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ABSTRACT 

 

Assessing drainage conditions at the neighborhood level can help public works 

agencies to develop maintenance plans and mitigation strategies to guard against pluvial 

floods. Drainage condition assessments can also inform property owners about possible 

drainage problem areas. Current drainage condition assessment methods have two 

important shortcomings: (a) they depend on manual visual inspection, which is a time-

consuming and labor-intensive process, and (b) they ignore areas outside the street right-

of-way (e.g., adjacent front yards), despite the interdependency between public drainage 

system (e.g., roadside channel) and adjacent private properties. To address these 

shortcomings, this dissertation aims to develop automated methods for assessing the 

drainage conditions of roadside channels and adjacent land in residential areas by using 

mobile lidar (Light Detection and Ranging). Mobile lidar is increasingly used for 

evaluating infrastructure systems due to its ability to provide high-density and high-quality 

spatial measurements. This dissertation is organized into three technical papers. The first 

paper provides an automated process for inspecting and evaluating roadside channel 

systems using data obtained from mobile lidar. The Cloth Simulation Filtering algorithm 

was employed to split lidar point clouds into bare earth and object datasets. Six key 

geometrical attributes of roadside channels were computed and analyzed based on the bare 

earth dataset using statistical and heuristic methods. These geometrical attributes were 

compared to design and performance manuals to determine deficiencies and inform 

maintenance decisions. In the second paper, roadside topography was modeled to evaluate 
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surface drainage conditions by incorporating semantic segmentation and flow direction 

determination using mobile lidar data. The semantic segmentation model identifies the 

topographic features of lidar images by labeling each pixel as roadside channel, road, or 

adjacent land. Through the flow direction determination technique, major end points that 

are away from the roadside channels were identified as problematic low points that could 

be vulnerable to water ponding. In the third paper, the developed methods were applied to 

two communities in Harris county (Sunnyside community) and Aransas county (Rockport 

community) in Texas, with a total street length of 4.67 centerline miles. The six 

geometrical attributes for channel conditions and two attributes for off-channel conditions 

were evaluated and compared in the case studies. Overall, this dissertation shows that the 

developed automated process can evaluate roadside channels and model the roadside 

topography effectively. The developed methods provide actionable information to both 

property owners (to address potential off-channel ponding issues) and the municipal 

authorities (to address channel issues) to mitigate against localized flooding, water 

ponding, and stormwater-related hazards. 
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1. INTRODUCTION  

1.1. Motivation and problem statement 

Stormwater drainage systems are essential for collecting surface runoff and 

conveying it to discharge points to reduce the risk of flooding. Systematic evaluation of 

these systems provide a rational basis for developing flood management plans and 

mitigation strategies. The need for systematic inspection and evaluation of roadside 

channels has been emphasized in the literature (see for example (Frank & Falconer, 1990) 

to inform maintenance and improvement operations. Proper maintenance and upgrade of 

roadside channels ensure acceptable stormwater quality in the receiving streams, guard 

against localized flooding of adjacent streets and private properties, and protect the 

roadway structure (Brubaker, 2020). Similarly, the drainage conditions of roadside land 

affect the quality of stormwater, the risk of localized flooding, and the structural integrity 

of adjacent structures. Despite these calls, the evaluation and maintenance of roadside 

drainage systems (both channels and adjacent land) remain predominantly ad hoc because 

of the lack of efficient inspection methods, a critical gap in the literature. 

Specifically, current drainage condition assessment methods have two common 

shortcomings: (a) they depend on manual visual inspection, which is a time-consuming 

and labor-intensive process, and (b) they ignore areas outside the street right-of-way (e.g., 

adjacent private properties or front yards), despite the interdependency between public 

drainage system (e.g., roadside channel) and the adjacent private properties. This research 

contributes to addressing these shortcomings through the development of a new automated 

method for the evaluation of roadside channels and adjacent land at the neighborhood 
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scale. The new method is based on data collected using mobile lidar (light detection and 

ranging) systems and novel algorithms for processing and analyzing these data. 

Mobile lidar is increasingly used for evaluating infrastructure systems because of 

its ability to provide high-density and high-quality data about the geometry and surface 

type of surveyed objects rapidly (at traffic speed). For example, mobile land-based lidar 

has been utilized for creating preliminary drainage design at the project level (Gurganus 

et al., 2017), and identifying roadway surface type (Neupane & Gharaibeh, 2019), and 

various pavement evaluations, such as identifying pavement distress (Oliveira & Correia, 

2009; Tsai & Chatterjee, 2018), evaluating pavement surface smoothness (Chin & Olsen, 

2015), and assessing hydroplaning potential (Chou et al., 2017; Gurganus et al., 2017). 

This study extends the adoption of mobile lidar to the evaluation of drainage systems. 

Because lidar systems collect large amounts of data, the processing of these data 

becomes a critical issue. This study contributes to the development of algorithms for 

processing and analyzing these data for drainage condition evaluation purposes. Three 

different techniques, namely, cloth simulation filter algorithm, semantic segmentation, 

and flow direction determination, are used to evaluate the condition of roadside drainage 

channels and adjacent land. Finally, the developed methods and techniques are applied to 

assess the drainage conditions in two Texas communities that are socially and physically 

vulnerable to flooding and stormwater-related hazards. 

1.2. Research objectives 

The aim of this study is to enhance the evaluation of drainage systems in residential 

areas through the automation of field surveys using mobile lidar and the processing and 
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analysis of the collected data.  The dissertation is organized in three articles (each linked 

to a specific objective) that collectively demonstrate how this aim has been achieved. 

Three specific objectives and corresponding technical papers are presented as follows. 

 

Objective #1: Develop an automated process for evaluating roadside channels by 

using mobile lidar data 

Paper Title: Automating the Evaluation of Urban Roadside Drainage Systems Using 

Mobile Lidar Data 

Paper Status: Published in Computers, Environment and Urban Systems, 2020. 

 

Objective #2: Develop a computerized method for assessing surface drainage 

conditions in roadside channels and adjacent land 

Paper Title: Modeling Roadside Topography to Assess Drainage Conditions: A Computer 

Vision and Flow Direction Method Applied to Lidar Data 

Paper Status: Accepted for presentation at Transportation Research Board 2021. Paper has 

been submitted for publication in Advanced Engineering Informatics. 

 

Objective #3: Assess the drainage conditions in Texas communities that are socially 

and physically vulnerable to flooding and stormwater-related hazards using 

automated methods 

Paper: Assessment of Stormwater Drainage Conditions in Socially and Physically 

Vulnerable Communities: Case Studies 
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Paper Status: Accepted for presentation at ASCE International Conference on 

Transportation & Development (ICTD 2021). Paper will be submitted for publication in 

the International Journal of Disaster Risk Reduction. 

 

1.3. Overview of papers 

1.3.1. Paper 1: Automating the Evaluation of Urban Roadside Drainage Systems 

Using Mobile Lidar Data 

Roadside channel systems are critical for the management of stormwater runoff 

and the protection of the structural integrity of roads; and thus, require systematic 

evaluation and maintenance. However, the evaluation of these systems remains ad hoc due 

to the lack of efficient inspection methods. This paper contributes to filling this gap by 

providing an automated process for the inspection and evaluation of roadside channel 

systems using data obtained from mobile lidar scanners. The Cloth Simulation Filtering 

algorithm was employed to split lidar point clouds into bare earth and object datasets, and 

then compute six key attributes of roadside channels based on the bare earth dataset. The 

six attributes are: channel depth, bottom width, side slope, longitudinal slope, and length 

and density of subsurface pipes and culverts. To test and demonstrate the new automated 

process, it was applied to six street sections in the City of Houston, Texas. The computed 

attributes were compared to the design and maintenance guidelines set by the City of 

Houston and Harris County. The evaluation results indicate that every channel examined 

in this study has its own condition issues and improvement needs. While no channel 

section in this study was in full compliance with the guidelines, no channel was utterly 
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incompatible either. The results show that the developed automated process can 

effectively and efficiently evaluate roadside channels, providing an alternative to 

conventional manual inspection methods. 

1.3.2. Paper 2: Modeling Roadside Topography to Assess Drainage Conditions: A 

Computer Vision and Flow Direction Method Applied to Lidar Data 

Local topography at the neighborhood and street scales affects the collection and 

convenience of storm runoff. Consequently, modeling local topography is critical for 

generating realistic water-flow simulations and evaluating the effectiveness of drainage 

systems. This paper provides a novel method for evaluating and modeling local 

topography at the neighborhood and street scales, enabling engineers to assess drainage 

conditions and take corrective maintenance actions more rapidly than currently possible. 

The developed method translates raw mobile lidar data, which are hard to interpret, into 

easily understood topographical properties by applying a semantic segmentation model (a 

computer vision technique) and flow direction model (a hydrology technique). The 

semantic segmentation (SS) model identifies the surface topographic features from lidar 

images (converted from point clouds) by labeling each pixel as roadside channel, road, or 

adjacent land. Fifty lidar images representing 50 street blocks in Houston, Texas were split 

into 30, 10, and 10 images for training, validating, and testing the SS model, respectively. 

Four SS models with different combinations of ResNet architectures and augmentation 

methods were trained on the basis of an Imagenet-1k pretrained model. Based on the test 

dataset, the selected model has intersection-over-union and accuracy values of about 

80.3% and 88.5%, respectively. Flow direction, a common topographic index, was used 
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to determine surface flow conditions. Through the determination of flow direction, major 

end points that are away from the roadside channels were identified as problematic low 

points that could be vulnerable to water ponding. The surface drainage conditions of 10 

street blocks (the test dataset) were evaluated using the proposed method. The results show 

that the proposed method can effectively model the roadside topography within a street 

block and compare it with that of other street blocks. The application of the proposed 

method can benefit both public works agencies and local residents by providing targeted 

information at the street and neighborhood levels so that improvements can be 

implemented in a timely manner to mitigate against localized flooding and water ponding. 

1.3.3. Paper 3: Use of Mobile Lidar for Assessing Drainage Conditions in 

Residential Areas with Roadside Channels: Case Studies 

Assessing drainage conditions of roadside channels and adjacent properties to 

ensure drainage capabilities at the neighborhood level is important in residential areas. 

The evaluation information can help government agencies to develop maintenance plans 

and mitigation strategies to protect against pluvial floods. The objective of this study is to 

assess the drainage conditions in two Texas communities that are socially and physically 

vulnerable to flooding and stormwater-related hazards using automated methods. The 

studies related to the evaluation of drainage systems in residential areas and the current 

drainage channel guidelines were reviewed to understand the most recent research and 

requirements. The evaluation methods proposed in previous studies were implemented in 

two study communities in Harris county (Sunnyside community) and Aransas county 

(Rockport community) in Texas, with a total street length of 4.67 centerline miles. Six 
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attributes for channel conditions and two attributes for off-channel conditions were 

evaluated and compared. The comparison of all evaluation attributes showed that the 

overall channel conditions in the Rockport community are relatively better than those in 

the Sunnyside community. The differences in channel conditions between the two 

communities may be attributed to the intensity of the developed lands and the age of the 

community. For off-channel drainage conditions, although both medians of the off-

channel attributes in the Rockport community are less than that in the Sunnyside 

community, there are three relatively critical spots in the Rockport community that require 

improvement. Finally, the case studies show that mobile lidar data can be used to evaluate 

drainage systems and provide actionable information to both property owners (to address 

potential off-channel ponding issues) and the municipal authorities (to address channel 

issues). 
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2. AUTOMATING THE EVALUATION OF URBAN ROADSIDE DRAINAGE 

SYSTEMS USING MOBILE LIDAR DATA1 

2.1. Introduction 

Roadside channels are critical components of the roadway structure and the 

stormwater systems in urban areas. As a component of the stormwater drainage system, 

roadside channels play an essential role not only in the collection and conveyance of 

stormwater runoff to the downstream or natural rivers, but also in enhancing stormwater 

infiltration and improving water quality (Biesboer & Elfering, 2003). Thus, a properly 

designed and maintained roadside channel system can result in the delivery of less runoff 

and pollutants through runoff filtration and volume attenuation (K. Ellis et al., 2014). It is 

vital to ensure that roadside channels are maintained properly and systematically. Poorly 

maintained roadside channels may lead to lower water quality in the receiving streams, 

poor roadway surface drainage, weakened roadway structure, and flooding in adjacent 

properties (Brubaker, 2020). Therefore, many specifications and guidelines call for 

monitoring drainage channel conditions to inform maintenance activities. Generally, key 

drainage channel conditions include soil and vegetation issues, openness, profile, and 

geometry/dimensions (Arthur L. Storey, 1988; Haddock & Myers, 2018). The need for 

systematic inspection and evaluation of these systems has long been called for in the 

literature (Frank & Falconer, 1990). However, the evaluation and maintenance of these 

                                                

1 Reprinted with permission from “Automating the evaluation of urban roadside drainage systems using 
mobile lidar data” by Lee, C.-C., & Gharaibeh, N. G., 2020, Computers, Environment and Urban Systems, 
Volume 82, 101502, Copyright 2020 by Elsevier. 
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systems remain ad hoc due to the lack of efficient inspection methods, a critical gap in the 

literature. 

Currently, drainage channel condition assessments are conducted using manual 

inspection methods with random sampling, which can be very time consuming and 

subjective, especially for quantitative measurements. Consequently, data on roadside 

drainage channels tend to be scarce, delayed, or even nonexistent (Oti et al., 2019). Oti et 

al. (2019) developed citizen-science methods to address this challenge for local 

communities. While that study found that volunteer citizen scientists can provide timely 

and high quality data on the conditions of drainage channels, they tend to have difficulties 

obtaining detailed quantitative measurements. This paper contributes to filling this gap by 

providing an automated process for the inspection and evaluation of roadside channel 

systems using data obtained from mobile lidar scanners. Specifically, we provide a method 

for automating the inspection and evaluation of channel profile and geometrical attributes 

to inform maintenance and renewal processes. New data processing techniques, including 

a point cloud filtering technique, are also presented in this paper.  

Through the methods presented in this paper, critical measurements of roadside 

channels can be obtained efficiently, safely, and objectively. This critical information can 

help authorities to optimize maintenance and renewal activities. To test and demonstrate 

the new automated process, it was applied for six street sections in the City of Houston, 

Texas. The computed attributes were compared to the design and maintenance guidelines 

set by the City of Houston and Harris County. 
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2.1.1. Use of lidar technology in the domain of urban infrastructure systems 

Mobile land-based lidar is increasingly being used for evaluating infrastructure 

systems because of its ability to provide high density and high-quality data. For example, 

vehicles equipped with lidar scanners have been used for various pavement evaluations, 

such as identifying pavement distress (Oliveira & Correia, 2009; Tsai & Chatterjee, 2018), 

evaluating surface smoothness (Chin & Olsen, 2015), determining drainage ability at the 

project level (Gurganus et al., 2017), identifying roadway surface type (Neupane & 

Gharaibeh, 2019), and assessing skid resistance (Chou et al., 2017). Lidar scanners 

installed on drones have been used to detect and determine geomorphic or linear features 

of suburban agrarian landscapes (Bailly et al., 2008; Passalacqua et al., 2012) and to detect 

builds and land use in urban areas (Bonczak & Kontokosta, 2019; Park & Guldmann, 

2019; Weixing Zhang et al., 2017). This paper uses data obtained from a single unit land-

based mobile lidar scanner to develop an automated process for the inspection and 

evaluation of roadside channel systems in urban settings. The developed process is more 

rapid and objective than current manual inspection methods. 

2.2. Methodology 

2.2.1. Cloth Simulation Filtering algorithm 

Raw data from mobile lidar can contain extraneous information on surveyed areas 

that are irrelevant to the purpose of drainage system evaluation, such as trees, passing and 

parked vehicles, and mailboxes. This study uses the Cloth Simulation Filtering (CSF) 

algorithm, which employs a technique called cloth simulation (Weil, 1986), to filter out 

extraneous information and retain useful information only, such as channel profile and 



 

11 

geometry. By applying the CSF algorithm, points collected by mobile lidar are split into 

ground (bare earth) and non-ground (objects) datasets. The bare earth data was further 

analyzed in this study to calculate geometry-related channel attributes.  

The CSF algorithm first inverts the lidar data and places an imaginary cloth above 

it. By dropping this cloth toward the inverted lidar data, the cloth can be deformed to fit 

the surface. Figure 2.1 shows an overview of the CSF algorithm. The final shape of the 

cloth is the imaginary terrain of the lidar data. Based on the actual difference between each 

point and the imaginary terrain, the point cloud of mobile lidar is split into two datasets, 

ground and non-ground. The CSF algorithm has six major user-defined parameters, which 

are grid resolution, time step, rigidness, steep slope fit factor, iteration number, and 

classification threshold. The definitions and values used in this study for these parameters 

are shown in Table 2.1. 

 

Figure 2.1 Overview of the CSF algorithm. [Adapted from Wuming Zhang et al. 
(2016)] 
 

Inverse 
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Table 2.1 Description of parameters for the CSF algorithm. [Adapted from 
Wuming Zhang et al. (2016)] 

Parameter Value used 
in this study Definition 

Grid 
Resolution 1 ft Represents the distances among four neighboring particles of 

the cloth. 

Time Step 0.5 s Controls the displacement of particles during each iteration; 
the larger the time step, the more the movement is. 

Rigidness 1 Controls the rigidness of the cloth; three preset rigidness 
values, from 1 to 3 represent from soft to rigid, respectively. 

Steep Slope 
Fit Factor TRUE Indicates whether post-processing is required for handling 

steep slopes.  

Classification 
Threshold 1 ft 

The threshold for the distances between lidar points and the 
cloth grid; governs the final classification of the lidar points as 
bare earth or objects. 

Iteration 
Number 500,000 

The maximum number of iterations; termination marked by 
the maximum height variation of all particles being small 
enough or exceeding the maximum iteration number. 

 

When applying the cloth simulation, the cloth is modeled as a grid, which consists 

of particles with mass and interconnections. To simplify calculations and improve 

efficiency, the CSF algorithm made three modifications toward the cloth simulation. First, 

particles are constrained to move vertically only. Second, as long as a particle reaches the 

ground, it becomes unmovable. Lastly, when dropping cloth to ground, the forces of each 

iteration are divided into two discrete steps. The particles of the cloth are firstly moved 

down owing to the gravity, and some of them may become unmovable when reaching 

ground. The second step is then modifying the position of the particles according to the 

internal forces. Grid resolution controls the distances among four neighboring points, and 

it is not ideal to be either too large or too small. A small grid resolution will decrease the 
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calculation efficiency and have overfitting issues. On the other hand, a large grid 

resolution may not be able to simulate the surface of the ground well. Time step and 

rigidness controls the movement caused by the gravity and the position adjustment caused 

by the internal forces, which are the first and the second steps when simulating forces. A 

post-processing procedure, steep slope fit, is applied to account for steep slopes that might 

not be captured from the previous simulation. Since the final cloth is at least equal or 

higher than the actual ground, the classification threshold provides a buffer to include 

more ground points; however, if the classification threshold is too large, more non-ground 

points will be included as well. Through an iterative process, the input values given in 

Table 2.1 were found to provide the best balance of these conflicting factors and thus are 

considered most suitable for the evaluation of urban roadside channels. 

The source code for the CSF algorithm can be found on GitHub and author’s 

website (Qi, 2020; W. Zhang et al., 2020). In this study, we tuned the CSF parameters to 

the values presented in Table 1 to obtain bare earth surfaces more accurately. Figure 2.2 

shows a comparison of lidar data with and without applying the CSF algorithm. The 

objects that are irrelevant to drainage channel evaluations such as trees, grass, and the 

front walls of houses can be seen in the left of Figure 2.2. After applying the CSF 

algorithm, those objects were effectively removed. The remaining steps of the evaluation 

process use the bare earth surface, as shown in the right of Figure 2.2, which is free of 

irrelevant objects. 
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Figure 2.2 Comparison for mobile lidar data before (left) and after (right) applying 
the CSF algorithm. 
 

2.2.2. Study site and mobile lidar data collection 

This paper analyzes data collected using mobile lidar from neighborhoods in the 

City of Houston, Texas. These neighborhoods have a long history of flooding and 

environmental hazard issues. Figure 2.3 shows areas in the City of Houston, Texas that 

have roadside open-channel drainage systems, including the general location of the study 

site. 

 

Figure 2.3 Open roadside drainage channels in the City of Houston. [Adapted from 
("GIMS – Public Utility Map," 2020)] 
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A preliminary reconnaissance survey was performed on the entire neighborhood. 

Six street sections that were found to be representative of the neighborhood were selected 

for this study. The total street length of six street sections is approximately 10,000 feet. 

Figure 2.4 shows a schematic diagram of the study site configuration. For land-based 

mobile lidar data collection, laser proximity and the speed of the vehicle on which the 

scanner is mounted affect the point density of the lidar data. In this study, the lidar data 

had approximately 400,000 points per 0.1-mile section at a driving speed of 20 mph. 

Through data processing software, Road Doctor 3, point clouds of the study street sections 

were obtained and converted to data grids built on transverse and longitudinal increments 

of 2 inches. This grid size was selected to capture the smallest dimensional requirement 

of roadside channels in urban areas, which is the required channel’s bottom width of at 

least 2 feet. (Arthur L. Storey, 1988; Haddock & Myers, 2018) 

 

Figure 2.4 Schematic diagram of street sections and street blocks. 
 

2.2.3. Design attributes for roadside channels 

Many design guides and maintenance manuals set target values for key attributes 

as a basis for ensuring that roadside drainage channels operate effectively. However, the 

design requirements vary depending on the setting, such as highways, agricultural lands, 

Street Section 

Street Block 1 Street Block 2 Street Block 3 
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suburban areas, or urban areas. According to the infrastructure design manual published 

by the City of Houston (Haddock & Myers, 2018), the design of roadside channels in 

urban areas considers rainfall frequency, flow velocity, driveway and roadway crossings, 

and geometry limitations. These parameters control the channel system functionality. In 

this paper, six key attributes that affect the performance of roadside channels were selected 

and described in this section. Four of the six attributes are channel-related, which include 

channel depth, bottom width, side slope, longitudinal slope. Figure 2.5 is a schematic 

diagram showing the four channel-related attributes measured in this study. The other two 

key attributes are associated with subsurface pipes/culverts within the channel, which are 

the length and density of subsurface pipes/culverts. Their definitions, requirements, as 

described in the infrastructure design manuals of the City of Houston (COH) and Harris 

County (Arthur L. Storey, 1988; Haddock & Myers, 2018), and the calculation processes 

are explained below. The flowcharts for the calculation processes are provided in 

Appendix A. 

 

Figure 2.5 Schematic diagram for channel attributes. 
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2.2.3.1. Longitudinal profile preprocess 

Channel grid data were extracted from the street sections and processed in three 

steps. First, for each channel, the lowest points transversely across the channel were 

identified and labeled as the profile of that channel (solid gray line in Figure 2.6), and the 

300-foot moving average was calculated (black-dotted line in Figure 2.6). Second, for 

every three adjacent points, a critical point selection logic was developed to create upper 

and lower envelope lines (black and gray dashed lines in Figure 2.6). For generating the 

upper envelope line, if the second point was equal to or greater than the first and the third 

point, and larger than the moving average plus four inches, the second point was regarded 

as a critical point. By incorporating the moving average, the influence of irrelevant objects 

in drainage channels (e.g., debris) were avoided. An example of this situation occurs 

between 60 ft. to 100 ft. in Figure 6. Third, to make the envelope lines more accurate, two 

additional verifications for critical points were conducted after all critical points were 

selected. The critical point was removed from the upper envelope line if it was (a) the 

lower point of a critical point pair with a slope less than -0.05, or (b) the point connecting 

to two adjacent critical point pairs, of which slopes of both pairs were negative followed 

by positive slope and either slope had an absolute value greater than 0.05. A similar 

process was used for creating the lower envelope line, but the point identification logic 

was inverted. After all critical points were identified, the upper and lower envelope lines 

were drawn by linearly connecting those critical points. The data processing flowcharts 

for generating upper and lower envelop lines are shown in  
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Figure A. 1 and Figure A. 2 of Appendix A. The existence of surface channel was 

identified based on the lower envelope lines. If the difference between the channel profile 

point and the corresponding lower envelope line was less than or equal to four inches, the 

profile point was considered as parts of a surface channel (rather than subsurface pipes or 

culverts). Figure A. 3 shows the flowchart for identifying the existence of surface 

channels. 

 

Figure 2.6 Schematic diagram for longitudinal profile development. 
 

2.2.3.2. Channel depth 

Channel depth affects its capacity. Based on the guidelines published by the City 

of Houston and Harris County, channel depth shall be at least the water depth to convey a 

minimum of 2-year rainfall and an additional minimum of 0.5 foot below the edge of 

pavement or the natural ground. Nevertheless, the minimum depth shall be 18 inches, and 

the maximum depth shall not exceed four feet. The channel depth was calculated as the 

difference between the two envelope lines. (Figure 2.7) 
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Figure 2.7 Example channel profile and the corresponding upper and lower 
envelop line. 
 

2.2.3.3. Channel bottom width 

The channel bottom width does not only affect the channel capacity but also 

influence hydraulic efficiency.(Service, 2008) The bottom width of a roadside channel is 

required by the City of Houston to be at least two feet wide. In this study, the bottom of a 

channel is determined as follows: all points adjacent to the channel profile point in the 

transverse direction, where open channels exist and are within an elevation difference of 

four inches. Therefore, the channel bottom width can be obtained by calculating the 

transverse distance across these points. The data processing flowchart for channel bottom 

width is shown in Figure A. 4. 

2.2.3.4. Channel side slope 

The side slope of a channel affects its stability and flow velocity. Local site 

conditions, such as soil type, surface treatment, maintenance method, and natural 
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topography, are the factors that determine the appropriate side slope value. Referring to 

the guidelines published by the City of Houston, the side slopes shall not be steeper than 

three horizontals to one vertical (3H:1V) for grass-lined or unimproved roadside channels. 

To calculate the side slopes, the boundary points of the side slopes must be determined 

first. In this study, the slopes of every transverse point pairs were first calculated. The 

boundary point identifying process started from the lowest point of each transverse line to 

compare adjacent slopes on both sides and stopped if the slope value is either less than or 

greater than zero two times in a row, depending on which side of the channel it is. As the 

boundary points of every transverse line are selected, the side slopes of the channel are 

calculated according to the bottom and the side boundaries of the channel. Figure A. 5 

shows the data processing flowchart for calculating channel side slopes. 

2.2.3.5. Channel longitudinal slope 

The channel longitudinal slope significantly influences the velocity and the flow 

direction of the drained water. To avoid standing water, the City of Houston requires the 

minimum grade for roadside channels to be 0.1%. This study obtains the longitudinal slope 

of channels by calculating the slope of a linear regression line fitted to the channel bottom 

points within every street block. This method provides an overall indication of how the 

channel system performs in terms of water flow velocity and direction through street 

blocks. 

2.2.3.6. Length and density of subsurface pipes and culverts 

Due to the need for crossing roadside channels onto adjacent properties, subsurface 

pipes and culverts were often installed under driveways and streets. However, the drainage 
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capacities of subsurface pipes and culverts placed along channels are usually less than the 

channels themselves. Additionally, pipes and culverts are more prone to blockage than 

surface channels. Thus, the length and density of pipes and culverts are critical for the 

performance of channel systems. According to the driveway requirement of Harris County 

(Arthur L. Storey & Freeman, 2005), for single-family dwellings, the minimum and 

maximum driveway lengths are 16 and 40 feet, respectively. The length and density of 

pipes and culverts are determined based on whether open channels exist. Since some 

higher portions of profiles do not belong to either driveways or channel bottoms, further 

criteria are required to have more accurate identification for pipes and culverts. There are 

three different identification results based on point intervals between every two adjacent 

channel bottom points. If the point interval was greater than 20 feet, the two points are 

considered to be separated by a pipe or culvert. If it was less than one foot, the two points 

were determined to belong to the same surface channel. Otherwise, the 80th percentile 

elevation of the points between two adjacent channel bottom points and the 20th percentile 

elevation of the points belonging to the last identified channel were compared. If the 

difference between them was greater than eight inches, these two points are considered to 

be separated by a pipe or culvert. After the start and end points of each driveway within a 

channel were identified, the length and density of subsurface pipes and culverts were 

calculated. The flowchart for calculating the length and density of subsurface pipes and 

culverts is shown in Figure A. 6. 
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2.3. Results 

The developed method was applied to six street sections in the City of Houston, 

Texas. The total length of these streets is approximately 10,000 feet, with continuous 

drainage channels on both sides of the streets. Thus, this study evaluated a total of 20,000 

feet of roadside channels using the developed methods. Table 2.2 shows the length of each 

evaluated section. 

Table 2.2 Evaluated street sections. 
Section Number 1 2 3 4 5 6 

Section Length (ft) 2,001.17 1,883.17 1,528.67 790.67 1,210.5 2,611.5 
 

Section 4 is the only street that is shorter than 1,000 feet; however, with the 

exception of section 4, all of the other sections contain at least one intersection. That is, 

the length of every street block was around 1,000 feet. For each section, all six attributes 

were calculated according to the developed method and are discussed as follows. 

2.3.1. Channel depth 

Figure 2.8 shows the average channel depth (CD), and their standard deviations, 

for both the left and the right channels of each section in the study site. The right channel 

of Section 3 was the shallowest, and the right channel of Section 4 was the deepest among 

all sections. The right channel of Section 3 also had the smallest standard deviation of 

0.095 feet, and the left channel of Section 4 was almost the same. On the other hand, the 

right channel of Section 6 had the highest standard deviation of 0.231 feet, which was two 

times more than the smallest standard deviation. 
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Figure 2.8 The average and standard deviation of channel depth. 
 

According to the guidelines published by the City of Houston and Harris County, 

the channel depth should be between 1.5 and 4 feet. With the exception of the right channel 

of Section 3, which has an average depth of 1.0 feet, all channels have an average depth 

within the required range. Figure 2.9 shows the images of Sections 3 and 1 recorded during 

the lidar data collection. It can be seen that the right channel of Section 3 is shallower than 

the other three channels, which confirms these results. For six of the 12 channels, even the 

“mean plus one standard deviation” is within specifications.  

   

Figure 2.9 Channel depth comparison between Section 3 (left) and Section 1 (right). 
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2.3.2. Channel bottom width 

The channel bottom widths (CBW) for all study sections were calculated and 

shown in Figure 2.10. The average channel bottom width of the right channel of Section 

3 was the widest among the 12 channels, and its standard deviation was also the largest. 

The right channel of Section 4 had the narrowest average bottom width and the smallest 

standard deviation.  

 

Figure 2.10 The average and standard deviation of channel bottom width. 
 

The City of Houston requires that the channel bottom width be at least two feet 

wide. The average bottom width of three channels (out of 12) are less than two feet. These 

deficient channels are the left of Section 3 and the right of Sections 4 and 5. As shown in 

Figure 2.11, the right side channels of Sections 3 and 6 have a relatively flat bottom 

compared to the left side channels of Sections 3 and 6. For nine of the 12 channels, the 

“mean minus one standard deviation” bottom width is within specifications. 
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Figure 2.11 Channel bottom width comparison between Section 3 (left) and Section 
6 (right). 
 

2.3.3. Channel side slope 

For easy understanding and comparison, the channel side slopes (SS) are shown 

by their absolute values in Figure 2.12. Each channel has two side slopes; that is, there 

were four side slopes for each street containing two channels. Of the evaluated channels, 

the left side slope of the right channel of Section 4 is the steepest (44%), and the left side 

slope of the right channel of Section 3 is the flattest (22%). The average channel side 

slopes for Section 6 are all flatter than the requirements. The differences among the 

standard deviations of all side slopes are relatively small. 

 

Figure 2.12 The absolute average and standard deviation of channel side slopes. 
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Since the streets selected in this study are grass-lined, the side slopes should not 

be steeper than three horizontals to one vertical (or 33%), based on the guidelines imposed 

by the City of Houston and Harris County. Fourteen average side slopes (out of 24) were 

not steeper than 33%. For 12 side slopes, the “mean plus one standard deviation” is within 

specifications. Figure 2.13 shows the channels in Sections 4 and 5, of which the average 

side slopes are steeper than the requirements except for the left side channel of Section 4. 

   

Figure 2.13 Channel side slope comparison between Section 4 (left) and Section 5 
(right). 
 

2.3.4. Channel longitudinal slope 

The channel longitudinal slope was calculated for each street block. As mentioned 

earlier, each section contained one to three street blocks. Table 2.3 shows the absolute 

longitudinal slope for each street block. The right channel of Street Block 1 in Section 5 

has the highest longitudinal slope (0.444%), and the left channel of Street Block 3 of 

Section 6 has the flattest longitudinal slope (0.002%).  
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Table 2.3 Channel absolute longitudinal slope. 
Section Block Left channel Right channel 

1 1 0.18% 0.19% 
2 0.24% 0.15% 

2 1 0.12% 0.12% 
2 0.07% 0.04% 

3 1 0.13% 0.17% 
2 0.17% 0.32% 

4 1 0.12% 0.12% 

5 1 0.11% 0.44% 
2 0.05% 0.03% 

6 
1 0.02% 0.05% 
2 0.19% 0.10% 
3 0.00% 0.14% 

 

The City of Houston requires a 0.1% minimum grade for roadside channels to ensure 

water can flow downstream. The absolute longitudinal slopes of nine street blocks out of 

24 were less than 0.1%, and one of them was near flat. In this paper, longitudinal slopes 

were calculated street block-by-street block, with the length approximately ranging from 

550 ft. to 1,150 ft. A linear regression line may not be appropriate for longer street blocks 

with large variation in the profile. Generally, the inspection length for channel longitudinal 

slope should be established based on the variability of the profile, to ensure capturing high 

peaks and deep valleys that could affect the flow of water. 

2.3.5. Length and density of subsurface pipes and culverts 

Table 2.4 shows the lengths of subsurface pipes and culverts (P/C) as well as the 

P/C density (i.e., ratio of the accumulative length of pipes and culverts within a section to 

the length of the entire channel). The left channel of Section 5 had the highest pipes and 
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culverts density (53.44%); that is, more than half of the left roadside channel of Section 5 

is under driveways.  

In terms of the average length of pipes and culverts, no pipe or culvert was greater 

than 40 feet, which is the upper limit published by Harris County, but the pipes and 

culverts in the left channel of Section 5 and the right channel of Section 4 are near 40 feet.  

Table 2.4 Length and density of subsurface pipes and culverts. 

Section 
Left channel Right channel 

Avg. length of P/C (ft) P/C density Avg. length of P/C (ft) P/C density 
1 24.32 38.89% 23.28 44.20% 
2 21.11 43.71% 18.64 41.58% 
3 27.27 48.17% 30.10 39.38% 
4 21.59 35.50% 36.88 46.65% 
5 38.05 53.44% 31.59 44.36% 
6 22.35 33.38% 25.70 33.45% 

*Density: ratio of total P/C length to total channel length 

 

2.3.6. Condition ratings 

After all attributes were calculated, an evaluation report can be generated for 

municipal authorities to plan maintenance and rehabilitation activities (Table 2.5). The 

report provides pass/fail ratings for each individual attribute of each section, as well as the 

overall picture of the condition of the channel system as a whole. By identifying the 

position of roadside channels, the automated evaluation process developed in this study 

converts raw lidar point cloud data to actionable information, as shown in the condition 

ratings.  
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Table 2.5 Condition evaluation report for six roadway sections. 

Section Side Depth Bottom 
Width 

Side 
Slope(L) 

Side 
Slope(R) 

Lon. 
Slope 

Avg. 
length of 

P/C 

P/C 
density 

1 L P P P F P P 38.89% 
1 R P P P F P P 44.20% 
2 L P P F F F P 43.71% 
2 R P P P F F P 41.58% 
3 L P F P P P P 48.17% 
3 R F P F F P P 39.38% 
4 L P P F F P P 35.50% 
4 R P F P P P P 46.65% 
5 L P P F P F P 53.44% 
5 R P F P P F P 44.36% 
6 L P P F F F P 33.38% 
6 R P P F F F P 33.45% 

 

2.4. Discussion 

2.4.1. Channel system condition 

Comparing the condition of channels with each other can provide an overview of 

how the channel system performs as a whole. Overall, the right channel of Section 3 is the 

shallowest with the widest bottom and the gentlest side slope (left side). The right channel 

of Section 4 has the deepest depth and the narrowest bottom width with the steepest side 

slope (left side). However, both channels do not fully meet the requirements set by the 

City of Houston; the right channel of Section 3 is too shallow, and the right channel of 

Section 4 is too narrow at the bottom.  

No channel in the study site is in full compliance with the conditions required by the 

City of Houston and Harris County. For example, Section 6 performs well in terms of the 

channel depth, the bottom width, and average length of pipes and culverts on both sides, 

but the longitudinal slopes are substandard. Nevertheless, no channel is utterly 
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incompatible with the requirements set by the City of Houston and Harris County. Every 

channel in this study has its own individual issues for concern and improvement. 

2.4.2. Individual channel condition 

The lidar data are very detailed, allowing for evaluating conditions within each 

channel. Figure 2.14 shows the profile and the upper and lower envelope line of Section 

3, as an example, which includes two street blocks split at 925 feet. As Figure 2.14 shows, 

the elevation of the lower envelope line between 400 and 900 feet is relatively small and 

flat, which means the channel within this range may have a higher opportunity to retain 

water, even though the longitudinal slope of the entire first street block is sufficiently high 

(0.13%). Additionally, the peak point of the elevation of the lower envelope line of the 

second block is in the middle of the block; that is, the channel drains water in two 

directions depending on the position of the channel. A single value of the longitudinal 

slope in Block 2, 0.174%, may mislead to a conclusion that the channel tilts to one 

direction and is relatively flat; however, the fact is if dividing Block 2 into two parts at 

1,360 feet, the absolute slopes of these two parts are 0.322% and 1.863%, which are 

significantly greater than the composite value. This analysis shows that lidar data, 

combined with the process developed in this study, have the capability to evaluate roadside 

channels in an objective and automated manner. 
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Figure 2.14 Profile and upper and lower envelope lines of the left channel of section 
3. 
 

2.5. Summary, conclusions and recommendations 

Roadside drainage channel systems play an essential role not only in the collection 

and conveyance of stormwater runoff, but also in the enhancement of stormwater 

infiltration and water quality and the protection of the road structural integrity. This paper 

provides an automated method for the inspection and evaluation of roadside channel 

systems using data obtained from mobile lidar scanners. The Cloth Simulation Filtering 

algorithm was employed to split the lidar point clouds into bare earth and object datasets, 

and then compute six key attributes of roadside channels based on the bare earth dataset. 

The six attributes are: channel depth, bottom width, side slope, longitudinal slope, and 

length and density of subsurface pipes and culverts. These attributes can be compared to 

design and performance standards to inform maintenance decisions. This study collected 

lidar data on six street sections in Houston, Texas. The total length of these six street 

sections is approximately 10,000 feet with roadside channels on both sides of each street. 
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The developed automated process was used to evaluate the six street sections. The analysis 

results show that the channels in the study site are neither in full compliance nor utterly 

incompatible with the conditions required by the City of Houston and Harris County. 

Every channel was found to have its own individual own condition issues and 

improvement needs. For instance, the right channel of one street section met the depth 

requirement, but it did not meet the bottom width requirement. On the other hand, the right 

channel of another section has the opposite conditions. While no channel section in this 

study was in full compliance with the guidelines, no channel was utterly incompatible 

either. The results show that the developed automated process can effectively and 

efficiently evaluate roadside channels, providing an alternative to conventional manual 

inspection methods. Since mobile lidar can capture nearly continuous measurements along 

the channel, this study shows the potential for evaluating channels at shorter sections to 

inform targeted improvements and maintenance.  

Finally, further studies would be needed in four areas: a) determine the optimal 

length of the evaluation section to ensure capturing variations in the channel’s profile that 

could affect water flow (i.e., high peaks and deep valleys), b) relate the condition of 

channels to the risk of flooding to inform both the municipal government and property 

owners about effective mitigation measures, c) investigate the advantages and 

disadvantages of land-based mobile lidar compared to airborne lidar for the inspection of 

roadside drainage channels, and d) integrate the developed methods and techniques into a 

unified tool. 
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3. MODELING ROADSIDE TOPOGRAPHY TO ASSESS DRAINAGE 

CONDITIONS: A COMPUTER VISION AND FLOW DIRECTION METHOD 

APPLIED TO LIDAR DATA 

3.1. Introduction 

Local topography affects the collection and conveyance of storm runoff to a 

stream, a river, or a discharge point. Consequently, modeling local topography (e.g., 

neighborhood scale) is critical for generating realistic water-flow simulations (Hackl, 

Adey, & Lethanh, 2018; Hackl, Adey, Woźniak, et al., 2018) and evaluating the 

effectiveness of drainage systems, which is a key factor for urban flood control (Xu et al., 

2015). Often, however, there is no up-to-date and adequately detailed topographical 

information at the local level (e.g., catchment, neighborhood, or street scale). Furthermore, 

collecting such information is typically performed manually using conventional surveying 

methods or visual inspections, which are generally time-consuming and cost-prohibitive 

(Gao & Elzarka, 2021; Koch et al., 2015). This paper contributes to overcoming these 

challenges by providing a novel method for evaluating and modeling the topography of 

drainage systems at the neighborhood and street scales, enabling engineers to assess 

drainage conditions and take corrective maintenance actions more rapidly than currently 

possible. The developed method translates raw data from land-based mobile lidar (light 

detection and ranging) systems, which are hard to interpret, into easily understood 

topographical properties by applying a semantic segmentation (SS) model (a computer 

vision technique) and a flow direction model (a hydrology technique). The SS model was 

trained to identify roadside channels, road surface, and adjacent land surface from lidar 
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images converted from point clouds. Then, the output of the SS model was used in a flow 

direction model, which provides insights on how water is conveyed on the basis of digital 

elevation models (DEM).  

The remainder of this paper is organized as follows: In the next section, an 

overview of the literature on lidar and computer vision within the context of infrastructure 

condition assessment and flood risk analysis is provided. The section titled 

“Methodology” describes both the SS model and the flow direction model. Then, the 

results obtained from applying the methodology to street blocks in the Houston, Texas 

area are discussed. Finally, the research summary and conclusions are presented. 

3.2. Literature review 

Mobile lidar is increasingly being used for inspecting infrastructure systems 

because of its ability to provide high-density and high-quality data at traffic speed. For 

example, mobile lidar has been used in bridge inspections (Bolourian & Hammad, 2020; 

G. Cha et al., 2019; Gargoum et al., 2018), pavement inspections (Chou et al., 2017; 

Gurganus et al., 2017; Oliveira & Correia, 2009), and building detection (Zhou & Gong, 

2018). This study uses mobile lidar data to evaluate surface topography and drainage 

conditions at the street and neighborhood scales. 

Research on modeling roadside topography has been limited since most of existing 

surface flow models focus on large-scale networks and areas (J. B. Ellis et al., 2012). Only 

a few studies have modeled surface flows in local areas using mobile lidar data. Ettrich et 

al. (2005) proposed a method for modelling surface runoff and sewer flow in urban areas 

by using airborne lidar data and incorporating sewer system information. However, that 
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method may have missed the area’s complex details because of the relatively low 

resolution of airborne lidar data. To obtain a more reliable and accurate flood risk analysis, 

J. B. Ellis et al. (2012) used a combination of airborne and terrestrial lidar to collect 

detailed topographical data at the neighborhood level. However, the analysis requires 

additional inputs on the sewer and drainage networks beyond the lidar data. Thus, a critical 

gap in the literature is to identify problematic low points and areas that could lead to poor 

drainage at the street and neighborhood levels by using lidar data only. This paper 

contributes to addressing this gap using computer vision and flow direction techniques 

applied to lidar data. 

Computer vision and deep learning techniques are increasingly implemented in 

infrastructure condition assessments and identification of infrastructure elements from 

images. Among these applications, crack detection is one of the most prevailing 

applications in civil engineering. Several studies (Y.-J. Cha et al., 2017; Dung & Anh, 

2019; Kalfarisi et al., 2020; B. Kim & Cho, 2019; X. Zhang et al., 2019) applied deep 

convolutional neural networks (CNN) to concrete crack detection by proposing different 

model architectures or loss functions to determine the characteristics of concrete cracks. 

Aside from crack detection, pavement distress detection is also prevalent. Several studies 

(Gopalakrishnan et al., 2017; Maeda et al., 2018; K. Zhang et al., 2018) trained deep CNN 

models to detect various types of road damages based on images. In addition, Zhou and 

Gong (2018) developed a deep neural network to recognize and extract residential building 

objects from airborne lidar data without providing any pre-defined geometric or texture 

features. Atkinson et al. (2020) and Czerniawski and Leite (2019) used mask-RCNN and 
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semantic segmentation to identify different indoor components to create annotated records 

for building asset management. Nath and Behzadan (2019) proposed a deep CNN model 

to retrieve labor-intensive task information, such as safety inspection and crew activity 

logs, from images or videos of construction sites. In this study, we used semantic 

segmentation, a computer vision technique, for labelling lidar image pixels into classes. 

Semantic segmentation has been used previously in autonomous driving (Cordts et al., 

2016), concrete crack detection (Dung & Anh, 2019; X. Zhang et al., 2019), indoor 

infrastructure labeling (Czerniawski & Leite, 2019), and indoor navigation (W. Kim & 

Seok, 2018). While computer vision has been used in several areas within civil 

engineering, its application for drainage condition assessment remains limited. In this 

study, semantic segmentation was applied to land-based mobile lidar data to identify 

different roadside drainage features. The output of this model is then used in a flow 

direction model to identify problematic low points and areas. 

3.3. Methodology 

Two techniques from computer vision and hydrology were integrated to model 

local topography and assess surface drainage conditions in residential areas. The two 

methods are described in the following sections. 

3.3.1. Semantic segmentation 

Fully convolutional networks (FCN) (Long et al., 2015) is a method for solving 

sematic segmentation problems (Kirillov et al., 2019). FCN takes advantage of existing 

CNN classification models and transforms them into fully convolutional models by 

replacing the fully connected layers with spatial maps (Garcia-Garcia et al., 2017). FCN 
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shows that CNN can be trained end-to-end for semantic segmentation problems with 

various input sizes. Two prominent directions based on FCN for improving prediction 

performances are DilatedFCN and encoder-decoder methods (H. Wu et al., 2019). Several 

studies on DilatedFCN (L. Chen et al., 2018; L.-C. Chen et al., 2017; Yu & Koltun, 2015; 

Zhao et al., 2017) utilized dilated convolution, as known as atrous convolution, to increase 

feature resolution by keeping receptive fields. However, this approach can substantially 

increase computation load and memory consumption (Zhao et al., 2017). By comparison, 

encoder-decoder methods (Badrinarayanan et al., 2017; Lin et al., 2017; Ronneberger et 

al., 2015) use an encoder to extract multilevel feature maps and then upsample by 

combining both high- and low-level feature maps to classify images. 

In this study, a python package, namely, Detectron2 from Facebook AI Research 

(Y. Wu et al., 2019) was employed to conduct semantic segmentation model training. This 

package (Y. Wu et al., 2019) adopts an encoder-decoder framework called Feature 

Pyramid Network (FPN). FPN uses a lightweight decoder instead of a symmetric decoder 

like U-Net (Kirillov et al., 2019). For this semantic segmentation technique, feature maps 

from different scale levels of the FPN pyramid are merged into a single output. For the 

deepest FPN level at 1/32 scale, the upsampling process, which consists of convolutions 

and bilinear upsampling, is conducted three times to generate a feature map at 1/4 scale. 

The same strategy is repeated for each FPN level until each of them reaches 1/4 scale. The 

outputs from each FPN level are then summed and upsampled to generate pixel-wise 

outputs at the original image resolution. When this FPN semantic segmentation method 

was compared with other methods, Kirillov et al. (2019) concluded that this lightweight 
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and straightforward architecture is robust and provides a strong baseline for semantic 

segmentation. Hence, the present study adopted this semantic image segmentation model. 

3.3.2. Flow direction 

Flow direction is one of the most common topographic indices derived from 

gridded DEM, and is also needed for water path determination. The flow directions to a 

cell are assigned using the elevations of its eight neighboring cells to derive the local slope 

gradient from DEM (Qin et al., 2007). Several studies on flow routing algorithms are 

usually distinguished by single and multiple flow-direction algorithms (Wilson, 2018). 

The D8 algorithm (O'Callaghan & Mark, 1984), a single flow-direction algorithm, is the 

earliest and simplest method for specifying flow directions. The flow of a cell of interest 

is routed into one of its neighboring eight cells with the steepest slope. The advantage of 

D8 algorithm is easy to understand and apply due to its simplicity. However, the D8 

algorithm may assign the discretized flow into only one of eight directions, and the flows 

tend to become concentrated to artificial straight lines (Seibert & McGlynn, 2007; 

Tarboton, 1997). In contrast to single flow-direction algorithms, multiple flow-direction 

(MFD) algorithms route water into one or more downslope cells. Quinn et al. (1991; 1995) 

proposed the MFD algorithm for distributing flows to all downslope neighboring cells in 

proportion to the slope toward that neighbor. The MFD algorithm addresses the limitation 

of the D8 algorithm; however, assigning flow with the former from one cell to two or more 

cells leads to the inherent problem of dispersion. Tarboton (1997) proposed the D-inf 

algorithm to minimize the effects of dispersion and retain the simple features of the D8 

algorithm. 
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The D-inf algorithm (Tarboton, 1997) assigns flows to only one direction but can 

be any between 0 and 2π. As shown in Figure 3.1, flow direction is determined by the 

direction of the steepest downslope on the eight triangular facets formed in a 3 × 3 window. 

Thus, the flow of a cell can be assigned to one or two downslope cells in proportion to the 

closeness of the flow angle to the direct angle. In Figure 3.1, for example, the flow of cell 

B2 will be distributed to cells B1 and C1 because the steepest downslope direction is 

located in the second facet. The distribution of the flow is based on the angles α and β. 

This study used a MATLAB toolbox, TopoToolBox (Schwanghart & Scherler, 2014), for 

determining flow directions; which are then used to assess surface drainage conditions. 

  

Figure 3.1 Schematic for identifying flow direction according to the steepest 
downward slope. [Adapted from Tarboton (1997)] 
 

3.4. Data preparation 

Land-based mobile lidar data were collected from two communities in east Texas. 

The first one is located in Houston and the second one is located nearby Rockport City. In 

this study, the lidar data had approximately 400,000 points per 0.1-mile section and were 
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collected at a driving speed of 20 mph. Raw lidar data can contain information irrelevant 

to the assessment of surface drainage conditions. Therefore, the lidar point clouds were 

first filtered to ground and non-ground datasets by using the Cloth Simulation Filtering 

(CSF) algorithm (Wuming Zhang et al., 2016). The CSF algorithm applies an imaginary 

cloth to the inverted point cloud as a filter boundary to separate points into ground or non-

ground datasets. This study adopted the parameters of the CSF algorithm tuned in a related 

research that evaluated roadside channels (Lee & Gharaibeh, 2020). A before and after 

comparison is shown in Figure 3.2 to demonstrate the effect of the CSF algorithm. The 

bare earth point cloud datasets were filtered out and divided by street blocks. The point 

clouds of each street block were then converted to data grids built on transverse and 

longitudinal increments of two inches with natural neighbor interpolation. Fifty street 

blocks with a total length of about eight miles were collected from the two study sites. 

  
Figure 3.2 Comparison of lidar point cloud data before (left) and after (right) the 
CSF algorithm was applied. [Adapted from Lee and Gharaibeh (2020)] 
 

The fifty street blocks were split into training, validation, and test datasets that 

contained 30, 10, and 10 randomly selected street blocks, respectively. Within each street 

block, each and every pixel was assigned to one of five labels, namely, “Roadside 

channel”, “Road”, “Adjacent Land”, “No data”, and “Not applicable”, by using Labelbox 
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(Labelbox, 2020). “No data” means the specific cell had no lidar point during the 

conversion of point clouds to grid data. “Not applicable” represents areas where only a 

few lidar points were present or areas affected by undesired objects that were not 

completely removed by the CSF algorithm. This label usually covers areas with buildings 

or trees. “Roadside channel” refers to areas with channels beside a street. “Adjacent land” 

denotes areas between “Not applicable” and “Roadside channel”. “Road” indicates street 

areas within a street block, and it is most likely at the center of the image. An example of 

a street block with assigned labels and its corresponding lidar data are shown in Figure 

3.3. Fifty street blocks were processed and prepared accordingly for further analysis. 

 

 

Figure 3.3 Example of a street block with assigned labels and its corresponding 
lidar data. 
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3.5. Semantic segmentation model training 

Semantic segmentation was used to identify “Roadside channel”, “Road”, 

“Adjacent Land”, “No data”, and “Not applicable” areas within a street block. Given that 

the size of the lidar dataset was relatively small, transfer learning was implemented. The 

training results of the four models trained with ResNet-50 and ResNet-101 and pretrained 

on ImageNet-1k dataset are presented in this section. The ImageNet-1k dataset 

(Krizhevsky et al., 2012) had 1,000 categories and collected roughly 1,000 images per 

category; over 1.2 million images were used by the pretrained models. Data augmentation 

was also applied during training to improve the performance of the models. Three data 

augmentation methods, namely, random flipping, random resizing, and random cropping, 

were used. Table 3.1 presents the details of the architectures and augmentation methods 

used in each training model. 

Table 3.1 Details of the architectures and parameters used in each training model. 
Model Backbone Architecture Augmentation* 

1 ResNet-50 RF, RR 
2 ResNet-50 RF, RR, RC 
3 ResNet-101 RF, RR 
4 ResNet-101 RF, RR, RC 

*RF: Random flipping, RR: Random resizing, RC: Random cropping 
 

The models were trained by minimizing cross-entropy loss function, a popular and 

influential loss function that was designed to minimize the difference between ground 

truth and prediction by tuning the weights in networks (Krizhevsky et al., 2012). Four 

commonly used metrics were included, namely, pixel accuracy (pACC), mean pixel 

accuracy averaged across classes (mACC), mean Intersection-over-Union averaged across 

classes (mIoU), and frequency weighted Intersection-over-Union (fwIoU) (Caesar et al., 
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2018). Figure 3.4 shows the training loss and validation loss of the four models up to 8,000 

epochs. The results of the evaluation metrics calculated from the validation dataset are 

shown in Figure 3.5. 

 

Figure 3.4 Training loss and validation loss of models 1, 2, 3, and 4 during training. 
 

 

Figure 3.5 Evaluation metrics based on the validation dataset for models 1, 2, 3, 
and 4. 
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The validation loss of the four models stopped decreasing after approximately 

1,000 epochs, and the evaluation metrics remained almost constant after about 2,000 

epochs. At 2,000 epochs, the mACC and pACC of the four models approached or 

exceeded 90%, indicating that about 90% of the grids were correctly labeled. Moreover, 

the mIoU and fwIoU of the four models were above 80%, which was higher than 70%, a 

commonly used criterion to ascertain correct object detection. Therefore, the models 

trained with 2,000 epochs were chosen due to relatively good performance and avoid 

overfitting, and the models were tested by the test dataset. The test results are shown in 

Figure 3.6. 

 

Figure 3.6 Evaluation metrics based on the validation and test datasets for the four 
models at 2,000 epochs. 
 

Models 2 and 4 showed similar performances in four evaluation metrics based on 

the validation datasets. Both fwIoU and mIoU for Models 2 and 4 were about 82.5%, and 

mACC and pACC were about 90.8% and 90.2%, respectively, for both Models 2 and 4. 
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However, the performance of Model 2 on the test dataset was relatively better than that of 

Model 4 by about 1%. The test mACC and pACC of Model 2 were about 88.5% and test 

mIoU and fwIoU of Model 2 were about 80.3%. The test results of Model 2 were close to 

the validation results and also demonstrated that Model 2 had a decent prediction 

performance. Moreover, the training time of Models 2 and 4 were 1.19 and 1.85 hours for 

2,000 epochs, respectively, which met the expectations because the backbone architecture 

of Model 4 had more layers. Accordingly, Model 2 was chosen for further analysis of 

surface drainage condition assessments because this model had a relatively better 

performance and shorter training time than Model 4. 

Figure 3.7 shows the IoU (Intersection-over-Union) and ACC (accuracy) for each 

label on both the validation and test datasets predicted by Model 2. “No data” had the best 

performance among all labels, datasets, and evaluation metrics. This result was expected 

due to the clear boundary between different labels. By contrast, “Roadside channel” had 

the worst IoU among all labels for both datasets. Furthermore, this label had the smallest 

ratio of IoU to ACC for both datasets. By definition, the ratio of IoU to ACC represents 

the proportion of the area of ground truth to the area of the union of ground truth and 

prediction. Hence, “Roadside channel” had a relatively lower percentage of ground truth 

in the union of ground truth and prediction because it usually had a smaller area and 

unclear boundaries in an image than the other labels. However, the IoUs were still greater 

than 70%, demonstrating that Model 2 correctly and effectively identified roadside 

channels. 
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Figure 3.7 IoU and ACC for each label as predicted by Model 2. 
 

Figure 3.8 presents a comparison between the ground truth and the prediction made 

by Model 2 for a test street block. Both numerical metrics and visualizations of the results 

of Model 2 demonstrated promising results in identifying different infrastructures and 

areas within a street block. Model 2 served as a benchmark for applying semantic 

segmentation to identify drainage infrastructures and adjacent land within a street block. 

Further studies are needed to improve the performance of the models in identifying 

infrastructures and adjacent land for this specific environment. 
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Figure 3.8 Comparison of ground truth and prediction of a test street block by 
applying Model 2. 
 

3.6. Surface drainage condition evaluation 

Surface drainage conditions were evaluated based on flow directions. The flow 

directions were calculated on the basis of DEMs within the area labeled as “Road”, 

“Roadside channel”, and “Adjacent land” of a street block by using TopoToolBox, a 

MATLAB toolbox (Schwanghart & Scherler, 2014). TopoToolBox requires that the 

calculated area cannot have any empty grid cell, but it has no limitation for the outer shape 

of the calculated area. Owing to this restriction, an additional data processing step was 

performed. The red circle in Figure 3.9 shows a small area labeled as “Not applicable” 

within an adjacent land area. Given that only the areas labeled as “Road”, “Roadside 

channel”, and “Adjacent land” (RRA) were determined, the small area labeled as “Not 

applicable” within RRF area became empty during calculation and caused errors. The blue 
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circle in Figure 3.9 represents the area labeled as “Adjacent land” but did not connect to 

the major portion of the area of “Adjacent land”. Thus, the additional data processing step 

considered the empty areas within the areas labeled as RRA. The small areas that did not 

connect to the major RRA area were removed.  

The image was split into two groups: areas labeled as “No data” and “Not 

applicable” (NN) and areas labeled as RRA. Two conditions were then applied to this data 

processing step: (a) if the area of Group NN was not connected to figure boundaries, the 

area was treated as Group RRA, and (b) if the area of Group RRA was not connected to 

the largest portion of Group RRA, the area was treated as Group NN. Through this data 

processing step, Group RRA became a complete area without any empty grid cells. Before 

calculating flow directions, depressions in DEMs were needed to be cope with to obtain 

hydrologically correct results (Wang et al., 2019). Depressions shallower than four inches 

were filled, and other depressions were not changed to account for enclosed pits. 

 

Figure 3.9 Example of unacceptable areas for TopoToolBox (marked in circles). 
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Flow directions were calculated by TopoToolBox as shown in the left of Figure 

3.10. A darker shade indicates that more flows accumulated at a specific grid cell. The 

value of flow accumulation for a specific grid cell represents the number of upstream grid 

cells that are accumulated to that specific grid cell. It can be discovered that most of the 

flows were accumulated close to roadside channels. Cells were identified as parts of a 

flowline if the flow accumulation of the cell was greater than 14,400 cells, which was 

determined through trial and error to obtain the best possible identification results. It 

entails that a specific cell will collect water from at least 14,400 upstream cells. In other 

words, the cell will receive water that falls on areas at least 400 sq. ft in dimension because 

the grid size was set to 2 in × 2 in. The blue lines in the right side of Figure 3.10 shows 

the identified cells in which flow accumulation were greater than 14,400. The data were 

analyzed further to identify the end points of all major flowlines, or major end points, 

which indicate where water eventually drains. Given that 14,400 was a simple threshold, 

some of the cells along a major flowline fell within the threshold and caused the threshold 

to incorrectly identify the end points of flowlines as the actual end points (red arrow in 

Figure 3.10). Therefore, an additional data processing step was conducted to determine all 

major flowlines and their corresponding end points. The idea was that the end point of a 

flowline was not considered as the end point of a major flowline if it met the following 

conditions: (a) at least one starting point of the other flowlines was within 20 feet and (b) 

the flow accumulation at the end point of any of the corresponding flowlines was higher 

than the evaluated flowline. An example is shown in Figure 3.11. If any of the flow 

accumulation at the end points of three dashed lines was greater than the end points of the 
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evaluated flowline, the end point of the evaluated flowline was not considered as the end 

point of a major flowline. Otherwise, if the end point of the evaluated flowline had the 

largest flow accumulation compared with three dashed lines, the end point of the evaluated 

flowline was identified as an end point of a major flowline. Through this process, the 

major end points were identified (red crosses in Figure 3.12). The end points indicate the 

places where water would accumulate. 

   

Figure 3.10 Flow directions calculated by TopoToolBox and the corresponding 
flowlines. 
 

 

Figure 3.11 Schematic for recognizing the end points of major flowlines. 
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Figure 3.12 End points of the major flowlines within a street block. 
 

3.7. Discussion 

3.7.1. Discussion of drainage condition within a street block 

The end points of major flowlines are critical for evaluating surface drainage 

conditions. In this study, we used a buffer of 10 feet from roadside channels identified by 

semantic segmentation to determine if a major end point was away from roadside 

channels. This parameter, off-channel major end points percentage (OMEP), indicating 

the percentage of major end points located away from drainage channels, is critical for 

evaluating surface drainage conditions. Figure 3.13 presents a visualization for comparing 

the major end points to roadside channels. In this street block, 25.5% (14 out of 55) of the 

major end points were at least 10 feet away from the roadside channels. These end points 

may lead to drainage issues. The nearest distances of each end point to roadside channels 

and their corresponding flow accumulation are shown in Figure 3.14. The flow 
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accumulation of the end points away from roadside channels were relatively lower than 

those in or close to roadside channels, except for points 5 and 11. For this street block, 

points 5 and 11 tended to accumulate more water than the other end points away from 

roadside channels. Hence these points require more attention to avoid ponding issues. 

 

Figure 3.13 Visualization of the end points of major flowlines within a street block. 

 

Figure 3.14 Distance to the nearest roadside channel and the corresponding flow 
accumulation. 
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3.7.2. Discussion of drainage condition among street blocks 

The test dataset containing 10 street blocks was also evaluated following the 

aforementioned data processing steps. The results of the test dataset are shown in Table 

3.2. Although the process for identifying the major end points was proposed and 

conducted, the end points identified may not be able to fully represent the actual end points 

because the summation of the flow accumulation area of the major end points within a 

street block may be higher or lower than the total evaluated areas of the street blocks as 

shown in Table 3.2. The flow accumulation area of all major end points of street block #8, 

for example, was greater than its total evaluated areas. Conversely, the flow accumulation 

area of all major end points of street block #3 was smaller than its total evaluated areas. 

These results were because of the calculation of flow directions. When the flow 

accumulation of a small pit was less than the threshold for identifying flowlines (i.e., 

14,400), the end point in this pit was not identified as a part of a flowline and thus was not 

recognized as an end point of a major flowline. Contrariwise, when the flowline went 

through a relatively flat area, the flow spread to a certain length, converged at a point after 

the flat area, and started to accumulate again. Within this relatively flat area, the flow 

accumulation of a cell decreased along the flowline and even fell under the threshold for 

identifying flowlines. Once the length of this flat area was longer than 20 feet, a value was 

selected for recognizing major end points, the flow was treated as two separate major 

flowlines with their own end points. However, they actually belonged to one major 

flowline. The results shown in Table 3.2 was overestimated when this situation happened. 

Nevertheless, the flow accumulation of the major end points identified remained important 
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because they indeed indicated the amount of water that would be accumulated or diverged 

to a relatively flat area at a certain point. The average flow accumulation area per off-

channel major end point (AFAA) are shown in Table 3.2. Street blocks #1, #2, and #9 had 

relatively high AFAA, indicating that a high water volume may not be conveyed to 

drainage channels appropriately. On the other hand, all major end points of street block 

#7 were in or close to roadside channels. 

Table 3.2 Results of surface drainage condition evaluation for the test dataset.* 

ID FAA of all MEP** Total evaluated area FAA of all  
off-channel MEP AFAA 

1 15,951 18,692 4,108 164 
2 15,385 20,775 3,259 163 
3 11,961 16,292 1,464 105 
4 14,068 17,019 2,642 106 
5 12,299 14,266 1,061 152 
6 10,757 14,375 1,183 118 
7 8,320 9,334 - - 
8 20,613 14,584 516 103 
9 16,756 13,176 1,770 161 

10 24,456 15,862 687 86 
*Unit: sq. yard 
**FAA: flow accumulation area, MEP: major end points 
 

The number of major end points and of major end points away from roadside 

channels can reflect the drainage condition of a street. As shown in Table 3.3, all major 

end points identified in street block #7 were in or close to roadside channels. Therefore, 

the surface drainage performed as expected. By contrast, about half of the major end points 

in street block #1 were away from roadside channels. These major end points may require 

additional inspections to prevent water ponding and flooding issues. 
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Table 3.3 Number of the major end points in each street block. 

ID Total No. of MEP* No. of MEP away from 
roadside channels OMEP (%) 

1 53 25 47.2% 
2 64 20 31.3% 
3 55 14 25.5% 
4 67 25 37.3% 
5 50 7 14.0% 
6 47 10 21.3% 
7 23 0 0.0% 
8 26 5 19.2% 
9 41 11 26.8% 

10 30 8 26.7% 
*MEP: major end points 
 

3.8. Summary, conclusions, and recommendations 

Local topography affects the collection and convenience of storm runoff. 

Consequently, modeling local topography (e.g., neighborhood scale) is critical for 

generating realistic water-flow simulations and evaluating the effectiveness of drainage 

systems. This study provides a method for surface drainage condition assessment that 

incorporates semantic segmentation (a computer vision technique) and flow direction 

determination. Fifty lidar images representing 50 street blocks in Houston, Texas were 

used and split into 30, 10, and 10 images for training, validation, and test datasets, 

respectively. Four semantic segmentation models with different combinations of ResNet 

architectures and augmentation methods were trained on the basis of an Imagenet-1k 

pretrained model. The results show that all four models have the ability to identify key 

drainage and land features within a street block; however, one model was selected for its 

relatively superior performance. The selected model has intersection-over-union (IoU) 

and accuracy (ACC) values of about 80.3% and 88.5% for the test dataset, respectively.  
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Flow direction was determined in the areas labeled as “Road”, “Roadside 

channel”, and “Adjacent land” for each street block. An additional data processing step 

was conducted to identify the end points of all major flows that have higher flow 

accumulation in nearby areas. Surface drainage condition was evaluated by determining 

the closeness of a major end point to roadside channels. Ten feet was used as a threshold 

to determine if a major end point was close to or away from a roadside channel. The results 

of the test dataset showed that street block #7 had no major end point away from roadside 

channels. By comparison, about half of major end points in street block #1 were away 

from roadside channels. Moreover, street block #1 had the highest average flow 

accumulation of major points away from roadside channels. Therefore, among the test 

datasets, street block #1 may need additional maintenance to avoid water ponding and 

address potential localized flooding.  

The presented method can be beneficial for both public works agencies and local 

residents by providing drainage condition information at the neighborhood and street 

levels. Using this information, proactive improvements can be implemented before the 

start of pluvial seasons to mitigate the damages caused by flooding and water ponding. 

Finally, further studies are needed in three areas: (a) improve the segmentation algorithms 

to enhance their performance in identifying drainage infrastructure and adjacent land areas 

within a street block, (b) integrate the presented method with hydrology techniques to 

simulate water flow more precisely, and (c) integrate roadside channel condition 

information (e.g., blockages, erosion, etc.) to obtain a more comprehensive assessment of 

drainage conditions. 
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4. ASSESSMENT OF DRAINAGE CONDITIONS IN RESIDENTIAL AREAS WITH 

ROADSIDE CHANNEL SYSTEMS: CASE STUDIES 

4.1. Introduction 

Assessing drainage conditions to ensure drainage capabilities at the neighborhood 

level can help public works agencies to develop maintenance plans and mitigation 

strategies to guard against pluvial floods. Similarly, these assessments can inform 

residents about problem drainage areas and possible solution. Current drainage condition 

assessment methods have two common shortcomings: (a) they depend on manual visual 

inspection, which is a time-consuming and labor-intensive process, and (b) they ignore 

areas outside the street right-of-way (e.g., adjacent front yards), despite the 

interdependency between public drainage system (e.g., roadside channel) and adjacent 

private properties. The objective of this study is to assess the drainage conditions in two 

Texas communities that are socially and physically vulnerable to flooding and stormwater-

related hazards using automated methods. Recently developed automated inspection 

methods (Lee & Gharaibeh, 2020, 2021) that use data from mobile lidar (light detection 

and ranging) have been used for assessing the drainage conditions in two case studies: 

Sunnyside (a neighborhood within the City of Houston) and Rockport (a neighborhood 

adjacent to the City of Rockport. 

The remainder of this paper is organized as follows: In the next section, an 

overview of the literature and practices on the assessment of drainage systems in 

residential areas are provided. The following sections introduce the evaluation methods 

used in this study and the details about the two study communities. Results and Discussion 
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section shows the results obtained from applying the evaluation methods and demonstrates 

the discussion and comparison between the study communities. Finally, the research 

summary and conclusions are presented. 

4.2. Review of drainage condition assessment literature and practices  

4.2.1. Assessment of drainage systems in residential areas 

Systematic inspection and evaluation of drainage infrastructure aids both public 

works agencies and property owners in identifying problem areas and planning the 

allocation of financial resources to address these problems in the most cost-effective 

manner (Frank & Falconer, 1990; Molzahn & Burke, 1986). Manual inspection methods 

with random sampling are usually used for drainage system assessments in residential 

areas. However, manual inspection methods can be time consuming and subjective, 

especially for quantitative measurements (Lee & Gharaibeh, 2020). To address the 

challenge of evaluating drainage systems in local communities, Oti et al. (2019) developed 

citizen science methods for collecting condition data. Although volunteer citizen scientists 

can provide timely and high-quality data related to the conditions of drainage systems, 

they tend to have difficulties obtaining detailed quantitative measurements. Lidar 

technology offers opportunities to collect infrastructure data with high density and quality. 

For example, G. Cha et al. (2019) used terrestrial lidar to construct a building information 

model for the detection of the shape deformation of bridge structures. Mobile lidar, in 

particular, has been used most recently for assessing the conditions of roadway drainage 

and pavements (Chou et al., 2017; Gurganus et al., 2017; Oliveira & Correia, 2009). For 

example, Gurganus et al. (2017) determined the drainage ability of highways by using 
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mobile lidar to produce a preliminary drainage design. However, methods for the 

assessment of drainage systems in residential areas remain limited in the literature. Lee 

and Gharaibeh (Lee & Gharaibeh, 2020, 2021) developed an automated method for 

evaluating the drainage conditions of roadside channels and adjacent land using mobile 

lidar; the methods was found to be reliable in obtaining information on drainage conditions 

within street blocks.  

4.2.2. Design guidelines for drainage channels 

This work reviewed the design guidelines for channels and driveways in multiple 

states across the entire US. Grass-lined open channels are widely used in residential areas 

and are included in most design manuals. These channels can be natural or constructed 

channels that are graded to as-designed dimensions and established with suitable 

vegetation for a stable and safe conveyance of runoff. According to the reviewed 

guidelines, several design criteria should be met for drainage channels. These criteria 

include capacity, velocity, vegetation, roughness, and geometric attributes. Blockage 

tends to occur in pipes or culverts placed beneath driveways, which connect homes or 

buildings to streets. Therefore, the criteria for the width of driveways (which matches the 

length of the subsurface pipe or culvert) were also reviewed in this study. This review 

focuses on the design criteria for geometric dimensions, as these criteria are most relevant 

to the drainage condition assessment methodology used in the case studies. 
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Table 4.1 provides a summary of geometric design criteria for channels and 

driveways in 22 different cities, counties, and states in the US. Generally, these criteria 

are set to meet drainage (water flow, pollution, erosion, etc.) as well as safety performance 

requirements. However, this paper is concerned with the drainage aspects only. The 

requirement for channel minimum depth varies from 1 ft to 2 ft. In some cases, minimum 

required channel depth is not specified directly; instead, it is calculated on the basis of 

peak flow and the required minimum channel freeboard, which ranges from 6 in to 2 ft. 

The required minimum channel bottom width ranges from 2 ft to 4 ft. However, most 

agencies adopt 2 ft as the criterion for channel bottom width. For the side slope, the 

variation among the reviewed guidelines is relatively small. The requirements for the 

foreside and backside slope are generally the same, and they range from 1V:2H to 1V:4H. 

Some design manuals, however, use different requirements for foreside and backside 

slopes. For example, King County in Washington State uses 1V:3H for the foreside slope 

and 1V:2H for the backside slope. The required minimum longitudinal slope ranges from 

0.1% to 1%. The requirement for driveway maximum width, or the length of subsurface 

pipes or culverts, varies greatly, ranging from 20 ft to 40 ft. The review herein shows that 

the guidelines published by different government agencies vary greatly to meet the needs 

of local environments. As shown in a previous study (Lee & Gharaibeh, 2020), these 

criteria can serve as references for evaluating the performance of drainage channels by 

using mobile lidar. 
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Table 4.1 Summary of roadside drainage geometric criteria required by different 
public work agencies. 

City/County/State Depth Bottom 
width 

Side slope 
(V/H) 

Longitudinal 
slope (%) 

Driveway 
width Freeboard 

Harris County, 
TX2 1.5 ft-4 ft > 2 ft < 1/2-1/3 > 0.1 < 36 ft NA 

Aransas County, 
TX3 NA NA < 1/4 NA < 24 ft > 1 ft 

Houston City, TX4 < 4 ft > 2 ft < 1/3 > 0.1 NA NA 

Galveston County, 
TX5 1.5 ft-4 ft > 2 ft < 1/2-1/3 > 0.1 NA NA 

Cook County, IL6 > 3 ft > 2 ft < 1/3 > 0.3 NA > 1 ft 

King County, 
WA7 NA > 2 ft < 1/2-1/3 > 0.5 < 30 ft NA 

San Diego 
County, CA8 1ft-5 ft NA < 1/3 > 0.5 NA > 0.5 ft 

Lincoln City, NE9 NA NA < 1/4 < 1 NA > 1ft 

Jefferson County, 
CO10 < 5 ft > 4 ft < 1/4 NA < 24 ft > 1 ft 

Douglas County, 
CO11 < 5 ft NA < 1/4 < 0.6 < 22 ft > 2 ft 

District of 
Columbia12 NA 4 ft-8 ft < 1/3 < 2 < 25 ft > 1 ft 

Georgia State13 NA 2 ft-6 ft < 1/3 1-2 < 20 ft NA 

                                                

2 (Arthur L. Storey, 1988; Arthur L. Storey & Freeman, 2005) 
3 (Aransas County, 2012) 
4 (Haddock & Myers, 2018) 
5 (Badger, 2013) 
6 (Cook County, 2012, 2020) 
7 (Brater, 2016) 
8 (San Diego County, 2005) 
9 (Lincoln County, 2000) 
10 (Jefferson County Planning and Zoning Division, 2019) 
11 (Douglas County, 2008, 2015) 
12 (Hoffmann et al., 2012; Tregoning & Bellamy, 2019) 
13 (Haubner et al., 2001; State of Georgia Department of Transportation, 2019) 
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Honolulu City and 
County, HI14 > 1.5 ft 2 ft-8 ft < 1/3 < 2 < 20 ft NA 

Marion County, 
OR15 > 1 ft > 2 ft < 1/3 > 0.5 < 24ft > 0.5 ft 

Fort Wayne City, 
IN16 NA NA < 1/3 > 0.5 NA > 2 ft 

Clark County, 
NV17 1ft-5 ft > 5 ft < 1/3 > 0.4 NA > 1 ft 

Hillsborough 
County, FL18 2 ft-3.5 ft > 3 ft < 1/4 > 0.1 NA NA 

Fairfax City, VA19 NA > 3 ft <1/3 NA NA NA 

New York State20 NA 2 ft-8 ft < 1/2-1/3 < 4 < 24 ft > 0.5 ft 

Charlotte City, 
NC21 NA NA < 1/2 NA < 20 ft > 0.5 ft 

Tulsa City, OK22 NA NA < 1/4 < 1 < 20 ft > 1 ft 

Rhode Island 
State23 NA 2 ft-8 ft < 1/2 1-2 NA NA 

 

4.3. Drainage system evaluation method 

In this study, the drainage system is evaluated based on the geometric attributes of 

the roadside channels and two additional parameters that describe the off-channel drainage 

conditions. The geometric attributes were adopted from an automated method for 

                                                

14 (City and County of Honolulu Department of Planning and Permitting, 2000; Tanoue, 2011) 
15 (Marion County Public Works, 1990, 2012) 
16 (Fort Wayne City, 2017) 
17 (Clark County, 1999) 
18 (Hillsborough County, 2015) 
19 (City of Fairfax, 2017) 
20 (New York State, 2001, 2008) 
21 (City of Charlotte, 2013, 2014) 
22 (City of Tulsa, 2017; Oklahoma Department of Transportation, 1992) 
23 (Rhode Island State, 2010) 



 

63 

evaluating roadside drainage channels in urban residential areas proposed by Lee and 

Gharaibeh (2020). Two parameters were used to assess off-channel drainage conditions: 

(a) percentage of major end points (MEP) located away from drainage channels, and (b) 

average cumulative flow area away from drainage channels. Specifically, the evaluation 

criteria are based on the following parameters: 

• Channel geometric attributes 

o Channel depth 

o Channel bottom width 

o Channel side slope 

o Channel longitudinal slope 

o Subsurface pipe/culvert length 

o Subsurface pipe/culvert density 

• Off-channel drainage attributes 

o Off-channel major endpoints percentage (OMEP): Percentage of major 

endpoints located away from drainage channels. 

o Average flow accumulation area per off-channel major endpoint (AFAA) 

These parameters provide a fairly comprehensive understanding of drainage 

conditions within and across street blocks. The drainage conditions of street blocks and 

neighborhoods can be evaluated to ensure that water is collected effectively by the 

drainage system and conveyed to the design discharge points. This study implemented 

these criteria to two local communities in Texas to demonstrate its use for assessing 

drainage conditions in residential areas. 
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In this study, the raw data were obtained from a single laser mobile lidar system. 

The geometric parameters were determined by analyzing the lidar raw data using statistical 

and heuristic methods (Lee & Gharaibeh, 2020). OMEP and AFAA values were 

determined using computer vision and flow direction techniques (Kirillov et al., 2019; Lee 

& Gharaibeh, 2021; Tarboton, 1997). 

4.4. Study sites 

The drainage conditions of roadside channels and adjacent land were evaluated for 

two Texas communities with relatively high vulnerability to flooding and drainage-related 

hazards. These communities are located in Harris County (Sunnyside community) and 

Aransas County (Rockport community) as shown in Figure 4.1. The Sunnyside 

community is older than the Rockport community (the median year structure built, a proxy 

for community age, is 1964 for Sunnyside and 1980 for Rockport). We chose these study 

areas because these communities suffer from localized flooding and utilize roadside 

channels as their primary stormwater drainage systems for runoff control. A summary of 

the characteristics of these two communities is provided in Table 4.2 and discussed in the 

following sections. 
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Figure 4.1 Sites of case studies (Harris and Aransas Counties in Texas). 
 

Table 4.2 Characteristics of the case study communities. 
 Sunnyside Rockport 

Location 
Southern part of Harris 
County, 
Within the city of Houston 

Center of Aransas County, 
Adjacent to the city of 
Rockport 

Population density24 5.84 (per acre) 0.65 (per acre) 

% of developed lands 
(Impervious surfaces)25 

100 % developed lands 
- 49.10 % medium-intensity 
- 41.34 % low-intensity 
- 5.17 % high-intensity  
- 4.39 % open space  

96.49 % developed lands 
- 53.67 % low-intensity 
- 29.39 % open space  
- 11.82 % medium-intensity 
- 1.60 % high-intensity  
3.51% undeveloped lands 

Race/ethnicity24 
82.00% non-Hispanic black 
14.84% Hispanic  
3.16% non-Hispanic white  

70.94% non-Hispanic white 
27.69% Hispanic  
1.37% non-Hispanic black  

                                                

24 ("U.S. Census – 2018 ACS (American Community Survey) 5-year Estimates," 2019) 
25 ("MRLC (Multi-Resolution Land Characteristic Consortium) – NLCD (National Land Cover Database) 
2016 Land Cover (CONUS)," 2019) 

 Sunnyside 

 Rockport 
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Median household income26 $ 26,845 $ 39,091 

% of households below the 
poverty level26 26.04 % 10.52 % 

Median year structure built26 1964 1980 

Social vulnerability index27 0.9121 0.6062 

Major flooding28 Localized and riverine 
flooding 

Localized and coastal 
flooding 

Floodplain28 Outside of the floodplain Outside of the floodplain 

Ponding / Inundation28 
Shallow ponding of 0.5 to 2 
ft depth in some parts of the 
community 

2 ft of ponding depth in the 
north-west part of the 
community 

 

4.4.1. Sunnyside community 

The Sunnyside neighborhood is located in the southern part of Harris County 

within the city of Houston (Figure 4.2). The population density in this community is 5.84 

(per acre), with 1,328 of the total population occupying 227.5 acres ("U.S. Census – 2018 

ACS (American Community Survey) 5-year Estimates," 2019). All the community areas 

are developed lands, including 49.10% medium-intensity development, 41.34% low-

intensity development, and 5.17% high-intensity development areas, as well as 4.39% 

open space areas ("MRLC (Multi-Resolution Land Characteristic Consortium) – NLCD 

                                                

26 ("U.S. Census – 2014-2018 ACS (American Community Survey) 5-year Data Profile," 2019; "U.S. 
Census – 2018 ACS (American Community Survey) 5-year Estimates," 2019) 
27 (Agency for Toxic Substances and Disease Registry, 2020; Flanagan et al., 2011) 
28 (Aransas County, 2011, 2017a, 2017b; City of Houston, 2018; "GIMS – GIM Public," 2020; "Harris 
County Flood Control Districts – Flood Education Mapping Tool," 2020; Rice University’s Baker Institute 
for Public Policy, 2019) 
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(National Land Cover Database) 2016 Land Cover (CONUS)," 2019). The Centers for 

Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) of this 

community is 0.9121, which indicates high social vulnerability relative to Texas (Agency 

for Toxic Substances and Disease Registry, 2020). SVI indicates the relative vulnerability 

of every US Census tract (subdivisions of counties for which the Census collects statistical 

data) (Agency for Toxic Substances and Disease Registry, 2020). SVI ranks the tracts 

based on percentiles of 15 social factors, including poverty, lack of access to 

transportation, crowded housing, unemployment, minority status, and disability. 

Percentile ranking values range from 0 to 1, with higher values indicating greater social 

vulnerability (Agency for Toxic Substances and Disease Registry, 2020). The social 

factors included in the SVI may weaken a community’s ability to prevent human suffering 

and financial loss in a disaster (Agency for Toxic Substances and Disease Registry, 2020). 

 

Figure 4.2 Location and CDC SVI of the Sunnyside community (Harris County, 
TX). 
 

Harris County is vulnerable to localized and riverine flooding due to frequent 

excessive rainfall events and rapid urban growth (City of Houston, 2018). Recent heavy 
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rainfall events (e.g., flash flood in June 2006, Memorial Day flood in May 2015, Tax Day 

flood in May 2016, and Hurricane Harvey in August 2017) caused devastating flood 

damages in Harris County (City of Houston, 2018). Although the Sunnyside community 

is located outside the floodplain, it sits adjacent to a 100-year floodplain. This community 

suffers from localized flooding and poor drainage; shallow ponding with a depth of 0.5-2 

ft in some parts of the community was recorded during past rainfall events ("GIMS – GIM 

Public," 2020; "Harris County Flood Control Districts – Flood Education Mapping Tool," 

2020; Rice University’s Baker Institute for Public Policy, 2019). During hurricane Harvey, 

this community experienced high flood damage. Around 64% of housing units were 

affected and thus received assistance from federal emergency management agency 

(FEMA) ("FEMA – OpenFEMA Dataset: Individual Assistance Housing Registrants 

Large Disasters – V1," 2019).  

4.4.2. Rockport community 

This community is located in the center of Aransas County, which is adjacent to 

the city of Rockport, as shown in Figure 4.3. The population density in this community is 

0.65 (per acre), with 1,163 of the total population occupying 1,785.5 acres ("U.S. Census 

– 2018 ACS (American Community Survey) 5-year Estimates," 2019). Most of the 

community areas are developed lands (96.49%), including 53.67% low-intensity 

development, 29.39% open space, 11.82% medium-intensity development, and 1.60% 

high-intensity development areas ("MRLC (Multi-Resolution Land Characteristic 

Consortium) – NLCD (National Land Cover Database) 2016 Land Cover (CONUS)," 

2019). The remaining areas are undeveloped lands with forest and herbaceous land cover 
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("MRLC (Multi-Resolution Land Characteristic Consortium) – NLCD (National Land 

Cover Database) 2016 Land Cover (CONUS)," 2019). The CDC SVI of this community 

is 0.6062, which indicates moderate social vulnerability relative to Texas (Agency for 

Toxic Substances and Disease Registry, 2020). 

 

Figure 4.3 Location and CDC SVI of the Rockport community (Aransas County, 
TX). 
 

Aransas County, as a coastal county, is susceptible to coastal and localized 

flooding (Aransas County, 2017b). Recent heavy rainfall events (e.g., flash flood in July 

2006, flash flood in June 2015, Hurricane Harvey in August 2017, and south Texas heavy 

rainfall in September 2018) caused flood damages in Aransas County (Aransas County, 

2017b; "NOAA – South Texas Heavy Rainfall - September 2-16, 2018," 2020). The 

community is located outside the floodplain, but it continues to suffer from frequent 

localized flooding (Aransas County, 2017a, 2017b). Specifically, the northwest part of the 

community recorded 2 ft of ponding depth during past rainfall events (Aransas County, 

2011). During hurricane Harvey, 34.59% of housing units in this community suffered from 
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wind and flood damage and thus received FEMA assistance ("FEMA – OpenFEMA 

Dataset: Individual Assistance Housing Registrants Large Disasters – V1," 2019).  

4.5. Results and discussion 

This section presents the results of the drainage condition evaluation for the two 

studied communities and provides a statistical comparative analysis of these results. The 

Sunnyside case study consists of 10 street blocks with a total length of 1.67 centerline 

miles. The Rockport case study consists of 20 street blocks with a total length of 3.02 

centerline miles.  

4.5.1. Results and discussion for the Sunnyside community  

The pass/fail evaluation results for the Sunnyside community based on the 

requirements published by Harris County are shown in Table 4.3. In this community, no 

street block completely meets the requirement published by Harris County. Among the six 

attributes, all the street blocks meet the average P/C length requirement and only one 

channel does not meet the requirement for channel bottom width. However, the side and 

longitudinal slopes are the predominant types of failure in this community. More than half 

of the channels are not in compliant with the side slope and longitudinal slope 

requirements in this community, suggesting that these issues require greater attention to 

ensure that the channels in this community can convey stormwater as designed. 

Table 4.3 Pass/fail drainage evaluation results for the Sunnyside community. 
Street 
Block 

Channel 
Depth 

Bottom 
Width 

Left Side 
Slope 

Right Side 
Slope 

Avg. P/C 
Length 

Longitudinal 
Slope 

P/C 
Density 

1 L P P F F P F 38.63% 
R P P F P P P 39.09% 

2 L P P P P P P 17.56% 
R F P P P P P 27.93% 

3-1 L P F F P P F 25.44% 
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R P P P P P F 22.06% 

3-2 L P P P P P F 17.52% 
R P P P P P P 16.08% 

4-1 L P P P P P P 22.75% 
R P P F F P P 28.09% 

4-2 L P P P F P P 13.47% 
R P P P P P P 15.40% 

5-1 L F P P P P P 28.70% 
R F P F P P F 22.68% 

5-2 L P P P P P P 15.08% 
R F P P P P P 16.95% 

6-1 L P P F F P P 22.82% 
R P P F P P F 18.17% 

6-2 L P P P F P P 17.40% 
R P P P P P P 15.57% 

 

Furthermore, the direction of the longitudinal slope is also critical to ensure that 

the channel can drain water to the correct discharge points or downstream rivers. Figure 

4.4 demonstrates the directions of the longitudinal slopes in the Sunnyside community. 

The dotted arrows indicate that the longitudinal slope is less than 0.1% (i.e., too flat 

according to the requirement published by Harris County). According to the Public Utility 

Map published by the City of Houston ("GIMS – Public Utility Map," 2020), the design 

discharge points for this community are all located at the end of block #1. Figure 4.4 shows 

that most of the channels have longitudinal slope directed toward block #1, except the 

right channels of street #3 and street block #6-1. Therefore, this evaluation indicates that 

street #3 channels need improvement to correct their longitudinal slopes and drainage 

directions. 
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Figure 4.4 Directions of longitudinal slopes for roadside channels in the Sunnyside 
community. 
 

The results of the evaluations of the off-channel drainage conditions in the 

Sunnyside community are shown in Table 4.4. For OMEP, four out of the 10 street blocks 

have OMEP higher than 30%, which indicates that 30% of the major end points are located 

away from the roadside channels. The combination of OMEP and relatively high AFAA 

indicates that those major end points may accumulate stormwater and thus could become 

potential areas for standing water. For example, Street block #3-1 has the second highest 

AFAA, but it has the lowest OMEP of street block. This combination indicates that Street 

block # 3-1 has a few low point areas, but these areas are likely to accumulate large amount 

of water due to their relatively high AFAA. On the other hand, street block #2 has the 

second-lowest OMEP and AFAA. This combination indicates that street block #2 has 

relatively low potential to suffer from ponding issues because most of the major end points 

are located in the drainage system and the flow accumulation away from the drainage 

system is relatively low. 
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Table 4.4 Results of evaluations of off-channel drainage conditions for the 
Sunnyside community. 

Street 
block 

MEP away from 
roadside channels/areas Total MEP OMEP AFAA (sq. yard) 

1 9 32 28.13% 93 
2 6 31 19.35% 93 

3-1 7 50 14.00% 152 
3-2 25 67 37.31% 106 
4-1 27 66 40.91% 130 
4-2 23 76 30.26% 145 
5-1 10 47 21.28% 118 
5-2 18 67 26.87% 168 
6-1 14 55 25.45% 105 
6-2 17 54 31.48% 147 

 

Overall, street block #3-1 has the most concerning drainage condition considering 

both on- and off-channel conditions. This block received two fails on the longitudinal 

slopes of roadside channels, has the second-highest AFAA, and has incorrect longitudinal 

slope direction in the right channel. Thus, corrective actions may be necessary by both 

property owners (to address potential off-channel ponding issues) and the municipal 

authorities (to address channel slope issues). 

4.5.2. Results and discussion for the Rockport community 

Rockport community consists of four streets, two of which have roadside channels. 

The other two streets lack any built drainage systems and thus drain water in an ad hoc 

manner using unimproved areas adjacent to the streets. Therefore, only the two streets 

with open channels were evaluated using the six channel condition attributes; the other 

two streets without open channels were evaluated in terms of the off-channel drainage 

conditions and longitudinal slopes of the adjacent land only. As Aransas County does not 
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have requirements for every attribute evaluated in this study, the pass and fail results of 

channel depth, channel bottom width, and longitudinal slope in Table 4.5 were based on 

the requirements published by Harris County. Table 4.5 shows the evaluation results for 

the two streets that have roadside channel in the Rockport community. 

Table 4.5 Pass/fail drainage evaluation results for the Rockport community. 
Street 
Block 

Channel 
Depth 

Bottom 
Width 

Left Side 
Slope 

Right Side 
Slope 

Avg. P/C 
Length 

Longitudinal 
Slope 

P/C 
Density 

7-1 L P P P P P F 13.54% 
R P P P F P F 11.66% 

7-2 L P P P P P F 14.89% 
R P P P F P F 8.86% 

7-3 L P P P P P P 15.09% 
R P P P F P P 8.06% 

7-4 L P P P P P P 25.21% 
R F P P P P P 20.45% 

7-5 L F P P P P F 21.38% 
R F P P F P F 18.92% 

10-1 L P P F P P P 10.44% 
R F P P P P P 13.36% 

10-2 L P P F P P F 24.87% 
R F P P P P F 16.85% 

10-3 L P P P P P F 18.69% 
R P P P P P F 9.80% 

10-4 L P P F P P P 14.49% 
R P P P F P P 25.08% 

10-5 L - - - - - P - 
R F P P F P F 9.69% 

 

In this community, all channel bottom widths and average lengths of pipes and 

culverts meet the requirements; most of the side slopes also do. The average channel 

bottom width is 5.51 ft, which is more than two times the minimum requirement. However, 

more than half of the street blocks fail with regard to the channel depth and longitudinal 

slope. All street blocks, except street blocks #7-3 and #10-4, have at least a fail for either 
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the channel depth or the longitudinal slope. Hence, channel depth and longitudinal slope 

are the primary concerns.  

Figure 4.5 shows the directions of the longitudinal slopes for the Rockport 

community. The dotted arrows show the longitudinal slopes that are less than 0.1%. The 

roadside slope directions indicate that most of the water in this community is conveyed to 

both ends of the streets, which are blocks #1 and #5. However, street blocks #7-3 and #7-

4 meet at a low point (i.e., form a concave up vertical curve). A similar problem occurs at 

the right channel of street blocks #8-3 and #8-4, and the left channel of street blocks #10-

4 and #10-5. This problem is more pronounced in street blocks #7-3 and #7-4 and the left 

channel of street blocks #10-4 and #10-5 because they have longitudinal slopes that are 

greater than 0.1%. These values thus raise concerns about these areas possibly 

accumulating water instead of carrying water to the discharge points. Generally, grade 

adjustments or channel maintenance may be needed to address these problems. 

 

Figure 4.5 Directions of longitudinal slopes for Rockport community. 
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The results of the evaluations of the off-channel drainage conditions in the 

Rockport community are shown in Table 4.6. All four streets in the Rockport community 

were evaluated for their off-channel drainage conditions, including the two streets that do 

not have open drainage channels (i.e., streets #8 and #9). Among all street blocks, only 

three street blocks have OMEP higher than 30%, and all of them are in the same street, 

that is, street #7. Street blocks #7-2, #7-3, and #7-4 have the highest OMEP among the 

study area and have relatively higher AFAA than those of the other street blocks in this 

community. This combination indicates that Street blocks #7-2, #7-3, and #7-4 suffer from 

the worst scenario, which consists of multiple low point areas with high accumulation of 

water due to high AFAA. Consequently, these street blocks are susceptible to water 

ponding problems. Street block #8-4, on the other hand, appears to be the least susceptible 

to off-channel ponding issues as indicated by its low OMEP and AFAA values. 

Table 4.6 Results of evaluations of off-channel drainage conditions for the 
Rockport community. 

Street 
block 

MEP away from 
roadside channels/areas 

Total 
MEP OMEP AFAA (sq. yard) 

7-1 8 41 19.51% 100 
7-2 16 43 37.21% 155 
7-3 13 40 32.50% 152 
7-4 15 43 34.88% 220 
7-5 10 45 22.22% 89 
8-1 8 30 26.67% 86 
8-2 6 30 20.00% 87 
8-3 5 26 19.23% 103 
8-4 3 37 8.11% 107 
8-5 7 29 24.14% 125 
9-1 6 27 22.22% 107 
9-2 2 19 10.53% 103 
9-3 4 28 14.29% 303 
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9-4 6 34 17.65% 116 
9-5 8 35 22.86% 228 
10-1 8 48 16.67% 97 
10-2 8 38 21.05% 119 
10-3 11 44 25.00% 119 
10-4 8 33 24.24% 86 
10-5 11 41 26.83% 161 

 

In the Rockport community, most of the channels have at least one issue regarding 

the channel depth or longitudinal slope. Overall, street blocks #7-2, #7-3, and #7-4 have 

the most concerning drainage condition considering both on- and off-channel conditions. 

These street blocks suffer from concave up issues in the longitudinal direction and have 

relatively high OMEP and high AFAA. Thus, corrective actions may be necessary by both 

property owners (to address potential off-channel ponding issues) and the municipal 

authorities (to address channel longitudinal slope issues). 

4.5.3. Discussion and comparative analysis of studied communities 

To compare the drainage conditions in the two communities objectively, two 

comparisons are made: (a) percentage of channels passing the minimum requirements (i.e., 

passing rate), and (b) the magnitude of the physical measurement (statistical analysis of 

measurement values). 

Table 4.7 compares the passing rates for roadside channels in the two communities. 

It can be seen that there is no significant difference between the passing rates except for 

the longitudinal slope. As discussed earlier, Aransas County does not have requirements 

for channel depth, channel bottom width, and longitudinal slope; thus, the passing 

requirements for these attributes were based on the requirements published by Harris 
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County. Almost half of the fails in the Rockport community are due to longitudinal slopes. 

By contrast, the fails in the Sunnyside community are distributed across the evaluation 

attributes.  

Table 4.7 Channel geometric attributes passing rates for the two studied 
communities. 

Channel Attributes 
Sunnyside 

 
Rockport Proportion test 

P-value n Passing rates n Passing rates 
Channel Depth 20 80%  19 68% 0.408 
Bottom Width 20 95%  19 100% - 

Side Slope 40 70%  38 76% 0.530 
Avg. P/C Length 20 100%  19 100% - 

Longitudinal Slope 20 70%  19 42% 0.079 
All 120 81%  114 77% 0.494 

 

To understand the differences between the two communities in terms of the 

physical measurements, a Kruskal-Wallis one-way analysis of variance (ANOVA) was 

performed on the channel attributes (Table 4.8). In addition to the channel geometric 

attributes, the cross-sectional area and channel capacity, or flow rate, were also calculated 

and compared. Manning's Equation (Manning, 1891), was used for estimating channel 

capacity (equation (4-1), one of the most commonly used equations for open channel flow. 

It considers flow cross-sectional area and longitudinal slope and is used for uniform flow 

in open channels as a basis for channel design. For comparison purposes in this study, the 

channels in both communities were assumed can carry flow with full depth. In addition, 

because the channels in both communities are natural channels with vegetation cover, 

Manning's Roughness Coefficient was assumed to be equal for both communities. 
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 𝑄 = #
1.49
𝑛 )𝐴𝑅

,
-√𝑆 (4-1) 

Where:  

 Q = Flow Rate (ft3/s) 

n = Manning's Roughness Coefficient 

R = Hydraulic Radius (ft) = A/WP 

A = Flow cross-sectional area (ft2) 

WP = Wetted perimeter of flow (ft) 

S = Channel longitudinal slope (ft/ft) 

 

The channels in the Rockport community are significantly wider and have 

significantly flatter side slopes than those in the Sunnyside community (P-value < 0.01), 

indicating that the Rockport community has better channel width and side slopes. The 

cross-sectional areas of the channels in the Rockport community are significantly greater 

than that in the Sunnyside community, despite having significantly shallower depth. These 

results can be explained by the channel design requirements in the two communities. 

Aransas County has no specified minimum required channel depth and width; instead, it 

is calculated based on peak flow and the required minimum channel freeboard. For side 

slopes, Aransas County requires 1V:4H side slope, whereas Harris County requires 1V:3H 

side slope, explaining the flatter side slopes in the Rockport community.  

The pipes/culverts density in the Rockport community is significantly lower than 

that in the Sunnyside community; however, the average pipes/culverts length in the 

Rockport community is significantly longer than that in the Sunnyside community. These 
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results can be explained by the fact that the housing density (houses per acre) in the 

Rockport community is less than that in the Sunnyside community.  

Finally, there is no statistically significant difference between the two communities 

in terms of the longitudinal slope and channel capacity. 

Table 4.8 ANOVA of channel condition attributes for the two studied communities. 

Attribute Sunnyside  Rockport ANOVA 
P-Value Significance(1) n Median  n Median 

Channel Depth, ft 20 1.62  19 1.34 4.61E-02 ** 

Bottom Width, ft 20 2.27  19 5.58 9.37E-08 *** 

Side Slope 40 0.312  38 0.186 1.11E-07 *** 

Avg. P/C Length, ft 20 11.98  19 23.55 1.06E-04 *** 

Longitudinal Slope 20 0.120%  19 0.093% 3.69E-01  

P/C Density 20 20.1%  19 15.9% 5.90E-03 *** 

Cross-sectional Area, ft2 20 12.22  19 19.63 6.94E-06 *** 

Channel Capacity, ft3/s 20 0.57/n(2)  19 0.84/n 1.87E-01  
(1) P<0.01: ***, P<0.05: **, P<0.1: * 
(2) n: Manning's Roughness Coefficient 
 

Table 4.9 and Figure 4.6 compare the off-channel drainage conditions in the two 

communities. The medians of OMEP and AFAA in the Rockport community are both less 

than that in the Sunnyside community. As discussed earlier, OMEP represents the 

percentage of major end points away from roadside channels, but it does not account for 

the accumulation of water in these end points. AFAA represents the actual average flow 

accumulation areas; thus is more critical in describing the potential for water ponding in 

the neighborhood. The Rockport community has three relatively large AFAA values, one 

of which is larger than three standard deviations (Figure 4.6). Thus, the off-channel 
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drainage condition in the Rockport community may lead to ponding issues and require the 

residents to take corrective actions and improvements to reduce the potential for water 

ponding on their properties.  

Table 4.9 ANOVA of off-channel attributes for the two studied communities.  

Attribute Sunnyside  Rockport ANOVA 
P-Value Significance(1) n Median  n Median 

OMEP 10 27.50%  20 22.22% 7.84E-02 * 

AFAA, sq. yard 10 124  20 111.5 7.08E-01  
(1) P<0.01: ***, P<0.05: **, P<0.1: * 

 

 

Figure 4.6 AFAA and OMEP comparisons between the two communities. 
 

4.6. Conclusion 

The drainage conditions of roadside channels and adjacent land were evaluated for 

two Texas communities that are vulnerable to flooding and stormwater-related hazards. 

The two case study communities are located in Harris county (Sunnyside community) and 

Aransas county (Rockport community), with a total street length of 4.67 centerline miles. 

These evaluations were performed based on using six geometrical attributes for channel 
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conditions and two attributes for off-channel conditions. The data for these attributes were 

obtained from mobile lidar. 

The overall channel conditions in the Rockport community are generally better 

than those in the Sunnyside community. The channels in the Rockport community are 

significantly wider and have significantly flatter side slopes than those in the Sunnyside 

community. The cross-sectional areas of the channels in the Rockport community are 

significantly greater than that in the Sunnyside community, despite having significantly 

shallower depth. Since channel capacity depends on both cross-sectional area and 

longitudinal slope, there is no significant difference between these two communities in 

terms of channel capacity due to greater wetted perimeter of flow (and consequently 

smaller hydraulic radius) in the Rockport community. However, the median channel 

capacity in the Rockport community is 1.47 times that in the Sunnyside community. For 

off-channel drainage conditions, although the medians of OMEP and AFAA in the 

Rockport community are both less than that in the Sunnyside community, there are three 

relatively large AFAA values in the Rockport community that require improvement.  

The differences in channel conditions between the two communities may be 

attributed to the intensity of the developed lands, the age of the communities, and 

variations in drainage design requirements. More than 80% of the developed lands in the 

Rockport community are low-intensity or open space, which enables the Rockport 

community to have more spaces for the channels. Additionally, the median “year structure 

built” indicates that the Rockport community is 16 years younger than the Sunnyside 

community; which may further explain the difference in drainage system condition; that 
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is the drainage system in Sunnyside is older and has been deteriorating over a longer 

service life. Finally, the case studies show that mobile lidar data can be used to evaluate 

drainage systems and provide actionable information to both property owners (to address 

potential off-channel ponding issues) and the municipal authorities (to address channel 

issues). 
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1. Summary 

Assessing drainage conditions at the neighborhood level can help public works 

agencies to develop maintenance plans and mitigation strategies to guard against pluvial 

floods. Drainage condition assessments can also inform property owners about possible 

drainage problem areas. Current drainage condition assessment methods have two 

common shortcomings: (a) they depend on manual visual inspection, which is a time-

consuming and labor-intensive process, and (b) they ignore areas outside the street right-

of-way (e.g., adjacent front yards), despite the interdependency between public drainage 

system (e.g., roadside channel) and adjacent private properties. To address these 

shortcomings, this dissertation aims to develop automated methods for assessing the 

drainage conditions of roadside channels and adjacent land in residential areas by using 

mobile lidar. Three different techniques, namely, semantic segmentation, flow direction 

determination, and cloth simulation filter algorithm, were introduced and incorporated in 

the first and second papers. Case studies were conducted in the third paper by applying 

the automated methods to assess the drainage conditions in two Texas communities that 

are socially and physically vulnerable to flooding and stormwater-related hazards.  

First, this dissertation developed and provided an automated process for inspecting 

and evaluating roadside channel systems using data obtained from mobile lidar. The Cloth 

Simulation Filtering algorithm was employed to split lidar point clouds into bare earth and 

object datasets. Six key geometrical attributes of roadside channels were computed and 

analyzed based on the bare earth dataset using statistical and heuristic methods. These 
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geometrical attributes were compared to design and performance manuals to determine 

deficiencies and inform maintenance decisions. Second, roadside topography was 

modeled to evaluate surface drainage conditions by incorporating semantic segmentation 

and flow direction determination using mobile lidar data. The semantic segmentation 

model identifies the topographic features of lidar images by labeling each pixel as roadside 

channel, road, or adjacent land. Through the flow direction determination technique, major 

end points that are away from the roadside channels were identified as problematic low 

points that could be vulnerable to water ponding. Third, the developed methods were 

applied to two communities in Harris county (Sunnyside community) and Aransas county 

(Rockport community) in Texas, with a total street length of 4.67 centerline miles. The six 

geometrical attributes for channel conditions and two attributes for off-channel conditions 

were evaluated and compared in the case studies. 

5.2. Conclusions 

The dissertation shows that the proposed automated methods can effectively 

evaluate roadside channels and model the roadside topography within a street, providing 

an alternative to conventional manual inspection methods. The results benefit both 

property owners (to address potential off-channel ponding issues) and the public works 

agencies (to address channel issues) by providing crucial and actionable information at the 

street and neighborhood levels so that improvements can be implemented to mitigate 

against localized flooding and water ponding.  

The specific conclusions of this dissertation are categorized according to the three 

papers and are shown in the following sections. 
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5.2.1. Paper 1: Automating the Evaluation of Urban Roadside Drainage Systems 

Using Mobile Lidar Data 

• This paper developed an automated method to calculate six key roadside channel 

geometrical attributes reliably from raw lidar data. The six attributes are: channel 

depth, bottom width, side slope, longitudinal slope, and length and density of 

subsurface pipes and culverts. 

• The developed automated process was applied to evaluate six street sections in the 

City of Houston. The analysis results show that every channel in the study site was 

found to have its own individual condition issues and improvement needs based 

on the requirements set by the City of Houston and Harris County. 

• Mobile lidar can capture nearly continuous measurements along the channel; thus, 

the condition of drainage channels can be understood more comprehensively than 

manual inspection methods with random sampling. 

5.2.2. Paper 2: Modeling Roadside Topography to Assess Drainage Conditions: A 

Computer Vision and Flow Direction Method Applied to Lidar Data 

• The trained semantic segmentation model has the ability to identify key drainage 

and land features within a street block based on lidar images with intersection-

over-union (IoU) and accuracy (ACC) of about 80.3% and 88.5% for the test 

dataset, respectively. 

• Two off-channel attributes, off-channel major end points percentage (OMEP) and 

average flow accumulation area per off-channel major end point (AFAA), were 

developed and used to assess off-channel surface drainage conditions. 
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• In the test data set (10 street blocks in Houston and Rockport), three street blocks 

(#1, #2, and #9) had relatively high AFAA, indicating that a high water volume 

may not be conveyed to drainage channels appropriately. 

• For one street block (#1), the OMEP was 47.2%, indicating that about half of the 

major end points in that street block were off-channels. These major end points 

may require additional maintenance to prevent water ponding and flooding issues. 

By contrast, on another street block (#7), all major end points were in or close to 

the roadside channels. 

• One street block (#1) had the highest AFAA and OMEP among the test dataset, 

indicating that this street block needs additional maintenance to avoid water 

ponding and address potential localized flooding. 

• Overall, the developed method shows that problematic low points within a street 

and its adjacent land can be identified by applying flow direction determination 

and considering proximity to roadside channels.  

5.2.3. Paper 3: Use of Mobile Lidar for Assessing Drainage Conditions in 

Residential Areas with Roadside Channels: Case Studies 

• The overall channel conditions in the Rockport community are generally better 

than those in the Sunnyside community. 

• The cross-sectional areas of the channels in the Rockport community are 

significantly greater than that in the Sunnyside community. However, there is no 

significant difference between these two communities in terms of channel capacity 
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due to greater wetted perimeter of flow (and consequently smaller hydraulic 

radius) in the Rockport community. 

• The medians of OMEP and AFAA in the Rockport community are both less than 

that in the Sunnyside community; however, there are three street blocks with 

relatively large AFAA values in the Rockport community that require 

improvement. 

• Overall, the differences in channel conditions between the two communities may 

be attributed to the intensity of the developed lands, the age of the communities, 

and variations in drainage design requirements. 

 
5.3. Recommendations 

Further studies may be needed in the following areas: 

• Develop a flood risk assessment method based on the output of the drainage 

condition assessment methods presented here.  

• Investigate the advantages and disadvantages of land-based mobile lidar compared 

to airborne lidar for obtaining the data required by the developed methods. 

• Expand the training dataset for the semantic segmentation algorithm to enhance its 

performance in identifying drainage infrastructures and adjacent land features 

within a street block.  

• Integrate additional roadside channel condition information (e.g., blockages, 

erosion, etc.) into the developed methods to obtain a more comprehensive 

assessment of drainage conditions. 
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• Extend the developed methods to different drainage systems in residential and non-

residential areas (e.g., areas with curb-and-gutter systems). 

• Understand the relationship between social demographic and drainage conditions 

by applying the developed methods.  
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APPENDIX A 

FLOWCHARTS FOR CHANNEL ATTRIBUTE CALCULATIONS 

 

Figure A. 1 Data processing flowchart for generating the lower envelope line 
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Figure A. 2 Data processing flowchart for generating the upper envelope line 
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Figure A. 3 Data processing flowchart for identifying existence of open roadside 
channels 
 

Start

Pi - LEi ≤ TNo

Pi is identified
as a point for 
an open ditch

Yes

i ≤ Max. number of
longitudinal points

of a profile

Yes

No End

Pi: The elevation of the ith profile point
LEi: The elevation of the ith lower envelope line point
T: The threshold for open ditch identification, 4in in this study



 

104 

 

Figure A. 4 Data processing flowchart for calculating channel bottom width 
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Figure A. 5 Data processing flowchart for calculating channel side slope 
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Figure A. 6 Data processing flowchart for calculating length and density of 
subsurface pipes and culverts 
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