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ABSTRACT

In many practical settings, a user needs to perform computations—for example, using machine

learning or cloud/edge computing algorithms—on the data stored in a storage system that consists

of one or multiple remote servers. The direct data access may, however, result in exposing the

identity of the data items used for the computation process to the server(s), and this can violate the

privacy of the user. In recent years, several privacy-preserving schemes with information-theoretic

privacy guarantees were proposed for some special cases of the private computation paradigm. Ex-

amples of such scenarios are Private Information Retrieval (PIR) and Private Linear Computation

(PLC). Inspired by these works, in this thesis we introduce the problem of single-server Private

Linear Transformation (PLT), which generalizes the PIR and PLC problems. In the PLT problem,

there is a user that wishes to compute multiple linear combinations of a subset of items belong-

ing to a dataset stored on a single remote server. The goal of the user is to minimize the total

amount of information being downloaded from the server while keeping the identities of items

required for the computation private. This problem is motivated by several applications such as

linear transformation for dimensionality reduction in machine learning.

In this thesis, we make a significant progress towards characterizing the fundamental perfor-

mance limits of the single-server PLT problem for two information-theoretic privacy conditions,

called joint privacy and individual privacy, which have been recently considered for PIR and PLC.

We prove converse bounds using a mix of linear-algebraic and information-theoretic arguments

that are tailored for the single-server case, and are different from the commonly-used techniques

in multi-server PIR and PLC. We design optimal privacy-preserving schemes by leveraging ideas

from the literature on coding theory, such as Maximum Distance Separable (MDS) codes, and in-

terference alignment. In addition, we briefly discuss the PLT settings in which the user has a prior

side information about the dataset, and propose novel PLT schemes to show the advantages of side

information in reducing the download cost for each type of privacy considered.
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NOMENCLATURE

ML Machine Learning

PIR Private Information Retrieval

PLC Private Linear Computation

PLT Private Linear Transformation

MDS Maximum Distance Separable

GRS Generalized Reed-Solomon

JPLT Private Linear Transformation with Joint Privacy

IPLT Private Linear Transformation with Individual Privacy

SI Side Information

USI Uncoded Side Information

CSI Coded Side Information

ILP Integer Linear Programming
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1. INTRODUCTION

1.1 Paradigm of Private Computation

Nowadays, many different types of data are stored in remote data centers (servers). These

datasets are constantly being queried by users for different purposes, and serve as input for a broad

range of machine learning and cloud/edge computing algorithms. The direct access to data can

however expose the identity of data items a user is interested in. This, in turn, may expose the

user’s algorithms, preferences, and objectives. For example, consider a learning algorithm that

requires only a small subset of features of data samples in the dataset, and needs to compute mul-

tiple linear combinations of these features as new combined features in the projected space. By

monitoring the specific indices of the features accessed by such an algorithm, a curious server may

gain insight on the inner working of the algorithm. Accordingly, one key requirement in the design

of such systems is to hide the identity of the data items—that are accessed and provided as an input

to the user’s algorithm—from the server(s). The research on this type of privacy, which we refer

to as the user privacy, has been very limited. In contrast, the notion of data privacy, which is to

protect the content of the data from the user (see e.g., [1–4]), was extensively studied, producing

many algorithms, such as those based on secure multi-party computation [5, 6], differentially pri-

vate computation [7, 8], and functional encryption schemes [9, 10]. We refer to the paradigm of

computing functions of a dataset while maintaining the user privacy as private computation. In this

problem, the goal is to design a system such that the user can privately compute their target func-

tion(s) of the dataset while the total amount of communication between the user and the server(s)

(i.e., the sum of lengths of each query (upload) and each answer (download)) is minimized.

1.2 Related Work

The research on protecting user privacy in private computation was initiated in the work by

Chor et al. [11] on Private Information Retrieval (PIR). In PIR, the goal of the user is to retrieve a

subset of data items with minimum possible communication cost, while hiding the identities of the
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required data items from the remote server(s). Early on, it was shown that when there is only one

server holding the dataset or multiple servers that can arbitrarily collude, a user that is interested

in retrieving even one data item must download the entire dataset so as to achieve information-

theoretic privacy [12]. In contrast, when multiple copies of the dataset are stored across multiple

servers with limited collusion capability, it was shown that information-theoretic privacy can be

achieved much more efficiently [13].

More recently, a novel and more realistic PIR model for information-theoretic privacy was

proposed in [13]. This model focuses on large data items, and as a result, the goal in this model

is to minimize the download cost only, as the upload cost becomes negligible in comparison. This

model was also extended for Private Linear Computation (PLC) in [14,15]. In PLC, the goal of the

user is to compute one linear combination of a subset of data items without revealing the identities

of these items. In all these works, it is assumed that the dataset is stored across multiple servers

and these servers have limited capability for collusion. These assumptions, however, may prevent

the use of the existing PIR and PLC schemes in various practical scenarios. For example, many

databases are stored on a single server or multiple servers that belong to the same entity, and hence

can collude arbitrarily [16, 17].

Aside from information-theoretic privacy is cryptographic privacy, which assumes that the

computational power of the server(s) is limited (see, e.g., [18, 19]). Unfortunately, the existing

schemes for cryptographic privacy were not adopted in many practical settings, mainly because

they do not fully capture the constraints and requirements imposed by real-world computing sys-

tems. For instance, such schemes do not scale well for large data items [20], and require compu-

tationally expensive homomorphic encryption [21]. The focus of this research is on information-

theoretic privacy as it enables the strongest possible protection against curious server(s), and does

not rely on any limiting physical or computational assumptions.

Starting from the work in [13–15], there have been several breakthrough developments in the

design of privacy-preserving PIR and PLC protocols, see e.g., [13–15, 22–32]. Notwithstanding,

there remain many important settings that have not been explored in detail.
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1. The PIR problem was originally studied under the single-demand setting where the user

wants to privately retrieve one item from the database, see e.g., [13, 33–36]. Later, the

multi-demand PIR setting was also considered in [24, 29], where the goal is to privately

retrieve multiple items simultaneously. The PLC problem was only studied under the single-

demand setting, where the user wishes to privately compute one linear combination of the

database items, see e.g., [14, 15, 17, 30, 31]. That said, several machine learning and cloud

computing algorithms such as distributed gradient descent involve multiple simultaneous

function computations on the same subset of dataset.

2. The classical PIR and PLC schemes do not consider any prior side information about the

database at the user. However, in many practical scenarios, the user may possess some side

information about the database in advance. For instance, the user may initially know some

of the items in the database [16,37] or some linear combinations of them [17,38], where the

identities of these items are initially unknown to the server(s). Recently, it was shown that

both PIR and PLC can be performed much more efficiently (in terms of the download cost)

when leveraging the user’s side information (see, e.g., [16, 17]).

3. In different applications, the user may require different types of privacy. For instance, the

user may only want individual privacy, i.e., to hide the identity of every item in their demand

individually [17,39,40], or they may want joint privacy, i.e., they want to leak no information

about the correlation between the identities of the items in their demand [17, 24, 29, 41, 42].

In addition, when the user has some side information about the database, they may also wish

to hide the identities of their side information items [41, 43–46]. Most of the existing work

on PIR focuses on joint privacy. Despite the fact that joint privacy is a stronger notion of

privacy, individual privacy may still suffice in several practical scenarios [39,40]. In most of

the existing work on PLC, the privacy requirement is to hide the coding coefficients in the

demanded linear combination [14, 15, 30, 31]. Although this type of privacy is stronger than

both joint and individual privacy, but it may not be necessary in some applications [17, 37].

3



1.3 Motivation

Inspired by the PIR model of [13] and the PLC model of [14, 15] and motivated by their limi-

tations listed above, in this thesis we introduce the problem of single-server Private Linear Trans-

formation (PLT). The PLT problem includes a single server that stores a dataset consisting of K

messages; and a user that wants to compute L linear combinations of a set ofD messages. The goal

of the user is to perform the computation privately so that the identities of the messages required

for the computation are protected (to some degree) from the server, while minimizing the total

amount of information being downloaded from the server. The PLT problem generalizes the PIR

and PLC problems. In particular, PLT reduces to PIR or PLC when L = D or L = 1, respectively.

The PLT problem appears in several practical scenarios such as linear transformation for di-

mensionality reduction in Machine Learning (ML), see, e.g., [47]. Consider a dataset with N data

samples, each with K attributes. Consider a user that wishes to implement an ML algorithm on

a subset of D selected attributes, while protecting the privacy of the selected attributes. When D

is large, the D-dimensional feature space is typically mapped onto a new subspace of lower di-

mension, say, L, and the ML algorithm operates on the new L-dimensional subspace instead. A

commonly-used technique for dimensionality reduction is linear transformation, where an L×D

matrix is multiplied by theD×N data submatrix (the submatrix of theK×N data matrix restricted

to the D selected attributes). Thinking of the rows of the K × N data matrix as the K messages,

the labels of the D selected attributes as the identities of the D messages in the support set of

the required linear combinations, and the L ×D matrix used for transformation as the coefficient

matrix of the required linear combinations, this scenario matches the setup of the PLT problem.

A natural approach for PLT is to privately retrieve the items required for the computation

using a PIR scheme, and then compute the required linear combinations locally. As was shown

in [16, 38–42, 45, 48], in the single-server setting, the user can retrieve a single or multiple data

items privately with a much lower download cost than the trivial scheme of downloading the entire

dataset, by leveraging a prior side information about the dataset. However, when there is no side

information, a PIR-based PLT approach is extremely expensive since all items in the dataset must

4



be downloaded in order to achieve information-theoretic privacy [12].

Another approach for PLT is to privately compute the required linear combinations separately

via applying a PLC scheme multiple times. In [17, 37], it was shown that single-server PLC can

be performed more efficiently than single-server PIR in terms of the download cost, regardless of

whether the user has any side information or not. This suggests that a PLC-based PLT scheme

can outperform a PIR-based PLT scheme; however, a PLC-based approach may still lead to an

unnecessary overhead due to the excessive redundancy in the information being downloaded. This

implies the need for novel PLT schemes with optimal download rate.

1.4 Contributions

In this thesis, we develop techniques for single-server PLT that enable a significant reduction in

the communication and computational overhead. We will achieve this goal through (i) considering

two recently-introduced notions of information-theoretic privacy, namely, joint privacy and indi-

vidual privacy, that provide a satisfactory degree of privacy in several applications, and (ii) novel

use of different types of a prior side information about the dataset available at the user.

We focus on the setting in which the coefficient matrix of the required linear combinations

is a Maximum Distance Separable (MDS) matrix, i.e., it generates an MDS code. Recall that

an L × D matrix is said to be MDS if every L × L submatrix of this matrix is invertible. The

MDS coefficient matrices are motivated by the application of random linear transformation for

dimensionality reduction (see, e.g., [49]), where a random L×D matrix is used for transformation.

In particular, a simple application of Schwartz-Zippel lemma shows that a matrix whose entries are

randomly chosen from a sufficiently large field is MDS with high probability.

First, we consider the problem of PLT with Joint Privacy, which we refer to as JPLT for short.

The joint privacy requirement implies that, from the perspective of the server, any D-subset of

messages is equally likely to be the support set of the required linear combinations. We charac-

terize the capacity of JPLT with MDS coefficient matrices, where the capacity is defined as the

supremum of download rates over all JPLT schemes. We prove the converse by using a mix of

linear-algebraic and information-theoretic arguments, relying on a necessary condition for JPLT
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schemes. These arguments are specifically tailored to the single-server setting and are fundamen-

tally different from the commonly-used arguments in the multi-server PIR and PLC settings. We

propose an achievability scheme, termed Specialized MDS Code protocol, which leverages the idea

of extending an MDS code. In addition, we briefly discuss the settings in which the user has a prior

side information about the messages in the dataset, and the settings in which the coefficient matrix

of the required linear combinations is not MDS; and present lower and/or upper bounds on the

capacity of these extensions of the JPLT setting.

Next, we consider the problem of PLT with Individual Privacy, referred to as IPLT for short.

The individual privacy requirement implies that, from the server’s perspective, every message is

equally likely to belong to the D-subset of messages that constitute the support set of the re-

quired linear combinations. For IPLT with MDS coefficient matrices, we establish lower and upper

bounds on the capacity—defined as the supremum of download rates over all IPLT schemes. In

addition, we show that our bounds are tight under certain divisibility conditions, settling the capac-

ity of IPLT for such cases. To prove the upper bound on the capacity, we use information-theoretic

arguments based on a necessary condition for IPLT schemes, and formulate the problem as an in-

teger linear programming (ILP) problem. Solving this ILP, we obtain the capacity upper bound.

The lower bound on the capacity is proven by a novel achievability scheme, termed Generalized

Partition-and-Code with Partial Interference Alignment protocol. In addition, we present lower

bounds on the capacity of the IPLT settings with a prior side information and non-MDS coefficient

matrices.

1.5 Organization of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we formulate the problems

of single-server PLT with joint and individual privacy along with several extensions of the PLT

problem. In Chapter 3, we present our main results for PLT with joint privacy (JPLT), and provide

the converse proof and an achievability scheme. In Chapter 4, we present our main results for

PLT with individual privacy (IPLT), the proof of converse, and the proposed achievability scheme.

Finally, in Chapter 5, we conclude the thesis, and provide a list of future work.
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2. PROBLEM FORMULATION

Throughout, we denote random variables and their realizations by bold-face symbols (e.g.,

X,W) and regular symbols (e.g., X,W), respectively. Also, we denote by H(·) and H(·|·) the

(Shannon) entropy and conditional entropy functions, respectively.

2.1 Private Linear Transformation (PLT) Problem

Let Fp be a finite field of order p, and let Fq be an extension field of Fp. Let K,D,L be positive

integers such that L ≤ D ≤ K, and let K denote the set of integers {1, ..., K}. Let W be the set

of all D-subsets W of K, and let V be the set of all L ×D matrices V (with entries from Fp) that

are Maximum Distance Separable (MDS), i.e., V generates a [D,L] MDS code of length D and

dimension L. Note that an L×D matrix V is MDS if every L× L submatrix of V is invertible.

2.1.1 Model and Assumptions

Consider a server that stores K messages X1, . . . , XK , where Xi ∈ Fq for i ∈ K. Let

X , [X1, . . . , XK ]T. For every S ⊂ K, we denote by XS the vector X restricted to its compo-

nents indexed by S. We assume that X1, . . . ,XK are independently and uniformly distributed

over Fq. That is, H(Xi) = θ , log2 q for all i ∈ K, and more generally, H(XS) = |S|θ for every

S ⊂ K, where |S| denotes the size of the set S. Note that H(X) = Kθ.

Consider a user that wants to compute the vector Z[W,V] , VXW, where W ∈W and V ∈ V.

That is, Z[W,V] contains L components vT
1 XW, . . . , v

T
LXW, where vT

l is the lth row of V. Note that

H(Z[W,V]) = H(vT
1XW, . . . , v

T
LXW) = Lθ because vT

1 , . . . , v
T
L are linearly independent. We refer

to Z[W,V] as the demand, W as the support index set of the demand, V as the coefficient matrix of

the demand, D as the support size of the demand, and L as the dimension of the demand.

In this work, we assume that (i) W, V, and X are independent random variables; (ii) W is

uniformly distributed over all W ∈W; (iii) V is uniformly distributed over all V ∈ V; and (iv)

the parameters D and L, and the joint distribution of W and V are initially known by the server,

whereas the server does not initially know the realizations W and V.
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2.1.2 Privacy and Recoverability Conditions

Given W and V, the user generates a query Q[W,V], simply denoted by Q, and sends it to

the server. The query Q is a function of W, V, and potentially a random key R (independent

of W, V, and X) that is generated by the user and is initially unknown to the server. That is,

H(Q|W,V,R) = 0, where Q[W,V] is denoted by Q.

The query Q must satisfy one of the following privacy conditions:

(i) Joint privacy condition: Given the query Q, every D-subset of message indices must be

equally likely to be the demand’s support index set, i.e., for every W∗ ∈W, it must hold that

Pr(W = W∗|Q = Q) = Pr(W = W∗).

(ii) Individual privacy condition: Given the query Q, every message index must be equally likely

to be in the demand’s support index set, i.e., for every i ∈ K, it must hold that

Pr(i ∈W|Q = Q) = Pr(i ∈W).

The joint privacy condition was previously considered for PIR and PLC (see, e.g., [17,29,41]),

and the individual privacy condition was recently introduced in [39] and [17] for single-server PIR

and PLC. Joint privacy is a stronger notion than individual privacy—the former implies the latter,

but not vice versa. In particular, in the case of joint privacy, the query must not leak any information

to the server about the correlation between the indices of the messages that constitute the support

set of the demand; whereas, in the case of individual privacy, upon receiving the query, the server

may gain some information about this correlation. Note that, for joint or individual privacy, it is

not required that the query protects the privacy of the demand’s coefficient matrix from the server.

The joint and individual privacy conditions are inspired by real-world scenarios. For example,

preserving the privacy of the selected attributes in the application of random linear transformation

for dimensionality reduction in Machine Learning (ML) prevents the server from learning the

inner working of the user’s ML algorithm. In particular, it may be required that, from the server’s

perspective, every D-subset of attributes is equally likely to be the user’s desired attributes, or it

may suffice that every individual attribute is equally likely to be one of the user’s desired attributes.
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Upon receiving the query Q, the server generates an answer A[W,V], simply denoted by A,

and sends it back to the user. The answer A is a deterministic function of Q and X. That is,

H(A|Q,X) = 0, where A[W,V] is denoted by A.

The answer A, the query Q, and the realizations W,V must collectively enable the user to

retrieve the demand Z[W,V], i.e., H(Z|A,Q,W,V) = 0, where Z[W,V] is denoted by Z. We refer

to this condition as the recoverability condition.

2.1.3 Rate of PLT Protocols and Capacity of PLT

For each type of privacy, the problem is to design a protocol for generating a query Q[W,V] and

the corresponding answer A[W,V] for any given (W,V) such that both the privacy and recoverability

conditions are satisfied. We refer to this problem as single-server PLT with Joint Privacy (or

JPLT for short) or single-server PLT with Individual Privacy (or IPLT for short) when joint or

individual privacy is required, respectively. Also, we refer to a PLT protocol that satisfies the joint

or individual privacy condition as a JPLT protocol or an IPLT protocol, respectively.

Following the convention in the PIR and PLC literature, we measure the efficiency of a JPLT

protocol or an IPLT protocol by its rate—defined as the ratio of the entropy of the demand (i.e.,

H(Z) = Lθ) to the entropy of the answer (i.e., H(A)). We define the capacity of the JPLT or IPLT

setting as the supremum of rates over all JPLT or IPLT protocols, respectively.

In this work, our goal is to establish (preferably matching) lower and upper bounds (in terms

of the parameters K, D, and L) on the capacity of the JPLT and IPLT settings.

2.2 Extensions of the PLT Problem

Both the JPLT and IPLT settings can be extended to the settings in which the user has a prior

side information about the messages stored at the server, or the settings in which the coefficient

matrix of the demand is not an MDS matrix. In this work, we briefly outline lower and/or upper

bounds on the capacity of these extended settings. However, a comprehensive study of these

settings is beyond the focus of this work, and left for future work.
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2.2.1 PLT with Side Information

Two types of Side Information (SI) were previously studied for PIR and PLC: Uncoded SI (USI)

(see, e.g., [16]), and Coded SI (CSI) (see, e.g., [38]). In the case of USI, the user initially knows a

randomly chosen subset ofM messages (different from theD messages constituting the support set

of the required linear combinations). In the case of CSI, instead of M uncoded messages, the user

initially knows L randomly generated MDS coded combinations of M messages. In both cases

of USI and CSI, the identities of these M messages are initially unknown to the server. Recent

work on PIR and PLC shows the advantages of these types of SI in increasing the capacity (see,

e.g., [17, 41]). These results motivate the study of PLT in the presence of SI.

For PLT with USI or CSI, the joint and individual privacy conditions are defined as follows.

For joint privacy, the identities of all messages in the support set of the demand and those in the

support set of the side information need to be protected. That is, given the query, every two disjoint

subsets of messages, one of sizeD and the other of sizeM , must be equally likely to be the support

set of the demand and the support set of the side information, respectively. For individual privacy,

the identity of every message in the support sets of demand and side information must be protected.

That is, given the query, every message must be equally likely to belong to the demand’s support

set, and every message must be equally likely to belong to the side information’s support set.

2.2.2 PLT with Non-MDS Coefficient Matrices

Both the JPLT and IPLT settings (with or without SI) can also be extended to the settings in

which the coefficient matrix of the demand is randomly chosen from the ensemble of all L × D

matrices that have full row rank, i.e., all L × D matrices with L linearly independent rows. Note

that the MDS assumption for the coefficient matrix is particularly useful for scenarios where the

size of the operating field is sufficiently large (e.g. the field of real numbers, which is the case in

many real-world applications such as machine learning and data science). However, in some other

scenarios, a finite field of a relatively small size may be required. In such cases, the coefficient

matrix of the demand is likely to be non-MDS, particularly when the matrix size is relatively large.
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3. PRIVATE LINEAR TRANSFORMATION WITH JOINT PRIVACY (JPLT)

In this chapter, we first present a necessary condition for JPLT protocols in Section 3.1. Then,

we summarize our main results for the JPLT setting in Section 3.2. The proof of converse is given

in Section 3.3, and the achievability scheme is presented in Section 3.4. An illustrative example of

the proposed achievability scheme is provided in Section 3.5. We conclude this chapter by briefly

outlining our results for the extensions of the JPLT setting in Section 3.6.

3.1 A Necessary Condition for JPLT Protocols

The following lemma states a necessary (yet not always sufficient) condition for any JPLT

protocol. This result follows from the joint privacy and recoverability conditions.

Lemma 1. Given any JPLT protocol, for any W∗ ∈W, there must exist V∗ ∈ V, such that

H(Z[W∗,V∗]|A,Q) = 0.

Proof. The proof is by the way of contradiction. Consider an arbitrary W∗ ∈ W. Suppose that

there does not exist any V∗ ∈ V such that H(Z[W∗,V∗]|A,Q) = 0. This implies that W∗ ∈ W is

not the support index set of the demand (otherwise, if W = W∗, the recoverability condition is

not satisfied). This obviously violates the joint privacy condition, because given the query, every

D-subset of message indices must be equally likely to be the demand’s support index set.

When considering linear JPLT schemes, i.e., the schemes in which the answer consists of

only linear combinations of the messages, the necessary condition provided by Lemma 1 can

be interpreted in the language of coding theory as follows. The coefficient matrix of the linear

combinations corresponding to the answer must generate a (linear) code of length K that, when

punctured at any K − D coordinates, contains L codewords that are MDS, i.e., they generate a

[D,L] MDS code. Recall that puncturing a (linear) code at a coordinate is performed by deleting

the column pertaining to that coordinate from the generator matrix of the code. A code satisfying
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this condition is, however, not guaranteed to yield a JPLT scheme. A sufficient (but not necessary)

condition is that the codes resulting from puncturing at any K − D coordinates contain the same

number of groups of LMDS codewords. Thus, designing a linear JPLT scheme with maximum rate

reduces to constructing such a linear code with minimum dimension. This sufficient condition is,

however, more combinatorial in nature, and the necessary condition provided by Lemma 1 proves

more useful when deriving an information-theoretic converse bound.

3.2 Main Results for the JPLT Setting

Theorem 1. For the JPLT setting with K messages, demand’s support size D, and demand’s

dimension L, the capacity is given by
L

K −D + L
.

The proof of converse is based on information theoretic arguments relying mostly on the neces-

sary condition for JPLT protocols—provided by Lemma 1. The converse bound naturally serves as

an upper bound on the rate of any JPLT protocol. We prove the achievability by designing a linear

JPLT protocol, termed the Specialized MDS Code protocol, that achieves the converse bound. This

protocol generalizes those in [41] and [37] for single-server PIR and PLC (without SI) with joint

privacy, and is based on the idea of extending the MDS code generated by the coefficient matrix

of the demand. In particular, when the coefficient matrix of the demand generates a Generalized

Reed-Solomon (GRS) code, we give an explicit construction of a GRS code that contains a specific

collection of codewords—specified by the demand’s support index set and coefficient matrix.

Remark 1. The result of Theorem 1 shows that, when there is only a single server and there is

no prior side information available at the user, JPLT can be performed more efficiently than using

either of the following two approaches: (i) retrieving the messages required for computation using

a multi-message PIR scheme [41] and computing the required linear combinations locally, or (ii)

computing each of the required linear combinations separately via applying a PLC scheme [37].

More specifically, the optimal rate for the approach (i) or (ii) isL/K or 1/(K−D+1), respectively,

whereas an optimal JPLT scheme achieves the rate L/(K−D+L). Fig. 3.1 depicts the download
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Figure 3.1: The download rate of the proposed scheme and the PIR-based and PLC-based schemes.

rate of the proposed JPLT scheme, the PIR-based scheme, and the PLC-based scheme, for different

values of D ∈ {10, 20, . . . , 1000}, where K = 1000, and L/D = 0.6 (left plot) or L/D = 0.4

(right plot). As can be seen, for a fixed ratio L/D (i.e., a fixed reduction factor in the application of

linear transformation for dimensionality reduction), the advantage of the proposed scheme over the

PIR-based scheme is more pronounced asD increases. For instance, for L/D = 0.4, the rate of the

proposed scheme is about 15% and 30% more than that of the PIR-based scheme for D = 250 and

D = 500, respectively. Comparing the proposed scheme and the PLC-based scheme, one can also

observe that when the ratio L/D is fixed, the gap between the rate of the proposed scheme and that

of the PLC-based scheme increases as D increases up to a threshold very close to K; and beyond

this threshold, the gap decreases rapidly as D increases up to K. In addition, a comparison of the

left and right plots in Fig. 3.1 shows that for a fixed value of D, the smaller is the ratio L/D (i.e.,

the larger is the reduction factor), the more is the advantage of the proposed scheme over the best

of the other two schemes. For instance, forD = 250, the rate of the proposed scheme is about 10%

and 15% more than that of the PIR-based scheme for L/D = 0.6 and L/D = 0.4, respectively.
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Remark 2. In [37], it was shown that the rate 1/(K −D + 1) is achievable for PLC (without SI)

with joint privacy, but no converse result was presented. The result of Theorem 1 for L = 1 proves

the optimality of this rate. For L = D, the JPLT problem reduces to PIR (without SI) when joint

privacy is required, and as was shown in [41], an optimal solution for this case is to download the

entire dataset. This is consistent with the result of Theorem 1 for L = D.

3.3 Proof of Converse

Lemma 2. The rate of any JPLT protocol forK messages, demand’s support sizeD, and demand’s

dimension L, is upper bounded by L/(K −D + L).

Proof. Consider an arbitrary JPLT protocol that generates the query-answer pair (Q[W,V],A[W,V])

for any given (W,V). To prove the rate upper bound, we need to show thatH(A) ≥ (K −D + L)θ,

where A denotes A[W,V], and θ is the entropy of a message.

For the ease of notation, we define T , K − D + 1. For every 1 ≤ i ≤ T , let Wi ,

{i, i+ 1, . . . , i+D − 1}. Note that W1, . . . ,WT ∈W. By Lemma 1, for any 1 ≤ i ≤ T , there

exists Vi ∈ V such that H(Zi|A,Q) = 0, where Zi , Z[Wi,Vi]. (Note that Vi is an MDS matrix.)

This readily implies that H(Z1, . . . ,ZT |A,Q) = 0 since

H(Z1, . . . ,ZT |A,Q) ≤
T∑
i=1

H(Zi|A,Q) = 0.

Thus, we can write

H(A) ≥ H(A|Q) +H(Z1, . . . ,ZT |Q,A) (3.1)

= H(Z1, . . . ,ZT |Q) +H(A|Q,Z1, . . . ,ZT ) (3.2)

≥ H(Z1, . . . ,ZT ), (3.3)

where (3.1) holds because H(Z1, . . . ,ZT |A,Q) = 0, as shown earlier; (3.2) follows from the

chain rule of conditional entropy; and (3.3) holds because (i) Zi’s are independent from Q, noting

that Zi’s only depend on X, and Q is independent of X, and (ii) H(A|Q,Z1, . . . ,ZT ) ≥ 0.
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To lower bound H(Z1, . . . ,ZT ), we proceed as follows. By the chain rule of entropy, we have

H(Z1, . . . ,ZT ) = H(Z1) +
∑

1<i≤T

H(Zi|Z1, . . . ,Zi−1).

Let Zi,1, . . . ,Zi,L be the L components of the vector Zi, i.e., Zi,l , vT
i,lXWi

, where vT
i,l is the

lth row of Vi. Note that Zi consists of L components Zi,1, . . . ,Zi,L, and these components are

independent because their corresponding coefficient vectors vi,1, . . . , vi,L are linearly independent.

Moreover, Zi,1, . . . ,Zi,L are uniform over Fq, i.e., H(Zi,l) = θ for l ∈ {1, . . . , L}. Thus, H(Zi) =

H(Zi,1, . . . ,Zi,L) = Lθ, particularly, H(Z1) = Lθ.

It should be clear that Xi−D+1 belongs to the support set of Zi,l for some l ∈ {1, . . . , L}.

Otherwise, Vi contains an all-zero column, which is a contradiction. Moreover, Xi−D+1 does not

belong to the support set of any of the components of Zj for any j < i (by construction). This

implies that Zi contains at least one component, namely, Zi,l, that cannot be written as a linear

combination of the components in Z1, . . . ,Zi−1. Thus, Zi,l is independent of Z1, . . . ,Zi−1. This

further implies that H(Zi|Z1, . . . ,Zi−1) ≥ H(Zi,l) = θ, and consequently,

∑
1<i≤T

H(Zi|Z1, . . . ,Zi−1) ≥ (T − 1)θ.

Thus, we have

H(Z1, . . . ,ZT ) ≥ Lθ + (T − 1)θ = (K −D + L)θ. (3.4)

Combining (3.3) and (3.4), we get H(A) ≥ (K −D + L)θ, as was to be shown.

3.4 Achievability Scheme

In this section, we propose a linear JPLT protocol, termed Specialized MDS Code Protocol, that

achieves the rate L/(K −D + L). An illustrative example of this protocol is given in Section 3.5.

The proposed protocol consists of three steps as follows.

Step 1: Given the demand support index set W and the demand coefficient matrix V =

[v1, . . . , vl]
T, the user constructs a query Q[W,V] in the form of a matrix G, such that the user’s
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query, i.e., the matrix G, and the server’s corresponding answer A[W,V], i.e., the vector GX, satisfy

the joint privacy and recoverability conditions.

To satisfy the joint privacy condition, it is required that, for any index set W∗ ∈ W, the code

generated by the matrix G contains L codewords whose support index sets are some subsets of W∗,

and the coordinates of these codewords (indexed by W∗) form an MDS matrix V∗ ∈ V. By the

properties of MDS codes [50], it is easy to verify that the generator matrix of any [K,K −D+L]

MDS code satisfies this requirement. Note, however, that not any such matrix is guaranteed to

satisfy the recoverability condition. Indeed, for satisfying the recoverability condition, it is required

that G, as a generator matrix, generates a code that contains L codewords with the support W, and

the coordinates of these codewords (indexed by W) must conform to the coefficient matrix V. To

construct a matrix G that satisfies these requirements, the user proceeds as follows.

First, the user constructs the parity-check matrix Λ of the [D,L] MDS code generated by the

matrix V. Since V is an MDS matrix, then Λ generates a [D,D − L] MDS code (i.e., the dual of

the MDS code generated by V).

The user then constructs a (D − L)×K matrix H that satisfies the following two conditions:

(i) The submatrix of H restricted to columns indexed by W (and all rows) is Λ, and

(ii) The matrix H is MDS.

Since Λ is an MDS matrix, constructing H reduces to extending the [D,D−L] MDS code generated

by Λ to a [K,D−L] MDS code. Recall that extending a code is performed by adding new columns

to the generator matrix of the code. Next, the user constructs a (K −D + L) ×K matrix G that

generates the MDS code defined by the parity-check matrix H. Note that H generates a [K,D−L]

MDS code, and hence, H is the parity-check matrix of a [K,K − D + L] MDS code. The user

sends the matrix G as the query Q[W,V] to the server.

In the following, we describe how to explicitly construct the matrix G when the coefficient

matrix V generates a GRS code, i.e., the entry (i, j) of V is given by Vi,j , νjω
i−1
j , where

ν1, . . . , νD are D elements from Fp \ {0}, and ω1, . . . , ωD are D distinct elements from Fp. The
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parameters ν1, . . . , νD and ω1, . . . , ωD are the multipliers and the evaluation points of the GRS

code generated by V, respectively. Since the dual of a GRS code is a GRS code [50], the parity-

check matrix Λ of the GRS code generated by V is a (D − L)×D matrix whose entry (i, j) is

given by Λi,j , λjω
i−1
j , where

λj , ν−1j
∏

k∈{1,...,D}\{j}

(ωj − ωk)−1.

Note that λ1, . . . , λD are nonzero. Extending the (D−L)×D matrix Λ to a (D−L)×K matrix

H—satisfying the conditions (i) and (ii) specified earlier—is performed as follows.

Let W = {i1, . . . , iD} and K \W = {iD+1, . . . , iK}, and let π be a permutation on K such

that π(j) = ij . Let λD+1, . . . , λK be K −D elements chosen randomly (with replacement) from

Fp \ {0}, and let ωD+1, . . . , ωK be K −D elements chosen randomly (without replacement) from

Fp \ {ω1, . . . , ωD}. For every j ∈ {1, . . . , D}, let the π(j)th column of H be the jth column of Λ,

and for every j ∈ K \ {1, . . . , D}, let the π(j)th column of H be [λj, λjωj, . . . , λjω
D−L−1
j ]T.

Since H is the parity-check matrix of a [K,K − D + L] GRS code, the generator matrix

of this code, denoted by G, can be simply constructed by taking the π(j)th column of G to be

[αj, αjωj, . . . , αjω
K−D+L−1
j ]T, where

αj , λ−1j
∏

k∈K\{j}

(ωj − ωk)−1.

Note that the parameters {αj}j∈K and {ωj}j∈K are the multipliers and the evaluation points of the

GRS code generated by the matrix G, respectively.

Step 2: Given the query Q[W,V], i.e., the matrix G, the server computes y , GX, and sends the

vector y back to the user as the answer A[W,V]. In particular, when V generates a GRS code, the

ith entry of the vector y = [y1, . . . , yK−D+L]T is given by

yi =
∑
j∈K

αjω
i−1
j Xj.
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Step 3: Upon receiving the answer A[W,V], i.e., the vector y = GX, the user constructs a

matrix [G̃, ỹ] by performing row operations on the augmented matrix [G, y], so as to zero out the

submatrix formed by the first L rows and the columns indexed by K \W. Since the submatrix of

[G̃, ỹ] formed by the first L rows and the columns indexed by W (or K \W) is the matrix V (or an

all-zero matrix), the lth component of the demand vector Z[W,V], i.e., vT
l XW, can be recovered as

the lth entry of the vector ỹ.

In the case that V generates a GRS code, Z[W,V] can be recovered from the vector y as follows.

First, the user constructs L polynomials f1(x), . . . , fL(x), where

fl(x) , xl−1
∏

j∈K\{1,...,D}

(x− ωj).

Let cl , [cl,1, . . . , cl,K−D+L]T, where cl,i is the coefficient of the monomial xi−1 in the expansion

of fl(x). The user then recovers vT
l XW for 1 ≤ l ≤ L by computing cTl y.

Lemma 3. The Specialized MDS Code protocol is a linear JPLT protocol, and achieves the rate

L/(K −D + L).

Proof. Since the answer y = GX is a vector of length K − D + L, and the entries of this vector

are linearly independent coded combinations of the messages X1, . . . ,XK (noting that the matrix

G has full row rank), the entropy of the answer is given by (K −D + L)θ, where θ is the entropy

of a message. Thus, the rate of this protocol is L/(K −D + L).

Since G generates a [K,K − D + L] MDS code with minimum distance D − L + 1, it is

easy to verify that the joint privacy condition is satisfied. By the properties of MDS codes [50],

an [n, k] MDS code (with minimum distance n − k + 1) satisfies the following combinatorial

condition: for any n− k + 1 ≤ d ≤ n and any d-subset I ⊆ {1, . . . , n}, the code space contains

a unique (d− n+ k)-dimensional subspace on the coordinates indexed by I, and any basis of this

subspace forms an MDS matrix. This implies that the row space of the matrix G contains a unique

L-dimensional subspace on every D-subset of coordinates, and each of these subspaces is equally

likely to be the subspace spanned by the user’s demand, from the server’s perspective. Thus, given
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the query (i.e., the matrix G), every D-subset of message indices is equally likely to be the support

index set of the demand.

The recoverability follows readily from the construction. Let U , [u1, . . . , uL]T, where ul is

a column-vector of length K such that the vector ul restricted to its components indexed by W

is the vector vl, and the rest of the components of the vector ul are all zero. Note that V is the

submatrix of U formed by columns indexed by W. We need to show that the rows of U are L

codewords of the code generated by G. Since H is the parity-check matrix of the code generated

by G, this is equivalent to showing that UHT is an all-zero matrix. Firstly, the submatrix of UHT

restricted to columns indexed by W is given by VΛT, and VΛT is an all-zero matrix because Λ is

the parity-check matrix of the code generated by V. Secondly, the submatrix of UHT formed by

the columns indexed by K \W is an all-zero matrix because the submatrix of U restricted to these

columns is an all-zero matrix. Thus, UHT is an all-zero matrix, as was to be shown.

3.5 An Example of the Proposed JPLT Protocol

Consider a scenario where the server has K = 10 messages X1, . . . ,X10 ∈ F11, and the user

wants to compute L = 2 linear combinations of D = 5 messages X2, X4, X5, X7, X8, say,

Z1 = X2 + 3X4 + 2X5 +X7 + 6X8,

Z2 = 3X2 + 10X4 + 7X5 + 4X7 + 8X8.

Note that for this example, the demand’s support index set is given by W = {2, 4, 5, 7, 8}, and the

demand’s coefficient matrix is given by

V =

1 3 2 1 6

3 10 7 4 8

 .
It is easy to verify that V generates a [5, 2] GRS code with the nonzero multipliers {ν1, . . . , ν5} =

{1, 3, 2, 1, 6} and the evaluation points {ω1, . . . , ω5} = {3, 7, 9, 4, 5}. Thus, the user can obtain
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the parity-check matrix Λ of this code as

Λ =


3 10 8 8 7

9 4 6 10 2

5 6 10 7 10

 .

Note that Λ generates a [5, 3] MDS code with the nonzero multipliers {λ1, . . . , λ5} = {3, 10, 8, 8, 7}

and the evaluation points {ω1, . . . , ω5} = {3, 7, 9, 4, 5}.

Next, the user extends the 3× 5 matrix Λ to a 3× 10 matrix H that satisfies the conditions

(i) and (ii) specified in the step 1 of the protocol. Suppose the user randomly chooses 6 ad-

ditional nonzero multipliers {λ6, . . . , λ10} = {3, 5, 1, 1, 4} (from F11 \ {0}) and 6 additional

evaluation points {ω6, . . . , ω10} = {6, 1, 10, 2, 8} (from F11 \ {ω1, . . . , ω5}). Followed by con-

structing a permutation π as described in the step 1 of the protocol, say, {π(1), . . . , π(10)} =

{2, 4, 5, 7, 8, 1, 3, 6, 9, 10}, the user constructs the matrix H as

H =


3 3 5 10 8 1 8 7 1 4

7 9 5 4 6 10 10 2 2 10

9 5 5 6 10 1 7 10 4 3

 ,

where the columns indexed by π(1), π(2), π(3), π(4), π(5) (i.e., 2, 4, 5, 7, 8) correspond to the

columns 1, 2, 3, 4, 5 of Λ, respectively, and the columns indexed by π(6), π(7), π(8), π(9), π(10)

(i.e., 1, 3, 6, 9, 10) correspond to the columns of the generator matrix of a [5, 3] GRS code with

the nonzero multipliers {λ6, . . . , λ10} and the evaluation points {ω6, . . . , ω10}. That is, for every

i ∈ {6, . . . , 10}, the π(i)th column of H is given by [λi, λiωi, λiω
2
i ]

T.

Since H generates a [10, 3] GRS code with the nonzero multipliers {λ1, . . . , λ10} and the eval-

uation points {ω1, . . . , ω10}, H can be thought of as the parity-check matrix of a [10, 7] GRS code

with the nonzero multipliers {α1, . . . , α10} = {10, 7, 4, 5, 4, 9, 2, 1, 4, 4} and the evaluation points

{ω1, . . . , ω10} = {6, 3, 1, 7, 9, 10, 4, 5, 2, 8}. (The process of computing αi’s is explained in the
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step 1 of the protocol.) The user then obtains the generator matrix G of this code,

G =



9 10 2 7 4 1 5 4 4 4

10 8 2 5 3 10 9 9 8 10

5 2 2 2 5 1 3 1 5 3

8 6 2 3 1 10 1 5 10 2

4 7 2 10 9 1 4 3 9 5

2 10 2 4 4 10 5 4 7 7

1 8 2 6 3 1 9 9 3 1



.

Then, the user sends the matrix G as the query to the server.

Upon receiving the query, i.e., the matrix G, the server computes the vector y = GX, and sends

it back to the user. The user then constructs two polynomials

f1(x) = (x− ω6)(x− ω7)(x− ω8)(x− ω9)(x− ω10)

= (x− 6)(x− 1)(x− 10)(x− 2)(x− 8),

and f2(x) = xf1(x) (for more details, see the step 3 of the protocol). It is easy to verify that the

coefficient vectors of the polynomials f1(x) and f2(x) are given by c1 = [8, 1, 8, 9, 6, 1, 0]T and

c2 = [0, 8, 1, 8, 9, 6, 1]T, respectively. Then, the user recovers their demand, i.e., Z1 and Z2, by

computing

Z1 = cT1 y = X2 + 3X4 + 2X5 +X7 + 6X8,

Z2 = cT2 y = 3X2 + 10X4 + 7X5 + 4X7 + 8X8.

Note that for this example, the rate of the proposed protocol is L/(K −D + L) = 2/7, whereas

the rate of a PIR-based scheme or a PLC-based scheme is L/K = 2/10 or 1/(K −D) = 1/5,

respectively.
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3.6 Main Results for Extensions of the JPLT Setting

3.6.1 JPLT with Side Information

The result of Theorem 1 can be extended to JPLT with Side Information (SI). First, consider

the case of Uncoded SI (USI), where the user initially knows a random subset of M messages

(different from those indexed by W) and the identities of these messages are initially unknown to

the server. Using similar techniques as in this work, we can show that the capacity of JPLT with

USI is given by L/(K −D −M + L), when the identities of the messages in the support set of

the demand and those in the support set of the side information need to be protected jointly. In

addition, under the same privacy condition, we can show that the capacity of JPLT with Coded

SI (CSI) does not change, provided that the coefficient matrix of the side information and that of

the demand form an MDS matrix when concatenated horizontally. Recall that in the case of CSI

the user initially knows L randomly generated MDS coded combinations of M randomly chosen

messages, and the identities of these M messages are not initially known by the server. This result

is interesting, particularly when L < M , because it shows that for achieving joint privacy, only L

(< M ) MDS coded combinations of M messages is as efficient as M uncoded messages as SI.

To prove the converse it suffices to show that the rate of any JPLT-USI protocol is upper

bounded by L/(K − D − M + L). This upper bound naturally serves as an upper bound on

the rate of any JPLT-CSI protocol, noting that any coded SI on M given messages can be obtained

from an uncoded SI consisting of these M messages.

Lemma 4. The rate of any JPLT-USI protocol forK messages, demand’s support sizeD, demand’s

dimensionL, and the side information’s support sizeM , is upper bounded byL/(K −D −M + L).

The proof of Lemma 4 relies on a necessary condition for any JPLT-USI protocol stated in the

following lemma. (The proof is similar to that of Lemma 1, and hence omitted to avoid repetition.)

Lemma 5. Given any JPLT-USI protocol, for any W∗ ∈W and anyM -subset S∗ ⊆ K \W∗, there

must exist V∗ ∈ V, such that

H(Z[W∗,V∗]|A,Q,XS∗) = 0.
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Proof of Lemma 4. Consider an arbitrary JPLT-USI protocol. We need to show that H(A) ≥

(K −D −M + L)θ. For simplifying the notation, let T , K − D − M + 1, and let Wi ,

{i+M, i+M + 1, . . . , i+D +M − 1} for any 1 ≤ i ≤ T . Also, let S , {1, . . . ,M}. Note

that S and Wi (for 1 ≤ i ≤ T ) are disjoint. By the result of Lemma 5, for any 1 ≤ i ≤ T ,

there exists Vi ∈ V such that H(Zi|A,Q,XS) = 0, where Zi , Z[Wi,Vi]. This readily implies that

H(Z1, . . . ,ZT |A,Q,XS) = 0. Similar to the proof of Lemma 2, we can show that

H(A) ≥ H(A|Q,XS) +H(Z1, . . . ,ZT |Q,A,XS) (3.5)

= H(Z1, . . . ,ZT |Q,XS) +H(A|Q,XS,Z1, . . . ,ZT ) (3.6)

≥ H(Z1, . . . ,ZT ), (3.7)

where (3.5) holds because H(Z1, . . . ,ZT |A,Q,XS) = 0; (3.6) follows from the chain rule of

conditional entropy; and (3.7) holds because (i) Zi’s are independent from (Q,XS), noting that

Q does not depend on the content of the messages, and XS is independent from the messages

XM+1, . . . ,XK that constitute the support sets of Z1, . . . ,ZT since S and Wi are disjoint for all

1 ≤ i ≤ T , and (ii) H(A|Q,XS,Z1, . . . ,ZT ) ≥ 0. The rest of the proof is the same as that in the

proof of Lemma 2 by showing that H(Z1, . . . ,ZT ) ≥ Lθ + (T − 1)θ = (K −D−M + L)θ.

The proof of achievability is based on a linear JPLT-CSI protocol, termed Modified Specialized

MDS Code protocol, that achieves the rate L/(K −D−M +L), provided that the L× (D +M)

matrix formed by horizontally concatenating the demand’s coefficient matrix and the side infor-

mation’s coefficient matrix, referred to as the demand-side coefficient matrix, is an MDS matrix.

The Modified Specialized MDS Code protocol is similar to the Specialized MDS Code protocol

for JPLT without SI—presented in Section 3.4, except where the demand’s support index set W is

replaced by the union of the support set of the demand and the support set of the side information,

the demand’s coefficient matrix V is replaced by the demand-side coefficient matrix, and D is re-

placed by D + M . Note that the Modified Specialized MDS Code protocol can also serve as an

JPLT-USI protocol, since the user can always construct a coded SI from an uncoded SI.

23



Lemma 6. The Modified Specialized MDS Code protocol is a linear JPLT-CSI protocol, and

achieves the rate L/(K −D −M + L), provided that the demand-side coefficient matrix is MDS.

Proof. The proof follows from the exact same lines as those in the proof of Lemma 3, and hence

omitted to avoid repetition.

3.6.2 JPLT with Non-MDS Coefficient Matrices

The result of Theorem 1 can also be extended to the JPLT setting in which the coefficient matrix

of the demand, V, is not MDS. In particular, when the matrix V is randomly chosen from the set of

all L ×D matrices that have full row rank and nonzero columns, using the same proof technique

as the one in Section 3.3 for the case of MDS matrices, we can show that the rate of any JPLT

protocol is upper bound by L/(K −D + L). However, the achievability of this rate upper bound

remains unknown in general. On the other hand, when the matrix V is randomly chosen from the

set of all L × D matrices that have full row rank—regardless of containing any all-zero columns

or not, using a JPLT protocol similar to the Specialized MDS Code protocol for the case of MDS

matrices, we can achieve the rate L/(K − D + L). This rate, however, may not be optimal, and

the converse is still open. In the following, we present a sketch of the achievability scheme.

First, the user constructs anL×K matrix U such that the columns of U indexed by the demand’s

support index set W are the columns of the matrix V, and the rest of the columns of U are all zero.

Next, the user constructs a (K − D + L) × K matrix G̃ by vertically concatenating the L × K

matrix U and a randomly generated (K − D) × K MDS matrix M, i.e., G̃ = [UT,MT]T. The

user then constructs a (K − D + L) × K matrix G by multiplying G̃ by a randomly generated

(K − D + L) × (K − D + L) invertible matrix R, i.e., G = RG̃, and sends the matrix G as the

query to the server. Note that the matrix G, unlike the case of the Specialized MDS Code protocol,

does not necessarily generate an MDS code. The server computes y = GX, and sends y back to

the user as the answer. Given y, the user first computes ỹ = [ỹ1, . . . , ỹK−D+L]T = R−1y, and then

recovers the demand VXW = [ỹ1, . . . , ỹL]T. Using similar arguments as those in Section 3.4, it can

be shown that this protocol satisfies both the joint privacy and recoverability conditions.
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4. PRIVATE LINEAR TRANSFORMATION WITH INDIVIDUAL PRIVACY (IPLT)

In this chapter, we begin by presenting a necessary condition for IPLT protocols in Section 4.1.

Section 4.2 summarizes our main results for the IPLT setting. The proof of converse and the achiev-

ability scheme are presented in Section 4.3 and Section 4.4, respectively. To further illustrate the

proposed achievability scheme, two examples are provided in Section 4.5. Lastly, in Section 4.6,

we briefly outline our results for the extensions of the IPLT setting.

4.1 A Necessary Condition for IPLT Protocols

The individual privacy and recoverability conditions yield a necessary (but not sufficient) con-

dition for any IPLT protocol, stated in the following lemma.

Lemma 7. Given any IPLT protocol, for any i ∈ K, there must exist W∗ ∈ W with i ∈ W∗, and

V∗ ∈ V, such that

H(Z[W∗,V∗]|A,Q) = 0.

Proof. The proof is by the way of contradiction, and relies on the joint privacy and recoverability

conditions. Consider an arbitrary i ∈ K. Suppose that for none of W∗ ∈ W with i ∈ W∗ there

exists V∗ ∈ V such that H(Z[W∗,V∗]|A,Q) = 0. This implies that Xi is not one of the messages in

the support set of the demand (i.e., i 6∈W); otherwise, if i ∈W, the recoverability condition is not

satisfied. This, however, violates the individual privacy condition, because given the query, every

message must be equally likely to be one of the messages in the demand’s support set.

The result of Lemma 7 establishes a connection between linear codes with a certain constraint

and linear schemes for IPLT, i.e., any scheme in which the server’s answer to the user’s query

consists of only linear combinations of the messages. In particular, the matrix of combination

coefficients—pertaining to the linear combinations in the answer, must be the generator matrix of

a linear code of length K that satisfies the following condition: for any coordinate i, there must

exist K − D coordinates different from i such that the code resulting from puncturing at these
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K −D coordinates contains L codewords that are MDS. Note, however, that this condition is only

necessary and not sufficient. A sufficient (yet not necessary) condition is that, for every coordinate

i, the punctured codes resulting from puncturing at any K − D other coordinates (different from

i) collectively contain the same number of groups of L codewords that are MDS. Maximizing the

rate of a linear IPLT scheme is then equivalent to minimizing the dimension of a linear code that

satisfies this sufficient condition. Despite the fact that this sufficient condition is stronger than the

necessary condition provided by Lemma 7, the former is more combinatorial, whereas the latter is

more information-theoretic and hence more useful in the converse proof.

4.2 Main Results for the IPLT Setting

Theorem 2. For the IPLT setting with K messages, demand’s support size D, and demand’s

dimension L, the capacity is lower and upper bounded by

(⌊
K

D

⌋
+ min

{
R

S
,
R

L

})−1
and

(⌊
K

D

⌋
+ min

{
1,
R

L

})−1
,

respectively, where R , K (mod D) and S , gcd(D + R,R). Moreover, the lower and upper

bounds match when R ≤ L or R | D.

To prove the converse bound, we use the necessary condition for IPLT protocols provided by

Lemma 7 along with information-theoretic arguments, and formulate the problem as an integer

linear programming (ILP) problem. Solving this ILP, we obtain the upper bound on the capacity.

The lower bound on the capacity is proven by constructing an IPLT protocol, called Generalized

Partition-and-Code with Partial Interference Alignment. This protocol is a generalization of the

protocols previously proposed in [39] and [17] for single-server PIR and PLC (without SI) with

individual privacy. The main ingredients of the proposed protocol are as follows: (i) constructing

a properly designed family of subsets of messages, where some subsets are possibly overlapping,

and (ii) designing a number of linear combinations for each subset, where the linear combinations

pertaining to the overlapping subsets are partially aligned.

26



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: The download rate of the proposed IPLT and JPLT schemes.

Remark 3. As shown in [17], the capacity of PLC with individual privacy, which is a special case

of IPLT for L = 1, is given by d K
D+M

e−1, where the user initially knows M (> 0) uncoded mes-

sages or one linear combination of M messages as side information. The capacity of this setting

was, however, left open forM = 0. Theorem 2 provides a lower bound (bK
D
c+ min{R

S
, R})−1 and

an upper bound (bK
D
c+ min{1, R})−1 on the capacity of this setting. Interestingly, these bounds

are matching when R = 0 or R | D, settling the capacity of PLC (without SI) with individual

privacy for these cases. For L = D, IPLT reduces to PIR (without SI) with individual privacy, and

an optimal scheme in this case is to download the entire dataset [39]. This is consistent with the

result of Theorem 2 for L = D.

Remark 4. Naturally, the JPLT scheme proposed in Section 3.4 is also applicable as an IPLT

scheme. This comes from the fact that joint privacy is a stronger notion that implies individual

privacy. In Fig. 4.1, we compare the performance of the proposed IPLT and JPLT schemes for

different values of D ∈ {10, 20, . . . , 1000}, where K = 1000, and L/D = 0.6 (left plot) or

L/D = 0.4 (right plot). One can observe that, when the ratio L/D is fixed, for sufficiently small

values of D, the download rate of the proposed IPLT scheme is higher than that of the proposed
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JPLT scheme; whereas, for values ofD larger than a threshold, both schemes achieve the same rate.

This implies that for sufficiently large D, achieving individual privacy is as costly as achieving

joint privacy. In addition, for some values of D, the rate achieved by the proposed IPLT scheme

matches the converse bound. This, in turn, confirms the optimality of the proposed IPLT scheme

for such values of D. By comparing the left and right plots in Fig. 4.1, it can also be seen that

for a sufficiently small value of D, the smaller is the ratio L/D, the better is the performance of

the proposed IPLT scheme as compared to that of the proposed JPLT scheme. For instance, for

D = 250, the rate of the proposed IPLT scheme is about 33% and 53% more than that of the

proposed JPLT scheme for L/D = 0.6 and L/D = 0.4, respectively.

4.3 Proof of Converse

Lemma 8. The rate of any IPLT protocol forK messages, demand’s support sizeD, and demand’s

dimension L, is upper bounded by (bK
D
c+ min{1, R

L
})−1, where R , K (mod D).

Proof. Consider an arbitrary IPLT protocol that generates the query-answer pair (Q[W,V],A[W,V])

for any given (W,V). To prove the rate upper bound in the lemma, we need to show that

H(A) ≥
(
L

⌊
K

D

⌋
+ min{L,R}

)
θ.

Recall that A denotes A[W,V], and θ is the entropy of a message. Consider an arbitrary message

index k1 ∈ K. By the result of Lemma 7, there exist W1 ∈ W with k1 ∈ W1, and V1 ∈ V such

that H(Z1|A,Q) = 0, where Z1 , Z[W1,V1]. By the same arguments as in the proof of Lemma 2

(see Section 3.3), we have

H(A) ≥ H(A|Q) +H(Z1|A,Q)

= H(Z1|Q) +H(A|Q,Z1)

= H(Z1) +H(A|Q,Z1) (4.1)

To further lower bound H(A|Q,Z1), we proceed as follows. Take an arbitrary message index
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k2 6∈ W1. Again, by Lemma 7, there exist W2 ∈ W with k2 ∈ W2, and V2 ∈ V such that

H(Z2|A,Q) = 0, where Z2 , Z[W2,V2]. Using a similar technique as in (4.1), it follows that

H(A|Q,Z1) ≥ H(Z2|Q,Z1) +H(A|Q,Z1,Z2), and consequently,

H(A|Q,Z1) ≥ H(Z2|Z1) +H(A|Q,Z2,Z1). (4.2)

Combining (4.1) and (4.2), we get

H(A) ≥ H(Z1) +H(Z2|Z1) +H(A|Q,Z2,Z1). (4.3)

We repeat this lower-bounding process multiple rounds until there is no message index left to

take. Let n be the total number of rounds, and let k1, . . . , kn be the message indices chosen over

the rounds. For every i ∈ {1, . . . , n}, let Wi ∈W with ki ∈Wi and ki 6∈ ∪1≤j<iWj , and Vi ∈ V,

be such that H(Zi|A,Q) = 0, where Zi , Z[Wi,Vi]. (For any i ∈ {1, . . . , n}, the existence of Wi

and Vi is guaranteed by the result of Lemma 7.) Note that ∪1≤i≤nWi = K. Similarly as before,

we can show that

H(A) ≥
∑

1≤i≤n

H(Zi|Zi−1, . . . ,Z1) +H(A|Q,Zn, . . . ,Z1) ≥
∑

1≤i≤n

H(Zi|Zi−1, . . . ,Z1). (4.4)

Let Zi,1, . . . ,Zi,L be the components of Zi, where Zi,l , vT
i,lXWi

, and vT
i,l is the lth row of Vi.

Next, we show that

H(Zi|Zi−1, . . . ,Z1) ≥ min{Ni, L}θ, (4.5)

whereNi , |Wi \ ∪1≤j<iWj| is the number of message indices that belong to Wi, but not∪1≤j<iWj .

(Note that N1 = |W1|= D.) This is equivalent to showing that Zi contains Mi , min{Ni, L}

components that are independent of the components of Z1, . . . ,Zi−1. Note that the components of

Z1, . . . ,Zi are linear combinations of the messages X1, . . . ,XK . Let ui,l be a column-vector of

length K such that the vector ui,l restricted to its components indexed by Wi is the vector vi,l, and

the rest of the components of the vector ui,l are all zero, and let Ui , [ui,1, . . . , ui,L]T. Thus, we
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need to show that the matrix Ui contains Mi rows that are linearly independent of the rows of the

matrices U1, . . . ,Ui−1. Note that the rows of the matrix Ui are linearly independent, because Ui

contains Vi as a submatrix, and Vi is invertible.

Let Si be an L×Ni submatrix of Ui formed by columns indexed by Wi \∪1≤j<iWj . Note that

Si is a submatrix of Vi, and every L× L submatrix of Vi is invertible. We consider two cases: (i)

Ni ≤ L, and (ii) Ni > L. In the case (i), the Ni columns of Si are linearly independent. Otherwise,

any L × L submatrix of Vi that contains Si cannot be invertible, and hence a contradiction. In

the case (ii), any L columns of Si are linearly independent. Otherwise, Si (and consequently, Vi)

contains an L × L submatrix that is not invertible, which is a contradiction. By these arguments,

the rank of Si is Mi = min{L,Ni}, and hence, Si contains Mi linearly independent rows.

Without loss of generality, assume that the first Mi rows of Si are linearly independent. More-

over, the submatrix of [U1; . . . ; Ui−1] restricted to its columns indexed by Wi \ ∪1≤j<iWj (and all

its rows) is an all-zero matrix, where [U1; . . . ; Ui−1] is a matrix formed by stacking U1, . . . ,Ui−1

vertically. By these arguments, it follows that the first Mi rows of Ui are linearly independent of

the rows of [U1; . . . ; Ui−1]. This completes the proof of (4.5).

Combining (4.4) and (4.5), we have

H(A) ≥
∑

1≤i≤n

min{L,Ni}θ (4.6)

Recall that Ni = |Wi \ ∪1≤j<iWj|. Note that 1 ≤ Ni ≤ D since Wi \ ∪1≤j<iWj is a subset of

Wi, and the message index ki belongs to Wi \ ∪1≤j<iWj . Moreover,
∑n

i=1Ni = K since W1,

W2 \W1, . . . , Wn \ ∪1≤j<nWj form a partition of K, and |W1|= N1 = D, |W2 \W1|= N2, . . . ,

|Wn \ ∪1≤j<nWj|= Nn. To obtain a converse bound, we need to minimize
∑

1≤i≤n min{L,Ni},

subject to the constraints (i)N1 = D, and 1 ≤ Ni ≤ D for any 1 < i ≤ n, and (ii)
∑

1≤i≤nNi = K.

To this end, we reformulate this optimization problem as follows. For every j ∈ {1, . . . , D},

let Tj ,
∑

1≤i≤n 1{Ni=j} be the number of rounds i such that Ni = j. Using this notation,

the objective function
∑

1≤i≤n min{L,Ni} can be rewritten as
∑

1≤j≤D Tj min{L, j}, or equiv-
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alently,
∑

1≤j≤L Tjj +
∑

L<j≤D TjL; the constraint (i) reduces to Tj ∈ N0 , {0, 1, . . . } for every

1 ≤ j < D, and TD ∈ N , {1, 2, . . . }; and the constraint (ii) reduces to
∑

1≤j≤D Tjj = K. Thus,

we need to solve the following integer linear programming (ILP) problem:

minimize
∑

1≤j≤L

Tjj +
∑

L<j≤D

TjL (4.7)

subject to
∑

1≤j≤D

Tjj = K

Tj ∈ N0, ∀1 ≤ j < D

TD ∈ N.

Solving this ILP using the Gomory’s cutting-plane algorithm [51], it can be seen that an optimal

solution is given by TD = bK
D
c, TR = 1, and Tj = 0 for all j 6∈ {R,D}, where R , K (mod D),

and the optimal value is given by LbK
D
c+ min{L,R}. This implies that

∑
1≤i≤n

min{L,Ni} ≥ L

⌊
K

D

⌋
+ min{L,R}. (4.8)

Combining (4.6) and (4.8), we get H(A) ≥ (LbK
D
c+ min{L,R})θ, as was to be shown.

4.4 Achievability Scheme

This section presents an IPLT protocol, called Generalized Partition-and-Code with Partial

Interference Alignment, that achieves the rate (bK
D
c+ min{R

S
, R
L
})−1, where R , K (mod D)

and S , gcd(D +R,R). Two examples of the proposed IPLT protocol are given in Section 4.5.

In the description of the protocol, we denote by W̃ a sequence of length D (instead of a set

of size D) that the user initially constructs by randomly permuting the elements in the demand’s

support index set W, and denote by Ṽ an L×D matrix that the user initially constructs by applying

the same permutation on the columns of the demand’s coefficient matrix V.

We consider two different cases: (i) L ≤ S, and (ii) L > S. In each case, the protocol consists

of three steps as follows.
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Step 1: The user constructs a matrix G and a permutation π, and sends them as the query Q[W,V]

to the server. In the following, we describe the construction of the matrix G and the permutation π

for the cases (i) and (ii) separately.

Case (i):

Recall that in this case, L ≤ S. Let n , bK
D
c − 1, m , R

S
+ 1, and t , D

S
− 1. The user

constructs an L(n+m)×K matrix G,

G =



G1 0 . . . 0 0

0 G2 . . . 0 0

...
... . . . ...

...

0 0 . . . Gn 0

0 0 . . . 0 Gn+1


(4.9)

where G1, . . .Gn are L×D matrices, and Gn+1 is an Lm× (D +R) matrix. The matrices (blocks)

G1, . . . ,Gn,Gn+1 are constructed as follows.

The user randomly selects one of the blocks G1, . . . ,Gn+1, where each of the blocks G1, . . . ,Gn

is selected with probability D
K

, and the block Gn+1 is selected with probability D+R
K

. Let i∗ be the

index of the selected block. Depending on the choice of i∗, the description of the protocol is

different. In the following, we consider the cases of 1 ≤ i∗ ≤ n and i∗ = n+ 1 separately.

First, consider the case of 1 ≤ i∗ ≤ n. In this case, the user takes Gi∗ to be the matrix Ṽ, i.e.,

Gi∗ = Ṽ. For any i ∈ {1, . . . , n} \ {i∗}, the user takes Gi to be a randomly generated MDS matrix

of size L×D. The construction of Gn+1 is as follows. First, the user randomly generates an MDS

matrix C of size L× (D +R), and partitions the columns of C into t+m column-blocks each of

size L× S, i.e., C = [C1, . . . ,Ct+m]. Then, the user constructs Gn+1 = [B1,B2],

B1 ,


α1ω1,1C1 . . . αtω1,tCt

...
...

...

α1ωm,1C1 . . . αtωm,tCt

 , B2 ,


αt+1Ct+1

. . .

αt+mCt+m

 ,
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where α1, . . . , αt+m are t + m randomly chosen elements from Fp \ {0}, and ωi,j , (xi − yj)−1

for 1 ≤ i ≤ m and 1 ≤ j ≤ t, where x1, . . . , xm and y1, . . . , yt are t+m distinct elements chosen

at random from Fp. Note that ωi,j is the entry (i, j) of an m× t Cauchy matrix.

Now, consider the case of i∗ = n+1. For any i ∈ {1, . . . , n}, the user takes Gi to be a randomly

generated MDS matrix of size L × D. The user then constructs Gn+1 with a structure similar

to that in the previous case, but for a different choice of matrices C1, . . . ,Ct+m and parameters

α1, . . . , αt+m, as specified below.

First, the user partitions the columns of Ṽ into t + 1 column-blocks each of size L × S, i.e.,

Ṽ = [Ṽ1, . . . , Ṽt+1]. The user then randomly chooses t + 1 indices from {1, . . . , t+m}, say,

i1, . . . , it+1, and for any 1 ≤ j ≤ t+ 1, takes Cij = Ṽj . Next, the user randomly generates the rest

of Ci’s such that C = [C1, . . . ,Ct+m] is an MDS matrix. The choice of αi’s is described below.

Hereafter, we refer to the submatrix of Gn+1 formed by the ith L rows as the ith row-block

of Gn+1. Note that Gn+1 has m row-blocks. Let s be the number of column-block indices ij

for j ∈ {1, . . . , t + m} such that ij > t. Note that Ci1 , . . . ,Cit−s+1 belong to the matrix B1,

and Cit−s+2 , . . . ,Cit+1 belong to the matrix B2. Let I , {i1, . . . , it+1} be the index set of those

column-blocks of C that correspond to the column-blocks of Ṽ. Let I1 , {i1, . . . , it−s+1}, and let

I2 , I \ I1. Note that for any i ∈ I1, Ci appears in all row-blocks of Gn+1, and for any i ∈ I2, Ci

appears only in the (i− t)th row-block of Gn+1.

The parameters αi’s are to be chosen such that, by performing row-block operations on Gn+1,

the user can construct an L× (D + R) matrix with t + m column-blocks each of size L× S that

satisfies the following two conditions: (a) the blocks indexed by {1, . . . , t+m} \ I are all zero,

and (b) the blocks indexed by I = {i1, . . . , it+1} are Ci1 , . . . ,Cit+1 . For simplifying the notation,

let {j1, . . . , js−1} , {1, . . . , t} \ I, and let {k1, . . . , ks} , I2 = {it−s+2, . . . , it+1}.

To perform row-block operations, for every i ∈ I2 = {k1, . . . , ks}, the user multiplies the

(i − t)th row-block of Gn+1 by a nonzero coefficient ci. Let c , [ck1 , . . . , cks ]
T. Upon choosing

αj1 , . . . , αjs−1 randomly from Fp \ {0}, it follows that the condition (a) is satisfied so long as M1c
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is an all-zero vector, where

M1 ,



ωk1−t,j1 ωk2−t,j1 . . . ωks−t,j1

ωk1−t,j2 ωk2−t,j2 . . . ωks−t,j2
...

...
...

...

ωk1−t,js−1 ωk2−t,js−1 . . . ωks−t,js−1


.

Since M1 is a Cauchy matrix by the choice of ωi,j’s, the submatrix of M1 formed by columns

indexed by {2, . . . , s} is invertible [50]. Thus, for any arbitrary ck1 6= 0, there is a unique solution

for the vector c. Note also that all the components of c are nonzero because M1 is a super-regular

matrix, i.e., every square submatrix of M1 is invertible (by the properties of Cauchy matrices).

Given the vector c, the condition (b) is satisfied so long as αk1 = 1/ck1 , . . . , αks = 1/cks , and

αi1 , . . . , αit−s+1 are chosen such that M2c is an all-one vector, where

M2 ,



αi1ωk1−t,i1 . . . αi1ωks−t,i1

αi2ωk1−t,i2 . . . αi2ωks−t,i2
...

...
...

αit−s+1ωk1−t,it−s+1 . . . αit−s+1ωks−t,it−s+1


.

Solving for αi1 , . . . , αit−s+1 , it follows that

αij ,

(∑
1≤l≤s

cklωkl−t,ij

)−1

for 1 ≤ j ≤ t− s+ 1. Note that αi1 , . . . , αit−s+1 are nonzero. Note also that
∑

1≤l≤s cklωkl−t,ij is

nonzero because the jth row of M2 is linearly independent of the rows of M1.

Lastly, for any i ∈ {1, . . . , t + m} \ {i1, . . . , it+1, j1, . . . , js−1}, the user chooses αi randomly

from Fp \ {0}. This completes the construction of the matrix G.

Next, the user constructs a permutation π as follows. Let W̃ = {l1, . . . , lD}, and let K \W =

{lD+1, . . . , lK}. First, consider the case of 1 ≤ i∗ ≤ n. In this case, the user constructs a per-
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mutation π such that: for every 1 ≤ j ≤ D, π(lj) = (i∗ − 1)D + j; and for every D < j ≤ K,

π(lj) is a randomly chosen element from K \ {π(lk)}1≤k<j . Next, consider the case of i∗ = n+ 1.

Recall that i1, . . . , it+1 are the indices of those column-blocks of C that correspond to the column-

blocks of Ṽ. Thus, the user constructs a permutation π such that: for every 1 ≤ k ≤ t+ 1 and

(k−1)S+1 ≤ j ≤ kS, π(lj) = nD + (ik − 1)S + fj , where fj = j (mod S) if S - j, and fj = S

if S | j; and for every D < j ≤ K, π(lj) is a randomly chosen element from K \ {π(lk)}1≤k<j .

Case (ii):

Recall that in this case, L > S. Let n , bK
D
c − 1, and m , R

L
+ 1. The user constructs

an L(n + m) × K matrix G with a structure similar to (4.9), where G1, . . . ,Gn are constructed

similarly as in the previous case, but the construction of Gn+1 is different. In the following, we

will only explain how to construct Gn+1.

For the case of 1 ≤ i∗ ≤ n, the user randomly generates an [D +R,L+R] MDS code, and

takes Gn+1 to be the generator matrix of this code. For the case of i∗ = n+ 1, the user constructs a

[D +R,L+R] MDS code using the same technique as in the step 1 of the Specialized MDS Code

protocol—described in Section 3.4, except where K is replaced by D+R, and W is replaced by a

randomly chosenD-subset of {1, . . . , D+R}, say, {h1, . . . , hD}. The user then uses the generator

matrix of the constructed MDS code as Gn+1.

Next, the user constructs a permutation π. For the case of 1 ≤ i∗ ≤ n, the permutation π is

generated exactly the same as in the case (i), whereas the construction of the permutation π for the

case of i∗ = n + 1 is different from that in the case (i). Similarly as before, let W̃ = {l1, . . . , lD},

and let K \W = {lD+1, . . . , lK}. For the case of i∗ = n + 1, the user constructs a permutation π

such that: for every 1 ≤ j ≤ D, π(lj) = nD + hj; and for every D < j ≤ K, π(lj) is a randomly

chosen element from K \ {π(lk)}1≤k<j .

Step 2: Given the query Q[W,V], i.e., the matrix G and the permutation π, the server first

constructs the vector X̃ , π(X) by permuting the components of the vector X according to the

permutation π, i.e., X̃π(l) , Xl for l ∈ K. Then, the server computes the vector y , GX̃, and sends

y back to the user as the answer A[W,V].
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Step 3: Upon receiving the answer A[W,V], i.e., the vector y, the user recovers the demand

vector Z[W,V] as follows. For every 1 ≤ i ≤ n, let yi be the vector y restricted to its components

indexed by {(i−1)L+1, . . . , iL}, and let yn+1 be the vector y restricted to its components indexed

by {nL + 1, . . . , nL + mL}. For the case of 1 ≤ i∗ ≤ n, the demand Z[W,V] can be recovered

from the vector yi∗ for both cases (i) and (ii). For the case of i∗ = n+ 1, the demand Z[W,V]

can be recovered by performing proper row-block or row operations on the augmented matrix

[Gn+1, yn+1] for the case (i) or (ii), respectively.

Lemma 9. The Generalized Partition-and-Code with Partial Interference Alignment protocol is a

linear IPLT protocol, and achieves the rate (bK
D
c+ min{R

S
, R
L
})−1, where R , K (mod D) and

S , gcd(D +R,R).

Proof. To avoid repetition, we only present the proof for the case (i) in the following. Using similar

arguments, the results can be proven for the case (ii).

In the case (i), it is easy to see that the rate of the protocol is Lθ/(L(n+m)θ) = (n+m)−1 =

(bK
D
c + R

S
)−1. This is because the matrix G has L(n + m) rows, and the vector y = GX̃ contains

L(n + m) independently and uniformly distributed components, each with entropy θ. From the

construction, it should also be obvious that the recoverability condition is satisfied.

Next, we show that the individual privacy condition is satisfied. Let X̃ , [Xi1 , . . . , XiK ]T.

For every 1 ≤ j ≤ n, let Ij be the set of jth group of D elements in {i1, . . . , inD}, and for ev-

ery 1 ≤ j ≤ t + m, let In+j be the set of jth group of S elements in {inD+1, . . . , iK}. For

any positive integers a, b such that b ≤ a, we denote by Ca,b the binomial coefficient
(
a
b

)
. For

every 1 ≤ j ≤ n, let Wj , Ij , and for every 1 ≤ j ≤ r , Ct+m,t+1, let Wn+j = ∪k∈JjIk,

where J1, . . . ,Jr are all (t + 1)-subsets of {n+ 1, . . . , n+ t+m}. Note that, given the user’s

query, W1, . . . ,Wn,Wn+1, . . . ,Wn+t+m are the only possible demand’s support index sets from

the server’s perspective. Let Q , {G, π} be the user’s query. To prove that the individual privacy

condition is satisfied, we need to show that Pr(i ∈W|Q = Q) = Pr(i ∈W) for every i ∈ K, or

equivalently, Pr(i ∈W|Q = Q) is the same for all i ∈ K. Fix an arbitrary i ∈ K. In the following,

we consider two different cases: (i) π(i) ≤ nD, and (ii) π(i) > nD.
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First, consider the case (i). In this case, there exists a unique j (for any 1 ≤ j ≤ n) such that

i ∈Wj . Thus, Pr(i ∈W|Q = Q) = Pr(W = Wj|Q = Q). By applying Bayes’ rule, we have

Pr(W = Wj|Q = Q) =
Pr(Q = Q|W = Wj)

Pr(Q = Q)
Pr(W = Wj)

=
Pr(Q = Q|W = Wj)

Pr(Q = Q)
× 1

CK,D
. (4.10)

The structure of G—the size and the position of the blocks G1, . . . ,Gn+1—does not depend on

(W, π), and the matrix V and all other MDS matrices used in the construction of G are generated

independently from (W, π). This implies that G is independent of (W,π). Thus, Pr(Q = Q) =

Pr(G = G,π = π) = Pr(G = G) Pr(π = π), and

Pr(Q = Q|W = Wj)

Pr(Q = Q)
=

Pr(G = G,π = π|W = Wj)

Pr(G = G) Pr(π = π)

=
Pr(G = G) Pr(π = π|W = Wj)

Pr(G = G) Pr(π = π)

=
Pr(π = π|W = Wj)

Pr(π = π)
. (4.11)

Given W = Wj , the conditional probability of the event of π = π is equal to the joint probability

of the two eventsπ(W) = π(Wj) andπ(K \W) = π(K \Wj). Note that Pr(π(W) = π(Wj)) =

Pr(i∗ = j)× 1
D!

= D
K
× 1

D!
, where i∗ is the index of the block selected by the user in the step 1 of

the protocol, and Pr(π(K \W) = π(K \Wj)) = 1
(K−D)!

by the construction of the permutation

π in the step 1 of the protocol. Thus,

Pr(π = π|W = Wj) =
D

K
× 1

D!
× 1

(K −D)!
. (4.12)

Combining (4.10)-(4.12), we have

Pr(i ∈W|Q = Q) =
1

Pr(π = π)
× D

K
× 1

K!
. (4.13)
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Now, consider the case (ii). In this case, there exist s , Ct+m−1,t distinct indices j1, . . . , js

(1 ≤ j1, . . . , js ≤ r) such that i ∈Wn+j1 , . . . , i ∈Wn+js . Similarly as in the case (i), we have

Pr(i ∈W|Q = Q) =
∑

1≤k≤s

Pr(W = Wn+jk |Q = Q)

=
∑

1≤k≤s

Pr(Q = Q|W = Wn+jk)

Pr(Q = Q)
Pr(W = Wn+jk)

=
∑

1≤k≤s

Pr(G = G) Pr(π = π|W = Wn+jk)

Pr(G = G) Pr(π = π)
× 1

CK,D

=
1

Pr(π = π)

∑
1≤k≤s

Pr(π = π|W = Wn+jk)× 1

CK,D

=
1

Pr(π = π)

∑
1≤k≤s

(
D +R

K
× 1

r
× 1

D!
× 1

(K −D)!

)
1

CK,D

=
1

Pr(π = π)
× s

(
D +R

K
× 1

r
× 1

D!
× 1

(K −D)!

)
1

CK,D

=
1

Pr(π = π)
× s

r
× D +R

K
× 1

K!

=
1

Pr(π = π)
× D

D +R
× D +R

K
× 1

K!

=
1

Pr(π = π)
× D

K
× 1

K!
. (4.14)

Comparing (4.13) and (4.14), one can see that Pr(i ∈W|Q = Q) is the same for all i ∈ K.

4.5 Examples of the Proposed IPLT Protocol

In this section, we provide two illustrative examples of the proposed protocol. Example 1

corresponds to a scenario with L ≤ S, and Example 2 corresponds to a scenario with L > S.

Example 1. Consider a scenario where the server has K = 24 messages, X1, . . . , X24 ∈ F17, and

the user wishes to compute L = 2 linear combinations of D = 9 messages X2, X4, X5, X7, X8,

X10, X11, X18, X23, say,

Z1 = 2X2 + 15X4 + 3X5 + 6X7 +X8 + 4X10 + 11X11 + 13X18 + 9X23,

Z2 = 6X2 + 9X4 + 4X5 + 3X7 + 11X8 + 15X10 + 13X11 + 8X18 +X23.
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For this example, the demand’s support index set is given by W = {2, 4, 5, 7, 8, 10, 11, 18, 23},

and the demand’s coefficient matrix is given by

V =

2 15 3 6 1 4 11 13 9

6 9 4 3 11 15 13 8 1

 .
It is easy to verify that the matrix V is MDS, i.e., every 2 × 2 submatrix of V is invertible (over

F17).

Let W̃ be a sequence of length 9 that the user initially constructs by randomly permuting the

elements in W, for example, W̃ = {10, 4, 8, 11, 7, 23, 18, 2, 5}, and let Ṽ be a 2× 9 matrix that the

user initially constructs by applying the same permutation on the columns of the matrix V, i.e.,

Ṽ =

 4 15 1 11 6 9 13 2 3

15 9 11 13 3 1 8 6 4

 .
Note that VXW = ṼXW̃ by the construction of W̃ and Ṽ.

For this example, R = K (mod D) = 6, S = gcd(D + R,R) = 3, n = bK
D
c − 1 = 1,

m = R
S

+ 1 = 3, and t = D
S
− 1 = 2. Note that L = 2 < S = 3.

The query of the user consists of an 8 × 24 matrix G and a permutation π on {1, . . . , 24}.

The matrix G is constructed using two matrices (blocks) G1 and G2 of size 2 × 9 and 6 × 15,

respectively,

G =

 G1 02×15

06×9 G2

 , (4.15)

where the construction of the blocks G1 and G2 is described below.

The user randomly selects one of the blocks G1,G2, where the probability of selecting the

block G1 is 9
24

, and the probability of selecting the block G2 is 15
24

. Depending on G1 or G2 being

selected, the construction of each of these blocks is different. In this example, suppose the user

selects G2. In this case, the user takes G1 to be a randomly generated MDS matrix of size 2 × 9,
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say,

G1 =

 3 14 11 8 4 10 5 5 6

12 16 3 4 6 3 7 15 4

 . (4.16)

To construct G2, the user first constructs a 2 × 15 matrix C = [C1,C2,C3,C4,C5], where the

column-blocks C1, . . . ,C5, each of size 2 × 3, are constructed as follows. The user partitions the

columns of Ṽ into three column-blocks Ṽ1, Ṽ2, Ṽ3, each of size 2× 3, i.e.,

Ṽ1 =

 4 15 1

15 9 11

 , Ṽ2 =

11 6 9

13 3 1

 , Ṽ3 =

13 2 3

8 6 4

 .
The user then randomly chooses three indices i1, i2, i3 from {1, 2, 3, 4, 5}, say, i1 = 1, i2 = 3, and

i3 = 5, and takes Ci1 = C1 = Ṽ1,Ci2 = C3 = Ṽ2, and Ci3 = C5 = Ṽ3. . Next, the user takes the

remaining column-blocks of C, i.e., C2 and C4, to be randomly generated matrices of size 2 × 3

such that C = [C1,C2,C3,C4,C5] is an MDS matrix. For this example, suppose the user takes C2

and C4 as

C2 =

1 4 7

5 7 6

 , C4 =

6 3 12

9 3 15

 .
Thus, the matrix C is given by

C =

[
Ṽ1 C2 Ṽ2 C4 Ṽ3

]
=

 4 15 1 1 4 7 11 6 9 6 3 12 13 2 3

15 9 11 5 7 6 13 3 1 9 3 15 8 6 4

 .
It is easy to verify that the matrix C is MDS. The user then randomly chooses t + m = 5 distinct

elements x1, x2, x3, y1, y2 from F17, say, x1 = 1, x2 = 5, x3 = 7, y1 = 11, y2 = 16, and constructs

a 3× 2 Cauchy matrix whose entry (i, j) is given by ωi,j , (xi − yj)−1, i.e.,


ω1,1 ω1,2

ω2,1 ω2,2

ω3,1 ω3,2

 =


5 9

14 3

4 15

 .
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Next, the user constructs the matrix G2 as

G2 =


α1ω1,1C1 α2ω1,2C2 α3C3 02×3 02×3

α1ω2,1C1 α2ω2,2C2 02×3 α4C4 02×3

α1ω3,1C1 α2ω3,2C2 02×3 02×3 α5C5



=


5α1C1 9α2C2 α3C3 02×3 02×3

14α1C1 3α2C2 02×3 α4C4 02×3

4α1C1 15α2C2 02×3 02×3 α5C5

 ,

where the (scalar) parameters α1, . . . , α5 are chosen such that by performing row-block operations

on G2, the user can obtain the matrix [C1, 02×3,C3, 02×3,C5]. Note that the second and fourth

column-blocks of G2, i.e., the column-blocks that contain scalar multiples of C2 and C4, do not

contain any column-block of Ṽ, and hence must be eliminated by row-block operations. Thus, the

user randomly chooses the parameters α2 and α4 (corresponding to the second and fourth column-

blocks of G2) from F17 \ {0}, say α2 = 2 and α4 = 10. The parameters α1, α3, and α5 are chosen

as follows. To perform row-block operations on G2, suppose that the user multiplies the first and

third row-blocks of G2 by scalars c3 and c5, respectively, and constructs the matrix

c3

[
5α1C1 9α2C2 α3C3 02×3 02×3

]
+ c5

[
4α1C1 15α2C2 02×3 02×3 α5C5

]
=

[
(5c3 + 4c5)α1C1 (9c3 + 15c5)α2C2 c3α3C3 02×3 c5α5C5

]
.

Thus, the user can recover the matrix [C1, 02×3,C3, 02×3,C5] by performing row-block operations

on the matrix G2 so long as (5c3 + 4c5)α1 = 1, 9c3 + 15c5 = 0, c3α3 = 1, and c5α5 = 1. Note that

the choice of ωi,j’s to be entries of a Cauchy matrix guarantees that this system of equations has

a nonzero solution for all parameters c3, c5, α1, α3, α5, and the solution is unique for any arbitrary

(but fixed) value of c3 6= 0. Choosing c3 to be an arbitrary element in F17 \ {0}, say, c3 = 1,

the user then needs to take c5 = − 9
15
c3 = 13. Given c3 = 1 and c5 = 13, the user then finds
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α1 = 1
5c3+4c5

= 3, α3 = 1
c3

= 1, and α5 = 1
c5

= 4. The user then constructs G2 as

G2 =


15C1 C2 C3 02×3 02×3

8C1 6C2 02×3 10C4 02×3

12C1 13C2 02×3 02×3 4C5

 . (4.17)

Combining G1 and G2 given by (4.16) and (4.17), the user then constructs the matrix G as in (4.15).

Next, the user constructs a permutation π on {1, . . . , 24}. Note that the columns 13, 14, 15,

16, 17, 18, 22, 23, 24 of the matrix G are constructed based on the columns 1, . . . , 9 of the ma-

trix Ṽ, respectively, and the columns 1, . . . , 9 of Ṽ correspond to the messages X10, X4, X8,

X11, X7, X23, X18, X2, X5, respectively. Thus, the user constructs the permutation π such that

{π(10), π(4), π(8), π(11), π(7), π(23), π(18), π(2), π(5)} = {10, 11, 12, 16, 17, 18, 22, 23, 24}. For

i ∈ {1, . . . , 24} \ {2, 4, 5, 7, 8, 10, 11, 18, 23}, the user then randomly chooses π(i) (subject to the

constraint that π forms a valid permutation on {1, . . . , 24}). For this example, suppose that the

user takes {π(1), π(3), π(6), π(9), π(12), . . . , π(17), π(19), π(20), π(21), π(21), π(22), π(24)} =

{13, 20, 9, 19, 21, 14, 4, 8, 15, 1, 7, 3, 6, 2, 5}

Then, the user sends the matrix G and the permutation π to the server as the query. Upon re-

ceiving the user’s query, the server first permutes the components of the vector X = [X1, . . . , X24]
T

according to the permutation π to obtain the vector X̃ = π(X), i.e., X̃π(i) = Xi for i ∈ {1, . . . , 24}.

For this example, the vector X̃ is given by

X̃ = [X17, X22, X20, X14, X24, X21, X19, X15, X6, X10, X4,

X8, X1, X13, X16, X11, X7, X23, X9, X3, X12, X18, X2, X5]
T.

Then the server computes y = GX̃, and sends the vector y back to the user as the answer. Let

T1 = {1, . . . , 9}, T2 = {10, 11, 12}, T3 = {13, 14, 15}, T4 = {16, 17, 18}, T5 = {19, 20, 21},

and T6 = {22, 23, 24}. For any T ⊂ {1, . . . , 24}, we denote by X̃T the vector X̃ restricted to

its components indexed by T. Note that [X̃T
T2
, X̃T

T4
, X̃T

T6
]T = XW̃, and y = [yT

1 , y
T
2 ]T, where

y1 , G1X̃T1 , and y2 , G2[X̃
T
T2
, X̃T

T3
, X̃T

T4
, X̃T

T5
, X̃T

T6
]T. Let I be the identity matrix of size 2 × 2.
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Then, the user recovers [Z1, Z2]
T = VXW = ṼXW̃ by computing

[
c3I 02×2 c5I

]
y2

=

[
c3I 02×2 c5I

]
G2



X̃T2

X̃T3

X̃T4

X̃T5

X̃T6


=

[
c3I 02×2 c5I

]
15C1 C2 C3 02×3 02×3

8C1 6C2 02×3 10C4 02×3

12C1 13C2 02×3 02×3 4C5





X̃T2

X̃T3

X̃T4

X̃T5

X̃T6



=

[
(15c3 + 12c5)C1 (c3 + 13c5)C2 c3C3 02×3 4c5C5

]


X̃T2

X̃T3

X̃T4

X̃T5

X̃T6



=

[
C1 02×3 C3 02×3 C5

]


X̃T2

X̃T3

X̃T4

X̃T5

X̃T6


=

[
Ṽ1 0 Ṽ2 0 Ṽ3

]


X̃T2

X̃T3

X̃T4

X̃T5

X̃T6



=

[
Ṽ1 Ṽ2 Ṽ3

]
X̃T2

X̃T4

X̃T6


= ṼXW̃,

noting that c3 = 1 and c5 = 13, and hence, 15c3 + 12c5 = 1, c3 + 13c5 = 0, and 4c5 = 1.

Note that for this example, the proposed protocol achieves the rate (bK
D
c+R

S
)−1 = 1/4, whereas

the Specialized MDS Code protocol of Section 3.4 achieves a lower rate L/(K −D+L) = 2/17.
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Example 2. Consider a scenario where the server has K = 24 messages, X1, . . . , X24 ∈ F17, and

the user wishes to compute L = 2 linear combinations of D = 7 messages X2, X4, X7, X10, X15,

X18, X23, say,

Z1 = 2X2 + 15X4 + 6X7 + 4X10 + 11X15 + 13X18 + 9X23,

Z2 = 6X2 + 9X4 + 3X7 + 15X10 + 13X15 + 8X18 +X23.

For this example, W = {2, 4, 7, 10, 15, 18, 23}, and

V =

2 15 6 4 11 13 9

6 9 3 15 13 8 1

 .
Let W̃ be a sequence of length 7 that the user initially constructs by randomly permuting the

elements in W, for example, W̃ = {10, 4, 7, 23, 18, 2, 15}, and let Ṽ be a 2× 7 matrix that the user

initially constructs by applying the same permutation on the columns of the matrix V, i.e.,

Ṽ =

15 4 6 9 13 2 11

9 15 3 1 8 6 13

 .
For this example, R = K (mod D) = 3, S = gcd(D + R,R) = 1, n = bK

D
c − 1 = 2, and

m = R
L

+ 1 = 5
2
. Note that L = 2 > S = 1.

The query of the user consists of a 9 × 24 matrix G and a permutation π on {1, . . . , 24},

constructed as follows. The matrix G is constructed using three matrices (blocks) G1, G2, and G3

of size 2× 7, 2× 7, and 7× 10, respectively,

G =


G1 02×7 02×7

02×7 G2 02×7

05×7 05×7 G3

 , (4.18)

where the construction of the blocks G1, G2, and G3 is described below.
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The user randomly selects one of the blocks G1,G2,G3, where the probability of selecting the

block G1 is 7
20

, the probability of selecting the block G2 is 7
20

, and the probability of selecting the

block G3 is 10
20

. Depending on G1, G2, or G3 being selected, the construction of each of these

blocks is different. In this example, we consider the case that the user selects G3. In this case, the

user takes G1 and G2 to be two randomly generated MDS matrices, each of size 2× 7, say,

G1 =

11 5 10 1 15 2 7

16 10 16 6 1 1 13

 , G2 =

5 8 14 7 4 3 16

3 5 8 1 6 2 15

 . (4.19)

The user then constructs G3 using a similar technique as in the Specialized MDS Code protocol of

Section 3.4. The details of the construction of G3 are as follows. Recall that Ṽ generates a [7, 2]

MDS code. Thus, the user can obtain the parity-check matrix Λ of the MDS code generated by Ṽ

as

Λ =



8 5 9 6 14 11 13

15 6 13 12 6 16 3

9 14 15 7 5 14 2

2 10 16 14 7 8 7

8 12 8 11 3 7 16


.

Note that Λ also generates a [7, 5] MDS code. Then, the user randomly chooses a D = 7-subset of

{1, . . . , 10}, say, {h1, . . . , h7} = {1, 3, 4, 6, 7, 8, 10}, and randomly generates a 2×10 MDS matrix

H such that the submatrix of H restricted to columns indexed by {h1, . . . , h7} = {1, 3, 4, 6, 7, 8, 10}

(and all rows) is the matrix Λ. For this example, suppose that the user constructs the matrix H as

H =



8 1 5 9 2 6 14 11 4 13

15 6 6 13 3 12 6 16 3 3

9 2 14 15 13 7 5 14 15 2

2 12 10 16 11 14 7 8 7 7

8 4 12 8 8 11 3 7 1 16


.
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Since H generates an [10, 5] MDS code, it can also be thought of as the parity-check matrix of

a [10, 5] MDS code. The user then takes G3 to be the generator matrix of the [10, 5] MDS code

defined by the parity-check matrix H,

G3 =



3 14 11 8 4 10 8 5 5 6

12 16 3 4 6 3 1 15 8 4

14 11 7 2 9 6 15 11 6 14

5 15 5 1 5 12 4 16 13 15

3 5 6 9 16 7 9 14 14 10


. (4.20)

Combining G1, G2, and G3 given by (4.19) and (4.20), the user constructs the matrix G as in (4.18).

Next, the user constructs a permutation π on {1, . . . , 24}. Note that the columns 15, 17, 18,

20, 21, 22, 24 of G are constructed based on the columns 1, . . . , 7 of Λ, the columns 1, . . . , 7 of Λ

are constructed based on the columns 1, . . . , 7 of Ṽ, and the columns 1, . . . , 7 of Ṽ correspond to

the messages X4, X10, X7, X23, X18, X2, X15, respectively. Thus, the user constructs the permuta-

tion π such that {π(4), π(10), π(7), π(23), π(18), π(2), π(15)} = {15, 17, 18, 20, 21, 22, 24}. For

any i ∈ {1, . . . , 24} \ {2, 4, 7, 10, 15, 18, 23}, the user then randomly chooses π(i) (subject to the

constraint that π forms a valid permutation on {1, . . . , 24}). For this example, suppose that the user

takes {π(1), π(3), π(5), π(6), π(8), π(9), π(11), . . . , π(14), π(16), π(17), π(19), . . . , π(22), π(24)}

= {12, 8, 16, 13, 1, 19, 23, 14, 7, 2, 6, 3, 5, 9, 11, 4, 10}.

Then, the user sends the matrix G and the permutation π to the server as the query. Upon re-

ceiving the user’s query, the server first permutes the components of the vector X = [X1, . . . , X24]
T

according to the permutation π to obtain the vector X̃ = π(X), i.e., X̃π(i) = Xi for i ∈ {1, . . . , 24}.

For this example, the vector X̃ is given by

X̃ = [X8, X14, X17, X22, X19, X16, X13, X3, X20, X24, X21,

X1, X6, X12, X4, X5, X10, X7, X9, X23, X18, X2, X11, X15]
T.
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Then the server computes y = GX̃, and sends the vector y back to the user as the answer. To

recover their demand, the user proceeds as follows. Let T1 = {1, . . . , 7}, T2 = {8, . . . , 14}, and

T3 = {15, . . . , 24}. For any T ⊂ {1, . . . , 24}, we denote by X̃T the vector X̃ restricted to its

components indexed by T. Note that y = [yT
1 , y

T
2 , y

T
3 ]T, where y1 , G1X̃T1 , y2 , G2X̃T2 , and

y3 , G3X̃T3 . Then, the user recovers [Z1, Z2, Z3]
T = VXW = ṼXW̃ by computing

6 4 13 1 0

0 6 4 13 1

 y3 =

6 4 13 1 0

0 6 4 13 1

G3X̃T3

=

6 4 13 1 0

0 6 4 13 1





3 14 11 8 4 10 8 4 5 6

12 16 3 4 6 3 1 12 8 4

14 11 7 2 9 6 15 2 6 14

5 15 5 1 5 12 4 6 13 15

3 5 6 9 16 7 9 1 14 10


X̃T3

=

15 0 4 6 0 9 13 2 0 11

9 0 15 3 0 1 8 6 0 13





X4

X5

X10

X7

X9

X23

X18

X2

X11

X15



=

15 4 6 9 13 2 11

9 15 3 1 8 6 13





X4

X10

X7

X23

X18

X2

X15



= ṼXW̃.

Note that for this example, the proposed protocol achieves the rate (bK
D
c + R

L
)−1 = 2/9, whereas

the Specialized MDS Code protocol of Section 3.4 achieves a lower rate L/(K −D+L) = 2/19.
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4.6 Main Results for Extensions of IPLT Setting

4.6.1 IPLT with Side Information

The result of Theorem 2 can be extended to IPLT with Side Information (SI). When the iden-

tity of every message in the support sets of demand and side information must be protected in-

dividually, we can achieve the rate (b K
D+M

c+ min{R
S
, R
L
})−1 for IPLT with USI (or IPLT with

CSI, provided that the demand-side coefficient matrix is MDS), where R = K (mod D +M)

and S = gcd(D +M +R,R). Recall that in the case of USI, the user initially knows a randomly

chosen subset of M messages, and in the case of CSI, L randomly generated MDS coded combi-

nations of M randomly chosen messages are initially known by the user. These results generalize

those of [39] and [17] for PIR and PLC with individual privacy.

The achievability scheme for IPLT with CSI is the same as the proposed protocol for IPLT

without SI, except with the following modifications: the demand’s support index set W is replaced

by the set of indices of all messages in the union of the support sets of demand and side information,

the demand’s coefficient matrix V is replaced by the demand-side coefficient matrix, and D is

replaced by D + M . Note that this scheme is also applicable for IPLT with USI. However, the

optimality of this scheme remains open for both cases of USI and CSI.

4.6.2 IPLT with Non-MDS Coefficient Matrices

The proposed IPLT protocol can be extended to the cases in which the demand’s coefficient

matrix V is randomly chosen from the ensemble of all L × D matrices that have full row rank.

In the following, we briefly outline the required modifications to the protocol for the two cases of

L ≤ S and L > S. In the case of L ≤ S, any of the blocks G1, . . . ,Gn which was previously a

randomly generated MDS matrix, will be a randomly generated matrix of the same size with full

row rank; and the block Gn+1 will be constructed using a matrix C = [C1, . . . ,Ct+m] with the same

size and construction as before, except where the submatrix of C restricted to any (t+ 1)-subset of

the column-blocks Ci’s is required to have full row rank, instead of satisfying the MDS property.

In the case of L < S, the blocks G1, . . . ,Gn are constructed the same as above. The construction
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of the block Gn+1 is similar to that of the proposed protocol in Section 3.6 for JPLT with non-

MDS coefficient matrices, except where the number of messages K is replaced by D+R, and the

demand’s support index set W is replaced by a randomly chosen D-subset of {1, . . . , D + R}. It

should be noted that this protocol achieves the same rate as the proposed protocol for IPLT with

MDS coefficient matrices. Notwithstanding, it remains open whether this rate is optimal for IPLT

with non-MDS coefficient matrices.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we introduced the problem of single-server Private Linear Transformation (PLT).

This problem includes a single remote server that stores a dataset of K messages, and a user that

wants to compute L linear combinations of a D-subset of these messages by downloading the

minimum amount of information from the server while protecting the privacy of the D messages

required for the computation. The PLT problem generalizes the Private Information Retrieval

(PIR) and Private Linear Computation (PLC) problems, which have recently received a significant

attention from the information and coding theory community.

We focused on the PLT problem under two different information-theoretic privacy require-

ments, called joint privacy and individual privacy, that were recently introduced in the PIR and

PLC literature. The joint privacy requirement implies that, from the server’s perspective, every

D-subset of messages is equally likely to be the support set of the required linear combinations;

whereas, the individual privacy requirement implies that, from the perspective of the server, every

message is equally likely to belong to the D-subset of messages that constitute the support set of

the required linear combinations.

In Chapter 3, for the setting in which the coefficient matrix of the required linear combinations

generates a Maximum Distance Separable (MDS) code, we characterized the capacity of PLT with

joint privacy, where the capacity is defined as the supremum of all achievable download rates. In

addition, we presented lower and/or upper bounds on the capacity of PLT with joint privacy for

the settings in which the user has a prior side information about the messages in the dataset, and

the settings in which the coefficient matrix of the required linear combinations is not MDS. Our

results show that when joint privacy is required, PLT (with or without the help of a prior side

information) requires less download overhead when compared to (i) applying a PIR scheme for

privately retrieving the messages required for the computation, and performing the computations

locally, or (ii) using a PLC scheme multiple times to privately compute each of the required linear

combinations separately.
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In Chapter 4, we established lower and upper bounds on the capacity of PLT with individual

privacy under the assumption of MDS coefficient matrices. We showed that our bounds are tight

under certain divisibility conditions. In addition, for the same privacy requirement, we presented

lower bounds on the capacity of PLT for the settings with a prior side information and non-MDS

coefficient matrices. Our results indicate that, when there is no side information, PLT with individ-

ual privacy (IPLT) can be performed much more efficiently than PLT with joint privacy (JPLT), in

terms of the download cost; and the advantage of IPLT over JPLT is even more pronounced when

the user initially knows a subset of messages or a subspace spanned by them as side information.

In this thesis, we made a significant progress towards characterizing the fundamental limits of

the single-server PLT problem. However, there remain several open problems. Below, we have

listed a few of these problems.

1. The capacity of JPLT and IPLT with non-MDS coefficient matrices remains open. Such

matrices are particularly of interest in the scenarios where the number of desired attributes

and the dimension of the projected space are relatively large, and the size of the field over

which the operations are performed is relatively small.

2. For JPLT and IPLT with side information, we considered the case where the privacy of the

identities of messages in the support set of demand and those in the support set of side infor-

mation must be protected. In some applications, it may be required that only the identities

of the messages in the demand’s support set must be kept private (jointly or individually),

and the identities of the messages in the side information’s support set do not need to remain

private. Characterizing the capacity of such settings is another direction for future work.

3. The joint and individual privacy conditions can be thought of as two extreme cases of a

more general information-theoretic privacy requirement where for a given 1 ≤ T ≤ D, the

user’s query should not change the likelihood of any T -subset of messages to be a subset

of D messages in the demand’s support set. We refer to this type of privacy as T -wise

privacy. The T -wise privacy provides a graceful trade-off between the degree of privacy
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and the download cost. In particular, joint privacy and individual privacy are two special

cases of T -wise privacy for T = D and T = 1, respectively. Aside from these two cases,

T -wise privacy (for 1 < T < D) has not been studied in the literature of PIR and PLC.

This type of privacy is, however, applicable to several practical scenarios, for instance, the

following multi-user PIR scenario. Suppose there are multiple users, each of which wants

to privately retrieve T distinct messages. To this end, each user sends the index set of their

demands to the same trusted agent. Followed by aggregating the users’ requests, the agent

then collectively retrieves the demands of all the users from the server, using a PIR scheme

that achieves T -wise privacy. This ensures that the identities of T messages required by each

user remain private. The design and analysis of efficient PIR or PLC (and more generally,

PLT) schemes for achieving T -wise privacy remains an open problem.

4. Another important direction for research is to characterize the fundamental limits of the

multi-server case of the PLT problem. For PIR and PLC, it was recently shown that, in com-

parison to the single-server case, the download cost can be substantially lower when there are

multiple non-colluding servers that store identical copies of the dataset, see, e.g., [13,14,29].

Similar results were also shown for the cases in which the servers can collude with some

physical limitations (see, e.g., [22,23,26]), and the cases in which each server stores a coded

version of the messages in the dataset (see, e.g., [22, 25, 30, 31]). These results motivate the

study of the PLT problem under the multi-server setting.

5. Besides linear transformation, non-linear transformations appear frequently in machine learn-

ing and cloud/edge computing applications. For instance, the problem of evaluating multi-

variate polynomials on a subset of dataset finds applications in distributed stochastic gradient

descent for a linear regression task, see, e.g., [52]. Protecting the privacy of the user in such

applications, i.e., hiding the identities of the data items required for computation, motivates

the design and analysis of privacy-preserving schemes for non-linear transformations.
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