes membrane-bound ion 

pumps, as well as channel-system pathways such as halorhodopsin[7] and 

channelrhodopsin[8], which can pass through many ions in and out of the cell membrane 

in response to light[7]–[14]. Despite the long-standing understanding of such widely 

known microbial opsin genes and their ability to mediate ion conductivity through 

single-component light-activation regulators, studies related to optical neural control 

have stalled for decades due to assumptions that optoelectronic currents are too weak 

and slow to control neurons efficiently. Accordingly, mammalian neuronal microbial 
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membrane proteins are not expressed as intended. However, the situation changed 

rapidly in 2005 after the introduction of a single-component microbial opsin gene into 

mammalian neurons, which allowed stable, precise, and continuous control of action 

potentials on a millisecond timescale[15]. Since then, numerous studies[16]–[19] have 

actively demonstrated that many types of ionic conductive microbial opsins can be used 

as optogenetic control tools in mammalian neurons, such as a mature mammalian 

brain[1], [20], and spinal tissues[21]. In short, the optogenetic approach has exposed a 

new context for biological research, including both aspects of health and disease, by 

providing optical control at the speed and precision required for biological control 

processing. 

The first step in exploiting optogenetics technology is to target the opsins to the 

desired cells[22]–[28]. However, this stage is biologically oriented and beyond the scope 

of this dissertation, so I merely mention how it has evolved based on the following 

categories: viral promoter targeting, projection targeting, transgenic animal targeting, 

and spatiotemporal targeting. Once the desired opsin is targeted to the neurons of 

interest, the most important factor in the technology is how precise the light delivery and 

optical control can be in the targeted region[15], [29]. The requirements vary greatly 

depending on the experimental design. For example, multiple-opsin studies of rapid 

oscillations in brain sections require a different light delivery approach[30] than the 

studies of long-term stimulatory effects of the deep brain region in behavioral 

animals[22], [31], [32]. Also, in experiments that require long-term or light delivery to 
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spinal tissue, the spatial, temporal, and spectral control of the lighting must be well 

defined before lighting requirements of a particular experimental application can be met. 

Early optogenetics began with ex vivo experiments for light to target surfaces, 

such as cultured neurons, brain fragments, and cortical surfaces[30], [33], [34]. 

However, the system was gradually applied to freely moving worms[35], [36] and 

individual living cells in the brain of animals[37], [38], opening up a new era in 

neuroscience. Experiments that transmit light in vivo present several distinct hurdles 

compared to in vitro experiments. The light should be able to illuminate the precise 

region of the deep brain on demand, minimizing damage to surrounding tissue, and 

should not significantly interfere with the natural behavior of the animal. To meet these 

requirements, researchers suggested optical neural interfaces to deliver light directly 

from light sources (typically lasers) to target areas in vivo using a thin optical fiber[22], 

[31]. They then continued to develop into interfaces that attached to the skull by 

permanent implantation of a short-length fiber ending in a small fiber-optic connector 

with the inserted cannula in the target brain region. This method provides chronic 

experiments for several reasons: 1) the exposed fibers are less damaging than large 

cannulas, 2) the brain is completely secured from the external environment, and 3) the 

pairing connectors are less destructive than when inserting fibers into the cannula. These 

systems as early solutions leveraged the stable nature of the brain-skull interface to 

enable continuous optogenetic modulation of the identified neural groups. 

Nevertheless, these tethered systems impose significant constraints on 

experimental design and interpretation. In addition to requiring the researcher to attach 
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the optical fibers to the animals before conducting the behavioral tests, the connectors, 

including the inserted cannula, are physically bound to static skeletons of the animals, 

such as the skulls, to secure the fiber cables. This external fixation can cause device 

failure or injury to the nerve tissue around the inserted cannula due to inadvertent 

damage by the cage mate or housing[39], [40]. Also, these attached optical fibers 

physically restrict animal behavior, thus hindering the animal’s natural movements in 

complex environments. Hence, there has been extensive effort to deliver light through a 

wireless head mount system: fortuitously, the researchers have achieved their goals by 

combining flexible, injectable LED systems and options for wireless power supply via 

head-mounted receivers or battery-powered module devices[41]–[43]. However, such 

wireless optogenetic technology is also restricted by the mass and size of the device[43], 

[44]. The known wireless systems weigh between 0.7 g and 3 g and cannot be attached 

to animals for long periods because they protrude several millimeters from the skin[45]–

[47]. These structural restrictions prevent experimental designs that require small cages 

or normal social interaction with other mice. Thus, the head-mounted device ultimately 

narrows the extent of the research due to its structural limits and its concentration on 

only the brain region capable of emitting light. 

Because of these constraints, studies in animals that extended beyond the 

boundaries of these devices and required optogenetic control past brain studies to the 

spinal cord or PNS remained in unknown territory. However, research in 2015 

introduced a miniaturized, fully implantable biocompatible device that can safely 

interface with peripheral nerves and illuminate areas where light source delivery is 
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tricky[48], [49]. These devices can specifically and reversibly activate peripheral and 

spinal cord pain circuits in freely moving mice. The significance of research beyond the 

brain can also be perceived by noting the vagus nerve, which provides the only direct 

neural communication between internal organs and the brain. Peripheral endings of the 

vagal afferent fibers respond to a broad array of stimuli, including hormones, osmolytes, 

changes in pH, and mechanical distention that have diverging functions and 

contributions to behavior[50]. All of its diverse sensory cell bodies reside together 

within the nodose ganglia[50] but conventional viral and transgenic methods for 

targeting genetically distinct neuronal populations do not permit organ-specific 

manipulations. Although pioneering studies have used fiber optics to optogenetically 

manipulate mouse vagal afferents with organ specificity, these studies were conducted 

under anesthesia to investigate autonomic functions[51], [52]. Accordingly, studying 

functions beyond reflexes, such as the phenomenon of satiation in GI tracts, requires a 

more flexible approach. Given the widespread interest in using vagal nerve stimulation 

for treating obesity and other neurological disorders[53], [54], a key priority for this 

research field is to attain cell-type and organ-specific manipulations of the vagus nerve 

in awake animals. Although the aforementioned studies have attempted to implant 

devices into animal body parts beyond the brain region, no device has yet enabled 

chronic and durable cell-type-specific optogenetic manipulation of peripheral neurons 

within an organ. 

 In this dissertation, I describe the development of a durable, multimodal, 

wireless platform that enables chronic optogenetic stimulation of peripheral neurons 
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within organs in a high-performance manner. The miniaturized wireless device is fully 

implantable, utilizing a soft, thin, and low-modulus tether with a µLED for targeting 

inside an organ. A unique fabrication method is employed to offer a robust, µLED-

housing tether, permitting long-term (>1 month), intimate interfacing with peripheral 

nerve endings in freely behaving mice. Combined with multichannel stimuli interfaces, 

these optogenetic implants can selectively and independently manipulate peripheral 

nerve activity within multiple target organs in the same animal using a monolithic 

design. Additionally, a channel isolation strategy is introduced for powering multiple 

cages using a single RF transmitter. Coupled with an advanced coil-antenna approach, a 

single telemetry system provides reliable wireless power in eight individual home cages, 

overcoming cage limitations of other wireless and fiber-optic-based systems. 

Furthermore, the concept of a channel isolation power TX system combines ML-based 

image processing technology in real-time to avail the chance of stable animal 

experiments in a large-scale cage with multiple mice at the same time. The utilities of 

the proposed wireless telemetry system have been demonstrated in an animal model, and 

in vivo deployment of this technology revealed an unexpected role for putative, gastric 

chemoreceptors in suppressing appetite and unveiled a valence mechanism by which 

appetite suppression occurs. 
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2. ORGAN-SPECIFIC, SCALABLE, MULTIMODAL WIRELESS GASTRIC 

OPTOGENETIC IMPLANTS* 

 

2.1. Introduction 

Wireless optoelectronics has provided a way to bypass the physical limitations of 

fiber-optic cables to some extent[41]–[43], [47], [48], and this development has resulted 

in a fully implantable wireless device with reduced size and weight.  As technology 

advances, many neuroscientists have gone beyond the brain and have used this 

optogenetic tool to understand how interconnected groups of peripheral neurons work 

together to carry out a behavior. However, wireless optogenetics for the PNS has not 

reached its full potential due to the limited durability of the device, harsh circumstances, 

such as natural continuous systolic/diastolic movements of an organ, and the difficulty of 

targeting precisely. Recently, a wirelessly powered µLED secured to a rat bladder using 

a circumferential elastomer sleeve was found to enable a similar level of 

functionality[55], but this approach impedes organ expansion. Efforts to wirelessly 

manipulate neural organ function in awake mice include studies that sutured a µLED 

onto the heart surface for pacemaking[56] or the intestinal surface for controlling colonic 

motility[57]. However, these devices were not described as being functional for more 

than 8 days[55]–[57], limiting behavioral studies subject to the recovery periods required 

  

*Reprinted with permission from “Organ-specific, multimodal, wireless optoelectronics for high-

throughput phenotyping of peripheral neural pathways” by Kim, W.S.; Hong, S.; Gamero, M.; 

Jeevakumar, V.; Smithhart, C.M.; Price, T.J.; Palmiter, R.D.; Campos, C.; Park, S.I, 2021, Nat Commun, 

12, 157, © 2021 by Springer Nature. 
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after thoracic and/or abdominal device implantation. Moreover, affixing the µLED to the 

target organ surface results in light back-scatter and nonspecific optogenetic illumination 

on nearby tissues. To sum up, these preexisting methods have several drawbacks: 

restrictions on device reliability due to the natural movement of animals and the 

correctness of the minute target region due to having to affix the light source on the 

outside of the specific organ.  

Advanced wireless communication modules such as µC-embedded 

communication systems (NFC hardware or Bluetooth chips) have been described that 

can function, multichannel operation. Their user-friendly software interface and open-

source circuit library provide easy access to the broader community. Although these 

wireless platform systems have some utilities, the power requirements for wireless 

operation (~3 mA for a µC-embedded communication system, ~3.5 mA for an NFC 

chip, and ~10 mA for a Bluetooth device) make them less ideal for small animal research 

or longitudinal experiments[17–20]. This could be compensated by an increase in 

transmitted power, but this could exceed the upper limits suggested by IEEE depending 

on class of neuroscience experiment[62]. Any exposures above the guidelines could 

potentially cause tissue damage associated with the absorption of RF signals[63]. 

In this chapter, I propose a soft, fully implantable HF range optoelectronic device 

that 1) directly interfaces with vagal afferent fibers in the stomach and 2) delivers light 

to the nerve endings in a freely behaving animal with chronic stability in operation. I 

also introduce a low-power, switching mechanism for multichannel operation; it allows 

for selective control of multichannel up to eight within a limited size (dimension: 1 cm 
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diameter). Overcoming these technical barriers will enable tools to diversify PNS 

function by organ-specific stimulation and provide insight into completely understanding 

the communication between the GI tract and the brain. 

 

2.2. Methods 

2.2.1. Device Fabrication 

The process began with flexible Cu/PI bilayer films (thickness: 12 µm/18 µm, 

AC181200RY, DupontTM Pyralux®) mounted onto a glass slide (dimensions: 5.08 cm 

by 7.62 cm). Then we deposited 2.5 µm thickness of photoresistor on the Cu/PI substrate 

(AZ 1518, AZ®, recipe; spin-coated at 4,000 r.p.m. for 20 sec), and used UV photo-

lithography to define patterns for pads and interconnections (EVG610, EV Group, 

recipe; UV intensity for 100 mJ cm-2). This was followed by immersion in developer 

solution (AZ Developer 1:1, AZ®) for 30 sec and rinses in distilled water for 10 sec. 

Immersion in copper etchant (LOT: Z03E099, Alfa AesarTM) for 7 min and rinses with 

acetone, methanol, isopropanol, and distilled water for 1 min yielded Cu 

interconnections and pads on the flexible substrate. After samples dry, chip components 

were mounted, including a µLED, passive components, and IC components using a 

soldering machine. An additional PI/Cu layer (thickness: 18 µm/12 µm) with the bottom 

chip-mounted Cu/PI substrate formed a sandwiched structure (PI/Cu/Cu/PI). For 

encapsulations, we applied a small amount of PDMS (SylgardTM 184 silicone elastomer 

kit, Dow®; 10:1 mix ratio) using a pipette while a clamp held the body of a sample to 

form a thin, pre-curved, sandwiched structure. Then we encapsulated the body of a 
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sample with PDMS by a dip-coating process (thickness: 500 µm). Samples were cured in 

a vacuum oven at 100 ºC for 1 h. These procedures yield a soft, low-power, wireless 

gastric optogenetic implant with a pre-curved, sandwiched tether. The summary of the 

fabrication procedure is in Table 2-1. And detailed information on device layouts and IC 

components are found in Figure 2-1 and Table 2-2, respectively. 

 

 

Table 2-1. Summary of procedures for fabrications 

Process Purpose 
Required time 
for 10 devices 

Equipment 
Progress 
level (%) 

1 
Preparation of 
photoresist coated glass 

Sampling for 
transfer 

1 hour 
Clean room 
Spin-coater 

10 

2 Baking 
Stabilization, 
remove the solvent 

0.5 hours 
Clean room 

Hotplate 
20 

3 Photo lithography 

Patterning for  
stretchable circuits 

1 hour 
Clean room 
Mask aligner  

40 

4 Photoresist development 0.5 hours Clean room 50 

5 Copper etching 1 hour Clean room 60 

6 Baking 
Stabilization, 
remove the solvent 

0.5 hours 
Clean room 

Hotplate 
65 

7 Components transfer 
Active components  
integration 

5 hours 
Soldering Iron 

Microscope 
80 

8 PDMS encapsulation System packaging 10 hours Vacuum oven 100 
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Figure 2-1. Device layout of the proposed device. 

 

 

Table 2-2. Components information used for the wireless gastric optogenetic implant 

 Components Product number Vendor 

LED1 472nm, 220 × 270 × 50 µm C460TR2227 Cree 

LED2 632nm, 0.65 × 0.35 × 0.2 mm APG0603SEC-E-TT Kingbright 

SD Schottky Diode, 0.65 × 0.35 × 0.3mm DSR01S30SL Toshiba 

R0 0 Ω, 1.6 × 0.9 × 0.55 mm RCWPM-0603 VISHAY 

R1 0 Ω, 1.00 × 0.55 × 0.35 mm RCWPM-0402 VISHAY 

R2 0 Ω, 0.65 × 0.35 × 0.25 mm RCWPM-0201 VISHAY 

R3 499 Ω, 0.6 × 0.3 × 0.23 mm RC0603F4990CS Samsung EM 

R4 249 k Ω, 0.6 × 0.3 × 0.23 mm RC0603F2493CS Samsung EM 

R5 10 k Ω, 0.6 × 0.3 × 0.23 mm RC0603J103CS Samsung EM 

R6 20 k Ω, 0.6 × 0.3 × 0.23 mm RC0603F203CS Samsung EM 

C1 82 pF, 0.6 × 0.3 × 0.33 mm CL03C820JA3NNNC Samsung EM 

C2 330 pF, 0.6 × 0.3 × 0.33 mm CL03B331KA3NNNC Samsung EM 

C3 1 µF, 0.6 × 0.3 × 0.33 mm CL03A105KP3NSNC Samsung EM 

C4 11 mF, 3.2 × 2.5 × 0.9 mm CPH3225A Seiko 

NMOS 1.0 × 1.0 ×  0.34 mm NTUD3170NZ ON Semiconductor 

PMOS 1.7 × 1.7 × 0.6 mm NX3008PBKV Nexperia 

A-SW Analog switch, 1.6 × 1.2 × 0.5 mm SN74LVC1G3157 Texas Instruments 

 

(Whole device)

LED1

R0

R0R1

R3

R2

R4R4

R5
R5

R6
SD

SD

C3

C2
C1

C4

Analog 

Switch

Analog 

Switch

NMOS

PMOS

LED2
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2.2.2. Finite Element-Method Analysis 

For numerical electromagnetic simulations of the proposed device, we used a 

finite element- method analysis tool (Ansys Electromagnetics Suite 17-HFSS, Ansys®) 

with Cole-Cole dielectric relaxation model where characteristics of biological tissues 

were described as a function of frequency. Organ systems and tissues of a mouse were 

modeled to one million meshes for numerical simulations, and antenna coils made of 

copper stripes or wires were modeled to materials with finite conductivity, 58 MS s-1. 

For 3D modeling of the mechanics for the devices, we used a commercial finite element-

method analysis tool (Abaqus/CAE 2018, Dassault Systems) to investigate strain effects 

on the pre-curved and post-curved structures. The following parameters were used for 

simulations: 500/18/12/12/18/500 µm thickness (PDMS/PI/Cu/Cu/PI/PDMS) for the 

pre-curved structure and 510/12/18/510 µm thickness (PDMS/Cu/PI/PDMS) for the 

post-curved structure; elastic properties Young's modulus MPa/Poisson's ratio: 1/0.49 for 

PDMS, 119000/0.34 for Cu, and 2500/0.34 for PI. The Cu/PI layer was modeled as a 

composite shell element (S4R). PDMS was modeled as a solid hexahedron element 

(C3D8R) in the pre-curved structure and as a shell element (S4R) in the post-curved one.  

 

2.2.3. Measurements of Mechanical, Optical, and Electrical Characteristics 

We used a gauge-force machine (ESM303 Forced Test Stand, MARK-10) to 

perform device lifetime cycling tests with a significant load extended over a period of 

time (>200 kilocycles) for the pre-curved, post-curved, and pre-curved structures with 

three different curvatures (0.72 mm, 1.15 mm, and 2.87 mm) of a tether. The 
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experiments involved application of strain in three different directions: 1) the x-

direction, 2) the y-direction, and 3) the z-direction, respectively. After completion of 

each 1,000 cycles, we immersed a wireless device in 10 % PBS solution for 10 min and 

measured light intensity using a light meter (LT300, EXTECH). This test was repeated 

until a device stopped functioning. We also performed accelerated life testing where a 

device was immersed in 10 % PBS solution and light intensity was monitored as a 

function of time at various temperatures (25 ºC, 60 ºC, and 90 ºC). For thermal 

assessments of wireless devices, we used an infrared camera (VarioCAM HDx head 600, 

InfraTech). Light intensity was fixed at an optical intensity of 10 mW mm-2, which is 

enough to activate light-sensitive proteins, and the camera measured variations in 

temperature when devices were operated with duty cycles of 20 %, 40 %, 60 %, 80 %, 

and 100 %.  

 

 

 

Figure 2-2. Illustration of a soft, wireless gastric optogenetic implant in a mouse model. 
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2.3. Results 

An illustration of the fully implantable wireless device shows the general strategy 

for targeting a µLED inside the stomach (Figure 2-2). The device consists of an analog, 

front-end electronic circuit for RF harvesting (5.5 mm radius and 1 mm thickness) and a 

tether that supplies current to a µLED. It harvests RF energy from a remotely located 

wireless RF power system, converts RF energy into optical energy, and illuminates 

targeted regions in the stomach. The µLED is situated in the middle rather than the end 

of a tether, allowing the tether to be threaded in and out of the stomach and secured at 

two contact points. We found that the tether remains secure with purse-string sutures. 

The ultra-thin tether (0.4 mm wide by 0.2 mm thick) is more than 3 times smaller than 

insulin syringe needles used for intraperitoneal injections and tubing used for intragastric 

infusions[64].  

 

 

 

Figure 2-3. Procedures for device fabrication; scale bar 5 mm. 

Step 3: 

Encapsulation 

of bent tether

Step 4:

Thin, pre-curved wireless 

gastric optogenetic implant

Step 1: Cu-PI layer fabrication

Step 2: Chip mounting

PI/Cu layer

Cu/PI layer
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2.3.1. Characteristics of Organ-Specific, Wireless Gastric Optogenetic Implants 

Essential features that allow for long-lasting operation of the ultra-thin tether are 

a pre-curved, sandwiched construction. In our prototype, the harvester and µLED were 

connected with thin Cu (12 μm) electrical interconnects on top of flexible and durable PI 

(18 μm) substrate, then coated with a biocompatible silicone polymer, PDMS. However, 

this design exhibited poor durability, and post hoc analysis revealed µLED tether 

damage likely caused by mechanical strains. To increase durability, the µLED was 

sandwiched in between a second Cu/PI bilayer, which also provided additional electrical 

contact (Figure 2-3; assembly steps 1,2). We further postulated that coating the tether 

with silicone in a curved position (pre-curved) would decrease strain compared to a 

tether that was coated in a flat orientation and then bent when securing it inside the 

stomach (post-curved). This was achieved by suspending the tether in a bent position, 

pipetting small amounts of melted silicone around the µLED, and coating the remaining 

components using a simple dipping process (Figure 2-3; assembly step 3). This resulted 

in a thin, soft, and lightweight (~380 mg), wireless, gastric optogenetic implant (Figure 

2-3; assembly step 4). The compliant, low-modulus properties eliminated constraints on 

natural motions of the animal while also minimizing mechanical strain at the connecting 

joints. 

3D modeling of the mechanics showed that the maximum strain in the Cu traces 

and PDMS coating of the pre-curved tether (<800 Pa) was dramatically reduced 

compared to the post-curve tether strain (>6,600 Pa) (Figure 2-4). We further optimized 

the tether by mechanically testing various curvatures and identified a pre-curved  
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Figure 2-4. 3D modeling of the bending stress results by mechanical simulation for the 

pre-curved (left) and post-curved (right) structures. 

 

 

configuration that was functional beyond 200 kilocycles. Lifetime mechanical cycle tests 

with a significant load (0.03 kgF) revealed that the pre-curved structure with a radius of 

1.15 mm was functional for 200 kilocycles, a nearly 10-fold improvement compared to 

the post-curved structure (Figure 2-5). Although there was improved durability with pre-

curved structures that had a radius of 2.87 mm and 0.72 mm, they were not as durable as 

1.15 mm, likely because 2.87 mm is too similar to the flat structure, whereas the sharp 

angle with a radius of 0.72 mm interferes with µLED contact with the pad (Figure 2-6). 

The device was also subjected to waterproof testing by submerging it into a heated saline 

solution, revealing that it remained continually functional for over two months, even in 

extreme temperatures (Figure 2-7). Heat dissipation is another factor that can limit 

device functionality since nerve endings in the GI tract can be temperature sensitive[65].  
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Figure 2-5. Device lifetime cycling test for both structures when strain applied in the 

vertical (left) and horizontal (right) direction. 

 

 

 

Figure 2-6. Equation for various curvatures of a tether (left). Device lifetime cycling test 

as three different curvatures (right). 

 

 

Thermal assessment of the wireless optogenetic implant demonstrated minimal 

temperature increases (~0.2 ºC; Figure 2-8) during typical operating conditions (10 Hz 
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and 20 Hz with 5 ms light pulse; 5 % and 10 % duty cycles). Consistent with this, 

calculation of specific absorption rate using a finite-element method analysis tool 

showed that the specific absorption rate (SAR) distribution against localized RF 

exposure is below IEEE guidelines[62] (Figure 2-9). Finally, tests in mice showed that 

the pre-curved, sandwiched tether was functional for over a month, while the post-

curved structure stopped working three days after implantation (Figure 2-10). 

 

 

 

Figure 2-7. Durability test as various temperatures in vitro; measurements of optical 

output power from devices when immersed in 10 % PBS at various temperatures, 25 ºC, 

60 ºC, and 90 ºC. 
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Figure 2-8. Thermal assessment of the proposed device. A device mounted on a sealed 

bag of 10 % PBS solution, immersed in saline solution, and itself in a cage, respectively. 

Plots of optical intensity as a function of time at duty cycle (a; 5 %) and (b; 10 %) in 

three different conditions; wet, dry, and PBS bag. 

 

 

 

Figure 2-9. An experimental assay with computed SAR distributions on a mouse mesh 

body. 

a b

Time(mins)

0 9 153 6 12

20-Hz excitation signal

C
h
a
n
g
e
 i
n
 t

e
m

p
e
ra

tu
re

(⁰
C

)

0.4

0.2

0.1

0

0.3

Wet 10% PBS BagDry
C

h
a
n
g
e
 i
n
 t

e
m

p
e
ra

tu
re

(⁰
C

)

Time(mins)

0 9 15

0.4

0.2

0.1

0

3 6 12

Wet 10% PBS BagDry

10-Hz excitation signal

0.3

z

xy

SAR Field

[mW/kg]

2.5e+1

-1e0



 

20 

 

 

Figure 2-10. Measurement of device lifetime for pre- and post-curved structure when 

implanted (pre-curved, n = 8; post-curved, n = 8). Bar graphs are mean ±SEM. 

Statistical comparison was made using a two-tailed t-test; ***p<0.001. 

 

 

2.3.2. Characteristics of Dual-channel Gastric Optogenetic Implants 

Multimodal device operation is another strategy for increasing the efficiency and 

throughput of wireless-optogenetic studies. Targeting multiple organs with a single 

device could enable multi-organ analysis in the same animal or even be used to examine 

organ-to-organ interactions. Realization of multimodal tools requires an actuation 

mechanism that can remotely manage channel selection. Previous efforts utilized higher 

operating frequencies, µC chip or Bluetooth kits for actuating separate channels, but 

these approaches require increased RF power (tens of mW) for operation and render 

them energy-hungry devices[55], [66]. Here, we use a reed switch in the device that 

responds to the pattern of externally applied electromagnetic RF pulses. In our example, 

a pulse width longer than 100 ms triggers the transition from a green µLED to a blue  
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Figure 2-11. Illustration of wireless operation of a scalable, multimodal wireless gastric 

optogenetic implant (left), photos of an animal with the device implanted (middle), and 

photos of the device (right); scale bar 1 cm. 

 

 

µLED located on a separate tether (Figure 2-11). The actuation threshold can be adjusted 

by pairing different capacitors and resistors with the reed switch to prevent unwanted 

activation or deactivation, and could theoretically be tuned for switching between more 

than two channels[67], [68]; the circuit diagram and flowchart are shown in Figure 2-12 

and Figure 2-13. Importantly, this strategy only requires 10 µW for channel selection, 

which is 100-fold less power than other approaches[55], [66], [69]. When combined with 

the dual-coil antenna and multiplex coupling/decoupling, the proposed optoelectronic 

system enables robust, ultra-efficient wireless powering of optogenetic devices in 

multiple organs and multiple cages with independent and simultaneous control. Time 

slots allocated for each cage and threshold pulse for channel selection are tunable, 

suggesting many scenarios of multiplexing and multimodal operation. For example, we  
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Figure 2-12. Dual-channel device circuit diagram: Cmat = 412 pF, Crec = 0.1 µF, R1 = 5 

kΩ, R2 = 20 kΩ, C1 = 100 pF, LED1 is green, LED2 is blue. 

 

 

 

Figure 2-13. Flowchart of switching mechanism by a reed switch on the dual-channel 

device. 
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set threshold pulse for activation/deactivation of channels to 100 ms and allocate 250 ms 

for each cage. This provides enough time for an implant in each cage to switch its 

channel (from channel 1 to channel 2 or vice versa). It requires only two seconds (8 × 

0.25 sec) for the switching operation of implants in cages. Next, the TX system can 

adjust time slots, depending on stimulation conditions.  

However, the method mentioned above also has fatal flaws: an actuation 

mechanism enabled by a reed switch offers a one-time switching operation, and reverse 

operation (channel switch from channel 2 to channel 1) is not allowed due to the nature 

of memoryless logic circuits. This one-time switching operation can be accomplished by 

the employment of a sequential toggle logic circuit that accommodates both previous 

and current input states. Such event-driven sequential toggle logic is an asynchronous 

circuit that changes state immediately when enabled. Due to its form factor (8 mm by 1.7 

mm), the platform cannot be extended to offer more channels (>3) in the current 

compact design (1 cm in diameter). 

To break these defects, I suggest another mechanism that enables selective 

activation of the channel while still having low-power consumption. It is based on a 

memory logic circuit that can store the previous state even the device lost power for a 

while, enabling reverse operation for switching between two channels. It utilizes an 

analog switch which is much smaller (1.6mm by 1.2 mm) than a reed switch. The circuit 

diagram appears in Figure 2-14. 
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Figure 2-14. Dual-channel device circuit diagram based on memory logic: Cmat = 412 pF, 

Crec = 0.1 µF, R1 = 249 kΩ, R2 = 10 kΩ, R3 = 5 kΩ, C1 = 1 µF, LED1 is green, LED2 is 

blue, and S1 = S2 = 1×2 analog switch. 

 

 

2.4. Discussions 

2.4.1. Necessities for Increasing Device Life Span 

Insufficient understandings of device failure mechanisms, or gaps between 

knowledge and reality regarding the impact of biological strain on a device, add 

substantial barriers to the development of a robust, biocompatible, implantable wireless 

device for chronic studies. For example, an animal’s natural motion near a device’s 

implanted region can induce the deformation of metal traces. In the long-term, such 

strains can also accelerate malfunction and the degradation of the quality of 

encapsulation material, leading to fatigue failure[70]. The implanted devices we 

proposed maintained functionality over one month (Figure 2-10) and the implantation 
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did not cause any inflammation or lesions to the stomach and abdominal cavity. The 

proposed strategy of securing a tether to the stomach was successful, suggesting 

expanded opportunities for the use of the technology in neuroscience. Despite this 

progress, the limited durability of implants makes it impossible to perform longitudinal 

studies that require long-term monitoring of behavior (e.g., obesity experiments that 

involve a high-fat diet) or extensive animal training (>4 months). To realize the full 

potential of optogenetics to study the PNS, it is essential to improve the durability of 

these devices so that they become as robust as the currently widely used fiber optics in 

the brain. 

 

2.4.2. Extension to Multichannel Gastric Optogenetic Implants 

When combined with memory logic, a sequential toggle logic circuit can make a 

transition from channel 1 to channel 2 or vice versa with chronic stability in operation. 

This approach can be extended to offer up to eight channels in a single platform device. 

In this method, the status of V2 is paramount (Figure 2-14). The switching time is 

determined by C1 and R2, which can control V2. In other words, we can define the 

switching time to change V2 by adjusting the C1 and R1 values. Here, each switching 

module can be connected in parallel, leading to a miniaturized, multichannel switching 

circuit. Such tools allow for the stimulation of sub-cell types innervating in an organ(s) 

simultaneously or independently. For example, meal termination is processed by two 

pathways that interact with peripheral nerves passing from the gut to the hindbrain or 

circulate to the hindbrain via the blood. However, little is known about the roles of vagal 
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or spinal sensory pathways and their dynamic interplay in feeding control due to the 

absence of technology that can stimulate only peripheral nerve endings in freely 

behaving animals. Therefore, by applying the proposed multichannel, organ-specific 

optoelectronics, we can test the hypothesis that exposure to a high-fat diet induces 

functional resistance to activate spinal cell types or the vagus nerve from distinct organs, 

thereby preventing normal meal regulation and promoting obesity.
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3. LOW-POWER, MULTICHANNEL WIRELESS TELEMETRY* 

 

3.1. Introduction 

As mentioned in the previous chapter, advances in wireless platforms have been 

able to bypass the limitations of preexisting fiber-optic interfaces and external 

connections[42], [43], [47]. Additionally, even the recently developed wireless power 

transfer systems have drawbacks: the biggest challenge of which is power transfer 

efficiency. Early wireless power transfer technology used the UHF (300-3,000 MHz) 

band, which causes the following barriers within or adjacent to the area of interest: 

signal reflection, absorption, and interference by other obstacles, including metal objects 

and skin tissues. In particular, this characteristic of wireless operation diminishes the 

efficiency of power transfer, hampering the available power of the device, which results 

in constraints in the size of the implants and feasible area of the experimental cage 

according to the TX antenna design[48], [49]. Accordingly, the most advanced research 

uses the HF (3-30 MHz) band, commonly at a frequency of 13.56 MHz, which is not 

sensitive to the presence of objects or physical obstacles and provides complete wireless 

coverage in various cage types and environments[71]–[74]. However, the wireless power 

delivery is still deficient due to the antenna structure, and the deficiency becomes more 

pronounced as the power requirements of implantable devices increase[75]. 

 

*Reprinted with permission from “Organ-specific, multimodal, wireless optoelectronics for high-

throughput phenotyping of peripheral neural pathways” by Kim, W.S.; Hong, S.; Gamero, M.; 

Jeevakumar, V.; Smithhart, C.M.; Price, T.J.; Palmiter, R.D.; Campos, C.; Park, S.I, 2021, Nat Commun, 

12, 157, © 2021 by Springer Nature. 
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Figure 3-1. Simulation results of electromagnetic couplings induced in an adjacent cage 

as a function of the distance between two cages along the horizontal (a), vertical (b), and 

diagonal (c) axes, respectively at a transmitted power level of 4 W. 

 

 

Another issue with optogenetic research is the strategy for experimental 

efficiency. Practical use of optogenetics depends on reliable and cost-effective light 

delivery in multiple animal subjects. A complete laser-based, optogenetics setup remains 

cost-prohibitive for many labs, given that each animal subject requires a laser, fiber-

optic cannula, fiber-optic patch cord, and rotary joint to decrease the physical constraints 

of the patch cord[31]. Wireless optogenetics is similarly limited, typically requiring a 

single RF power generator for each home cage[42]. A researcher may use multiple RF 
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power generators, but they must be operated at least 1 m apart from each other to avoid 

electromagnetic interference[76] (Figure 3-1). Together, these constraints limit the group 

sizes used for studies, restrict the duration and type of behavioral experiments that can 

be conducted, and hinder the high-throughput utilization of optogenetics in limited space 

overall. 

Also, in order to deliver lights to multiple animal subjects, we can design an 

experiment with multiple animals in one experimental space. However, since wireless 

power transfer systems have coverage issues according to the antenna structure and 

spatial area, the experiments using a large-scale cage have been difficult to achieve using 

wirelessly-powered platforms. Alternatively, a system has multiple antennas installed, 

and that selects optimized antennas depending on the position or pose of the animals 

increases power transfer efficiency. To apply this system, we introduce a technique that 

automatically regulates the TX system based on recently evolving computer vision 

algorithms. This ML-enabled adaptive TX system concept has become possible due to 

the development of image processing algorithms. In particular, progressive advances in 

deep neural networks for image and video analysis have enabled automated tracking of 

live animals and computer-based quantitative analysis of their behavior[77]. Monitoring 

and analyzing the differential response of animals to different stimuli under various 

experimental conditions are commonplace in many neuroscience studies, and human 

experts in the past analyzed video records of the animals manually[78]. Not only are 

these tasks labor-intensive and time-consuming, but the quality of the analysis results 

depends on the proficiency of the human expert. Due to the nature of the non-automated 
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process, we exclude adopting an efficient strategy for adaptive control of neural 

modulation devices, which requires real-time analysis. Fortunately, in recent years, deep 

convolutional neural networks (DCNNs) have been highly valuable for various image 

and video analysis tasks, including semantic segmentation, object recognition, and object 

tracking, often outperforming human experts[79], [80].  

Alongside recent advances in deep learning, various tools have been developed 

that can facilitate and automate the quantitative behavioral analysis of live animals from 

videography[81]. For example, Mask R-CNN provides a powerful tool for object 

instance segmentation by utilizing and enhancing region-based CNN (R-CNN)[82]. 

Mask R-CNN can simultaneously detect multiple objects in a given image and yield 

accurate segmentation results for each instance. This framework can be extended to 

other tasks, such as human pose estimation, in a relatively straightforward manner. 

Another tool called DeepLab utilizes DCNNs and fully-connected conditional random 

fields (CRFs) for semantic image segmentation[83]. DeepLab has been extensively 

evaluated on various datasets and shown to excel in various challenging segmentation 

tasks, such as body parts[84]. Another example is DeepLabCut (DLC), a novel algorithm 

designed for automatic pose-estimation of body parts through video analysis based on 

deep neural networks[85]. By eliminating the need for explicit markers, DLC can 

effectively detect user-defined body parts of humans or animals in video recordings and 

accurately estimate their poses. This approach allows real-time quantitative behavioral 

analysis in animal-based neuroscience studies, paving the way toward efficient adaptive 

control of implanted devices to manipulate neural activities. 
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In this chapter, I introduce a low-power, multichannel wireless telemetry and 

dual-coil structure antenna that can resolve current flaws, such as cost-effectiveness and 

electromagnetic interference. First, this chapter describes a multichannel wireless power 

strategy that overcomes spatiotemporal limitations by avoiding the electromagnetic field 

interference dilemmas by combining the decoupling and RF switch mechanism with a 

time division strategy. After that, a proposed dual-layer structure antenna implies 

significant improvement to the efficiency of wireless power TX/RX in the experimental 

cage. Lastly, I introduce an ML-based adaptive TX system that, in combination with 

real-time image processing algorithms, can handle the experiment with multiple (here, 

five) mice in a large assay, such as an open-field box at the same time.  

 

3.2. Methods 

3.2.1. Fabrication of Dual-coil Antenna and Power Control System 

We used 8-ga bare Cu wire for the bottom antenna coil and Cu stripes (0.635 mm 

thick by 2.54 cm wide) for the top antenna coil. The bottom coil was placed under a cage 

while the top coil was situated 8 cm above the cage bottom. Impedance matching using 

Network Analyzer (ENA Series E5063A, Keysight) with discrete capacitor components 

yielded two antenna coils, each of which resonates at 13.56 MHz (the top coil) and 15 

MHz (the bottom coil), respectively; these different frequencies offer broad bandwidth 

and stable coverage. Wireless power control systems consisted of an RF power supply 

(ID ISC.LRM2500-A, FEIG Electronics), matching board (ID ISC.DAT-A, FEIG 

Electronics), RF multiplexer (ID ISC.ANT.MUX.M8, FEIG Electronics), controller 
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(nRF52832 Development Kit, Nordic semiconductor), and decoupling multiplexer. 

Dimensions of a representable coil antenna, capacitance, and inductance for different 

sizes of experimental assays, including home cages are found in Table 3-1. 

 

 

Table 3-1. Summary of customized TX antenna specification 

Cage image 
Cage  

dimension* 

Distance 
of 

top & 
bottom 

coils 

Antenna 
dimension* 

Inductance of 
Antenna 

Required 
capacitance 

Top** Bottom*** Top** Bottom*** Top** Bottom*** 

1 

Home cage 1 

  

20×30×13 8 cm 19×29 16×25 660 nH 670 nH 120 pF 167 pF 

2 

Home cage 2 

 

20×38×16 12 cm 20×37 16×29 780 nH 780 nH 102 pF 147 pF 

3 

Home cage 3 

  

34×39×21 6 cm 34×36 29×29 940 nH 1.00 µH 85 pF 110 pF 

4 

RTPP 

 

Inner box 

18×18×30 

Outer box 

41×41×30 

14 cm 18×18 16×16 485 nH 580 nH 164 pF 189 pF 

5 

Open field 1 

  

40×40×30 3 cm 41×41 37×37 1.04µH 1.42 µH 74 pF 79 pF 

6 

Open field 2 

  

28×28×30 5 cm 30×30 26×26 760 nH 1.23 µH 100 pF 92 pF 

All values are ±5% tolerance. 
*dimension: (width) × (length) × (height) or (width) × (length); unit: cm 
**Top coil material: Cu stripes (2.54 cm wide; 0.635 mm thick) 
***Bottom coil material: 8-Gauge bare Cu wire 
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3.2.2. Finite Element-Method Analysis 

For numerical electromagnetic simulations of the proposed device and TX 

system, we used a finite element analysis tool, Ansys Electromagnetics Suite 17-HFSS, 

to look for the strength and uniformity of electromagnetic field in the mouse’s home 

cage (dimensions: 16 (w) × 25 (l) × 13 (h) cm). Organ systems and tissues of a mouse 

were modeled to one million meshes for numerical simulations, and antenna coil made 

of Cu stripes were modeled to materials with finite conductivity, 58 MS s-1. Most 

existing wireless powered optoelectronic devices have power delivery issues of angle 

and position dependency in a large area that allows experiments with freely moving 

animals. To prove that we have overcome this matter in our proposed system, we elicited 

simulation results in various positions and angles of the proposed device in the home 

cage with a dual-coil TX system. All simulations were conducted with 4 W, TX power 

level due to considering the safety level of electromagnetic fields[62]. 

 

3.2.3. Characterization of Wireless Telemetry 

We implanted a wireless device over the skull, under the skin of a mouse, and 

recorded their behaviors using three cameras (C615, Logitech). A red-colored µLED 

was embedded in an implanted device to serve as a signal that can be easily detected by 

cameras over a cage, and the wireless TX system transmitted RF signals at 1 W. One 

camera was positioned above a cage, and two cameras recorded from the left and right 

sides. They recorded behaviors of an animal in a cage for 2 min, and we extracted 

images from the recordings and analyzed them frame by frame to determine whether an 
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image had captured the wireless operation of a device (red µLED). Next, we counted the 

number of frames missing wireless operation. For a visual demonstration of wireless 

coverage, we reconstructed 3D continuous traces of a red µLED from extracted images: 

this analysis code for 3D reconstruction image is available from Zenodo[86]. We 

repeated the procedures described above for other wireless antenna technologies and 

obtained antenna performance comparison results.  

For other validations of wireless power TX systems, we used an electromagnetic 

probe (TBPS01-TBWA2/40dB, Tekbox) to measure the output power at five 

representative positions (A, B, C, D, and E) and various heights from the bottom of the 

enclosure as a function of the distance and angle.  

 

3.2.4. Modification to DeepLabCut (DLC) Model 

We utilized, custom-trained, and modified the DLC python package (Ver. 2.2b7). 

Specifically, we used the custom-trained DLC model to estimate the locations of the 

body parts such as snouts and tails of the mice within an image. Note that the original 

DLC python package does not support a real-time processing feature, instead it only runs 

on video files. Hence, we directly modified the Python package in such a way that it can 

infer the locations of the body parts of the mice and estimate the optimal coil antenna 

through the functional modules in a real-time manner. We conducted all experiments 

including training the DLC on a GPU workstation (Lambda workstation with Intel Core 

i9-9960X, 128 GB RAM, and two GEFORCE RTX 2080 Ti graphics cards).  
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3.2.5. Quantitative Performance Assessment of the ML-Enabled Motion Tracking 

Algorithm 

The proposed ML algorithm yields the following information for each frame: 1) 

the position of the snout and tail of each mouse, 2) the direction in which each mouse is 

heading toward, and 3) the angle between a vector along the length of each mouse and 

the y-axis. Based on this information, the algorithm selects an antenna coil that leads to 

the best wireless coverage in a cage. The following are three antenna settings in this 

study: 1) Two pairs of X-shaped coil antenna, X-shaped coil antenna in 2) the x-axis 

direction and 3) the y-axis direction. For the quantitative performance assessment of the 

algorithm, we used three video recordings, each of which is 10 minutes running time. 

We randomly extracted and evaluated 20 frames from a total of the 15,000 frames in 

each recording, and repeated the procedures twenty times for reliable evaluation. For 

each of 20 frames, we compared the decision made by the ML algorithm for each frame 

in the given set with the one made by a human expert in each antenna setup. To check 

the performance of each antenna setup and implanted devices, we focused on two 

statistics (in terms of the number of frames): 1)  how long a selected antenna remains 

activated and 2) how many frames (i.e., how long of a time interval) it takes between 

activation of an antenna and its reactivation after the first deactivation. Here, a human 

expert extracted and analyzed the data, which had been processed by the ML algorithm, 

in every 20 frames. For case 1), we chose a mouse (implanted device) from the group 

and measured how long a selected antenna remains activated or aligned with a vector 

determined by the mouse as a function of frames. Similarly, for case 2), we measured a 
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time interval as a function of the number of frames between deactivation of an antenna 

and subsequent reactivation of it. These were averaged out after 20 trials, leading to 

statistics in Results 3.3.3. 

 

3.3. Results 

3.3.1. Time Division Multiplexing 

We developed a multiplex approach to power 8 individual cages with a single 

RF-power generator. The wireless telemetry system consists of an RF-power generator, 

controller, an RF multiplexer, a decoupling multiplexer, and antenna sets for each of the 

8 cages (Figure 3-2); each antenna set is made of a pair of top and bottom coil structure 

(Detailed in section 3.3.2). Simultaneous and independent control of the 8 cages is  

 

 

 

Figure 3-2. Schematic illustration of the multiple cage wireless power TX system for 

high-throughput phenotyping of neural pathways. 
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Figure 3-3. Functional block diagram of the proposed wireless power TX system. 

 

 

achieved with coupling and decoupling circuits that manage the tuning of antennas to 

operational (13.56 MHz) and non-operational (100 MHz) device powering frequencies. 
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Figure 3-4. Electromagnetic simulation of wireless coverage for the proposed system 

(left) and a photo of the system (right). 

 

 

MHz (Figure 3-3). The other antennas that are detuned and deactivated can only pass a 

negligible amount of energy at a frequency of 100 MHz, which significantly deviates 

from the resonant frequency of 13.56 MHz. Therefore, the other 7 antenna sets do not 

cause interference even when directly adjacent to the actuating 13.56 MHz antenna; this 

was confirmed with electromagnetic simulation results and validation experiments in 

vivo (Figure 3-4). Since optogenetics typically requires brief intermittent light pulses to 

avoid depolarization block[31], this strategy can be used to toggle between multiple 

cages to deliver intermittent light pulses. Therefore, the limiting factors for the number 

of cages that can be operated simultaneously with a single RF-power generator are the 

stimulation frequency and duration of light pulses. With the proposed arrangement 

(Figure 3-2 and Figure 3-3), we conducted experiments within 8 cages simultaneously 

using 20 Hz and 5 ms pulse duration stimulation parameters. This extends the high-

throughput utilizing optogenetics to do the experiments at least 8 mice (supposed a 
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mouse in a cage), a typical group size, at that same time. For example, measurements of 

food intake require 4 hours for each animal in the group. To complete analysis of 

feeding behavior for two groups of animals (experimental and control), each of which 

has 8 animals, it only takes 8 hours while approaches using existing wireless TX system, 

a single power source coupled with a single cage, demands 64 hours (8 × 8 hours). This 

makes it less ideal for longitudinal experiments, in particular those required for most 

obesity experimental designs, where a device needs to be chronically implanted for >2 

months. Also, through the modification of the multiplexer board and controller, 

simultaneous activation of 16 cages at 10 Hz or 32 cages at 5 Hz frequency is possible 

when using a 5 ms light pulse duration.  

 

3.3.2. Dual-coil Antenna System 

In addition to couplings, wireless coverage remains a significant limitation for 

optogenetic experiments. Conventional systems utilize a single RF antenna below or 

around the sides of a home cage[42], [49]. Due to electromagnetic dissipation away from 

the RF source, wireless coverage can be as low as 30 % in a home cage[75] and worse in 

larger behavior boxes. Previously, these limitations were circumvented by increasing RF 

power, but this results in undesired RF energy to animal tissues and increased heat 

generation. Here, we introduce a simple dual-coil antenna system for increasing wireless 

coverage[87]. It consists of a top antenna coil that is connected to an RF generator and 

an unconnected antenna coil below the cage that passively attracts RF signals towards 

the animal subject and cage bottom. 3D electromagnetic modeling suggested that the 
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dual-coil antenna system could enable continuous operation throughout a location of 

interest (Figure 3-5). This was confirmed with light-power-output measurements and 

simulation results of wireless devices at five representative positions and heights from 

the cage bottom, which demonstrated robust device activation throughout the volume of 

a cage (Figure 3-6). Furthermore, the dual-coil antenna system minimized the 

dependence of transmitted power on the relative orientation angle between the TX 

antenna and RX antenna in the implant device (Figure 3-7). Comparison studies further 

indicated that the proposed antenna system outperforms other existing systems, offering 

virtually complete wireless coverage in a home cage (Figure 3-8).  

 

 

 

Figure 3-5. Illustration of an antenna layout (top) and distribution of electromagnetic 

simulation of wireless coverage in a cage (bottom) for the proposed system (a) and single-

coil antenna structure (b), respectively; scale bar 10 cm. 
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Figure 3-6. (a) Representative image of a cage with the proposed antenna coils installed. 

(b) Distributions of the electromagnetic field in a cage at each distance from the bottom. 

(c) Illustration of the measurement setup. (d) Measurements of output power at 5 

different locations of the cage as a function of the distance along the z-axis. Dotted lines 

indicate the threshold electrical power (0.58 mW) required for the activation of light-

sensitive opsins; 0.58 mW electrical power corresponds to an optical power of 10.12 

mW mm-2. (e) Representative images of wireless operation in the cage at each distance. 

(f) Corresponding distributions of the electromagnetic field in the cage at each distance 

from the bottom. 
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Figure 3-7. Plots of a residual dependence of transmitted power on relative orientation 

angle between the TX antenna and the implantable device as a function of the angle, 15 º 

(a), 45 º (b), 75 º (c), and 85 º (d). Green dotted lines indicate 70 % higher (1 mW) than 

threshold electrical power level (0.58 mW) required for activation of light-sensitive 

proteins; 1 mW electrical power corresponding to an optical power of 17.44 mW mm-2. 

 

 

 

Figure 3-8. Comparisons of wireless coverage; 1. Proposed dual-coil antenna, 2. Single-

coil & dual-layered antenna[75], 3. a tilted antenna design with a time division 

multiplexing schematic[66], and 4.Single-coil & single-layered antenna at the TX power 

level of 1 W.  
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To validate the performance advantages of the proposed dual-coil antenna TX 

system, we carried out in vivo experiments. A wireless optoelectronic device is 

implanted on the skull of a mouse, and light emitted from the wireless device through 

the skin serves as an explicit marker to determine wireless coverage. Three webcams 

above and sideward the cage capture motions of an animal in real-time with a focus on 

detecting light emitted from the implanted device. Then, images are extracted frame by 

frame from recordings, and only images indicating wireless operation are selected. 

Finally, the computation of the number of missing frames among total frames yields a 

 

 

 

Figure 3-9. Illustration of antenna layouts (top) and 3D reconstructions of traces of an 

operating indicator LED (bottom): proposed dual-coil antenna (a), and single-coil antenna 

structure (b), respectively. 
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good indicator of wireless coverage. For a visual demonstration of wireless coverage, we 

reconstructed 3D continuous traces of the red LED from the recorded video. We 

repeated the procedures described above for wireless coverage comparison of the 

proposed method with other existing wireless antenna technologies[66], [75]. 

Comparison studies further indicated that the proposed antenna system outperforms 

other existing systems, offering visually complete wireless coverage in a home cage 

(Figure 3-9). In comparison with the existing time division multiplexing scheme or 

single-coil antenna systems, the proposed dual-coil or adaptive wireless TX system 

shows a 5× increase in coverage at a TX power level of 1W (Figure 3-8). Existing 

antenna systems could enable similar levels of function at higher levels of TX power 

(i.e., above 10 W) in the context of wireless coverage. However, a corresponding 

increase in TX power to compensate for their low efficiency could potentially result in 

exceeding the maximum exposure limits[88]. 

 

3.3.3. Machine Learning-Enabled Real-Time Motion Tracking of Multiple Animals 

Overview of the proposed ML-driven adaptive wireless power TX system is 

shown in Figure 3-10. Here, an advanced ML algorithm allows for real-time motion 

tracking of mice (<5) in an open-field box through automated video analysis. This 

enables the optimal control of prearranged coil-antennas to offer uniform wireless 

coverage and thereby the robust activations of implanted devices in each animal.  

Figure 3-11 illustrates step-by-step procedures for ML-enabled real-time motion 

tracking of mice in a cage where five mice with a device implanted freely behave and  
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Figure 3-10. Overview of ML-enabled adaptive wireless TX system 

 

 

four coil antennas are installed. Here, we use two pairs of X-shaped coil antennas, each 

of which is responsible for optimal power delivery according to the motion of an animal 

along the x-axis or y-axis (Figure 3-11(a)). A webcam on the top of the cage sends a 

stream of images to the custom-trained DLC[85] model at the rate of 25 fps (Figure 3-

11(a)). As a frame arrives, the trained DLC model detects the locations of the snouts and 

tails, each of which has a confidence score for the prediction (Figure 3-11(b)). The 

decision threshold for what the ML model appraises as detection is set to 0.6 and any 

predicted body part with a confidence score below 0.6 is discarded. Next, the ML model 

quantifies the matching score between all possible combinations of the detected body 

parts (Figure 3-11(c)). Based on the matching scores, the ML model finds the optimal 

one-to-one mapping between the detected snouts and tails via the maximum weighted 

bipartite matching (Figure 3-11(d))[89]. Once the model completes the assignment of 

each snout-tail pair to every mouse, one can determine the orientation of each mouse in a  
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Figure 3-11. Illustration of a step-by-step procedure for the ML algorithm 
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Figure 3-12. Two representative images were processed by the ML algorithm. The top 

image shows perfect alignments of five vectors with a selected coil antenna while the 

bottom image includes only three vector assignments. It is likely for the two non-assigned 

mice (or implanted devices) to receive not enough power due to a misalignment between 

an implanted device and a selected coil antenna. 
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cage. This leads to the identification of the optimal coil antenna index   
  for  th mouse 

(Figure 3-11(e)) and creates a control signal for antenna selection. Figure 3-12 shows a 

representative example of an image processed by the algorithm. Once the controller 

receives the signal from the ML result, it activates one of the coil antennas. This results 

in optimum wireless power delivery to mice (implanted devices) (Figure 3-11(f)). The 

procedures from (a)-(f) are repeated. 

 

 

 

Figure 3-13. Assessment of detection accuracy for three different antenna structures: 1. 

4-coil (each two coil antennas are on the x- and y-axis, respectively), 2. Dual-coil (along 

the x-axis), and 3. Dual-coil (along the y-axis). 
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coils, one pair of X-shaped coil aligning with 2) the x- or 3) y-axis.  Results revealed that 

the ML algorithm guarantees the accuracy of 80 % or above in every setting that we 

tested (Figure 3-13). Figure 3-14 shows statistics of the number of frames for two 

representative cases; how long a selected antenna remains activated (Figure 3-14(a)) and  

 

 

 

Figure 3-14. Statistics of the number of frames for two representative cases; how long a 

selected antenna remains activated (a) and how many frames (how long an interval) exist 

between activation of an antenna and reactivation of itself after the first deactivation (b); 

1. 4-coil (each two coil antennas are on x and y-axis, respectively), 2. Dual-coil (along the 

x-axis), and 3. Dual-coil (along the y-axis). 
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how many frames (or long interval times) it takes between activation of an antenna and 

reactivation of itself after the first deactivation (Figure 3-14(b)). It is likely that some 

occupants, to happen that a selected antenna coil covers some of the occupants, not all of 

them, in a cage may not allow for instantaneous power delivery to the rest due to 

misalignment between an antenna coil and an implanted device. This leads to a drop in 

harvesting efficiency and as a result, the devices involved may not be able to deliver 

enough light to activate a microbial opsin in cell-type specificity, but this can be 

compensated by stimuli conditions. 

 

3.4. Discussions 

3.4.1. Advanced Antenna Structure 

The proposed wireless power TX system utilizes a dual-coil antenna to achieve 

high transmission efficiency (>60 %). This results in robust activation of an implantable 

device in a cage. When combined with advanced antenna coil systems, wireless 

coverage could be further enhanced. Here, we suggest several configurations, including 

a combination of both flat and diagonally oriented dual-coil structures with Cu strips for 

the following strategies to support higher output power densities in various angular 

orientations (Figure 3-15). For example, a diagonal dual-coil design may allow for better 

power transfer efficiency even in the significantly tilted angles from the in-plane 

orientation. Multi-diagonal layouts can further enhance the efficacy and the uniformity 

of wireless transmittance over the bottom of the cage and across large areas. The 

proposed efforts on this advanced technological development will improve wireless  
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Figure 3-15. The advanced dual-coil and dual-layered configurations: (a) top is flat and 

bottom is diagonal-shaped; (b) top is diagonal-shaped and bottom is flat; and (c) top and 

bottom are diagonal-shaped. 

 

 

coverage and eliminate a residual dependence of transmitted power on the relative 

orientation angle between the TX antenna and the implantable device. We expect that 

this improved power transmission efficiency without relative angular orientation of the 

implanted device will reduce the transmitted power to <2 W, which is lower than the 

existing single coil antenna systems (>8 W), as well as minimizing the undesired effects 

related to electromagnetic absorption in tissues[91], [92].   

 

3.4.2. Expansion of Time Division Multiplexing 

Our proposed channel isolation and time division strategies are based on wireless 

optoelectronics implants that transmit stimulus signals by intermittent time differences. 
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In this study, we demonstrate a high-throughput wireless power TX/RX platform with a 

total of eight cages activated in order under the assumption that target neurons require a 

25 Hz frequency (5 ms on/35 ms off) stimulus. The proposed method is capable of 

multi-cage application following the stimulation cycle of neural signals, but inhibition 

experiments where light sources need to operate continuously cannot be executed in the 

current multi-cage system manner. Due to the nature of electromagnetic interference, 

this multi-cage scheme cannot simultaneously transmit power using adjacent antennas at 

the same resonant frequency. However, this limitation can be overcome by modifying 

the implantable device with a circuit employing a supercapacitor. The aforementioned 

strategy expects that a supercapacitor, which has stored power when the antenna is 

activated, can keep the LED lights bright enough while that antenna is deactivated. In 

sum, the proposed multi-cage system based on channel isolation and time division 

strategies allows for all in vivo experiments regardless of the excitation/inhibition of the 

neurons. 

 

3.4.3. Optimized Multi-coil Antenna System via an ML-based Algorithm 

The proposed ML algorithm paired with advanced coil antennas enables robust 

activation of implantable optoelectronic devices in a cage. When a normal vector of an 

implanted device is aligned with that of the TX coil antenna, maximum wireless 

transmission occurs between the two coils[93]–[95]. When misaligned, the efficiency 

significantly drops. In general, reconfiguration of antennas such as adjustment of the gap 

between the coil and the ground without rematching of the impedance is not 
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recommended once they are installed in a cage[96]: doing so causes transmission 

efficiency to drop significantly. In contrast, animals freely behave in a cage, suggesting 

that angles or orientations between the implanted device and the TX coil antenna vary at 

different times. This could be problematic. For example, two vectors could become 

misaligned when an animal leans against the wall of a cage by standing on its hind legs 

or curls up. This results in a significant drop in harvesting efficiency and thereby no 

activation of the implanted device. When combined with an advanced antenna 

technology and an impedance matching circuit for switching, the proposed ML 

algorithm allows for a selection from prearranged pairs of antennas or adjustment of 

antenna formation, thereby leading to a realignment of the TX coil antenna with the 

implanted devices, which enables full wireless coverage of a cage. What this suggests 

goes beyond just the meaning of TX system development. This research focuses only on 

light delivery, making it easy to use implantable devices that demand low-power 

consumption. The aforementioned ML algorithm-adapted TX systems can deliver robust 

and homogeneous power to the implanted device, which can significantly increase the 

power available to the implant. In other words, high-performance chips can be mounted 

on the implanted devices, revealing new research directions that allow simultaneous 

nervous signal recording and stimulation, like a fully implantable closed-loop system in 

an animal. 

 

3.4.4. Applications to Scalability Using ML Algorithms 

We proposed an ML algorithm to analyze the orientation of each animal by  
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extracting the positions of the snout and tail pairs in several animals. However, this is 

only a small event compared to the research implemented ML algorithms, and there are a 

number of directions to improve the quality of the research depending on how the ML 

system is applied. For example, we envision an ML-based algorithm that analyzes the 

jaw joint and head movements of an animal to specify behavior and predict the amount 

of food they eat. We could then decipher the amount of food consumed per day by the 

animal by examining their food intake behaviors, poses, and patterns. This algorithm can 

support the accurate digitization data by objectifying food intake information for 

average, obese, and underweight mice. These data could be used for the development of 

better therapeutics for obesity. As such, ML-based algorithms are not only engineering 

aids for, e.g., increasing the efficiency of wireless power transfer systems and 

implantable optogenetic devices, but are also expected to expand their utility into various 

fields, including neuroscience, physiology, kinematic research, as well as behavioral 

analysis. 
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4. IN VIVO VALIDATION OF THE PROPOSED WIRELESS TELEMETRY 

SYSTEM* 

 

4.1. Introduction 

Vagal afferent fibers are unique in that they innervate many different organ 

systems and receive direct inputs from those organs[97]–[99]. For example, meal 

cessation is to a large extent mediated by feedback from the gut to the brain. Distension 

of the stomach, the absorption of nutrients and the release of satiety hormones (GLP-1, 

peptide YY, and cholecystokinin) can activate vagal sensory afferents that relay satiety 

signals to the NTS in the hindbrain[100], [101]. Neurons in NTS then relay signals to the 

PBN and other nuclei to suppress feeding[102]. Because the vagus is a major origin of 

satiation signals, it is a logical place to intervene to treat obesity. Furthermore, several 

studies in obese animals indicate that the vagus becomes insensitive to satiation signals. 

Consequently, the ability to bypass this obesity-induced insensitivity and experimentally 

activate the vagus has significant potential[103], [104]. However, a human (or mouse) 

nodose ganglion contains 100,000 (or 5,000) neurons which can innervate multiple 

internal organs[105]. Therefore, cellular level control of nerves is crucial to this pursuit, 

and all the experiments using non-specific approaches that suggest that the vagus 

becomes insensitive to nutrients and hormones in response to obesity are indirect[106].  

  

*Reprinted with permission from “Organ-specific, multimodal, wireless optoelectronics for high-

throughput phenotyping of peripheral neural pathways” by Kim, W.S.; Hong, S.; Gamero, M.; 

Jeevakumar, V.; Smithhart, C.M.; Price, T.J.; Palmiter, R.D.; Campos, C.; Park, S.I, 2021, Nat Commun, 

12, 157, © 2021 by Springer Nature. 
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The proposed wireless platform can offer capabilities in specific targeting and 

long-term modulation of neuronal populations in a freely behaving animal with chronic 

stability in operation. Its utilities have been demonstrated in in vivo experiments using 

Calca-Cre mice. Our research finds that calcitonin gene-related peptide (CGRP) neurons 

innervating the mucosa rather than the stretch receptors, can inhibit food intake and elicit 

anxiety-related behavior. The results suggest interesting experiments that can determine 

whether appetite suppression induced by gastric vagal afferent activation is attenuated in 

obese mice and whether chronic activation of vagal afferent endings in the stomach can 

reverse obesity. Identification of viscerosensory pathways that suppress appetite will 

have direct clinical importance for potentially developing novel therapeutic targets for 

treating obesity.  

 

4.2. Methods 

4.2.1. Organ-Specific, Wireless, Gastric Optogenetic Device Implantation 

Under surgical anesthesia (isoflurane, 1-2% inhalation), the animal’s ventral side 

was shaved, sterilized with three alternating scrubs of betadine and alcohol, and the 

surgical field was restricted with sterile drapes. With the animal on its back, a 2 cm skin 

incision was made along the abdominal midline from the xiphoid cartilage extending to 

the mid-abdomen, and a second cut into the abdominal wall exposed the stomach for 

device implantation. Ringed forceps were used to gently grasp the fore-stomach and pull 

it out of the abdominal cavity onto gauze soaked with sterile saline. Fine-tipped Dupont 

forceps were then used to puncture the stomach fundus and thread the µLED tether in 
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and out of the stomach. With the µLED inside the stomach, the tether was secured in 

placed with purse-string sutures (5-0 PGA). The device harvester was then placed in the 

abdominal cavity and the stomach was placed back into its normal orientation. The 

abdominal wall was closed with interrupted stitches using absorbable suture (5-0 PGA), 

and the skin with non-absorbable suture (6-0 silk). Mice received analgesics during the 

surgery (ketoprofen, 5 mg kg-1) and daily post-operative care (provided with hydrating 

gel, monitor food intake and body weight). For multimodal device implantation, an 

incision was made in the abdominal cavity and the device was implanted with the blue 

LED positioned towards the thoracic cavity and the green LED towards the abdominal 

cavity. After recovery from surgery, all animals received daily post-operative care. 

 

4.2.2. Meal-Pattern Analysis 

To examine whether mice tolerate stomach device implantation, one group of 

mice was implanted with the device whereas another group underwent a sham surgery 

where the abdomen was opened near the stomach but it was not punctured nor implanted 

with a device. Two weeks after the surgeries, mice were placed in food-monitoring home 

cages (BioDAQ, v. 2.2). Feeding records were analyzed using BioDAQ Viewer 

(software v. 2.2.01). A feeding bout (≥0.01 g) was defined as a meal if  ≥0.06 g of food 

was ingested and if it was separated from another meal by ≥5 min. 

 

4.2.3. Fasting and Refeeding Experiments 

Mice were food-restricted overnight (16 h) and refed the following morning.  
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Food intake was manually measured 1 h, 2 h, and 3 h after refeeding. The same animals 

underwent multiple fasting-refeeding tests to examine different optogenetic stimulation 

parameters: no stimulation (RF antenna off), 10 Hz, and 20 Hz optogenetic stimulation 

(5 ms pulse width; RF power 4 W). Experiments were conducted 5 days apart.  

 

4.2.4. Real-Time, Place-Preference and Open-Field Assays 

Mice were placed in an RTPP box consisting of two chambers (20 × 18 cm) and 

a small transition area. Antennas were installed in both chambers, but only one chamber 

was connected to an RF generator to continuously deliver RF power (20 Hz, 5 ms pulse 

width, 4 W). The time spent in each chamber (20 min trial) was analyzed using video-

tracking software (EthoVision XT 10, Noldus). Mice were placed in the center of a 40 × 

40 cm square open-field arena with non-transparent white Plexiglas. The total distance 

moved and time in the center (20 × 20 cm imaginary square), during the 10 min trial, 

were analyzed with video-tracking software with EthoVision. An RF antenna provided 

wireless power (20 Hz, 5 ms pulse width, 4 W) throughout the entire behavior box. 

 

4.2.5. Statistics 

Data were analyzed using Prism 5.0 (GraphPad software). Sample sizes were 

estimated based on prior experience and expected variability in feeding behavior[107]. 

We excluded an animal from data analysis if post hoc histological analysis showed no 

viral transduction as indicated by an absence of tdTomato fluorescence. For graphs 

comparing two experimental conditions, we used unpaired two-tailed Student’s t-test. 
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We analyzed data sets (multiple treatments and time-points) with repeated-measures 

two-way analysis of variance tests (time repeated factor) and Tukey’s post hoc tests. All 

data sets were conducted using Shapiro–Wilk normality test, and all passed the 

normality tests. 

 

4.3. Results 

4.3.1. Measurements of Light Propagation in the Stomach 

An illustration of the fully implantable wireless device shows the general strategy  

 

 

 

Figure 4-1. Illustration of a soft, wireless gastric optogenetic implant: device implants 

location (left and middle) and a photo of wireless LED operation in the stomach of a 

mouse (right); scale bar 5 mm. 
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for targeting a µLED inside the stomach (Figure 4-1). The device consists of an analog, 

front-end electronic circuit for RF harvesting (5.5 mm radius and 1 mm thickness) and a 

tether that supplies current to a µLED. It harvests RF energy from a remotely located 

wireless RF power system, converts RF energy into optical energy, and illuminates 

targeted regions in the stomach. The µLED is situated in the middle rather than the end 

of a tether, allowing the tether to be threaded in and out of the stomach and secured at 

two contact points. We found that the tether remains secure with purse-string sutures. 

The ultra-thin tether (0.4 mm wide by 0.2 mm thick) is more than  3-times smaller than 

insulin syringe needles used for intraperitoneal injections and tubing used for intragastric 

infusions[64]. To determine the utility of the optoelectronic system, we investigated the  

 

 

 

Figure 4-2. Light intensity measurements comparing LED implantation inside versus 

outside the stomach (n = 5, p < 0.01), with varying RF powers (p < 0.001). Dashed 

horizontal lines indicate light intensity needed for 10 % and 50 % maximal activation of 

channelrhodopsin2. Bar graphs are mean ± SEM. Statistical comparisons were made 

using two-way repeated-measures ANOVA, Tukey’s post hoc; *** p < 0.001. 
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Figure 4-3. Light intensity measurements during varying RF wireless powering (p < 

0.001) of the gastric optogenetic device (n = 5) and varying distances (p < 0.001) from the 

LED. Measurements were taken from the front side (a), back side (b), and lateral side of 

the LED (c). Bar graphs are mean ± SEM. Statistical comparisons were made two-way 

repeated-measures ANOVA; *** p < 0.001. 
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role of stomach vagal afferent endings in feeding behavior. We began by analyzing the 

µLED light spread and identified RF powering parameters needed for organ specificity. 

As expected, securing the µLED inside the stomach significantly restricts light spread 

(Figure 4-2), in contrast to surface affixation which results in light back-scatter 

intensities well above the threshold for opsin activation[108] (Figure 4-3). Finally, tests 

in mice showed that the pre-curved tether was functional for over a month, while the 

post-curved structure stopped working three days after implantation (Figure 2-10) and 

the multiplexing TX system enabled tests to conduct 8 individual cages simultaneously 

(Figure 3-6). 

 

4.3.2. Sham Study 

We examined whether implantation of the stomach device is well tolerated by 

showing that ad libitum food intake of mice implanted with the device was the same as 

sham operated mice (Figure 4-4). These results indicate that our wireless device should 

allow precise optogenetic manipulations in awake, behaving mice. A recent study 

identified genetically distinct vagal afferent neurons in the nodose ganglion that 

innervate the stomach and express either Calca, Sst, Gpr65, or Glp1r genes[107]. In 

contrast to Sst and Gpr65, which exhibit either mechanosensitive morphological endings 

in muscle layers (Glp1r) or chemosensitive endings in the mucosal layer (Sst, Gpr65), 

Calca+ neurons form spatially-restricted chemosensitive mucosal endings in the corpus 

versus mechanosensitive intramuscular arrays in the stomach antrum[107]. Identification 

of a role for stomach chemosensation in appetite control has been elusive[109]; 
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therefore, we used our wireless device to selectively activate Calca+ vagal afferent 

chemosensitive endings in the corpus region of the stomach.  

 

 

 

Figure 4-4. Comparison of total food intake (left), number of meals (middle), and meal 

size (right) in mice implanted with LED device (n = 7) or sham operated (n = 6) (p = 0.71). 

Bar graphs are mean ± SEM. Statistical comparisons were made using two-way repeated-

measures ANOVA, Tukey’s post hoc. 

 

 

4.3.3. Optogenetic Manipulation of Gastric Vagal Sensory Endings 

Overview of the activation of Calca+ stomach vagal afferents is shown in Figure 

4-5. To gain cell-type specificity, AAV9 was injected into the nodose ganglion of 

CalcaCre:GFP transgenic mice to introduce Cre-dependent ChR2:tdTomato opsin 

expression or a control group with just tdTomato fluorescent reporter (Figure 4-6 and 

Figure 4-7). Precise anatomical specificity was achieved by implanting the µLED into 

the fundus, immediately adjacent to the corpus. While Calca+ vagal afferents do not  
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Figure 4-5. Schematic illustration of the activation of Calca+ stomach vagal afferents. 

Calca-Cre transgenic mice received a left nodose ganglion injection of AAV9-DIO-

ChR2:tdTomato or AAV9-DIO-tdTomato control virus. The LED was implanted in the 

stomach corpus-function junction. 

 

 

 

Figure 4-6. Calca-Cre transgenic mice received nodose ganglion injection of AAV9-DIO-

ChR2:tdTomato. Images show fluorescence in situ hybridization of tdTomato and Calca 

mRNA, demonstrating the cell-type specificity of transgenic/viral approach; scale bars 25 

µm. 

nodose

NTS

Calca

tdT

dapi/Calca/tdTomato

NTS



 

65 

 

 

Figure 4-7. tdTomato fluorescence labeling of central Calca+ vagal afferent endings in 

the nucleus of the solitary tract (NTS); scale bar 25 µm. 

 

 

innervate the fundus, we implanted the device away from the antrum to avoid activation 

of mechanosensitive fibers (Figure 4-8). Several weeks after recovering from device 

implantation, mice were fasted overnight and refed the following morning. Compared to 

no stimulation (RF antenna off), optogenetic activation produced robust suppression of 

food intake during refeeding, with greater stimulation frequencies almost completely 

suppressing intake (Figure 4-9a). Importantly, activation of the device in the control 

group without ChR2 did not alter feeding behavior, indicating that RF signals and 

activation of the device in itself do not influence feeding (Figure 4-9b). To further 

establish that the appetite suppression was due to activation of vagal afferent endings in 

the stomach, we compared these results to separate cohorts of mice implanted with six 

non-attached µLEDs in the abdomen. Although optogenetic stimulation of vagal 

afferents in this manner suppressed feeding, the effect was not as robust despite  
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Figure 4-8. Fluorescence labeling of peripheral Calca+ vagal afferent endings in the 

stomach mucosal layer; scale bar 50 µm. 

 

 

 

Figure 4-9. Frequency-dependent suppression of food intake in the ChR2:tdTomato group 

(n = 8). (c) The tdTomato control group did not suppress food intake during 

photostimulation (n = 4) (p = 0.06). Bar graphs are mean ± SEM. Statistical comparisons 

were made using two-way repeated-measures ANOVA, Tukey’s post hoc; *** p < 0.001. 
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Figure 4-10. Abdominal activation of Calca+ vagal afferent fibers. (a) Picture showing 

wirelessly powered LED device; two of these devices were inserted into the abdomen of  

Calca-Cre transgenic mice with left nodose ganglion injection of AAV9-DIO-

ChR2:tdTomato or AAV9-DIO-tdTomato control virus; scale bar 5 mm. (b) top, 

frequency-dependent suppression of food intake during ChR2 activation of vagal 

afferents (n = 8), bottom, no appetite suppression in tdTomato control group (n = 4) (p = 

0.80). (c) Percent reduction of food intake (compared to RF off) during 10 and 20 Hz 

stimulation of Calca+ vagal afferent endings using the stomach LED implant or non-

attached LEDs (ChR2, n = 8 per group) (interaction, p = 0.01). Bar graphs are mean ± 

SEM. Statistical comparisons were made two-way repeated-measures ANOVA, Tukey’s 

post hoc; * p < 0.05; ** p < 0.01; *** p < 0.001. 

ChR2:tdTomato

Time (h)

C
u

m
u
la

ti
v
e

 i
n

ta
k
e
 (

g
)

RF off

10 Hz

20 Hz

a bx2 devices in abdomen

c

*
***

tdTomato

Time (h)

C
u

m
u

la
ti
v
e

 i
n

ta
k
e

 (
g

)
RF off

10 Hz

20 Hz

***

*

stomach

abdomenP
e
rc

e
n
t 

re
d
u
c
ti
o
n
 (

%
)

Stimulation frequency (Hz)

0

1

2

3

4

1 2 3

0

1

2

3

4

1 2 3-100

-80

-60

-40

-20

0
10 20



 

68 

 

stimulating with six µLEDs rather than a single µLED directly implanted inside the 

stomach (Figure 4-10). Furthermore, the non-anchored LED approach required increased 

operating power to compensate for light dissipation, resulting in greater heat generation 

and potential tissue damage[110], [111]. Thus, the gastric optogenetic implant enables 

more robust optogenetic activation using less wireless power.   

 Appetite suppression can be associated with positive valence, potentially due to 

removal of aversive hunger signals[112], or aversion in response to harmful stimuli, 

such as uncomfortable gastric distension[113] or food poisoning[114]. To investigate 

affective mechanisms by which Calca+ gastric vagal afferent neurons might suppress  

 

 

 

Figure 4-11. Schematic illustration of an experimental assay (top) and distributions of the 

electromagnetic field in the assay (bottom) for open-field (a) and RTPP (b), respectively. 
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appetite, we constructed oversized dual-coil antennas for robust optogenetic activation in 

various behavior boxes (Figure 4-11 and Table 3-1). In an RTPP assay, mice were 

placed in a two-chamber box with RF power only in one chamber to determine whether 

mice form an aversion or preference for the optogenetic-stimulation chamber. 

Surprisingly, we did not observe differences in place preference or avoidance (Figure 4-

12), similar to optogenetic stimulation of other vagal afferent cell-types that innervate 

the GI tract[107]. Conversely, an open-field assay demonstrated that optogenetic 

stimulation reduced the time mice spend in the center, indicative of anxiety-like behavior 

and suggesting that activation of Calca+ gastric vagal afferent fibers might be aversive 

(Figure 4-13). We analyzed the locomotor activity from open-field and place-preference  

 

 

 

Figure 4-12. Activation of the LED device (20 Hz light pulses) did not induce a place 

preference nor avoidance in both ChR2 and tdTomato groups (n = 7 per group) (left). 

Representative traces for RTPP assay (right). Bar graphs are mean ± SEM. Statistical 

comparisons were made using two-way repeated-measures ANOVA, Tukey’s post hoc. 
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Figure 4-13. Photoactivation (20 Hz light pulses) of Calca+ gastric vagal afferents 

decreased time spent in center of large open field box (n = 7 per group) (p = 0.31) (left). 

Representative traces from open-field test (right). Bar graphs are mean ± SEM. 

Statistical comparisons were made using two-tailed t-tests; ** p < 0.01. 

 

 

 

Figure 4-14. Locomotor activity comparison in the assays for RTPP (left), and open-

field box (right). Both were conducted for 30 minutes and n = 7 per each group. Bar 

graphs are mean ± SEM. Statistical comparison was made using two-tailed t-test; *** p 

< 0.001. 
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tests, which revealed decreased locomotion during optogenetic activation of Calca+ 

gastric vagal afferent (Figure 4-14); presumably, the mice feel aversion and have 

decreased motivation. 

 

 

 

Figure 4-15. Mice were exposed to a novel sucrose solution on Day 1 followed by 

optogenetic activation of vagal sensory fibers (20 Hz). On Day 5, mice were water-

restricted overnight and then given simultaneous access to a bottle of sucrose and a 

bottle of water. The graph is the sucrose preference score (ChR2, n = 7; tdT, n = 5). Bar 

graphs are mean ± SEM. Statistical comparisons were made using two-tailed t-tests; *** 

p < 0.001. 

 

 

 In addition, GI signals are closely associated with taste-sensory signals[115], 
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habituated to overnight water-restriction for several days and then given access to 5 % 

sucrose solution followed by optogenetic stimulation of Calca+ vagal afferent fibers for 

4 h.  Three days later mice were offered the choice of water or 5 % sucrose. This two-

bottle preference test revealed that activation of stomach Calca+ vagal afferents 

conditioned mice to avoid the sucrose solution (Figure 4-15). This suggests that appetite 

suppression occurs via a negative-valence mechanism that alters taste preferences. These 

results identified a role for stomach mucosal Calca+ vagal afferents in appetite 

suppression and revealed a mechanism by which appetite suppression occurs. 

 

4.4. Discussions 

4.4.1. Chronic Stimulation of Vagal Nerve Endings in Obese Animals 

 Most existing approaches, where the focus is on neural circuits in the brain[42], 

[43], [47], [75], [116], are unable to monitor satiety signals in response to food intake 

and hence do not address some of the most important questions in the field, namely; 1) 

how is satiety information coming from the gut during or after the feeding process, 2) 

when are satiety signals from the gut relayed, and 3) how are long neurons, thought to be 

involved in adiposity negative feedback mechanism, active during or after feeding. A 

working hypothesis is satiation mechanisms in obese animals will differ from those of 

healthy animals[101]. Several studies in obese animals indicate that the vagus nerve 

becomes insensitive to satiation signals. However, these studies use a non-specific 

approach, and thus the experiments that suggest that the vagus becomes insensitive to 

nutrients and hormones in response to obesity are indirect[53]. Our approach allows for 
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selective regional photoactivation of neuronal populations and will enable experiments 

that determine whether chronic inhibition of vagal activity in obese animals can restore 

functions that regulate food intake or reverse the insensitivity. This research ultimately 

has the potential for identification of interventions to treat obesity.    

We aim to target afferent fibers of the vagus nerve that project from the gut to the 

NTS in the hindbrain. Afferent fibers of the vagus nerve control the flow of satiety 

information and recording neural activity from vagal afferent nerves can provide 

significant insights into understanding of dynamic interplay between the brain and the 

gut during or after feeding[117]. We plan to use light-sensitive proteins for optogenetic 

manipulation of vagal fibers in mice that were exposed to a high-fat diet for two months 

and that were infected with an PHP.S-Ef1a-DIO-ChR2:YFP for stimulation & PHP.S-

Ef1a-DIO-Jaws:tdTomato for inhibition. This will allow the implanted integrated 

wireless device in the targeted region to measure the selective expression of ChR2 & 

Jaws in afferent fibers of neurons. Specifically, the system allows activation and/or 

inhibition of vagal afferent fibers and for us to examine the effect on food intake, water 

intake, valence, and conditioned taste aversion. In parallel, we will perform in vivo 

recording experiments where the implanted integrated wireless device records neural 

activity from vagal afferent fibers in a freely behaving obese mouse in a cage after a fast, 

during feeding, and after feeding. Such efforts will greatly advance our understanding of 

the flow of satiety information and lead to identification and dissection of 

subpopulations of gastric viscerosensory pathways involved in the feeding. Collectively, 

research findings from this work will facilitate development of ultimate therapeutics for 
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the treatment of obesity. All in vivo experiments will occur within Prof. Knight's lab at 

UCSF under an approved Animal Use Protocol (AUP).  
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5. CONCLUSIONS* 

 

While many classical studies have established the important role of visceral 

signals in controlling behavior[103], [118], these surgical- and chemical-denervation 

experiments lacked organ specificity and did not reveal the identity of sensory neurons 

that can serve diverging functions. Here, we developed wireless µLED devices that 

permit organ-specific, optogenetic manipulations and an ultra-efficient wireless 

telemetry system for powering multiple cages. The miniaturized wireless device enabled 

precise optogenetic stimulation of genetically defined vagal afferents innervating the 

mouse stomach, revealing a function for Calca+ mucosal sensory endings in suppressing 

food intake via a negative valence mechanism. Critically, the pre-curved, sandwiched 

construction significantly extended the lifespan of the µLED device and allowed for the 

testing of various stimulation parameters and behavioral tests within the same subjects. 

We envision that the current device could be used to optogenetically manipulate neural 

circuits throughout the GI tract and other hollow organs, such as the intestine, with little 

or no modification.  

Prior methods for optogenetic activation of vagal afferents in awake mice have 

either lacked organ specificity[107] or involved gut injections of a retrogradely 

transported opsin virus and fiber-optic implantation in the hindbrain where vagal  

 

*Reprinted with permission from “Organ-specific, multimodal, wireless optoelectronics for high-

throughput phenotyping of peripheral neural pathways” by Kim, W.S.; Hong, S.; Gamero, M.; 

Jeevakumar, V.; Smithhart, C.M.; Price, T.J.; Palmiter, R.D.; Campos, C.; Park, S.I, 2021, Nat Commun, 

12, 157, © 2021 by Springer Nature. 
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afferents terminate[51]. While the latter provides organ specificity, retrograde viruses 

can be limited by tropism and incomplete infection of certain cell types. Moreover, vagal 

afferents express neuropeptides in their peripheral endings that are hypothesized to be 

released in the gut to exert efferent functions[54]. In other systems, such as 

somatosensation, the peripheral release of neuropeptides by afferent fibers can contribute 

to behaviors by sensitizing other afferent subtypes to ongoing stimuli[119]. Finally, 

fiber-optics cannot be used for optogenetically manipulating the enteric nervous system 

nor splanchnic sensory afferents, which synapse in the spinal cord. Investigating the 

function of these neural circuits and hypotheses, therefore, requires peripheral 

optogenetic stimulation that is now possible with the proposed wireless gastric 

optogenetic implant. Multimodal features could further enable investigation of 

peripheral interactions by using different-colored µLEDs to activate corresponding 

color-sensitive opsins expressed by separate neural substrates or multiple organs 

simultaneously and/or independently. 

In addition to extending optogenetic functionality to the peripheral nervous 

system, we introduced advancements in wireless telemetry that generally improve the 

scalability and usability of optogenetics. The dual-coil antenna system, which enables 

reliable and complete wireless coverage, is easily constructed using inexpensive copper 

wire secured onto cardboard or plastic backing. The multiplexing approach further 

allows for the testing of large experimental cohorts, which was particularly important for 

our studies because of the extended duration of feeding behavior tests. This system can 

be set up in under an hour, is simple to operate, and dramatically decreases the cost and 
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time required for conducting optogenetic experiments. Furthermore, the wireless 

telemetry system has broad applicability for powering optogenetic devices in the 

periphery, brain[48], [116], or other wireless devices, such as those that measure 

bioelectrical signals[55]. 

In this work, we developed an ML algorithm based on a custom-trained DLC for 

real-time detection of the snouts and tails of multiple mice in a video frame, where 

maximum-weighted bipartite matching was used to match the snout and tail of each 

mouse. We used a matched pair of body parts (i.e., a snout-tail pair) to infer the 

orientation of a given mouse, which can subsequently be used to optimally control the 

TX coil antenna for efficient wireless power delivery. While the proposed algorithm 

yields fairly accurate predictions as discussed before, we expect that its performance 

may be further enhanced by incorporating a predictive model that can forecast the 

orientation of a given animal in the near future. Temporal sequence prediction models, 

such as recurrent neural networks (RNNs)[120], [121], may be used for this purpose and 

are currently being investigated. The potential applications also involve quantitative 

analysis of complex animal behaviors, such as their social interactions. 

Future studies may take advantage of these enabled wireless optoelectronic 

features to chronically activate neural circuits for days, weeks, or even months. Because 

adaptations can occur with sustained activation of a neural pathway, such experiments 

are important for investigating the persistence of long-term physiological effects, 

including weight loss. This can enable experiments that determine whether appetite 

suppression induced by gastric vagal afferent activation is attenuated in obese mice and 
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whether chronic activation of vagal afferent endings in the stomach can reverse obesity. 

Identification of viscerosensory pathways that can either suppress or stimulate appetite 

will have direct clinical importance for potentially developing novel therapeutic targets 

for treating appetite disorders. 
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APPENDIX A 

THE CODE AND DATA SAMPLES FOR 3D RECONSTRUCTION IMAGE 

 

1. System Requirements 

- Python 3.7.0 or higher 

- OpenCV-4.1.1 or higher 

- Any Python IDE and OS is available. 

- This package has been developed the following IDE, OS and CPU: 

Spyder(Anaconda 3) at Windows 10 with Intel(R)_Core(TM)i7-

7500U_CPU@_2.70GHz. 

- This package has been tested the following IDE, OS and CPU: Spyder(Anaconda 

3) at Windows 10 with Intel(R)_Core(TM)i7-4770K_CPU@_3.50GHz 

 

2. Installation Guide 

- Users should download all video files in two folders*: 

[01_Antenna_comparison_figure2_data] and 

[02_3D_View_supplimentary_figure10_data] 

- Users should download all codes in the same folder. 

- Users should install OpenCV before running codes: pip install opencv. 

- Each step normally takes within 2 minutes but downloading time might be slow 

depends on network condition. 
* Videos are available from Github (https:/github.com/%20parkgroup-

tamu/3d_reconstruction) 

 

3. Demo Instructions  

- This project includes sample videos and codes that can generate figures and several 

processed data files with csv format. 

- [01_Antenna_comparison_figure2_data] includes 4 video files which are source 

data for generating a bar graph that represents comparison result of wireless 

coverage corresponds to different antenna designs. 

- [02_3D_View_supplimentary_figure10_data] includes 9 video files which are 

source data for generating 3D reconstructed figures that trace an operating 

indicator LED and the cross-sectional view of it at each range of height for the 

three different antenna designs, respectively. 

 

A. To generate a Antenna comparison figure, 

• Open "S0_ANT_comparison_starter.py" 

https://github.com/%20parkgroup-tamu/3d_reconstruction
https://github.com/%20parkgroup-tamu/3d_reconstruction
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• Edit line 18, path = 'FILE_PATH_HERE\\'. FILE_PATH means path of the 

folder which includes 4-video files in 01_Antenna_comparison_figure2_data 

• User should insert double back-slashes('\\') when divide into directories. 

• Run "S0_ANT_comparison_starter.py" (Expected running time: 2 minutes) 

• If this code run correctly, user can find following files in the data folder. 

• Ant_comparison_plot.png, Ant1_1W_top.csv, Ant1_1W_rst.csv, 

Ant2_1W_top.csv, Ant2_1W_rst.csv, Ant3_1W_top.csv, Ant3_1W_rst.csv, 

Ant4_1W_top.csv, Ant4_1W_rst.csv 

 

B. To generate 3D reconstruction figures, 

• Open "S0_3D_View_starter.py" 

• Edit line 18, path = 'FILE_PATH_HERE\\'. FILE_PATH means path of the 

folder which includes 9-video files in 

02_3D_View_supplimentary_figure10_data 

• User should insert double back-slashes('\\') when divide into directories. 

• Run "S0_3D_View_starter.py" (Expected running time: 5 minutes) 

• If this code run correctly, user can find following files in the data folder: 

a_rst_3d.png, a_rst_xy_1layer.png, a_rst_xy_2layer.png, a_rst_xy_3layer.png, 

a_rst_xy_4layer.png, a_rst.csv, a_top.csv, a_side_i.csv, a_side_w.csv 

b_rst_3d.png, b_rst_xy_1layer.png, b_rst_xy_2layer.png, b_rst_xy_3layer.png, 

b_rst_xy_4layer.png, b_rst.csv, b_top.csv, b_side_i.csv, b_side_w.csv 

c_rst_3d.png, c_rst_xy_1layer.png, c_rst_xy_2layer.png, c_rst_xy_3layer.png, 

c_rst_xy_4layer.png, c_rst.csv, c_top.csv, c_side_i.csv, c_side_w.csv 

 

4. Code 

✓ File 1: S0_3D_View_starter.py 

# -*- coding: utf-8 -*- 
""" 
Created on Tue Jan  7 18:20:47 2020 
 
@input: Nine mp4 video files that are recorded at the top and two sideward angles using three 
different antenna designs are required. 
@output: 1. Four csv files that include x,y,z coordinates and summary of frame numbers from 
LED(color) detected frame according to each antenna design. 
         2. A 3D reconstruction image of traces of an operating indicator LED 
         3. Four xy plane reconstruction images in different height of the cage according to each antenna 
design. 
""" 
 
from S1_extract_xyz_from_video import Extractxyz 
from S2_3dview_analysis import ThreeDimensionViewAnalysis 
from S3_xy_view_z_analysis import ZaxisAnalysis 
 
def main(): 
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    # Add folder path that includes nine mp4 videos which can generate supplementary figure 10. 
    # For example, path= 
'C:\\Download\\3d_reconstruction\\02_3D_View_supplimentary_figure10_data\\' 
    path= 'FILE_PATH_HERE\\' 
     
    ifilename = 'a_Proposed_' 
    ofilename = 'a_' 
     
    Extractxyz.launch(path, ifilename + "top.mp4", ofilename + "top", 25, 90) 
    Extractxyz.launch(path, ifilename + "side_w.mp4", ofilename + "side_w", 25, 90) 
    Extractxyz.launch(path, ifilename + "side_i.mp4", ofilename + "side_i", 25, 90) 
     
    ThreeDimensionViewAnalysis.launch(path, ofilename + "top", ofilename + "side_w", ofilename + 
"side_i", ofilename + "rst" ) 
    ZaxisAnalysis.launch(path, ofilename + "rst") 
     
    ifilename = 'b_2turn_' 
    ofilename = 'b_' 
     
    Extractxyz.launch(path, ifilename + "top.mp4", ofilename + "top", 25, 90) 
    Extractxyz.launch(path, ifilename + "side_w.mp4", ofilename + "side_w", 25, 90) 
    Extractxyz.launch(path, ifilename + "side_i.mp4", ofilename + "side_i", 25, 90) 
     
    ThreeDimensionViewAnalysis.launch(path, ofilename + "top", ofilename + "side_w", ofilename + 
"side_i", ofilename + "rst" ) 
    ZaxisAnalysis.launch(path, ofilename + "rst") 
     
    ifilename = 'c_Singluar_' 
    ofilename = 'c_' 
     
    Extractxyz.launch(path, ifilename + "top.mp4", ofilename + "top", 15, 40) 
    Extractxyz.launch(path, ifilename + "side_w.mp4", ofilename + "side_w", 15, 40) 
    Extractxyz.launch(path, ifilename + "side_i.mp4", ofilename + "side_i", 15, 40) 
     
    ThreeDimensionViewAnalysis.launch(path, ofilename + "top", ofilename + "side_w", ofilename + 
"side_i", ofilename + "rst" ) 
    ZaxisAnalysis.launch(path, ofilename + "rst") 
 
if __name__ == "__main__": 
    main() 
 

✓ File 2: S1_extract_xyz_from_video.py 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Dec  9 10:26:01 2019 
 
@author: WSK 
@input: A mp4 video file is required. 
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@output: 1. A csv file which includes x,y,z coordinates and frame number from LED(color) detected 
frame 
""" 
 
import numpy as np 
import time 
import math 
import cv2 
 
class Extractxyz: 
     
    def nothing(x): 
        #any operation 
        pass         
     
    def launch(path, ifilename, ofilename, a, lr): 
        cap = cv2.VideoCapture(path + ifilename) 
        time.sleep(2.0) 
         
        cv2.namedWindow("Trackbars") 
        cv2.createTrackbar("L-B","Trackbars", 120, 255, Extractxyz.nothing) #90 #normal: 120 
        cv2.createTrackbar("L-G","Trackbars", 120, 255, Extractxyz.nothing) #90 #120 
        cv2.createTrackbar("L-R","Trackbars", lr, 255, Extractxyz.nothing) #150 #90 
        cv2.createTrackbar("U-B","Trackbars", 255, 255, Extractxyz.nothing) 
        cv2.createTrackbar("U-G","Trackbars", 255, 255, Extractxyz.nothing) 
        cv2.createTrackbar("U-R","Trackbars", 255, 255, Extractxyz.nothing) 
         
        font = cv2.FONT_HERSHEY_COMPLEX 
        bboxes = [] 
        areas = [] 
        frm_num = 0 
        frm = [] 
        centroid_list=[] 
        centroid_list.append([0,0,0,0,0]) 
         
        while cap.isOpened(): 
            ret, frame = cap.read() 
            # if frame is read correctly ret is True 
            if not ret: 
                print("Can't receive frame (stream end?). Exiting ...") 
                break 
         
            l_b = cv2.getTrackbarPos("L-B", "Trackbars") 
            l_g = cv2.getTrackbarPos("L-G", "Trackbars") 
            l_r = cv2.getTrackbarPos("L-R", "Trackbars") 
            u_b = cv2.getTrackbarPos("U-B", "Trackbars") 
            u_g = cv2.getTrackbarPos("U-G", "Trackbars") 
            u_r = cv2.getTrackbarPos("U-R", "Trackbars") 
             
            lower = np.array([l_b,l_g,l_r]) 
            upper = np.array([u_b,u_g,u_r]) 
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            hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
             
            mask = cv2.inRange(hsv, lower, upper) 
            output = cv2.bitwise_and(frame, frame, mask = mask) 
             
            cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 
         
            idx = 0 
             
            # initialize an array of input centroids for the current frame 
            for cnt in cnts: 
                area = cv2.contourArea(cnt) 
         
                approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True) 
                x = approx.ravel()[0] 
                y = approx.ravel()[1] 
                 
                if a < area : 
                    cv2.drawContours(frame, [approx], 0, (255,255,255), 1) 
                    rect = cv2.boundingRect(cnt) 
                    p1 = (int(rect[0]), int(rect[1])) 
                    p2 = (int(rect[0] + rect[2]), int(rect[1] + rect[3])) 
                    cv2.rectangle(frame, p1,p2, (255,0,0), 2, 1) 
                     
                    rotatedRect = cv2.minAreaRect(cnt) 
                    vertices = cv2.boxPoints(rotatedRect) 
                    vertices = np.int0(vertices) 
                    centroidX = math.ceil((vertices[0][0]+vertices[1][0]+vertices[2][0]+vertices[3][0])/4) 
                    centroidY = math.ceil( 
                            (vertices[0][1]+vertices[1][1]+vertices[2][1]+vertices[3][1])/4) 
                     
                    cv2.drawContours(frame,[vertices],0,(0,0,255),1) 
                    cv2.circle(frame,(centroidX,centroidY), 3, (0,255,0), -1) 
                     
                    bboxes.append(rect) 
                    areas.append(area) 
                    idx = idx + 1     
                    text = "ID {}".format(area); 
                    cv2.putText(frame,text,(x,y), font, 1, (255,255,255)) 
                    centroid_list.append([frm_num, centroidX, centroidY, area, 0]) 
         
            cv2.imshow('frame', np.hstack([frame, output])) 
            frm.append(frm_num) 
            frm_num = frm_num + 1 
                 
            if cv2.waitKey(1) == ord('p'): 
                cv2.waitKey(-1) 
          
            if cv2.waitKey(10) == ord('q'): 
                break 
         
        centroid_list[0]=['f','x','y','a','FrmNum'] 
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        if len(centroid_list)==1: 
            centroid_list.append([0,0,0,0,0]) 
        centroid_list[1][4] = frm_num 
         
        cap.release() 
        cv2.destroyAllWindows() 
         
        np.savetxt(path + ofilename + ".csv", centroid_list,delimiter=",", fmt='%s') 
   

✓ File 3: S2_3dview_analysis.py 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Dec  9 18:58:04 2019 
 
@author: WSK 
@input: Three csv files from different angles (top and two sidewards) are required. 
        Each file should include information of x,y,z coordinates and number of detected frames. 
@output: 1. Figure in 3-D view shows traces of mouse movement(operating indicator LED). 
         2. A csv file that includes summary information of recorded data according to each planes. 
""" 
 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
import pandas 
import numpy as np 
 
class ThreeDimensionViewAnalysis: 
     
    def Sort_fxya(f, x, y, a): 
         
        def Sort(i,cnt): 
            tmpA = a[i+cnt] 
            result_cnt = cnt 
            while(cnt): 
               if(tmpA > a[i+cnt-1]): 
                   cnt = cnt-1 
               else: 
                   tmpA = a[i+cnt-1] 
                   cnt = cnt-1 
                   result_cnt = cnt 
                    
            return result_cnt 
         
        sorted_val = [] 
        cnt = 1 
        det = 1 
        fix = 0 
        i = 0 
        while (i < len(f)): 
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            while(det): 
               if (i+cnt) == len(f): 
                   cnt = cnt-1 
                   det = 0 
                   break 
               else: 
                   if f[i] == f[i+cnt]: 
                       cnt = cnt + 1 
                   else: 
                       cnt = cnt - 1 
                       det = 0 
            if cnt == 0: 
                sorted_val.append([f[i], x[i], y[i], a[i]]) 
            else: 
                fix = Sort(i, cnt) 
                sorted_val.append([f[i+fix], x[i+fix], y[i+fix], a[i+fix]]) 
            det = 1 
            i = i + cnt + 1 
        return sorted_val 
     
    def launch(path, ifilenamet, ifilenamew, ifilenamei, ofilename): 
 
        # put into the .csv file whith is obtained using 'S1_extract_xyz_from_video.py' 
        df_top = pandas.read_csv(path + ifilenamet + '.csv') # top view 
        df_sidew = pandas.read_csv(path + ifilenamew + '.csv') # side view 1 
        df_sidei = pandas.read_csv(path + ifilenamei + '.csv') # side view 2 
         
        top_f = df_top['f'] 
        top_x = df_top['x'] 
        top_y = df_top['y'] 
        top_a = df_top['a'] 
        top_frmNum = df_top['FrmNum'] 
         
        sw_f = df_sidew['f'] 
        sw_x = df_sidew['x'] 
        sw_y = df_sidew['y'] 
        sw_a = df_sidew['a'] 
        sw_frmNum = df_sidew['FrmNum'] 
         
        si_f = df_sidei['f'] 
        si_x = df_sidei['x'] 
        si_y = df_sidei['y'] 
        si_a = df_sidei['a'] 
        si_frmNum = df_sidei['FrmNum'] 
             
         
        sorted_top = ThreeDimensionViewAnalysis.Sort_fxya(top_f,top_x, top_y, top_a) 
        sorted_sidew = ThreeDimensionViewAnalysis.Sort_fxya(sw_f, sw_x, sw_y, sw_a) 
        sorted_sidei = ThreeDimensionViewAnalysis.Sort_fxya(si_f, si_x, si_y, si_a) 
 
        merge_side = sorted_sidew + sorted_sidei 
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        merge_side.sort(key=lambda x: x[0]) 
         
        sm_f = [] 
        sm_x = [] 
        sm_y = [] 
        sm_a = [] 
         
        for i in range(len(merge_side)): 
            sm_f.append(merge_side[i][0]) 
            sm_x.append(merge_side[i][1]) 
            sm_y.append(merge_side[i][2]) 
            sm_a.append(merge_side[i][3]) 
        sorted_side = ThreeDimensionViewAnalysis.Sort_fxya(sm_f, sm_x, sm_y, sm_a) 
         
        idx = 0 
        for i in range(0, len(sorted_top)): 
            for j in range(0, len(sorted_side)): 
                if sorted_top[i][0] == sorted_side[j][0]: 
                    k = i 
                    l = j 
                    idx = 1 
                    break 
            if idx == 1: 
                break 
        xy_frmNum = top_frmNum[0] - sorted_top[k][0] 
        if sw_frmNum[0] > si_frmNum[0] : 
            yz_frmNum = sw_frmNum[0]-sorted_side[l][0] 
        else: 
            yz_frmNum = si_frmNum[0]-sorted_side[l][0] 
         
        del sorted_top[0:k] 
        del sorted_side[0:l] 
         
        xy_Num = len(sorted_top) 
        yz_Num = len(sorted_side) 
         
        merge_xyz = sorted_top + sorted_side 
        merge_xyz.sort(key=lambda x: x[0]) 
        m_f = [] 
        m_x = [] 
        m_y = [] 
        m_a = [] 
         
        for i in range(len(merge_xyz)): 
            m_f.append(merge_xyz[i][0]) 
            m_x.append(merge_xyz[i][1]) 
            m_y.append(merge_xyz[i][2]) 
            m_a.append(merge_xyz[i][3]) 
        merge_xyz = ThreeDimensionViewAnalysis.Sort_fxya(m_f, m_x, m_y, m_a) 
         
        sorted_xyz = [] 
        x = [] 
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        y = [] 
        z = [] 
         
        i = 0 
        for i in range(len(sorted_top)): 
           for j in range(len(sorted_side)): 
               if sorted_top[i][0] == sorted_side[j][0]: 
                   sorted_xyz.append([sorted_top[i][0], sorted_top[i][1], sorted_top[i][2], sorted_side[j][2]]) 
                   x.append(sorted_top[i][1]) 
                   y.append(sorted_top[i][2]) 
                   z.append(sorted_side[j][2]) 
                   break 
         
        xyz_Num = len(sorted_xyz) 
         
        fX = np.array(x) 
        fY = np.array(y) 
        fZ = np.array(z) 
         
        fxmin = min(fX) 
        fxmax = max(fX) 
        fymin = min(fY) 
        fymax = max(fY) 
        fzmin = min(fZ) 
        fzmax = max(fZ) 
         
        fig = plt.figure() 
        ax = plt.axes(projection='3d') 
        ax.plot3D(fX, fY, fZ,'red', ls='None', marker='.') 
        #ax.grid(b=None) 
        #ax.axis('off') 
        ax.set_xlim3d(fxmin-50,fxmax+50) 
        ax.set_ylim3d(fymin-50,fymax+50) 
        ax.set_zlim3d(fzmin-50,fzmax+50) 
        fig.savefig(path + ofilename + "_3d.png", transparent=True) 
         
        plt.show() 
         
        xyz_rst_list=[] 
        
xyz_rst_list.append(['x','y','z','xy_total','yz_total','xy_calculated','yz_calculated','xyz_calculated','xy_or_
yz']) 
        i=0 
        for i in range(xyz_Num): 
            xyz_rst_list.append([fX[i], fY[i], fZ[i], 0, 0, 0, 0, 0, 0]) 
         
        xyz_rst_list[1][3] = xy_frmNum 
        xyz_rst_list[1][4] = yz_frmNum 
        xyz_rst_list[1][5] = xy_Num 
        xyz_rst_list[1][6] = yz_Num 
        xyz_rst_list[1][7] = xyz_Num 
        xyz_rst_list[1][8] = len(merge_xyz) 
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        np.savetxt(path + ofilename + ".csv", xyz_rst_list ,delimiter=",", fmt='%s') 
 

✓ File 4: S3_xy_view_z_analysis.py 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Dec 30 09:39:48 2019 
 
@author: WSK 
@input: A csv file is required. The file should include summary of x,y,z coordinates array 
corresponds to each antenna. 
@output: Figures in x-y veiw by layers corresponds to each antenna. 
""" 
 
import matplotlib.pyplot as plt 
import pandas 
import numpy as np 
from operator import itemgetter  
 
class ZaxisAnalysis: 
     
    def typeTransfer(in_df): 
        out = [] 
        in_df = in_df.dropna() 
         
        for i in range(len(in_df)): 
            out.append(in_df[i]) 
     
        return out 
     
    def DrawFig(i, x, y, xmin, xmax, ymin, ymax, fname): 
         
        xvar = xmax-xmin 
        yvar = ymax-ymin 
         
         
        fig = plt.figure(i) 
        plt.plot(x, y,'red', ls='None', marker='.') 
        plt.xlim(xmin-xvar/25,xmax+xvar/25) 
        plt.ylim(ymin-yvar/16,ymax+yvar/16) 
         
        fig.savefig(fname + str(i) + "layer.png", transparent=False) 
     
        return 0 
     
    def launch(path, filename): 
 
        df = pandas.read_csv(path + filename +'.csv') 
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        x = ZaxisAnalysis.typeTransfer(df['x']) 
        y = ZaxisAnalysis.typeTransfer(df['y']) 
        z = ZaxisAnalysis.typeTransfer(df['z']) 
        xmin = min(x) 
        xmax = max(x) 
         
        ymin = min(y) 
        ymax = max(y) 
         
        zmin = min(z) 
        zmax = max(z) 
        zgap = int((zmax - zmin)/4) 
         
        xyz = np.transpose([x, y, z]) 
        sortedlist = sorted(xyz, key = itemgetter(2)) 
         
        x1 = [] 
        x2 = [] 
        x3 = [] 
        x4 = [] 
        y1 = [] 
        y2 = [] 
        y3 = [] 
        y4 = [] 
        z1 = [] 
        z2 = [] 
        z3 = [] 
        z4 = [] 
        i=0 
        for i in range(len(sortedlist)): 
            if sortedlist[i][2] <= zmin + zgap*1: 
                x4.append(sortedlist[i][0]) 
                y4.append(sortedlist[i][1]) 
                z4.append(sortedlist[i][2]) 
            elif sortedlist[i][2] <= zmin + zgap*2: 
                x3.append(sortedlist[i][0]) 
                y3.append(sortedlist[i][1]) 
                z3.append(sortedlist[i][2]) 
            elif sortedlist[i][2] <= zmin + zgap*3: 
                x2.append(sortedlist[i][0]) 
                y2.append(sortedlist[i][1]) 
                z2.append(sortedlist[i][2]) 
            else : 
                x1.append(sortedlist[i][0]) 
                y1.append(sortedlist[i][1]) 
                z1.append(sortedlist[i][2]) 
         
        ZaxisAnalysis.DrawFig(1, x1, y1, xmin, xmax, ymin, ymax, path + filename + "_xy_") 
        ZaxisAnalysis.DrawFig(2, x2, y2, xmin, xmax, ymin, ymax, path + filename + "_xy_") 
        ZaxisAnalysis.DrawFig(3, x3, y3, xmin, xmax, ymin, ymax, path + filename + "_xy_") 
        ZaxisAnalysis.DrawFig(4, x4, y4, xmin, xmax, ymin, ymax, path + filename + "_xy_") 
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        plt.show() 
 

✓ File 5: S0_ANT_comparison_start.py 

# -*- coding: utf-8 -*- 
""" 
Created on Tue Jan  7 16:22:19 2020 
 
@author: WSK 
@input: Four mp4 video files which are recorded at the top angle using different antenna types are 
required. 
@output: 1. Two csv files that include x,y,z coordinates and summary of frame numbers from 
LED(color) detected frame according to each video file. 
         2. A plot that results in performance comparison by different antenna types. 
""" 
 
from S1_extract_xyz_from_video import Extractxyz 
from S2_topview_analysis import TopViewAnalysis 
from S3_detected_frames_comp import ComparisonPlot 
 
def main(): 
    # Add folder path that includes four mp4 videos which can generate Figure 2(e). 
    # For example, path= 
'C:\\Download\\3d_reconstruction\\01_Antenna_comparison_figure2_data\\' 
    path= 'FILE_PATH_HERE\\' 
 
    filename = 'Ant1_1W_top' 
    Extractxyz.launch(path, filename + ".mp4", filename, 25, 90) 
    TopViewAnalysis.launch(path, filename + ".csv", filename + "_rst.csv") 
     
    filename = 'Ant2_1W_top' 
    Extractxyz.launch(path, filename + ".mp4", filename, 25, 90) 
    TopViewAnalysis.launch(path, filename + ".csv", filename + "_rst.csv") 
     
    filename = 'Ant3_1W_top' 
    Extractxyz.launch(path, filename + ".mp4", filename, 25, 90) 
    TopViewAnalysis.launch(path, filename + ".csv", filename + "_rst.csv") 
     
    filename = 'Ant4_1W_top' 
    Extractxyz.launch(path, filename + ".mp4", filename, 25, 90) 
    TopViewAnalysis.launch(path, filename + ".csv", filename + "_rst.csv") 
         
    ComparisonPlot.launch(path, 'Ant_comparison_plot') 
 
if __name__ == "__main__": 
    main() 
 

✓ File 6: S2_topview_analysis.py 
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# -*- coding: utf-8 -*- 
""" 
Created on Thu Dec 12 08:27:13 2019 
 
@author: WSK 
@input: A csv file that includes x, y, z coordinates, and the number  of frames that LED detected from 
the top angle of the cage is required. 
@output: 1. A csv file that includes summary information of recorded data at top angle. 
""" 
 
import pandas 
import numpy as np 
 
class TopViewAnalysis: 
 
    def Sort_fxya(f, x, y, a): 
         
        def Sort(i,cnt): 
            tmpA = a[i+cnt] 
            result_cnt = cnt 
            while(cnt): 
                if(tmpA > a[i+cnt-1]): 
                    cnt = cnt-1 
                else: 
                    tmpA = a[i+cnt-1] 
                    cnt = cnt-1 
                    result_cnt = cnt 
            return result_cnt 
        
        sorted_val = [] 
        cnt = 1 
        det = 1 
        fix = 0 
        i = 0 
        while (i < len(f)): 
            while(det): 
               if (i+cnt) == len(f): 
                   cnt = cnt-1 
                   det = 0 
                   break 
               else: 
                   if f[i] == f[i+cnt]: 
                       cnt = cnt + 1 
                   else: 
                       cnt = cnt - 1 
                       det = 0 
            if cnt == 0: 
                sorted_val.append([f[i], x[i], y[i], a[i]]) 
            else: 
                fix = Sort(i, cnt) 
                sorted_val.append([f[i+fix], x[i+fix], y[i+fix], a[i+fix]]) 
            det = 1 
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            i = i + cnt + 1 
        return sorted_val 
     
    def launch(path, ifilename, ofilename): 
         
        df_top = pandas.read_csv(path + ifilename) 
         
        top_f = df_top['f'] 
        top_x = df_top['x'] 
        top_y = df_top['y'] 
        top_a = df_top['a'] 
        top_frmNum = df_top['FrmNum'] 
         
        sorted_top = TopViewAnalysis.Sort_fxya(top_f,top_x, top_y, top_a) 
         
        top_frmNum = top_frmNum[0] - sorted_top[0][0] 
        xy_Num = len(sorted_top) 
         
        xy_rst_list=[] 
        xy_rst_list.append(['xy_total','xy_calculated']) 
        xy_rst_list.append([top_frmNum, xy_Num]) 
         
        np.savetxt(path + ofilename, xy_rst_list ,delimiter=",", fmt='%s') 
       

✓ File 7: S3_detected_frames_comp.py 

# -*- coding: utf-8 -*- 
""" 
Created on Tue Dec 31 11:21:21 2019 
 
@author: WSK 
@input: Four csv files are required. 
        Each file includes information on the total frame number and 
        the number of extracted frames from the top angle(xy plane) according to the antenna design. 
@output: 1. A plot of the antenna comparison result. 
 
""" 
 
import matplotlib.pyplot as plt; plt.rcdefaults() 
import numpy as np 
import pandas 
import matplotlib.pyplot as plt 
 
class ComparisonPlot: 
     
    def launch(path, ofilename): 
         
        df1 = pandas.read_csv(path + 'Ant1_1W_top_rst.csv') 
        df2 = pandas.read_csv(path + 'Ant2_1W_top_rst.csv') 
        df3 = pandas.read_csv(path + 'Ant3_1W_top_rst.csv') 
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        df4 = pandas.read_csv(path + 'Ant4_1W_top_rst.csv') 
             
        ant1 = df1['xy_total'][0] 
        ant1_xy = df1['xy_calculated'][0] 
        ant1_res = ant1_xy/ant1*100 
         
        ant2 = df2['xy_total'][0] 
        ant2_xy = df2['xy_calculated'][0] 
        ant2_res = ant2_xy/ant2*100 
         
        ant3 = df3['xy_total'][0] 
        ant3_xy = df3['xy_calculated'][0] 
        ant3_res = ant3_xy/ant3*100 
         
        ant4 = df4['xy_total'][0] 
        ant4_xy = df4['xy_calculated'][0] 
        ant4_res = ant4_xy/ant4*100 
         
        objects = ('1', '2', '3', '4') 
        y_pos = np.arange(len(objects)) 
        performance = [ant1_res, ant2_res, ant3_res, ant4_res] 
         
        fig = plt.figure(1) 
        plt.bar(y_pos, performance, 0.45, align='center', alpha = 0.8, color = ('red', 'gray','gray','gray')) 
        plt.xticks(y_pos, objects) 
        plt.ylabel('Detected frame ratio') 
        plt.xlabel('Antennas') 
        plt.ylim(-10,120) 
         
        plt.show() 
 
        fig.savefig(path + ofilename + ".png", transparent=False) 


