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ABSTRACT

Large planetary scale dynamics of the oceans and the atmosphere is governed by the primi-

tive equations (PEs). It is well-known that the 3D viscous PEs is globally (in time) well-posed

in Sobolev spaces. On the other hand, the inviscid primitive equations (IPEs) without rotation

is known to be ill-posed in all Sobolev spaces, and some of its smooth solutions can form sin-

gularities in finite time. In this thesis, the above results are extended in the presence of rotation

(Coriolis force). More specifically, certain finite-time blowup solutions to the IPEs with rotation

are constructed, and it is established that the IPEs with rotation is ill-posed in the sense that the per-

turbation around a certain steady state background flow is both linearly and nonlinearly ill-posed

in all Sobolev spaces, and is linearly ill-posed in Gevrey class of order s > 1.

Although the IPEs is ill-posed in Sobolev spaces and Gevrey class of order s > 1, it is shown

in this thesis that the 3D IPEs is locally (in time) well-posed in the space of analytic functions, i.e.,

the Gevrey class of order s = 1, for a short interval of time that is independent of the rotation rate.

By the comparison between the 3D IPEs and the 2D Euler equations, one can establish the long-

time existene of solutions to the 3D IPEs provided the analytic norm of the initial baroclinic mode

is small enough, while the initial barotropic mode can be large. Moreover, one can show that, in

the case of “well-prepared” analytic initial data (only the Sobolev norm of the baroclinic mode is

small depending on the rotation rate, while the analytic norm can be large), the regularizing effect

of the Coriolis force by providing a lower bound for the life-span of the solutions which grows

toward infinity with the rotation rate. The latter is achieved by a delicate analysis of a simple limit

resonant system whose solution approximates the corresponding solution of the 3D IPEs with the

same initial data.

The PEs with only vertical viscosity (also called the hydrostatic Navier-Stokes equations) is

believed to be ill-posed in Sobolev spaces. To overcome the potential ill-posedness, some weak

dissipations are introduced in the horizontal directions, which are the linear (Rayleigh-like friction)

damping terms. With these damping terms, it is established that this system is locally well-posed

ii



with general Sobolev initial data and globally well-posed with small Sobolev initial data. In order

to study the possible finite-time blow-up and to give a reliable numerical regularization, it is pro-

posed to study the Voigt α-regularization of this model, which is an inviscid regularization. One

is able to establish the global well-posedness of the regularized model for arbitrary Sobolev initial

data. In addition, it is shown that the solutions of the regularized model converge to those of the

original model on the interval of the existence of the latter, as α → 0. Based on this convergence

result, a blowup criterion of the original model is established.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 The Primitive Equations of Oceanic and Atmospheric Dynamics

In the atmospheric and oceanic dynamics, the Boussinesq approximation model is accepted

as the fundamental model that governs their motion. In the case of incompressible flows, the

dimensionless version of this system reads as


∂tU + U · ∇U − νBh ∆hU − νBz ∂zzU + Ωe3 × U +∇p+ Te3 = 0,

∇ · U = 0,

∂tT + U · ∇T − κBh ∆hT − κBz ∂zzT = 0

(1.1)

in the domain D ⊆ R3, where the velocity field U = (V , w) with horizontal velocity V = (u, v)

and vertical velocity w, the pressure p, and the temperature T are the unknown quantities which

are functions of the independent time and space variables (t, x, y, z). The 3D gradient is denoted

by ∇ = (∂x, ∂y, ∂z), and the 2D horizontal gradient and Laplacian are denoted by ∇h = (∂x, ∂y)

and ∆h = ∂xx +∂yy, respectively. The nonnegative constants νBh , ν
B
z , κ

B
h and κBz are the horizontal

viscosity, the vertical viscosity, the horizontal diffusivity and the vertical diffusivity coefficients,

respectively. The parameter Ω ∈ R stands for the speed of rotation in the Coriolis force, and e3 =

(0, 0, 1) is the unit vector in the z direction. All the quantities mentioned above are dimensionless.

For planetary scale oceanic and atmospheric dynamics the vertical scale (a few kilometers for

the ocean, 10-20 kilometers for the atmosphere) is much smaller than the horizontal scales (several

thousands of kilometers). By virtue of this thinness (the ratio of the vertical height or depth to

horizontal width is small) of the ocean and atmosphere, the above Boussinesq equations (1.1) is

considered in a thin domain Dε :=
{

(x, y, z) : 0 ≤ z ≤ ε, (x, y) ∈ R2
}

for ε a small positive

parameter. Following Azérad-Guillén [3] and Li-Titi [69], it is assumed that (νBh , ν
B
z , κ

B
h , κ

B
z ) =

(νh, ε
2νz, κh, ε

2κz), where (νh, νz, κh, κz) = O(1). By rescaling, the following new unknowns are

1



introduced 
Vε(t, x, y, z) = V(t, x, y, εz), wε(t, x, y, z) = 1

ε
w(t, x, y, εz),

pε(t, x, y, z) = p(t, x, y, εz), Tε(t, x, y, z) = εT (t, x, y, εz),

for (x, y, z) ∈ D :=
{

(x, y, z) : 0 ≤ z ≤ 1, (x, y) ∈ R2
}

. Boussinesq system (1.1), defined on the

ε-dependent domain Dε, can be transformed to the following scaled Boussinesq equations



∂tVε + Vε · ∇hVε + wε∂zVε − νh∆hVε − νz∂zzVε + ΩV⊥ε +∇hpε = 0,

ε2(∂twε + Vε · ∇hwε + wε∂zwε − νh∆hwε − νz∂zzwε) + ∂zpε + Tε = 0,

∇h · Vε + ∂zwε = 0,

∂tTε + Vε · ∇hTε + wε∂zTε − κh∆hTε − κz∂zzTε = 0

(1.2)

in the fixed domain D. Here the notation V⊥ε = (−vε, uε) is used.

By taking the formal limit ε→ 0+, and assuming that (Vε, wε, pε, Tε) converges to (V , w, p, T )

in a suitable sense, the vertical momentum equation in (1.2) degenerates to the following hydro-

static balance

∂zp+ T = 0.

As a result, one obtains the following dimensionless system, known as the primitive equations

(PEs) 

∂tV + V · ∇hV + w∂zV − νh∆hV − νz∂zzV + ΩV⊥ +∇hp = 0,

∂zp+ T = 0,

∇h · V + ∂zw = 0,

∂tT + V · ∇hT + w∂zT − κh∆hT − κz∂zzT = 0

(1.3)

in the fixed domain D. Here the notation V⊥ = (−v, u) is used.

The above small aspect ratio limit, from system (1.2) to system (1.3) with ε → 0+, can be

2



rigorously justified. The weak convergence of such limit was proved in Azérad-Guillén [3], while

the strong convergence was established by Li-Titi [69] with error estimates in terms of the small

aspect ratio ε.

Investigating the well-posedness of the PEs is a crucial step for understanding, from both the

physical and mathematical points of view, the validity and limitation of their derivation. By well-

posedness for a initial value problem, it means:

1. given initial data of a chosen space, there exists a time T > 0 such that a solution exists in

this space for all time t ∈ [0, T ];

2. the solution is unique;

3. the solution map is continuous with respect to initial data.

This notion of well-posedness is introduced by Hadamard [47]. If any one of these three conditions

is violated, then the problem is ill-posed. If the first statement is true for any positive time T > 0,

then one says this problem is globally (in time) well-posed. If the solution leaves the space at a

finite time, i.e., the corresponding norm becomes infinity at a finite time, then one says the solution

blows up in finite time, and this problem is only locally (in time) well-posed.

1.2 History and Introduction

The PEs form a fundamental block in models of the oceanic and atmospheric dynamics, and

have been a standard framework for studying geostrophic adjustment of frontal anomalies in a ro-

tating continuously stratified fluid of strictly rectilinear fronts and jets, see, e.g., Blumen [11],

Gill [42, 43], Haltiner–Williams [50], Hermann–Owens [49], Holton [52], Kuo–Polvani [63],

Lewandowski [65], Majda [75], Pedlosky [81], Plougonven–Zeitlin [82], Rossby [84], Vallis [89],

Washington–Parkinson [90], Zeng [92], and references therein.

After the PEs were formally derived, it was commonly believed that their mathematical analysis

is much harder than the original Navier-Stokes equations (or Boussinesq equations). The main

difficulty in the study of the PEs is on the loss of one horizontal derivative in the vertical velocity

3



w. To be more specific, w does not have an evolution equation, and can only be derived as

w(t, x, y, z) = −
∫ z

0

∇h · V(t, x, y, s)ds (1.4)

through the divergence free condition (third equation in system (1.3)) and the boundary conditions

on w (w = 0 at z = 0 and z = 1). The expression of w in (1.4) clearly shows that there is one loss

of horizontal derivative. However, as one will see below, as long as there is horizontal viscosity

(νh > 0), the global regularity of the 3D PEs can be achieved. Remarkably, the global regularity of

the 3D Navier-Stokes equations is one of the most famous and challenging mathematical problems.

1.2.1 Viscous Primitive Equations

The mathematical studies of the PEs started by Lions–Temam–Wang [71–73] in the 1990s.

They considered the PEs with both full viscosity and full diffusivity (νh, νz, κh, κz > 0) and estab-

lished the global existence of weak solutions. The uniqueness of weak solutions to the 3D viscous

PEs is still an open problem, while the weak solutions to 2D viscous PEs (independent of spatial

variable y) turn out to be unique, see Bresch et al. [14].

In the context of strong solutions, for the 2D case, the local well-posedness was established by

Guillén-González et al. [45], and the global existence of strong solutions was proved by Bresch

et al. [15] and Temam–Ziane [88]. For the 3D case, Cao–Titi [25] separated the velocity field V

into the barotropic mode V (the average in z variable) and baroclinic mode Ṽ (the fluctuation, i.e.,

Ṽ = V − V). By taking advantage of the fact that effectively the unknown pressure is a function

of only two spatial horizontal variables x and y, the pressure term does not appear in the evolution

equation of the baroclinic mode, and thus the control of L6 norm can be achieved for the baroclinic

mode. Based on this, Cao–Titi [25] firstly established that the PEs with both full viscosity and

full diffusivity are globally well-posed with the relevant physical boundary conditions. Such result

is also achieved later on by Kobelkov [55], see also the subsequent articles of Kukavica–Ziane

[61, 62] for Dirichlet boundary conditions, as well as Hieber–Kashiwabara [51] for some progress

towards relaxing the smoothness on the initial data by using the semigroup method.
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1.2.2 Inviscid Primitive Equations

When νh = νz = 0, the inviscid primitive equations (IPEs) without coupling with the tempera-

ture is also called the hydrostatic Euler equations. In the absence of rotation (Ω = 0), the linearized

IPEs near certain shear-flows has been shown to be ill-posed in Sobolev spaces by Renardy [83].

Later on, the nonlinear ill-posedness of the IPEs without rotation was established by Han-Kwan

and Nguyen in [48], where they built an abstract framework to show that the IPEs is ill-posed in

any Sobolev space. These results on the ill-posedness of non-rotating IPEs were extended to the

case when the rotation is present (Ω 6= 0) in the work by Ibrahim–Lin–Titi [53].

The linear ill-posedness of the IPEs mentioned above shows that the linearized 2D IPEs (as

well as the 3D case, see Section 3.1), around a special steady state background flow, has unstable

solutions of the form u(t, x, z) = e2πikxeσktuk(z), where <σk = λk for some λ ∈ R and λ 6= 0.

Such Kelvin-Helmholtz type instability, which is similar to the one appears in the context of vortex

sheets (see, e.g., Caflisch–Orellana [16], and the survey paper by Bardos–Titi [9] and reference

therein), precludes the construction of solutions in Sobolev spaces for general initial data. To

overcome this strong instability, one should consider initial data u0 that are strongly localized in

Fourier, typically for which |û0(k, z)| . e−δ|k|
1/s with δ > 0 and s ≥ 1. Such localization condition

corresponds to Gevrey class of order s in the x variable. Kelvin-Helmholtz type instability forces

us to choose s = 1 for the well-posedness result, which is the space of analytic functions. This

is consistent with positive results reported in the work of Kukavica–Temam–Vicol–Ziane [59]

and in our work Ghoul–Ibrahim–Lin–Titi [41]. Notably, for the Prandtl equations, which have

some similarities in the structure with the PEs, is shown by Gérard-Varet and Dormy [39] that its

linearization around a special background flow has unstable solutions of similar form, but with

<σk ∼ λ
√
k for k � 1 arbitrarily large and some positive λ ∈ R+. This implies that the optimal

Gevrey class order s for Prandtl equation is s = 2, which is consistent with the positive results

reported by the work of Dietert and Gérard-Varet [33] and the work of Li–Masmoudi–Yang [70].

This shows that the linear instability of the IPEs is “worse" than that of the Prandtl equations.

Due to the ill-posedness discussed above, in order to show the well-posedness of the IPEs,
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one needs to assume either some special structures (local Rayleigh condition) on the initial data

or real analyticity for general initial data, see, e.g., Brenier [12, 13], Grenier [44], Kukavica–

Masmoudi–Vicol–Wong [58], Kukavica–Temam–Vicol–Ziane [59], Masmoudi–Wong [76], and

our work Ghoul–Ibrahim–Lin–Titi [41]. In particular, the authors in [59] established the local

well-posedness of the 3D IPEs in the space of analytic functions, but the time of existence they

obtained shrinks to zero as the rate of rotation |Ω| increases toward infinity. This is contrary to the

cases of the 3D fast rotating Euler, Navier–Stokes and Boussinesq equations, where the limit of

fast rotation leads to either strong “dispersion" or averaging mechanism that weakens the nonlinear

effects and hence allows for establishing the global regularity result in the Navier-Stokes case, and

prolongs the life-span of the solutions in the Euler case, by Babin–Mahalov–Nicolaenko [5–8] (see

also the work of Chemin–Desjardines–Gallagher–Grenier [29], Dutrifoy [34], Embid–Majda [36],

Ibrahim–Yoneda [54], Koh–Lee–Takada [56], and references therein). In addition, the readers

are referred to Babin–Ilyin–Titi [4], Guo–Simon–Titi [46], Kostianko–Titi–Zelik [57], and Liu–

Tamdor [74] for simple examples demonstrating the above mechanism. This suggests that one

should be able to show that the fast rotation prolongs the life-span of the solution to the 3D IPEs.

Indeed, it is shown in [41] that the IPEs is locally well-posed in the space of analytic functions with

a time interval that is independent of Ω, and the life-span of solutions to the IPEs can be prolonged

with fast rotation and “well-prepared" initial data.

By virtue of local well-posedness and long-time existence of solutions to the 3D IPEs, the next

question is, whether one can show that the solutions exist globally or form singularities in finite

time? In the case of non-rotating IPEs, it was proven that smooth solutions to the IPEs can develop

singularities in finite time, see Cao–Ibrahim–Nakanishi–Titi [17] and Wong [91]. This result is

extended to the case when Ω 6= 0 in [53]. By virtue of the finite-time blowup results, one can

conclude that there is no hope to show the global well-posedness of the 3D IPEs, even with fast

rotation. The optimal result one can achieve is that fast rotation prolongs the life-span of solutions

to the 3D IPEs.

In summary, for the IPEs with rotation, the following results will be reported in this dissertation:
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1. The perturbed rotating IPEs, around a certain steady state background flow depending on the

rotation rate Ω, is both linearly and nonlinearly ill-posed in Sobolev spaces, and is linearly

ill-posed in Gevrey class of order s > 1.

2. The 3D rotating IPEs is locally well-posed in the space of analytic functions for a short

interval of time that is independent of Ω. This improves the result reported in [59].

3. Finite-time blowup solutions to the rotating IPEs with initial data depending on Ω is con-

structed, and the explicit upper bound of the time for the blowup is provided.

4. Independently of |Ω|, the life-span of the analytic solutions to the rotating IPEs tends to

infinity as the analytic norm of the initial baroclinic mode goes to zero. As a corollary,

one can show in this case that the analytic solutions of the 3D IPEs converge to the global

analytic solutions of the limit system, which is governed by the 2D Euler equations.

5. The life-span of the solutions goes toward infinity, with |Ω| → ∞. This is established for

“well-prepared" initial data, namely, when only the Sobolev norm (but not the analytic norm)

of the baroclinic mode is small enough, depending on |Ω|. Furthermore, for large |Ω| and

“well-prepared" initial data, one can show that the solution to the 3D IPEs is approximated

by the solution to a simple limit resonant system with the same initial data.

1.2.3 The Primitive Equations With Weak Dissipation

The global regularity results of the 3D PEs mentioned in Section 1.2.1 are in the case of full

viscosity and full diffusivity. Motivated by physical and mathematical considerations, it is of

great interest to investigate the PEs with partial viscosity and/or partial diffusivity. There have

been several mathematical studies of these models. The global existence and uniqueness of strong

solutions for the 3D PEs with full viscosity (νh, νz > 0) and with either only horizontal diffusivity

or only vertical diffusivity (κh > 0, κz = 0 or κh = 0, κz > 0) have been established by Cao–

Titi [26] and Cao–Li–Titi [18, 19]. Concerning partial viscosity, global well-posedness of the 3D

PEs with only horizontal viscosity (νh > 0, νz = 0) and with either only horizontal diffusivity or
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only vertical diffusivity was established by Cao–Li–Titi in [20–22]. See also the survey paper by

Li–Titi [68].

On the other hand, for the 3D PEs with only vertical viscosity (νh = 0, νz > 0), which with-

out coupling with the temperature is also called the hydrostatic Navier-Stokes equations, there

is no results concerning the well-posedness in Sobolev spaces. Indeed, Renardy [83] has indi-

cated, without providing details, that one should be able to show the linear ill-posedness of the

PEs with only vertical viscosity, in any Sobolev space, by using matched asymptotics. The reason

of ill-posedness is the loss of one horizontal derivative in w as indicated in (1.4), and the loss of

horizontal dissipation since νh = 0. Therefore, in order to establish well-posedness in Sobolev

spaces for general initial data, in addition to vertical viscosity, some additional horizontal dissipa-

tive terms are necessary. For this reason, one considers the following reduced 3D PEs with weak

dissipation 

∂tu+ u∂xu+ w∂zu+ ε1u− Ωv + ∂xp− νz∂zzu = 0,

∂tv + u∂xv + w∂zv + ε1v + Ωu− νz∂zzv = 0,

ε2w + ∂zp+ T = 0,

∂xu+ ∂zw = 0,

∂tT − κh∂xxT − κz∂zzT + u∂xT + w∂zT = 0

(1.5)

in the thin domain
{

(x, z) : 0 ≤ z ≤ 1, x ∈ R
}

. The term reduced model means that the relevant

physical quantities depend only on two spatial variables x and z. Here ε1 > 0 and ε2 > 0 represent

the linear (Rayleigh-like friction) damping coefficients. The consideration of ε2 > 0 is inspired by

Samelson–Vallis [85] and Salmon [86, p. 150]. The linear damping term ε2w is the key to show

well-posedness, since from ∂xu = −∂zw, one obtains the horizontal dissipation and therefore

is able to overcome the ill-posedness. Accordingly, when ε2 > 0, one can view the term ε2w

as having a “regularizing" effect, since it annihilates the ill-posedness indicated by Renardy [83]

when ε2 = 0. This also indicates that the damping term ε2w has a non-negligible effect on the

dynamics and leads to a reliable numerical regularization. In terms of physical motivation, the
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damping terms ε1u, ε1v, and ε2w can be interpreted as the Rayleigh friction with the bottom of

ocean (continental shelf). Such linear damping terms are also considered in the 3D Salmon’s

planetary geostrophic oceanic dynamics model by Cao–Titi [27], where they were able to show

global regularity of this model. The consideration ε2 > 0 is crucial in their work since it is well

known that when ε2 = 0 the planetary geostrophic model of ocean circulation is ill-posed (see,

e.g., [27] and reference therein). This in turn motivated Salmon to introduce the friction term ε2w,

with ε2 > 0, in the planetary geostrophic model to overcome this problem. Consequently, this

provides an additional motivation for taking ε2 > 0 in our system. It is shown in the work by Cao–

Lin–Titi [23] that system (1.5) is locally well-posed with general Sobolev initial data and globally

well-posed with small Sobolev initial data.

From a mathematical perspective, system (1.5) with Ω = 0, v ≡ 0, T ≡ 0 is reminiscent of

the famous Prandtl system in the upper half space. Ill-posedness of Prandtl system in Sobolev

spaces was established by Gérard-Varet and Dormy [39] (see more details in Section 1.2.2), and

by Gérard-Varet and Nguyen [40]. The existence of finite-time blow-up for Prandtl system was

shown by E–Enquist [35]. On the other hand, well-posedness results of the Prandtl system have

been obtained by assuming either real analyticity or some special structures of the initial data, see,

e.g., Kukavica–Masmoudi–Vicol–Wong [58], Kukavica–Vicol [60], Masmoudi–Wong [77], and

Oleinik [79].

In order to study the possible finite-time blow-up of system (1.5), and to give a reliable numer-

ical regularization, it is proposed to study the Voigt α-regularization with respect to z variable of
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(1.5). More specifically, consider the following system



∂t(u− α2∂zzu) + u∂xu+ w∂zu+ ε1u− Ωv + ∂xp− νz∂zzu = 0,

∂t(v − α2∂zzv) + u∂xv + w∂zv + ε1v + Ωu− νz∂zzv = 0,

ε2w + ∂zp+ T = 0,

∂xu+ ∂zw = 0,

∂tT − κh∂xxT − κz∂zzT + u∂xT + w∂zT = 0,

(1.6)

where α > 0. Voigt α-regularization is also used in the study of the 3D Euler equations, see, e.g.,

Cao–Lunasin–Titi [28], Larios–Petersen–Titi–Wingate [66], and Larios–Titi [67]. It is established

in [23] that system (1.6) is globally well-posed for general Sobolev initial data. In addition, by

taking Ω = 0, v ≡ 0, and T ≡ 0 in system (1.5) and system (1.6) (these considerations are just for

mathematical simplicity), one can prove the convergence of the strong solutions of system (1.6) to

system (1.5) as α → 0. At the end, based on the convergence, a blowup criterion of system (1.5)

with Ω = 0, v ≡ 0, and T ≡ 0 is established.

In summary, for the PEs with only vertical viscosity and linear damping terms, the following

results will be reported in this dissertation:

1. System (1.5) is locally well-posed with general Sobolev initial data and globally well-posed

with small Sobolev initial data.

2. System (1.6) is globally well-posed for general Sobolev initial data.

3. When Ω = 0, v ≡ 0, and T ≡ 0 in system (1.5) and system (1.6), the strong solutions of

system (1.6) converge to those of system (1.5) on the time interval of the existence of system

(1.5) as α → 0. The considerations of Ω = 0, v ≡ 0, and T ≡ 0 are just for mathematical

simplicity.

4. Based on the result of convergence, a blowup criterion of system (1.5) with Ω = 0, v ≡ 0,

and T ≡ 0 is given.

10



1.3 Outline of The Dissertation

Chapter 2 consists of preliminary background materials. The notation that will be used in this

work are introduced, including functional settings and several projections. Later, lemmas that will

be used in this dissertation are listed, together with the proofs for some of them. The proofs of

Lemma 2.2.11–2.2.17 will be presented in Appendix A.

Chapter 3 is dedicated for the detailed mathematical analysis of the IPEs. In Section 3.1, one

first recall previous results about the ill-posedness of the IPEs in the absence of rotation, then

extend these results to the case when rotation is present. In Section 3.2, it is shown that the IPEs

are locally well-posed in the space of analytic functions. By using the projections introduced in

Chapter 2, one can first reformulate the problem. Later, using the standard Galerkin method and

the energy estimate, the existence of the solutions is established. The uniqueness of solutions and

continuous dependence on the initial data are also proved. In Section 3.3, following two different

methods in [17] and [91], one is able to to extend the blowup results to the case when the rotation

is present. An explicit example is also provided to discuss the intuition for the long-time existence

results. In Section 3.4, it is established that the life-span of the solutions to the 3D IPEs can

be prolonged to infinity as long as the analytic norm of the initial baroclinic mode goes to zero.

Moreover, the solutions to the 3D IPEs converge to the solution to the 2D Euler equations in

this situation. Finally, Section 3.5 focus on the study of the effect of rotation on the life-span of

the solutions. By using more projections to reformulate the problem furthermore, one can derive

a limit resonant system as the rotation rate |Ω| → ∞. As the limit resonant system is globally

well-posed, one can investigate the perturbed system and establish technical energy estimates to

show that the life-span of the solutions to the 3D IPEs goes to infinity as long as the rotation rate

|Ω| → ∞ and the Sobolev norm of the initial baroclinic mode converges to zero depending on |Ω|.

Moreover, in this situation, the solutions to the 3D IPEs can be approximated by the solutions to

the limit resonant system with the same initial data. This section ends up with some remarks and

discussions.

Chapter 4 consists of the study of the PEs with only vertical viscosity and weak horizontal
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dissipation that is the linear (Rayleigh-like friction) damping. Section 4.1 studies the local well-

posedness of this system in certain Sobolev space with general initial data. This section starts with

the reformulation of the problem and formal a priori energy estimates. Later, by constructing the

Galerkin approximation system of our problem, the existence of the solutions is shown by rigorous

Galerkin procedure. Next, the uniqueness of the solutions and continuous dependence on the initial

data are established. At the end, one can consider a special case, i.e., setting Ω = 0, v ≡ 0 and

T ≡ 0, and prove similar result with less requirement on the regularity of initial data. Section

4.2 is dedicated for the study of the global well-posedness of the system provided that the initial

data is small enough depending on the viscosity, diffusivity, and the linear damping coefficients.

In Section 4.3, it is proposed to study the Voigt α-regularization of our original model, and one

can establish the global well-posedness in Sobolev spaces for arbitrary initial data, i.e., without

smallness assumption. For the special case when Ω = 0, v ≡ 0 and T ≡ 0, similar result is

established with less requirement on the regularity of initial data. In Section 4.4, it is shown that

the solutions of the Voigt α-regularization model converge to the solution of the original model on

the interval of the existence of the latter, as α → 0, in the case when Ω = 0, v ≡ 0 and T ≡ 0.

Such requirement is just for mathematical simplification. In Section 4.5, a blowup criterion of the

original model is given based on the convergence result.

Chapter 5 contains the conclusion and summary of this dissertation.

Appendix A is dedicated for the detailed proofs of Lemma 2.2.11–2.2.17 that are associated

with the energy estimate of nonlinear terms in the space of analytic functions. These results can be

used for other study on the PEs in the space of analytic functions.
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2. NOTATION AND PRELIMINARIES

In this chapter, we introduce the notation and collect some preliminary results that will be used

in this dissertation.

2.1 Notation

The universal constant C appears in this dissertation may change from step to step. When we

use subscript for C, e.g., Cr, it means that the constant depends only on r. We use f . g and

f & g to mean f ≤ Cg and f ≥ Cg, respectively.

We use the notation x := (x′, z) to represent the spatial variables, where x′ and z represent

the horizontal and vertical variables, respectively. In the 2D case x′ = x, while in the 3D case

x′ = (x, y).

For domain U ⊂ Rd, where d = 2 or 3, we denote by Lp(U), for p ≥ 1, the Lebesgue space of

real valued functions f(x) satisfying
∫
U
|f(x)|pdx <∞, and denote the corresponding norm by

‖f‖Lp := ‖f‖Lp(U) =
(∫

U

|f(x)|pdx
) 1
p
. (2.1)

When the function f is a vector field in Rm, by abuse of notation, we still use f ∈ Lp(U) instead

of f ∈
(
LP (U)

)m
when there is no confusion. When p = 2, we use the notation

‖f‖ := ‖f‖L2(U) (2.2)

for simplicity, and denote the inner product in L2(U) by

〈f, g〉 :=

∫
U

f(x)g(x)dx (2.3)

for functions f, g ∈ L2(U).
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Let α = (α1, α2, ..., αd) ∈ Nd denote mult-indices. The notation

∂α = ∂α1
x1
∂α2
x2
...∂αdxd , |α| =

d∑
j=1

αj, α! =
d∏
j=1

αj! (2.4)

will be used throughout. For r ≥ 0 an integer, we denote by Hr(U) = W r,2(U) the Sobolev space

of real valued functions f satisfying
∑
|α|≤r
‖Dαf‖2

L2 <∞, and denote the corresponding norm by

‖f‖Hr :=
( ∑
|α|≤r

‖Dαf‖2
L2

) 1
2
. (2.5)

For s > 0, a function f ∈ C∞(U) is said to be in Gevrey class of order s, denoted by f ∈

Gs(U), if there exist constants ρ > 0 and M > 0 such that for every x ∈ U and α ∈ Nd, one has

|∂αf(x)| ≤M
( α!

ρ|α|

)s
. (2.6)

When U = Td ⊂ Rd, where Td is the d-dimensional torus with unit length, we use f̂k to denote

the Fourier coefficient of function f ∈ L2(Td), so that

f(x) =
∑
k∈Zd

f̂ke
2πik·x, f̂k =

∫
Td
e−2πik·xf(x)dx. (2.7)

In this case, the Hr norm can also be defined in the following way:

‖f‖Hr :=
(∑

k∈Zd
(1 + |k|2r)|f̂k|2

)1/2

. (2.8)

Notice that here r ≥ 0 is not necessary an integer. The Sobolev space Hr(Td) is the set of all

L2(Td) functions for which (2.8) is finite. We also denote the corresponding Hr semi-norm by

‖f‖Ḣr :=
(∑

k∈Zd
|k|2r|f̂k|2

)1/2

. (2.9)
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For more details about Sobolev spaces, see Adams [2].

Denote by A =
√
−∆, subject to periodic boundary condition, where ∆ is the 3D Laplacian.

For each s > 0 and r ≥ 0, we define a family, parameterized by τ ≥ 0, of normed spaces

D(eτA
1/s

: Hr(T3)) := {f ∈ Hr(T3) : ‖eτA1/s

f‖Hr <∞}, (2.10)

where the norm is defined by

‖eτA1/s

f‖Hr :=
(∑

k∈Z3

(1 + |k|2re2τ |k|1/s)|f̂k|2
)1/2

. (2.11)

Denote the semi-norm by

‖AreτA1/s

f‖ :=
(∑

k∈Z3

|k|2re2τ |k|1/s|f̂k|2
)1/2

, (2.12)

then it is easy to see that

‖eτA1/s

f‖2
Hr = ‖AreτA1/s

f‖2 + ‖f‖2. (2.13)

As we will see later in Lemma 2.2.1, the following relationship holds:

Gs(T3) =
⋃
τ>0

D(eτA
1/s

: Hr(T3)). (2.14)

For more details about Gevrey class, we refer the readers to Ferrari–Titi [37], Foias–Temam [38],

and Levermore–Oliver [64].

Given time T > 0, denote by Lp(0, T ;X) the space of functions f : [0, T ] → X satisfying∫ T
0
‖f(t)‖pXdt <∞, where X is a Banach space and ‖ · ‖X represents its norm. Similarly, denote

by C([0, T ];X) the space of continuous functions f : [0, T ]→ X .

Next, we define several projections that will be used in this dissertation. For ϕ ∈ L2(T3),
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denote by

P0ϕ := ϕ =

∫ 1

0

ϕ(x′, z)dz. (2.15)

We call

ϕ := P0ϕ (2.16)

the barotropic mode of ϕ, and

ϕ̃ := ϕ− ϕ = (I − P0)ϕ (2.17)

the baroclinic mode of ϕ.

For ϕ(x′) ∈ L2(T2), denote the 2D horizontal Leray projection by

Phϕ := ϕ−∇h∆
−1
h ∇h · ϕ. (2.18)

Here, we denote by φ = ∆−1
h ϕ when ∆hφ = ϕ and

∫
T2 φ(x′)dx′ =

∫
T2 ϕ(x′)dx′ = 0.

Next, for ϕ ∈ L2(T3), define projections P± as

P±ϕ :=
1

2
(ϕ̃− iϕ̃⊥). (2.19)

The projections P0 and P± play an important role in the analysis of the 3D IPEs. We will see

later in section 3.5 the details of the derivations of these projections and why they are crucial.

2.2 Preliminaries

In this section, we list lemmas that will be used in this dissertation, together with the proofs

for some of them. We start with the following lemma that comes from Levermore–Oliver [64] and

addresses the relation between Gevrey class Gs(T3) and D(eτA
1/s

: Hr(T3)).

Lemma 2.2.1. For any s > 0 and r ≥ 0, we have

Gs(T3) =
⋃
τ>0

D(eτA
1/s

: Hr(T3)). (2.20)
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Althought our definition of the norm ‖eτA1/s
f‖Hr is slightly different from [64], the proof of

this lemma is almost the same, and we refer the readers to [64].

The next lemma also comes from [64] (see also [37]), addressing an important property of the

space D(eτA
1/s

: Hr(T3)).

Lemma 2.2.2. If s ≥ 1, τ ≥ 0, and r > 3/2, then D(eτA
1/s

: Hr(T3)) is a Banach algebra, and

for any f, g ∈ D(eτA
1/s

: Hr(T3)), we have

‖eτA1/s

(fg)‖Hr ≤ Cr,s‖eτA
1/s

f‖Hr‖eτA1/s

g‖Hr . (2.21)

For the semi-norm, we also have a similar estimate

‖AreτA1/s

(fg)‖ ≤ Cr,s

(
|f̂0|+ ‖AreτA

1/s

f‖
)(
|ĝ0|+ ‖AreτA

1/s

g‖
)
. (2.22)

For the proof, we refer the readers to [37] for the case when s = 1, and to [80] for the case

when s > 1.

The following lemma addresses that we can use P0 and P± to decompose any vector filed ϕ

into three parts that are orthogonal to each other.

Lemma 2.2.3. For any ϕ ∈ L2(T3), we have the following decomposition:

ϕ = P0ϕ+ P+ϕ+ P−ϕ. (2.23)

Moreover, we have the following properties:

P±P±ϕ = P±ϕ, P0P0ϕ = P0ϕ, P±P∓ϕ = P0P±ϕ = P±P0ϕ = 0. (2.24)

Proof. The proof is straightforward from the definition of P0 and P±, and that ϕ̃ = ϕ̃ = 0.

For projections P0, P±, we have the following properties.
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Lemma 2.2.4. For f, g ∈ L2(T3), we have

〈P0f, g〉 = 〈f, P0g〉 = 〈P0f, P0g〉, (2.25)

and

〈P±f, g〉 = 〈f, P∓g〉. (2.26)

If f ∈ Hr(T3) with r ≥ 0, then for |α| ≤ r, we have

∂αP0f = P0∂
αf and ∂αP±f = P±∂

αf. (2.27)

Moreover, if f ∈ D(eτA
1/s

: Hr(T3)) with s > 0 and r ≥ 0, we have

AreτA
1/s

P0f = P0A
reτA

1/s

f. (2.28)

Proof. For (2.25), we compute

〈P0f, g〉 =

∫
T3

(∫ 1

0

f(x′, z)dz
)
g(x′, z)dx′dz

=

∫
T2

(∫ 1

0

f(x′, z)dz
)(∫ 1

0

g(x′, z)dz
)
dx′ = 〈P0f, P0g〉

=

∫
T3

f(x′, z)
(∫ 1

0

g(x′, z)dz
)
dx′dz = 〈f, P0g〉. (2.29)

For (2.26), one has

〈P±f, g〉 =
1

2

∫
T3

(f̃ ± if̃⊥)(x)g(x)dx

=
1

2

∫
T3

(
(fg − fg)± i(f⊥g − f⊥g)

)
(x)dx

=
1

2

∫
T3

(
(fg − fg)∓ i(fg⊥ − fg⊥)

)
(x)dx
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=
1

2

∫
T3

f(x)(g̃ ∓ ig̃⊥)(x)dx = 〈f, P∓g〉. (2.30)

For (2.27), if α3 = 0, we have

∂αP0f = ∂α1
x1
∂α2
x2

∫ 1

0

f(x′, z)dz =

∫ 1

0

∂α1
x1
∂α2
x2
f(x′, z)dz = P0∂

αf, (2.31)

and

∂αP±f =
1

2
∂α1
x1
∂α2
x2

[
(f − P0f)± i(f − P0f)⊥

]
=

1

2

[
(∂αf − P0∂

αf)± i(∂αf − P0∂
αf)⊥

]
= P±∂

αf. (2.32)

If α3 > 0, thanks to periodic boundary condition, we have

∂αP0f = ∂α1
x1
∂α2
x2
∂α3
z

∫ 1

0

f(x′, z)dz = 0 =

∫ 1

0

∂α1
x1
∂α2
x2
∂α3
z f(x′, z)dz = P0∂

αf, (2.33)

and

∂αP±f =
1

2
∂α1
x1
∂α2
x2
∂α3
z

[
(f − P0f)± i(f − P0f)⊥

]
=

1

2
(∂αf ± i∂αf⊥)

=
1

2

[
(∂αf − P0∂

αf)± i(∂αf − P0∂
αf)⊥

]
= P±∂

αf. (2.34)

Therefore, for any |α| ≤ r, (2.27) holds. The proof of (2.28) is straightforward, so we omit it.

For Leray projection Ph, we have the following properties.

Lemma 2.2.5. For f, g ∈ L2(T3), we have

〈Phf, g〉 = 〈f,Phg〉, (2.35)
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and

PhP0f = P0Phf. (2.36)

If f ∈ Hr(T3) with r ≥ 0, then for |α| ≤ r, we have

∂αPhf = Ph∂αf. (2.37)

Moreover, if f ∈ D(eτA
1/s

: Hr(T3)) with s > 0 and r ≥ 0, we have

AreτA
1/sPhf = PhAreτA

1/s

f. (2.38)

Proof. For the proof of (2.35) and (2.37), see [32]. For (2.36), we compute

PhP0f = P0f −∇h∆
−1
h ∇h · (P0f) = P0f − P0(∇h∆

−1
h ∇h · f) = P0Phf. (2.39)

For (2.38), one has

AreτA
1/sPhf = AreτA

1/s
[∑
k 6=0

(f̂k −
k · f̂k
|k|2

k)e2πik·x + f̂0

]
=
∑
k 6=0

|k|reτ |k|1/s(f̂k −
k · f̂k
|k|2

k)e2πik·x = PhAreτA
1/s

f.

(2.40)

For the relation between the norm of V and the norms of V , Ṽ in L2(T3) and D(eτA
1/s

:

Hr(T3)), we have the following lemma.

Lemma 2.2.6. Let V = P0V + (I − P0)V = V + Ṽ . Suppose that r ≥ 0, s > 0, and τ ≥ 0, we

have

‖V‖2 = ‖V‖2 + ‖Ṽ‖2, (2.41)
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and

‖eτA1/sV‖2
Hr = ‖eτA1/sV‖2

Hr + ‖eτA1/sṼ‖2
Hr . (2.42)

Proof. Using Fourier representation of V ,V , Ṽ , one has

V =
∑
k∈Z3

V̂ke2πik·x, V =
∑
k∈Z3

k3=0

V̂ke2πik·x, Ṽ =
∑
k∈Z3

k3 6=0

V̂ke2πik·x. (2.43)

Then we have

‖V‖2 =
∑
k∈Z3

|V̂k|2 =
∑
k∈Z3

k3=0

|V̂k|2 +
∑
k∈Z3

k3 6=0

|V̂k|2 = ‖V‖2 + ‖Ṽ‖2, (2.44)

and

‖eτA1/sV‖2
Hr =

∑
k∈Z3

(1 + |k|2re2τ |k|1/s)|V̂k|2

=
∑
k∈Z3

k3=0

(1 + |k|2re2τ |k|1/s)|V̂k|2 +
∑
k∈Z3

k3 6=0

(1 + |k|2re2τ |k|1/s)|V̂k|2

= ‖eτA1/sV‖2
Hr + ‖eτA1/sṼ‖2

Hr . (2.45)

Denote by u± = 1
2
e∓iΩt(Ṽ ± iṼ⊥). For the relation between the norm of Ṽ and the norms of

u± in L2(T3) and D(eτA
1/s

: Hr(T3)), we have the following Lemma.

Lemma 2.2.7. Let u± = 1
2
e∓iΩt(Ṽ ± iṼ⊥). Suppose that r ≥ 0, s > 0, and τ ≥ 0, we have

‖u+‖2 = ‖u−‖2 =
1

2
‖Ṽ‖2, (2.46)

and

‖eτA1/s

u+‖2
Hr = ‖eτA1/s

u−‖2
Hr =

1

2
‖eτA1/sṼ‖2

Hr . (2.47)
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Proof. For (2.46), we have

‖u+‖2 = ‖u−‖2 = 〈u+, u−〉 =
1

4
〈Ṽ + iṼ⊥, Ṽ − iṼ⊥〉 =

1

2
‖Ṽ‖2. (2.48)

For (2.47), notice that

‖AreτA1/s

u+‖2 = ‖AreτA1/s

u−‖2 = 〈AreτA1/s

u+, A
reτA

1/s

u−〉

=
1

4
〈AreτA1/s

(Ṽ + iṼ⊥), AreτA
1/s

(Ṽ − iṼ⊥)〉 =
1

2
‖AreτA1/sṼ‖2.

(2.49)

Thanks to (2.13), we know (2.47) holds.

The following anisotropic estimate in T2 is similar to the one in Cao–Wu [24].

Lemma 2.2.8. Assume that f, g, h, gz, hx ∈ L2(T2). Then

∫
T2

|fgh|dxdz ≤ C‖f‖‖g‖
1
2 (‖g‖

1
2 + ‖gz‖

1
2 )‖h‖

1
2 (‖h‖

1
2 + ‖hx‖

1
2 ).

Proof. First, recall that by one-dimensional Agmon’s inequality (or Gagliardo–Nirenberg interpo-

lation inequality), for φ ∈ H1(0, 1), one has

‖φ‖L∞(0,1) ≤ C
(
‖φ‖L2(0,1) + ‖φ‖

1
2

L2(0,1)‖φx‖
1
2

L2(0,1)

)
. (2.50)
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Therefore, by Hölder’s inequality and Agmon’s inequality (2.50),

∫
T2

|fgh|dxdz

≤C
∫ 1

0

[(∫ 1

0

|f(x, z)|2dx
) 1

2
(∫ 1

0

|g(x, z)|2dx
) 1

2
(

sup
0≤x≤1

|h(x, z)|
)]

dz

≤C
∫ 1

0

{(∫ 1

0

|f(x, z)|2dx
) 1

2
(∫ 1

0

|g(x, z)|2dx
) 1

2

[(∫ 1

0

|h(x, z)|2dx
) 1

4
(∫ 1

0

|hx(x, z)|2dx
) 1

4
+
(∫ 1

0

|h(x, z)|2dx
) 1

2

]}
dz

≤C‖f‖ sup
0≤z≤1

(∫ 1

0

|g(x, z)|2dx
) 1

2‖h‖
1
2 (‖h‖

1
2 + ‖hx‖

1
2 )

(2.51)

By Minkowski’s inequality, Agmon’s inequality (2.50), and Hölder inequality,

sup
0≤z≤1

(∫ 1

0

|g(x, z)|2dx
) 1

2

≤C
(∫ 1

0

sup
0≤z≤1

|g(x, z)|2dx
) 1

2

≤C
(∫ 1

0

[(∫ 1

0

|g(x, z)|2dz
) 1

2
(∫ 1

0

|gz(x, z)|2dz
) 1

2
+

∫ 1

0

|g(x, z)|2dz
]
dx

) 1
2

≤C‖g‖
1
2 (‖g‖

1
2 + ‖gz‖

1
2 ).

(2.52)

Inserting (2.52) to (2.51) yields the desired inequality.

Next we prove the following result which will be used in Chapter 4.

Lemma 2.2.9. Assume that f ∈ H1(T2) and fxz ∈ L2(T2). Then f ∈ L∞(T2). Moreover,

‖f‖L∞ ≤ C
(
‖f‖2

H1 + ‖fxz‖2
) 1

2 .

23



Proof. Let {f̂k}k∈Z2 be the Fourier coefficients of f . By Cauchy–Schwarz inequality, we have

‖f‖L∞ ≤
∑
k∈Z2

|f̂k| =
∑
k∈Z2

|f̂k|(1 + k2
1 + k2

2 + k2
1k

2
2)

1
2

(1 + k2
1 + k2

2 + k2
1k

2
2)

1
2

≤

(∑
k∈Z2

|f̂k|2(1 + k2
1 + k2

2 + k2
1k

2
2)

) 1
2
(∑

k∈Z2

1

(1 + k2
1)(1 + k2

2)

) 1
2

≤ C
(
‖f‖2

H1 + ‖fxz‖2
) 1

2
<∞.

(2.53)

Therefore, f ∈ L∞(T2).

We also need the following Aubin-Lions theorem.

Lemma 2.2.10. (Aubin-Lions Lemma, cf. Simon [87] Corollary 4) Assume that X, B and Y are

three Banach spaces, with X ↪→↪→ B ↪→ Y . Then it holds that

1. If F is a bounded subset of Lp(0, T ;X), where 1 ≤ p < ∞, and Ft := {∂f
∂t
|f ∈ F} is

bounded in L1(0, T ;Y ), then F is relative compact in Lp(0, T ;B).

2. If F is a bounded subset of L∞(0, T ;X) and Ft is bounded in Lq(0, T ;Y ), where q > 1,

then F is relative compact in C([0, T ];B).

The following lemmas concern the estimates of nonlinear terms in the space of analytic func-

tions, and will be used in the study of 3D IPEs. We only list them here, and will provide detailed

proofs in Appendix A.

First, we estimate nonlinear terms of the form f · ∇hg.

Lemma 2.2.11. For f, g, h ∈ D(eτA : Hr+1/2(T3)), where r > 2 and τ ≥ 0, one has

∣∣∣〈AreτA(f · ∇hg), AreτAh
〉∣∣∣ ≤ Cr

[
(‖AreτAf‖+ |f̂0|)‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖

+ ‖Ar+1/2eτAf‖‖AreτAg‖‖AreτAh‖
]
.

(2.54)

Similarly, we estimate (∇h · f)g in the following:
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Lemma 2.2.12. For f, g, h ∈ D(eτA : Hr+1/2(T3)), where r > 2 and τ ≥ 0, one has

∣∣∣〈AreτA((∇h · f)g
)
, AreτAh

〉∣∣∣ ≤Cr[(‖AreτAg‖+ |ĝ0|)‖Ar+1/2eτAf‖‖Ar+1/2eτAh‖

+ ‖Ar+1/2eτAg‖‖AreτAf‖‖AreτAh‖
]
.

(2.55)

Next, we provide an estimate for (
∫ z

0
∇h · f(x′, s)ds)∂zg in the following:

Lemma 2.2.13. For f, g, h ∈ D(eτA : Hr+1/2(T3)), where r > 2, τ ≥ 0, and f = 0, one has

∣∣∣〈AreτA((∫ z

0

∇h · f(x′, s)ds)∂zg
)
, AreτAh

〉∣∣∣
≤Cr

(
‖AreτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖

+ ‖AreτAg‖‖Ar+1/2eτAf‖‖Ar+1/2eτAh‖

+ ‖AreτAh‖‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖
)
.

(2.56)

Lemma 2.2.14–2.2.17 play an essential role in the study of the effect of fast rotation to the 3D

IPEs. First, let us state the following:

Lemma 2.2.14. For f, g, h ∈ D(eτA : Hr+1/2(T3)), where r > 5/2 and τ ≥ 0, one has

∣∣∣〈AreτA(f · ∇hg), AreτAh
〉
−
〈
f · ∇hA

reτAg, AreτAh
〉∣∣∣

≤ Cr‖Arf‖‖Arg‖‖Arh‖+ Crτ‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖. (2.57)

Lemma 2.2.14 can also be used in the study of Euler equations, since it involves nonlinear term

similar to that appearing in the Euler equations. The next three lemmas provide the estimates for

nonlinear terms which are specific to the structure of the PEs.

Lemma 2.2.15. For f, g, h ∈ D(eτA : Hr+1/2(T3)), where r > 5/2 and τ ≥ 0, one has

∣∣∣〈AreτA((∇h · f)g
)
, AreτAh

〉
−
〈

(∇h · AreτAf)g, AreτAh
〉∣∣∣

≤ Cr‖Arf‖‖Arg‖‖Arh‖+ Crτ‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖. (2.58)
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Lemma 2.2.16. For f ∈ D(eτA : Hr+3/2(T3)) and g, h ∈ D(eτA : Hr+1/2(T3)), where r > 5/2,

τ ≥ 0, and f = 0, one has

∣∣∣〈AreτA((

∫ z

0

∇h · f(x′, s)ds)∂zg
)
, AreτAh

〉
−
〈

(

∫ z

0

∇h · f(x′, s)ds)AreτA∂zg, A
reτAh

〉∣∣∣
≤ Cr‖Ar+1f‖‖Arg‖‖Arh‖+ Crτ‖Ar+3/2eτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖. (2.59)

Lemma 2.2.17. For g ∈ D(eτA : Hr+3/2(T3)) and f, h ∈ D(eτA : Hr+1/2(T3)), where r > 5/2,

τ ≥ 0, and f = 0, one has

∣∣∣〈AreτA((

∫ z

0

∇h · f(x′, s)ds)∂zg
)
, AreτAh

〉
−
〈
∂zgA

reτA(

∫ z

0

∇h · f(x′, s)ds), AreτAh
〉∣∣∣

≤ Cr‖Ar+1g‖‖Arf‖‖Arh‖+ Crτ‖Ar+3/2eτAg‖‖Ar+1/2eτAf‖‖Ar+1/2eτAh‖. (2.60)
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3. INVISCID PRIMITIVE EQUATIONS

In this chapter, we will provide details of the mathematical analysis of the IPEs


∂tV + V · ∇hV + w∂zV + ΩV⊥ +∇hp = 0,

∂zp = 0,

∇h · V + ∂zw = 0.

(3.1)

System (3.1) is derived from system (1.3) by taking νh = νz = 0 (inviscid), and under the obser-

vation that any smooth solution (V , T ) to system system (1.3) with initial condition T0 = 0 must

satisfy T ≡ 0. We consider system (3.1) in the domain D =
{

(x, y, z) : 0 ≤ z ≤ 1, (x, y) ∈ R2
}

,

subject to the boundary condition

w|z=0,1 = 0, (3.2)

and the initial conditions

V|t=0 = V0. (3.3)

Notice that we do not have initial condition for w, since w0 must satisfy the compatible condition

w0 = −
∫ z

0

∇h · V0(x, y, s)ds. (3.4)

We will do the mathematical analysis of system (3.1) in the following order:

Ill-posedness in Sobolev spaces

→ Local well-posedness in the space of analytic functions

→ Finite-time blowup of solutions

→ Long-time existence of solutions.
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3.1 Ill-posedness *

In this section, we study the ill-posedness of system (3.1). First, observe that if initially V0 =

(u0, v0) is independent of the y variable, then any smooth solution V = (u, v) to system (3.1)

remains independent of the y variable. Indeed, the above statement is the consequence of the

uniqueness of smooth enough solutions to the IPEs, which is established in the space of analytic

functions in [41, 59], and also in Section 3.2. Therefore, under these assumptions on the initial

data, namely,

V0(x, y, z) = V0(x, z), (3.5)

we obtain the following reduced IPEs system from original IPEs system (3.1)



∂tu+ u∂xu+ w∂zu− Ωv + ∂xp = 0,

∂tv + u∂xv + w∂zv + Ωu = 0,

∂zp = 0,

∂xu+ ∂zw = 0.

(3.6)

We first review the results in [48,83] about the linear and nonliear ill-posedness of system (3.6)

in the absence of rotation.
*Reprinted with permission from “Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive

equations with rotation” by Slim Ibrahim, Quyuan Lin, and Edriss S. Titi, 2021. Journal of Differential Equations,
Volume 286, Pages 557–577, Copyright [2021] by Elsevier.
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3.1.1 Without Rotation

When Ω = 0, i.e., the rotation is absent, system (3.6) can be written as



∂tu+ u∂xu+ w∂zu+ ∂xp = 0,

∂tv + u∂xv + w∂zv = 0,

∂zp = 0,

∂xu+ ∂zw = 0.

(3.7)

Observe that if the initial data satisfies v0 = 0, then any smooth solutions (u, v) to system (3.7)

must satisfy v ≡ 0. Therefore, we obtain a further reduced system that does not involve with v:


∂tu+ u∂xu+ w∂zu+ ∂xp = 0,

∂zp = 0,

∂xu+ ∂zw = 0.

(3.8)

Now observe that any shear flow (U,W,P ) = (U(z), 0, 0) is a steady solution to system (3.8).

Denote by

(u,w, p) = (U + ũ,W + w̃, P + p̃) = (U(z) + ũ, w̃, p̃). (3.9)

Here the tilde notation is used to represent the perturbation, not the baroclinic mode. The pertur-

bation (ũ, w̃, p̃) around this shear flow satisfies


∂tũ+ ũ∂xũ+ U∂xũ+ w̃∂zũ+ w̃U ′ + ∂xp̃ = 0,

∂zp̃ = 0,

∂xũ+ ∂zw̃ = 0.

(3.10)
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The linearization of system (3.10) around the zero steady state solution is


∂tũ+ U∂xũ+ w̃U ′ + ∂xp̃ = 0,

∂zp̃ = 0,

∂xũ+ ∂zw̃ = 0.

(3.11)

In the work by Renardy [83], he considered system (3.11) with boundary conditions

ũ is periodic in x with period 1, w̃|z=0,1 = 0. (3.12)

We state the following result from [83], with some changes compared to the version in [83].

Theorem 3.1.1. System (3.11) with boundary conditions (3.12) is ill-posed in Sobolev spaces and

Gevrey class of order s > 1.

Proof. Observe that system (3.11) with boundary conditions (3.12) has solutions of the form

ũ(x, z, t) = χ′(z) exp
(

2πin(x− ct)
)
, (3.13)

where c solves the following equation

∫ 1

0

(
U(z)− c

)−2

dz = 0, (3.14)

and χ is given by

χ(z) = K(U(z)− c)
∫ z

0

(U(z)− c)−2dz (3.15)

for some constant K. Moreover, it was shown in [83] that when U(z) is odd about z = 1
2

and

U−2(z) is integrable over [0, 1], there exists purely imaginary root c = iβ of (3.14), with β ∈ R

and β 6= 0. U(z) can be chosen to be analytic (smooth). As an example, U(z) = tanh( z−1/2
d

) for
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small d > 0, see Chen–Morrison [30].

Now suppose system (3.11) with boundary conditions (3.12) is well-posed in Sobolev spaces

and Gevrey class of order s > 1 in the sense of Hadamard. Then for the initial data

ũ0(x, z) = χ′(z) exp
(

2πinx
)
, (3.16)

which is all Sobolev spaces and Gevrey class of order s > 1, by uniqueness of solutions, the

solution must have the form (3.13). Since c is purely imaginary, this implies Kelvin-Helmholtz

type instability. Therefore, System (3.11) with boundary conditions (3.12) is ill-posed in Sobolev

spaces and Gevrey class of order s > 1.

In [48], Han-Kwan and Nguyen considered the nonlinear perturbation system (3.10) with

boundary conditions (3.12). Based on the ill-posedness of the linear perturbation system (3.11),

they established the following result regarding the ill-posedness of system (3.10).

Theorem 3.1.2. There exists a stationary background shear flow U(z) such that the following

holds. For all s ∈ N, α ∈ (0, 1], and k ∈ N, there are families of solutions (ũε)ε>0 to system

(3.10) with boundary conditions (3.12), and corresponding times tε = O(ε| log ε|), and (x0, z0) ∈

T× (0, 1) such that

lim
ε→0

‖∂zũε‖L2([0,tε]×Ωε)

‖∂zũε|t=0‖αHs(T×(0,1))

= +∞, (3.17)

where Ωε = B(x0, ε
k)×B(z0, ε

k).

Remark 1. Equation (3.17) indicates that system (3.10) does not satisfy the third condition for the

well-posedness in the sense of Hadamard. The shear flow U(z) used in Theorem 3.1.2 is the same

as the one mentioned in Theorem 3.1.1, and it can be chosen to be analytic.

Remark 2. Theorem 3.1.1 and Theorem 3.1.2 imply the linear and nonlinear ill-posedness of sys-

tem (3.8) in Sobolev spaces and linear ill-posedness in Gevrey class of order s > 1. In the case

when Ω = 0, system (3.8) is derived from the original 3D system (3.1) with initial data satisfying

(3.5) and v0 = 0. Therefore, the 3D IPEs (3.1) with Ω = 0 has the same results about ill-posedness.
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3.1.2 With Rotation

We will extend Theorem 3.1.1 and Theorem 3.1.2 to the case when Ω 6= 0 for system (3.6).

When the rotation is present (Ω 6= 0), v ≡ 0 is no longer a solution to system (3.6) unless u = 0.

Therefore, one needs to consider the evolution of v in system (3.6). We consider system (3.6) in

the horizontal channel
{

(x, z) : 0 ≤ z ≤ 1, x ∈ R
}

, subject to the boundary condition (3.2).

Observe that the steady state background flow

(U, V,W, P ) = (U(z),−Ωx, 0,−1

2
Ω2x2) (3.18)

is a solution to system (3.6) with boundary condition (3.2). Here the x-direction component U

is the shear flow used in Theorem 3.1.1 and Theorem 3.1.2, the y-direction component V is a

Couette shear flow, depending on Ω, in the x variable. Observe that this background flow has

infinite energy. We consider the periodic perturbation around this steady state background flow for

system (3.6). Denote by

(u, v, w, p) = (U + ũ, V + ṽ,W + w̃, P + p̃). (3.19)

Then the perturbation (ũ, ṽ, w̃, p̃) around this steady state background flow satisfies



∂tũ+ ũ∂xũ+ U∂xũ+ w̃∂zũ+ w̃U ′ + ∂xp̃− Ωṽ = 0,

∂tṽ + ũ∂xṽ + U∂xṽ + w̃∂zṽ = 0,

∂zp̃ = 0,

∂xũ+ ∂zw̃ = 0,

(3.20)

with boundary conditions

ũ, ṽ are periodic in x with period 1, w̃|z=0,1 = 0. (3.21)
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In order to show the ill-posedness of system (3.20)–(3.21), we assume by contradiction that it is

well-posed. Then by uniqueness we see that if ṽ0 = 0, then ṽ ≡ 0. Therefore, system (3.20) with

boundary conditions (3.21) reduces to system (3.10) with boundary conditions (3.12). It follows

directly from Theorem 3.1.1 and Theorem 3.1.2 that the perturbed system (3.20)–(3.21) is both

linearly and nonlinearly ill-posed in any Sobolev space, and is linearly ill-posed in Gevrey class of

order s > 1. To be more specific, we have:

Theorem 3.1.3. System (3.6) with boundary condition (3.2) is both linearly and nonlinearly ill-

posed in Sobolev spaces, and is linearly ill-posed in Gevrey class of order s > 1, in the sense

that the perturbed system (3.20)–(3.21) around the certain steady state background flow (3.18) is

both linear and nonlinearly ill-posed in Sobolev spaces, and is linearly ill-posed in Gevrey class

of order s > 1.

Remark 3. System (3.6) is derived from system (3.1) with initial data satisfying (3.5). Therefore,

the 3D IPEs (3.1) with arbitrary Ω ∈ R has the same results about the ill-posedness.

3.2 Local Well-posedness

The 3D IPEs is ill-posed in Sobolev spaces and Gevrey class of order s > 1 since the lineariza-

tion around certain shear flow exhibits Kelvin-Helmholtz type instability. To overcome this strong

instability, one should consider initial data u0 that are strongly localized in Fourier, typically for

which |û0(k, z)| . e−δ|k|
1/s with k ∈ Z2, δ > 0, and s = 1. Such localization condition corre-

sponds to Gevrey class of order s = 1 in the horizontal variables x and y, which is exactly the

space of analytic functions. Therefore, we will work in the space of analytic functions for local

well-posedness of the 3D IPEs.

In [59], Kukavica–Temam–Vicol–Ziane have shown the local well-posedness of the 3D IPEs

in the space of analytic functions. However, the time of existence they obtained shrinks to zero as

the rate of rotation |Ω| increases toward infinity. This is contrary to what we expect: fast rotation

should prolong the life-span of solutions. We prove this result again using different framework,

and improve their result by showing that the time of existence can be independent of Ω.
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Before we state the result, we will first do the reformulation of the problem.

3.2.1 Reformulation of The Problem

Instead of the physical domain D =
{

(x, y, z) : 0 ≤ z ≤ 1, (x, y) ∈ R2
}

and the boundary

condition (3.2) discussed at the beginning of this chapter, we consider the domain to be three-

dimensional unit torus T3, and subject to the following boundary conditions and initial condition:

V is periodic in x with period 1, V is even in z and w is odd in z. (3.22)

V|t=0 = V0. (3.23)

Observe that the space of periodic functions with respect to z with the symmetry condition (3.22)

is invariant under the dynamics of system (3.1). If the original physical domain is D =
{

(x, y, z) :

0 ≤ z ≤ H, (x, y) ∈ T2
}

with H = 1
2
, then the solution to system (3.1) in T3 subject to (3.22)

restricted on the original domain will solve the original physical problem. Notably here we should

also assume the initial condition V0 for the original physical problem is even extendable in z

variable so that we are able to work in T3. Working in T3 allows us to use Fourier analysis, and

makes the mathematical presentation simpler and more beautiful.

In this work, we assume that ∫
T3

V0(x)dx = 0. (3.24)

This assumption is made to simplify the mathematical presentation. See Remark 5 for detailed

explanation. Integrating the first equation in system (3.1) over T3, by integration by parts, thanks

to the third equation in system (3.1) (incompressible condition) and boundary conditions (3.22),

we obtain

∂t

∫
T3

Vdx + Ω

∫
T3

V⊥dx = 0. (3.25)

34



Therefore, for any time t ≥ 0, V has zero mean in T3:

∫
T3

V(x)dx =

∫
T3

V0(x)dx = 0. (3.26)

Denote by

L̇2 :=
{
ϕ ∈ L2(T3,R2) :

∫
T3

ϕ(x)dx = 0
}
. (3.27)

From the third equation in system (3.1) (incompressible condition) and boundary conditions (3.22),

we know that

∇h · V =

∫ 1

0

∇h · V(x′, z)dz = −
∫ 1

0

∂zw(x′, z)dz = 0. (3.28)

Since ∇h · V = 0, and V has zero mean over T2 due to (3.26), we know there exists a stream

function ψ(x′) such that V = ∇⊥hψ = (−∂yψ, ∂xψ). That is, V ∈ S, where

S :=
{
ϕ ∈ L̇2 : ∇h · ϕ = 0

}
=
{
ϕ ∈ L̇2 : ϕ = ∇⊥hψ(x′) + ϕ̃(x)

}
. (3.29)

The time of existence of solutions to the 3D IPEs obtained in [59] shrinks to zero as |Ω|

increases toward infinite. The reason behind this is that the pressure term was computed explicitly,

which contains Ω. This makes the estimates depend on Ω, and thus forces the time of existence

of solutions shrink to zero as |Ω| increases toward infinite. In order to show the time can be

independent of Ω, the idea is to eliminate the pressure term in system (3.1). As in the study of

Navier-Stokes equations, one can use Leray projection to eliminate pressure. Notice that although

∇h · V = −∂zw 6= 0, we have another incompressible condition (3.28). Therefore, the idea is to

apply Leray projection on the evolution of the barotropic mode V .

For this reason, we apply PhP0 and I − P0 to the first equation in system (3.1). Recall that

V = ∇⊥hψ. Therefore,

V⊥ = −∇hψ (3.30)

can be combined with ∇hp. By integration by parts, thanks to (3.22) and (3.28), we derive the
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evolution equations for the barotropic mode V and the baroclinic mode Ṽ:


∂tV + Ph

(
V · ∇hV

)
+ PhP0

(
(∇h · Ṽ)Ṽ + Ṽ · ∇hṼ

)
= 0, (3.31)

∂tṼ + Ṽ · ∇hṼ + Ṽ · ∇hV + V · ∇hṼ − P0

(
Ṽ · ∇hṼ + (∇h · Ṽ)Ṽ

)
−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ + ΩṼ⊥ = 0. (3.32)

In summary, we have the following lemma.

Lemma 3.2.1. For V ∈ S, system (3.1) is equivalent to system (3.31)–(3.32).

We will work on system (3.31)–(3.32) in the domain T3, subject to the following symmetry

boundary conditions and initial conditions:

V , Ṽ are periodic in T3 and are even in z; (3.33)

V|t=0 = V0 = P0V0, Ṽ|t=0 = Ṽ0 = (I − P0)V0, ∇h · V0 = 0. (3.34)

3.2.2 Main Results

We have the following theorem concerning the local well-posedness of system (3.31)–(3.34).

Theorem 3.2.2. Assume V0, Ṽ0 ∈ S ∩ D(eτ0A : Hr(T3)) with r > 5/2 and τ0 > 0. Let Ω ∈ R be

arbitrary and fixed. Then there exist a time

T =
τ0

1 + 2Cr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr)
> 0, (3.35)

and a function

τ(t) = τ0 − 2tCr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr), (3.36)

both independent of Ω, such that there exists a unique solution

(V , Ṽ) ∈ S ∩ L∞
(
0, T ;D(eτ(t)A : Hr(T3))

)
∩ L2

(
0, T ;D(eτ(t)A : Hr+1/2(T3))

)
(3.37)
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to system (3.31)–(3.34) on [0, T ]. Moreover, the unique solution (V , Ṽ) depends continuously on

the initial data, in the sense of (3.107).

Thanks to Lemma 2.2.6 and Lemma 3.2.1, we have the following corollary for the original

system (3.1) with boundary and initial conditions (3.22)–(3.23).

Corollary 3.2.3. Assume V0 ∈ S ∩ D(eτ0A : Hr(T3)) with r > 5/2 and τ0 > 0. Let Ω ∈ R

be arbitrary and fixed. Then there exist a time T defined in (3.35) and a function τ(t) defined in

(3.36), both independent of Ω, such that there exists a unique solution

V ∈ S ∩ L∞
(
0, T ;D(eτ(t)A : Hr(T3))

)
∩ L2

(
0, T ;D(eτ(t)A : Hr+1/2(T3))

)
(3.38)

to system (3.1) with (3.22)–(3.23) on [0, T ]. Moreover, the unique solution V depends continuously

on the initial data.

For the proof of Theorem 3.2.2, we first work on Galerkin approximating system of (3.31)–

(3.34), and provide energy estimates. Then, using Aubin-Lions compactness theorem (Lemma

2.2.10), one can show the existence of solutions to system (3.31)–(3.34). Finally, we establish the

uniqueness of solutions and its continuous dependence on the initial data.

3.2.3 Galerkin Approximating System

In this section, we employ the standard Galerkin approximation procedure. For k ∈ Z3, let

φk = φk1,k2,k3 :=


√

2e2πi(k1x+k2y) cos(2πk3z) if k3 6= 0

e2πi(k1x+k2y) if k3 = 0,

(3.39)

and

E := {φ ∈ L2(T3) | φ =
∑
k∈Z3

akφk, a−k1,−k2,k3 = a∗k1,k2,k3 ,
∑
k∈Z3

|ak|2 <∞}, (3.40)
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here a∗ means the complex conjugate of a. Notice that E is a closed subspace of L2(T3), and

consists of real valued functions which are even in z variable. For any m ∈ N, denote by

Em := {φ ∈ L2(T3) | φ =
∑
|k|≤m

akφk, a−k1,−k2,k3 = a∗k1,k2,k3}, (3.41)

the finite-dimensional subspaces of E . For any function f ∈ L2(T3), denote by

fk :=

∫
T3

f(x)φ∗k(x)dx, (3.42)

and write

Πmf :=
∑
|k|≤m

fkφk. (3.43)

Notice that here the definition (3.42) is slightly different from the Fourier coefficient (2.7). Πm are

orthogonal projections from L2(T3) to Em.

Now let

Vm =
∑

06=|k|≤m,k3=0

ak(t)φk(x′), Ṽm =
∑

|k|≤m,k3 6=0

bk(t)φk(x′, z), (3.44)

for m ≥ 1, and

Vm|m=0 = Ṽm|m=0 = 0 (3.45)

whenm = 0. From this definition, we know that Vm = P0(Vm+Ṽm) and Ṽm = (I−P0)(Vm+Ṽm).

Moreover, for each m ∈ N, we have

∫
T3

Vmdx =

∫
T3

Ṽmdx = 0. (3.46)

For each m ≥ 1, consider the following Galerkin approximation system for our model (3.31)–
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(3.32):



∂tVm + ΠmPh
(
Vm · ∇hVm

)
+ ΠmPhP0

(
(∇h · Ṽm)Ṽm + Ṽm · ∇hṼm

)
= 0, (3.47)

∂tṼm + Πm

[
Ṽm · ∇hṼm + Ṽm · ∇hVm + Vm · ∇hṼm

−P0

(
Ṽm · ∇hṼm + (∇h · Ṽm)Ṽm

)
−
(∫ z

0

∇h · Ṽm(x′, s)ds
)
∂zṼm

]
+ ΩṼ⊥m = 0, (3.48)

subject to the following initial conditions:

Vm|t=0 = ΠmV0, Ṽm|t=0 = ΠmṼ0. (3.49)

For eachm ≥ 1, the Galerkin approximation, system (3.47)–(3.49), corresponds to a first order

system of ordinary differential equations, in the coefficients ak and bk, for 1 ≤ |k| ≤ m, with

quadratic nonlinearity. Therefore, by the theory of ordinary differential equations, there exists

some tm > 0 such that system (3.47)–(3.49) admits a unique solution (Vm, Ṽm) on the inter-

val [0, tm]. Observe that from (3.49), we have ak(0) and bk(0) ∈ C satisfying a−k1,−k2,k3(0) =

a∗k1,k2,k3(0) and b−k1,−k2,k3(0) = b∗k1,k2,k3(0). Thanks to the uniqueness of the solutions of the

ODE system, we conclude that a−k1,−k2,k3(t) = a∗k1,k2,k3(t) and b−k1,−k2,k3(t) = b∗k1,k2,k3(t), for

t ∈ [0, tm]. Therefore, Vm, Ṽm ∈ Em. Thanks to (3.49), we know that ∇h · Vm(t = 0) = 0.

Applying 2D divergence on (3.47), we have ∂t(∇h · Vm) = 0. Therefore, we know∇h · Vm = 0.

In next section, we provide the energy estimates for the Galerkin approximation system.

3.2.4 Energy Estimates

In this section, we establish the energy estimates for the Galerkin approximation system (3.47)–

(3.49). By virtue of Lemma 2.2.4 and Lemma 2.2.5, and since∇h · Vm = 0, we have

1

2

d

dt
(‖Vm‖2 + ‖Ṽm‖2) = 0. (3.50)
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Integrating in time yields

‖Vm(t)‖2 + ‖Ṽm(t)‖2 = ‖Vm(0)‖2 + ‖Ṽm(0)‖2 ≤ ‖V0‖2 + ‖Ṽ0‖2. (3.51)

Therefore, (3.51) implies that the solution Vm and Ṽm exist global in time.

Next, employing Lemma 2.2.4 and Lemma 2.2.5, we derive the estimate for the analytic norm,

that is,

1

2

d

dt
‖AreτAVm‖2 = τ̇‖Ar+1/2eτAVm‖2 −

〈
AreτA

(
Vm · ∇hVm

)
, AreτAVm

〉
−
〈
AreτA

(
(∇h · Ṽm)Ṽm

)
, AreτAVm

〉
−
〈
AreτA

(
Ṽm · ∇hṼm

)
, AreτAVm

〉
, (3.52)

and

1

2

d

dt
‖AreτAṼm‖2 = τ̇‖Ar+1/2eτAṼm‖2 −

〈
AreτA

(
Ṽm · ∇hṼm

)
, AreτAṼm

〉
−
〈
AreτA

(
Ṽm · ∇hVm

)
, AreτAṼm

〉
−
〈
AreτA

(
Vm · ∇hṼm

)
, AreτAṼm

〉
+
〈
AreτA

(
(

∫ z

0

∇h · Ṽm(x′, s)ds)∂zṼm
)
, AreτAṼm

〉
. (3.53)

Add estimates (3.52)–(3.53) together, and add ‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2 to both sides.

By Lemma 2.2.11–2.2.13, since Vm and Ṽm have zero mean, thanks to Young’s inequality we

obtain

1

2

d

dt

(
‖AreτAVm‖2 + ‖AreτAṼm‖2

)
+
(
‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2

)
≤
(
τ̇ + Cr(‖AreτAVm‖+ ‖AreτAṼm‖) + 1

)(
‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2

)
≤
(
τ̇ + Cr(1 + ‖eτAVm‖2

Hr + ‖eτAṼm‖2
Hr)
)(
‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2

)
. (3.54)

Remark 4. Here we add the term ‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2 to both sides so that one

can obtain the regularity in L2
(
0, T ;D(eτ(t)A : Hr+1/2(T3))

)
.
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Let τ satisfy

τ̇ + 2Cr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr) = 0, (3.55)

for which we can solve out that

τ(t) = τ0 − 2tCr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr). (3.56)

Denote by

T =
τ0

1 + 2Cr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr)
> 0, (3.57)

we know that

τ(t) ≥ τ(T ) =
τ0

1 + 2Cr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr)
> 0 (3.58)

on t ∈ [0, T ]. Here we require Cr to be large enough such that

Cr ≥ 2(C̃r + Cr− 1
2
), (3.59)

where C̃r appears in (3.103) and Cr− 1
2

appears in (3.104). By the continuity of τ , ‖eτAVm‖2
Hr , and

‖eτAṼm‖2
Hr , there exists a maximal time T1 ∈ (0, T ] such that

‖eτ(t)AVm(t)‖2
Hr + ‖eτ(t)AṼm(t)‖2

Hr ≤ 2(‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr) + 1 (3.60)

on t ∈ [0, T1]. We claim that T1 = T . On [0, T1], from (3.60), we know

τ̇ +Cr(1 + ‖eτAVm‖2
Hr + ‖eτAṼm‖2

Hr) ≤ τ̇ + 2Cr(1 + ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr) = 0. (3.61)
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From (3.54), on t ∈ [0, T1], we have

1

2

d

dt

(
‖AreτAVm‖2 + ‖AreτAṼm‖2

)
+
(
‖Ar+1/2eτAVm‖2 + ‖Ar+1/2eτAṼm‖2

)
≤ 0, (3.62)

and thus

‖Areτ(T1)AVm(T1)‖2 + ‖Areτ(T1)AṼm(T1)‖2 ≤ ‖Areτ0AV0‖2 + ‖Areτ0AṼ0‖2. (3.63)

This together with (3.51) give us

‖eτ(T1)AVm(T1)‖2
Hr + ‖eτ(T1)AṼm(T1)‖2

Hr ≤ ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr . (3.64)

Therefore, if T1 < T , then by continuity, there exists some T2 such that T1 < T2 < T and

‖eτ(T2)AVm(T2)‖2
Hr + ‖eτ(T2)AṼm(T2)‖2

Hr ≤ ‖eτ(T1)AVm(T1)‖2
Hr + ‖eτ(T1)AṼm(T1)‖2

Hr + 1

≤ 2(‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr) + 1, (3.65)

which contradicts to the maximum assumption on T1. Therefore, T1 = T . Thus, (3.60)–(3.62) are

satisfied on [0, T ]. Therefore, (3.61) holds on [0, T ], and we obtain

‖eτ(t)AVm(t)‖2
Hr + ‖eτ(t)AṼm(t)‖2

Hr ≤ ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr . (3.66)

For arbitrary fixed T ∗ ∈ [0, T ], from (3.56), we know that min
t∈[0,T ∗]

τ(t) = τ(T ∗). For t ∈

[0, T ∗], integrating (3.54) from 0 to t in time, we obtain

‖Areτ(T ∗)AVm(t)‖2 + ‖Areτ(T ∗)AṼm(t)‖2

+2

∫ t

0

(
‖Ar+1/2eτ(T ∗)AVm(s)‖2 + ‖Ar+1/2eτ(T ∗)AṼm(s)‖2

)
ds

≤ ‖Areτ(t)AVm(t)‖2 + ‖Areτ(t)AṼm(t)‖2
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+2

∫ t

0

(
‖Ar+1/2eτ(s)AVm(s)‖2 + ‖Ar+1/2eτ(s)AṼm(s)‖2

)
ds

≤ ‖Areτ0AVm(0)‖2 + ‖Areτ0AṼm(0)‖2 ≤ ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr . (3.67)

The estimates (3.51) and (3.67) together imply that

Vm, Ṽm are uniformly bounded in

L∞
(
0, T ∗;D(eτ(t)A : Hr)

)
∩ L2

(
0, T ∗;D(eτ(t)A : Hr+1/2)

)
,

(3.68)

and

Vm, Ṽm are uniformly bounded in

L∞
(
0, T ∗;D(eτ(T ∗)A : Hr)

)
∩ L2

(
0, T ∗;D(eτ(T ∗)A : Hr+1/2)

)
.

(3.69)

By Banach–Alaoglu theorem, there exist a subsequence, denoted also by Vm, Ṽm, and corre-

sponding limits, V , Ṽ , respectively, such that

Vm → V , Ṽm → Ṽ weakly* in L∞
(
0, T ∗;D(eτ(T ∗)A : Hr)

)
and weakly in L2

(
0, T ∗;D(eτ(T ∗)A : Hr+1/2)

)
. (3.70)

Moreover, V and Ṽ also satisfy the bound in (3.67). By virtue of P0Vm = Vm and P0Ṽm = 0 for

any m ∈ N, thanks to the convergence in (3.70), one has P0V = V and P0Ṽ = 0, which clarifies

the notation.

In order to apply Aubin-Lions compactness theorem (Lemma 2.2.10), we need some estimates

on ∂tVm and ∂tṼm. By taking L2 inner product of (3.47) and (3.48) with arbitrary φ ∈ L2(T3),

thanks to Lemma 2.2.4 and 2.2.5, we have

〈
∂tVm, φ

〉
+
〈
Vm · ∇hVm,PhΠmφ

〉
+
〈

(∇h · Ṽm)Ṽm + Ṽm · ∇hṼm, P0PhΠmφ
〉

= 0, (3.71)
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and

〈
∂tṼm, φ

〉
+
〈
Ṽm · ∇hṼm + Ṽm · ∇hVm + Vm · ∇hṼm

−P0

(
Ṽm · ∇hṼm + (∇h · Ṽm)Ṽm

)
−
(∫ z

0

∇h · Ṽm(x′, s)ds
)
∂zṼm + ΩṼ⊥m,Πmφ

〉
= 0. (3.72)

By Hölder inequality and Sobolev inequality, thanks to ‖Πmφ‖ ≤ ‖φ‖, ‖Phφ‖ ≤ ‖φ‖, and

‖P0φ‖ ≤ ‖φ‖ for any φ ∈ L2(T3), since r > 5/2, we have

∣∣∣〈∂tVm, φ〉∣∣∣ ≤ Cr(‖Vm‖2
Hr + ‖Ṽm‖2

Hr)‖φ‖, (3.73)∣∣∣〈∂tṼm, φ〉∣∣∣ ≤ Cr(‖Vm‖2
Hr + ‖Ṽm‖2

Hr + |Ω|‖Ṽm‖)‖φ‖. (3.74)

Next, applying Ar−1/2eτ(T ∗)A to (3.47) and (3.48), and taking L2 inner product of (3.47) and

(3.48) with arbitrary φ ∈ L2(T3), thanks to Lemma 2.2.4 and 2.2.5, we have

〈
Ar−1/2eτ(T ∗)A∂tVm, φ

〉
+
〈
Ar−1/2eτ(T ∗)A(Vm · ∇hVm),PhΠmφ

〉
+
〈
Ar−1/2eτ(T ∗)A

(
(∇h · Ṽm)Ṽm + Ṽm · ∇hṼm

)
, P0PhΠmφ

〉
= 0, (3.75)

and

〈
Ar−1/2eτ(T ∗)A∂tṼm, φ

〉
+
〈
Ar−1/2eτ(T ∗)A

[
Ṽm · ∇hṼm + Ṽm · ∇hVm + Vm · ∇hṼm

−P0

(
Ṽm · ∇hṼm + (∇h · Ṽm)Ṽm

)
−
(∫ z

0

∇h · Ṽm(x′, s)ds
)
∂zṼm + ΩṼ⊥m

]
,Πmφ

〉
= 0. (3.76)

By Cauchy–Schwarz inequality and Lemma 2.2.2, since r > 5/2, we have

∣∣∣〈Ar−1/2eτ(T ∗)A∂tVm, φ
〉∣∣∣

≤Cr
(
‖eτ(T ∗)AVm‖Hr‖eτ(T ∗)AVm‖Hr+1/2 + ‖eτ(T ∗)AṼm‖Hr‖eτ(T ∗)AṼm‖Hr+1/2

)
‖φ‖,

(3.77)
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and

∣∣∣〈Ar−1/2eτ(T ∗)A∂tṼm, φ
〉∣∣∣

≤Cr
(
‖eτ(T ∗)AVm‖2

Hr+1/2 + ‖eτ(T ∗)AṼm‖2
Hr+1/2 + |Ω|‖Areτ(T ∗)AṼm‖

)
‖φ‖.

(3.78)

By virtue of the bound (3.69), from (3.73)–(3.74) and (3.77)–(3.78), we have

∂tVm are uniformly bounded in L2
(
0, T ∗;D(eτ(T ∗)A : Hr−1/2)

)
∩ L∞

(
0, T ∗;L2),

∂tṼm are uniformly bounded in L1
(
0, T ∗;D(eτ(T ∗)A : Hr−1/2)

)
∩ L∞

(
0, T ∗;L2). (3.79)

By Banach–Alaoglu theorem, we have

∂tVm → ∂tV weakly in L2
(
0, T ∗;D(eτ(T ∗)A : Hr−1/2)

)
, weakly* in L∞

(
0, T ∗;L2),

∂tṼm → ∂tṼ weakly* in L1
(
0, T ∗;D(eτ(T ∗)A : Hr−1/2)

)
∩ L∞

(
0, T ∗;L2). (3.80)

From (3.69) and (3.79), since D(eτA : Hr1) ↪→↪→ D(eτA : Hr2) when r1 > r2, by Lemma 2.2.10,

for a subsequence and 0 < ε < 1/2, the following strong convergence holds:

Vm → V , Ṽm → Ṽ strongly in

C
(
0, T ∗;D(eτ(T ∗)A : Hr−ε)

)
∩ L2

(
0, T ∗;D(eτ(T ∗)A : Hr+1/2−ε)

)
.

(3.81)

3.2.5 Existence of Solutions

In this section, we establish the local in time existence of solutions to system (3.31)–(3.34).

More specifically, we show the limit functions V and Ṽ we get from previous section satisfy (3.31)–

(3.32) and (3.37). First, since ∇h · Vm = 0 for any m ∈ N and thanks to the convergence (3.81),

one has∇h · V = 0. By virtue of (3.46) and (3.81), we know

∫
T3

Vdx =

∫
T3

Ṽdx = 0. (3.82)
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Therefore, (V , Ṽ) ∈ S.

Next, by taking inner product of equation (3.47) and (3.48) with test function φ ∈ L2(0, T ∗;L2)

in L2((0, T ∗)× T3), we have

〈
∂tVm + ΠmPh

(
Vm · ∇hVm

)
+ ΠmPhP0

(
(∇h · Ṽm)Ṽm + Ṽm · ∇hṼm

)
, φ
〉

= 0, (3.83)

and

〈
∂tṼm + Πm

[
Ṽm · ∇hṼm + Ṽm · ∇hVm + Vm · ∇hṼm

−P0

(
Ṽm · ∇hṼm + (∇h · Ṽm)Ṽm

)
−
(∫ z

0

∇h · Ṽm(x′, s)ds
)
∂zṼm

]
+ ΩṼ⊥m, φ

〉
= 0. (3.84)

From (3.70) and (3.80), we know that

〈ΩṼ⊥m, φ〉 → 〈ΩṼ⊥, φ〉, 〈∂tVm, φ〉 → 〈∂tV , φ〉 〈∂tṼm, φ〉 → 〈∂tṼ , φ〉. (3.85)

For nonlinear terms, we consider, for example,

∣∣∣〈ΠmPh
(
Vm · ∇hVm

)
, φ
〉
−
〈
Ph
(
V · ∇hV

)
, φ
〉∣∣∣

=
∣∣∣〈Vm · ∇hVm,ΠmPhφ

〉
−
〈
V · ∇hV ,Phφ

〉∣∣∣
≤
∣∣∣〈Vm · ∇h(Vm − V),ΠmPhφ

〉∣∣∣+
∣∣∣〈(Vm − V) · ∇hV ,ΠmPhφ

〉∣∣∣
+
∣∣∣〈V · ∇hV , (ΠmPhφ− Phφ)

〉∣∣∣
≤Cr

(
‖Vm‖L∞(0,T ∗;Hr) + ‖V‖L∞(0,T ∗;Hr)

)
‖Vm − V‖L2(0,T ∗;Hr)‖φ‖L2(0,T ∗;L2)

+ Cr‖V‖2
L4(0,T ∗;Hr)‖Πmφ− φ‖L2(0,T ∗;L2),

(3.86)
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and

∣∣∣〈Πm

(∫ z

0

∇h · Ṽm(x′, s)ds
)
∂zṼm, φ

〉
−
〈(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ , φ

〉∣∣∣
≤
∣∣∣〈( ∫ z

0

∇h · Ṽm(x′, s)ds
)
∂z(Ṽm − Ṽ),Πmφ

〉∣∣∣
+
∣∣∣〈( ∫ z

0

∇h · (Ṽm − Ṽ)(x′, s)ds
)
∂zṼ ,Πmφ

〉∣∣∣
+
∣∣∣〈( ∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ , (Πmφ− φ)

〉∣∣∣
≤Cr

(
‖Ṽm‖L∞(0,T ∗;Hr) + ‖Ṽ‖L∞(0,T ∗;Hr)

)
‖Ṽm − Ṽ‖L2(0,T ∗;Hr)‖φ‖L2(0,T ∗;L2)

+ Cr‖Ṽ‖2
L4(0,T ∗;Hr)‖Πmφ− φ‖L2(0,T ∗;L2),

(3.87)

where we have used Hölder inequality, Sobolev inequality, and r > 5/2. By virtue of of (3.69),

(3.70) and (3.81), the right hand side of (3.86) and (3.87) go to zero as m→∞.

One can show similarly that all other nonlinear terms converge to corresponding limit terms.

Therefore, for arbitrary φ ∈ L2(0, T ∗;L2), we have

〈
∂tV + Ph

(
V · ∇hV

)
+ PhP0

(
(∇h · Ṽ)Ṽ + Ṽ · ∇hṼ

)
, φ
〉

= 0, (3.88)

and

〈
∂tṼ + Ṽ · ∇hṼ + Ṽ · ∇hV + V · ∇hṼ − P0

(
Ṽ · ∇hṼm + (∇h · Ṽ)Ṽ

)
−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ + ΩṼ⊥, φ

〉
= 0. (3.89)

This implies that (3.31) and (3.32) hold in L2(0, T ∗;L2). From (3.80), we conclude that (3.31)

holds inL2
(
0, T ∗;D(eτ(T ∗)A : Hr−1/2)

)
∩L∞

(
0, T ∗;L2) and (3.32) holds inL1

(
0, T ∗;D(eτ(T ∗)A :

Hr−1/2)
)
∩ L∞

(
0, T ∗;L2).

Next, due to (3.81), one has, for every t ∈ [0, T ∗], Vm(t) → V(t), Ṽm(t) → Ṽ(t) in L2.

In particular, Vm(0) → V(0), Ṽm(0) → Ṽ(0) in L2. On the other hand, by (3.49), we have

Vm(0)→ V0, Ṽm(0)→ Ṽ0 in L2. As a result, V , Ṽ satisfy the desired initial condition: V(0) = V0
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and Ṽ(0) = Ṽ0. Recall that the choice of T ∗ ∈ [0, T ] is arbitrary, and in particular we can choose

T ∗ = T so that all of the results above hold with T ∗ replaced by T .

Finally, we need to show (3.37). First, we have shown that (V , Ṽ) ∈ S. Recall that for arbitrary

T ∗ ∈ [0, T ], by (3.67) and the convergence (3.70), we have

‖Areτ(T ∗)AV(t)‖2 + ‖Areτ(T ∗)AṼ(t)‖2 ≤ ‖Areτ0AV0‖2 + ‖Areτ0AṼ0‖2, (3.90)

for t ∈ [0, T ∗], and especailly for t = T ∗. Therefore,

‖Areτ(T ∗)AV(T ∗)‖2 + ‖Areτ(T ∗)AṼ(T ∗)‖2 ≤ ‖Areτ0AV0‖2 + ‖Areτ0AṼ0‖2, (3.91)

for any T ∗ ∈ [0, T ]. Since the L2 energy is conversed, we have

‖eτ(T ∗)AV(T ∗)‖2
Hr + ‖eτ(T ∗)AṼ(T ∗)‖2

Hr ≤ ‖eτ0AV0‖2
Hr + ‖eτ0AṼ0‖2

Hr . (3.92)

Therefore, the solution (V , Ṽ) ∈ L∞
(
0, T ;D(eτ(t)A : Hr)

)
for τ = τ(t) defined in (3.56).

In order to show (V , Ṽ) ∈ L2
(
0, T ;D(eτ(t)A : Hr+1/2)

)
, define the inner product:

〈f, g〉H :=
∑
k∈Z3

∫ T
0

(1 + |k|2r+1e2τ(t)|k|)(f̂k · ĝk)dt. (3.93)

L2
(
0, T ;D(eτ(t)A : Hr+1/2)

)
with inner product defined by (3.93) is a Hilbert space. By setting

T ∗ = T in (3.68), we know {Vm} and {Ṽm} are bounded sequence in this Hilbert space, and

therefore there exist weak limit V∗ and Ṽ∗ such that

∫ T
0

‖eτ(t)AV∗(t)‖2
Hr+1/2dt ≤ lim inf

m→∞

∫ T
0

‖eτ(t)AVm(t)‖2
Hr+1/2dt <∞, (3.94)

∫ T
0

‖eτ(t)AṼ∗(t)‖2
Hr+1/2dt ≤ lim inf

m→∞

∫ T
0

‖eτ(t)AṼm(t)‖2
Hr+1/2dt <∞. (3.95)

Thus, (V∗, Ṽ∗) ∈ L2
(
0, T ;D(eτ(t)A : Hr+1/2)

)
. By uniqueness of weak limit, we know V =
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V∗, Ṽ = Ṽ∗, thus, (V , Ṽ) ∈ L2
(
0, T ;D(eτ(t)A : Hr+1/2)

)
. Therefore, (3.37) holds. The existence

of solutions to system (3.31)–(3.34) is proved.

3.2.6 Uniqueness of Solutions and Continuous Dependence on The Initial Data

In this section, we show the uniqueness of solutions and the continuous dependence on the

initial data. Let (V1, Ṽ1) and (V2, Ṽ2) be two strong solutions to system (3.31)–(3.34) with initial

data ((V0)1, (Ṽ0)1) and ((V0)2, (Ṽ0)2), respectively. Assume the radius of analyticity for initial

data ((V0)1, (Ṽ0)1) is τ10, and for ((V0)2, (Ṽ0)2) is τ20. Let τ0 = min{τ10, τ20}, and

M = max
{
‖eτ10A(V0)1‖2

Hr + ‖eτ10A(Ṽ0)1‖2
Hr , ‖eτ20A(V0)2‖2

Hr + ‖eτ20A(Ṽ0)2‖2
Hr

}
. (3.96)

Denote by V = V1 − V2 and Ṽ = Ṽ1 − Ṽ2. By virtue of (3.56) and (3.57), we define

τ̃(t) = τ0 − 2tCr(1 +M), T̃ =
τ0

1 + 2Cr(1 +M)
. (3.97)

Here Cr satisfies (3.59).

From previous sections, and by the definition of τ0 and M , we know

(V i, Ṽi), (V , Ṽ) ∈ L∞
(
0, T̃ ;D(eτ̃(t)A : Hr)

)
∩ L2

(
0, T̃ ;D(eτ̃(t)A : Hr+1/2)

)
, (3.98)

and

‖eτ̃AV i‖2
Hr + ‖eτ̃AṼi‖2

Hr ≤M (3.99)
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for i = 1, 2. From (3.31)–(3.32), it is clear that



∂tV + Ph
(
V · ∇hV1 + V2 · ∇hV

)
+PhP0

(
(∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ + Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ

)
= 0, (3.100)

∂tṼ + Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ + Ṽ · ∇hV1 + Ṽ2 · ∇hV + V · ∇hṼ1 + V2 · ∇hṼ

−P0

(
(∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ + Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ

)
−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ1 −

(∫ z

0

∇h · Ṽ2(x′, s)ds
)
∂zṼ + ΩṼ⊥ = 0. (3.101)

Taking L2 inner product of (3.100) with V and (3.101) with Ṽ , applying Ar−1/2eτ̃A to (3.100)

and (3.101) and taking L2 inner product with Ar−1/2eτ̃AV and Ar−1/2eτ̃AṼ , correspondingly,

thanks to Lemma 2.2.4 and Lemma 2.2.5, we have

1

2

d

dt

(
‖eτ̃(t)AV(t)‖2

Hr−1/2 + ‖eτ̃(t)AṼ(t)‖2
Hr−1/2

)
− ˙̃τ
(
‖Areτ̃AV‖2 + ‖Areτ̃AṼ‖2

)
+
〈
V · ∇hV1 + V2 · ∇hV + (∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ + Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ ,V

〉
+
〈
Ar−1/2eτ̃A

(
V · ∇hV1 + V2 · ∇hV + (∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ

+Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ
)
, Ar−1/2eτ̃AV

〉
+
〈
Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ + Ṽ · ∇hV1 + Ṽ2 · ∇hV + V · ∇hṼ1 + V2 · ∇hṼ

−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ1 −

(∫ z

0

∇h · Ṽ2(x′, s)ds
)
∂zṼ , Ṽ

〉
+
〈
Ar−1/2eτ̃A

[
Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ + Ṽ · ∇hV1 + Ṽ2 · ∇hV + V · ∇hṼ1 + V2 · ∇hṼ

−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ1 −

(∫ z

0

∇h · Ṽ2(x′, s)ds
)
∂zṼ

]
, Ar−1/2eτ̃AṼ

〉
= 0. (3.102)

Thanks to Hölder inequality, Young’s inequality and Sobolev inequality, since r > 5/2, and notic-

ing that V and Ṽ have zero mean over T3, we can apply Poincaré inequality to have

∣∣∣〈V · ∇hV1 + V2 · ∇hV + (∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ + Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ ,V
〉

+
〈
Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ + Ṽ · ∇hV1 + Ṽ2 · ∇hV + V · ∇hṼ1 + V2 · ∇hṼ
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−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ1 −

(∫ z

0

∇h · Ṽ2(x′, s)ds
)
∂zṼ , Ṽ

〉∣∣∣
≤ C̃r

(
‖V1‖Hr + ‖V2‖Hr + ‖Ṽ1‖Hr + ‖Ṽ2‖Hr

)(
‖V‖2

Hr−1/2 + ‖Ṽ‖2
Hr−1/2

)
≤ C̃r

(
‖V1‖Hr + ‖V2‖Hr + ‖Ṽ1‖Hr + ‖Ṽ2‖Hr

)(
‖Areτ̃AV‖2 + ‖Areτ̃AṼ‖2

)
, (3.103)

where the last step we apply Poincaré inequality. For higher order part, thanks to Lemma 2.2.11–

2.2.13, by Young’s inequality, we have

∣∣∣〈Ar−1/2eτ̃A
(
V · ∇hV1 + V2 · ∇hV + (∇h · Ṽ)Ṽ1 + (∇h · Ṽ2)Ṽ

+Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ
)
, Ar−1/2eτ̃AV

〉
+
〈
Ar−1/2eτ̃A

[
Ṽ · ∇hṼ1 + Ṽ2 · ∇hṼ + Ṽ · ∇hV1 + Ṽ2 · ∇hV + V · ∇hṼ1 + V2 · ∇hṼ

−
(∫ z

0

∇h · Ṽ(x′, s)ds
)
∂zṼ1 −

(∫ z

0

∇h · Ṽ2(x′, s)ds
)
∂zṼ

]
, Ar−1/2eτ̃AṼ

〉∣∣∣
≤ Cr− 1

2

(
‖eτ̃AV1‖Hr + ‖eτ̃AṼ1‖Hr + ‖eτ̃AV2‖Hr + ‖eτ̃AṼ2‖Hr

)
×
(
‖Areτ̃AV‖2 + ‖Areτ̃AṼ‖2

)
. (3.104)

Combining (3.102)–(3.104), thanks to (3.59), we have

1

2

d

dt

(
‖eτ̃(t)AV(t)‖2

Hr−1/2 + ‖eτ̃(t)AṼ(t)‖2
Hr−1/2

)
≤
[

˙̃τ +
1

2
Cr

(
‖eτ̃AV1‖Hr + ‖eτ̃AṼ1‖Hr + ‖eτ̃AV2‖Hr + ‖eτ̃AṼ2‖Hr

)]
×
(
‖Areτ̃AV‖2 + ‖Areτ̃AṼ‖2

)
. (3.105)

Since ‖eτ̃AV i‖2
Hr + ‖eτ̃AṼi‖2

Hr ≤M for i = 1, 2, by Cauchy–Schwarz inequality, we know that

˙̃τ +
1

2
Cr

(
‖eτ̃AV1‖Hr + ‖eτ̃AṼ1‖Hr + ‖eτ̃AV2‖Hr + ‖eτ̃AṼ2‖Hr

)
≤ −2Cr(1 +M) +

√
2Cr
√
M ≤ (

√
2

2
− 2)Cr(1 +M) < 0, (3.106)
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for t ∈ [0, T̃ ]. Therefore, for t ∈ [0, T̃ ], we have

‖eτ̃(t)AV(t)‖2
Hr−1/2 + ‖eτ̃(t)AṼ(t)‖2

Hr−1/2 ≤ ‖eτ̃0AV0‖2
Hr−1/2 + ‖eτ̃0AṼ0‖2

Hr−1/2 . (3.107)

The above inequality proves the continuous dependence of the solutions on the initial data, and

in particular, when V0 = Ṽ0 = 0 and τ10 = τ20, we have V = Ṽ = 0 for all t ∈ [0, T̃ ]. Moreover,

from (3.57), (3.97), and the definition of M in (3.96), we know T̃ = T . Therefore, the solution is

unique, and we complete the proof of Theorem 3.2.2.

Remark 5. In case that
∫
T3 V(x)dx =

∫
T2 V(x′)dx′ 6= 0, the only change in system (3.31)–(3.34)

is in (3.31) which will become

∂tV + Ph
(
V · ∇hV

)
+ PhP0

(
(∇h · Ṽ)Ṽ + Ṽ · ∇hṼ

)
+ Ω

∫
T2

V⊥(x′)dx′ = 0. (3.108)

The additional term Ω
∫
T2 V

⊥
(x′)dx′ appearing in (3.108) does not change the energy estimates.

Since ∫
T2

V⊥(x′)dx′ ·
∫
T2

V(x′)dx′ = 0, (3.109)

the conservation of L2 norm does not change. Since Ω
∫
T2 V

⊥
(x′)dx′ is a constant vector in spatial

variables, when we apply the operator AreτA to it, it will disappear. Therefore, this additional term

does not affect the higher order energy estimates. Thus, when
∫
T2 V(x′)dx′ 6= 0, we still have the

same results.

In the next section, we show that the local well-posedness result is sharp in the sense that it

cannot be extended to a global result by constructing finite-time blowup smooth solutions.

3.3 Finite-time Blowup †

We have established the local well-posedness of the 3D IPEs for a time that is independend of

the rotation rate |Ω|. The next question is, whether the solutions can exist globally in time, or blow

†Reprinted with permission from “Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive
equations with rotation” by Slim Ibrahim, Quyuan Lin, and Edriss S. Titi, 2021. Journal of Differential Equations,
Volume 286, Pages 557–577, Copyright [2021] by Elsevier.

52



up in finite time? In this section, we will answer this question by constructing finite-time blowup

smooth solutions, and therefore the global well-posedness cannot be obtained.

We again assume the initial condition satisfies (3.5), and consider the reduced IPEs system

(3.6). In the absense of rotation (Ω = 0), Cao–Ibrahim–Nakanishi–Titi [17] and Wong [91] have

constructed smooth solutions that blow up in finite time. In the followings, we will show that their

results still hold for any Ω ∈ R. Therefore, our results contain and extend their results.

We first reduce (3.6) further more.

3.3.1 Reduced System

We assume that u and v are odd in the x variable, and that w and p are even in the x variable.

Observe that such symmetric conditions are invariant under smooth dynamics of system (3.6).

From the last equation in system (3.6) (incompressible condition) and boundary condition (3.2),

we know ∫ 1

0

ux(t, x, z)dz = 0. (3.110)

Differentiating the first two equations in system (3.6) with respect to x, we have

{
uxt + uuxx + u2

x + wxuz + wuxz − Ω vx + pxx = 0, (3.111)

vxt + ux vx + uvxx + wxvz + wvxz + Ωux = 0. (3.112)

Thanks to (3.110), integrating (3.111) with respect to z over the interval [0, 1], an integration by

parts together with last two equations in system (3.6) and boundary condition (3.2) implies

pxx =

∫ 1

0

[
− 2(uux)x + Ωvx

]
dz. (3.113)

Let

W (t, z) = w(t, 0, z), V (t, z) = −vx(t, 0, z).

Plugging (3.113) back to (3.111), and by virtue of the oddness of u and v and evenness of w and
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p, system (3.111)–(3.112) restricts on the line x = 0 becomes

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz − ΩV + Ω

∫ 1

0

V (t, z)dz = 0, (3.114)

Vt −WzV +WVz + ΩWz = 0. (3.115)

The corresponding initial and boundary conditions are

W (0, z) = w0(0, z) =: W0(z), V (0, z) = v0(0, z) =: V0(z), (3.116)

W (t, 0) = W (t, 1) = 0. (3.117)

The uniqueness of smooth solutions to system (3.114)–(3.117) is needed for establishing the

blowup result. However, in the following proposition we show the local well-posedness of system

(3.114)–(3.117) with initial condition satisfying (W0, V0) ∈ H2 ×H1.

Proposition 3.3.1. Suppose that (W0, V0) ∈ H2 × H1. Then there exists a time T such that

there exists a unique solution (W,V ) to system (3.114)–(3.117) for t ∈ [0, T ], which depends

continuously on the initial data (W0, V0). Moreover, (W,V ) satisfy

W ∈ L∞(0, T ;H2) ∩ C([0, T ];H1),

V ∈ L∞(0, T ;H1) ∩ C([0, T ];L2).

(3.118)

Proof. First observe that due to the boundary condition (3.117), the Poincaré inequality implies

that ‖Wz‖L2 is equivalent to ‖W‖H1 and ‖Wtz‖L2 is equivalent to ‖Wt‖H1 .

For the existence of solutions, we only provide the formal energy estimates. These estimates

can be justified rigorously by deriving them first to the Galerkin approximation system and then

passing to the limit using the Aubin-Lions compactness lemma (Lemma 2.2.10).

Taking the z derivative to (3.114)–(3.115), we have

{
Wtzz +WWzzz −WzWzz − ΩVz = 0, (3.119)

Vzt +WVzz − VWzz + ΩWzz = 0. (3.120)
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By taking the L2 inner product of (3.114) with Wz, (3.115) with V , (3.119) with Wzz, and (3.120)

with Vz, by integration by parts and thanks to (3.117), one obtains

1

2

d

dt

(
‖Wz‖2

L2 + ‖V ‖2
L2 + ‖Wzz‖2

L2 + ‖Vz‖2
L2

)
=

3

2

∫ 1

0

Wz

(
W 2
z + V 2 +W 2

zz +
1

3
V 2
z

)
dz +

∫ 1

0

V VzWzzdz.

(3.121)

Thanks to Hölder inequality, Sobolev inequality, and Young’s inequality, we have

d

dt

(
‖Wz‖2

L2 + ‖V ‖2
L2 + ‖Wzz‖2

L2 + ‖Vz‖2
L2

)
≤C
(
‖Wz‖2

L2 + ‖V ‖2
L2 + ‖Wzz‖2

L2 + ‖Vz‖2
L2

)3/2

.

(3.122)

This implies that there exists some finite time T > 0 such that

W ∈ L∞(0, T ;H2), V ∈ L∞(0, T ;H1). (3.123)

In order to apply Aubin-Lions compactness lemma, we also need the energy estimates for ∂tW

and ∂tV . By taking the L2 inner product of (3.114) with arbitrary φ ∈ L2(0, 1), thanks to Hölder

inequality and Sobolev inequality, one has

∣∣∣〈Wtz, φ
〉∣∣∣ ≤ C(‖W‖2

H2 + ‖V ‖L2)‖φ‖L2 . (3.124)

From (3.123), we have Wtz ∈ L∞(0, T ;L2), which is equivalent to

Wt ∈ L∞(0, T ;H1). (3.125)

Similarly, by taking the L2 inner product of (3.115) with arbitrary φ ∈ L2(0, 1), thanks to Hölder

inequality, Sobolev inequality, and Young’s inequality, one has

∣∣∣〈Vt, φ〉∣∣∣ ≤ C(‖W‖2
H1 + ‖W‖H1 + ‖V ‖2

H1)‖φ‖L2 . (3.126)
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Thanks to (3.123), one obtains

Vt ∈ L∞(0, T ;L2). (3.127)

By virtue of Aubin-Lions compactness lemma, thanks to (3.123), (3.125), and (3.127), we have

W ∈ C([0, T ];H1), V ∈ C([0, T ];L2). (3.128)

For the uniqueness and continuous dependence on the initial data, we suppose (W1, V1) and

(W2, V2) are two solutions. Denote by W = W1 −W2, W̄ = 1
2
(W1 + W2), V = V1 − V2, and

V̄ = 1
2
(V1 + V2). Then (3.114)–(3.117) implies that

Wtz − 2W̄zWz +WW̄zz + W̄Wzz + 4

∫ 1

0

W̄zWzdz − ΩV + Ω

∫ 1

0

V dz = 0, (3.129)

Vt −WzV̄ − W̄zV +WV̄z + W̄Vz + ΩWz = 0, (3.130)

with boundary condition

W (t, 0) = W (t, 1) = 0. (3.131)

Multiplying (3.129) by Wz, and (3.130) by V , integrating with respect to z over the interval

[0, 1], then an integration by parts together with the boundary condition (3.131) gives

1

2

d

dt

(
‖Wz‖2

L2 + ‖V ‖2
L2

)
=

∫ 1

0

(5

2
W̄zW

2
z − W̄zzWWz +WzV̄ V +

3

2
W̄zV

2 −WV̄zV
)
dz.

(3.132)

Using Hölder inequality, Young’s inequality, and Sobolev inequality one obtains

d

dt

(
‖Wz‖2

L2 + ‖V ‖2
L2

)
≤ C

(
‖W̄‖H2 + ‖V̄ ‖H1

)(
‖Wz‖2

L2 + ‖V ‖2
L2

)
. (3.133)

Thanks to Grönwall inequality, since W̄ ∈ L∞(0, T ;H2), V̄ ∈ L∞(0, T ;H1), for any t ∈ [0, T ]
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we have

‖Wz(t)‖2
L2 + ‖V (t)‖2

L2 ≤
(
‖Wz(0)‖2

L2 + ‖V (0)‖2
L2

)
× exp

(
C

∫ t

0

‖W̄ (s)‖H2 + ‖V̄ (s)‖H1ds
)
.

(3.134)

This implies continuous dependence on the initial data, and in particular the uniqueness.

Remark 6. As we have seen in Section 3.1, the original IPEs system (3.6) is ill-posed in all Sobolev

spaces. On the other hand, we establish in Proposition 3.3.1 the local well-posedness of the reduced

system (3.114)–(3.115) in certain Sobolev space. The main reason behind this discrepancy is that

when we restrict (3.111)–(3.112) to the line x = 0 to get the reduced system (3.114)–(3.115), the

terms wxuz and wxvz in (3.111)–(3.112) disappear due to symmetry. These very terms, wxuz and

wxvz, are those which lose one horizontal derivative that forbids the well-posedness of the original

system in Sobolev spaces.

Next, we use two different approaches to construct finite-time blowup solutions. One follows

in [17], and another one follows [91].

3.3.2 First Method

In this section we follow the method used in [17]. We first introduce the following proposition

from [17] and provide further analysis strengthening its conclusion. Observe that in [31] (see

also [78, section 4], and references therein), a similar problem, arising in a different fluid dynamic

context, has been investigated.

Proposition 3.3.2. Consider the following nonlinear nonlocal degenerate elliptic boundary value

problem:

φ′ − (φ′)2 + φφ
′′

+ 2

∫ 1

0

(φ′(z))2dz = 0, φ(0) = φ(1) = 0. (3.135)

Then for each α ∈ (0, 1), the boundary value problem (3.135) has a nontrivial solution φα ∈

C2,α([0, 1]).
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Recall that, for an integer k, and 0 < α < 1 the space Ck,α is endowed with the norm

‖f‖Ck,α = ‖f‖Ck + sup
x 6=y

|f(x)− f(y)|
|x− y|α

.

Proof. For each m > 0, the existence of nontrivial solution to the boundary value problem (3.135)

satisfying the additional constraint

2

∫ 1

0

(φ′(z))2dz = m2 (3.136)

has been established in [17]. Let α ∈ (0, 1) and define

m :=

√( 1 + α

2(1− α)

)2

− 1

4
> 0. (3.137)

That is

α =

√
m2 + 1/4− 1

2√
m2 + 1/4 + 1

2

. (3.138)

Denoting by ψ := φ′, it was shown in [17] that the nontrivial solution φ of problem (3.135)

satisfying (3.136) can be written as

φ = C(m)(ψ+ − ψ)
ψ+

ψ+−ψ− (ψ − ψ−)
−ψ−

ψ+−ψ− , (3.139)

where

ψ±(m) := ±
√
m2 + 1/4 + 1/2, (3.140)

and

C(m) =
1

B( ψ+

ψ+−ψ− ,
−ψ−

ψ+−ψ− )
. (3.141)

Here B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt is the Beta function. Moreover, it was also shown in [17] that
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φ, ψ and z satisfy

(φ, ψ)(z = 0) = (0, ψ+), (φ, ψ)(z = 1) = (0, ψ−), ψ− ≤ ψ ≤ ψ+, (3.142)

and
dψ

dz
=
−1

C(m)
(ψ+ − ψ)

−ψ−
ψ+−ψ− (ψ − ψ−)

ψ+
ψ+−ψ− . (3.143)

Therefore, ψ is a continuous and decreasing function of z, and smooth in (0, 1). From (3.142) and

(3.143), one has

z(ψ) = −C(m)

∫ ψ

ψ+

(ψ+ − ψ̃)
ψ−

ψ+−ψ− (ψ̃ − ψ−)
−ψ+

ψ+−ψ− dψ̃, (3.144)

and

z(ψ)− 1 = −C(m)

∫ ψ

ψ−

(ψ+ − ψ̃)
ψ−

ψ+−ψ− (ψ̃ − ψ−)
−ψ+

ψ+−ψ− dψ̃. (3.145)

Next, we establish that φ(z) ∈ C2,α([0, 1]). From (3.139) and (3.143), we know when ψ is away

from ψ+ and ψ−, i.e., z is away from 0 and 1, φ(z) is smooth. Therefore, we only need to consider

when ψ is close to ψ+ and ψ−. From (3.144), one has

z(ψ) = C(m)B(
ψ+ − ψ
ψ+ − ψ−

;
ψ+

ψ+ − ψ−
,
−ψ−

ψ+ − ψ−
), (3.146)

where B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1dt is the incomplete Beta function (0 ≤ x ≤ 1). Moreover,

from (3.141), we know that

z(ψ) =
B( ψ+−ψ

ψ+−ψ− ; ψ+

ψ+−ψ− ,
−ψ−

ψ+−ψ− )

B( ψ+

ψ+−ψ− ,
−ψ−

ψ+−ψ− )
= I(

ψ+ − ψ
ψ+ − ψ−

;
ψ+

ψ+ − ψ−
,
−ψ−

ψ+ − ψ−
), (3.147)

where I(x; a, b) = B(x;a,b)
B(a,b)

is the regularized Beta function. When x ∈ (0, 1), by series expansion

59



(cf. [1, p. 944]), one has

I(x; a, b) =
xa(1− x)b

aB(a, b)

{
1 +

∞∑
n=0

B(a+ 1, n+ 1)

B(a+ b, n+ 1)
xn+1

}
. (3.148)

Therefore, for ψ− < ψ < ψ+, we can write

z(ψ) =
C(m)

ψ+

(ψ+ − ψ)
ψ+

ψ+−ψ− (ψ − ψ−)
−ψ−

ψ+−ψ−

×
{

1 +
∞∑
n=0

B( ψ+

ψ+−ψ− + 1, n+ 1)

B(1, n+ 1)

( ψ+ − ψ
ψ+ − ψ−

)n+1}
.

(3.149)

Letting

h1(ψ) :=
∞∑
n=0

B( ψ+

ψ+−ψ− + 1, n+ 1)

B(1, n+ 1)

( ψ+ − ψ
ψ+ − ψ−

)n+1

, (3.150)

then h1(ψ) ≥ 0 and h1(ψ) is smooth on ψ ∈ (ψ−, ψ+]. Combine (3.143) and (3.149), we find that

for z ∈ (0, 1),

dψ

dz
= −C(m)

ψ−−ψ+
ψ+

( ψ+

1 + h1(ψ(z))

)−ψ−
ψ+

(
ψ(z)− ψ−

)ψ++ψ−
ψ+ z

−ψ−
ψ+ . (3.151)

From this expression and since h1(ψ(z))) is smooth on z ∈ [0, 1), we conclude that dψ
dz

is continu-

ous on z ∈ [0, 1), and smooth on z ∈ (0, 1). Observe that α = −ψ−
ψ+

, thus we have

lim
z→0+

|dψ
dz

(z)− dψ
dz

(0)|
|z − 0|α

= lim
z→0+

C(m)
ψ−−ψ+
ψ+

( ψ+

1 + h1(ψ(z))

)−ψ−
ψ+

(
ψ(z)− ψ−

)ψ++ψ−
ψ+

= lim
ψ→ψ+

C(m)
ψ−−ψ+
ψ+

( ψ+

1 + h1(ψ)

)−ψ−
ψ+ (ψ − ψ−)

ψ++ψ−
ψ+

= C(m)
ψ−−ψ+
ψ+ ψ

−ψ−
ψ+

+ (ψ+ − ψ−)
ψ++ψ−
ψ+ <∞.

(3.152)

Therefore, ψ(z) ∈ C1,α([0, 1)), and thus φ(z) ∈ C2,α([0, 1)). Similarly, from (3.145), for ψ− <
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ψ < ψ+, we can write

1− z(ψ) =I(
ψ − ψ−
ψ+ − ψ−

;
−ψ−

ψ+ − ψ−
,

ψ+

ψ+ − ψ−
)

=
−C(m)

ψ−
(ψ − ψ−)

−ψ−
ψ+−ψ− (ψ+ − ψ)

ψ+
ψ+−ψ−

×
{

1 +
∞∑
n=0

B( −ψ−
ψ+−ψ− + 1, n+ 1)

B(1, n+ 1)
(
ψ − ψ−
ψ+ − ψ−

)n+1
}
.

(3.153)

Letting

h2(ψ) :=
∞∑
n=0

B( −ψ−
ψ+−ψ− + 1, n+ 1)

B(1, n+ 1)
(
ψ − ψ−
ψ+ − ψ−

)n+1, (3.154)

then h2(ψ) ≥ 0 and h2(ψ) is smooth on ψ ∈ [ψ−, ψ+). Combine (3.143) and (3.153), we find that

dψ

dz
= −C(m)

ψ+−ψ−
ψ−

( −ψ−
1 + h2(ψ(z))

)−ψ+
ψ−
(
ψ+ − ψ(z)

)ψ++ψ−
ψ− (1− z)

−ψ+
ψ− . (3.155)

From this expression and since h2(ψ(z))) is smooth on z ∈ (0, 1], observe that −ψ+

ψ−
> 1 and since

ψ(z) ∈ C1,α([0, 1)), we know that indeed ψ(z) ∈ C1,α([0, 1]). Therefore, φ(z) ∈ C2,α([0, 1]).

Now we state first blowup result.

Theorem 3.3.3. Let φ(z) be a nontrivial solution of the boundary value problem (3.135), and

let f(x) be a smooth odd periodic function with period 1, satisfying f ′(0) = 1. Suppose that

(u, v, w, p) is a smooth solution to system (3.6), subject to the boundary condition (3.2), with

initial condition

u0(x, z) = −f(x)φ′(z), v0(x, z) = −Ωf(x). (3.156)

Then the solution blows up at sometime T ∈ (0, 1].

Proof. From Proposition 3.3.2, one can conclude that φ(z) ∈ H2(0, 1). For smooth solution

(u, v, w, p), we know (3.114)–(3.115) is the governing system when x = 0. From (3.156), we

know the initial data for system (3.114)–(3.115) will be

W0(z) = φ(z), V0(z) = Ω. (3.157)
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Thanks to Proposition 3.3.1, one can observe that

W (t, z) =
φ(z)

1− t
, V (t, z) ≡ Ω (3.158)

is the unique solution to (3.114)–(3.115) subject to initial condition (3.157) and boundary condition

(3.117). Then we see W (t, z) blows up at t = 1, and therefore, the solution (u, v, w, p) must blow

up at sometime T ∈ (0, 1].

3.3.3 Second Method

In this section we provide another approach that adopts ideas from [91]. This approach requires

some additional conditions on the initial data, but avoids technical issue on the function φ as in

Proposition 3.3.2. Moreover, this approach allows the initial data to be analytic, which guarantees

the existence of solutions to the IPEs in the space of analytic functions.

Theorem 3.3.4. Suppose that (u, v, w, p) is a smooth solution to system (3.6), subject to the bound-

ary condition (3.2), with initial condition (u0, v0) satisfying the following conditions:



u0(x, z) and v0(x, z) are smooth odd periodic functions in x with period 1, (3.159)

u0(x, z) satisfies the compatibility condition
∫ 1

0

u0(x, z)dz = 0, (3.160)

∂xv0(0, z) = −Ω for all z ∈ [0, 1], (3.161)

∂xzu0(0, 0) = 0, ∂xzzu0(0, z) < 0 for all z ∈ [0, 1]. (3.162)

Then the solution blows up at sometime T ∈ (0, −3
∂xu0(0,1)

].

Before proving this theorem, we first state the following lemma, which is similar to Lemma

2.4 in [91]. Since our settings are slightly different from [91], we also provide a detailed proof.

Lemma 3.3.5. The smooth solution (u, v, w, p) stated in Theorem 3.3.4 satisfies

∂xzu(t, 0, 0) = 0, (3.163)
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and, as long as the solution remains smooth at time t, we have

∂xzzu(t, 0, z) < 0, for all z ∈ [0, 1]. (3.164)

In other words, condition (3.162) is invariant in time.

Proof. For arbitrary y0 ∈ R and z0 ∈ [0, 1], consider the following system of characteristic equa-

tions 

dX
dt

= u(t,X, Z),

dY
dt

= v(t,X, Z),

dZ
dt

= w(t,X, Z)

(3.165)

with the initial data 
X(0) = 0,

Y (0) = y0,

Z(0) = z0.

(3.166)

By virtue of oddness of u and v in the x variable, the solution (X, Y, Z) must satisfies

X(t) ≡ 0, Y (t) ≡ y0. (3.167)

It means that particles starting from the line segment

L :=
{

(x, y, z) : x = 0, y = y0, z ∈ [0, 1]
}

(3.168)

can only move along this line segment. Moreover, when z0 = 0 or z0 = 1, thanks to the boundary

condition (3.2), the solution must satisfy additionally Z(t) ≡ 0 or Z(t) ≡ 1, respectively. This

means that the particles stationed at (0, y0, 0) and (0, y0, 1) do not move.

On the line segment L (3.168), we again consider the reduced system (3.114)–(3.115). By

virtue of the last equation in system (3.6), the boundary condition (3.2), and the assumption
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(3.161), one obtains that the corresponding initial and boundary conditions are

W (0, z) = −
∫ z

0

∂xu0(0, s)ds, V (0, z) = Ω, (3.169)

W (t, 0) = W (t, 1) = 0. (3.170)

From (3.169), thanks to Proposition 3.3.1, we observe that V ≡ Ω is the unique solution to equation

(3.115). Plugging this back into equation (3.114), we obtain

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz = 0. (3.171)

By taking one derivative with respect to z of (3.171), we have

Wtzz −WzWzz +WWzzz = 0. (3.172)

From (3.162), (3.169) and (3.170), we know that Wzz(0, 0) = 0 and W (t, 0) = 0. These together

with the last equation in system (3.6) and (3.172) imply that

∂xzu(t, 0, 0) = Wzz(t, 0) = 0. (3.173)

By taking two derivatives with respect to z of (3.171), we have

Wtzzz −W 2
zz +WWzzzz = 0. (3.174)

Since the particles on the line segment L only move along this line, therefore, (3.174) implies

d

dt
Wzzz(t, Z(t)) =

d

dt
wzzz(t, 0, Z(t))

= Wtzzz(t, Z(t)) +WWzzzz(t, Z(t)) = W 2
zz(t, Z(t)) ≥ 0.

(3.175)

Let T > 0 such that the solution (u, v, w, p) of system (3.6) remains smooth on [0, T ]. Then
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(3.175) implies that as long as Wzzz(0, Z(0)) > 0, we have Wzzz(T , Z(T )) > 0. In order to show

that Wzzz(T , z∗) > 0 for each z∗ ∈ [0, 1], we need to find z0 ∈ [0, 1] such that Z(0) = z0 and

Z(T ) = z∗. For this purpose, we define

τ = T − t, Z̃(τ) = Z(t). (3.176)

Then, we have the following ordinary differential equation

dZ̃(τ)

dτ
=
dZ(t)

dt

dt

dτ
= −dZ(t)

dt
= −W (t, Z(t)) = −W (T − τ, Z̃(τ)), (3.177)

with initial condition

Z̃(0) = Z(T ) = z∗. (3.178)

Since W is smooth on t ∈ [0, T ], we have a unique solution Z̃(τ) on τ ∈ [0, T ]. Define z0 :=

Z̃(T ), then we see from (3.176) that Z(0) = Z̃(T ) = z0 and Z(T ) = Z̃(0) = z∗. From

incompressible condition, we know that ∂xxzu(t, 0, z) = −Wzzz(t, z), therefore,

∂xzzu(t, 0, z) < 0, for all z ∈ [0, 1]. (3.179)

We also need the following lemma. For details, see Lemma 2.5 in [91].

Lemma 3.3.6. Let f : [0, 1]→ R be a C2 function with the following properties:

1. f ′(0) = 0 and f ′′(z) > 0 for any z ∈ [0, 1],

2.
∫ 1

0
f(z)dz = 0.

Then f(1) > 0 and ∫ 1

0

f 2(z)dz ≤ 1

3
f(1)2. (3.180)

Now let us return to the proof of Theorem 3.3.4.
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Proof. (Proof of Theorem 3.3.4) From the proof in Lemma 3.3.5, we know under the assumptions

in Theorem 3.3.4, we have

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz = 0. (3.181)

From Lemma 3.3.5, we know Wz(t, ·) = −∂xu(t, 0, ·) satisfies both conditions in the Lemma

3.3.6. Therefore, we have Wz(t, 1) > 0 and
∫ 1

0
Wz(t, z)

2dz ≤ 1
3
Wz(t, 1)2. Using this inequality in

(3.181), and restrict at the point z = 1, thanks to the boundary condition (3.170), we have

Wzt(t, 1) = Wz(t, 1)2 − 2

∫ 1

0

Wz(t, z)
2dz ≥ 1

3
Wz(t, 1)2. (3.182)

Since Wz(0, 1) > 0, it follows that

Wz(t, 1) ≥ 3Wz(0, 1)

3−Wz(0, 1)t
. (3.183)

Then we see Wz(t, 1) blows up before or at the time 3
Wz(0,1)

= −3
∂xu0(0,1)

. Therefore, the solution

(u, v, w, p) must blow up at sometime T ∈ (0, −3
∂xu0(0,1)

].

Remark 7. The requirements (3.159)–(3.162) allow the initial condition to be real analytic. As an

example, consider u0 and v0 to be:

u0(x, z) = λ(−z2 +
1

3
) sinx, v0(x, z) = −Ω sinx, (3.184)

with λ > 0. For analytic initial data, system (3.6) is local well-posed (from Theorem 3.2.2).

Therefore, for arbitrary Ω ∈ R, we have initial data such that the solution of 3D IPEs exists,

and also blows up in finite time. For initial data (u0, v0), notice that
∫ 1

0
u0(x, z)dz = 0 and v0 is

independent of the z variable. This implies that the baroclinic mode of the initial data is (u0, 0),

and the barotropic mode of the initial data is (0, v0). We know from above that the guaranteed
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blowup time is
−3

∂xu0(0, 1)
=

9

2λ
. (3.185)

When |Ω| � 1, we have:

• when λ = |Ω|, the baroclinic mode satisfies (u0, 0) ∼ |Ω|, and the whole initial data satisfies

(u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies T ∼ 1
|Ω| ;

• when λ = 1, the baroclinic mode satisfies (u0, 0) ∼ 1, while the whole initial data satisfies

(u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies T ∼ 1;

• when λ = 1
|Ω| , this implies a smallness condition on the baroclinic (u0, 0) ∼ 1

|Ω| , while the

whole initial data satisfies (u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies

T ∼ |Ω|.

Based on the observations above, one can expect that the lower bound of the life-span of the

3D IPEs in the space of analytic functions can be prolonged with fast rotation, and with some

smallness conditions on the size of the baroclinic mode. We will investigate this problem in the

next section.

Remark 8. It remains interesting to know whether for arbitrary Ω there exists a blowup solution

with initial data (u0, v0) whose barotropic and baroclinic modes are both of order 1. Moreover, to

estimate the corresponding blowup time T as |Ω| → ∞. Observe that if the blowup time T ∼ 1

as |Ω| → ∞, this would imply that fast rotation does not prolong the life-span of the solution to

the 3D IPEs unless, as it has been noted above, a smallness condition on the size of the baroclinic

mode is met.

3.4 Long-time Existence

In previous sections, we have shown local well-posedness and constructed smooth solutions

that blows up at finite time. In this section, we will show that with certain assumption on the initial

data, the life-span of solutions to the 3D IPEs can be prolonged to infinity. For this result, we do

not take advantage of fast rotation, i.e., this result is independent of Ω.
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We start with the following important observation. When Ṽ0 = 0 in system (3.31)–(3.32),

Ṽ ≡ 0 by uniqueness of the solutions. Then, system (3.31)–(3.32) only contains the evolution of

the barotropic mode V , and it is governed by the 2D Euler equations since Ṽ ≡ 0. It is well-known

that the 2D Euler equations are globally well-posed in Sobolev spaces. Moreover, it has been

shown by Levermore–Oliver [64] that the 2D Euler equations are also globally well-posed in the

space of analytic functions.

Based on this observation, one can expect that the life-span of solutions to the 3D IPEs can be

prolonged as long as the Ṽ0 is small. Since we are working in the space of analytic functions, we

need the smallness of the analytic norm of Ṽ0. This is a strong assumption, and we will see later, if

the rotation rate is fast enough, we can obtain long-time existence result by putting a much weaker

assumption on the initial data.

We first review the 2D Euler equations.

3.4.1 2D Euler Equations

Consider the following 2D Euler equations in T3:

{
∂tV + V · ∇hV +∇hP = 0, (3.186)

∇h · V = 0, (3.187)

with initial condition

V |t=0 = V 0. (3.188)

Here V depends only on two horizontal variables x′. The global existence of solutions to system

(3.186)–(3.188) in Sobolev spaces Hr with r ≥ 3 is a classical result, see, e.g., [10]. Moreover,

from equation (3.84) in [10], for r ≥ 3, we have

d

dt
‖V ‖Hr ≤ Cr‖V ‖Hr(1 + ln+ ‖V ‖Hr). (3.189)
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Let ‖V 0‖Hr ≤M for someM ≥ 0. Since ln+ x+1 ≤ 2 ln(x+e), by settingW (t) = ‖V (t)‖Hr+e,

from (3.189), we have
d

dt
W ≤ CrW lnW. (3.190)

Therefore, we get the following bound:

‖V (t)‖Hr ≤ W (t) ≤ W (0)e
Crt

= (‖V 0‖Hr + e)e
Crt ≤ (M + e)e

Crt

=: θM,r(t). (3.191)

We need the following lemma for the purpose of this section. For its proof, we refer the reader

to [64]. It is also a special case of Lemma 2.2.14.

Lemma 3.4.1. For f, g ∈ D(eτA : Hr+1/2) where r > 5/2 and τ ≥ 0, one has

∣∣∣〈AreτA(f · ∇hg), AreτAg〉
∣∣∣ ≤ Cr(‖Arf‖‖Arg‖2 + ‖∇h · f‖L∞‖AreτAg‖2)

+Crτ‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖2. (3.192)

Moreover, if r > 3, then ‖Ar+1/2eτAf‖ can be replaced by ‖AreτAf‖.

Based on Lemma 3.4.1, Levermore–Oliver [64] proved the global existence of solutions to

system (3.186)–(3.188) for initial data in the space of analytic functions. For completion, we state

it here, with slight difference compared with the original statement in [64].

Proposition 3.4.2. Assume V 0 ∈ S ∩ D(eτ0A : Hr(T3)) with r > 3 and τ0 > 0, and suppose that

‖eτ0AV 0‖Hr ≤M for some M ≥ 0. There exists a non-increasing function

τ(t) = τ0 exp
(
− Cr

∫ t

0

h(s)ds
)
, (3.193)

where

h2(t) := ‖eτ0AV 0‖2
Hr + Cr

∫ t

0

θ3
M,r(s)ds, (3.194)
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and θM,r(t) defined in (3.191), such that for any given time T > 0, there exists a unique solution

V ∈ S ∩ L∞(0, T ;D(eτ(t)A : Hr(T3))) (3.195)

to system (3.186)–(3.188). Moreover, there exist constants CM > 1 and Cr > 1 such that

‖eτ(t)AV (t)‖2
Hr ≤ h2(t) ≤ C

exp(Crt)
M . (3.196)

3.4.2 Long-time Existence of The 3D IPEs

The following is the main theorem of this section, which concerns the long-time exsitence of

solutions to system (3.31)–(3.34) in the case when the analytic norm of Ṽ0 is small.

Theorem 3.4.3. Assume V0 ∈ S ∩D(eτ0A : Hr+1(T3)), Ṽ0 ∈ S ∩D(eτ0A : Hr(T3)) with r > 5/2

and τ0 > 0. Let Ω ∈ R be arbitrary and fixed. Let M ≥ 0 and ε ≥ 0, and suppose that

‖eτ0AV0‖Hr+1 ≤ M and ‖eτ0AṼ0‖Hr ≤ ε. Then there are constants CM > 1 and Cr > 1, and a

function K(t) = C
exp(Crt)
M , such that if T = T (τ0, ε,M, r) satisfies

∫ T
0

eK(s)ds =
τ0

2ε
, (3.197)

then the unique solution obtained in Theorem 3.2.2 satisfies (V , Ṽ) ∈ S ∩ L∞(0, T ;D(eτ(t)A :

Hr(T3))), with

τ(t) = e−
∫ t
0 K(s)ds(τ0 − ε

∫ t

0

eK(s)ds). (3.198)

In particular, from (3.197), T & ln(ln(ln(1
ε
)))→∞, as ε→ 0+.

Thanks to Lemma 2.2.6 and Lemma 3.2.1, we immediately have the following corollary.

Corollary 3.4.4. Assume V0 ∈ S ∩ D(eτ0A : Hr+1(T3)), and the conditions of Theorem 3.4.3

hold. Then the unique solution obtained in Corollary 3.2.3 satisfies V ∈ S ∩ L∞(0, T ;D(eτ(t)A :

Hr(T3))), with T defined in (3.197) and τ defined in (3.198).
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Remark 9. For the proof of Theorem 3.4.3, we only establish formal energy estimates. How-

ever, these formal estimates can be justified rigorously by establishing them first for the Galerkin

approximation system and then passing to the limit using the Aubin-Lions compactness theorem

(Lemma 2.2.10), as we did in the previous section.

Remark 10. The constants CM and Cr in K(t) may change from step to step in the proof, and

always larger than 1. When necessary, we use K1(t), K2(t), ... to emphasize the changes in CM

and Cr. Two useful inequalities are

∫ t

0

K(s)ds ≤ K1(t),

∫ t

0

eK(s)ds ≤ eK1(t) (3.199)

for some new K1(t). At the end, we choose some suitable and large enough CM and Cr for the

K(t) in Theorem 3.4.3. Similar abuse of notation will also be used in the rest of sections.

Proof. (proof of Theorem 3.4.3.) Let V be the unique global solution to the 2D Euler equations

(3.186)–(3.188) in the space D(eτ1(t)A : Hr+1(T3)), with initial condition V 0 = V0 and τ1(t)

satisfying (3.193). Let φ = V − V . Applying Ph to (3.186), taking the difference between (3.31)

and (3.186), and writing (3.32) in terms of V and φ, we have


∂tφ+ Ph

(
φ · ∇hφ+ φ · ∇hV + V · ∇hφ

)
+ PhP0

(
(∇h · Ṽ)Ṽ + Ṽ · ∇hṼ

)
= 0, (3.200)

∂tṼ + Ṽ · ∇hṼ + φ · ∇hṼ + V · ∇hṼ + Ṽ · ∇hφ+ Ṽ · ∇hV

−P0

(
(∇h · Ṽ)Ṽ + Ṽ · ∇hṼ

)
−
( ∫ z

0

∇h · Ṽ(s)ds
)
∂zṼ + ΩṼ⊥ = 0, (3.201)

with initial condition

φ(0) = V0 − V 0 = 0, Ṽ(0) = Ṽ0. (3.202)

First, by virtue of (3.51), and since the L2 energy is conserved for V , thanks to triangle in-
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equality, we have

‖φ‖2 + ‖Ṽ‖2 ≤ 2(‖V‖2 + ‖V ‖2 + ‖Ṽ‖2) = 4‖V0‖2 + 2‖Ṽ0‖2. (3.203)

Next, applyingAreτA to equation (3.200) and (3.201), and takingL2 inner product withAreτAφ

and AreτAṼ , respectively, thanks to Lemma 2.2.4 and Lemma 2.2.5, since P0Ṽ = 0, we have

1

2

d

dt
‖AreτAφ‖2 = τ̇‖Ar+1/2eτAφ‖2 −

〈
AreτA(φ · ∇hφ), AreτAφ

〉
−
〈
AreτA(φ · ∇hV ), AreτAφ

〉
−
〈
AreτA(V · ∇hφ), AreτAφ

〉
−
〈
AreτA(Ṽ · ∇hṼ), AreτAφ

〉
−
〈
AreτA((∇h · Ṽ)Ṽ), AreτAφ

〉
, (3.204)

and

1

2

d

dt
‖AreτAṼ‖2 = τ̇‖Ar+1/2eτAṼ‖2 −

〈
AreτA(Ṽ · ∇hṼ), AreτAṼ

〉
−
〈
AreτA(φ · ∇hṼ), AreτAṼ

〉
−
〈
AreτA(V · ∇hṼ), AreτAṼ

〉
−
〈
AreτA(Ṽ · ∇hφ), AreτAṼ

〉
−
〈
AreτA(Ṽ · ∇hV ), AreτAṼ

〉
+
〈
AreτA

(
(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ
)
, AreτAṼ

〉
. (3.205)

Thanks to Lemma 2.2.11–2.2.13, we have

∣∣∣〈AreτA(φ · ∇hφ), AreτAφ
〉∣∣∣+

∣∣∣〈AreτA(Ṽ · ∇hṼ), AreτAφ
〉∣∣∣

+
∣∣∣〈AreτA((∇h · Ṽ)Ṽ), AreτAφ

〉∣∣∣+
∣∣∣〈AreτA(Ṽ · ∇hṼ), AreτAṼ

〉∣∣∣
+
∣∣∣〈AreτA(φ · ∇hṼ), AreτAṼ

〉∣∣∣+
∣∣∣〈AreτA(Ṽ · ∇hφ), AreτAṼ

〉∣∣∣
+
∣∣∣〈AreτA((∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ
)
, AreτAṼ

〉∣∣∣
≤ Cr(‖AreτAφ‖+ ‖AreτAṼ‖)(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAṼ‖2). (3.206)

Here we use the fact that Ṽ and φ have zero mean value. For Ṽ , since Ṽ = 0, so its mean is zero.
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For φ, since V and V both have zero mean value, therefore, φ also has zero mean value.

By virtue of Lemma 3.4.1, since∇h · V = 0, one obtains

∣∣∣〈AreτA(V · ∇hφ), AreτAφ
〉∣∣∣+

∣∣∣〈AreτA(V · ∇hṼ), AreτAṼ
〉∣∣∣

≤ Cr‖ArV ‖(‖Arφ‖2 + ‖ArṼ‖2)

+Crτ‖Ar+1/2eτAV ‖(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAṼ‖2). (3.207)

From Lemma 2.2.2, thanks to Cauchy–Schwarz inequality, and since Ṽ and φ have zero mean,

we have

∣∣∣〈AreτA(Ṽ · ∇hV ), AreτAṼ
〉∣∣∣+

∣∣∣〈AreτA(φ · ∇hV ), AreτAφ
〉∣∣∣

≤ Cr‖eτAV ‖Hr+1(‖AreτAφ‖2 + ‖AreτAṼ‖2). (3.208)

Combining all of the estimates above, we have

1

2

d

dt
(‖AreτAφ‖2 + ‖AreτAṼ‖2)

≤
(
τ̇ + Cr(‖AreτAφ‖+ ‖AreτAṼ‖) + Crτ‖eτAV ‖Hr+1

)
×
(
‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAṼ‖2

)
+Cr‖eτAV ‖Hr+1

(
‖AreτAφ‖2 + ‖AreτAṼ‖2

)
. (3.209)

As indicated in Remark 10, we will use K0, K1, K2, ... to indicate the change in K(t) from

step to step, and all of them are increasing double exponentially in t. Recall that τ1 is defined by

(3.193). Indeed, there exists a function K0(t) such that τ1(t) ≥ τ0e
−

∫ t
0 K0(s)ds. Let τ ≤ τ1. Recall

from (3.196), we have

‖eτ(t)AV (t)‖Hr+1 ≤ ‖eτ1(t)AV (t)‖Hr+1 ≤ C
exp(C̃rt)
M =: K1(t). (3.210)
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Denote by

F = ‖AreτAφ‖2 + ‖AreτAṼ‖2, G = ‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAṼ‖2. (3.211)

We can rewrite (3.209) as

d

dt
F ≤ 2(τ̇ + CrF

1/2 + τK2)G+K2F. (3.212)

Notice that when τ satisfies

τ̇ + CrF
1/2 + τK2 ≤ 0, (3.213)

we have

F (t) ≤ F (0)e
∫ t
0 K2(s)ds ≤ F (0)eK3(t), (3.214)

and therefore

CrF (t)1/2 ≤ F (0)1/2eK4(t). (3.215)

Notice that F (0) = ‖Areτ0AṼ0‖2 ≤ ‖eτ0AṼ0‖2
Hr ≤ ε2. From (3.213), we require that

d

dt
(τe

∫ t
0 K2(s)ds) + εe

∫ t
0 K2(s)dseK4(t) ≤ 0. (3.216)

Thanks to (3.199), we have

e
∫ t
0 K2(s)dseK4(t) ≤ eK5(t) (3.217)

for some new K5(t). Therefore, instead of (3.216), we require that

d

dt
(τe

∫ t
0 K2(s)ds) + εeK5(t) ≤ 0. (3.218)
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Integrating (3.216) from 0 to t in time, we have

τ(t)e
∫ t
0 K2(s)ds ≤ τ0 − ε

∫ t

0

eK5(s)ds. (3.219)

Recall that we also need τ(t) ≤ τ1(t) and we know that τ1(t) ≥ τ0e
−

∫ t
0 K0(s)ds. Therefore, for a

new and suitable function K(t), we can set

τ(t) = e−
∫ t
0 K(s)ds(τ0 − ε

∫ t

0

eK(s)ds) (3.220)

such that τ(t) satisfies the condition in (3.213) and also τ(t) ≤ τ1(t). One can see τ(t) > 0 on

t ∈ [0, T ] when T satisfies

∫ T
0

eK(s)ds =
τ0

2ε
. (3.221)

Since K(t) is double exponential in time, and
∫ T

0
eK(s)ds ≤ T eK(T ) ≤ e2K(T ), we have

T & ln(ln(ln(1
ε
)))→∞ as ε→ 0+.

From (3.214), since φ and Ṽ have zero mean, we can apply Poincaré inequality to obtain

‖eτ(t)Aφ(t)‖2
Hr + ‖eτ(t)AṼ(t)‖2

Hr ≤ ε2eK(t) (3.222)

when K(t) is chosen suitably, on t ∈ [0, T ], with τ(t) defined by (3.220). From (3.196), and since

τ ≤ τ1, we know ‖eτ(t)AV (t)‖Hr is also bounded on t ∈ [0, T ]. By triangle inequality, we have

‖eτ(t)AV(t)‖Hr + ‖eτ(t)AṼ(t)‖Hr

≤ ‖eτ(t)Aφ(t)‖Hr + ‖eτ(t)AV (t)‖Hr + ‖eτ(t)AṼ(t)‖Hr <∞ (3.223)

on t ∈ [0, T ]. Therefore, the time of existence of the solution to system (3.31)–(3.34) satisfies

(3.197).
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3.4.3 Convergence to The 2D Euler Equations

Based on Theorem 3.4.3, we have the following result concerning the convergence of solutions

of the 3D IPEs (3.31)–(3.34) to solutions of the 2D Euler equations (3.186)–(3.188) in the space

of analytic functions.

Theorem 3.4.5. Assume a sequence of initial data {Vn0 = V0}n∈N ⊂ S ∩D(eτ0A : Hr+1(T3)) and

{Ṽn0 }n∈N ⊂ S ∩ D(eτ0A : Hr(T3)) with r > 5/2 and τ0 > 0. Let Ω ∈ R be arbitrary and fixed.

Suppose ‖eτ0AV0‖Hr+1 ≤ M for some M ≥ 0, and ‖eτ0AṼn0 ‖Hr ≤ εn with εn → 0, as n → ∞.

Then there are constants CM > 1, Cr > 1, and a function K(t) = C
exp(Crt)
M , such that for each

n ∈ N, if the function τn(t) and the time Tn satisfy

τn(t) = e−
∫ t
0 K(s)ds(τ0 − εn

∫ t

0

eK(s)ds),

∫ Tn
0

eK(s)ds =
τ0

2εn
, (3.224)

the solution to system (3.31)–(3.34) with initial data (Vn0 , Ṽn0 ) satisfies

(Vn, Ṽn) ∈ S ∩ L∞(0, Tn;D(eτ
nA : Hr(T3))).

Let V ∈ S ∩ L∞(0,∞;D(eτ
0(t)A : Hr(T3))) be the unique global solution to the 2D Euler

equations (3.186)–(3.188) with initial data V (0) = V0. Then, (Vn, Ṽn) converges to V for t ∈

[0, T0], as n→∞, in the following sense:

‖eτ0(t)A(Vn + Ṽn − V )(t)‖Hr ≤ εne
K(t) → 0, as n→∞. (3.225)

Proof. Denote by φ
n

= Vn − V . By virtue of the proof of Theorem 3.4.3, we just need to prove

the estimate (3.225). Since τ 0(t) ≤ τn(t) for any n ∈ N, from (3.222), one has

‖eτ0(t)AṼn(t)‖Hr + ‖eτ0(t)Aφ
n
(t)‖Hr ≤ ‖eτn(t)AṼn(t)‖Hr + ‖eτn(t)Aφ

n
(t)‖Hr

≤ εne
K(t) (3.226)
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when the function K(t) is chosen suitably. Therefore, we have

‖eτ0(t)A(Vn + Ṽn − V )(t)‖Hr ≤ ‖eτ0(t)AṼn(t)‖Hr + ‖eτ0(t)Aφ
n
(t)‖Hr ≤ εne

K(t). (3.227)

As n→∞, we have εn → 0, and therefore, εneK(t) → 0. This completes the proof.

3.5 Effect of Rotation

In this section, we investigate the effect of rotation on the life-span of solutions to the 3D IPEs.

Our goal is to show that fast rotation, i.e., when |Ω| is large, the life-span can be prolonged. For

this purpose, we investigate the rotation operator, and do further reformulation of the 3D IPEs.

3.5.1 Reformulation of The Problem

For ϕ ∈ L̇2 where L̇2 is defined in (3.27), the rotating opeartor is

Jϕ := ϕ⊥ = (−ϕ2, ϕ1). (3.228)

Inspired by the 2D Leray projection, we define the projection PS : L̇2 → S as

PSϕ := ϕ̃+ Phϕ. (3.229)

Then, we can define an operator P : S → S as

Pϕ := PS(Jϕ). (3.230)

A direct computation using∇h · ϕ = 0, we obtain

Pϕ = ϕ̃⊥. (3.231)
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It is easy to see that the kernel of P is

kerP =
{
ϕ ∈ S : ϕ̃⊥ = 0

}
=
{
ϕ ∈ S : ϕ = ϕ

}
. (3.232)

Therefore, the projection P0 : S → kerP indeed is the projection into the kernel of P .

Notice that if we consider V0 ∈ kerP , i.e., consider Ṽ0 = 0, the 3D IPEs reduce to the 2D

Euler, and this has been discussed in section 3.4. In order to investigate the effect of rotation, we

further study the evolution of the baroclinic mode. This can be done by further decomposing the

baroclinic mode in order to identify the resonant and non-resonant parts due to the rotation.

Since the rotation matrix

J =

0 −1

1 0



corresponding to P Ṽ = J Ṽ = Ṽ⊥ has eigenvalues ±i, with eigenvectors 1√
2

 1

∓i

, we can

define

P+ϕ :=
〈

(I − P0)ϕ,
1√
2

1

i

〉
E

1√
2

1

i

 =
1

2

〈
ϕ̃,

1

i

〉
E

1

i

 =
1

2
(ϕ̃+ iϕ̃⊥), (3.233)

and

P−ϕ :=
〈

(I − P0)ϕ,
1√
2

 1

−i

〉
E

1√
2

 1

−i

 =
1

2

〈
ϕ̃,

 1

−i

〉
E

 1

−i

 =
1

2
(ϕ̃− iϕ̃⊥).

(3.234)

Here the inner product 〈·, ·〉E is the usual Euclidean inner product. These projections P+ and P−

are also defined in section 2.1, and we give the derivation here. Similar ideas and projections for

3D rotating Euler equations can be found in Dutrifoy [34] and Koh–Lee–Takada [56].

In fact, the operator P has three eigenvalues, 0 and ±i. These three projections P0 and P±

project V into the eigenspaces corresponding to 0 and ∓i. From Lemma 2.2.3, we know we can
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use P0 and P± to decompose any vector filed ϕ ∈ L2(T3) into three parts that are orthogonal to

each other.

Now observe that we can write Ṽ⊥ in equation (3.32) as Ṽ⊥ = −i(P+V − P−V). Hence

applying P± to (3.32), we have

∂tP±V + P±

(
Ṽ · ∇hṼ + Ṽ · ∇hV + V · ∇hṼ − P0(Ṽ · ∇hṼ + (∇h · Ṽ)Ṽ)

− (

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ
)
∓ iΩP±V = 0.

(3.235)

By setting

u+ = e−iΩtP+V , u− = eiΩtP−V , (3.236)

and multiplying e−iΩt to the equation for P+V and eiΩt to the equation for P−V , we can rewrite

(3.235) as

∂tu± + e∓iΩtP±

(
Ṽ · ∇hṼ + Ṽ · ∇hV + V · ∇hṼ − P0(Ṽ · ∇hṼ + (∇h · Ṽ)Ṽ)

− (

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ
)

= 0.
(3.237)

For the u+ part, thanks to Lemma 2.2.3 and (3.233), we have



P+(Ṽ · ∇hṼ) =
1

2
(Ṽ · ∇hṼ + iṼ · ∇hṼ⊥)− 1

2
P0

(
Ṽ · ∇hṼ + iṼ · ∇hṼ⊥

)
=

1

2
Ṽ · ∇h(Ṽ + iṼ⊥)− 1

2
P0

(
Ṽ · ∇h(Ṽ + iṼ⊥)

)
= eiΩt

(
Ṽ · ∇hu+ − P0(Ṽ · ∇hu+)

)
, (3.238)

P+(Ṽ · ∇hV) =
1

2
(Ṽ · ∇hV + iṼ · ∇hV

⊥
) =

1

2
Ṽ · ∇h(V + iV⊥), (3.239)

P+(V · ∇hṼ) =
1

2
(V · ∇hṼ + iV · ∇hṼ⊥) = eiΩt(V · ∇hu+), (3.240)

P+P0

(
Ṽ · ∇hṼ + (∇h · Ṽ)Ṽ

)
= 0. (3.241)
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Observe that by integration by parts one has

P+

(
(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ
)

=
1

2

(
(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ + i(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ⊥
)

− 1

2
P0

(
(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ + i(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zṼ⊥
)

=eiΩt(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zu+ + eiΩtP0

(
(∇h · Ṽ)u+

)
.

(3.242)

Therefore, u+ part in (3.237) becomes

∂tu+ = −
(
Ṽ · ∇hu+ + V · ∇hu+ − P0(Ṽ · ∇hu+ + (∇h · Ṽ)u+)

−(

∫ z

0

∇h · Ṽ(x′, s)ds)∂zu+

)
− 1

2
e−iΩt(Ṽ · ∇h)(V + iV⊥). (3.243)

Using Ṽ = u+e
iΩt + u−e

−iΩt, we can furthermore rewrite (3.243) as

∂tu+ = −eiΩt
(
u+ · ∇hu+ − P0(u+ · ∇hu+ + (∇h · u+)u+)

−(

∫ z

0

∇h · u+(x′, s)ds)∂zu+

)
−
(
V · ∇hu+ +

1

2
(u+ · ∇h)(V + iV⊥)

)
−e−2iΩt1

2
(u− · ∇h)(V + iV⊥)

−e−iΩt
(
u− · ∇hu+ − P0(u− · ∇hu+ + (∇h · u−)u+)

−(

∫ z

0

∇h · u−(x′, s)ds)∂zu+

)
. (3.244)

From (3.244), one can identify the resonant and non-resonant parts due to the rotation. The

resonant part is

∂tu+ + V · ∇hu+ +
1

2
(u+ · ∇h)(V + iV⊥) = 0.

Notice that u− is the complex conjugate of u+. Therefore, by taking complex conjugate of
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(3.244), we obtain the evolution equation for u− as:

∂tu− = −e−iΩt
(
u− · ∇hu− − P0(u− · ∇hu− + (∇h · u−)u−)

−(

∫ z

0

∇h · u−(x′, s)ds)∂zu−

)
−
(
V · ∇hu− +

1

2
(u− · ∇h)(V − iV

⊥
)
)

−e2iΩt1

2
(u+ · ∇h)(V − iV

⊥
)

−eiΩt
(
u+ · ∇hu− − P0(u+ · ∇hu− + (∇h · u+)u−)

−(

∫ z

0

∇h · u+(x′, s)ds)∂zu−

)
. (3.245)

Here the resonant part is

∂tu− + V · ∇hu− +
1

2
(u− · ∇h)(V − iV

⊥
) = 0.

Next, we reformulate the evolution of the barotropic mode (3.31). Using Ṽ = u+e
iΩt+u−e

−iΩt,

we can rewrite (3.31) as:

∂tV + Ph(V · ∇hV) + e2iΩtPhP0

(
u+ · ∇hu+ + (∇h · u+)u+

)
+ e−2iΩtPhP0

(
u− · ∇hu− + (∇h · u−)u−

)
+ PhP0

(
u+ · ∇hu− + u− · ∇hu+ + (∇h · u+)u− + (∇h · u−)u+

)
= 0.

Since u± = e∓iΩtP±V = 1
2
e∓iΩt(Ṽ ± iṼ⊥), and Ph commutes with P0, the last term becomes

PhP0

(
u+ · ∇hu− + u− · ∇hu+ + (∇h · u+)u− + (∇h · u−)u+

)
= P0Ph

(
u+ · ∇hu− + u− · ∇hu+ + (∇h · u+)u− + (∇h · u−)u+

)
=

1

2
P0Ph

(
Ṽ · ∇hṼ + Ṽ⊥ · ∇hṼ⊥ + (∇h · Ṽ)Ṽ + (∇h · Ṽ⊥)Ṽ⊥

)
=

1

2
P0Ph(∇h|Ṽ|2) = 0.
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Therefore, one obtains

∂tV + Ph(V · ∇hV) + e2iΩtPhP0

(
u+ · ∇hu+ + (∇h · u+)u+

)
+e−2iΩtPhP0

(
u− · ∇hu− + (∇h · u−)u−

)
= 0. (3.246)

Here the resonant part is

∂tV + Ph(V · ∇hV) = 0,

which is the 2D Euler equations.

In summary, we have the following lemma.

Lemma 3.5.1. For V ∈ S, system (3.1) is equivalent to system (3.244)–(3.246).

3.5.2 Limit Resonant System

In previous section, we have done the reformulation to see the resonant and non-resonant parts

due to rotation. In this section, we derive the formal resonant limit resonant system of the original

system (3.1) (or equivalently, system (3.244)–(3.246) by Lemma 3.5.1) as |Ω| → ∞, and establish

some properties of the limit resonant system.

Recall from (3.244), we have

∂tu+ = −eiΩt
(
u+ · ∇hu+ − P0(u+ · ∇hu+ + (∇h · u+)u+)

−(

∫ z

0

∇h · u+(x′, s)ds)∂zu+

)
−
(
V · ∇hu+ +

1

2
(u+ · ∇h)(V + iV⊥)

)
−e−iΩt

(
u− · ∇hu+ − P0(u− · ∇hu+ + (∇h · u−)u+)

−(

∫ z

0

∇h · u−(x′, s)ds)∂zu+

)
−e−2iΩt1

2
(u− · ∇h)(V + iV⊥)

=: −eiΩtI1 − I0 − e−iΩtI−1 − e−2iΩtI−2, (3.247)
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where

I1 := u+ · ∇hu+ − P0

(
u+ · ∇hu+ + (∇h · u+)u+

)
−
(∫ z

0

∇h · u+(x′, s)ds
)
∂zu+,

I0 := V · ∇hu+ +
1

2
(u+ · ∇h)(V + iV⊥),

I−1 := u− · ∇hu+ − P0

(
u− · ∇hu+ + (∇h · u−)u+

)
−
(∫ z

0

∇h · u−(x′, s)ds
)
∂zu+,

I−2 :=
1

2
(u− · ∇h)(V + iV⊥).

(3.248)

Observe that I0 is a typical resonant term. Unlike the case of the 3D Euler equations where there

are frequency selection resonances, in this resonance term, I0, all frequencies resonate.

We can rewrite (3.247) as

∂t

[
u+ −

i

Ω

(
eiΩtI1 − e−iΩtI−1 −

1

2
e−2iΩtI−2

)]
= − i

Ω

(
eiΩt∂tI1 − e−iΩt∂tI−1 −

1

2
e−2iΩt∂tI−2

)
− I0. (3.249)

Denote by the formal limits of u+, u−,V to be U+, U−, V . By taking limit |Ω| → ∞ formally, we

obtain the limit resonant equation for u+ is

∂tU+ = −(V · ∇h)U+ −
1

2
(U+ · ∇h)(V + iV

⊥
). (3.250)

By taking the complex conjugate, we obtain the limit resonant equation for u− is

∂tU− = −(V · ∇h)U− −
1

2
(U− · ∇h)(V − iV

⊥
). (3.251)

For the limit equation for V , recall from (3.246) that

∂tV + Ph(V · ∇hV) + e2iΩtPhP0

(
u+ · ∇hu+ + (∇h · u+)u+

)
+e−2iΩtPhP0

(
u− · ∇hu− + (∇h · u−)u−

)
= 0.
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Observe that Ph(V ·∇hV) is a typical resonant term. Using the similar method in the derivation of

U+, we can derive the limit resonant equation for V as

∂tV + Ph(V · ∇hV ) = 0. (3.252)

Observe that (3.252) is the 2D Euler equation.

Consider the initial conditions

(
V 0, (U+)0, (U−)0

)
=
(
V0,

1

2
(Ṽ0 + iṼ⊥0 ),

1

2
(Ṽ0 − iṼ⊥0 )

)
(3.253)

for system (3.250)–(3.252). Since V0 ∈ S, we have ∇h · V = 0, P0V = V , and P0U± = 0.

Besides the equations for U± and V , we also want a baroclinic mode Ṽ similar as in the original

system. Since initially U±(0) = 1
2
(Ṽ0± iṼ⊥0 ), we define Ṽ := U+ +U− so that U± = 1

2
(Ṽ ± iṼ ⊥).

From (3.250)–(3.251), we have

∂tṼ + (V · ∇h)Ṽ +
1

2
(Ṽ · ∇hV − Ṽ ⊥ · ∇hV

⊥
) = 0. (3.254)

Since∇h · V = 0, (3.254) is equivelent to

∂tṼ + V · ∇hṼ +
1

2
Ṽ ⊥(∇⊥h · V ) = 0. (3.255)

Since P0U± = 0, we see P0Ṽ = 0.

Therefore, we consider the following limit resonant system


∂tV + Ph(V · ∇hV ) = 0, (3.256)

∂tṼ + V · ∇hṼ +
1

2
Ṽ ⊥(∇⊥h · V ) = 0, (3.257)

V (0) = V 0, Ṽ (0) = Ṽ0, (3.258)

with P0V = V and P0Ṽ = 0. Now notice that (3.256) is the 2D Euler equation, and (3.257) is a
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linear transport equation with an additional stretching term.

Next, we establish the global well-posedness of limit resonant system (3.256)–(3.258) in both

Sobolev spaces and the space of analytic functions. Notice that the global well-posedness of

(3.256) has been established in Proposition 3.4.2.

Proposition 3.5.2. Assume V 0 ∈ S ∩ Hr+1(T3) and Ṽ0 ∈ S ∩ Hr(T3) with r > 5/2. Let

M ≥ 0, and suppose that ‖V 0‖Hr+1 ≤ M . Then there exist constants CM > 1 and Cr > 1, and

a function K(t) := C
exp(Crt)
M , such that for any give time T > 0, there exists a unique solution

V ∈ S∩L∞(0, T ;Hr+1(T3)) and Ṽ ∈ S∩L∞(0, T ;Hr(T3)) of system (3.256)–(3.258) on [0, T ],

and satisfies

‖V (t)‖Hr+1 ≤ K(t), ‖Ṽ (t)‖Hr ≤ ‖Ṽ0‖HreK(t). (3.259)

Moreover, assume V 0 ∈ D(eτ0A : Hr+1(T3)) and Ṽ0 ∈ D(eτ0A : Hr(T3)) with r > 5/2 and

τ0 > 0, and suppose that ‖eτ0AV 0‖Hr+1 ≤M . Then there exists a function

τ(t) = τ0 exp(−
∫ t

0

K(s)ds), (3.260)

such that for any given time T > 0, there exists a unique solution V ∈ S ∩ L∞(0, T ;D(eτ(t)A :

Hr+1(T3))) and Ṽ ∈ S ∩ L∞(0, T ;D(eτ(t)A : Hr(T3))) of system (3.256)–(3.258) on [0, T ] such

that

‖eτ(t)AV (t)‖Hr+1 ≤ K(t), ‖eτ(t)AṼ (t)‖Hr ≤ ‖eτ0AṼ0‖HreK(t). (3.261)

Proof. We will use the notation K1, K2, ... as indicated in Remark 10. The global well-posedness

of the 2D Euler equations in Sobolev spaces and corresponding growth estimate is classical, see

[10]. From (3.191), we obtain that ‖V ‖Hr+1 ≤ K1(t) for some function K1(t).

For the growth of ‖Ṽ ‖Hr , by standard energy estimate, since∇h · V = 0 and r > 5
2
, we have

d

dt
‖Ṽ ‖2

Hr ≤ Cr‖V ‖Hr+1‖Ṽ ‖2
Hr . (3.262)

85



By Gronwall inequality, and by virture of the growth of ‖V ‖Hr+1 , we obtain

‖Ṽ (t)‖Hr ≤ ‖Ṽ0‖Hr exp(
1

2
Cr

∫ t

0

K1(s)ds) ≤ ‖Ṽ0‖HreK(t) (3.263)

for some suitable function K(t), such that ‖V (t)‖Hr+1 ≤ K(t) also holds. By virtue of these

formal energy estimates, the global well-posedness of system (3.256)–(3.258) in Sobolev spaces

follows.

The global well-posedness of the 2D Euler equations in the space of analytic functions and the

corresponding growth estimate are established in Proposition 3.4.2. From Proposition 3.4.2, we

can first choose some suitable functions K1(t) and K2(t) such that τ(t) ≤ τ0 exp(−
∫ t

0
K1(s)ds)

and ‖eτ(t)AV (t)‖Hr+1 ≤ K2(t).

For the baroclinic mode Ṽ , first, it is easy to see the L2 energy is conserved. Next, using

Lemma 2.2.2 and Lemma 3.4.1, since r > 5/2 and
∫
T3 Ṽ (x)dx = 0, we have

1

2

d

dt
‖AreτAṼ ‖2

= τ̇‖Ar+1/2eτAṼ ‖2 −
〈
AreτA(V · ∇hṼ ), AreτAṼ

〉
− 1

2

〈
AreτA(∇⊥h · V )Ṽ ⊥, AreτAṼ

〉
≤ (τ̇ + Crτ‖Ar+1eτAV ‖)‖Ar+1/2eτAṼ ‖2 + Cr‖eτAV ‖Hr+1‖AreτAṼ ‖2. (3.264)

For suitable K1(t) and K2(t), we have

τ̇ + Crτ‖Ar+1eτAV ‖ ≤ τ(−K1 + CrK2) ≤ 0. (3.265)

Therefore, by Gronwall inequality, thanks to (3.199), for some suitable function K(t), we have

‖Areτ(t)AṼ (t)‖2 ≤ ‖Areτ0AṼ0‖2 exp(

∫ t

0

Cr‖eτ(s)AV (s)‖Hr+1ds)

≤ ‖eτ0AṼ0‖2
HreK(t). (3.266)
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Since L2 energy is conserved, we have

‖eτ(t)AṼ (t)‖Hr ≤ ‖eτ0AṼ0‖HreK(t). (3.267)

We can choose K(t) large enough such that τ(t) = τ0 exp(−
∫ t

0
K(s)ds) and ‖eτ(t)AV ‖Hr+1 ≤

K(t). Notice that τ(T ) > 0 for any finite time T < ∞. Therefore, the solution (V , Ṽ ) exists in

the space of analytic functions globally in time.

Remark 11. The use of K(t) above still follows Remark 10. The conclusion is that the growth of

‖V (t)‖Hr+1 and ‖eτ(t)AV (t)‖Hr+1 are double exponential in time, while the growth of ‖Ṽ (t)‖Hr

and ‖eτ(t)AṼ (t)‖Hr are triple exponential in time.

Remark 12. Since U± = 1
2
(Ṽ + iṼ ⊥), similar as Lemma 2.2.7, for r ≥ 0 and τ ≥ 0, we have

‖U+‖2 = ‖U−‖2 =
1

2
‖Ṽ ‖2, (3.268)

and

‖eτAU+‖2
Hr = ‖eτAU−‖2

Hr =
1

2
‖eτAṼ ‖2

Hr . (3.269)

Therefore, the growing bounds of ‖Ṽ ‖Hr and ‖eτ(t)AṼ (t)‖Hr also apply to ‖U±(t)‖Hr and

‖eτ(t)AU±(t)‖Hr .

3.5.3 Main Results

With the help of fast rotation, i.e., when |Ω| is large, we show that the time of existence of the

solution in the space of analytic functions can be prolonged as long as the Sobolev norm ‖Ṽ0‖Hr

is small depending on Ω, while the analytic norm ‖eτ0AṼ0‖Hr can be large (of order 1). We call

such initial data as “well-prepared” initial data. The following theorem is the main result of this

section.

Theorem 3.5.3. Assume V0 ∈ S ∩ D(eτ0A : Hr+3(T3)), Ṽ0 ∈ S ∩ D(eτ0A : Hr+2(T3)) with

r > 5/2 and τ0 > 0. Let M ≥ 0 and δ > 0, then there exist constants Cτ0 > 1, CM,τ0 > 1, Cr > 1,
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C̃M,τ0 > 1, C̃r > 1, and functions K̃(t) := eC
exp(Crt)
M,τ0 , K̃0(t) := eC̃

exp(C̃rt)
M,τ0 , with K̃(t) > K̃0(t).

Suppose that |Ω0| ≥ Cτ0e
K̃(1), and that ‖eτ0AV0‖Hr+3 +‖eτ0AṼ0‖Hr+2 ≤M with ‖Ṽ0‖H3+δ ≤ 1

|Ω0| .

Then there exists a time T = T (τ0, |Ω0|,M, r) ≥ 1 satisfying

Cτ0e
K̃(T ) = |Ω0|, (3.270)

such that when |Ω| ≥ |Ω0|, the unique solution (V , Ṽ) to system (3.31)–(3.34) obtained in Theorem

3.2.2 satisfies (V , Ṽ) ∈ S ∩ L∞(0, T ;D(eτ(t)A : Hr(T3))), with

τ(t) =
(
τ0 −

∫ t

0

eK̃0(s)√
|Ω0| − eK̃0(s)

ds−
∫ t

0

eK̃0(s)

|Ω0|
ds
)
e−

∫ t
0 K̃0(s)ds > 0. (3.271)

In particular, from (3.270), T & ln(ln(ln(ln |Ω0|)))→∞, as |Ω0| → ∞.

Thanks to Lemma 3.2.1 and Lemma 2.2.6, we immediately have the following corollary.

Corollary 3.5.4. Suppose V0 ∈ S ∩ D(eτ0A : Hr+3(T3)), and the conditions of Theorem 3.5.3

hold. Then the unique solution V obtained in Corollary 3.2.3 satisfies V ∈ S∩L∞(0, T ;D(eτ(t)A :

Hr(T3))), when |Ω| ≥ |Ω0|, with T defined in (3.270) and τ defined in (3.271).

In the rest of this section, we focus on system (3.244)–(3.246), which is equivalent to system

(3.31)–(3.32) due to Lemma 3.2.1 and Lemma 3.5.1. To prove Theorem 3.5.3, we consider the

difference between the original system (3.244)–(3.246) and the limit resonant system (3.250)–

(3.252). We call such difference system as perturbed system. Then by the formal energy estimate,

we show that the solution to the perturbed system exists for a long time. This together with the

global existence of the solution to system (3.250)–(3.252) give us the long-time existence of the

solution to system (3.244)–(3.246), and therefore the long-time existence of the solution to system

(3.31)–(3.32).

In the following section, we first give a rational behind the smallness of the initial baroclinic

mode.
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3.5.4 A Rational Behind The Smallness of The Initial Baroclinic Mode

The result of Theorem 3.5.3 is for “well-prepared” initial data, namely, for a given fixed δ > 0,

‖Ṽ0‖H3+δ ≤ 1
|Ω0| . Before we go into the proof of Theorem 3.5.3, we briefly rationalize, below, the

reason behind this smallness condition on the baroclinic mode.

Consider the linear IPEs: 
∂tV + ΩV⊥ +∇hp = 0, (3.272)

∂zp = 0, (3.273)

∇h · V + ∂zw = 0, (3.274)

whose explicit solution is

V(x, t) = V0(x′) +R(t)Ṽ0(x), (3.275)

where

R(t) :=

 cos(Ωt) sin(Ωt)

− sin(Ωt) cos(Ωt)

 . (3.276)

We see there is no “decay” due to rotation in the linear level. This is different from the lin-

earized 3D Euler equations with rotation, for which one can obtain certain decay due to disper-

sion/averaging mechanism, see, e.g., [34, 56].

Now let us look back to our nonlinear IPEs (3.31)–(3.32). The first equation (3.31) is the evo-

lution of the barotropic mode, which is the 2D Euler with source terms coming from the baroclinic

mode. The second equation (3.32) is the evolution of the baroclinic mode, which is the Burger’s

equations with rotation and other nonlinear coupling terms. For the Burger’s equations with rota-

tion, it is shown in [4, 74] that when the rotation rate |Ω| is large enough depending on the initial

data, the solution exists globally in time because of the absence of resonance between the rotation

and nonlinearity, which allows a very strong averaging mechanism that weakens the nonlinearity.

In our case, however, the additional coupling nonlinear terms in (3.32) resonate with the rotation

term, which does not allow for this simple scenario to take place. However, thanks to the small-
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ness assumption on the initial baroclinic mode, the additional coupling nonlinear terms are initially

small, which allows us to push this argument further.

Another reason behind this smallness assumption is indicated in Remark 7. It suggests that

the smallness condition on the baroclinic mode is required to guarantee the long-time existence of

solutions to the 3D IPEs with fast rotation.

Further reasoning for the smallness condition on the initial baroclinic mode will be provided in

Remark 14 and Remark 15, below.

3.5.5 The Perturbed System Around |Ω| =∞

In Section 3.5.2, we see that the limit resonant system (3.250)–(3.252) is globally well-posed.

Therefore, the idea to show long-time existence of the solution is to consider the difference between

the original system (3.244)–(3.246) and the limit resonant system (3.250)–(3.252).

Denote by

φ = V − V , φ± = u± − U±. (3.277)

Taking the difference between (3.246) and (3.252), (3.244) and (3.250), (3.245) and (3.251), we
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obtain

∂tφ+ Ph
[
φ · ∇hV + φ · ∇hφ+ V · ∇hφ+ e2iΩtP0

(
Q1,+,+ +Q2,+,+

)
+e−2iΩtP0

(
Q1,−,− +Q2,−,−

)]
= 0, (3.278)

∂tφ+ + φ · ∇hU+ + φ · ∇hφ+ + V · ∇hφ+ +
1

2
(φ+ · ∇h)(V + iV

⊥
)

+
1

2
(φ+ · ∇h)(φ+ iφ

⊥
) +

1

2
(U+ · ∇h)(φ+ iφ

⊥
)

+eiΩt
(
Q1,+,+ − P0Q1,+,+ − P0Q2,+,+ −Q3,+,+

)
+e−iΩt

(
Q1,−,+ − P0Q1,−,+ − P0Q2,−,+ −Q3,−,+

)
+ e−2iΩtQ4,−,+ = 0, (3.279)

∂tφ− + φ · ∇hU− + φ · ∇hφ− + V · ∇hφ− +
1

2
(φ− · ∇h)(V − iV

⊥
)

+
1

2
(φ− · ∇h)(φ− iφ

⊥
) +

1

2
(U− · ∇h)(φ− iφ

⊥
)

+e−iΩt
(
Q1,−,− − P0Q1,−,− − P0Q2,−,− −Q3,−,−

)
+eiΩt

(
Q1,+,− − P0Q1,+,− − P0Q2,+,− −Q3,+,−

)
+ e2iΩtQ4,+,− = 0, (3.280)

where

Q1,±,∓ = φ± · ∇hU∓ + φ± · ∇hφ∓ + U± · ∇hφ∓ + U± · ∇hU∓, (3.281)

Q2,±,∓ = (∇h · φ±)U∓ + (∇h · φ±)φ∓ + (∇h · U±)φ∓ + (∇h · U±)U∓, (3.282)

Q3,±,∓ = (

∫ z

0

∇h · φ±(x′, s)ds)∂zU∓ + (

∫ z

0

∇h · φ±(x′, s)ds)∂zφ∓

+(

∫ z

0

∇h · U±(x′, s)ds)∂zφ∓ + (

∫ z

0

∇h · U±(x′, s)ds)∂zU∓, (3.283)

Q4,±,∓ =
1

2

[
(φ± · ∇h)(V ∓ iV

⊥
) + (φ± · ∇h)(φ∓ iφ

⊥
)

+(U± · ∇h)(φ∓ iφ
⊥

) + (U± · ∇h)(V ∓ iV
⊥

)
]
. (3.284)

Recall that we supplement the initial conditions for the limit resonant system (3.250)–(3.252)

as

V 0 = V0, (U±)0 = (u±)0 =
1

2
(Ṽ0 ± iṼ⊥0 ). (3.285)
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Therefore, the initial conditions for the perturbed system is

φ0 = 0, (φ±)0 = 0. (3.286)

3.5.6 Proof of Theorem 3.5.3

In this subsection, we prove Theorem 3.5.3. From Proposition 3.5.2, let V and U± be the

global solution in S ∩D(eτ(t)A : Hr+3(T3)) and S ∩D(eτ(t)A : Hr+2(T3)), respectively, to system

(3.250)-(3.252), with initial data (3.285) and τ(t) defined by (3.260).

Next, we provide the energy estimate in the space of analytic functions for system (3.278)–

(3.280). Applying AreτA to (3.278)–(3.280), and taking L2 inner product of (3.278) with AreτAφ,

(3.279) with 2AreτAφ−, and (3.280) with 2AreτAφ+, thanks to Lemma 2.2.4 and Lemma 2.2.5,

we obtain

1

2

d

dt
‖AreτAφ‖2 =τ̇‖Ar+1/2eτAφ‖2 −

〈
AreτA(φ · ∇hV ), AreτAφ

〉
−
〈
AreτA(φ · ∇hφ), AreτAφ

〉
−
〈
AreτA(V · ∇hφ), AreτAφ

〉
− e2iΩt

〈
AreτA(Q1,+,+ +Q2,+,+), AreτAφ

〉
− e−2iΩt

〈
AreτA(Q1,−,− +Q2,−,−), AreτAφ

〉
,

(3.287)

and

d

dt
(‖AreτAφ+‖2 + ‖AreτAφ−‖2) = 2τ̇(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2)

−2
〈
AreτA(φ · ∇hU+), AreτAφ−

〉
− 2
〈
AreτA(φ · ∇hU−), AreτAφ+

〉
−2
〈
AreτA(φ · ∇hφ+), AreτAφ−

〉
− 2
〈
AreτA(φ · ∇hφ−), AreτAφ+

〉
−2
〈
AreτA(V · ∇hφ+), AreτAφ−

〉
− 2
〈
AreτA(V · ∇hφ−), AreτAφ+

〉
−
〈
AreτA(φ+ · ∇h(V + iV

⊥
)), AreτAφ−

〉
−
〈
AreτA(φ− · ∇h(V − iV

⊥
)), AreτAφ+

〉
−
〈
AreτA(φ+ · ∇h(φ+ iφ

⊥
)), AreτAφ−

〉
−
〈
AreτA(φ− · ∇h(φ− iφ

⊥
)), AreτAφ+

〉
−
〈
AreτA(U+ · ∇h(φ+ iφ

⊥
)), AreτAφ−

〉
−
〈
AreτA(U− · ∇h(φ− iφ

⊥
)), AreτAφ+

〉
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−2eiΩt
(〈
AreτA(Q1,+,+ −Q3,+,+), AreτAφ−

〉
+
〈
AreτA(Q1,+,− −Q3,+,−), AreτAφ+

〉)
−2e−iΩt

(〈
AreτA(Q1,−,+ −Q3,−,+), AreτAφ−

〉
+
〈
AreτA(Q1,−,− −Q3,−,−), AreτAφ+

〉)
−2e2iΩt

〈
AreτAQ4,+,−, A

reτAφ+

〉
− 2e−2iΩt

〈
AreτAQ4,−,+, A

reτAφ−

〉
. (3.288)

There are totally 71 different nonlinear terms in (3.287) and (3.288). We separate them into the

following four different types. We use V to denote the velocity field of the limit resonant system,

i.e., V and U±, and use φ to denote the velocity filed of the perturbed system, i.e., φ and φ±.

• Type 1: terms that are trilinear in φ, e.g.,
〈
AreτA(φ · ∇hφ), AreτAφ

〉
.

• Type 2: terms that are bilinear in φ with no derivative of φ, e.g.,〈
AreτA(φ · ∇hV ), AreτAφ

〉
.

• Type 3: terms that are linear in φ, e.g., e2iΩt
〈
AreτA(U+ · ∇hU+), AreτAφ

〉
.

• Type 4: terms that are bilinear in φ and a derivative of φ, e.g.,
〈
AreτA(V · ∇hφ), AreτAφ

〉
.

For type 1 nonlinear terms (19 terms), using Lemma 2.2.11–2.2.13, and for type 2 nonlinear

terms (15 terms), using Lemma 2.2.2, since φ, φ±, V and U± all have zero mean value in T3, we

have

∣∣∣〈AreτA(φ · ∇hV ), AreτAφ
〉∣∣∣+

∣∣∣〈AreτA(φ · ∇hφ), AreτAφ
〉∣∣∣

+
∣∣∣e2iΩt

〈
AreτA

(
φ+ · ∇hU+ + φ+ · ∇hφ+ + (∇h · U+)φ+ + (∇h · φ+)φ+

)
, AreτAφ

〉∣∣∣
+
∣∣∣e−2iΩt

〈
AreτA

(
φ− · ∇hU− + φ− · ∇hφ− + (∇h · U−)φ− + (∇h · φ−)φ−

)
, AreτAφ

〉∣∣∣
+2
∣∣∣〈AreτA(φ · ∇hU+), AreτAφ−

〉∣∣∣+ 2
∣∣∣〈AreτA(φ · ∇hU−), AreτAφ+

〉∣∣∣
+2
∣∣∣〈AreτA(φ · ∇hφ+), AreτAφ−

〉∣∣∣+ 2
∣∣∣〈AreτA(φ · ∇hφ−), AreτAφ+

〉∣∣∣
+
∣∣∣〈AreτA(φ+ · ∇h(V + iV

⊥
)
)
, AreτAφ−

〉∣∣∣+
∣∣∣〈AreτA(φ− · ∇h(V − iV

⊥
)
)
, AreτAφ+

〉∣∣∣
+
∣∣∣〈AreτA(φ+ · ∇h(φ+ iφ

⊥
)
)
, AreτAφ−

〉∣∣∣+
∣∣∣〈AreτA(φ− · ∇h(φ− iφ

⊥
)
)
, AreτAφ+

〉∣∣∣
+2
∣∣∣eiΩt〈AreτA(φ+ · ∇hU+ + φ+ · ∇hφ+ − (

∫ z

0

∇h · φ+(x′, s)ds)∂zφ+

)
, AreτAφ−

〉∣∣∣
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+2
∣∣∣eiΩt〈AreτA(φ+ · ∇hU− + φ+ · ∇hφ− − (

∫ z

0

∇h · φ+(x′, s)ds)∂zφ−

)
, AreτAφ+

〉∣∣∣
+2
∣∣∣e−iΩt〈AreτA(φ− · ∇hU+ + φ− · ∇hφ+ − (

∫ z

0

∇h · φ−(x′, s)ds)∂zφ+

)
, AreτAφ−

〉∣∣∣
+2
∣∣∣e−iΩt〈AreτA(φ− · ∇hU− + φ− · ∇hφ− − (

∫ z

0

∇h · φ−(x′, s)ds)∂zφ−

)
, AreτAφ+

〉∣∣∣
+
∣∣∣e2iΩt

〈
AreτA

(
φ+ · ∇h(V − iV

⊥
) + φ+ · ∇h(φ− iφ

⊥
)
)
, AreτAφ+

〉∣∣∣
+
∣∣∣e−2iΩt

〈
AreτA

(
φ− · ∇h(V + iV

⊥
) + φ− · ∇h(φ+ iφ

⊥
)
)
, AreτAφ−

〉∣∣∣
≤ Cr

(
‖Ar+1eτAV ‖+ ‖Ar+1eτAU+‖+ ‖Ar+1eτAU−‖

)
×
(1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2

)
+ Cr

(
‖AreτAφ‖+ ‖AreτAφ+‖+ ‖AreτAφ−‖

)
×
(
‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2

)
. (3.289)

For type 3 nonlinear terms (14 terms), when Ω 6= 0, we first explain the idea on the sample

term e2iΩt
〈
AreτA(U+ · ∇hU+), AreτAφ

〉
. Indeed, by differentiation by parts, we have

e2iΩt
〈
AreτA(U+ · ∇hU+), AreτAφ

〉
=

1

2iΩ
∂t

(
e2iΩt

〈
AreτA(U+ · ∇hU+), AreτAφ

〉)
− 1

2iΩ
e2iΩt∂t

(〈
AreτA(U+ · ∇hU+), AreτAφ

〉)
. (3.290)

We leave the first term until integrating in time. For the second term, we have

− 1

2iΩ
e2iΩt∂t

(〈
AreτA(U+ · ∇hU+), AreτAφ

〉)
≤ 1

|Ω|
|τ̇ |
∣∣∣〈Ar+1eτA(U+ · ∇hU+), AreτAφ

〉∣∣∣+
1

2|Ω|

∣∣∣〈AreτA∂t(U+ · ∇hU+), AreτAφ
〉∣∣∣

+
1

2|Ω|

∣∣∣〈AreτA(U+ · ∇hU+), AreτA∂tφ
〉∣∣∣ := I1 + I2 + I3. (3.291)

Thanks to Cauchy–Schwarz inequality, Lemma 2.2.2, and Lemma 2.2.5, since φ, φ±, V and U±
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all have zero mean value in T3, and since r > 5/2, from (3.250) and (3.278), we have

I1 ≤
Cr
|Ω|
|τ̇ |‖Ar+1eτAU+‖‖Ar+2eτAU+‖‖AreτAφ‖

≤ Cr
|Ω|2
|τ̇ |2 + Cr‖Ar+2eτAU+‖4‖AreτAφ‖2, (3.292)

I2 ≤
C

|Ω|

(∣∣∣〈AreτA{(V · ∇hU+ +
1

2
(U+ · ∇h)(V + iV

⊥
)
)
· ∇hU+

}
, AreτAφ

〉∣∣∣
+
∣∣∣〈AreτA{U+ · ∇h

(
V · ∇hU+ +

1

2
(U+ · ∇h)(V + iV

⊥
)
)}
, AreτAφ

〉∣∣∣)
≤ Cr
|Ω|
‖Ar+2eτAU+‖2‖Ar+2eτAV ‖‖AreτAφ‖

≤ Cr‖Ar+2eτAU+‖2‖Ar+2eτAV ‖2‖AreτAφ‖2 +
Cr
|Ω|2
‖Ar+2eτAU+‖2, (3.293)

and

I3 ≤
C

|Ω|

∣∣∣〈AreτAPh(U+ · ∇hU+), AreτA
{
φ · ∇hV + φ · ∇hφ+ V · ∇hφ

+e2iΩtP0

(
Q1,+,+ +Q2,+,+

)
+ e−2iΩtP0

(
Q1,−,− +Q2,−,−

)}〉∣∣∣
≤ C

|Ω|

∣∣∣〈Ar+1eτAPh(U+ · ∇hU+), Ar−1eτA
{
φ · ∇hV + φ · ∇hφ+ V · ∇hφ

+e2iΩtP0

(
Q1,+,+ +Q2,+,+

)
+ e−2iΩtP0

(
Q1,−,− +Q2,−,−

)}〉∣∣∣
≤ Cr
|Ω|
‖Ar+2eτAU+‖2

[
‖AreτAV ‖2 + ‖AreτAU+‖2 + ‖AreτAU−‖2

+‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2
]
. (3.294)

Applying differentiation by parts to all the type 3 nonlinear terms (14 terms), one obtains

−e2iΩt
[〈
AreτA(U+ · ∇hU+), AreτAφ

〉
+
〈
AreτA

(
(∇h · U+)U+

)
, AreτAφ

〉
+
〈
AreτA

(
(U+ · ∇h)(V − iV

⊥
)
)
, AreτAφ+

〉]
−e−2iΩt

[〈
AreτA(U− · ∇hU−), AreτAφ

〉
+
〈
AreτA

(
(∇h · U−)U−

)
, AreτAφ

〉
+
〈
AreτA

(
(U− · ∇h)(V + iV

⊥
)
)
, AreτAφ−

〉]
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−2eiΩt
[〈
AreτA(U+ · ∇hU+), AreτAφ−

〉
+
〈
AreτA(U+ · ∇hU−), AreτAφ+

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zU+

)
, AreτAφ−

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zU−

)
, AreτAφ+

〉]
−2e−iΩt

[〈
AreτA(U− · ∇hU+), AreτAφ−

〉
+
〈
AreτA(U− · ∇hU−), AreτAφ+

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zU+

)
, AreτAφ−

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zU−

)
, AreτAφ+

〉]
= − 1

2iΩ
∂t

{
e2iΩt

[〈
AreτA(U+ · ∇hU+), AreτAφ

〉
+
〈
AreτA

(
(∇h · U+)U+

)
, AreτAφ

〉
+
〈
AreτA

(
(U+ · ∇h)(V − iV

⊥
)
)
, AreτAφ+

〉]}
+

1

2iΩ
∂t

{
e−2iΩt

[〈
AreτA(U− · ∇hU−), AreτAφ

〉
+
〈
AreτA

(
(∇h · U−)U−

)
, AreτAφ

〉
+
〈
AreτA

(
(U− · ∇h)(V + iV

⊥
)
)
, AreτAφ−

〉]}
− 2

iΩ
∂t

{
eiΩt
[〈
AreτA(U+ · ∇hU+), AreτAφ−

〉
+
〈
AreτA(U+ · ∇hU−), AreτAφ+

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zU+

)
, AreτAφ−

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zU−

)
, AreτAφ+

〉]}
+

2

iΩ
∂t

{
e−iΩt

[〈
AreτA(U− · ∇hU+), AreτAφ−

〉
+
〈
AreτA(U− · ∇hU−), AreτAφ+

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zU+

)
, AreτAφ−

〉
−
〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zU−

)
, AreτAφ+

〉]}
+R =: ∂tN +R, (3.295)

where R corresponds the remaining terms.

Using the similar estimates for (3.291), thanks to Young’s inequality, when |Ω| > 1, we have

|R| ≤ Cr

(
‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
×
(1

2
‖AreτAφ‖2 + ‖AreτAφ‖2 + ‖AreτAφ‖2

)
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+
Cr
|Ω|

(
|τ̇ |2 + ‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
. (3.296)

For ∂tN , since φ(0) = φ+(0) = φ−(0) = 0, using Lemma 2.2.2, since V and U± have zero mean

value in T3, by Young’s inequality, we have

|
∫ t

0

∂sN(s)ds| = |N(t)| ≤ Cr
|Ω|

(
‖Ar+1eτAV ‖2 + ‖Ar+1eτAU+‖2 + ‖Ar+1eτAU−‖2

)
×
(
‖AreτAφ‖+ ‖AreτAφ+‖+ ‖AreτAφ+‖

)
. (3.297)

The difficulties are on the estimate of type 4 nonlinear terms (23 terms). Thanks to Lemma

3.4.1, since∇h · V = 0, we have

∣∣∣〈AreτA(V · ∇hφ), AreτAφ
〉∣∣∣

≤ Cr‖AreτAV ‖‖AreτAφ‖2 + Crτ‖Ar+1/2eτAV ‖‖Ar+1/2eτAφ‖2. (3.298)

Thanks to Lemma 2.2.14, by integration by parts, we have

∣∣∣〈AreτA(V · ∇hφ+), AreτAφ−

〉
+
〈
AreτA(V · ∇hφ−), AreτAφ+ >

∣∣∣
≤
∣∣∣〈AreτA(V · ∇hφ+), AreτAφ−

〉
−
〈
V · ∇hA

reτAφ+, A
reτAφ− >

∣∣∣
+
∣∣∣〈AreτA(V · ∇hφ−), AreτAφ+

〉
−
〈
V · ∇hA

reτAφ−, A
reτAφ+

〉∣∣∣
+
∣∣∣〈V · ∇hA

reτAφ+, A
reτAφ−

〉
+
〈
V · ∇hA

reτAφ−, A
reτAφ+ >

∣∣∣
≤ Cr‖AreτAV ‖(‖AreτAφ+‖2 + ‖AreτAφ−‖2)

+Crτ‖Ar+1/2eτAV ‖(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2), (3.299)

where

∣∣∣〈V · ∇hA
reτAφ+, A

reτAφ−

〉
+
〈
V · ∇hA

reτAφ−, A
reτAφ+

〉∣∣∣ = 0 (3.300)

by integration by parts and∇h · V = 0.
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Thanks to Lemma 2.2.14 and Lemma 2.2.16, since r > 5/2, by integration by parts and by

Sobolev inequality, we have

∣∣∣eiΩt〈AreτA(U+ · ∇hφ+), AreτAφ−

〉
+ eiΩt

〈
AreτA(U+ · ∇hφ−), AreτAφ+

〉
−eiΩt

〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zφ+

)
, AreτAφ−

〉
−eiΩt

〈
AreτA

(
(

∫ z

0

∇h · U+(x′, s)ds)∂zφ−

)
, AreτAφ+ >

∣∣∣
≤
∣∣∣〈AreτA(U+ · ∇hφ+), AreτAφ−

〉
−
〈
U+ · ∇hA

reτAφ+, A
reτAφ− >

∣∣∣
+
∣∣∣〈AreτA(U+ · ∇hφ−), AreτAφ+

〉
−
〈
U+ · ∇hA

reτAφ−, A
reτAφ+ >

∣∣∣
+
∣∣∣〈AreτA((

∫ z

0

∇h · U+(x′, s)ds)∂zφ+

)
, AreτAφ−

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ+, A
reτAφ−

〉∣∣∣
+
∣∣∣〈AreτA((

∫ z

0

∇h · U+(x′, s)ds)∂zφ−

)
, AreτAφ+

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ−, A
reτAφ+

〉∣∣∣
+
∣∣∣〈U+ · ∇hA

reτAφ+, A
reτAφ−

〉
+
〈
U+ · ∇hA

reτAφ−, A
reτAφ+

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ+, A
reτAφ−

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ−, A
reτAφ+ >

∣∣∣
≤ Cr‖Ar+1eτAU+‖(‖AreτAφ+‖2 + ‖AreτAφ−‖2)

+Crτ‖Ar+3/2eτAU+‖(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2), (3.301)

where

∣∣∣〈U+ · ∇hA
reτAφ+, A

reτAφ−

〉
+
〈
U+ · ∇hA

reτAφ−, A
reτAφ+

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ+, A
reτAφ−

〉
−
〈

(

∫ z

0

∇h · U+(x′, s)ds)AreτA∂zφ−, A
reτAφ+ >

∣∣∣ = 0 (3.302)
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by integration by parts. Similarly, we have

∣∣∣e−iΩt〈AreτA(U− · ∇hφ+), AreτAφ−

〉
+ e−iΩt

〈
AreτA(U− · ∇hφ−), AreτAφ+

〉
−e−iΩt

〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zφ+

)
, AreτAφ−

〉
−e−iΩt

〈
AreτA

(
(

∫ z

0

∇h · U−(x′, s)ds)∂zφ−

)
, AreτAφ+

〉∣∣∣
≤ Cr‖Ar+1eτAU−‖(‖AreτAφ+‖2 + ‖AreτAφ−‖2)

+Crτ‖Ar+3/2eτAU−‖(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2). (3.303)

Next, since −iU+ = U⊥+ , we have

∣∣∣〈U+ · ∇hA
reτAφ+, A

reτAφ
〉

+
〈

(∇h · AreτAφ+)U+, A
reτAφ

〉
+
〈
U+ · ∇hA

reτA(φ− iφ⊥), AreτAφ+

〉∣∣∣
≤
∣∣∣〈U+ · ∇hA

reτAφ+, A
reτAφ

〉
+
〈
U+ · ∇hA

reτAφ,AreτAφ+

〉∣∣∣
+
∣∣∣〈(∇h · AreτAφ+)U+, A

reτAφ
〉

+
〈
U⊥+ · ∇hA

reτAφ
⊥
, AreτAφ+ >

∣∣∣
≤
∣∣∣〈(∇h · U+)AreτAφ+, A

reτAφ
〉∣∣∣+

∣∣∣〈AreτAφ+ · ∇hU+, A
reτAφ

〉∣∣∣
+
∣∣∣〈U⊥+ · ∇hA

reτAφ
⊥
, AreτAφ+

〉
−
〈
AreτAφ+ · ∇hA

reτAφ, U+

〉∣∣∣. (3.304)

Notice that

∣∣∣〈U⊥+ · ∇hA
reτAφ

⊥
, AreτAφ+

〉
−
〈
AreτAφ+ · ∇hA

reτAφ, U+

〉∣∣∣
=
∣∣∣〈(∇h · AreτAφ)U+, A

reτAφ+

〉∣∣∣ = 0, (3.305)

therefore, by Sobolev inequality and Hölder inequality, and since r > 5/2, we have

∣∣∣〈U+ · ∇hA
reτAφ+, A

reτAφ
〉

+
〈

(∇h · AreτAφ+)U+, A
reτAφ

〉
+
〈
U+ · ∇hA

reτA(φ− iφ⊥), AreτAφ+

〉∣∣∣
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≤ Cr‖∇hU+‖L∞(
1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2)

≤ Cr‖AreτAU+‖(
1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2). (3.306)

Based on this, thanks to Lemma 2.2.14 and Lemma 2.2.15, we have

∣∣∣e2iΩt
〈
AreτA

(
U+ · ∇hφ+ + (∇h · φ+)U+

)
, AreτAφ

〉
+e2iΩt

〈
AreτA

(
U+ · ∇h(φ− iφ

⊥
)
)
, AreτAφ+

〉∣∣∣
≤
∣∣∣〈AreτA(U+ · ∇hφ+

)
, AreτAφ

〉
−
〈
U+ · ∇hA

reτAφ+, A
reτAφ

〉∣∣∣
+
∣∣∣〈AreτA((∇h · φ+)U+

)
, AreτAφ

〉
−
〈

(∇h · AreτAφ+)U+, A
reτAφ

〉∣∣∣
+
∣∣∣〈AreτA(U+ · ∇hφ

)
, AreτAφ+

〉
−
〈
U+ · ∇hA

reτAφ,AreτAφ+

〉∣∣∣
+
∣∣∣〈AreτA(U+ · ∇hφ

⊥
)
, AreτAφ+

〉
−
〈
U+ · ∇hA

reτAφ
⊥
〉
, AreτAφ+

∣∣∣
+
∣∣∣〈U+ · ∇hA

reτAφ+, A
reτAφ

〉
+
〈

(∇h · AreτAφ+)U+, A
reτAφ

〉
+
〈
U+ · ∇hA

reτA(φ− iφ⊥), AreτAφ+

〉∣∣∣
≤ Cr‖AreτAU+‖(

1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2)

+Crτ‖Ar+1/2eτAU+‖(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ+‖2). (3.307)

Similarly, we have

∣∣∣e−2iΩt
〈
AreτA

(
U− · ∇hφ− + (∇h · φ−)U−

)
, AreτAφ

〉
+e−2iΩt

〈
AreτA

(
U− · ∇h(φ+ iφ

⊥
)
)
, AreτAφ−

〉∣∣∣
≤ Cr‖AreτAU−‖(

1

2
‖AreτAφ‖2 + ‖AreτAφ−‖2)

+Crτ‖Ar+1/2eτAU−‖(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ−‖2). (3.308)

For the rest parts in type 4, there is no cancellation as above. First, by Hölder inequality, we

100



have

∣∣∣〈U+ · ∇hA
reτA(φ+ iφ

⊥
)), AreτAφ−

〉∣∣∣
≤
∣∣∣〈A1/2U+ · ∇hA

r−1/2eτA(φ+ iφ
⊥

)), AreτAφ−

〉∣∣∣
+
∣∣∣〈U+ · ∇hA

r−1/2eτA(φ+ iφ
⊥

)), Ar+1/2eτAφ−

〉∣∣∣
≤ Cr(‖U+‖L∞ + ‖A1/2U+‖L∞)(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ−‖2). (3.309)

Based on this, using Lemma 2.2.14–2.2.17, we have

∣∣∣〈AreτA(U+ · ∇h(φ+ iφ
⊥

)), AreτAφ− >
∣∣∣

≤
∣∣∣〈AreτA(U+ · ∇h(φ+ iφ

⊥
)), AreτAφ−

〉
−
〈
U+ · ∇hA

reτA(φ+ iφ
⊥

)), AreτAφ−

〉∣∣∣
+
∣∣∣〈U+ · ∇hA

reτA(φ+ iφ
⊥

)), AreτAφ−

〉∣∣∣
≤ Cr‖AreτAU+‖(

1

2
‖AreτAφ‖2 + ‖AreτAφ−‖2)

+Cr(τ‖Ar+1/2eτAU+‖+ ‖U+‖L∞ + ‖A1/2U+‖L∞)

×(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ−‖2). (3.310)

Similarly,

∣∣∣〈AreτA(U− · ∇h(φ− iφ
⊥

)), AreτAφ+ >
∣∣∣

≤ Cr‖AreτAU−‖(‖AreτAφ‖2 + ‖AreτAφ+‖2)

+Cr(τ‖Ar+1/2eτAU−‖+ ‖U−‖L∞ + ‖A1/2U−‖L∞)

×(‖Ar+1/2eτAφ‖2 + ‖Ar+1/2eτAφ+‖2). (3.311)

Next, by Hölder inequality, we have

∣∣∣〈(∂zU+)AreτA(

∫ z

0

∇h · φ+(x′, s)ds), AreτAφ−

〉∣∣∣
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≤
∣∣∣〈(A1/2∂zU+)Ar−1/2eτA(

∫ z

0

∇h · φ+(x′, s)ds), AreτAφ−

〉∣∣∣
+
∣∣∣〈(∂zU+)Ar−1/2eτA(

∫ z

0

∇h · φ+(x′, s)ds), Ar+1/2eτAφ−

〉∣∣∣
≤ Cr(‖∂zU+‖L∞ + ‖A1/2∂zU+‖L∞)(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2). (3.312)

Based on this, thanks to Lemma 2.2.14 to 2.2.17, we obtain

∣∣∣〈AreτA((

∫ z

0

∇h · φ+(x′, s)ds)∂zU+

)
, AreτAφ−

〉∣∣∣
≤
∣∣∣〈AreτA((

∫ z

0

∇h · φ+(x′, s)ds)∂zU+

)
, AreτAφ−

〉
−
〈

(∂zU+)AreτA(

∫ z

0

∇h · φ+(x′, s)ds), AreτAφ−

〉∣∣∣
+
∣∣∣〈(∂zU+)AreτA(

∫ z

0

∇h · φ+(x′, s)ds), AreτAφ−

〉∣∣∣
≤ Cr‖Ar+1eτAU+‖(‖AreτAφ+‖2 + ‖AreτAφ−‖2)

+Cr(τ‖Ar+3/2eτAU+‖+ ‖∂zU+‖L∞ + ‖A1/2∂zU+‖L∞)

×(‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2). (3.313)

Similarly, we have

∣∣∣〈AreτA((

∫ z

0

∇h · φ+(x′, s)ds)∂zU−

)
, AreτAφ+

〉∣∣∣
+
∣∣∣〈AreτA((

∫ z

0

∇h · φ−(x′, s)ds)∂zU+

)
, AreτAφ−

〉∣∣∣
+
∣∣∣〈AreτA((

∫ z

0

∇h · φ−(x′, s)ds)∂zU−

)
, AreτAφ+

〉∣∣∣
≤ Cr(‖Ar+1eτAU+‖+ ‖Ar+1eτAU−‖)(‖AreτAφ+‖2 + ‖AreτAφ−‖2)

+Cr

(
τ‖Ar+3/2eτAU+‖+ τ‖Ar+3/2eτAU−‖+ ‖∂zU+‖L∞ + ‖∂zU−‖L∞

+‖A1/2∂zU+‖L∞ + ‖A1/2∂zU−‖L∞
)(
‖Ar+1/2eτAφ+‖2 + ‖Ar+1/2eτAφ−‖2

)
. (3.314)

Finally, taking summation of (3.287) and (3.288), and using estimates (3.289)–(3.314) for all
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the nonlinear terms (71 terms), we obtain

d

dt

(1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2

)
≤
[
τ̇ + Cr

(
‖AreτAφ‖+ ‖AreτAφ+‖+ ‖AreτAφ+‖

)
+Crτ

(
‖Ar+1/2eτAV ‖+ ‖Ar+3/2eτAU+‖+ ‖Ar+3/2eτAU−‖

)
+Cr

(
‖U+‖L∞ + ‖U−‖L∞ + ‖∂zU+‖L∞ + ‖∂zU−‖L∞

+‖A1/2U+‖L∞ + ‖A1/2U−‖L∞ + ‖A1/2∂zU+‖L∞ + ‖A1/2∂zU−‖L∞
)]

×
(
‖Ar+1/2eτAφ‖2 + 2‖Ar+1/2eτAφ+‖2 + 2‖Ar+1/2eτAφ−‖2

)
+Cr

(
‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
×
(1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2

)
+
Cr
|Ω|

(
|τ̇ |2 + ‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
+ ∂tN. (3.315)

Notice that eventually we will set

τ̇ + Cr
(
‖AreτAφ‖+ ‖AreτAφ+‖+ ‖AreτAφ+‖

)
+Crτ

(
‖Ar+1/2eτAV ‖+ ‖Ar+3/2eτAU+‖+ ‖Ar+3/2eτAU−‖

)
+Cr

(
‖U+‖L∞ + ‖U−‖L∞ + ‖∂zU+‖L∞ + ‖∂zU−‖L∞

+‖A1/2U+‖L∞ + ‖A1/2U−‖L∞ + ‖A1/2∂zU+‖L∞ + ‖A1/2∂zU−‖L∞
)

= 0. (3.316)

Therefore, by Sobolev inequality, Poincare’ inequality, and Young’s inequality, since r > 5/2,

τ ≤ τ0, and U± have zero mean value, we have

|τ̇ |2 ≤ Cr
(
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ+‖2

)
+Cr(τ

2
0 + 1)

(
‖Ar+1/2eτAV ‖2 + ‖Ar+3/2eτAU+‖2 + ‖Ar+3/2eτAU−‖2

)
. (3.317)

By Young’s inequality, the term |τ̇ |2
|Ω| can be combined with other terms, and we can rewrite (3.315)
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as

d

dt

(1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2

)
≤
[
τ̇ + Cr

(
‖AreτAφ‖+ ‖AreτAφ+‖+ ‖AreτAφ+‖

)
+Crτ

(
‖Ar+1/2eτAV ‖+ ‖Ar+3/2eτAU+‖+ ‖Ar+3/2eτAU−‖

)
+Cr

(
‖U+‖L∞ + ‖U−‖L∞ + ‖∂zU+‖L∞ + ‖∂zU−‖L∞

+‖A1/2U+‖L∞ + ‖A1/2U−‖L∞ + ‖A1/2∂zU+‖L∞ + ‖A1/2∂zU−‖L∞
)]

×
[
‖Ar+1/2eτAφ‖2 + 2‖Ar+1/2eτAφ+‖2 + 2‖Ar+1/2eτAφ−‖2

]
+Cr

(
‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
×
(1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2

)
+
Cr,τ0
|Ω|

(
‖Ar+2eτAV ‖4 + ‖Ar+2eτAU+‖4 + ‖Ar+2eτAU−‖4 + 1

)
+ ∂tN. (3.318)

We set

F :=
1

2
‖AreτAφ‖2 + ‖AreτAφ+‖2 + ‖AreτAφ−‖2, (3.319)

G := ‖Ar+1/2eτAφ‖2 + 2‖Ar+1/2eτAφ+‖2 + 2‖Ar+1/2eτAφ−‖2, (3.320)

and denote by

K(t) := C
exp(Crt)
M,τ0

, K̃(t) := eK(t), (3.321)

which are double exponential and triple exponential in time. We will follow the rule on the use

of notation as indicated in Remark 10. From Proposition 3.5.2 and thanks to Lemma 2.2.7, when

‖eτ0AV 0‖Hr+3 + ‖eτ0AṼ0‖Hr+2 ≤M , we have

‖eτ(t)AV (t)‖Hr+3 ≤ K(t) ≤ K̃1(t), ‖eτ(t)AU±(t)‖Hr+2 ≤ K̃1(t), (3.322)

provided that τ(t) satisfies (3.260). Observe that in (3.318), ‖U±‖L∞ , ‖A1/2U±‖L∞ , ‖∂zU±‖L∞ ,

and ‖A1/2∂zU±‖L∞ are the terms force the smallness assumption on Sobolev norm of the baroclinic
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mode. For δ > 0, by Proposition 3.5.2 and Lemma 2.2.7, thanks to Sobolev inequality, when

‖Ṽ0‖H3+δ = ‖Ṽ0‖H3+δ ≤ 1
|Ω0| , we have

‖U±‖L∞ + ‖A1/2U±‖L∞ + ‖∂zU±‖L∞ + ‖A1/2∂zU±‖L∞ ≤ C‖Ṽ ‖H3+δ ≤ CK̃1(t)

|Ω0|
. (3.323)

Since |Ω| ≥ |Ω0|, we can rewrite (3.318) as

dF

dt
≤ (τ̇ + CrF

1/2 + τK̃2 +
K̃2

|Ω0|
)G+ K̃2F +

K̃2

|Ω0|
+ ∂tN. (3.324)

By setting τ̇ + CrF
1/2 + τK̃2 + K̃2

|Ω0| = 0, we have

dF

dt
≤ K̃2F +

K̃2

|Ω0|
+ ∂tN. (3.325)

By Grönwall inequality, we have

d

dt
(Fe−

∫ t
0 K̃2(s)ds) ≤ K̃2

|Ω0|
+ (∂tN)e−

∫ t
0 K̃2(s)ds. (3.326)

Integrating from 0 to t, noticing that F (0) = 0, we have

F (t)e−
∫ t
0 K̃2(s)ds ≤ 1

|Ω0|

∫ t

0

K̃2(s)ds+

∫ t

0

(∂sN(s))e−
∫ s
0 K̃2(ξ)dξds. (3.327)

From (3.297), we know |N(t)| ≤ 1
|Ω0|K̃3(t)F 1/2. Moreover, 1

|Ω0|K̃3(t)F 1/2 is increasing in time.

By integration by parts in time, thanks to Cauchy–Schwarz inequality, since N(0) = 0, we have

∫ t

0

(∂sN(s))e−
∫ s
0 K̃2(ξ)dξds ≤ |N(t)|+

∫ t

0

|N(s)||∂se−
∫ s
0 K̃2(ξ)dξ|ds

≤ 1

|Ω0|
K̃3F

1/2 +
t

|Ω0|
K̃3F

1/2K̃2 ≤
1

|Ω0|
K̃4 +

1

|Ω0|
F. (3.328)
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Thus, we have

F (t) ≤ 1

|Ω0|
eK̃5(t) +

1

|Ω0|
eK̃5(t)F (t), (3.329)

which is equivalent to

F (t) ≤ eK̃5(t)

|Ω0| − eK̃5(t)
. (3.330)

Plugging this back to τ̇ + CrF
1/2 + τK̃2 + K̃2

|Ω0| = 0, we can require that

τ̇ +
eK̃6(t)√
|Ω0| − eK̃6(t)

+ τK̃6 +
1

|Ω0|
K̃6 ≤ 0. (3.331)

By Gronwall inequality, we can require

d

dt
(τe

∫ t
0 K̃6(s)ds) ≤ −eK̃7(t)√

|Ω0| − eK̃6(t)

− eK̃7(t)

|Ω0|
. (3.332)

Integrating from 0 to t, for some suitable function K̃0(t), we can require

τ(t) =
(
τ0 −

∫ t

0

eK̃0(s)√
|Ω0| − eK̃0(s)

ds−
∫ t

0

eK̃0(s)

|Ω0|
ds
)
e−

∫ t
0 K̃0(s)ds. (3.333)

Notice that τ in (3.333) also satisfies (3.260) when K̃0(t) is chosen suitably. In order to have

τ(t) > 0, we just need to require that

τ0 ≥
3eK̃8(t)√
|Ω0| − eK̃8(t)

and τ0 ≥
3eK̃8(t)

|Ω0|
(3.334)

for some suitable function K̃8(t) > K̃0(t).
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For some new K̃(t) > K̃8(t) and the given Ω0, let T satisfy

Cτ0e
K̃(T ) = |Ω0|, (3.335)

then the two conditions in (3.334) are satisfied on t ∈ [0, T ]. Thus, τ(t) > 0 on t ∈ [0, T ]. From

(3.335), we know that eK̃(T ) ≥ |Ω0|
2Cτ0

, and thus the time T satisfies

T & ln(ln(ln(ln |Ω0|)))→∞, (3.336)

as |Ω0| → ∞.

When K̃(t) is chosen suitably, from (3.330), we know

‖Areτ(t)Aφ(t)‖2 + ‖Areτ(t)Aφ+(t)‖2 + ‖Areτ(t)Aφ−(t)‖2 ≤ eK̃(t)

|Ω0| − eK̃(t)
<∞ (3.337)

on t ∈ [0, T ]. Since φ and φ± have zero mean value in T3, by Poincaré inequality, the L2 norm can

be bounded by the higher order norm. Therefore, we have

‖eτ(t)Aφ(t)‖2
Hr + ‖eτ(t)Aφ+(t)‖2

Hr + ‖eτ(t)Aφ−(t)‖2
Hr ≤

2eK̃(t)

|Ω0| − eK̃(t)
<∞ (3.338)

on t ∈ [0, T ]. Since τ(t) satisfies (3.260), we know that

‖eτ(t)AV (t)‖2
Hr + ‖eτ(t)AU+(t)‖2

Hr + ‖eτ(t)AU−(t)‖2
Hr <∞ (3.339)

on t ∈ [0, T ]. Since V = φ+V and ũ± = φ̃±+ Ũ±, by triangle inequality, thanks to Lemma 2.2.7,

we have

‖eτ(t)AV(t)‖2
Hr + ‖eτ(t)AṼ(t)‖2

Hr <∞ (3.340)

on t ∈ [0, T ]. Therefore, we obtain

(V , Ṽ) ∈ L∞(0, T ;D(eτ(t)A : Hr(T3))). (3.341)
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This completes the proof of Theorem 3.5.3.

3.5.7 Approximation by The Limit Resonant System

As a consequence of the proof of Theorem 3.5.3, the following theorem describes the approx-

imation of the solution to the original system (3.31)–(3.34) by the solution to the limit resonant

system (3.256)–(3.258) in the space of analytic functions, for large rotation rate |Ω| and small

initial baroclinic mode in Sobolev norm.

Theorem 3.5.5. Suppose the conditions in Theorem 3.5.3 hold, and let (V , Ṽ ) be the solution to

system (3.256)–(3.258) with initial data (V0, Ṽ0). Denote by φ = V − V and φ̃ = Ṽ − Ṽ , then, for

|Ω| ≥ |Ω0|, one has

‖eτ(t)Aφ(t)‖Hr + ‖eτ(t)Aφ̃(t)‖Hr .
eK̃(t)

|Ω0| − eK̃(t)
, (3.342)

for t ∈ [0, T ] with T given by (3.270) and τ(t) given by (3.271).

Proof. The proof is an immediate consequence of (3.338).

3.5.8 Remarks and Discussions

Remark 13. To emphasize the difference between smallness in analytic norm and in Sobolev norm,

for |Ω| � 1, consider

Ṽ0 = cke
ik·x, k3 6= 0, (3.343)

with |k| =
⌈
τ−1

0 ln |Ω|
⌉

and |ck| = (ln |Ω|)−r−2|Ω|−1. When 0 < δ < 1, since r > 5/2, we have

‖Ṽ0‖H3+δ ≤ ‖Ṽ0‖Hr+2 ∼ |Ω|−1, ‖eτ0AṼ0‖Hr+2 ∼ 1. Therefore, one can construct a sequence of

initial data

{(Ṽ0)Ω} = ck(Ω)e
ik(Ω)·x, (3.344)

where |k(Ω)| =
⌈
τ−1

0 ln |Ω|
⌉

and |ck(Ω)| = (ln |Ω|)−r−2|Ω|−1. Then as |Ω| → ∞, the existence

time of solutions T → ∞, with initial condition ‖eτ0A(Ṽ0)Ω‖Hr+2 ∼ 1. This result needs fast

rotation, and is very different from Theorem 3.4.3.
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Remark 14. In estimate (3.310) we have the resonance term

(U+ · ∇h)(φ+ iφ
⊥

) = (U+ · ∇hφ− U⊥+ · ∇hφ
⊥

) = U⊥+ (∇⊥h · φ), (3.345)

which involves the vorticity ∇⊥h · φ. Notice that in the limit resonant system (3.256)–(3.257), the

evolution of the barotropic mode V is independent of the baroclinic mode Ṽ , and therefore we can

control the vorticity∇⊥h · V . However, for the original system (3.31)–(3.32) (or the perturbed sys-

tem (3.278)–(3.280)), the evolution of the barotropic mode V (or φ) depends also on the baroclinic

mode Ṽ (or φ±). Therefore, we are unable to control (3.345) without the smallness condition on

the initial baroclinic mode.

Remark 15. In estimate (3.313), we have the term

eiΩt(

∫ z

0

∇h · φ+(x′, s)ds)∂zU+. (3.346)

Despite the oscillation, we are unable apply similar methods as in type 3 due to the loss of derivative

on the baroclinic mode. For this term, we do not have cancellation as other terms in type 4.

Therefore, we are forced to require the smallness condition on the initial baroclinic mode.
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4. PRIMITIVE EQUATIONS WITH WEAK DISSIPATION *

In this chapter, we study the PEs with weak dissipation



ut + uux + wuz + ε1u− Ωv + px − νuzz = 0, (4.1)

vt + uvx + wvz + ε1v + Ωu− νvzz = 0, (4.2)

ε2w + pz + T = 0, (4.3)

ux + wz = 0, (4.4)

Tt − κ∆T + uTx + wTz = 0 (4.5)

in the horizontal channel {(x, z) : 0 ≤ z ≤ H, x ∈ R}.

Remark 16. Since system (4.1)–(4.5) is independent of y variable, the notation

∇ = (∂x, ∂z)

and

∆ = ∂xx + ∂zz

will be used.

We complement this system with the boundary conditions

(
uz, vz, w, T

)∣∣∣
z=0,H

= 0,

u, v, w, T are periodic in x with period 1. (4.6)

and the initial condition

(
u, v, T

)∣∣∣
t=0

=
(
u0, v0, T0

)
. (4.7)

*Reprinted with permission from “On the Well-Posedness of Reduced 3D Primitive Geostrophic Adjustment
Model with Weak Dissipation” by Chongsheng Cao, Quyuan Lin, and Edriss S. Titi, 2020. Journal of Mathematical
Fluid Mechanics, Volume 22:32, Pages 1–34, Copyright [2020] by Springer.
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In particular, without loss of generality, we choose H = 1
2
. Similar as in Chapter 3, we first con-

sider system (4.1)–(4.5) in the unit two dimensional torus T2, subject to the following symmetric

boundary and initial conditions:

u, v, w, p and T are periodic in x and z with period 1; (4.8)

u, v, p are even in z, and w, T are odd in z; (4.9)(
u, v, T

)∣∣∣
t=0

=
(
u0, v0, T0

)
. (4.10)

After solving this problem in T2 subject to (4.8)–(4.10), the solution restricted on original hor-

izontal channel {(x, z) : 0 ≤ z ≤ 1
2
, x ∈ R} will solve the original physical problem with

corresponding boundary conditions (4.6) and initial conditions (4.7). Notably here we should also

assume the initial condition (u0, v0, T0) for the original physical problem is even, even, and odd

extentable in z variable, respectively, so that we are able to work in T2.

4.1 Local Well-posedness

We first study the local well-posedness in Sobolev space for system (4.1)–(4.5) subject to

boundary and initial conditions (4.8)–(4.10).

4.1.1 Reformulation of The Problem.

First, let us reformulate the system (4.1)–(4.5) by deriving equations for w, px and pz in terms

of u, v and T . For the sake of simplicity, we drop the argument t in functions when there is no

confusion.

First, from (4.4) and by boundary condition (4.9), i.e., w(x, 0) = 0, we have

w(x, z) = −
∫ z

0

ux(x, s)ds. (4.11)

From (4.3) and (4.11), we have

pz(x, z) = −T (x, z)− ε2w(x, z) = −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (4.12)
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Next, we will derive equation for px. Notice that since w(x, 0) = w(x, 1) = 0, from (4.11),

one has the compatibility condition

∫ 1

0

ux(x, z)dz = 0. (4.13)

Let us denote by

c(t) :=

∫ 1

0

u(x, z, t)dz, d(x, t) :=

∫ 1

0

v(x, z, t)dz. (4.14)

Integrating (4.1) with respect to z over (0, 1), using boundary condition (4.8) and (4.9), one has:

ċ(t) + ε1c(t) +

∫ 1

0

(
uux(x, z) + wuz(x, z) + px(x, z)

)
dz = Ωd(x, t).

By integration by parts and using (4.4), (4.8) and (4.9), we get

ċ(t) + ε1c(t) +

∫ 1

0

(
(u2)x(x, z) + px(x, z)

)
dz = Ωd(x, t). (4.15)

Integrating (4.15) with respect to x over (0, 1), using compatibility condition (4.13), we have

ċ(t) + ε1c(t) +

∫ 1

0

∫ 1

0

(
(u2)x(x, z) + px(x, z)

)
dxdz = Ω

∫ 1

0

d(x, t)dx.

Thanks to (4.8), we have

ċ(t) + ε1c(t) = Ω

∫ 1

0

d(x, t)dx. (4.16)

Plugging (4.16) back into (4.15) yields

∫ 1

0

px(x, z)dz = Ω

∫ 1

0

v(x, z)dz − Ω

∫ 1

0

∫ 1

0

v(x, z)dxdz −
∫ 1

0

2uux(x, z)dz. (4.17)

112



Next, from (4.11) and (4.12), we have

p(x, z) = ps(x) + ε2

∫ z

0

∫ s

0

ux(x, ξ)dξds−
∫ z

0

T (x, s)ds, (4.18)

where ps(x) = p(x, 0) is the pressure at z = 0. By differentiating (4.18) with respect to x, and

integrating respect to z over (0, 1), by virtue of (4.17), we have

(ps)x(x) =

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds+ Ωv(x, z′)− 2uux(x, z
′)
]
dz′

−Ω

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′. (4.19)

Therefore, by differentiating (4.18) with respect to x, and using (4.19), we have

px(x, z) = ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds+ Ωv(x, z′)− 2uux(x, z
′)
]
dz′

−Ω

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′. (4.20)

By virtue of (4.11), (4.12) and (4.20), and since p is determined up to a constant, the unknowns

for system (4.1)–(4.5) are only (u, v, T ). Therefore, we reformulate system (4.1)–(4.5) to the

following system:


ut − νuzz + uux + wuz + ε1u− Ωv + px = 0, (4.21)

vt − νvzz + u vx + wvz + ε1v + Ωu = 0, (4.22)

Tt − κ∆T + uTx + w Tz = 0, (4.23)
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with w, px, pz defined by



w(x, z) := −
∫ z

0

ux(x, s)ds, (4.24)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds

+Ωv(x, z′)− 2uux(x, z
′)
]
dz′

−Ω

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′, (4.25)

pz(x, z) := −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (4.26)

In this section, we are interested in system (4.21)–(4.26) in the unit two dimensional torus T2,

subject to the following symmetry boundary conditions and initial conditions:

u, v and T are periodic in x and z with period 1; (4.27)

u, v are even in z, and T is odd in z; (4.28)(
u, v, T

)∣∣∣
t=0

=
(
u0, v0, T0

)
. (4.29)

It’s worth mentioning again that our system (4.21)–(4.26) satisfies the compatibility condition

(4.13).

By virtue of (4.24)–(4.26) and (4.27), (4.28), one obtains that w, p also satisfy the symmetry

conditions:

w and p are periodic in x and z with period 1; (4.30)

p is even in z, and w is odd in z. (4.31)

From (4.24) and (4.26), and by differentiating (4.24) with respect to z, we have

ε2w + pz + T = 0, (4.32)
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ux + wz = 0. (4.33)

Therefore, we have the following conclusion.

Lemma 4.1.1. System (4.21)–(4.26) subject to (4.27)–(4.29) is equivalent to original system (4.1)–

(4.5) subject to (4.8)–(4.10).

4.1.2 Main Results

The following is the definition of the strong solutions to system (4.21)–(4.26).

Definition 4.1.2. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry condi-

tions (4.27) and (4.28), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Given time T > 0, we say

(u, v, T ) is a strong solution to system (4.21)–(4.26), subject to (4.27)–(4.29), on the time interval

[0, T ], if

1. u, v and T satisfy the symmetry conditions (4.27) and (4.28);

2. u, v and T have the regularities



u, v, T, ux, vx, Tx ∈ L∞(0, T ;H1),

uz, vz, uxz, vxz ∈ L2(0, T ;H1),

T, Tx ∈ L2(0, T ;H2),

u, v, T ∈ L∞(0, T ;L∞) ∩ C([0, T ];L2),

∇u,∇v,∇T ∈ L2(0, T ;L∞),

∂tu, ∂tv, ∂tT ∈ L2(0, T ;L2);

3. u, v and T satisfy system (4.21)–(4.23) in the following sense:

∂tu− νuzz + uux + wuz + ε1u− Ωv + px = 0 in L2(0, T ;L2),

∂tv − νvzz + uvx + wvz + ε1v + Ωu = 0 in L2(0, T ;L2),
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∂tT − κ∆T + uTx + wTz = 0 in L2(0, T ;L2),

with w, px, pz defined by (4.24)–(4.26), and fulfill the initial condition (4.29).

We have the following result concerning the existence and uniqueness of strong solutions to

system (4.21)–(4.26), subject to (4.27)–(4.29), on T2 × (0, T ), for some positive time T .

Theorem 4.1.3. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry condi-

tions (4.27) and (4.28), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Then there exists some

time T > 0 such that there exists a unique strong solution (u, v, T ) of system (4.21)–(4.26), sub-

ject to (4.27)–(4.29), on the interval [0, T ]. Moreover, the unique strong solution (u, v, T ) depends

continuously on the initial data.

To prove Theorem 4.1.3, we first establish formal a priori estimates for the solutions of system

(4.21)–(4.26). These estimates can be justified rigorously by deriving them first to the Galerkin

approximation system and then passing to the limit using the Aubin-Lions compactness theorem

(Lemma 2.2.10). Based on these, we show the existence of the strong solutions. At the end, we

establish the uniqueness of strong solutions, and the continuous dependence on the initial data.

4.1.3 A priori Estimates

In this section, we start by assuming that system (4.21)-(4.26) holds for smooth functions and

we establish the following formal a priori estimates.

By taking the L2-inner product of equation (4.21) with u,−∆u,∆uxx, equation (4.22) with

v,−∆v,∆vxx, equation (4.32) with w,−∆w,∆wxx and equation (4.23) with T,−∆T,∆Txx, and

by integration by parts, thanks to (4.27) and (4.30), we have

1

2

d

dt

(
‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2

+‖T‖2 + ‖∇T‖2 + ‖∇Tx‖2
)

+ν
(
‖uz‖2 + ‖vz‖2 + ‖∇uz‖2 + ‖∇vz‖2 + ‖∇uxz‖2 + ‖∇vxz‖2

)
+ε1

(
‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2

)
116



+ε2

(
‖w‖2 + ‖∇w‖2 + ‖∇wx‖2

)
+ κ
(
‖∇T‖2 + ‖∆T‖2 + ‖∆Tx‖2

)
=

∫
T2

(uux + wuz − Ωv + px)(−u+ ∆u−∆uxx)

+(uvx + wvz + Ωu)(−v + ∆v −∆vxx)

+(pz + T )(−w + ∆w −∆wxx)

+(uTx + wTz)(−T + ∆T −∆Txx) dxdz. (4.34)

By integration by parts, thanks to (4.27), (4.30) and (4.33), we have

∫
T2

(−Ωv + px) (−u+ ∆u−∆uxx) + Ωu (−v + ∆v −∆vxx)

+pz (−w + ∆w −∆wxx) + (uux + wuz) (−u+ uzz)

+(uvx + wvz)(−v) + (uTx + wTz)(−T ) dxdz = 0. (4.35)

Therefore, the right-hand side of (4.34) becomes

∫
T2

(uux + wuz) (uxx − uxxxx − uxxzz) + (uvx + wvz) (∆v − vxxxx − vxxzz)

+T (−w + ∆w −∆wxx) + (uTx + wTz) (∆T −∆Txx) dxdz. (4.36)

Denote by



Y := 1 + ‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2

+‖T‖2 + ‖∇T‖2 + ‖∇Tx‖2 (4.37)

F := ‖uz‖2 + ‖vz‖2 + ‖∇uz‖2 + ‖∇vz‖2 + ‖∇uxz‖2 + ‖∇vxz‖2, (4.38)

G := ‖w‖2 + ‖∇w‖2 + ‖∇wx‖2, (4.39)

K := ‖∇T‖2 + ‖∆T‖2 + ‖∆Tx‖2. (4.40)

From (4.11), by Hölder inequality and Minkowski inequality, we have

‖w‖ =

(∫ 1

0

∫ 1

0

|
∫ z

0

ux(x, s)ds|2dxdz
) 1

2
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≤
∫ z

0

(∫ 1

0

∫ 1

0

|ux(x, s)|2dxdz
) 1

2

ds

≤
∫ 1

0

(∫ 1

0

∫ 1

0

|ux(x, s)|2dxdz
) 1

2

ds

≤
(∫ 1

0

∫ 1

0

∫ 1

0

|ux(x, s)|2dxdzds
) 1

2

= ‖ux‖. (4.41)

Similarly, one can get

‖wx‖ ≤ ‖uxx‖. (4.42)

Let us estimate each term in (4.36). By integration by parts, using Cauchy–Schwarz inequality,

Young’s inequality and Lemma 2.2.8, thanks to (4.27), (4.30), (4.33), (4.41) and (4.42), we have

∣∣∣∣∫
T2

(uux + wuz)uxxdxdz

∣∣∣∣
≤ C‖u‖

1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )‖uxx‖

+C‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖w‖

1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖uxx‖

≤ CY
3
2 ≤ CY 3, (4.43)

∣∣∣∣∫
T2

(uux + wuz) uxxxx dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(3uxuxx + wxxuz + 2wxuxz) uxx dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )‖uxx‖

3
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wxx‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wx‖‖uxz‖
1
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )
]

≤ ε2
6
‖wxx‖2 +

ν

6
‖uxxz‖2 + Cε2,νY

3 ≤ ν

10
F +

ε2
6
G+ Cε2,νY

3, (4.44)

∣∣∣∣∫
T2

(uux + wuz) uxxzz dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )‖uxz‖

3
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )
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+‖uxz‖‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖uzz‖

1
2 (‖uzz‖

1
2 + ‖uxzz‖

1
2 )

≤ ν

10
(‖uzz‖2 + ‖uxxz‖2 + ‖uxzz‖2) + CνY

2 ≤ ν

10
F + CνY

3, (4.45)

∣∣∣∣∫
T2

(uvx + wvz) ∆v dxdz

∣∣∣∣
≤ C(‖u‖+ ‖uz‖)(‖vx‖+ ‖vxx‖)(‖vxx‖+ ‖vzz‖)

+C(‖w‖+ ‖wz‖)(‖vz‖+ ‖vxz‖)(‖vxx‖+ ‖vzz‖)

≤ ν

10
‖vzz‖2 + CνY

2 ≤ ν

10
F + CνY

3, (4.46)

|
∫
T2

(uvx + wvz) vxxxxdxdz|

= |
∫
T2

(uxxvx + wxxvz + 2uxvxx + 2wxvxz) vxxdxdz|

≤ C
[
‖vxx‖‖vx‖

1
2 (‖vx‖

1
2 + ‖vxx‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wxx‖‖vz‖
1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖vxx‖
3
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )

+‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖vxz‖

1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )‖vxx‖

]
≤ ε2

6
‖wxx‖2 +

ν

10
(‖uxxz‖2 + ‖vxxz‖2) + Cε2,νY

3 ≤ ν

10
F +

ε2
6
G+ Cε2,νY

3, (4.47)

|
∫
T2

(uvx + wvz) vxxzzdxdz|

= |
∫
T2

(uxzvx + vxxuz − vzuxx + wxvxz) vxzdxdz|

≤ C
[
‖vxz‖‖vx‖

1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖uxz‖

1
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )

+‖vxz‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖vxz‖‖vz‖
1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖vxz‖‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖vxz‖

1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )
]
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≤ ν

10
(‖uxxz‖2 + ‖vxxz‖2) + CνY

2 ≤ ν

10
F + CνY

3, (4.48)

|
∫
T2

T (−w + ∆w −∆wxx) dxdz|

≤ ‖T‖‖w‖+ ‖∇T‖‖∇w‖+ ‖∇Tx‖‖∇wx‖ ≤
ε2
6
G+ Cε2Y, (4.49)

and

|
∫
T2

(uTx + wTz) (∆T −∆Txx)dxdz

≤ |
∫
T2

(uTx + wTz) ∆Tdxdz|+ |
∫
T2

(uxTx + uTxx + wTxz + wxTz) ∆Txdxdz|

≤ C
[
‖u‖

1
2 (‖u‖

1
2 + ‖ux‖

1
2 )‖Tx‖

1
2 (‖Tx‖

1
2 + ‖Txz‖

1
2 )

+‖w‖
1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖Tz‖

1
2 (‖Tz‖

1
2 + ‖Txz‖

1
2 )
]
‖∆T‖

+C
[
‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )‖Tx‖

1
2 (‖Tx‖

1
2 + ‖Txz‖

1
2 )

+‖u‖
1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖Txx‖

1
2 (‖Txx‖

1
2 + ‖Txxx‖

1
2 )

+‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖Txz‖

1
2 (‖Txz‖

1
2 + ‖Txzz‖

1
2 )

+‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖Tz‖

1
2 (‖Tz‖

1
2 + ‖Txz‖

1
2 )
]
‖∆Tx‖

≤ κ

2
(‖∆T‖2 + ‖∆Tx‖2) + CκY

3 ≤ κ

2
K + CκY

3. (4.50)

From the estimates above, (4.34) becomes

dY

dt
+ νF + ε2G+ κK ≤ Cε2,ν,κY

3. (4.51)

Therefore, we have dY
dt
≤ Cε2,ν,κY

3, and this implies that

Y (t) ≤

√
Y (0)2

1− Y (0)2Cε2,ν,κt
.
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Choose

T =
3

4Cε2,ν,κY (0)2
.

From above, we have Y (t) ≤ 2Y (0) on [0, T ]. Plugging it in (4.51), we have

dY

dt
+ νF + ε2G+ κK ≤ 8Cε2,ν,κY (0)3, for t ∈ [0, T ]. (4.52)

Integrating above from 0 to t for any time t ∈ [0, T ], we obtain

Y (t) +

∫ t

0

(
νF (s) + ε2G(s) + κK(s)

)
ds ≤ Y (0) + 8Cε2,ν,κtY (0)3.

Therefore, we have 
u, v, T, ux, vx, Tx ∈ L∞(0, T ;H1),

uz, vz, uxz, vxz ∈ L2(0, T ;H1),

T, Tx ∈ L2(0, T ;H2).

(4.53)

By virtue of (4.53) and (4.41), we have

w ∈ L∞(0, T ;H1). (4.54)

Thanks to Lemma 2.2.9, from (4.53), we also have

u, v, T ∈ L∞(0, T ;L∞), ∇u,∇v,∇T ∈ L2(0, T ;L∞). (4.55)
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4.1.4 Existence of The Strong Solutions

In this section, we employ the standard Galerkin approximation procedure to show the exis-

tence of the strong solutions. Let

φk = φk1,k2 :=


√

2 exp (2πik1x) cos(2πk2z) if k2 6= 0

exp (2πik1x) if k2 = 0,

(4.56)

ψk = ψk1,k2 :=
√

2 exp (2πik1x) sin(2πk2z), (4.57)

and

E := {φ ∈ L2(T2) | φ =
∑
k∈Z2

akφk, a−k1,k2 = a∗k1,k2 ,
∑
k∈Z2

|ak|2 <∞},

O := {ψ ∈ L2(T2) | ψ =
∑
k∈Z2

akψk, a−k1,k2 = a∗k1,k2 ,
∑
k∈Z2

|ak|2 <∞}.

Observe that functions in E andO are even and odd with respect to z variable, respectively. More-

over, E and O are closed subspace of L2(T2), orthogonal to each other and consist of real valued

functions. For any m ∈ N, denote by

Em := {φ ∈ L2(T2) | φ =
∑
|k|≤m

akφk, a−k1,k2 = a∗k1,k2},

Om := {ψ ∈ L2(T2) | ψ =
∑
|k|≤m

akψk, a−k1,k2 = a∗k1,k2},

the finite-dimensional subspaces of E and O, respectively. For any function f ∈ L2(T2), denote

by

f̄k :=

∫
T2

f(x, z)φ∗k(x, z)dxdz, f̃k :=

∫
T2

f(x, z)ψ∗k(x, z)dxdz, (4.58)

and write

Pmf :=
∑
|k|≤m

f̄kφk, Πmf :=
∑
|k|≤m

f̃kψk. (4.59)

122



Then Pm and Πm are the orthogonal projections from L2(T2) to Em andOm, respectively. Now let

um =
m∑
|k|=0

ak(t)φk(x, z), vm =
m∑
|k|=0

bk(t)φk(x, z), Tm =
m∑
|k|=0

ck(t)ψk(x, z),

and consider the Galerkin approximation system for our model (4.21)–(4.26) as following:


∂tum − ν∂zzum + Pm[um∂xum + wm∂zum] + ε1um − Ωvm + ∂xpm = 0, (4.60)

∂tvm − ν∂zzvm + Pm[um∂xvm + wm∂zvm] + ε1vm + Ωum = 0, (4.61)

∂tTm − κ∆Tm + Πm[um∂xTm + wm∂zTm] = 0, (4.62)

with wm, ∂xpm, ∂zpm defined by:



wm(x, z) := −
∫ z

0

∂xum(x, s)ds, (4.63)

∂xpm(x, z) := ε2

∫ z

0

∫ s

0

∂xxum(x, ξ)dξds−
∫ z

0

∂xTm(x, s)ds

+

∫ 1

0

[ ∫ z′

0

∂xTm(x, s)ds− ε2
∫ z′

0

∫ s

0

∂xxum(x, ξ)dξds+ Ωvm(x, z′)
]
dz′

−Pm
∫ 1

0

2um∂xum(x, z′)dz′ − Ω

∫ 1

0

∫ 1

0

vm(x′, z′)dx′dz′, (4.64)

∂zpm(x, z) := −Tm(x, z) + ε2

∫ z

0

∂xum(x, s)ds, (4.65)

subject to the following initial conditions:

um(0) = Pmu0, vm(0) = Pmv0, Tm(0) = ΠmT0. (4.66)

Observe that the definitions of wm, ∂xpm and ∂zpm are inspired by (4.24)–(4.26). Moreover, notice

that

(∂xpm)z(x, z) = −∂xTm(x, z) + ε2

∫ z

0

∂xxum(x, s)ds = (∂zpm)x(x, z),
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hence (4.64) and (4.65) are compatible. Moreover, from (4.63) and (4.65), we have

{
ε2wm + ∂zpm + Tm = 0, (4.67)

∂xum + ∂zwm = 0. (4.68)

For each m ∈ N, the Galerkin approximation, system (4.60)–(4.62), together with (4.63)–

(4.65), correspond to a first order system of ordinary differential equations, in the coefficients

ak, bk and ck for 0 ≤ |k| ≤ m, with quadratic nonlinearity. Therefore, by the theory of ordinary

differential equations, there exists some tm > 0 such that system (4.60)–(4.62) together with

(4.63)–(4.65) admit a unique solution (um, vm, Tm) on the interval [0, tm].

Observe that from (4.66), we have ak(0), bk(0), ck(0) ∈ C satisfying a−k1,k2(0) = a∗k1,k2(0),

b−k1,k2(0) = b∗k1,k2(0), and c−k1,k2(0) = c∗k1,k2(0). Thanks to the uniqueness of the solutions of

the ODE system, we conclude that a−k1,k2(t) = a∗k1,k2(t), b−k1,k2(t) = b∗k1,k2(t), and c−k1,k2(t) =

c∗k1,k2(t), for t ∈ [0, tm]. Therefore, um, vm ∈ Em, and Tm ∈ Om.

Since (um, vm, Tm) have finitely many modes, they are smooth functions, and therefore if one

repeats the arguments concerning the a priori estimates for the solution, one obtains the same

estimates for Galerkin approximate solution (um, vm, Tm). More specifically, for each fixed m ∈

N, there exists

Tm :=
3

4Cε2,ν,κYm(0)2
(4.69)

such that

dYm
dt

+ νFm + ε2Gm + κKm ≤ 8Cε2,ν,κYm(0)3 ≤ 8Cε2,ν,κY (0)3, for t ∈ [0, Tm]. (4.70)

Here Y is defined in (4.37), and Ym, Fm, Gm, Km are similar to (4.37)–(4.40), but with subscript

m for all terms. Moreover,

Tm ≥
3

4Cε2,ν,κY (0)2
=: T (4.71)

uniformly in m. Therefore, (4.70) holds for all m for t ∈ [0, T ]. In particular, the L2(T2) norm

of (um, vm, Tm) is uniformly bounded for t ∈ [0, T ]. Hence, the solution (um, vm, Tm) exists at
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least for t ∈ [0, T ]. From (4.70), we have the following uniform bounds for the sequence of the

Galerkin approximate solutions (um, vm, Tm) and the corresponding wm:



um, vm, Tm, ∂xum, ∂xvm, ∂xTm are uniformly bounded in L∞(0, T ;H1),

∂zum, ∂zvm, ∂xzum, ∂xzvm are uniformly bounded in L2(0, T ;H1),

Tm, ∂xTm are uniformly bounded in L2(0, T ;H2),

wm are uniformly bounded in L∞(0, T ;H1),

um, vm, Tm are uniformly bounded in L∞(0, T ;L∞),

∇um,∇vm,∇Tm are uniformly bounded in L2(0, T ;L∞).

(4.72)

By Banach–Alaoglu theorem, there exist a subsequence, denoted also by (um, vm, wm, Tm),

and corresponding limits, (u, v, w, T ), respectively, such that


um → u, vm → v, Tm → T weakly * in L∞(0, T ;H1) and weakly in L2(0, T ;H2),

wm → w weakly * in L∞(0, T ;H1) and weakly in L2(0, T ;H1),

(4.73)

and the limits (u, v, w, T ) satisfy (4.53)–(4.55). From the closeness of E andO, (u, v, w, T ) satisfy

u, v ∈ E , w, T ∈ O, (4.74)

and therefore satisfy the symmetry conditions (4.27) and (4.28).

Now let us verify that the limit w we get from (4.73) satisfies the definition (4.24). Define the

space

V := spank∈Z2{φk, ψk}, (4.75)

where φk, ψk are defined in (4.56) and (4.57). By taking inner product of (4.68) with test function
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φ ∈ V in L2(T2), and using (4.73) to pass m→∞, we have

0 = 〈∂xum + ∂zwm, φ〉 → 〈ux + wz, φ〉.

Since V is dense in L2(T2), and by virtue of (4.53)–(4.55), we have ux + wz = 0 at least in

L∞(0, T ;H1). Thanks to (4.74), we know w = 0 at z = 0, and therefore we can write w(x, z) =

−
∫ z

0
ux(x, s)ds, which is exactly (4.24).

In order to obtain the strong convergence of the approximate solutions, we shall derive uniform

bounds for ∂tum, ∂tvm and ∂tTm. Let us first estimate ∂tum. By taking inner product of equation

(4.60) with test function φ ∈ V in L2(T2), we obtain

∣∣∣〈∂tum, φ〉∣∣∣ =
∣∣∣〈Pm[um∂xum + wm∂zum] + ε1um − Ωvm + ∂xpm − ν∂zzum, φ〉

∣∣∣
≤ |〈um∂xum, Pmφ〉|+ |〈wm∂zum, Pmφ〉|+ |〈ε1um, φ〉|

+|〈Ωvm, φ〉|+ |〈ν∂zzum, φ〉|+ |〈∂xpm, φ〉|

=: A1 + A2 + A3 + A4 + A5 + A6. (4.76)

By Cauchy–Schwarz inequality and Lemma 2.2.8, and using the fact ‖Pmφ‖ ≤ ‖φ‖, we have

A1 = |〈um∂xum, Pmφ〉|

≤ C‖um‖
1
2 (‖um‖

1
2 + ‖∂xum‖

1
2 )‖∂xum‖

1
2 (‖∂xum‖

1
2 + ‖∂xzum‖

1
2 )‖φ‖, (4.77)

A2 = |〈wm∂zum, Pmφ〉|

≤ C‖wm‖
1
2 (‖wm‖

1
2 + ‖∂zwm‖

1
2 )‖∂zum‖

1
2 (‖∂zum‖

1
2 + ‖∂xzum‖

1
2 )‖φ‖, (4.78)

A3 + A4 + A5 = |〈ε1um, φ〉|+ |〈Ωvm, φ〉|+ |〈ν∂zzum, φ〉|

≤ Cε1,ν,Ω(‖um‖+ ‖vm‖+ ‖∂zzum‖)‖φ‖. (4.79)
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From (4.63) and (4.64), we have

A6 =
∣∣∣〈∂xpm, φ〉∣∣∣ ≤ ∣∣∣ε2〈∫ 1

0

∫ z′

0

∂xwm(x, s)dsdz′, φ〉
∣∣∣+
∣∣∣〈∫ 1

0

∫ z′

0

∂xTm(x, s)dsdz′, φ〉
∣∣∣

+
∣∣∣2〈∫ 1

0

um∂xum(x, z′)dz′, Pmφ〉
∣∣∣+
∣∣∣〈Ω∫ 1

0

vm(x, z′)dz′, φ〉
∣∣∣

+
∣∣∣ε2〈∫ z

0

∂xwm(x, ξ)dξ, φ〉
∣∣∣+
∣∣∣〈∫ z

0

∂xTm(x, s)ds, φ〉
∣∣∣

+
∣∣∣〈Ω∫ 1

0

∫ 1

0

vm(x′, z′)dx′dz′, φ〉
∣∣∣ (4.80)

=: B1 +B2 +B3 +B4 +B5 +B6 +B7. (4.81)

By Hölder inequality, Sobolev inequailty and Lemma 2.2.9, and the fact ‖Pmφ‖ ≤ ‖φ‖, we have

B1 +B5 =
∣∣∣ε2 ∫ 1

0

∫ 1

0

∫ 1

0

∫ z′

0

∂xwm(x, s)dsdz′φ(x, z)dxdz
∣∣∣

+
∣∣∣ε2 ∫ 1

0

∫ 1

0

∫ z

0

∂xwm(x, s)dsφ(x, z)dxdz
∣∣∣

≤ ε2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|∂xwm(x, s)||φ(x, z)|dsdz′dxdz

+ε2

∫ 1

0

∫ 1

0

∫ 1

0

|∂xwm(x, s)||φ(x, z)|dsdxdz

≤ ε2

∫ 1

0

∫ 1

0

‖∂xwm(s)‖L2
x
ds‖φ(z)‖L2

x
dz

≤ ε2‖∂xwm‖‖φ‖, (4.82)

B2 +B6 =
∣∣∣ ∫ 1

0

∫ 1

0

∫ 1

0

∫ z′

0

∂xTm(x, s)dsdz′φ(x, z)dxdz
∣∣∣

+
∣∣∣ ∫ 1

0

∫ 1

0

∫ z

0

∂xTm(x, s)dsφ(x, z)dxdz
∣∣∣

≤
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|∂xTm(x, s)||φ(x, z)|dsdz′dxdz

+

∫ 1

0

∫ 1

0

∫ 1

0

|∂xTm(x, s)||φ(x, z)|dsdxdz

≤
∫ 1

0

∫ 1

0

‖∂xTm(s)‖L2
x
‖φ(z)‖L2

x
dsdz
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≤ ‖∂xTm‖‖φ‖, (4.83)

B3 =
∣∣∣2〈∫ 1

0

um∂xum(x, z′)dz′, Pmφ〉
∣∣∣

≤ 2

∫ 1

0

∫ 1

0

∫ 1

0

|um∂xum(x, z′)||Pmφ(x, z)|dz′dxdz

≤ 2

∫ 1

0

∫ 1

0

‖um∂xum(z′)‖L2
x
‖Pmφ(z)‖L2

x
dz′dz

≤ 2‖um∂xum‖‖Pmφ‖

≤ C‖um‖L∞‖∂xum‖‖φ‖, (4.84)

and

B4 +B7 =
∣∣∣〈Ω∫ 1

0

vm(x, z′)dz′, φ〉
∣∣∣+
∣∣∣〈Ω∫ 1

0

∫ 1

0

vm(s, r)dsdr, φ〉
∣∣∣

≤ Ω‖vm‖‖φ‖. (4.85)

From the above and the estimates for A1–A5, using (4.72), since V is dense in L2(T2), we have

∂tum are uniformly bounded in L2(0, T ;L2). (4.86)

By using similar estimates for ∂tvm, we can get

∂tvm are uniformly bounded in L2(0, T ;L2). (4.87)

For ∂tTm, taking inner product of equation (4.62) with some test function φ ∈ V in L2(T2), we

obtain

|〈∂tTm, φ〉| ≤ |〈um∂xTm + wm∂zTm,Πmφ〉|+ |κ〈∆Tm, φ〉| := C1 + C2 + C3.
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By Cauchy–Schwarz inequality and Lemma 2.2.8, and using the fact ‖Πmφ‖ ≤ ‖φ‖, we have

C1 = |〈um∂xTm,Πmφ〉|

≤ C‖um‖
1
2 (‖um‖

1
2 + ‖∂xum‖

1
2 )‖∂xTm‖

1
2 (‖∂xTm‖

1
2 + ‖∂xzTm‖

1
2 )‖φ‖,

C2 = |〈wm∂zTm,Πmφ〉|

≤ C‖wm‖
1
2 (‖wm‖

1
2 + ‖∂zwm‖

1
2 )‖∂zTm‖

1
2 (‖∂zTm‖

1
2 + ‖∂xzTm‖

1
2 )‖φ‖,

C3 = |κ〈∆Tm, φ〉| ≤ Cκ‖Tm‖H2‖φ‖.

From the estimates above, using (4.72), since V is dense in L2(T2), we have

∂tTm are uniformly bounded in L2(0, T ;L2). (4.88)

Then, we infer from (4.86)–(4.88) that there is a subsequence, also denoted by (um, vm, Tm), such

that

∂tum → ∂tu, ∂tvm → ∂tv, ∂tTm → ∂tT weakly in L2(0, T ;L2), (4.89)

By (4.72), (4.86)–(4.88), and thanks to Lemma 2.2.10, we have, for a subsequence, the following

strong convergence holds:

um → u, vm → v, Tm → T in L2(0, T ;H1) ∩ C([0, T ], L2). (4.90)

By virtue of (4.24) and (4.63), using Hölder inequality, we have

‖wm − w‖ = ‖
∫ z

0

(∂xum − ux)(x, s)ds‖

≤
∫ 1

0

∫ 1

0

∫ 1

0

|∂xum − ux|(x, s)dsdxdz ≤ ‖∂xum − ux‖. (4.91)
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Therefore, by (4.90) and above, we have

wm → w in L2([0, T ], L2). (4.92)

Next, we show the convergence of equations (4.60)–(4.62) to the corresponding limits. Taking

inner product of equation (4.60) with test function ψ ∈ L2(0, T ;H1) in L2((0, T )× T2), we have

〈
∂tum − ν∂zzum + Pm[um∂xum + wm∂zum] + ε1um − Ωvm + ∂xpm, ψ

〉
= 0. (4.93)

First, by virtue of (4.73) and (4.89), we have



〈−ν∂zzum, ψ〉 → 〈−νuzz, ψ〉,

〈ε1um, ψ〉 → 〈ε1u, ψ〉,

〈−Ωvm, ψ〉 → 〈−Ωv, ψ〉,

〈∂tum, ψ〉 → 〈∂tu, ψ〉,

(4.94)

as m→∞.

For the nonlinear terms, we have

〈Pm[um∂xum + wm∂zum] + ∂xpm, ψ〉 − 〈uux + wuz + px, ψ〉

= 〈um∂xum + wm∂zum, Pmψ〉+ 〈∂xpm, ψ〉 − 〈uux + wuz + px, ψ〉

= 〈(um − u)∂xum, Pmψ〉+ 〈u(∂xum − ux), Pmψ〉+ 〈uux, Pmψ − ψ〉

+〈(wm − w)∂zum, Pmψ〉+ 〈w(∂zum − uz), Pmψ〉

+〈wuz, Pmψ − ψ〉+ 〈∂xpm − px, ψ〉

=: D1 +D2 +D3 +D4 +D5 +D6 +D7. (4.95)

By Hölder inequality, Young’s inequality and Sobolev inequality, thanks to Lemma 2.2.8, using
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(4.53)–(4.55), (4.72), and (4.90)–(4.92), since

|Pmψ‖L2(0,T ;H1) ≤ ‖ψ‖L2(0,T ;H1), ‖Πmψ‖L2(0,T ;H1) ≤ ‖ψ‖L2(0,T ;H1),

and ‖Pmψ − ψ‖L2(0,T ;H1) → 0 as m→∞, we have

|D1| = |〈(um − u)∂xum, Pmψ〉|

≤ ‖um − u‖L4(0,T ;L2)‖∂xum‖L4(0,T ;L4)‖Pmψ‖L2(0,T ;L4)

≤ C‖um − u‖L4(0,T ;L2)‖∂xum‖L4(0,T ;H1)‖ψ‖L2(0,T ;H1) → 0, (4.96)

|D2| = |〈u(∂xum − ux), Pmψ〉|

≤ ‖u‖L∞(0,T ;L∞)‖∂xum − ux‖L2(0,T ;L2)‖Pmψ‖L2(0,T ;L2)

≤ C‖u‖L∞(0,T ;L∞)‖∂xum − ux‖L2(0,T ;L2)‖ψ‖L2(0,T ;H1) → 0, (4.97)

|D3| = |〈uux, Pmψ − ψ〉|

≤ ‖u‖L∞(0,T ;L∞)‖ux‖L2(0,T ;L2)‖Pmψ − ψ‖L2(0,T ;L2)

≤ C‖u‖L∞(0,T ;L∞)‖ux‖L2(0,T ;L2)‖Pmψ − ψ‖L2(0,T ;H1) → 0, (4.98)

|D4| = |〈(wm − w)∂zum, Pmψ〉|

≤ C‖wm − w‖L2(0,T ;L2)

(
‖∂zum‖L∞(0,T ;L2) + ‖∂xzum‖L∞(0,T ;L2)

)
×
(
‖Pmψ‖L2(0,T ;L2) + ‖Πmψz‖L2(0,T ;L2)

)
≤ C‖wm − w‖L2(0,T ;L2)

(
‖∂zum‖L∞(0,T ;L2) + ‖∂xzum‖L∞(0,T ;L2)

)
×‖ψ‖L2(0,T ;H1) → 0, (4.99)

|D5| = |〈w(∂zum − uz), Pmψ〉|

≤
(
‖w‖L∞(0,T ;L2) + ‖wz‖L∞(0,T ;L2)

)
‖∂zum − uz‖L2(0,T ;L2)

×
(
‖Pmψ‖L2(0,T ;L2) + ‖Pmψx‖L2(0,T ;L2)

)
≤
(
‖w‖L∞(0,T ;L2) + ‖wz‖L∞(0,T ;L2)

)
‖∂zum − uz‖L2(0,T ;L2)

×‖ψ‖L2(0,T ;H1) → 0, (4.100)
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|D6| = |〈wuz, Pmψ − ψ〉|

≤ ‖w‖L2(0,T ;L4)‖uz‖L∞(0,T ;L2)‖Pmψ − ψ‖L2(0,T ;L4)

≤ C‖w‖L2(0,T ;H1)‖uz‖L∞(0,T ;L2)‖Pmψ − ψ‖L2(0,T ;H1) → 0, (4.101)

as m→∞. For D7, from (4.25) and (4.64), and using (4.24) and (4.63) we have

|D7| = |〈∂xpm − px, ψ〉|

≤
∣∣∣〈ε2 ∫ 1

0

∫ z′

0

(∂xwm − wx)(x, s)dsdz′, ψ〉
∣∣∣+
∣∣∣〈ε2 ∫ z

0

(∂xwm − wx)(x, s)ds, ψ〉
∣∣∣

+
∣∣∣〈∫ 1

0

∫ z′

0

(∂xTm − Tx)(x, s)dsdz′, ψ〉
∣∣∣+
∣∣∣〈∫ z

0

(∂xTm − Tx)(x, s)ds, ψ〉
∣∣∣

+2
∣∣∣〈∫ 1

0

(um∂xum − uux)(x, z′)dz′, Pmψ〉
∣∣∣+ 2

∣∣∣〈∫ 1

0

uux(x, z
′)dz′, Pmψ − ψ〉

∣∣∣
+Ω
∣∣∣〈∫ 1

0

(vm − v)(x, z′)dz′, ψ〉
∣∣∣+ Ω

∣∣∣〈∫ 1

0

∫ 1

0

(vm − v)(x′, z′)dx′dz′, ψ〉
∣∣∣

=: E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8. (4.102)

By integration by parts, using Hölder inequality and Sobolev inequality, thanks to (4.53)–(4.55),

(4.72), (4.74) and (4.90)–(4.92), we have

E1 + E2 =
∣∣∣〈ε2 ∫ 1

0

∫ z′

0

(∂xwm − wx)(x, s)dsdz′, ψ〉
∣∣∣

+
∣∣∣〈ε2 ∫ z

0

(∂xwm − wx)(x, s)ds, ψ〉
∣∣∣

=
∣∣∣〈ε2 ∫ 1

0

∫ z′

0

(wm − w)(x, s)dsdz′, ψx〉
∣∣∣+
∣∣∣〈ε2 ∫ z

0

(wm − w)(x, s)ds, ψx〉
∣∣∣

≤ ε2

∫ T
0

∫ 1

0

∫ 1

0

∫ 1

0

|(wm − w)(x, s)||ψx(x, z)|dxdsdzdt

≤ ε2‖wm − w‖L2(0,T ;L2)‖ψ‖L2(0,T ;H1) → 0, (4.103)

E3 + E4 =
∣∣∣〈∫ 1

0

∫ z′

0

(∂xTm − Tx)(x, s)dsdz′, ψ〉
∣∣∣+
∣∣∣〈∫ z

0

(∂xTm − Tx)(x, s)ds, ψ〉
∣∣∣

=
∣∣∣〈∫ 1

0

∫ z′

0

(Tm − T )(x, s)dsdz′, ψx〉
∣∣∣+
∣∣∣〈∫ z

0

(Tm − T )(x, s)ds, ψx〉
∣∣∣

≤
∫ T

0

∫ 1

0

∫ 1

0

∫ 1

0

|(Tm − T )(x, s)||ψx(x, z)|dsdxdzdt

132



≤ ‖Tm − T‖L2(0,T ;L2)‖ψ‖L2(0,T ;H1) → 0, (4.104)

E5 = 2
∣∣∣〈∫ 1

0

(um∂xum − uux)(x, z′)dz′, Pmψ〉
∣∣∣

=
∣∣∣〈∫ 1

0

(um + u)(um − u)(x, z′)dz′, Pmψx〉
∣∣∣

≤
∫ T

0

∫ 1

0

∫ 1

0

‖(um + u)(z′)‖L4
x
‖(um − u)(z′)‖L4

x
‖(Pmψx(z)‖L2

x
dz′dzdt

≤ C(‖um‖L∞(0,T ;H1) + ‖u‖L∞(0,T ;H1))‖um − u‖L2(0,T ;H1)‖ψ‖L2(0,T ;H1) → 0, (4.105)

E6 = 2
∣∣∣(∫ 1

0

uux(x, z
′)dz′, Pmψ − ψ〉

∣∣∣
≤
∫ T

0

∫ 1

0

∫ 1

0

∫ 1

0

|uux(x, z′)||(Pmψ − ψ〉(x, z)|dz′dxdzdt

≤ C‖u‖L∞(0,T ;L∞)

∫ T
0

∫ 1

0

∫ 1

0

‖ux(z′)‖L2
x
‖(Pmψ − ψ〉(z)‖L2

x
dz′dzdt

≤ C‖u‖L∞(0,T ;L∞)‖ux‖L2(0,T ;L2)‖Pmψ − ψ‖L2(0,T ;L2) → 0, (4.106)

E7 + E8 = Ω
∣∣∣(∫ 1

0

(vm − v)(x, z′)dz′, ψ〉
∣∣∣+ Ω

∣∣∣(∫ 1

0

∫ 1

0

(vm − v)(x′, z′)dx′dz′, ψ〉
∣∣∣

≤ Ω‖vm − v‖L2(0,T ;L2)‖ψ‖L2(0,T ;L2) → 0, (4.107)

as m → ∞. From the estimates above, D7 → 0 as m → ∞. Consequently, we can pass m → ∞

in (4.93) to get

〈
∂tu− νuzz + uux + wuz + ε1u− Ωv + px, ψ

〉
= 0, (4.108)

for ψ ∈ L2(0, T ;H1). Therefore, we have

∂tu− νuzz + uux + wuz + ε1u− Ωv + px = 0 in L2(0, T ;H−1). (4.109)

By virtue of (4.89), all the terms in (4.109) are actually in L2(0, T ;L2). Consequently, we have

∂tu− νuzz + uux + wuz + ε1u− Ωv + px = 0 in L2(0, T ;L2). (4.110)
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Using analogous arguments, we can obtain the desired results for v and T ,

∂tv − νvzz + uvx + wvz + ε1v + Ωu = 0 in L2(0, T ;L2), (4.111)

and

∂tT − κ∆T + uTx + wTz = 0 in L2(0, T ;L2). (4.112)

Finally, due to (4.90), one has, for every t ∈ [0, T ], um(t) → u(t), vm(t) → v(t), Tm(t) →

T (t) in L2. In particular, um(0) → u(0), vm(0) → v(0), Tm(0) → T (0) in L2. On the other

hand, by (4.66), we have um(0) → u0, vm(0) → v0, and Tm(0) → T0 in L2. As a result, (u, v, T )

satisfies the desired initial condition: u(0) = u0, v(0) = v0 and T (0) = T0.

We obtain the local in time existence of strong solutions to system (4.21)–(4.26), subjects to

(4.27)–(4.29), on the interval [0, T ].

4.1.5 Uniqueness of Solutions and Continuous Dependence on The Initial Data

In this section, we will show the continuous dependence on the initial data and the unique-

ness of the strong solutions. Let (u1, v1, w1, p1, T1) and (u2, v2, w2, p2, T2) be two strong solutions

of system (4.21)–(4.26), with the initial data ((u0)1, (v0)1, (T0)1) and ((u0)2, (v0)2, (T0)2), respec-

tively. Denote by u = u1 − u2, v = v1 − v2, w = w1 − w2, p = p1 − p2, T = T1 − T2. It is clear

that



∂tu− νuzz + u1ux + w1uz + u(u2)x + w(u2)z + ε1u− Ωv + px = 0, (4.113)

∂tv − νvzz + u1vx + w1vz + u(v2)x + w(v2)z + ε1v + Ωu = 0, (4.114)

ε2w + pz + T = 0, (4.115)

ux + wz = 0, (4.116)

∂tT − κ∆T + u1Tx + w1Tz + u(T2)x + w(T2)z = 0. (4.117)

By taking the inner product of equation (4.113) with u, (4.114) with v, (4.115) with w, and
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(4.117) with T , in L2(T2), and by integration by parts, thanks to (4.27), (4.33), and (4.116), we get

1

2

d(‖u‖2 + ‖v‖2 + ‖T‖2)

dt
+ ε1(‖u‖2 + ‖v‖2)

+ν(‖uz‖2 + ‖vz‖2) + ε2‖w‖2 + κ ‖∇T‖2

≤
∣∣∣∣∫

T2

(u(u2)x + w(u2)z) u dxdz

∣∣∣∣+

∣∣∣∣∫
T2

(u(v2)x + w(v2)z) v dxdz

∣∣∣∣
+

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣+

∣∣∣∣∫
T2

(u(T2)x + w(T2)z) T dxdz

∣∣∣∣ =: I1 + I2 + I3 + I4. (4.118)

By integration by parts, using Hölder inequality and Young’s inequality, thanks to (4.27), (4.33),

and (4.116), we have

I1 =

∣∣∣∣∫
T2

(u(u2)x + w(u2)z) u dxdz

∣∣∣∣
≤ ε2

8
‖w‖2 + Cε2(‖(u2)x‖L∞ + ‖(u2)z‖2

L∞)‖u‖2, (4.119)

I2 =

∣∣∣∣∫
T2

(u(v2)x + w(v2)z) v dxdz

∣∣∣∣
≤ ε2

8
‖w‖2 + Cε2(‖(v2)x‖L∞ + ‖(v2)z‖2

L∞)(‖u‖2 + ‖v‖2), (4.120)

I3 =

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2 + Cε2‖T‖2, (4.121)

and

I4 =

∣∣∣∣∫
T2

(u(T2)x + w(T2)z) T dxdz

∣∣∣∣
≤ ε2

8
‖w‖2 + Cε2(‖(T2)x‖L∞ + ‖(T2)z‖2

L∞)(‖u‖2 + ‖T‖2). (4.122)
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From the estimates above, we obtain

d(‖u‖2 + ‖v‖2 + ‖T‖2)

dt
+ ε1(‖u‖2 + ‖v‖2)

+ν(‖uz‖2 + ‖vz‖2) + ε2‖w‖2 + κ ‖∇T‖2

≤ Cε2K
(
‖u‖2 + ‖v‖2 + ‖T‖2

)
, (4.123)

where

K = 1 + ‖∇u2‖2
L∞ + ‖∇v2‖2

L∞ + ‖∇T2‖2
L∞ . (4.124)

Thanks to (4.55), we obtain K ∈ L1(0, T ). Therefore, by Gronwall inequality, we obtain

‖u(t)‖2 + ‖v(t)‖2 + ‖T (t)‖2

≤ (‖u(t = 0)‖2 + ‖v(t = 0)‖2 + ‖T (t = 0)‖2) exp(Cε2

∫ t

0

K(s)ds), (4.125)

The above inequality proves the continuous dependence of the solutions on the initial data, and in

particular, when u(t = 0) = v(t = 0) = T (t = 0) = 0, we have u(t) = v(t) = T (t) = 0, for all

t ≥ 0. Therefore, the strong solution is unique.

4.1.6 The Special Case: Ω = 0, v ≡ 0 and T ≡ 0

In this section, we assume that Ω = 0, v ≡ 0 and T ≡ 0. In this case, system (4.1)–(4.5) will

be reduced to 
∂tu− νuzz + uux + wuz + ε1u+ px = 0, (4.126)

ε2w + pz = 0, (4.127)

ux + wz = 0. (4.128)

Remark 17. There are two reasons why we consider this special case. Firstly, notice that when ε1 =

ε2 = 0, system (4.126)–(4.128) is exactly the 2D hydrostatic Navier-Stokes equations. So we can

regard system (4.126)–(4.128) as the hydrostatic Navier-Stokes equations with damping. Secondly,
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as we will see later, we can show the local regularity of strong solution to system (4.126)–(4.128)

for initial conditions with less regularity. The reason why we need to assume more regularity for

initial data to system (4.21)–(4.23) is that we need to bound terms which contain vxx. For uxx, we

can use incompressible condition uxx = −wxz to avoid such an issue. Therefore, in the case when

we do not have the evolution equation for v, we can require less for the initial data.

As before, our domain is T2, and the boundary and initial condition are


u, w and p are periodic in x and z with period 1, (4.129)

u and p are even in z, and w is odd in z, (4.130)

u|t=0 = u0. (4.131)

Using an analogue argument to that in section 4.1.1, system (4.126)–(4.128) subject to (4.129)–

(4.131) is equivalent to the following:

ut − νuzz + uux + wuz + ε1u+ px = 0, (4.132)

with w, px, pz defined by



w(x, z) := −
∫ z

0

ux(x, s)ds, (4.133)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds

+

∫ 1

0

[
− ε2

∫ z′

0

∫ s

0

uxx(x, ξ)dξds− 2uux(x, z
′)
]
dz′, (4.134)

pz(x, z) := ε2

∫ z

0

ux(x, s)ds, (4.135)

subject to the following symmetry boundary condition and initial condition

{
u is periodic in x and z with period 1, and is even in z; (4.136)

u|t=0 = u0. (4.137)

By virtue of (4.133)–(4.135) and (4.136), we obtain that w, p also satisfy the symmetry condi-
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tions

{
w and p are periodic in x and z with period 1; (4.138)

p is even in z, and w is odd in z. (4.139)

By virtue of (4.133) and (4.135), and by differentiating (4.133) with respect to z, we have

ε2w + pz = 0, (4.140)

ux + wz = 0. (4.141)

In this section, we are interested in system (4.132)–(4.135) in the unit two-dimensional flat torus

T2, subject to (4.136)–(4.137). First, we give the definition of strong solution to system (4.132)–

(4.135).

Definition 4.1.4. Suppose that u0 ∈ H1(T2) satisfies the symmetry conditions (4.136), with the

compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xzu0 ∈ L2(T2). Given time

T > 0, we say u is a strong solution to system (4.132)–(4.135), subject to (4.136)–(4.137), on the

time interval [0, T ], if

1. u satisfies the symmetry condition (4.136);

2. u has the regularities



u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ∩ C([0, T ], L2) ∩ L∞(0, T ;L∞),

uz ∈ L2(0, T ;L∞),

uxz ∈ L∞(0, T ;L2),

uxzz ∈ L2(0, T ;L2),

∂tu ∈ L2(0, T ;L2);
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3. u satisfies system (4.132) in the following sense:

∂tu− νuzz + uux + wuz + ε1u+ px = 0, in L2(0, T ;L2),

with w, px, pz defined by (4.133)–(4.135), and fulfill the initial condition (4.137).

We have the following result concerning the locally existence and uniqueness of strong solu-

tions to system (4.132)–(4.135), subject to (4.136)–(4.137), on T2× (0, T ), for some positive time

T .

Theorem 4.1.5. Suppose that u0 ∈ H1(T2) satisfies the symmetry conditions (4.136), with the

compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that ∂xzu0 ∈ L2(T2). Then there

exists some T > 0 such that there is a unique strong solution u of system (4.132)–(4.135), sub-

ject to (4.136)–(4.137), on the interval [0, T ]. Moreover, the unique strong solution u depends

continuously on the initial data.

Proof. For sake of simplicity, we will only do a priori estimates formally here. By taking the inner

product of equation (4.132) with u, −uzz, and equation (4.140) with w, −wzz, in L2(T2), we get

1

2

d

dt

(
‖u‖2 + ‖uz‖2

)
+ ν

(
‖uz‖2 + ‖uzz‖2

)
+ ε1

(
‖u‖2 + ‖uz‖2

)
+ ε2

(
‖w‖2 + ‖wz‖2

)
= −

∫
T2

(uux + wuz) (u− uzz) dxdz −
∫
T2

(
px (u− uzz) + pz (w − wzz)

)
dxdz. (4.142)

By integration by parts, thanks to (4.136), (4.138) and (4.141), we have

−
∫
T2

(uux + wuz) (u− uzz) dxdz −
∫
T2

(
px (u− uzz) + pz (w − wzz)

)
dxdz = 0. (4.143)

Thanks to Gronwall inequality, we obtain

‖u(t)‖2 + ‖uz(t)‖2 + 2

∫ t

0

[
ν
(
‖uz(s)‖2 + ‖uzz(s)‖2

)
+ ε2

(
‖w(s)‖2 + ‖wz(s)‖2

)]
ds

≤ ‖u(0)‖2 + ‖uz(0)‖2. (4.144)

139



From the estimates above, we obtain

u, uz bounded in L∞(0, T ;L2),

w, uzz, wz = −ux bounded in L2(0, T ;L2), (4.145)

for arbitrary T > 0. By taking the inner product of equation (4.132) with−uxx, uxxzz and equation

(4.140) with −wxx, wxxzz in L2(T2), integrating by parts, thanks to (4.136) and (4.138) we get

1

2

d

dt
(‖ux‖2 + ‖uxz‖2) + ν (‖uxz‖2 + ‖uxzz‖2)

+ε1(‖ux‖2 + ‖uxz‖2) + ε2(‖wx‖2 + ‖wxz‖2)

=

∫
T2

(uux + wuz) (uxx − uxxzz) dxdz

+

∫
T2

(
px(uxx − uxxzz) + pz(wxx − wxxzz)

)
dxdz. (4.146)

By integration by parts, thanks to (4.136), (4.138) and (4.141), we have

∫
T2

(
px(uxx − uxxzz) + pz(wxx − wxxzz)

)
dxdz = 0. (4.147)

Therefore, we have

1

2

d

dt
(‖ux‖2 + ‖uxz‖2) + ν (‖uxz‖2 + ‖uxzz‖2)

+ε1(‖ux‖2 + ‖uxz‖2) + ε2(‖wx‖2 + ‖wxz‖2)

≤ |
∫
T2

(uux + wuz) (uxx − uxxzz) dxdz|. (4.148)

Denote by



Y := 1 + ‖ux‖2 + ‖uxz‖2, (4.149)

F := ‖uxz‖2 + ‖uxzz‖2, (4.150)

G := ‖wx‖2 + ‖wxz‖2, (4.151)

K := 1 + ‖u‖2 + ‖uz‖2 + ‖uzz‖2. (4.152)
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By integration by parts and Lemma 2.2.8, using Young’s inequality, thanks to (4.41), (4.42),

(4.136), (4.138) and (4.141), we have

∣∣∣∣∫
T2

(uux + wuz)uxxdxdz

∣∣∣∣
≤ C‖u‖

1
2 (‖u‖

1
2 + ‖ux‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )‖wxz‖

+C‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖w‖

1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖wxz‖

≤ ε2
4
G+ Cε2KY

2, (4.153)

∣∣∣∣∫
T2

(uux + wuz) uxxzz dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2 (‖ux‖

1
2 + ‖wxz‖

1
2 )‖uxz‖

3
2 (‖uxz‖

1
2 + ‖uxzz‖

1
2 )

+‖uxz‖‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖uzz‖

1
2 (‖uzz‖

1
2 + ‖uxzz‖

1
2 )
]

≤ ε2
4
G+

ν

2
F + Cε2,νKY

2. (4.154)

From the estimates above and by (4.145), we have

dY

dt
+ νF + ε2G ≤ Cε2,νKY

2, with K ∈ L1(0, T ) for arbitrary T > 0. (4.155)

Therefore, we have dY
dt
≤ Cε2,νKY

2, and this implies that

Y (t) ≤ Y (0)

1− Y (0)Cε2,ν
∫ t

0
Kds

. (4.156)

Let T be such that ∫ T
0

Kds =
1

2Y (0)Cε2,ν
. (4.157)

From above, we have Y (t) ≤ 2Y (0) on [0, T ]. Plugging it in (4.155), we have

dY

dt
+ νF + ε2G ≤ 4Cε2,νKY (0)2, for t ∈ [0, T ]. (4.158)
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Integrating above from 0 to t for any time t ∈ [0, T ], we obtain

Y (t) +

∫ t

0

(νF (s) + ε2G(s)) ds ≤ Y (0) + 4Cε2,νY (0)2

∫ t

0

K(s)ds. (4.159)

From the estimates above, by virtue of (4.141), (4.145) and (4.41), we obtain

u ∈ L
∞(0, T ;H1) ∩ L2(0, T ;H2), uxz ∈ L∞(0, T ;L2), uxzz ∈ L2(0, T ;L2), (4.160)

w,wz, wzz ∈ L∞(0, T ;L2), wx, wxz ∈ L2(0, T ;L2). (4.161)

Using Galerkin method, one can obtain local existence of strong solution to system (4.132)–

(4.135), subject to (4.136)–(4.137). Next, we show the continuous dependence of solutions on

the initial data and the uniqueness of the strong solutions. Let (u1, w1, p1) and (u2, w2, p2) be two

strong solutions of system (4.132)–(4.135), and initial data (u0)1 and (u0)2, respectively. Denote

by u = u1 − u2, w = w1 − w2, p = p1 − p2. It is clear that

{
∂tu+ u1ux + w1uz + u(u2)x + w(u2)z + ε1u− νuzz + px = 0, (4.162)

ε2w + pz = 0. (4.163)

By taking the inner product of equation (4.162) with u, (4.163) with w in L2(T2), we have

1

2

d‖u‖2

dt
+ ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2

=

∫
T2

u(u1ux + w1uz + u(u2)x + w(u2)z) + (pxu+ pzw) dxdz. (4.164)

By integration by parts, thanks to (4.136), (4.138) and (4.141), we have

∫
T2

u(u1ux + w1uz) + (pxu+ pzw) dxdz = 0. (4.165)

Therefore, we have

1

2

d‖u‖2

dt
+ ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2 ≤

∣∣∣ ∫
T2

u
(
u(u2)x + w(u2)z

)
dxdz

∣∣∣. (4.166)
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From (4.160) and (4.161), and by Lemma 2.2.9, we obtain that w2, (u2)z ∈ L2(0, T ;L∞). There-

fore, using Young’s inequality and Hölder inequality, we have

|
∫
T2

u2(u2)xdxdz| = |
∫
T2

u2(w2)zdxdz| = |2
∫
T2

uuzw2 dxdz|

≤
∫
T2

(ν
2
|uz|2 + C|uw2|2

)
dxdz ≤ Cν‖w2‖2

L∞‖u‖2 +
ν

2
‖uz‖2 (4.167)

and

|
∫
T2

uw(u2)zdxdz| ≤
∫
T2

(ε2
2
|w|2 + C|u(u2)z|2

)
dxdz

≤ Cε2‖(u2)z‖2
L∞‖u‖2 +

ε2
2
‖w‖2. (4.168)

From the estimates above, we obtain

d

dt
‖u‖2 + ε1‖u‖2 + ε2‖w‖2 + ν‖uz‖2 ≤ Cε2,ν(‖w2‖2

L∞ + ‖(u2)z‖2
L∞)‖u‖2. (4.169)

Thanks to Gronwall inequality, we have

‖u(t)‖2 ≤ ‖u(0)‖2 exp

(
Cε2,ν

∫ t

0

(
‖w2(s)‖2

L∞ + ‖(u2)z(s)‖2
L∞

)
ds

)
. (4.170)

The above inequality proves the continuous dependence of the solutions on the initial data, and in

particular, when u(t = 0) = 0, we have u(t) = 0, for all t ∈ [0, T ]. Therefore, the strong solution

is unique.

4.2 Global Well-posedness with Small Initial Data

In previous section, we establish the local well-posedness of system (4.1)–(4.5) subject to

boundary and initial conditions (4.8)–(4.10). In this section, we will show the following result

concerning the global existence and uniqueness of strong solutions to system (4.21)–(4.26), sub-

ject to boundary and initial conditions (4.27)–(4.29), provided that the initial data is small enough.
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Theorem 4.2.1. Suppose that u0, v0, T0, ∂xu0, ∂xv0, ∂xT0 ∈ H1(T2) satisfy the symmetry condi-

tions (4.27) and (4.28), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

‖u0‖H1 + ‖v0‖H1 + C0‖T0‖H1 + ‖∂xu0‖H1 + ‖∂xv0‖H1 + C0‖∂xT0‖H1 << 1

is small enough, for some C0 > 0 determined in (4.187). Then for any time T > 0, there exists

a unique strong solution (u, v, T ) of system (4.21)–(4.26), subject to (4.27)–(4.29), on the interval

[0, T ]. Moreover, the unique strong solution (u, v, T ) depends continuously on the initial data.

Proof. From Theorem 4.1.3, we know there exists time T ∗ > 0 such that there is a unique strong

solution (u, v, T ) of system (4.21)–(4.26), subject to (4.27)–(4.29), on the interval [0, T ∗]. Assume

the maximal time T for existence of solution is finite, then it is necessary to have

lim sup
t→T −

(‖u(t)‖H1 + ‖v(t)‖H1 + ‖T (t)‖H1 + ‖ux(t)‖H1 + ‖vx(t)‖H1 + ‖Tx(t)‖H1) =∞.

We will prove this is not true for any finite time T > 0, and therefore T =∞.

First, notice that since T is an odd function with respect to z variable, we have

∫
T2

T dxdz ≡ 0. (4.171)

By taking the L2-inner product of (4.21) with u,−∆u,∆uxx, (4.22) with v,−∆v,∆vxx, (4.32)

with w,−∆w,∆wxx, and (4.23) with C0T,−C0∆T,C0∆Txx, in L2(T2), by integration by parts,

thanks to (4.27), (4.30) and (4.33), we have

1

2

d

dt

(
‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2

+C0‖T‖2 + C0‖∇T‖2 + C0‖∇Tx‖2
)

+ν
(
‖uz‖2 + ‖vz‖2 + ‖∇uz‖2 + ‖∇vz‖2 + ‖∇uxz‖2 + ‖∇vxz‖2

)
+ε1

(
‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2

)
+ε2

(
‖w‖2 + ‖∇w‖2 + ‖∇wx‖2

)
+ C0κ

(
‖∇T‖2 + ‖∆T‖2 + ‖∆Tx‖2

)
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=

∫
T2

(uux + wuz − Ωv + px) (−u+ ∆u−∆uxx) + (uvx + wvz + Ωu) (−v + ∆v −∆vxx)

+ (pz + T ) (−w + ∆w −∆wxx) + C0 (uTx + wTz) (−T + ∆T −∆Txx) dxdz

=

∫
T2

(uux + wuz) (uxx − uxxxx − uxxzz) + (uvx + wvz) (∆v − vxxxx − vxxzz)

+T (−w + ∆w −∆wxx) + C0 (uTx + wTz) (∆T −∆Txx) dxdz. (4.172)

Denote by



Y := ‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2 + C0‖T‖2

+C0‖∇T‖2 + C0‖∇Tx‖2, (4.173)

F := ‖uz‖2 + ‖vz‖2 + ‖∇uz‖2 + ‖∇vz‖2 + ‖∇uxz‖2 + ‖∇vxz‖2, (4.174)

G := ‖w‖2 + ‖∇w‖2 + ‖∇wx‖2, (4.175)

H := ‖∇T‖2 + ‖∆T‖2 + ‖∆Tx‖2, (4.176)

K := ‖u‖2 + ‖∇u‖2 + ‖v‖2 + ‖∇v‖2 + ‖∇ux‖2 + ‖∇vx‖2. (4.177)

We estimate each term in (4.172). By integration by parts, using Poincaré inequality, Young’s

inequality and Lemma 2.2.8, thanks to (4.27), (4.30), (4.33), (4.41), (4.42) and (4.171), we have

∣∣∣∣∫
T2

(uux + wuz)wxzdxdz

∣∣∣∣
≤ C‖u‖

1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )‖wxz‖

+C‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖w‖

1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖wxz‖

≤ C(‖w‖2 + ‖wz‖2 + ‖wxz‖2)(‖u‖+ ‖uz‖+ ‖uxz‖)

≤ CGY 1/2, (4.178)

∣∣∣∣∫
T2

(uux + wuz) uxxxx dxdz

∣∣∣∣
=

∣∣∣∣∫
T2

(3wzwxz + wxxuz + 2wxuxz) uxx dxdz

∣∣∣∣
≤ C

[
‖wz‖

1
2 (‖wz‖

1
2 + ‖wxz‖

1
2 )‖wxz‖‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )
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+‖wxx‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wx‖‖uxz‖
1
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )
]

≤ C(‖∇wx‖2 + ‖∇u‖2 + ‖∇ux‖2 + ‖uxxz‖2)(‖∇u‖+ ‖∇ux‖)

≤ C(F +G+K)Y 1/2, (4.179)

∣∣∣∣∫
T2

(uux + wuz) uxxzz dxdz

∣∣∣∣
=

∣∣∣∣∫
T2

(uxuxz + wxuzz) uxz dxdz

∣∣∣∣
≤ C

[
‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )‖uxz‖

3
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )

+‖uxz‖‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖uzz‖

1
2 (‖uzz‖

1
2 + ‖uxzz‖

1
2 )
]

≤ C(F +G+K)Y 1/2, (4.180)

∣∣∣∣∫
T2

(uvx + wvz) ∆v dxdz

∣∣∣∣
≤ C(‖u‖+ ‖uz‖)(‖vx‖+ ‖vxx‖)(‖vxx‖+ ‖vzz‖)

+C(‖w‖+ ‖wz‖)(‖vz‖+ ‖vxz‖)(‖vxx‖+ ‖vzz‖)

≤ C(K + F )Y 1/2, (4.181)

|
∫
T2

(uvx + wvz) vxxxxdxdz|

= |
∫
T2

(uxxvx + wxxvz + 2uxvxx + 2wxvxz) vxxdxdz|

≤ C
[
‖vxx‖‖vx‖

1
2 (‖vx‖

1
2 + ‖vxx‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wxx‖‖vz‖
1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖vxx‖
3
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxx‖

1
2 )

+‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖vxz‖

1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )‖vxx‖

]
≤ C(K + F +G)Y 1/2, (4.182)
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|
∫
T2

(uvx + wvz) vxxzzdxdz|

= |
∫
T2

(uxzvx + vxxuz − vzuxx + wxvxz) vxzdxdz|

≤ C
[
‖vxz‖‖vx‖

1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖uxz‖

1
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )

+‖vxz‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖vxz‖‖vz‖
1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖vxz‖‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖vxz‖

1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )
]

≤ C(K + F +G)Y 1/2, (4.183)

|
∫
T2

T (−w + ∆w −∆wxx) dxdz|

≤ ‖T‖‖w‖+ ‖∇T‖‖∇w‖+ ‖∇Tx‖‖∇wx‖

≤ ε2
2
G+

1

2ε2
(‖T‖2 + ‖∇T‖2 + ‖∇Tx‖2)

≤ ε2
2
G+

1

2ε2
(Cp‖∇T‖2 + ‖∇T‖2 + ‖∇Tx‖2)

≤ ε2
2
G+

1

2ε2
(Cp + 1)H, (4.184)

where, thanks to (4.171), we apply Poincaré inequality to obtain the last inequality. Finally,

C0|
∫
T2

(uTx + wTz) (∆T −∆Txx)dxdz|

≤ |
∫
T2

(uTx + wTz) ∆Tdxdz|+ |
∫
T2

(uxTx + uTxx + wTxz + wxTz) ∆Txdxdz|

≤ C0C
[
‖u‖

1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖Tx‖

1
2 (‖Tx‖

1
2 + ‖Txx‖

1
2 )

+‖w‖
1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖Tz‖

1
2 (‖Tz‖

1
2 + ‖Txz‖

1
2 )
]
‖∆T‖

+C0C
[
‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )‖Tx‖

1
2 (‖Tx‖

1
2 + ‖Txx‖

1
2 )

+‖u‖
1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖Txx‖

1
2 (‖Txx‖

1
2 + ‖Txxx‖

1
2 )

+‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖Txz‖

1
2 (‖Txz‖

1
2 + ‖Txzz‖

1
2 )

+‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖Tz‖

1
2 (‖Tz‖

1
2 + ‖Txz‖

1
2 )
]
‖∆Tx‖
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≤ C0CHY
1/2. (4.185)

From the estimates above, we obtain

1

2

dY

dt
+ ν(1− C

ν
Y

1
2 )F + ε1(1− C

ε1
Y

1
2 )K

+ε2(
1

2
− C

ε2
Y

1
2 )G+ C0κ(1− C

κ
Y

1
2 − Cp + 1

2ε2κC0

)H ≤ 0. (4.186)

Choose

C0 =
Cp + 1

ε2κ
. (4.187)

Observe that if Y0 < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ), there exists t∗ > 0 such that dY
dt
≤ 0 on [0, t∗], and

hence Y (t) ≤ Y0 for t ∈ [0, t∗], and in particular, Y (t∗) < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ). Thus we can

repeat this procedure to arbitrary time t > 0 to get Y (t) ≤ Y0 < min( ν
2

C2 ,
ε21
C2 ,

ε22
4C2 ,

κ2

4C2 ) for all

time. This implies the required bound for the global in time existence of strong solution.

4.3 Voigt α-regularization

In order to study the possible finite-time blow-up of system (4.1)–(4.5), and to give a reliable

numerical regularization, in this section, we study the Voigt α-regularization of system (4.1)–(4.5)

with ν = 0, which is



(u− α2uzz)t + uux + wuz + ε1u− Ωv + px = 0, (4.188)

(v − α2vzz)t + uvx + wvz + ε1v + Ωu = 0, (4.189)

ε2w + pz + T = 0, (4.190)

ux + wz = 0, (4.191)

Tt − κ∆T + uTx + wTz = 0. (4.192)

Remark 18. We take ν = 0 here. Indeed, when ν > 0, the system has additional dissipation, and

thus is easier to study. One can repeat the procedures below and get similar result when ν > 0.
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As in the case of system (4.1)–(4.5), our domain is T2, and the boundary and initial conditions

are

u, v, w, p and T are periodic in x and z with period 1, (4.193)

u, v and p are even in z, and w, T are odd in z, (4.194)(
u, v, T

)
|t=0 =

(
u0, v0, T0

)
. (4.195)

Using analogue argument as for system (4.1)–(4.5), system (4.188)–(4.192) subject to (4.193)–

(4.195) is equivalent to the following:


(u− α2uzz)t + uux + wuz + ε1u− Ωv + px = 0, (4.196)

(v − α2vzz)t + u vx + wvz + ε1v + Ωu = 0, (4.197)

Tt − κ∆T + uTx + w Tz = 0, (4.198)

with w, px, pz defined by



w(x, z) := −
∫ z

0

ux(x, s)ds, (4.199)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds

+Ωv(x, z′)− 2uux(x, z
′)
]
dz′

−Ω

∫ 1

0

∫ 1

0

v(x′, z′)dx′dz′, (4.200)

pz(x, z) := −T (x, z) + ε2

∫ z

0

ux(x, s)ds, (4.201)

subject to the symmetry boundary conditions and initial conditions (4.27)–(4.29). We also have

(4.32) and (4.33), for which we repeat here:

{
ε2w + pz + T = 0, (4.202)

ux + wz = 0. (4.203)
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In this section, we will show the global regularity of strong solution to system (4.196)–(4.201),

subject to (4.27)–(4.29), for arbitrary initial data without smallness assumption.

4.3.1 Main Results

First, we give the definition of strong solution to system (4.196)–(4.201), subject to (4.27)–

(4.29).

Definition 4.3.1. Suppose that u0, v0 ∈ H2(T2) and T0 ∈ H1(T2) satisfy the symmetry condi-

tions (4.27) and (4.28), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

∂xxzu0, ∂xxzv0 ∈ L2(T2). Given time T > 0, we say (u, v, T ) is a strong solution to the system

(4.196)–(4.201), subject to (4.27)–(4.29), on the time interval [0, T ], if

1. u, v and T satisfy the symmetry conditions (4.27) and (4.28);

2. u, v and T have the regularities



u, v ∈ L∞(0, T ;H2) ∩ C([0, T ];H1),

uxxz, vxxz ∈ L∞(0, T ;L2),

∂tu ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),

T ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1) ∩ C([0, T ];L2),

∂tv ∈ L∞(0, T ;H1)

∂tT ∈ L2(0, T ;L2);

3. u, v and T satisfy system (4.196)–(4.198) in the following sense:

∂t(u− α2uzz) + uux + wuz + ε1u− Ωv + px = 0 in L∞(0, T ;L2) ∩ L2(0, T ;H1),

∂t(v − α2vzz) + uvx + wvz + ε1v + Ωu = 0 in L∞(0, T ;H1),

∂tT − κ∆T + uTx + wTz = 0 in L2(0, T ;L2),
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with w, px, pz defined by (4.199)–(4.201), and fulfill the initial condition (4.29).

We have the following result concerning the existence and uniqueness of strong solutions to

system (4.196)–(4.201), subject to (4.27)–(4.29), on T2 × (0, T ), for any positive time T .

Theorem 4.3.2. Suppose that u0, v0 ∈ H2(T2) and T0 ∈ H1(T2) satisfy the symmetry condi-

tions (4.27) and (4.28), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

∂xxzu0, ∂xxzv0 ∈ L2(T2). Let time T > 0. Then there exists a unique strong solution (u, v, T )

of system (4.196)–(4.201), subject to (4.27)–(4.29), on the interval [0, T ]. Moreover, the unique

strong solution (u, v, T ) depends continuously on the initial data.

For the proof, we will only do formal a priori energy estimates and omit the details of showing

existence of solutions. Then we show the uniqueness of solutions and the continuous dependence

on the initial data.

4.3.2 A priori Estimates

By taking the L2-inner product of equation (4.196) with u, equation (4.197) with v, equation

(4.202) with w and equation (4.198) with T , in L2(T2), by integration by parts, thanks to (4.27),

we get

1

2

d

dt

(
‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2

)
+ε1‖u‖2 + ε1‖v‖2 + ε2‖w‖2 + κ ‖∇T‖2

= −
∫
T2

(uux + wuz) u dxdz −
∫
T2

(uvx + wvz) v dxdz

−
∫
T2

(upx + wpz + wT ) dxdz −
∫
T2

(uTx + wTz) T dxdz. (4.204)

By integration by parts, thanks to (4.27), (4.30) and (4.203), we have

−
∫
T2

(uux + wuz) u dxdz −
∫
T2

(uvx + wvz) v dxdz

−
∫
T2

(upx + wpz) dxdz −
∫
T2

(uTx + wTz) T dxdz = 0. (4.205)
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By Cauchy–Schwarz inequality and Young’s inequality, we have

−
∫
T2

wTdxdz ≤ ‖w‖‖T‖ ≤ ε2
2
‖w‖2 + Cε2‖T‖2. (4.206)

As a result of the above, we have

d

dt

(
‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2

)
+2ε1‖u‖2 + 2ε1‖v‖2 + ε2‖w‖2 + 2κ ‖∇T‖2

≤ Cε2(‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2). (4.207)

Thanks to Gronwall inequality, we obtain

(‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2)(t)

+

∫ t

0

(
2ε1‖u(s)‖2 + 2ε1‖v(s)‖2 + ε2‖w(s)‖2 + 2κ ‖∇T (s)‖2

)
ds

≤ (‖u0‖2 + ‖v0‖2 + ‖T0‖2 + α2 ‖∂zu0‖2 + α2 ‖∂zv0‖2)eCε2 t. (4.208)

Consequently, we have 
u, v, uz, vz ∈ L∞(0, T ;L2),

w ∈ L2(0, T ;L2),

T ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1)

(4.209)

for arbitrary T > 0.

By taking the L2-inner product of equation (4.196) with −uzz and equation (4.202) with −wzz

in L2(T2), by integration by parts, thanks to (4.27) and (4.30), we get

1

2

d(‖uz‖2 + α2 ‖uzz‖2)

dt
+ ε1‖uz‖2 + ε2‖wz‖2

=

∫
T2

(uux + wuz − Ωv)uzz + (uzzpx + wzzpz + wzzT ) dxdz. (4.210)
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By integration by parts, thanks to (4.27), (4.30) and (4.203), we have

∫
T2

(uux + wuz)uzzdxdz +

∫
T2

(uzzpx + wzzpz) dxdz

= −
∫
T2

[uzux + uuxz + wzuz + wuzz]uzdxdz −
∫
T2

p(ux + wz)zzdxdz

= −1

2

∫
T2

u2
z(ux + wz)dxdz −

∫
T2

p(ux + wz)zzdxdz = 0. (4.211)

By integration by parts, using Cauchy–Schwarz inequality and Young’s inequality, thanks to (4.27)

and (4.30), we have

∫
T2

(−Ωvuzz + wzzT ) dxdz =

∫
T2

(Ωvzuz − wzTz) dxdz

≤ Ω‖vz‖‖uz‖+ ‖wz‖‖Tz‖

≤ ε2
2
‖wz‖2 + Cε2‖Tz‖2 + CΩ‖vz‖(1 + ‖uz‖2 + α2‖uzz‖2). (4.212)

As a result of the above, we have

d(1 + ‖uz‖2 + α2‖uzz‖2)

dt
+ ε1‖uz‖2 + ε2‖wz‖2

≤ CΩ‖vz‖(1 + ‖uz‖2 + α2‖uzz‖2) + Cε2‖Tz‖2. (4.213)

Thanks to Gronwall inequality, we obtain

‖uz(t)‖2 + α2 ‖uzz(t)‖2 +

∫ t

0

(
2ε1‖uz(s)‖2 + ε2‖wz(s)‖2

)
ds

≤ Cε2

(
1 +

∫ t

0

‖Tz(s)‖2ds+ ‖∂zu0‖2 + α2 ‖∂zzu0‖2

)
exp

(
CΩ

∫ t

0

‖vz(s)‖ds
)
. (4.214)

By virtue of (4.209) and the above, we have

uzz ∈ L∞(0, T ;L2), wz = −ux ∈ L2(0, T ;L2), (4.215)
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for arbitrary T > 0.

By taking the L2-inner product of equation (4.196) with−uxx and equation (4.202) with−wxx,

in L2(T2), by integration by parts, thanks to (4.27) and (4.30), we get

1

2

d(‖ux‖2 + α2 ‖uxz‖2)

dt
+ ε1‖ux‖2 + ε2‖wx‖2

=

∫
T2

(uux + wuz − Ωv)uxx + (uxxpx + wxxpz + wxxT ) dxdz. (4.216)

By integration by parts, thanks to (4.27), (4.30) and (4.203), we have

∫
T2

(uxxpx + wxxpz) dxdz = 0. (4.217)

By integration by parts, using Cauchy–Schwarz inequality and Young’s inequality, thanks to (4.27),

(4.30) and (4.203), we have

−
∫
T2

Ωvuxxdxdz =

∫
T2

Ωvwxzdxdz = −
∫
T2

Ωvzwxdxdz

≤ CΩ,ε2‖vz‖2 +
ε2
6
‖wx‖2, (4.218)

and

∫
T2

Twxx dxdz = −
∫
T2

Txwx dxdz ≤ Cε2‖Tx‖2 +
ε2
6
‖wx‖2. (4.219)

By integration by parts, using Young’s inequality and Lemma 2.2.8, thanks to (4.27), (4.30) and

(4.203), we have

∫
T2

(uux + wuz) uxx dxdz = −
∫
T2

((ux)
3 + wxuzux) dxdz

= −
∫
T2

(−wz(ux)2 + wxuzux) dxdz = −
∫
T2

(2wuxuxz + wxuzux) dxdz

≤ C
[
‖w‖

1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )‖uxz‖

+‖wx‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖ux‖

1
2 (‖ux‖

1
2 + ‖uxz‖

1
2 )
]
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≤ CCε2
(
1 + ‖w‖2 + ‖ux‖2 + ‖uz‖2

) (
1 + ‖ux‖2 + α2‖uxz‖2

)
+
ε2
6
‖wx‖2. (4.220)

From the estimates above, we have

d(1 + ‖ux‖2 + α2 ‖uxz‖2)

dt
+ ε1‖ux‖2 + ε2‖wx‖2

≤ Cε2
(
1 + ‖w‖2 + ‖ux‖2 + ‖uz‖2

) (
1 + ‖ux‖2 + α2‖uxz‖2

)
+Cε2,Ω(‖vz‖2 + ‖Tx‖2). (4.221)

By Gronwall inequality, we obtain

‖ux(t)‖2 + α2 ‖uxz(t)‖2 +

∫ t

0

(
2ε1‖ux(s)‖2 + ε2‖wx(s)‖2

)
ds

≤ Cε2,Ω

(
1 +

∫ t

0

(
‖vz(s)‖2 + ‖Tx(s)‖2

)
ds+ ‖∂xu0‖2 + α2 ‖∂xzu0‖2

)
× exp

(
Cε2

∫ t

0

(
1 + ‖w(s)‖2 + ‖ux(s)‖2 + ‖uz(s)‖2

)
ds

)
. (4.222)

By virtue of (4.209), (4.215) and the above, we have

u, uz ∈ L∞(0, T ;H1), w ∈ L2(0, T ;H1), (4.223)

for arbitrary T > 0.

By virtue of (4.223), (4.41) and (4.42), we have

w ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1), (4.224)

for arbitrary T > 0. By taking the L2-inner product of equation (4.197) with −∆v in L2(T2), and

by integration by parts, thanks to (4.27), we have

1

2

d(‖∇v‖2 + α2 ‖∇vz‖2)

dt
+ ε1‖∇v‖2
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=

∫
T2

[
(uvx + wvz) (vxx + vzz) + Ωu∆v

]
dxdz. (4.225)

By integration by parts, using Cauchy–Schwarz inequality and Lemma 2.2.8, thanks to (4.27),

(4.30) and (4.203), we have

|
∫
T2

uvxvxx dxdz| = |
∫
T2

1

2
uxv

2
x dxdz| = |

∫
T2

1

2
wzv

2
x dxdz| = |

∫
T2

wvxvxz dxdz|

≤ C‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖vx‖

1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖vxz‖, (4.226)

|
∫
T2

uvxvzz dxdz| ≤ C‖u‖
1
2 (‖u‖

1
2 + ‖ux‖

1
2 )‖vx‖

1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖vzz‖, (4.227)

|
∫
T2

wvzvxx dxdz| = |
∫
T2

vx(wxvz + wvxz) dxdz|

≤ C‖wx‖‖vx‖
1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖vz‖

1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )

+C‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖vx‖

1
2 (‖vx‖

1
2 + ‖vxz‖

1
2 )‖vxz‖, (4.228)

|
∫
T2

wvzvzz dxdz| ≤ C‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖vz‖

1
2 (‖vz‖

1
2 + ‖vzz‖

1
2 )‖vzz‖, (4.229)

and

|
∫
T2

Ωu∆v dxdz| = |
∫
T2

Ω∇u∇v dxdz| ≤ CΩ‖∇u‖‖∇v‖. (4.230)

As a result of the above and by Young’s inequality, we conclude

d(1 + ‖∇v‖2 + α2 ‖∇vz‖2)

dt
+ 2ε1‖∇v‖2

≤ CΩ

(
1 + ‖u‖2 + ‖w‖2 + ‖∇u‖2 + ‖wx‖2

) (
1 + ‖∇v‖2 + α2 ‖∇vz‖2

)
. (4.231)
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Thanks to Gronwall inequality, we obtain

‖∇v(t)‖2 + α2 ‖∇vz(t)‖2 +

∫ t

0

2ε1‖∇v(s)‖2ds

≤
(
1 + ‖∇v0‖2 + α2 ‖∇∂zv0‖2

)
× exp

(
CΩ

∫ t

0

(
1 + ‖u‖2 + ‖w‖2 + ‖∇u‖2 + ‖wx‖2

)
(s) ds

)
. (4.232)

By virtue of (4.209), (4.215), (4.223) and the above, we have

v, vz ∈ L∞(0, T ;H1), (4.233)

for arbitrary T > 0.

By taking the L2-inner product of equation (4.198) with −∆T in L2(T2), and by integration

by parts, thanks to (4.27), we have

1

2

d‖∇T‖2

dt
+ κ ‖∆T‖2 =

∫
T2

(uTx + wTz)∆T. (4.234)

By Lemma 2.2.8 and Young’s inequality, thanks to (4.203), we have

∫
T2

(uTx + wTz)∆T

≤ C
(
‖u‖

1
2 (‖u‖

1
2 + ‖uz‖

1
2 )‖Tx‖

1
2 (‖Tx‖

1
2 + ‖Txx‖

1
2 )‖∆T‖

+‖w‖
1
2 (‖w‖

1
2 + ‖wz‖

1
2 )‖Tz‖

1
2 (‖Tz‖

1
2 + ‖Txz‖

1
2 )‖∆T‖

)
≤ κ

2
‖∆T‖2 + Cκ

(
1 + ‖u‖4 + ‖uz‖4 + ‖w‖4 + ‖wz‖4

)
‖∇T‖2,

=
κ

2
‖∆T‖2 + Cκ

(
1 + ‖u‖4 + ‖uz‖4 + ‖w‖4 + ‖ux‖4

)
‖∇T‖2. (4.235)

As a result of the above we conclude

d‖∇T‖2

dt
+ κ ‖∆T‖2 ≤ Cκ

(
1 + ‖u‖4 + ‖uz‖4 + ‖w‖4 + ‖ux‖4

)
‖∇T‖2. (4.236)
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Thanks to Gronwall inequality, we obtain

‖∇T (t)‖2 + κ

∫ t

0

‖∆T (s)‖2 ds

≤ ‖∇T0‖2 exp

(
Cκ

∫ t

0

(
1 + ‖u‖4 + ‖uz‖4 + ‖w‖4 + ‖ux‖4

)
(s)ds

)
. (4.237)

By virtue of (4.209), (4.215), (4.223), (4.224) and the above, we have

T ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2). (4.238)

By taking the L2-inner product of equation (4.196) with uxxxx, equation (4.197) with vxxxx, and

equation (4.202) with wxxxx in L2(T2), and by integration by parts, thanks to (4.27) and (4.30), we

get

1

2

d(‖uxx‖2 + ‖vxx‖2 + α2 ‖uxxz‖2 + α2 ‖vxxz‖2)

dt

+ε1‖uxx‖2 + ε1‖vxx‖2 + ε2‖wxx‖2

= −
∫
T2

(uux + wuz − Ωv) uxxxx dxdz −
∫
T2

(uvx + wvz + Ωu) vxxxx dxdz

−
∫
T2

(uxxxxpx + wxxxxpz + wxxxxT ) dxdz. (4.239)

By integration by parts, thanks to (4.27), (4.30) and (4.203), , we have

∫
T2

(−Ωvuxxxx + Ωuvxxxx) dxdz −
∫
T2

(uxxxxpx + wxxxxpz) dxdz = 0. (4.240)

By integration by parts, using Young’s inequality and Lemma 2.2.8, thanks to (4.27), (4.30) and

(4.203), we have

∣∣∣∣∫
T2

(uux + wuz) uxxxx dxdz

∣∣∣∣ =

∣∣∣∣∫
T2

(5wuxxz −
1

2
wxxuz − 2wxuxz) uxx dxdz

∣∣∣∣
≤ C

[
‖w‖

1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )‖uxxz‖
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+‖wxx‖‖uz‖
1
2 (‖uz‖

1
2 + ‖uxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )

+‖wx‖‖uxz‖
1
2 (‖uxz‖

1
2 + ‖uxxz‖

1
2 )‖uxx‖

1
2 (‖uxx‖

1
2 + ‖uxxz‖

1
2 )
]

≤ ε2
6
‖wxx‖2 + Cε2

(
1 + ‖w‖2 + ‖wx‖2 + ‖uz‖2 + ‖uxz‖2

)
×
(
1 + ‖uxx‖2 + α2 ‖uxxz‖2

)
, (4.241)

and

∣∣∣ ∫
T2

(uvx + wvz) vxxxxdxdz
∣∣∣ =

∣∣∣ ∫
T2

(uxxvx + wxxvz − 4wvxxz + 2wxvxz) vxxdxdz
∣∣∣

≤
∣∣∣ ∫

T2

(wxvxz + wxxvz − 4wvxxz + 2wxvxz) vxxdxdz
∣∣∣+
∣∣∣ ∫

T2

wxvxvxxz dxdz
∣∣∣

≤ C
[
‖wx‖‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )‖vxz‖

1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )

+‖wxx‖‖vz‖
1
2 (‖vz‖

1
2 + ‖vxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖w‖
1
2 (‖w‖

1
2 + ‖wx‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )‖vxxz‖

+‖wx‖‖vxz‖
1
2 (‖vxz‖

1
2 + ‖vxxz‖

1
2 )‖vxx‖

1
2 (‖vxx‖

1
2 + ‖vxxz‖

1
2 )

+‖wx‖
1
2 (‖wx‖

1
2 + ‖wxz‖

1
2 )‖vx‖

1
2 (‖vx‖

1
2 + ‖vxx‖

1
2 )‖vxxz‖

]
≤ ε2

6
‖wxx‖2 + Cε2

(
1 + ‖w‖2 + ‖wx‖2 + ‖vx‖2 + ‖vz‖2 + ‖vxz‖2

)
×
(
1 + ‖vxx‖2 + α2 ‖vxxz‖2

)
. (4.242)

By integration by parts, using Cauchy-Schwarz inequality and Young’s inequality, thanks to (4.27)

and (4.30), we have

|
∫
T2

Twxxxxdxdz| = |
∫
T2

Txxwxxdxdz| ≤ ‖Txx‖‖wxx‖ ≤
ε2
6
‖wxx‖2 + Cε2‖Txx‖2. (4.243)

As a result of the above, we conclude

d(1 + ‖uxx‖2 + ‖vxx‖2 + α2 ‖uxxz‖2 + α2 ‖vxxz‖2)

dt

+2ε1‖uxx‖2 + 2ε1‖vxx‖2 + ε2‖wxx‖2
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≤ Cε2
(
1 + ‖w‖2 + ‖wx‖2 + ‖uz‖2 + ‖uxz‖2 + ‖vx‖2 + ‖vz‖2 + ‖vxz‖2 + ‖Txx‖2

)
×
(
1 + ‖uxx‖2 + ‖vxx‖2 + α2 ‖uxxz‖2 + α2 ‖vxxz‖2

)
. (4.244)

By Gronwall inequality, we obtain

‖uxx(t)‖2 + ‖vxx(t)‖2 + α2 ‖uxxz(t)‖2 + α2 ‖vxxz(t)‖2

+

∫ t

0

(
2ε1‖uxx(s)‖2 + 2ε1‖vxx(s)‖2 + ε2‖wxx(s)‖2

)
ds

≤ (1 + ‖∂xxu0‖2 + ‖∂xxv0‖2 + α2 ‖∂xxzu0‖2 + α2 ‖∂xxzv0‖2)

× exp
(
Cε2

∫ t

0

(1 + ‖w(s)‖2 + ‖wx(s)‖2 + ‖uz(s)‖2 + ‖uxz(s)‖2

+‖∇v(s)‖2 + ‖vxz(s)‖2 + ‖Txx(s)‖2)ds
)
. (4.245)

From (4.209), (4.215), (4.223), (4.224), (4.233), (4.238) and the above, we have

u, v ∈ L∞(0, T ;H2), uxxz, vxxz ∈ L∞(0, T ;L2), w ∈ L2(0, T ;H2) (4.246)

for arbitrary T > 0.

By virtue of (4.246), thanks (4.41) and (4.42), we have

w ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2), (4.247)

for arbitrary T > 0.

By standard Galerkin method, one can establish the existence of solutions. Moreover, the

solutions satisfy the desired regularity.

4.3.3 Uniqueness of Solutions and Continuous Dependence on The Initial Data

To finish the proof of Theorem 4.3.2, in this section, we prove the uniqueness of solutions

and continuous dependence on the initial data. Let (u1, v1, w1, p1, T1) and (u2, v2, w2, p2, T2)

be two strong solutions of the system (4.196)–(4.201), and initial data ((u0)1, (v0)1, (T0)1) and
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((u0)2, (v0)2, (T0)2), respectively. Denote by u = u1 − u2, v = v1 − v2, w = w1 − w2, p =

p1 − p2, T = T1 − T2. Thanks to (4.202) and (4.203), it is clear that



∂t
(
u− α2uzz

)
+ u1ux + w1uz + u(u2)x + w(u2)z + ε1u− Ωv + px = 0, (4.248)

∂t
(
v − α2vzz

)
+ u1vx + w1vz + u(v2)x + w(v2)z + ε1v + Ωu = 0, (4.249)

ε2w + pz + T = 0, (4.250)

ux + wz = 0, (4.251)

∂tT − κ∆T + u1Tx + w1Tz + u(T2)x + w(T2)z = 0. (4.252)

By taking the inner product of equation (4.248) with u, (4.249) with v, (4.250) with w, and

(4.252) with T in L2(T2), and by integration by parts, thanks to (4.27), (4.203) and (4.251), we get

1

2

d(‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2)

dt

+ε1‖u‖2 + ε1‖v‖2 + ε2‖w‖2 + κ ‖∇T‖2

≤
∣∣∣∣∫

T2

(u(u2)x + w(u2)z) u dxdz

∣∣∣∣+

∣∣∣∣∫
T2

(u(v2)x + w(v2)z) v dxdz

∣∣∣∣
+

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣+

∣∣∣∣∫
T2

(u(T2)x + w(T2)z) T dxdz

∣∣∣∣ . (4.253)

By integration by parts, using Hölder inequality and Young’s inequality, thanks to (4.27), (4.203)

and (4.251) and Lemma 2.2.8,

∣∣∣∣∫
T2

(u(u2)x + w(u2)z) u dxdz

∣∣∣∣
≤ C

∫
T2

|wuzu2|+ |w(u2)zu| dxdz,

≤ ε2
8
‖w‖2 + Cε2‖u2‖2

L∞‖uz‖2

+Cε2‖(u2)z‖(‖(u2)z‖+ ‖(u2)xz‖)(‖u‖2 + α2‖uz‖2), (4.254)

∣∣∣∣∫
T2

(u(v2)x + w(v2)z) v dxdz

∣∣∣∣
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≤ ε2
8
‖w‖2 + Cε2‖(v2)x‖L∞(‖u‖2 + ‖v‖2)

+Cε2‖(v2)z‖(‖(v2)z‖+ ‖(v2)xz‖)(‖v‖2 + α2‖vz‖2), (4.255)

∣∣∣∣∫
T2

wT dxdz

∣∣∣∣ ≤ ε2
8
‖w‖2 + Cε2‖T‖2, (4.256)

and

∣∣∣∣∫
T2

(u(T2)x + w(T2)z) T dxdz

∣∣∣∣
≤ Cε2,κ‖T‖‖(T2)x‖

1
2 (‖(T2)x‖

1
2 + ‖(T2)xx‖

1
2 )(‖u‖+ ‖uz‖) +

ε2
8
‖w‖2

+
κ

2
‖Tz‖2 + Cε2,κ(1 + ‖(T2)z‖2)(‖(T2)z‖2 + ‖(T2)xz‖2)‖T‖2

≤ ε2
8
‖w‖2 +

κ

2
‖∇T‖2 + Cε2,κ

(
1 + ‖(T2)x‖+ ‖(T2)xx‖

+‖(T2)z‖4 + ‖(T2)z‖2‖(T2)xz‖2
)

×
(
‖u‖2 + ‖T‖2 + α2 ‖uz‖2

)
. (4.257)

From the estimates above, we obtain

d(‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2)

dt

+ε1‖u‖2 + ε1‖v‖2 + ε2‖w‖2 + κ ‖∇T‖2

≤ Cε2,κK
(
‖u‖2 + ‖v‖2 + ‖T‖2 + α2 ‖uz‖2 + α2 ‖vz‖2

)
, (4.258)

where

K = 1 + ‖u2‖2
L∞ + ‖(v2)x‖L∞ + ‖(u2)z‖2 + ‖(u2)xz‖2 + ‖(v2)z‖2 + ‖(v2)xz‖2

+‖(T2)x‖+ ‖(T2)xx‖+ ‖(T2)z‖4 + ‖(T2)z‖2‖(T2)xz‖2. (4.259)

Using Lemma 2.2.9, thanks to (4.238) and (4.246), we obtain K ∈ L1(0, T ). Therefore, by
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Gronwall inequality, we obtain

‖u(t)‖2 + ‖v(t)‖2 + ‖T (t)‖2 + α2 ‖uz(t)‖2 + α2 ‖vz(t)‖2

≤
(
‖u(t = 0)‖2 + α2‖uz(t = 0)‖2 + ‖v(t = 0)‖2 + α2‖vz(t = 0)‖2

+‖T (t = 0)‖2
)

exp(Cε2,κ

∫ t

0

K(s)ds). (4.260)

The above inequality proves the continuous dependence of the solutions on the initial data, and in

particular, when u(t = 0) = v(t = 0) = T (t = 0) = 0, we have u(t) = v(t) = T (t) = 0, for all

t ≥ 0. Therefore, the strong solution is unique.

4.3.4 The Special Case: Ω = 0, v ≡ 0 and T ≡ 0

In this section, we consider the special case when Ω = 0, v ≡ 0 and T ≡ 0. System (4.188)–

(4.192) reduces to the following system



(u− α2uzz)t + uux + wuz + px = 0, (4.261)

ε2w + pz + T = 0, (4.262)

ux + wz = 0, (4.263)

Tt − κ∆T + uTx + w Tz = 0. (4.264)

We impose similar boundary and initial conditions for this system:

u, w, p and T are periodic in x and z with period 1, (4.265)

u, p are even in z, and w, T are odd in z, (4.266)(
u, T

)
|t=0 =

(
u0, T0

)
. (4.267)
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Using an analogue argument to that in section 4.1.1, system (4.261)–(4.264) subject to (4.265)–

(4.267) is equivalent to the following:

{
(u− α2uzz)t + uux + wuz + ε1u+ px = 0, (4.268)

Tt − κ∆T + uTx + w Tz = 0, (4.269)

with w, px, pz defined by



w(x, z) := −
∫ z

0

ux(x, s)ds, (4.270)

px(x, z) := ε2

∫ z

0

∫ s

0

uxx(x, ξ)dξds−
∫ z

0

Tx(x, s)ds

+

∫ 1

0

[ ∫ z′

0

Tx(x, s)ds− ε2
∫ z′

0

∫ s

0

uxx(x, ξ)dξds− 2uux(x, z
′)
]
dz′, (4.271)

pz(x, z) := −T (x, z) + ε2

∫ z

0

ux(x, s)ds. (4.272)

We are interested in the system (4.268)–(4.272) in the unit two dimensional torus T2, subject

to the following symmetry boundary conditions and initial conditions:

u and T are periodic in x and z with period 1; (4.273)

u is even in z, and T is odd in z; (4.274)

(u, T )|t=0 = (u0, T0). (4.275)

We have the global well-posedness for system (4.268)–(4.272), for initial condition with less reg-

ularity. i.e., for u0, ∂zu0 ∈ H1 and T0 ∈ H1. Let us give the definition of strong solution first.

Definition 4.3.3. Suppose that u0 ∈ H1(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions

(4.273) and (4.274), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

∂zu0 ∈ H1. Given time T > 0, we say (u, T ) is a strong solution to the system (4.268)–(4.272),

subjecto to (4.273)–(4.275), on the time interval [0, T ], if

1. u and T satisfy the symmetry conditions (4.273) and (4.274);
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2. u and T have the regularities



u ∈ L∞(0, T ;H1) ∩ C([0, T ];L2),

uz ∈ L∞(0, T ;H1),

∂tu ∈ L2(0, T ;L2),

T ∈ L2(0, T ;H2) ∩ L∞(0, T ;H1) ∩ C([0, T ];L2),

∂tT ∈ L2(0, T ;L2);

3. u, T satisfy system (4.268)–(4.269) in the following sense:

(u− α2uzz)t + uux + wuz + ε1u+ px = 0 in L2(0, T ;L2);

Tt − κ∆T + uTx + w Tz = 0 in L2(0, T ;L2),

with w, px, pz defined by (4.270)–(4.272), and fulfill the initial condition (4.275).

Based on Theorem 4.3.2, we have the following theorem on the existence and uniqueness of

strong solutions to system (4.268)–(4.272), subject to (4.273)–(4.275), on T2 × (0, T ), for any

positive time T . The proof is similar as Theorem 4.3.2, and we omit the details here.

Theorem 4.3.4. Suppose that u0 ∈ H1(T2) and T0 ∈ H1(T2) satisfy the symmetry conditions

(4.273) and (4.274), with the compatibility condition
∫ 1

0
∂xu0dz = 0. Moreover, suppose that

∂zu0 ∈ H1. Given time T > 0. Then there exists a unique strong solution (u, T ) of the system

(4.268)–(4.272), subject to (4.273)–(4.275), on the interval [0, T ]. Moreover, the unique strong

solution (u, T ) depends continuously on the initial data. Same result holds when T ≡ 0.

Remark 19. The reason why we need to assume more regularity for the initial data to system

(4.196)–(4.198) is that we need a bound for ‖(v2)x‖L∞ appears in (4.255). If we do not have the

evolution equation in v, we can require less on the initial data.
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4.4 Convergence as α→ 0

In this section, we will prove the convergence of the strong solution of the following system


(uα − α2uαzz)t − νuαzz + uαuαx + wαuαz + ε1u

α + pαx = 0, (4.276)

ε2w
α + pαz = 0, (4.277)

uαx + wαz = 0 (4.278)

subject to the following symmetric boundary conditions and initial condition

uα, wα and pα are periodic in x and z with period 1; (4.279)

uα, pα are even in z, and wα is odd in z; (4.280)

uα|t=0 = uα0 , (4.281)

to the strong solution of system (4.126)–(4.128) subject to (4.129)–(4.131), as α→ 0.

Remark 20. The global well-posedness of system (4.276)–(4.278) subject to (4.279)–(4.281) can

be obtained as in section 4.3. Moreover, as indicated in the last part of section 4.3, we only need

to assume that uα0 , ∂zu
α
0 ∈ H1(T2) since we do not have the evolution equation in vα.

Theorem 4.4.1. Suppose that u0, {uα0}0<α≤1 ⊂ H1(T2) satisfy the symmetry conditions (4.129)–

(4.130) and (4.279)–(4.280), with the compatibility conditions
∫ 1

0
∂xu0dz = 0 and

∫ 1

0
∂xu

α
0dz = 0,

for ∀ 0 < α ≤ 1, and suppose that ∂xzu0 ∈ L2(T2), {∂zuα0}0<α≤1 ⊂ H1(T2). Moreover, suppose

there exists some constant M > 0 such that the following uniform bound for initial data holds:

sup
0<α≤1

(
‖uα0‖+ ‖∂zuα0‖+ α‖∂zzuα0‖

)
≤M. (4.282)

Let T > 0 be such that u is the strong solution of system (4.126)–(4.128) on [0, T ] with initial

data u0. Let uα be the strong solution to system (4.276)–(4.278) on [0, T ] with initial data uα0 . If

uα0 → u0 in L2, as α→ 0, then uα → u in L∞(0, T ;L2), and uαz → uz in L2(0, T ;L2), as α→ 0.

Proof. Let us first derive the uniform bounds of some norms of the strong solution uα. By taking
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the L2-inner product of equation (4.276) with uα,−uαzz, and equation (4.277) with wα,−wαzz, in

L2(T2), and by integration by parts, thanks to (4.279), we get

1

2

d

dt

(
‖uα‖2 + (α2 + 1) ‖uαz ‖2 + α2 ‖uαzz‖2

)
+ ε1

(
‖uα‖2 + ‖uαz ‖2

)
+ε2

(
‖wα‖2 + ‖wαz ‖2

)
+ ν
(
‖uαz ‖2 + ‖uαzz‖2

)
= −

∫
T2

(uαuαx + wαuαz ) (uα − uαzz) dxdz

−
∫
T2

(
pαx (uα − uαzz) + pαz (wα − wαzz)

)
dxdz. (4.283)

By integration by parts, thanks to (4.278) and (4.279), we have

−
∫
T2

(uαuαx + wαuαz ) (uα − uαzz) dxdz

−
∫
T2

(
pαx (uα − uαzz) + pαz (wα − wαzz)

)
dxdz = 0. (4.284)

As a result of the above, we have

d

dt

(
‖uα‖2 + (α2 + 1) ‖uαz ‖2 + α2 ‖uαzz‖2

)
+ν
(
‖uαz ‖2 + ‖uαzz‖2

)
+ ε2

(
‖wα‖2 + ‖wαz ‖2

)
≤ 0. (4.285)

Thanks to Gronwall inequality, we obtain

‖uα(t)‖2 + ‖uαz (t)‖2 +

∫ t

0

[
ν
(
‖uαz (s)‖2 + ‖uαzz(s)‖2

)
+ε2

(
‖wα(s)‖2 + ‖wαz (s)‖2

) ]
ds

≤ ‖uα0‖2 + (1 + α2)‖∂zuα0‖2 + α2‖∂zzuα0‖2, (4.286)

for t ∈ [0, T ]. Thanks to the uniform bound for initial data (4.282), we have

sup
0<α≤1

(
‖uα‖L∞(0,T ;L2) + ‖uαz ‖L∞(0,T ;L2) + ν‖uαzz‖L2(0,T ;L2)
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+ε2‖wα‖L2(0,T ;L2) + ε2‖wαz ‖L2(0,T ;L2)

)
≤ C(M), (4.287)

where C(M) is a constant depending on M , but not on α. Now subtracting (4.126)–(4.127) from

(4.276)–(4.277), we obtain


∂t[(u

α − u)− α2(uαzz − uzz)]− ν(uαzz − uzz) + ε1(uα − u) + (pαx − px)

= (u− uα)ux + (ux − uαx)uα + (w − wα)uz + (uz − uαz )wα − α2∂tuzz, (4.288)

ε2(wα − w) + (pαz − pz) = 0. (4.289)

By taking the inner product of equation (4.288) with uα−u and equation (4.289) with wα−w,

by integration by parts, and using (4.128) and (4.278), we get

1

2

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν ‖uαz − uz‖2 + +ε1‖uα − u‖2 + ε2‖wα − w‖2

=

∫
T2

[
(u− uα)2wz + (uα − u)(ux − uαx)uα + (w − wα)(uα − u)uz

+(uz − uαz )(uα − u)wα + (px − pαx)(uα − u) + (pz − pαz )(wα − w)

+α2∂tuzz(u− uα)
]
dxdz. (4.290)

We estimate each term in (4.290). By integration by parts, using Hölder inequality and Young’s

inequality, thanks to (4.128), (4.129), (4.278) and (4.279), we have

∫
T2

(u− uα)2wzdxdz = −2

∫
T2

(uα − u)z(u
α − u)wdxdz

≤ ν

2
‖uαz − uz‖2 + Cν‖w‖2

∞‖uα − u‖2, (4.291)

∫
T2

[
(uα − u)(ux − uαx)uα + (uz − uαz )(uα − u)wα

]
dxdz

=
1

2

∫
T2

(uα − u)2(uαx + wαz )dxdz = 0, (4.292)

168



∫
T2

(w − wα)(uα − u)uzdxdz ≤
ε2
2
‖wα − w‖2 + Cε2‖uz‖2

∞‖uα − u‖2, (4.293)

∫
T2

[
(px − pαx)(uα − u) + (pz − pαz )(wα − w)

]
dxdz

=

∫
T2

(p− pα)[(u− uα)x + (w − wα)z]dxdz = 0, (4.294)

and

α2

∫
T2

∂tuzz(u− uα)dxdz = α2

∫
T2

ut(u− uα)zzdxdz

≤ Cα2‖ut‖(‖uαzz‖+ ‖uzz‖). (4.295)

From all the estimates above, we obtain

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν‖uαz − uz‖2 + ε1‖uα − u‖2 + ε2‖wα − w‖2

≤ Cν,ε2(‖w‖2
∞ + ‖uz‖2

∞)(‖uα − u‖2 + α2‖uαz − uz‖2) + Cα2‖ut‖(‖uαzz‖+ ‖uzz‖). (4.296)

Denote by

F := ‖w‖2
∞ + ‖uz‖2

∞, G := ‖ut‖(‖uαzz‖+ ‖uzz‖), (4.297)

we obtain

d

dt
(‖uα − u‖2 + α2‖uαz − uz‖2) + ν‖uαz − uz‖2 + ε1‖uα − u‖2 + ε2‖wα − w‖2

≤ Cν,ε2F (‖uα − u‖2 + α2‖uαz − uz‖2) + Cα2G. (4.298)

Notice that the constants appear above do not depend on α. Thanks to Gronwall inequality, we

obtain

‖uα − u‖2(t) + α2‖uαz − uz‖2(t)
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+

∫ t

0

(
ν‖uαz − uz‖2(s) + ε1‖uα − u‖2(s) + ε2‖wα − w‖2(s)

)
ds

≤ (‖uα0 − u0‖2 + α2‖∂zuα0 − ∂zu0‖2) exp
(
Cν,ε2

∫ t

0

F (s)ds
)

+Cα2 exp
(
Cν,ε2

∫ t

0

F (s)ds
)∫ t

0

G(s)ds

= (‖uα0 − u0‖2 + α2‖∂zuα0 − ∂zu0‖2) exp
(
Cν,ε2

∫ t

0

F (s)ds
)

+ Cα2H(t), (4.299)

where H(t) is defined as

H(t) := exp
(
Cν,ε2

∫ t

0

F (s)ds
)∫ t

0

G(s)ds. (4.300)

By virture of the regularity of strong solution to system (4.126)–(4.128), and the uniform bound

(4.287), using Lemma 2.2.9, we have F,G ∈ L1(0, T ). By virtue of uniform bound (4.287), we

have α2H(t) → 0, as α → 0. Since uα0 → u0 in L2, and thanks to (4.282), we have uα → u in

L∞(0, T ;L2), uαz → uz in L2(0, T ;L2), and wα → w in L2(0, T ;L2), as α→ 0.

4.5 Blowup Criterion

In this section we give a blow-up criterion for system (4.126)–(4.128) subjects to (4.129)–

(4.131). The following result follows the idea in [66].

Theorem 4.5.1. With the same assumptions in Theorem 4.4.1, and take uα0 = u0 for all α. Suppose

there exists some time T ∗ <∞ such that

lim sup
α→0+

(
α2 sup

t∈[0,T ∗]
‖uαz (t)‖2

)
> 0, (4.301)

then the solution for system (4.126)–(4.128) blows up on [0, T ∗].

Proof. Assume the solution for system (4.126)–(4.128) will not blow up on [0, T ∗], then u ∈

L∞(0, T ∗;H1) and ∂tu ∈ L2(0, T ∗;L2). By taking the inner product of equation (4.126) with u
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and equation (4.127) with w in L2(T2), by integration by parts and thanks to (4.128) and (4.129),

we have

1

2

d

dt
‖u‖2 + ν‖uz‖2 + ε1‖u‖2 + ε2‖w‖2 = 0. (4.302)

Integrating (4.302) from 0 to t for t ∈ [0, T ∗], we have

‖u(t)‖2 + 2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
ds = ‖u0‖2. (4.303)

On the other hand, using analogue argument for system (4.276)–(4.278), we have

α2‖uαz (t)‖2 + ‖uα(t)‖2 + 2

∫ t

0

(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds

= ‖uα0‖2 + α2‖∂zuα0‖2 = ‖u0‖2 + α2‖∂zu0‖2. (4.304)

From (4.299) and thanks to the fact that uα0 = u0, for any t ∈ [0, T ∗], we have

‖uα(t)‖ ≥ ‖u(t)‖ − CαH1/2(t) ≥ ‖u(t)‖ − CαH1/2(T ∗), (4.305)

since H1/2(t) is monotonically increasing. By virtue of (4.303), we know ‖u0‖ ≥ ‖u(t)‖ ≥

‖u(T ∗)‖ for any t ∈ [0, T ∗]. Therefore, we can take α < ‖u(T ∗)‖
CH1/2(T ∗) to guarantee the right hand

side of (4.305) is positive. Take square on (4.305), we obtain

‖uα(t)‖2 ≥ ‖u(t)‖2 − 2αCH1/2(T ∗)‖u(t)‖+ C2α2H(T ∗)

≥ ‖u(t)‖2 − 2αCH1/2(T ∗)‖u0‖+ C2α2H(T ∗). (4.306)

Subtracting (4.304) from (4.303), we have

‖u(t)‖2 − ‖uα(t)‖2
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= α2‖uαz (t)‖2 − α2‖∂zu0‖2 + 2

∫ t

0

(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
−
(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
ds. (4.307)

Combining (4.307) with (4.306), we obtain

α2‖uαz (t)‖2 ≤ α2‖∂zu0‖2 + 2αCH1/2(T ∗)‖u0‖ − C2α2H(T ∗)

+2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
−
(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds. (4.308)

By Cauchy–Schwarz inequality and Hölder inequality, thanks to (4.160)–(4.161) and the uniform

bound (4.287), we have the estimate for the last term in (4.308):

2

∫ t

0

(
ν‖uz(s)‖2 + ε1‖u(s)‖2 + ε2‖w(s)‖2

)
−
(
ν‖uαz (s)‖2 + ε1‖uα(s)‖2 + ε2‖wα(s)‖2

)
ds

= 2

∫ t

0

[
ν
(
uz − uαz , uz + uαz

)
+ ε1

(
u− uα, u+ uα

)
+ ε2

(
w − wα, w + wα

)]
ds

≤ 2

∫ t

0

[
ν‖uz − uαz ‖‖uz + uαz ‖+ ε1‖u− uα‖‖u+ uα‖+ ε2‖w − wα‖‖w + wα‖

]
ds

≤ Cν,ε1,ε2
(
‖uz − uαz ‖L2(0,T ∗;L2) + ‖u− uα‖L2(0,T ∗;L2) + ‖w − wα‖L2(0,T ∗;L2)

)
. (4.309)

Plugging this back into (4.308), we have

α2‖uαz (t)‖2 ≤ α2‖∂zu0‖2 + 2αCH1/2(T ∗)‖u0‖ − C2α2H(T ∗)

+Cν,ε1,ε2
(
‖uz − uαz ‖L2(0,T ∗;L2) + ‖u− uα‖L2(0,T ∗;L2) + ‖w − wα‖L2(0,T ∗;L2)

)
. (4.310)

By virtue of Theorem 4.4.1, the right hand side of (4.310) is independent of t, and it converges to
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0 as α→ 0. Therefore, by taking lim sup
α→0+

sup
t∈[0,T ∗]

on both hand sides of (4.310), we obtain

lim sup
α→0+

(
α2 sup

t∈[0,T ∗]
‖uαz (t)‖2

)
= 0, (4.311)

which contradicts to (4.301).

Remark 21. By considering the convergence for the whole system, i.e., the convergence of the

strong solution of system (4.188)–(4.192) to the corresponding solution of system (4.1)–(4.5), we

can establish a similar blow-up criterion for system (4.1)–(4.5).
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5. CONCLUSION AND SUMMARY

In this dissertation, our discussions mainly focus on two topics. The IPEs and PEs with weak

dissipation.

In Chapter 3, we focus on the IPEs. We start with the ill-posedness of the IPEs, from the case

without rotation to the case with rotation. These results suggest we should work in the space of an-

alytic functions for the well-posedness. Next, we establish the local well-posedness, as suggested,

in the space of analytic functions. Notably, the time of existence we obtain is independent of the

rate of rotation. This improves the result in [59]. Given the local well-posedness, the next natural

question is whether one can extend it to a global one, or establish the finite-time blowup. In-

deed, we construct smooth solutions that blow up in finite time, for both non-rotating and rotating

system.

The blowup results indicate that there is no hope to show the global well-posedness of the

IPEs. The best result one can expect is the long-time existence of solutions to the IPEs under

some assumptions. We start with a simple observation, namely when the baroclinic mode is zero,

the 3D IPEs reduce to the 2D Euler equations that are globally well-posed. Therefore, we put

only smallness assumption on the analytic norm of the initial baroclinic mode to obtain the first

long-time existence result. By virtue of the effect of fast rotation on the life-span for other models,

we propose to investigate the case of the IPEs in the space of analytic functions. By some delicate

analysis and using some well-chosen projections, we derive the formal limit resonant system as the

rotation rate |Ω| → ∞, and show that this limit system is globally well-posed. Eventually, we are

able to establish that the life-span of solutions to the 3D IPEs is prolonged to infinity together with

the rotation rate |Ω|, for “well-prepared" initial data. Here the “well-prepared“ initial data means

that only the Sobolev norm (not the analytic norm) of the initial baroclinic mode is small depending

on |Ω|. We end up with some remarks and discussions about why we still need the “well-prepared"

initial data instead of arbitrary initial data. This is the optimal result we can achieve so far.

In Chapter 4, we focus on the PEs with weak dissipation. The weak dissipation is the ver-
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tical viscosity and linear damping. The consideration of the linear damping terms is due to the

ill-posedness in Sobolev spaces of the PEs with only vertical viscosity suggested by Renardy [83].

With the help of these linear damping terms, we are able to show the local well-posedness with

arbitrary Sobolev initial data and the global well-posedness with small Sobolev initial data. In

order to study the possible finite-time blow-up of the system, and to give a reliable numerical regu-

larization, we propose to study the Voigt α-regularization of our model. For the regularized model,

we are able to establish the global well-posedness for arbitrary Sobolev initial data. Moreover, we

show the convergence of solutions as α→ 0. Based on the convergence result, we derive a blowup

criterion of the original model.
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APPENDIX A

ESTIMATES OF NONLINEAR TERMS IN THE SPACE OF ANALYTIC FUNCTIONS

In this appendix, we provide the proof of Lemma 2.2.11–2.2.17. First, we prove Lemma 2.2.11.

Proof of Lemma 2.2.11. First, notice that

∣∣∣〈AreτA(f · ∇hg), AreτAh
〉∣∣∣ =

∣∣∣〈f · ∇hg, A
reτAH

〉∣∣∣, (A.1)

where H = AreτAh. We use Fourier representation of f, g and H , in which we can write

f(x) =
∑
j∈Z3

f̂je
2πij·x, (A.2)

g(x) =
∑
k∈Z3

ĝke
2πik·x, (A.3)

AreτAH(x) =
∑
l∈Z3

|l|reτ |l|Ĥle
2πil·x. (A.4)

Therefore,

∣∣∣〈f · ∇hg, A
reτAH

〉∣∣∣ ≤ ∑
j+k+l=0

|f̂j||k||ĝk||l|reτ |l||Ĥl|. (A.5)

From |l| = |j + k| ≤ |j|+ |k| we have the following inequalities:

|l|r ≤ (|j|+ |k|)r ≤ Cr(|j|r + |k|r), eτ |l| ≤ eτ |j|eτ |k|. (A.6)

Applying these inequalities, we have

∣∣∣〈f · ∇hg, A
reτAH

〉∣∣∣ ≤ ∑
j+k+l=0

Cr|f̂j ||k||ĝk|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl|. (A.7)
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Since |k|, |j|, |l| are all nonnegative, we have |k|1/2 ≤ (|j|+ |l|)1/2 ≤ |j|1/2 + |l|1/2, therefore,

∣∣∣〈f · ∇hg, A
reτAH

〉∣∣∣
≤

∑
j+k+l=0

Cr|f̂j||k|1/2(|j|1/2 + |l|1/2)|ĝk|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl|

≤
∑

j+k+l=0

Cr

(
|k|1/2|j|r+1/2|l|r + |k|r+1/2|j|1/2|l|r + |k|1/2|j|r|l|r+1/2

+|k|r+1/2|l|r+1/2
)
× eτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl| =: A1 + A2 + A3 + A4. (A.8)

Thanks to Cauchy–Schwarz inequality, since r > 2, we have

A1 =
∑

j+k+l=0

Cr|k|1/2|j|r+1/2|l|reτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl|

= Cr
∑
k∈Z3

k 6=0

|k|1/2|ĝk|eτ |k|
∑
j∈Z3

j 6=0,−k

|j|r+1/2eτ |j||f̂j||j + k|reτ |j+k||ĥ−j−k|

≤ Cr

(∑
k∈Z3

k 6=0

|k|1−2r
)1/2(∑

k∈Z3

k 6=0

|k|2re2τ |k||ĝk|2
)1/2

× sup
k∈Z3

( ∑
j∈Z3

j 6=0,−k

|j|2r+1e2τ |j||f̂j |2
)1/2( ∑

j∈Z3

j 6=0,−k

|j + k|2re2τ |j+k||ĥ−j−k|2
)1/2

≤ Cr‖Ar+1/2eτAf‖‖AreτAg‖‖AreτAh‖, (A.9)

Similarly, we have

A2 =
∑

j+k+l=0

Cr|k|r+1/2|j|1/2|l|reτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl|

≤ Cr‖AreτAf‖‖Ar+1/2eτAg‖‖AreτAh‖, (A.10)

and

A3 =
∑

j+k+l=0

Cr|k|1/2|j|r|l|r+1/2eτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl|

≤ Cr‖AreτAf‖‖AreτAg‖‖Ar+1/2eτAh‖. (A.11)
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For A4, thanks to Cauchy–Schwarz inequality, since r > 2, we have

A4 =
∑

j+k+l=0

Cr|k|r+1/2|l|r+1/2eτ |j|eτ |k|eτ |l||f̂j ||ĝk||ĥl|

= Cr
∑
j∈Z3

eτ |j||f̂j |
∑
k∈Z3

k 6=0,−j

|k|r+1/2|ĝk|eτ |k||j + k|r+1/2eτ |j+k||ĥ−j−k|

≤ Cr

{
|f̂0|+

(∑
j∈Z3

j 6=0

|j|−2r
)1/2(∑

j∈Z3

j 6=0

|j|2re2τ |j||f̂j|2
)1/2}

× sup
j∈Z3

( ∑
k∈Z3

k 6=0,−j

|k|2r+1e2τ |k||ĝk|2
)1/2( ∑

k∈Z3

k 6=0,−j

|j + k|2r+1e2τ |j+k||ĥ−j−k|2
)1/2

≤ Cr(‖AreτAf‖+ |f̂0|)‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖. (A.12)

Combine the estimates for A1 to A4, and since ‖AreτAg‖ ≤ ‖Ar+1/2eτAg‖, ‖AreτAh‖ ≤

‖Ar+1/2eτAh‖, we achieve the desired inequality.

The proof of Lemma 2.2.12 is almost the same as Lemma 2.2.11, so we omit it. Next, we prove

Lemma 2.2.13.

Proof of Lemma 2.2.13. First, one has

∣∣∣〈AreτA((∫ z

0

∇h ·f(x′, s)ds)∂zg
)
, AreτAh

〉∣∣∣ =
∣∣∣〈(

∫ z

0

∇h ·f(x′, s)ds)∂zg, A
reτAH

〉∣∣∣. (A.13)

Using Fourier representation of f , and noticing that f = 0, we have

f(x) =
∑
j∈Z3

j3 6=0

f̂je
2π(ij′·x′+ij3z), (A.14)

where j ′ = (j1, j2). Then we have

∫ z

0

∇h · f(x′, s)ds =
∑
j∈Z3

j3 6=0,j′ 6=0

1

j3

j ′ · f̂je2π(ij′·x′+ij3z) −
∑
j∈Z3

j3 6=0,j′ 6=0

1

j3

j ′ · f̂je2πij′·x′ . (A.15)
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Therefore, we have

∣∣∣〈(

∫ z

0

∇h · f(s)ds)∂zg, A
reτAH

〉∣∣∣ ≤ ∣∣∣〈(
∑
j∈Z3

j3 6=0,j′ 6=0

1

j3

j ′ · f̂je2π(ij′·x′+ij3z))∂zg, A
reτAH

〉∣∣∣
+
∣∣∣〈(

∑
j∈Z3

j3 6=0,j′ 6=0

1

j3

j ′ · f̂jeij
′·x′)∂zg, A

reτAH
〉∣∣∣ =: I1 + I2. (A.16)

Let us estimate I2 first. For l = (l′, l3) = (−j ′ − k′,−k3), by using the inequalities

|j ′|1/2 ≤ C(|k|1/2 + |l|1/2), |k|1/2 ≤ C(|j ′|1/2 + |l|1/2), |l|r ≤ Cr(|j ′|r + |k|r), (A.17)

we have

I2 ≤
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|j ′||k3||f̂j||ĝk|(|j ′|r + |k|r)eτ |j′|eτ |k||l|reτ |l||ĥl|

≤
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|f̂j||ĝk|(|j ′|r+1|k|+ |j ′||k|r+1)eτ |j|eτ |k||l|reτ |l||ĥl|

≤
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

Cr
1

|j3|

(
|k|3/2|j ′|r+1/2|l|r + |k||j ′|r+1/2|l|r+1/2 + |j ′|3/2|k|r+1/2|l|r

+|j ′||k|r+1/2|l|r+1/2
)
eτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl| =: B1 +B2 +B3 +B4. (A.18)

When k3 6= 0 and r > 2, we know that |k|1−r ≤ |(k′,±1)|1−r and
∑

k′∈Z2

|(k′,±1)|2−2r ≤ Cr is

finite. Thanks to Cauchy–Schwarz inequality, we have

B1 =
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|k|3/2|j ′|r+1/2|l|reτ |j|eτ |k|eτ |l||f̂j ||ĝk||ĥl|

= Cr
∑
k∈Z3

k3 6=0

|k|3/2|ĝk|eτ |k|
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j ′|r+1/2eτ |j||f̂j ||(j ′ + k′, k3)|r
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×eτ |(j′+k′,k3)||ĥ−(j′+k′,k3)|

≤ Cr
∑
k′∈Z2

|(k′,±1)|1−r
∑
k3 6=0

|k|r+1/2|ĝk|eτ |k|
(∑

j∈Z3

j 6=0

|j|2r+1e2τ |j||f̂j|2
)1/2

×
(∑
j3 6=0

1

|j3|2
∑
j′∈Z2

|(j ′ + k′, k3)|2re2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

≤ Cr‖Ar+1/2eτAf‖
∑
k′∈Z2

|(k′,±1)|1−r
(∑
k3 6=0

|k|2r+1|ĝk|2e2τ |k|
)1/2

×
(∑
k3 6=0

∑
j′∈Z2

|(j ′ + k′, k3)|2re2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

≤ Cr‖Ar+1/2eτAf‖‖AreτAh‖
( ∑

k′∈Z2

|(k′,±1)|2−2r
)1/2

×
( ∑

k′∈Z2

∑
k3 6=0

|k|2r+1|ĝk|2e2τ |k|
)1/2

≤ Cr‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖AreτAh‖. (A.19)

The estimate for B2 is similar as B1, and we can get

B2 ≤ Cr‖Ar+1/2eτAf‖‖AreτAg‖‖Ar+1/2eτAh‖.

For B3, thanks to Cauchy–Schwarz inequality, since r > 2, we have

B3 =
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|j ′|3/2|k|r+1/2|l|reτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl|

= Cr
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j ′|3/2|f̂j|eτ |j|

∑
k∈Z3

k3 6=0

|k|r+1/2eτ |k||ĝk||(j ′ + k′, k3)|r

×eτ |(j′+k′,k3)||ĥ−(j′+k′,k3)|

≤ Cr

( ∑
j∈Z3

j3,j
′ 6=0

1

|j3|2
|j ′|2−2r

)1/2( ∑
j∈Z3

j3,j
′ 6=0

|j|2r+1|f̂j|2e2τ |j|
)1/2(∑

k∈Z3

k3 6=0

|k|2r+1e2τ |k||ĝk|2
)1/2

× sup
j∈Z3

(∑
k∈Z3

k3 6=0

|(j ′ + k′, k3)|2re2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

188



≤ Cr‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖AreτAh‖. (A.20)

The estimate for B4 is similar as B3, and we can get

B4 ≤ Cr‖AreτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖.

The estimates of B1 to B4 indicate that I2 satisfies the desired inequality.

Now let us estimate on I1. For j + k + l = 0, by using the inequalities

|j|1/2 ≤ C(|k|1/2 + |l|1/2), |k|1/2 ≤ C(|j|1/2 + |l|1/2), |l|r ≤ Cr(|j|r + |k|r), (A.21)

we have

I1 ≤
∑

j+k+l=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|j ′||k3||f̂j||ĝk|(|j|r + |k|r)eτ |j|eτ |k||l|reτ |l||ĥl|

≤
∑

j+k+l=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|f̂j||ĝk|(|j|r+1|k|+ |j||k|r+1)eτ |j|eτ |k||l|reτ |l||ĥl|

≤
∑

j+k+l=0
j3,k3,j

′ 6=0

Cr
1

|j3|

(
|k|3/2|j|r+1/2|l|r + |k||j|r+1/2|l|r+1/2 + |j|3/2|k|r+1/2|l|r

+|j||k|r+1/2|l|r+1/2
)
eτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl| =: B̃1 + B̃2 + B̃3 + B̃4. (A.22)

Thanks to Cauchy–Schwarz inequality, since r > 2, we have

B̃1 =
∑

j+k+l=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|k|3/2|j|r+1/2|l|reτ |j|eτ |k|eτ |l||f̂j||ĝk||ĥl|

= Cr
∑
k∈Z3

k3 6=0

|k|3/2|ĝk|eτ |k|
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j|r+1/2eτ |j||f̂j||j + k|reτ |j+k||ĥ−j−k|

≤ Cr
∑
k′∈Z2

|(k′,±1)|1−r
∑
k3 6=0

|k|r+1/2|ĝk|eτ |k|
(∑

j∈Z3

j 6=0

|j|2r+1e2τ |j||f̂j |2
)1/2
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×
(∑
j3 6=0

1

|j3|2
∑
j′∈Z2

|(j ′ + k′, j3 + k3)|2re2τ |(j′+k′,j3+k3)||ĥ−(j′+k′,j3+k3)|2
)1/2

≤ Cr‖Ar+1/2eτAf‖
∑
k′∈Z2

|(k′,±1)|1−r
(∑
k3 6=0

|k|2r+1|ĝk|2e2τ |k|
)1/2

×
(∑
j3 6=0

1

|j3|2
∑
k3 6=0

∑
j′∈Z2

|(j ′ + k′, j3 + k3)|2re2τ |(j′+k′,j3+k3)||ĥ−(j′+k′,j3+k3)|2
)1/2

≤ Cr‖Ar+1/2eτAf‖‖AreτAh‖
( ∑

k′∈Z2

|(k′,±1)|2−2r
)1/2

×
( ∑

k′∈Z2

∑
k3 6=0

|k|2r+1|ĝk|2e2τ |k|
)1/2

≤ Cr‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖AreτAh‖, (A.23)

where in the second inequality, we use Fubini theorem to exchange the order of
∑
j3 6=0

and
∑
k3 6=0

. The

estimate for B̃2 is similar to B̃1, and we can get B̃2 ≤ Cr‖Ar+1/2eτAf‖‖AreτAg‖‖Ar+1/2eτAh‖.

For B̃3, thanks to Cauchy–Schwarz inequality, since r > 2, we have

B̃3 =
∑

j+k+l=0
j3,k3,j

′ 6=0

Cr
1

|j3|
|j|3/2|k|r+1/2|l|reτ |j|eτ |k|eτ |l||f̂j ||ĝk||ĥl|

= Cr
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j|3/2eτ |j||f̂j |

∑
k∈Z3

k3 6=0

|k|r+1/2|ĝk|eτ |k||j + k|reτ |j+k||ĥ−j−k|

≤ Cr

( ∑
j∈Z3

j3,j
′ 6=0

1

|j3|2
|j ′|2−2r

)1/2( ∑
j∈Z3

j3,j
′ 6=0

|j|2r+1|f̂j|2e2τ |j|
)1/2

×
(∑

k∈Z3

k3 6=0

|k|2r+1e2τ |k||ĝk|2
)1/2

sup
j∈Z3

(∑
k∈Z3

k3 6=0

|j + k|2re2τ |j+k||ĥ−j−k|2
)1/2

≤ Cr‖Ar+1/2eτAf‖‖Ar+1/2eτAg‖‖AreτAh‖, (A.24)

where in the first inequality we use |j|2−2r ≤ |j ′|2−2r due to r > 2. The estimate for B̃4 is similar

as B̃3, and we can get B̃4 ≤ Cr‖AreτAf‖‖Ar+1/2eτAg‖‖Ar+1/2eτAh‖. The estimates of B̃1 to B̃4

indicate that I1 satisfies the desired inequality.

The proof of Lemma 2.2.14 is similarly to that of Lemma 8 in [64] since it involves nonlinear
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term similar to that appearing in the Euler equations. The proof of Lemma 2.2.15 is similarly to

that of Lemma 2.2.14. Therefore, they are omitted.

The proof of Lemma 2.2.16 is similar to that of Lemma 2.2.17, so we first focus below on the

proof of Lemma 2.2.17, and later we sketch the proof of Lemma 2.2.16 with emphasis on the main

differences.

Proof of Lemma 2.2.17. First, denote by H = AreτAh, and let

I :=
∣∣∣〈AreτA((

∫ z

0

∇h · f(x′, s)ds)∂zg
)
, AreτAh

〉
−
〈
∂zgA

reτA(

∫ z

0

∇h · f(x′, s)ds), AreτAh
〉∣∣∣

=
∣∣∣〈(

∫ z

0

∇h · f(x′, s)ds)∂zg, A
reτAH

〉
−
〈
∂zgA

reτA(

∫ z

0

∇h · f(x′, s)ds), H
〉∣∣∣. (A.25)

Similar as in the proof of Lemma 2.2.13, using Fourier representation of f , since f = 0, we

have

∫ z

0

∇h · f(x′, s)ds =
∑
j∈Z3

j3 6=0

1

j3

j ′ · f̂je2π(ij′·x′+ij3z) −
∑
j∈Z3

j3 6=0

1

j3

j ′ · f̂je2πij′·x′ , (A.26)

where j ′ = (j1, j2). Using Fourier representation of g and H , we have

I ≤ C
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j ′||k|

∣∣∣|l|reτ |l| − |j|reτ |j|∣∣∣
+C

∑
j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j ′||k|

∣∣∣|l|reτ |l| − |(j ′, 0)|reτ |(j′,0)|
∣∣∣ := I1 + I2. (A.27)

We estimate I2 first. By virtue of the following observation [64]:

For r ≥ 1 and τ ≥ 0, and for all positive ξ, η ∈ R, we have

|ξreτξ − ηreτη| ≤ Cr|ξ − η|
(
|ξ − η|r−1 + ηr−1 + τ(|ξ − η|r + ηr)eτ |ξ−η|eτη

)
; (A.28)
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with ξ = |l|, η = |(j ′, 0)| = |j ′|, and |ξ − η| =
∣∣∣|l| − |(j ′, 0)|

∣∣∣ ≤ ∣∣∣− l− (j ′, 0)
∣∣∣ = |k|, inequality

(A.28) implies

I2 ≤ Cr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||k|2

(
|k|r−1 + |j ′|r−1 + τ(|k|r + |j ′|r)eτ |k|eτ |j|

)
. (A.29)

By the definition of H , and since ex ≤ 1 + xex for any x ≥ 0, we have

|Ĥl| = |l|reτ |l||ĥl| ≤ |l|r(1 + τ |l|eτ |l|)|ĥl| ≤ |l|r|ĥl|+ τ(|j ′|+ |k|)|Ĥl|. (A.30)

Therefore, one obtains that

|Ĥl|
(
|k|r−1 + |j ′|r−1 + τ(|k|r + |j ′|r)eτ |k|eτ |j|

)
≤
(
|l|r|ĥl|+ τ(|j ′|+ |k|)|Ĥl|

)(
|k|r−1 + |j ′|r−1

)
+ |Ĥl|

(
τ(|k|r + |j ′|r)eτ |k|eτ |j|

)
≤ |ĥl||l|r(|k|r−1 + |j ′|r−1) + τCr|Ĥl|(|k|r + |j ′|r)eτ |k|eτ |j|. (A.31)

Based on this, one has

I2 ≤ Cr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||ĥl||j ′||k|2|l|r(|k|r−1 + |j ′|r−1)

+τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j ′||k|2(|k|r + |j ′|r)eτ |k|eτ |j| := I21 + I22. (A.32)

Here

I21 = Cr

( ∑
j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||ĥl||j ′||k|r+1|l|r +

1

|j3|
|f̂j ||ĝk||ĥl||j ′|r|k|2|l|r

)

:= I211 + I212. (A.33)
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Thanks to Cauchy–Schwarz inequality, since r > 5/2, we have

I211 = Cr
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j ′||f̂j|

∑
k∈Z3

k3 6=0

|k|r+1|(j ′ + k′, k3)|r|ĝk||ĥ−(j′+k′,k3)|

≤ Cr

( ∑
j∈Z3

j3,j
′ 6=0

1

|j3|2
|j ′|2−2r

)1/2( ∑
j∈Z3

j3,j
′ 6=0

|j|2r|f̂j |2
)1/2(∑

k∈Z3

k3 6=0

|k|2r+2|ĝk|2
)1/2

× sup
j∈Z3

(∑
k∈Z3

k3 6=0

|(j ′ + k′, k3)|2r|ĥ−(j′+k′,k3)|2
)1/2

≤ Cr‖Arf‖‖Ar+1g‖‖Arh‖, (A.34)

and

I212 = Cr
∑
k∈Z3

k3 6=0

|k|2|ĝk|
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j ′|r|f̂j ||(j ′ + k′, k3)|r|ĥ−(j′+k′,k3)|

≤ Cr
∑
k′∈Z2

|(k′,±1)|1−r
∑
k3 6=0

|k|r+1|ĝk|
(∑

j∈Z3

j 6=0

|j|2r|f̂j|2
)1/2

×
(∑
j3 6=0

1

|j3|2
∑
j′∈Z2

|(j ′ + k′, k3)|2r|ĥ−(j′+k′,k3)|2
)1/2

≤ Cr‖Arf‖
∑
k′∈Z2

|(k′,±1)|1−r
(∑
k3 6=0

|k|2r+2|ĝk|2
)1/2

×
(∑
k3 6=0

∑
j′∈Z2

|(j ′ + k′, k3)|2r|ĥ−(j′+k′,k3)|2
)1/2

≤ Cr‖Arf‖‖Arh‖
( ∑

k′∈Z2

|(k′,±1)|2−2r
)1/2( ∑

k′∈Z2

∑
k3 6=0

|k|2r+2|ĝk|2
)1/2

≤ Cr‖Arf‖‖Ar+1g‖‖Arh‖. (A.35)

Next, for I22, we have

I22 = τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||k|r+2eτ |k|eτ |j|
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+τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′|r+1|k|2eτ |k|eτ |j| := I221 + I222. (A.36)

Noticing that |k|1/2 ≤ C(|j ′|1/2+|l|1/2) and |j ′|1/2 ≤ C(|k|1/2+|l|1/2), thanks to Cauchy–Schwarz

inequality, since r > 5/2, we have

I221 = τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||k|r+2eτ |k|eτ |j|

≤ τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||ĥl||j ′||l|r|k|r+3/2(|j ′|1/2 + |l|1/2)eτ |k|eτ |j|eτ |l|

≤ τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||ĥl||j ′|3/2|l|r+1/2|k|r+3/2eτ |k|eτ |j|eτ |l|

≤ τCr

( ∑
j∈Z3

j3,j
′ 6=0

1

|j3|2
|j ′|2−2r

)1/2( ∑
j∈Z3

j3,j
′ 6=0

|j|2r+1e2τ |j||f̂j |2
)1/2(∑

k∈Z3

k3 6=0

|k|2r+3|e2τ |k|ĝk|2
)1/2

× sup
j∈Z3

(∑
k∈Z3

k3 6=0

|(j ′ + k′, k3)|2r+1e2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

≤ τCr‖Ar+1/2eτAf‖‖Ar+3/2eτAg‖‖Ar+1/2eτAh‖, (A.37)

and

I222 = τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′|r+1|k|2eτ |k|eτ |j|

≤ τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||ĥl||j ′|r+1/2|k|2|l|r(|k|1/2 + |l|1/2)eτ |k|eτ |j|eτ |l|

≤ τCr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||ĥl||j ′|r+1/2|k|5/2|l|r+1/2eτ |k|eτ |j|eτ |l|
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≤ τCr
∑
k′∈Z2

|(k′,±1)|1−r
∑
k3 6=0

|k|r+3/2eτ |k||ĝk|
(∑

j∈Z3

j 6=0

|j|2r+1e2τ |j||f̂j |2
)1/2

×
(∑
j3 6=0

1

|j3|2
∑
j′∈Z2

|(j ′ + k′, k3)|2r+1e2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

≤ τCr‖Ar+1/2eτAf‖
∑
k′∈Z2

|(k′,±1)|1−r
(∑
k3 6=0

|k|2r+3e2τ |k||ĝk|2
)1/2

×
(∑
k3 6=0

∑
j′∈Z2

|(j ′ + k′, k3)|2r+1e2τ |(j′+k′,k3)||ĥ−(j′+k′,k3)|2
)1/2

≤ τCr‖Ar+1/2eτAf‖‖Ar+1/2eτAh‖
( ∑

k′∈Z2

|(k′,±1)|2−2r
)1/2

×
( ∑

k′∈Z2

∑
k3 6=0

|k|2r+3e2τ |k||ĝk|2
)1/2

≤ τCr‖Ar+1/2eτAf‖‖Ar+3/2eτAg‖‖Ar+1/2eτAh‖. (A.38)

Therefore, I2 satisfies the desired estimates.

To estimate I1, we use (A.28) with ξ = |l|, η = |j|, and with |ξ−η| =
∣∣∣|l|− |j|∣∣∣ ≤ |− l−j| =

|k|, to obtain

I1 ≤ Cr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||k|2

(
|k|r−1 + |j|r−1 + τ(|k|r + |j|r)eτ |k|eτ |j|

)
. (A.39)

Thanks to (A.31), one obtains that

I1 ≤ Cr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||ĥl||j ′||k|2|l|r(|k|r−1 + |j|r−1)

+τCr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j ′||k|2(|k|r + |j|r)eτ |k|eτ |j| := I11 + I12. (A.40)

Here

I11 ≤ Cr

( ∑
j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||ĥl||j||k|r+1|l|r +

1

|j3|
|f̂j ||ĝk||ĥl||j|r|k|2|l|r

)
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:= I111 + I112. (A.41)

Thanks to Cauchy–Schwarz inequality, since r > 5/2, we have

I111 = Cr
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j||f̂j|

∑
k∈Z3

k3 6=0

|k|r+1|j + k|r|ĝk||ĥ−(j+k)|

≤ Cr

( ∑
j∈Z3

j3,j
′ 6=0

|j|2−2r
)1/2( ∑

j∈Z3

j3,j
′ 6=0

|j|2r|f̂j|2
)1/2(∑

k∈Z3

k3 6=0

|k|2r+2|ĝk|2
)1/2

× sup
j∈Z3

(∑
k∈Z3

k3 6=0

|j + k|2r|ĥ−(j+k)|2
)1/2

≤ Cr‖Arf‖‖Ar+1g‖‖Arh‖, (A.42)

and

I112 = Cr
∑
k∈Z3

k3 6=0

|k|2|ĝk|
∑
j∈Z3

j3,j
′ 6=0

1

|j3|
|j|r|f̂j ||j + k|r|ĥ−(j+k)|

≤ Cr

(∑
k∈Z3

k 6=0

|k|2−2r
)1/2(∑

k∈Z3

k 6=0

|k|2r+2|ĝk|2
)1/2(∑

j∈Z3

j 6=0

|j|2r|f̂j|2
)1/2

× sup
k∈Z3

(∑
j∈Z3

|j + k|2r|ĥ−(j+k)|2
)1/2

≤ Cr‖Arf‖‖Ar+1g‖‖Arh‖. (A.43)

Next, for I12, we have

I12 ≤ τCr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j||k|r+2eτ |k|eτ |j|

+τCr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j|r+1|k|2eτ |k|eτ |j| := I121 + I122. (A.44)

Since |k|1/2 ≤ C(|j|1/2 + |l|1/2) and |j|1/2 ≤ C(|k|1/2 + |l|1/2), thanks to Cauchy–Schwarz
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inequality, since r > 5/2, we have

I121 = τCr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j||k|r+2eτ |k|eτ |j|

≤ τCr
∑

j+k+l=0
j3,k3,j

′,l6=0

1

|j3|
|f̂j ||ĝk||ĥl||j||l|r|k|r+3/2(|j|1/2 + |l|1/2)eτ |k|eτ |j|eτ |l|

≤ τCr
∑

j+k+l=0
j3,k3,j

′,l6=0

1

|j3|
|f̂j ||ĝk||ĥl||j|3/2|l|r+1/2|k|r+3/2eτ |k|eτ |j|eτ |l|

≤ τCr

( ∑
j∈Z3

j3,j
′ 6=0

|j|2−2r
)1/2( ∑

j∈Z3

j3,j
′ 6=0

|j|2r+1e2τ |j||f̂j|2
)1/2(∑

k∈Z3

k3 6=0

|k|2r+3|e2τ |k|ĝk|2
)1/2

× sup
j∈Z3

(∑
k∈Z3

k3 6=0

|j + k|2r+1e2τ |j+k||ĥ−(j+k)|2
)1/2

≤ τCr‖Ar+1/2eτAf‖‖Ar+3/2eτAg‖‖Ar+1/2eτAh‖, (A.45)

and

I122 = τCr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j|r+1|k|2eτ |k|eτ |j|

≤ τCr
∑

j+k+l=0
j3,k3,j

′,l6=0

1

|j3|
|f̂j||ĝk||ĥl||j|r+1/2|k|2|l|r(|k|1/2 + |l|1/2)eτ |k|eτ |j|eτ |l|

≤ τCr
∑

j+k+l=0
j3,k3,j

′,l6=0

1

|j3|
|f̂j||ĝk||ĥl||j|r+1/2|k|5/2|l|r+1/2eτ |k|eτ |j|eτ |l|

≤ τCr

(∑
k∈Z3

k 6=0

|k|2−2r
)1/2(∑

k∈Z3

k 6=0

|k|2r+3e2τ |k||ĝk|2
)1/2(∑

j∈Z3

j 6=0

|j|2r+1e2τ |j||f̂j|2
)1/2

× sup
k∈Z3

(∑
j∈Z3

j 6=0

|j + k|2r+1e2τ |j+k||ĥ−(j+k)|2
)1/2

≤ τCr‖Ar+1/2eτAf‖‖Ar+3/2eτAg‖‖Ar+1/2eτAh‖. (A.46)

Therefore, I1 satisfies the desired estimates. The proof is completed.
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Finally, we sketch the proof of Lemma 2.2.16.

Proof of Lemma 2.2.16. Similar as the proof of Lemma 2.2.17, we have

I :=
∣∣∣〈AreτA((

∫ z

0

∇h · f(x′, s)ds)∂zg
)
, AreτAh

〉
−
〈

(

∫ z

0

∇h · f(x′, s)ds)AreτA∂zg, A
reτAh

〉∣∣∣
=
∣∣∣〈(

∫ z

0

∇h · f(x′, s)ds)∂zg, A
reτAH

〉
−
〈

(

∫ z

0

∇h · f(x′, s)ds)AreτA∂zg,H
〉∣∣∣.

≤ C
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||k|

∣∣∣|l|reτ |l| − |k|reτ |k|∣∣∣
+C

∑
j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j||ĝk||Ĥl||j ′||k|

∣∣∣|l|reτ |l| − |k|reτ |k|∣∣∣ := I1 + I2. (A.47)

For I1, since j + k + l = 0, we use (A.28) with ξ = |l|, η = |k| and

|ξ − η| =
∣∣∣|l| − |k|∣∣∣ ≤ ∣∣∣− l− k

∣∣∣ = |j|,

to conclude

I1 ≤ Cr
∑

j+k+l=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′||j||k|

(
|k|r−1 + |j|r−1 + τ(|k|r + |j|r)eτ |k|eτ |j|

)
. (A.48)

For I2, since (j ′, 0) + k + l = 0, we use (A.28) with ξ = |l|, η = |k| and

|ξ − η| =
∣∣∣|l| − |k|∣∣∣ ≤ ∣∣∣− l− k

∣∣∣ = |j ′|,

to obtain

I2 ≤ Cr
∑

j′+k′+l′=0
k3+l3=0
j3,k3,j

′ 6=0

1

|j3|
|f̂j ||ĝk||Ĥl||j ′|2|k|

(
|k|r−1 + |j ′|r−1 + τ(|k|r + |j ′|r)eτ |k|eτ |j|

)
. (A.49)
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Observe that the difference between the sums in the right-hand sides of (A.48) and (A.39) is

manifested in the factors |j ′||j||k| and |j ′||k|2, and between (A.49) and (A.29) is manifested in

the factors |j ′|2|k| and |j ′||k|2. Therefore, one can follow the estimates of I1 in (A.39) and I2 in

(A.29), and obtain that I1 in (A.48) and I2 in (A.49) satisfy the desired bound in Lemma 2.2.16.
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