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ABSTRACT

Datasets with a large number of observations and variables, called large datasets, become ubiq-

uitous as a consequence of the development of technology. To deal with large datasets, data scien-

tists face challenges such as the overfitting problem and the computational problem. Particularly,

an important issue when analyzing large datasets is to study the structural information of observa-

tions and features. This dissertation focuses on a currently popular strategy called the structured

regularized dimensionality reduction to analyze large datasets, which utilizes dimensionality re-

duction and regularization techniques to incorporate structural information into the model. We

build new machine learning models of structured regularized dimensionality reduction for two real

applications. In the first application, we propose a regularized spatially varying coefficient model

to select important variables and estimate spatially clustered coefficients simultaneously in the

spatial regression problem. In the second application, we build a regularized matrix decomposi-

tion model to solve the biclustering problem with a complex layout of latent biclusters in the data

matrix.
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1. INTRODUCTION

1.1 Large Data Analysis

With the development of technology, the number of observations and variables included in

the collected datasets is increasing rapidly. For example, the online social network data contains

various features for millions of users, whose volume is much bigger than the conventional social

network data. Next generation sequencing enables scientists to access the expression level of genes

in the resolution of single cell, which increases the number of observations from less than 100 in

the bulk cell analysis to around 10000. Many other examples of large datasets exist for applications

from different fields, and the conventional statistical models face several new challenges to deal

with these large datasets.

First of all, a lot of structural information can exist for large datasets. Examples include tem-

poral data, spatial data, network data, multi-source data, and so on. With structural information,

the basic assumptions of many conventional models will not be satisfied. From the sample aspect,

the observations are usually assumed to be independent and homogeneous. However, since the

number of observations is large, it is likely that observations come from different clusters and are

heterogeneous. Moreover, prior information about the local relationship among observations can

exist, showing that they are not independent. From the variable aspect, it is common that some

variables are correlated for a large variable set, and high dimensional data may locate in a low

dimensional manifold space. Without considerint structural information, the conventional models

may not be effective and even provide some misleading results. Thus, it is important to incorporate

the structural information into the models.

Second, the number of parameters is also large for large datasets, which causes problems in

modeling. For example, the overfitting problem may occur for a model with too many parameters,

in which the modeling results are too close to the training observations and cannot perform well

for new observations. Also, when the number of parameters is larger than the number of samples,
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some models face the problem of unidentifiability. Thus, it requires researchers to find proper

methods to decrease the number of parameters or restrict the flexibility of parameters to avoid the

above problems in large data analysis.

Third, many conventional statistical models have high computational complexity, and it takes

too much time for them to deal with large datasets. For example, Gaussian process is a very

effective way to model a smooth function. However, the naive implementation of Gaussian process

requires O(n3) times to build a model for n observations, which is computationally difficult when

n is large. As a result, how to deal with the computing issues of the existing methods for large

datasets is a very important problem.

There are also some other challenges for large data analysis such as the requirement for the

storage, the security problem, and so on. These challenges are also important but are not the focus

of this dissertation.

To solve the above three challenges when facing a real application, this dissertation studies a

particular group of methods called structured regularized dimensionality reduction.

1.2 Structured Regularized Dimensionality Reduction

Dimensionality reduction is to transform the high dimensional data to the low dimensional data

that contain most information of the original data. There are two groups of dimensionality reduc-

tion methods: feature selection and feature extraction. For feature selection, researchers select a

subset of variables from all variables that relate to the study. For example, in the regression prob-

lem, researchers use the step-wise method [1] to find a small number of variables that determine the

variability of the response variable. On the other hand, feature extraction focuses on constructing

a low dimensional projection space of the original high dimensional data. A conventional exam-

ple of the feature extraction methods is principal component analysis (PCA) [2]. In PCA, people

find the principal components of the high dimensional feature space that have the largest sample

variance.

Since the 21st century, the regularization technique has become popular, which restricts the

flexibility of the parameters by adding some regularization terms into the model. The famous reg-

2



ularization terms include Lasso [3], group Lasso [4], SCAD [5], fused Lasso [6], and so on. The

regularization technique has several advantages for large data analysis. First, the regularization

technique can restrict the flexibility of the parameters and solve the ill-posed problem and overfit-

ting in the model. Second, the formulation of the regularization term can be designed according

to the structure information of data and increase the interpretability of the model. Last but not the

least, many regularization terms do not have a large computing cost. Many regularization terms

are even convex functions and can be efficiently solved by convex optimization.

In conclusion, structured regularized dimensionality reduction refers to the methods that utilize

the idea of dimensionality reduction and the regularisation technique to incorporate the spatial

information of the data and solve the real problems. It is a powerful tool to solve the problem for

large datasets.

1.3 Dissertation Overview

This dissertation solves two real applications by constructing new machine learning models of

structured regularized dimensionality reduction. In each application, we first study the require-

ments of structure for parameters and design a specific regularization term of parameters to pursue

the required structure. Then, we build an optimization problem to address the application and

provide an efficient algorithm to solve this problem.

In Chapter 2, we introduce our proposed method for a specific spatial regression problem. Our

method could achieve simultaneously variable selection and spatially coefficient clustering, which

perform well in the analysis of the influence of the covariates on the United States presidential

election results.

In Chapter 3, we propose a new biclustering method that solves the biclustering problem with

a complex layout of latent biclusters in the data matrix. The experimental results on the single-cell

RNA sequencing data demonstrate the effectiveness of our method.
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2. ADAPTIVE VARIABLE SELECTION IN SPATIALLY CLUSTERED COEFFICIENT

MODEL

2.1 Introduction

Spatial analysis has become an increasingly popular tool in social science studies, allowing

researchers to explain social behavior and its relationship with a set of potential factors over a

region of interests while accounting for spatial structures in the data [7]. These efforts are, however,

complicated, since many factors (known and unknown) are likely to influence social behavior, and

the effect of these factors are likely to vary from place to place. To account for this, researchers

have developed spatially clustered coefficient (SCC) models, which allow practitioners to capture

discontinuous changes in regression relationships across space. Existing SCC methods tend to

assume a fixed set of predictors pre-supplied by the researcher. However, when a large number of

available covariates need to be considered at the initial stage of modeling, practitioners frequently

lack a strong theory to inform model selection when analyzing spatial data. Thus, researchers

are often forced to either pre-select a subset of these variables in an ad hoc fashion or ignore

potential spatial heterogeneity outright. When the data do not support these assumptions (i.e.,

accurate model selection or spatial homogeneity), as often the case with real-world spatial data,

the resulting model will be inappropriate. Instead, we need a more general model that allows

researchers to undergo variable selection and spatial cluster identification flexibly.

Our specific motivation is the correlates of aggregate voting behavior in U.S. presidential elec-

tions. While voter behavior in presidential elections has received considerable attention in political

science, research tends to focus on individual-level behavior (via surveys) and state- or national-

level results. Here we are instead interested in explaining local-level variation in aggregate (i.e.,

county-level) electoral results, an area which has received less attention to date. The few notable

exceptions [8, 9, 10] that have analyzed county-level elections tend to focus on demographic char-

acteristics and economic indicators. For example, [8] focuses on the local economy and the racial
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composition in explaining voting results in 2008, [10] studies the relationship between the unem-

ployment rate and the Democratic vote share in presidential and gubernatorial elections, and [9]

assesses the influence of local unemployment on presidential vote share.

Yet these studies consider a relatively small number of pre-selected covariates and estimate

the model using linear regression with spatially invariant coefficients. That is, they each assume

that the relevant set of predictors is known and that the coefficients are the same for each county.

These two assumptions seem questionable in the case of aggregate voting behavior. First, while

theory can guide the inclusion of some variables, it is doubtful that this set is exhaustive. Many

salient inputs may not have been previously considered, and in dynamically evolving systems it

may be the case that prior models are no longer sufficient. As such, considering determinants

without an obvious theoretical motivation can be worthwhile. Second, assuming that variation in

voting behavior is entirely a function of variation in the level of the input (e.g., unemployment

rate) neglects the fact that different counties, states, regions, etc., have distinct cultural, social,

and economic practices which can modify the effect of these other county-level characteristics on

voting behavior. Model predictors can affect voting patterns in these different regions in distinct

ways. Moreover, contiguous counties with similar cultural, social, and economic practices are

likely to be clustered together [11]. The effect of model predictors is the same within each cluster

of counties but has abrupt changes across the boundary of clusters. In sum, in analyzing aggregate

voting patterns, it is often unclear which factors are likely to be salient in a given election, and how

their effect may vary across space.

Rather than requiring applied researchers to impose these restrictions by default, we are mo-

tivated to propose a new spatial regression model to select important social and demographic

variables and detect spatial clustering patterns of voting behavior simultaneously. In the spatial

statistics literature, a class of spatially varying coefficient (SVC) models has been proposed to ac-

commodate spatial heterogeneity in regression coefficients. [12] extends the ordinary least square

regression by fitting a geographically local regression model at each observation. [13] proposes

a Bayesian approach by assigning a multivariate Gaussian process prior to the regression coeffi-

5



cients. Both methods are more suited for dealing with smoothly varying than clustered regression

coefficients. For the spatially clustered coefficient regression (SCC) problem, [14] proposes a fused

Lasso regularized optimization method, which uses a Euclidean distance based minimum spanning

tree as the “spatial order" to encourage homogeneity between the regression coefficients at two

adjacent locations. Each variable is also allowed to have its own underlying spatially clustered pat-

terns. [15] proposes an extension to multivariate regression using adaptive Lasso. Elsewhere, [16]

constructs a Bayesian model based on Dirichlet process to solve the SCC problem. While each

represents advancements in efficiently identifying spatial clusters, none has incorporated variable

selection directly in estimation. Introducing a large set of covariates to current SCC models is

likely to cause computational issues, risk overfitting, and make model interpretation more difficult.

In high dimensional statistics, a number of methods have been proposed for variable selection

problems for spatial data. [17] develop a spatial adaptive Lasso method for simultaneous model

selection and parameter estimation in spatial regression for lattice data. [18] and [19] consider

binary spatial regression models and proposed penalized quasi-likelihood methods with spatial

dependence for variable selections. [20] and [21] propose variable selection methods via sparse

regularization for point process models. Yet, each of these methods assume that the regression

coefficients of selected spatial variables are constant across space. In so doing, these approaches

may eliminate predictors with complex spatial patterns that only emerge once cluster detection in

undertaken. For example, if the average coefficient effect is close to zero, it may be eliminated

during variable selection. This could include predictors with very interesting spatial heterogeneity,

where clusters have significant effects in different directions that offset when average.

In this chapter, we study the problem of variable selection in the SCC model for an analysis of

county-level U.S. presidential election results in 2016 and 2020. Our analysis identifies a number

of influential factors (e.g., race composition, poverty, and education) that govern electoral politics

narrowed from a long list of social and demographic variables. The analysis results also reveal

several interesting clustering patterns of voting behaviors among different counties, which provide

important information to study U.S. regional politics.
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Our main methodological contributions are threefold. First, we propose a new regularized spa-

tially varying coefficient (RSVC) model for selecting important variables and estimating spatially

clustered coefficients simultaneously. The regularization takes an additive form of two terms. The

first term is a graphical fused Lasso penalty for spatial clustering, and the second term is a group

elastic-net penalty to achieve spatial variable selection. Particularly, we adopt the idea of adaptive

learning to allow for adaptive weights and adaptive graphs for improved estimation of parameters.

To the best of our knowledge, our method is among the first to propose an adaptive regularization

for simultaneously selecting variables and estimating spatially clustered coefficient in the literature.

Second, we design an efficient proximal gradient algorithm to solve the regularized regression op-

timization problem. To address the common computation issues encountered in the optimization

involving graphical fused Lasso regularization, we carefully select a chain graph and utilize its

structure to speed up the algorithm such that it achieves low computational complexity and can be

applied to large spatial data sets. Third, we make a theoretical contribution by providing the non-

asymptotic theoretical results for the proposed new regularization in our approach. In particular,

we derive an improved convergence rate for the adaptive method over its non-adaptive counterpart.

The proposed RSVC model has several other advantages. It allows the investigation of different

clustered patterns in different regression coefficients. The method also enjoys great flexibility in the

cluster shapes and naturally induces spatially contiguous clusters so that practitioners can interpret

clusters as subregions. Moreover, the number of selected variables and the number of clusters are

both treated as unknown and determined from data-driven model-based approaches. Finally, since

the method is built upon graphs, it can be used beyond the spatial context to solve the variable

selection problem in any clustered coefficient model where observations can be related in a graph

or a network. We provide several such real examples in Section 2.7.

This chapter is organized as follows. In Section 2.2, we propose our model. In Section 2.3,

we present the theoretical results of this model. Section 2.4 describes the efficient algorithm for

the implementation of our model. Sections 2.5 and 2.6 include the simulations to illustrate the

model performance and the application to the U.S. election data analysis. We offer discussions in
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Section 2.7. The R code, proofs, additional simulation results, and information about the real data

are provided in the Supplementary.

2.2 Methodology

2.2.1 Spatially Varying Coefficients

To fix concepts, we first introduce the familiar SVC regression model. Suppose that the re-

sponse variable is collected at n locations with Y = (y1, y2, . . . , yn)T ∈ Rn, and X ∈ Rn×p is

the corresponding feature matrix with p covariates. The first column of X is for the intercept with

all entries equal to 1. Use xi to denote the ith row of X. For each location, the SVC regression

assumes that yi and xi follow:

yi = xibi + εi, εi
i.i.d.∼ N (0, σ2),

where bi ∈ Rp is the coefficient vector for the ith location. Specifically, the first entry bi1 of bi

refers to the spatially varying intercept for the ith location. It can be interpreted as a random spatial

adjustment at each location, which captures the spatial dependence that is unexplained by other

covariates. Thus, we model εi as a random error term rather than a spatially dependent error term.

One major goal of the SVC regression is to estimate the coefficient matrix B = (b1, . . . ,bn)T ∈

Rn×p.

The traditional way to estimate B is to minimize the sum of the squared loss of the prediction

error. However, there are n×p unknown parameters but only n observations in the SVC regression,

and then B cannot be identified directly. Instead, we need to make additional assumptions about

B to regularize this ill-posed high-dimensional regression problem.

In the proposed model, we allow for two sources of constraints: one focusing on spatial hetero-

geneity, and one focusing on variable selection. These two constraints permit simultaneous feature

selection and cluster identification. Specifically, we propose the regularized SVC (RSVC) model
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and estimate B by minimizing the objective function:

L(B) =
1

2n

n∑
i=1

(yi − xibi)
2 + λ1PC(B) + λ2PV (B), (2.1)

where λ1 and λ2 are two penalty parameters, PC is the penalty function to pursue the homogeneity

of coefficients, and PV is another penalty function to select relevant variables. We discuss the

specific forms of PC and PV to use in the following content.

2.2.2 The Selection of PC

We first introduce the form of PC to impose spatial homogeneity in the regression coefficients.

In many spatial applications, regression coefficients at proximate locations are likely to be similar

as homogeneity is expected within a small neighboring area. It is therefore desired to consider

spatially contiguous clustering configurations such that only adjacent locations are clustered to-

gether. A common approach to encode spatial proximity information is to use a graph G = (V , E),

where the vertex set V includes n observations, and the edge set E collects the edges between ob-

servations. In addition, we assume that each Bj , defined as the j th column vector B, has its own

underlying spatially clustered patterns. Therefore, PC consists of individual penalties for each Bj .

To pursue the latent clustered patterns, we incorporate the graph information by using the graph

fused Lasso [22], whose form is PC(B) =
∑p

j=1

∑
(i1,i2)∈E |bi1,j − bi2,j|. For the j th variable and

any edge (i1, i2) ∈ E , the graph fused Lasso pursues a sparse solution on the difference between

the coefficients of sample i1 and i2, i.e., bi1,j − bi2,j . The zero elements of the estimated bi1,j − bi2,j

indicate that sample i1 and i2 belong to the same cluster for the jth variable, while the non-zero

elements of bi1,j − bi2,j correspond to a cut set of edges which, if removed from the graph, will

partition the vertices into a number of disjoint connected components. When a spatial graph is

used, the method naturally imposes spatial contiguity constraints on the clustering configurations

and the resulting connected components can be interpreted by practitioners as subregions.

Adaptive weights can further be adopted following the idea of the adaptive Lasso [23, 24] to

reduce the estimation bias of the standard Lasso and improve variable selection accuracy, and PC
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becomes PC(B) =
∑p

j=1

∑
(i1,i2)∈E w(i1,i2),j|bi1,j − bi2,j|, where w(i1,i2),j is the weight for the edge

(i1, i2) of the j th variable often determined from an initial estimator.

The alternating direction methods of multipliers (ADMM) [25] and the path following type of

algorithms [26, 27] have been developed to solve the graph fused Lasso problems. However, the

computation of these algorithms can be expensive with the above penalty PC(B,G) for a large

general graph. A similar computational issue arises when minimizing our objective function in

Eq. (2.1) if we use the same form of PC(B,G). When a graph has certain simple structure such

as a chain or a tree graph, several previous works [14, 28] show that one can take advantage of

specific graph structures to design efficient algorithms to solve the graph fused Lasso problem.

This motivates us to consider a similar strategy to replace the original graph in PC with a simple

graph, which includes the proximate pairs of samples that are likely to share similar coefficients to

pursue spatial homogeneity.

In particular, we select to use a chain graph in our model for two reasons. First, among the

different choices of the simple graph, the chain graph could achieve the fastest computation as

evidenced in previous studies [28]. Its main advantage lies in the fact that it provides an order of

n samples so that the graph fused Lasso is reduced to a 1-dimensional fused Lasso problem, for

which several existing efficient algorithms [29, 30] can be adapted to solve the problem. Second,

we will show in Section 2.3 that using the chain graph we described below leads to some nice

theoretical properties in terms of parameter estimation, and therefore achieves a good balance

between model accuracy and computational efficiency.

Note that we allow each covariate to have its own clustering configuration. Directly applying

the fused Lasso method using a common graph for all covariates fails to adapt to the differences

in covariate-specific clustering patterns. Therefore, we propose an adaptive learning approach

to build a variable-dependent chain graph for each variable. The way to construct this variable-

dependent graph is as below: We begin with an initial estimator Bini of B, whose selection will

be discussed in Section 2.4.4. For each of the j th variable, we follow the approach in [28] to

first construct a minimum spanning tree (MST) of G with |bini
i1,j
− bini

i2,j
| as the distance between
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(i1, i2) ∈ E and then find a chain graph Gj by applying the depth-first searching (DFS) algorithm

to the MST with a random root vertex. It is proved that for any arbitrary signal, the graph fused

Lasso penalty along with the DFS-induced chain graph never exceeds twice the graph fused Lasso

over the original graph [28]. This nice property enables the DFS-induced chain graph as a good

candidate to approximately carry the information from the original graph.

Now we give the specific form of PC below. For the j th variable, its chain graph Gj defines

a direct path of n samples, i.e. (j1 → j2 → · · · → jn). Then PC(B) = PC(B,G1, . . . ,Gp) =

λ1

∑p
j=1

∑n−1
i=1 w(ji,ji+1),j|bji,j − bji+1,j|, where w(ji,ji+1),j denotes the adaptive weight for the edge

(ji, jji+1
) in Gj , and bji,j denotes the (ji, j)

th entry of B. For the sake of notation simplicity, we

use wj,i to represent w(ji,ji+1),j . To write PC(B) in a matrix form, we build the incidence matrix

Hj ∈ R(n−1)×n for Gj: The (i, ji)
th entry of Hj is equal to 1, the (i, ji+1)th entry of Hj is equal to

−1 for i = 1, 2, . . . , n− 1, and all the other entries of Hj are 0. Denote Wj ∈ R(n−1)×(n−1) as the

diagonal matrix with wj,i along the diagonal. Then,

PC(B) = λ1

p∑
j=1

‖WjHjBj‖1 . (2.2)

2.2.3 The Selection of PV

We then introduce the form of PV to impose sparsity regularization to determine the non-zero

columns Bj . Note that when a spatial covariate is not a true predictor, the corresponding column

of regression coefficients of this covariate becomes a zero vector. By treating the parameters in

each Bj as a group, PV should help achieve the group selection of parameters and hence identify

important spatial covariates to avoid over-fitting in estimation and improve the interpretation of

the model. There are many existing methods that focus on group selection (see [31] for a selective

review of the literature), and we choose the adaptive group elastic-net [32] for the form of PV .

The adaptive group elastic-net can be seen as a combination of the adaptive group Lasso and

the elastic-net. It is well studied that the adaptive group Lasso method can achieve the oracle

property for the regression problem with group selection, and the elastic-net can deal with the
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collinearity of the variables. Indeed, for many spatial problems such as the U.S. election data we

consider in Section 2.6, spatial covariates (e.g., social demographic variables) often exhibit strong

collinearity, and hence it is desired to perform variable selection such that strongly correlated

spatial covariates are selected or omitted from the model altogether. Specifically, PV (B) takes the

form
∑p

j=1 uj ‖Bj‖2 + τ
2
‖B‖2

2 where uj is a weight parameter for adaptive learning that is often

determined from an initial estimator, and τ is a tuning parameter to adjust the size of the squared

`2 norm penalty in the elastic-net.

2.2.4 Simultaneous Spatial Clustering and Variable Selection

Setting X̃ =
[
diag(X1), . . . , diag(Xp)

]
∈ Rn×(np) where Xj ∈ Rn is the j th column vector of

X, we have f(B) = 1
2n

∥∥∥Y − X̃vec(B)
∥∥∥2

2
. By incorporating the penalties PC in Eq. (2.1) and PV

in Eq. (2.2), we now introduce the final matrix form of the objective function which we minimize

to obtain an estimator of B:

L(B)=
1

2n

∥∥∥Y−X̃vec(B)
∥∥∥2

2
+λ1

p∑
j=1

‖WjHjBj‖1+λ2

[
p∑
j=1

uj ‖Bj‖2+
τ

2
‖B‖2

2

]
. (2.3)

It is noticeable that L(B) is a convex function of B, which can be efficiently solved by the

convex optimization method to be introduced in Section 2.4.

2.3 Theorem

We now give a theoretical analysis of our model. To make a brief overview, we first provide a

non-asymptotic bound for the estimating error of our model that depends on the number of truly

related variables and edges of graphs connecting samples from different clusters in Theorem 1.

Then we provide Corollary 1 that shows the selection consistency of our estimator. Finally, in

Theorem 2, we show the relationship between the number of edges connecting samples from dif-

ferent clusters and the number of clusters for the variable-dependent chain graph, which reflects

the advantage of using the variable-dependent chain graph proposed in our method.

We first introduce the notations in this section. Use B∗ to denote the true value of B and B̂ to

denote the estimator of B from Eq. (2.3). We define a series of index sets J , I1, · · · , Ip to indicate
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the support space of B∗:

J = {j :
∥∥B∗j∥∥2

6= 0, j = 1, 2, . . . , p},

Ij =


{i ∈ {1, 2, . . . , n− 1} : Hi,jB

∗
j 6= 0} if j ∈ J ,

∅ if j /∈ J ,

(2.4)

where Hi,j denotes the ith row of Hj . Clearly, J contains the indexes of truly related variables, and

Ij collects the edges that connect the samples with different coefficient values and from different

clusters of the j th variables. We further define H̃j = (HT
j ,1n/n)T ∈ Rn×n. It is easy to check

that H̃j is always a full rank matrix. Let H̃−1
j denote the inverse matrix of H̃j . We decompose

H̃−1
j = (H−j ,1

−
j ) so that H−j ∈ Rn×(n−1) contains the first n − 1 columns of H̃−1

j , and 1−j ∈ Rn

represents the last column of H̃−1
j .

To present the theoretical result of our method, we introduce three assumptions:

Assumption 1. There exists a constant γ > 0 such that for any V ∈ C(B∗;λ1, λ2, τ),

1

n

∥∥∥X̃vec(V)
∥∥∥2

2
≥ γ ‖V‖2

F .

where

C(B∗;λ1, λ2, τ) =
{

V ∈ Rn×p :∑
j∈J

λ1

∥∥∥WICj ,jHICj ,jVj

∥∥∥
1

+
∑
j∈JC

[
λ1 ‖WjHjVj‖1 + λ2uj ‖Vj‖2

]
< 3

∑
j∈J

[
λ1

∥∥WIj ,jHIj ,jVj

∥∥
1

+ λ2uj ‖Vj‖2

]
+ λ2τ

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
] }
.

WIj ,j denotes the sub-matrix of Wj containing rows of Wj corresponding to the indexes in Ij .

HIj ,j , WICj ,j , and HICj ,j are defined in the same way.

Assumption 2. ε1, ε2, . . . , εn are independent sub-Gaussian random variables such that P (εi >

t) < exp(−t2/2σ2
i ).
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Assumption 3. ‖X‖∞ <∞, (maxj∈J ‖W−1
j ‖∞)(maxj∈J

∥∥WIj ,j
∥∥
∞) <∞, and

(maxj |u−1
j |)(maxj∈J |uj|) <∞.

Assumption 1 requires a restricted strong convexity property at B∗. Assumption 2 requires

that the distribution of the error term is not too dispersed. Assumption 3 restricts the `∞ norms

of covariates and weights. All assumptions are commonly adopted in high dimensional regression

model literature [33, 34].

Theorem 1. Under Assumption 1, for λ1/2>maxj∈J
∥∥ 1
n
εTdiag(Xj)H

−
j W−1

j

∥∥
∞ and λ2/2

√
n >

maxi,j | 1nεiXiju
−1
j |,

∥∥∥B̂−B∗
∥∥∥
F
≤

6(λ1a1

∥∥WIj ,j
∥∥
∞ + λ2a2 + λ2τ ‖B∗‖F )

γ + λ2τ
, (2.5)

and
1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2
≤

18(λ1a1

∥∥WIj ,j
∥∥
∞ + λ2a2 + λ2τ‖B∗‖F )2

γ + λ2τ
, (2.6)

where a1 =
√
|J |maxj∈J

√
|Ij| and a2 =

√
|J |maxj∈J |uj|.

The form of Eq. (2.5) intuitively reveals the role of each penalty. The numerator of the right

side of Eq. (2.5) consists of three terms. The first term comes from the estimating error of the

cluster patterns. Its form is similar to the error term of the SCC method in [14]. The second term is

for the error of variable selection. The third term comes from the squared `2 penalty in the elastic-

net. Notice that both a1 and a2 include |J |, which shows that the upper bound of the estimating

error depends on the number of truly related variables. a1 also includes maxj∈J
√
|Ij|, which is

the max number of edges that connect different clusters among the variable-dependent graphs and

is directly related to the number of clusters and the quality of the graphs. We will later show in

Theorem 2 that the rate of maxj∈J
√
|Ij| can be as low as O(R) for variable-dependent graphs

when n goes to infinity, where R is the max number of clusters for different variables.

Under Assumption 2, we also prove that the smallest rates of λ1 and λ2 satisfying the require-

ments of Theorem 1 are λ1 = O(C1

√
log(n|J |)/n) and λ2 = O(C2

√
log(n)/n) as n → ∞,

where C1 = maxj∈J ‖Xj‖∞maxj∈J ‖W−1
j ‖∞ and C2 = maxj ‖u−1

j Xj‖∞.
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As a result, with Assumption 3, the order of the upper bound in Eq. (2.5) is

O
(√
|J |maxj∈J |Ij|log(n|J |)/n+ |J | log(n)/n+ τ 2 ‖B∗‖2

F log(n)/n
)
. By simple algebra, if

|J |maxj∈J |Ij|=o(n/ log(n)) and τ = o(
√
n/ log(n)/ ‖B∗‖F ), the upper bounds of the inequali-

ties in Eq. (2.5) and Eq. (2.6) will decrease asymptotically to zero as n→∞, indicating estimation

consistency of the RSVC estimator. Accordingly, we establish Corollary 1 to provide the selection

consistency of our estimator.

Corollary 1. If |J |maxj∈J |Ij| = o(n/ log(n)) and τ = o(
√
n/ log(n)/‖B∗‖F ), under the As-

sumptions 1, 2 and 3, there exists δ > 0 such that (i) ‖B̂j‖2 < δ ⇔ j /∈ J ; (ii) |Hi,jB̂j| < δ ⇔

i /∈ Ij , with probability tending to 1 as n→∞.

If we further assume that ‖B∗‖F = O(
√
n), then τ is required to have a rate of o(1/

√
log(n))

as n increases to achieve a consistent estimator.

The above results do not discuss the effects of adaptive learning, and now we investigate how

adaptive learning would improve the convergence rates in Theorem 1 and Corollary 1. First, we

consider that Wj and uj are built by a consistent estimator of B. If W−1
ICj ,j

= O(
√

log(n)/n) for

j ∈ J for example, the smallest rate of λ1 satisfying the requirements of Theorem 1 will reduce

to λ1 = O(C1

√
log(|J |maxj∈J |Ij|)/n) for large n (shown in Section 2.8), and the results of

Corollary 1 will be improved accordingly. Meanwhile, if u−1
j = O(

√
log(n)/n) for j ∈ J C , the

value of C2 could be bounded only if the rate of ‖Xj‖∞ is at most O(
√
n/ log(n)), which relaxes

the constraint in Assumption 3.

Second, we show the advantage of setting Hj using the variable-dependent chain graph over

the non-adaptive common chain graph. According to Eq. (2.4), the order of |J | only depends

on B∗, whereas the order of |Ij| depends on both B∗ and the variable-dependent chain graph Hj

constructed via adaptive learning. We build Theorem 2 to show the effects of Hj on the order of

|Ij|.

Theorem 2. Denote Rj as the true number of clusters for the j th variable. Suppose that each

Hj is constructed by the adaptive learning approach described in Section 2.2.2 with the assump-

tions: (i) The sub-graph of the observations in the same cluster is connected in G; (ii) Bini is a
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consistent estimator of B. Then for Ij defined by Eq. (2.4) with Hj , |Ij| ≤ 2(Rj − 1), and hence

maxj∈J |Ij| ≤ 2(maxj Rj − 1), with probability tending to 1 as n→∞.

The first assumption of Theorem 2 requires that the true clustering configuration can be induced

from G, that is, there exists a set of edges which, if removed, induces the true clusters corresponding

to the connected components, and the second assumption is a common assumption in adaptive

learning. Theorem 2 shows that as n→∞, the value of |Ij| is only controlled by the true number

of clusters. In contrast, when a non-adaptive chain graph is used, |Ij| can grow with n. For

example, consider a simple case with a lattice graph in the 2D space and a vertical split in the

middle. The rate of |Ij| becomes O(
√
n), which leads to a larger error bound in (2.5) than that of

the adaptive method.

2.4 Algorithm

We propose to minimize the convex objective function in Eq. (2.3) using the proximal gradient

method, taking advantage of the fact that the proximal operators of PC and PV in our method can

be solved efficiently.

2.4.1 Proximal Gradient Method

The proximal gradient method is a particular case of the Majorization-Minimization (MM)

algorithm [35]. In the MM algorithm, a majorizing function of the objective function is constructed

first. Then the parameters are updated iteratively by minimizing the majorizing function in each

step.

Firstly, with a fixed point Bt, we can bound L(B) by:

L(B) ≤ f(Bt)+ < B−Bt,∇f(Bt) > +
l

2

∥∥B−Bt
∥∥2

F
+ PC+V (B),

where PC+V (B) = PC(B) + PV (B), ∇f(Bt) is the gradient of f(B) at Bt, < ·, · > denotes

an inner product operator, and l is the Lipschitz constant of ∇f(B) that |∇f(B[) − ∇f(B])| ≤

l
∥∥B[ −B]

∥∥
F

for any B[,B] ∈ Rn×p. We can choose l as two times of the largest eigenvalue of
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X̃T X̃/n [36].

Secondly, the proximal gradient method updates the value of B iteratively with the previous

point Bt by solving:

Bt+1 = arg min
B

1

2
‖B− Z‖2

F +
1

l
PC+V (B), (2.7)

where Z = Bt − (1/l)∇f(Bt). Notice that the optimization problem in Eq. (2.7) is separable

into each column of B. With simple algebra, solving Eq. (2.7) is equivalent to solving p small

optimization problems as below, for j = 1, 2, . . . , p:

Bt+1
j =arg min

Bj

1

2

∥∥∥∥Bj−
1

1 + τλ2/l
Zj

∥∥∥∥2

2

+
λ1

l + τλ2

‖WjHjBj‖1+
λ2uj
l + τλ2

‖Bj‖2 , (2.8)

where Zj denotes the j th column of Z. Eq. (2.8) belongs to the proximal operator problem associ-

ated with the combination of the adaptive fused Lasso and the group Lasso.

Later in Section 2.4.2, we will show that the smallest computational complexity to solve each

small problem in Eq. (2.8) is O(n), and thus the overall computational complexity of Eq. (2.7) is

O(np). Furthermore, [36] proves that the number of iterations of the proximal gradient method

can be reduced from O(1/ε) to O(1/
√
ε) when replacing the fixed value Bt in Z by:

At = Bt +
αt−1 − 1

αt
(Bt −Bt−1), (2.9)

where ε is the convergence tolerance, and αt = 1 +
√

1 + 4(αt−1)2/2. To conclude, the overall

computational complexity of our algorithm isO(np/
√
ε), which is nearly scalable to large datasets.

We summarize the details of the proximal gradient method in Algorithm 1.

2.4.2 Solving the Proximal Operator

In this subsection, we discuss the way to solve Eq. (2.8) efficiently. We first define the standard

form of the proximal operator associated with the adaptive fused Lasso and the group Lasso as

follows: For any vector z ∈ Rn, the proximal operator associated with the adaptive fused Lasso
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Algorithm 1 Algorithm of the Proximal Gradient Method
Input: Y,X, r, λ1, λ2, γ, l, ε.
for t = 0, 1, 2, . . . : do

Calculate αt = 1 +
√

1 + 4(αt−1)2/2;
Construct At by Eq. (2.9);
Calculate Z = At − (1/l)∇f(At);
Get Bt+1 by solving Eq. (2.7);

end for
Stopping criterion: Keep the above iteration until t satisfies L(Bt)− L(Bt+1) < ε
Output: Bt+1.

and the group Lasso is to solve:

proxFL+GL(z, λ1, λ2) = arg min
β
‖z− β‖2

2 + λ1 ‖WHβ‖1 + λ2 ‖β‖2 . (2.10)

where H ∈ (n− 1)× n is a matrix whose (i, i)th entry is 1 and (i, i + 1)th entry is -1 for i =

1, 2, . . . , n − 1. The other entries of H are all 0. W is a diagonal matrix containing the adaptive

weights. It is easy to check that Eq. (2.8) is a specific case of Eq. (2.10) by reordering the rows of

WjHjBj and choosing particular values for z, β, λ1, and λ2. To efficiently solve Eq. (2.10), we

propose the following theorem:

Theorem 3. Define:

proxFL(z, λ1) = arg min
β
‖z− β‖2

2 + λ1 ‖WHβ‖1

proxGL(z, λ2) = arg min
β
‖z− β‖2

2 + λ2 ‖β‖2 .

proxFL(z, λ1), proxGL(z, λ1), and proxFL+GL(z, λ1, λ2) have the following relation:

proxFL+GL(z, λ1) = proxGL
(
proxFL(z, λ1), λ2

)
.

Theorem 3 can be proved by following the proof of Theorem 1 in [30]. The only difference

between their Theorem 1 and our Theorem 3 is that we include an additional weight matrix W
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into proxFL+GL(z, λ1, λ2). Theorem 3 shows that Eq. (2.10) can be computed through a two-

step strategy which involves proxFL(z, λ1) and proxGL(z, λ2) respectively. For proxGL(z, λ2), its

analytical solution is:

proxGL(z, λ2) =

{
max(0, ‖z‖2 − λ2)

‖z‖2

}
z.

For proxFL(z, λ1), several efficient algorithms with O(n) computational complexity have been

developed based on the ideas of taut string and dynamic programming [37, 29]. [38] develops a

fast algorithm via the analysis of KKT conditions, which is easy to implement and only requires

n+ 7 storage. Precisely, if m is the number of nonzero entries in H · proxFL(z, λ1), the computa-

tional complexity of Condat’s method is O(nm). We decide to use the weight-included version of

Condat’s method for its easy implementation.

2.4.3 Tuning Parameters

There are three tuning parameters in our model: the penalty parameter λ1 for seeking homo-

geneity patterns, the penalty parameter λ2 for variable selection, and the allocation parameter τ in

the elastic-net penalty. To make a proper choice of their values, we use the generalized informa-

tion criterion (GIC). GIC is proposed by [39] to select the tuning parameters in penalized gener-

alized linear models. Different from the traditional information criteria such as Bayes information

criterion (BIC), GIC is applicable to the case when the number of parameters increases at most

exponentially with the sample size n. Our model considers the case that includes np parameters in

total with p = O(nc) for some c ≥ 0, and we can calculate its GIC by:

GIC(λ1, λ2, τ) = log

[
1

n

n∑
i=1

(yi − xibi)
2

]
+

1

n
log {log(n)} log(n) · df(λ1, λ2, τ), (2.11)

where df(λ1, λ2, τ) is the degree of freedom of the model with tuning parameters (λ1, λ2, τ). We

estimate df(λ1, λ2, τ) by |Ĵ | +
∑p

j=1 |Îj| when τ = 0, where Ĵ , Î1, . . . , Îp indicate the support

space of the estimator B̂. When τ = 0, the way to estimate df(λ1, λ2, τ) is similar to elastic-

net [40]. The Theorem 3 by [39] shows that the GIC defined in Eq. (2.11) can consistently identify
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the true model.

In practice, assuming that there are m1, m2, and m3 candidate values for λ1, λ2, and τ respec-

tively, we need to build m1m2m3 models in total to decide the best combination to use. Instead

of building each model separately, we adopt the strategy of warm starts [34] to reduce the com-

putation time. We first sort the candidate values for λ1 and λ2 in a decreasing order respectively

and form two sequences {λ1,i}m1
i=1 and {λ2,j}m2

j=1. Then for each fixed τ , we build m1m2 models

with {λ1,i}m1
i=1 and {λ2,j}m2

j=1 sequentially. Use B̂(λ1, λ2, τ) to denote the solution of the model

with (λ1, λ2, τ). We begin by estimating B̂(λ1,1, λ2,1, τ), and then update B̂(λ1,i, λ2,1, τ) using

B̂(λ1,i−1, λ2,1, τ) as the initial value, for i = 2, . . . ,m1. This greatly reduces the number of itera-

tions in the algorithm. Similarly, for i = 1, . . . ,m1 and j = 2, . . . ,m2, B̂(λ1,i, λ2,j−1, τ) is used as

a warm start for B̂(λ1,i, λ2,j, τ).

2.4.4 Selections of Weights

ui and Wj in Eq. (2.3) are important weight parameters in our adaptive methods. As we have

discussed in Section 2.3, appropriate choices of these weights can lead to an improved convergence

rate over its non-adaptive counterpart.

Assuming that Bini is an initial estimator, ui and Wj could be determined by:

uj = (‖Bini
j ‖2)−α and Wj = diag[(HjB

ini
j )−α].

α is a tuning parameter that is usually set to 1 or 2. The traditional selection of Bini is B’s ordinary

least square (OLS) estimator, whereas, in our problem, the number of parameters is larger than the

number of observations, and the OLS estimator is not unique. Instead, we choose to use Eq. (2.3)

with ui = 1 and Wj = In−1 to get the initial estimator that we prove is consistent in theory.

2.5 Simulation

In this section, we design simulation experiments to evaluate the performance of our model.

We randomly generate 1000 spatial locations s1, . . . , s1000 from the square domain [0, 1] × [0, 1].

We then generate p ∈ {20, 100} variables that are not only spatially dependent within each variable
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but also dependent across variables to mimic many real-world spatial processes. Specifically, the

design matrix of p covariates for the simulation is generated from X = ΓZ, where ΓΓT = Σ

with Σij = 0.5|i−j|, and Z = (zij)1000×p includes p independent realizations generated at 1000

locations from a Gaussian ProcessGP (0, C) with covariance functionC(zi1j, zi2j) = exp(−||si1−

si2||/0.3). Among p covariates, we randomly select 3 successive variables with index j1, j2 and j3

as the truly related variables and calculate the response value at the ith location by:

yi = βij1xij1 + βij2xij2 + βij3xij3 + εi, (2.12)

where εi is the i.i.d error from N (0, 0.252). The true values of βij1 , βij2 , and βij3 for each location

are set with different cluster patterns as shown in the first row of Figure 2.1.

For model comparison, to the best of our knowledge, there is no existing method specif-

ically designed for simultaneous variable selection and spatial clustering as discussed in Sec-

tion 2.1. Therefore, we choose to compare our model with the two-step spatially clustered co-

efficient method (TS-SCC). In TS-SCC, we first use Lasso [3] to select important variables in the

constant-coefficient model. Then we use the SCC method by [14] to estimate the clustered coef-

ficients. Two oracle methods, denoted as OracleVC and OracleALL, are also included in the com-

parisons as benchmarks. OracleVC builds the SCC model assuming the truly related variables are

known. OracleALL assumes both the truly related covariates and the true cluster patterns of them

are known and uses the original least square method to estimate the coefficients in each cluster.

Since our method is an adaptive method, to make a fair comparison, the SCC method is modified

to the adaptive version. We use a K = 5 nearest neighborhood network built on the Euclidean

distance among locations as the original graph G for all methods. If the constructed network is not

connected, we gradually increase K until we get a connected network.

To evaluate the performance of different methods, we randomly select 5% of the 1000 samples

as the test dataset. The remaining samples are used as the training dataset. For each method, after

building the model on the training dataset, we calculate: (1) the number of true-positive discoveries
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Table 2.1: Mean performance (standard deviation) of different methods for variable selection and
coefficient estimation in 100 simulations with the variable size p = 20 or p = 100.

Metric
p = 20 p = 100

RSVC TS-SCC OracleVC OracleALL RSVC TS-SCC OracleVC OracleALL

TP 2.93 2.05 3.00 3.00 2.67 1.34 3.00 3.00
(0.33) (0.89) (0.00) (0.00) (0.53) (0.89) (0.00) (0.00)

FP 1.15 11.74 0.00 0.00 1.02 26.36 0.00 0.00
(1.49) (3.04) (0.00) (0.00) (2.09) (8.74) (0.00) (0.00)

EE 0.19 0.29 0.18 0.01 0.11 0.16 0.08 0.01
(0.04) (0.07) (0.03) (0.01) (0.01) (0.03) (0.01) (0.01)

PE 0.81 1.00 0.80 0.57 1.01 1.12 0.80 0.57
(0.23) (0.26) (0.27) (0.24) (0.22) (0.23) (0.24) (0.21)

(TP); (2) the number of false-positive discoveries (FP); (3) the estimation error between B̂ and B

(EE); (4) the prediction error in the test dataset (PE):

EE =

√√√√∥∥∥B− B̂
∥∥∥
F

np
, PE =

√∑
i∈TestSet(ŷi − yi)2

ntest
,

for model comparisons. To predict yi in the test dataset, we first find its k = 5 nearest locations in

the training dataset and use the mean of these locations’ coefficients to predict the coefficients at

the ith location. We repeat the simulation experiments 100 times and report the mean and standard

deviation of each evaluation metric.

Table 2.1 includes the simulation results. We observe that RSVC achieves better results of all

metrics than those of TS-SCC in both choices of p. RSVC detects three true variables at most

times and has a low average FP, which demonstrates its superior performance in variable selection.

In contrast, the TP of TS-SCC is 2.05 for p = 20 and 1.34 for p = 100, which means that TS-

SCC fails to identify 0.95 and 1.66 important variables on average. TS-SCC also has a large

FP, especially when p is large. For prediction error, both the EE and PE of RSVC are close to

those of OracleVC, which shows that RSVC provides accurate estimations for the coefficients and

predictions.
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Figure 2.1: Estimated coefficients of different methods in one simulation with n = 1000 and
p = 20.
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Figure 2.1 gives an example of the estimated coefficients for different methods with p = 20.

We can see that RSVC recovers the original patterns of the coefficients well in all three truly

related variables. On the contrary, TS-SCC fails to select the first related variable. Although the

second and the third variables are correctly selected, several clusters are not correctly identified

by TS-SCC, indicating that including many FP variables in the model will weaken the accuracy

of the estimation on the coefficients of truly related variables. From Figure 2.1, we also observe

that RSVC tends to provide more clusters than the true patterns and OracleVC method for βi,j1 ,

which is due to the usage of chain graphs to cluster the coefficients. As discussed in Section 2.2.2,

although the use of chain graphs helps to reduce the computational complexity, it tends to cut a

true cluster into several small clusters. The reason for this phenomenon is that chain graphs add

looser constraints on the coefficients than the original graph. One remedy in practice is to run SCC

again with tree or denser graphs on the selected variables from RSVC to improve the clustering

result. To conclude, the simulation results demonstrate the overall good performance of RSVC in

terms of variable selection and parameter estimation. We have also investigated the performance of

RSVC when the true coefficients vary smoothly across the locations. The results show that RSVC

also performs well in those studies, indicating its robustness under model mis-specification.

2.6 County-Level Voting in U.S. Presidential Elections

We now use our model to analyze the voting results of the U.S. presidential elections in 2016

and 2020 for all 3075 counties of the conterminous United States – that is, we exclude Alaska,

Hawaii, and all other islands. Since the vast majority of votes in both elections were for the

Democratic or Republican candidate, we focus on the percentage of the Democratic votes (de-

noted by PerDem) in the two-party votes exclusively. Using our RSVC method, we are able to

simultaneously select the subset of variables that are significant determinants of PerDem, find spa-

tially varying relationships between them, and identify potential spatially clustered patterns among

counties.

For both elections, we consider 37 county-level demographic and economic variables that po-

tentially explain the voting results, which includes the variables most commonly used in the pre-
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vious studies (e.g., unemployment rate, per capita income). Table 2.2 includes the description

of these variables. The variables are collected from the American Community Survey 5-Year

Data (ACS5). For the 2016 election, we use the data from 2015 ACS5. For the 2020 election,

since the data of 2019 ACS5 is not available currently, we use the data of 2018 ACS5. In data

pre-processing, we first take the logarithm transformation on Population, HouseUnits, and Medi-

anHouseValue variables since each of their distributions has a skewness larger than 3. Next, we

scale each variable by calculating

Xscale =
X − quantile(X, 0.05)

sd(X)
.

In this way, the intercept term of our regression model reflects the voting results of elections for

the counties when the value of each covariate is setting to its 0.05 quantile of the population.

We analyze the effects of these variables on the voting results using the RSVC and TS-SCC

models discussed above. In addition to spatially varying coefficients on the covariates, we also

allow the intercept to vary across space in each of the models to capture the spatial dependence

that is unexplained by other covariates.

To evaluate the performance of methods, we randomly split the counties into the training dataset

with 95% counties and the test dataset with 5% counties. The model is first built on the training

dataset and learns the related variables and spatial clusters. Then for each county in the test set,

we find its k = 5 nearest counties in the training dataset and use the mean of these counties’

coefficients to predict its coefficients. Finally, we can predict the voting of this county with the

estimated coefficients. Table 2.3 includes the average performance of the prediction error (PE)

and the number of selected variables (#Selected Variables) for RSVC and TS-SCC in 100 times of

random splitting. In both the 2016 and 2020 election samples, RSVC has a smaller PE in the test

dataset than TS-SCC. This is true despite the fact that the number of variables selected by RSVC

is much smaller than that of TS-SCC. As such, the RSVC model achieves superior predictive

performance with a much more parsimonious model.
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Table 2.2: Description of 37 potential explanatory variables.

Id Group Variables Explanation

1 Population Population Population
Gender (Baseline) Gender.Male Male (%)

2 Gender.Female Female (%)
Race (Baseline) Race.Black Black or African American alone (%)

3 Race.White White (%)
4 Race.AmIndian American Indian and Alaska Native alone (%)
5 Race.Asian Asian (%)
6 Race.Hawaiian Native Hawaiian and Other Pacific Islander alone (%)
7 Race.OtherRace Some other race alone (%)
8 Race.Multirace Two or more races (%)
9 Race.Hispanic Hispanic or Latino (%)

Education (Baseline) Edu.LessHighSchool Less than high school graduate (%)
10 Edu.HighSchool High school graduate (includes equivalency) (%)
11 Edu.College Some college or associate’s degree (%)
12 Edu.Bachelor Bachelor’s degree (%)
13 Edu.Graduate Graduate or professional degree (%)
14 Foreign NonCitizen Not a U.S. citizen (%)
15 SpeakForeign People speaking other language (%)
16 Income NoIncome No income population (%)
17 IncomePerCapita Per capita income in the past 12 months
18 GiniIndex Gini Index

Poverty (Baseline) Poverty.Below1 Below 100 percent of the poverty level (%)
19 Poverty.Between1and1.5 between 100 and 149 percent of the poverty level (%)
20 Poverty.Above1.5 At or above 150 percent of the poverty level (%)

Mobility (Baseline) Mob.SameHouse Live in same house 1 year ago (%)
21 Mob.SameCounty Moved within same county (%)
22 Mob.SameState Moved from different county within same state (%)
23 Mob.DiffState Moved from different state (%)
24 Mob.Abroad Moved from abroad (%)
25 Transportation Trans.Car Transportation to work by car, truck, or van (%)
26 Trans.Public Transportation to work by public transportation (ex-

cluding taxicab) (%)
27 Trans.Bicycle Transportation to work by bicycle (%)
28 Household NoEarningHousehold No earnings households (%)
29 SalaryHousehold Households with wage or salary income (%)
30 Employment TotalLaborForce Labor force (%)
31 Unemployment Unemployed rate (%)
32 WorkHours Mean usual hours worked in the past 12 months for

workers from 16 to 64 years
33 Employ.MedianAge Median age for workers
34 House HouseUnits House units per person
35 MedianHouseValue Median house value (dollars)
36 Others Veteran Veteran (%)
37 Insurance One or more health insurance items allocated (%)
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Table 2.3: Mean performance (standard deviation) of RSVC and TS-SCC for variable selection
and coefficient estimation for the voting results of the 2016 and 2020 elections in 100 times of
random splitting.

Metric
2016 2020

RSVC TS-SCC RSVC TS-SCC

#Selected Variables 25.83 34.80 23.99 35.56
(6.81) (1.03) (5.88) (0.59)

PE 0.0630 0.0674 0.0581 0.0630
(0.0073) (0.0052) (0.0056) (0.0053)

To allow for one-to-one comparisons of the estimated coefficients from 2016 to 2020, we build

another SCC model for each election using the union set of the variables selected from two elec-

tions in the following way: We first build a RSVC model for each method with all counties and

find that 19 variables are selected for the 2016 election, and 20 variables are selected for the 2020

election. Among them, 16 of the variables are selected in both election samples. Then, there are 23

variables plus the intercept term included in the union set of the selected variables of two RSVC

models. Finally, a SCC model is built on this union set for each election. Table 2.4 summarizes the

range of coefficients of different variables for two election samples. The values of coefficients are

adjusted back to the original data scales. There are several noticeable patterns in the results. First,

10 of the 23 variables have spatially varying coefficient effects in both elections. This implies that

models restricting these covariates to a single common parameter are mis-specified. Second, we

can see that for many of the variables, the range of the varying coefficients does not change much

between the two elections. For example, the coefficient of Race.White is between -0.81 and -0.5

for the 2016 election and is between -0.83 and -0.51 for the 2020 election. However, the coeffi-

cients for some variables have a noticeable shift. For instance, the coefficient for SpeakForeign

in the 2020 election is much smaller than in the 2016 election. This indicates that percentage of

foreign language speakers in a county was less influential in determining vote share in 2020 than

in 2016, and is consistent with President county-level results showing President Trump somewhat

surprisingly winning higher vote shares in 2020 than 2016 in places like Miami-Dade county in
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Table 2.4: Range of estimated coefficients in the SCC model of 2016 and 2020 elections with 23
variables selected by RSVC.

Variable 2016 2020 Variable 2016 2020

Intercept 40.84 40.97 Edu.Graduate 1.45 ∼ 1.49 1.50 ∼ 1.69
Ln_Population 1.45 ∼ 1.91 1.38 ∼ 1.99 SpeakForeign 1.29 ∼ 2.43 0.63
Female 0.07 0.11 GiniIndex -0.10 ∼ 0.06 -0.18 ∼ -0.03
Race.White -0.81 ∼ -0.50 -0.83 ∼ -0.51 Poverty.Above1.5 -0.23 ∼ -0.21 -0.28 ∼ -0.23
Race.AmIndian -0.11 -0.14 Mob.SameCounty -0.34 ∼ -0.16 -0.18 ∼ -0.14
Race.Hawaiian 1.28 1.41 Trans.Public 0.26 -0.16
Race.OtherRace -0.93 -0.88 ∼ -0.81 Trans.Bicycle 3.10 3.92
Race.Multirace -0.80 ∼ -0.63 -0.71 ∼ -0.65 SalaryHousehold -0.29 ∼ -0.27 -0.29 ∼ -0.15
Race.Hispanic 0.51 ∼ 0.54 0.47 TotalLaborForce 0.65 ∼ 0.78 0.67
Edu.HighSchool 0.33 ∼ 0.45 0.28 Unemployment 0.26 0.11
Edu.College 0.24 ∼ 0.53 0.36 ∼ 0.47 WorkHours -0.02 ∼ -0.01 -0.01
Edu.Bachelor 0.58 ∼ 0.83 0.58 ∼ 1.07 Ln_HouseUnits -0.24 1.84

south Florida and the Rio Grande Valley in Texas, both of which have high concentrations of

Spanish-speaking citizens.

To better represent the spatially clustered patterns of these covariate effects, we plot the results

for several variables in Figure 2.2. (The counties rendered in white have missing values in the

covariates and are excluded from our study.) In the first two rows of Figure 2.2, we see how the

effects of Race.White and GiniIndex (a measure of income inequality) vary over space in 2016 and

2020. In both elections, an increase in the percentage of white residents is negatively correlated

with Democratic across the country; however, these effects are stronger in the South. A similar

pattern holds for GiniIndex, with inequality having an larger negative effect in the southern United

States in both elections. Interestingly, the range of the coefficient in 2016 crosses zero, with all

non-Southern areas indicating a small positive effect. As a consequence, researchers using mean

coefficients (such as in ordinary least squares) would risk both neglecting this heterogeneity and

falsely determining an effect that is not truly zero to be zero.

While the spatial patterns for Race.White and GiniIndex are relatively stable over time in the

2016 and 2020 elections, there are covariates that exhibit different patterns across the two elections.

For example, in the third row of Figure 2.2, we plot the effects of Poverty.Above1.5 – the percent
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Figure 2.2: Estimated coefficients for Race.White, GiniIndex, and Poverty.Above.1.5 in the 2016
and 2020 elections.
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of population that are at or above 150 percent of the poverty level – and observe a noticeable differ-

ence between 2016 and 2020. In 2016, the effect of Poverty.Above1.5 was negative (i.e., predicted

greater vote share for the Republican candidate) and relatively stable, with only a slightly greater

effect in parts of the Southwest and West Coast. By the 2020 election, however, both the magni-

tude of the effect was greater, and there was also substantially more variation. Specifically, this

measure of relative wealth was more likely to predict Republican support in counties in the South

and the Northeast. Cross-election differences in these coefficient effects may indicate areas for

further research, as researchers may be interested in better understanding why some characteristics

were more or less influential in certain elections.

2.7 Discussion

This chapter proposes a new spatially varying coefficient regression model, called the RSVC

model, to select important variables and estimate the spatially clustered coefficients simultane-

ously. By applying RSVC to the the county-level voting data of 2016 and 2020 U.S. presidential

elections, we find that the cluster patterns are stable for some covariates across elections and can

also differ meaningfully for other covariates.

Moving forward, our RSVC model could be further refined in several ways. First, RSVC in-

corporates the spatial information by using chain graphs derived from the original graph, which

contributes to its fast computation but sacrifices some statistical efficiency due to the loss of in-

formation from the original graph. Second, the regularization term of RSVC puts constraints on

the size of the coefficients, and hence the results can be sensitive to the way of standardization of

covariates. Third, the RSVC estimator does not come with an uncertainty measure that makes it

hard for statistical inference, a common issue shared by regularization based approaches. We will

investigate these research topics in future work.

RSVC could also be applied and extended to many other statistical contexts and practical prob-

lems. One could also easily extend RSVC to the variable selection problems in non-Gaussian

outcomes, and multivariate regression models with spatially clustered coefficients. The algorithm

and theoretical results for these extensions can be derived following a similar way as in this chap-
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ter. Moreover, the regularization term in RSVC has an additive form and is adaptable to additional

restrictions on the structure of varying coefficients. For example, in the analysis of U.S. presiden-

tial election, if a subset of covariates are assumed to only affect a group of states, that is, a common

sparsity structure is assumed for all counties within each state, we could add the additional group

sparsity penalty to the regularization term to pursue the selection of states.

Finally, RSVC only requires a graph to incorporate the relational information among obser-

vations, and thus its usage is not restricted to the spatial problem. For example, in social media

systems, companies seek to predict the individuals’ use intention of an APP such as the mobile

payment system [41], wheres the behaviors of different groups of users are different. Affiliated by

the social network constructed via the social interactions of users, RSVC could be used to cluster

users across the social network and select the important covariates for prediction. Another example

is to study the functional relationship between genes in single-cell RNA sequencing data. Cells

included in the dataset are always heterogeneous and belong to different cell types. For different

cell types, the relationship between the target gene and other genes varies a lot [42]. Fortunately,

since the process of cell differentiation is continuous, the gene expression levels of different cells

usually locate on a continuous low-dimensional manifold in high dimensional space, and cells with

the same subtype are near on the manifold. We can construct a neighborhood graph of cells on this

manifold to reflect the local structure of cells, and then use RSVC to find cell clusters and the

relevant gene to the target gene simultaneously.

2.8 Proof

2.8.1 Proof of Theorem 1

Proof. Use S = (J ; I1, · · · , Ip) to denote a collection of the index sets that represents a support

space of B. We give a decomposition of PC+V (B) based on S:
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PC+V (B) =PS(B) + PSC (B) +
λ2τ

2
‖B‖2

2

PS(B) =
∑
j∈J

[
λ1

∥∥WIj ,jHIj ,jBj

∥∥
1

+ λ2uj ‖Bj‖2

]
PSC (B) =

∑
j∈J

λ1

∥∥∥WICj ,jHICj ,jBj

∥∥∥
1
+
∑
j∈JC

[
λ1 ‖WjHjBj‖1+λ2uj ‖Bj‖2

]
.

We have

0 ≥ L(B̂)− L(B∗) =
1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2
− 1

n
ε>X̃vec(B̂−B∗)

−
[
PC+V (B∗)− PC+V (B̂)

]
.

(2.13)

where ε = (ε1, . . . , εn)T . Set V = B̂−B∗. For the third term in the right side of Eq. (2.13):

PC+V (B∗)− PC+V (B̂)

=
[
PS(B∗)− PS(B̂)

]
+
[
PSC (B∗)− PSC (B̂)

]
+
λ2τ

2

[
‖B∗‖2

F − ‖B̂‖
2
F

]
=
∑
j∈J

[
λ1

(
‖WIj ,jHIj ,jB

∗
j‖1−‖WIj ,jHIj ,jB̂j‖1

)
+ λ2uj

(∥∥B∗j∥∥2
− ‖B̂j‖2

)]
+
[
0− PSC (B̂)

]
+
λ2τ

2

[
−‖B∗ − B̂‖2

F + 2tr
{

(B∗)T (B∗ − B̂)
}]

≤
∑
j∈J

[
λ1

∥∥∥WIj ,jHIj ,j(B
∗
j − B̂j)

∥∥∥
1

+ λ2uj

∥∥∥B∗j − B̂j

∥∥∥
2

]
− PSC (V) +

λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F
∥∥∥B̂−B∗

∥∥∥
F

]
=PS(V)− PSC (V) +

λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]
.

(2.14)

The inequality in Eq. (2.14) comes from the triangle inequality of the norm and the Cauchy-

Schwarz inequality.
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For the second term in the right side of Eq. (2.13):

1

n
ε>X̃vec(B̂−B∗) =

1

n
ε>

p∑
j=1

diag(Xj)(B̂j −B∗j)

=
1

n
ε>
[∑
j∈J

diag(Xj)(B̂j −B∗j) +
∑
j∈JC

diag(Xj)(B̂j −B∗j)
]

=
1

n
ε>
[∑
j∈J

diag(Xj)H̃
−1
j H̃j(B̂j −B∗j) +

∑
j∈JC

diag(Xj)u
−1
j uj(B̂j −B∗j)

]
.

Since H̃−1
j = (H−j ,1

−
j ), then H̃−1

j H̃j = H−j Hj + 1−j 1T/n, and 1T1−j /n = 1.

1

n
ε>X̃vec(B̂−B∗)

=
1

n
ε>
[∑
j∈J

diag(Xj)(H
−
j Hj + 1−j 1T/n)(B̂j −B∗j) +

∑
j∈JC

diag(Xj)u
−1
j uj(B̂j −B∗j)

]
=

1

n
ε>
[∑
j∈J

diag(Xj)(H
−
j W−1

j WjHj)(B̂j −B∗j) +
∑
j∈J

diag(Xj)u
−1
j uj(1

−
j 1T/n)(B̂j −B∗j)

+
∑
j∈JC

diag(Xj)u
−1
j uj(B̂j −B∗j)

]
.

Combining with λ1
2
> maxj∈J

∥∥ 1
n
εTdiag(Xj)H

−
j W−1

j

∥∥
∞ and λ2

2
√
n
> maxi,j | 1nεiXiju

−1
j |, we

have:

1

n
ε>X̃vec(B̂−B∗)

≤λ1

2

∑
j∈J

‖WjHj(B̂j −B∗j)‖1 +
λ2

2
√
n

∑
j∈J

uj‖B̂j −B∗j‖1

+
λ2

2
√
n

∑
j∈JC

uj‖B̂j −B∗j‖1

=
λ1

2

∑
j∈J

‖WjHj(B̂j −B∗j)‖1 +
λ2

2
√
n

p∑
j=1

uj‖B̂j −B∗j‖1

≤λ1

2

∑
j∈J

‖WjHj(B̂j −B∗j)‖1 +
λ2

2

p∑
j=1

uj‖B̂j −B∗j‖2

≤1

2
PS(V) +

1

2
PSC (V).

(2.15)
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Combining Eq. (2.13), Eq. (2.14), and Eq. (2.15), we have:

1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2
≤3

2
PS(V)− 1

2
PSC (V)

+
λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
] (2.16)

Omit the term −1
2
PSC (V) on the right hand side of (2.16), we have:

1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2

≤3

2

∑
j∈J

[
λ1

∥∥WIj ,jHIj ,jVj

∥∥
1

+ λ2uj ‖Vj‖2

]
+
λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]

≤3

2

∑
j∈J

[
λ1

∥∥WIj ,j
∥∥
∞

∥∥HIj ,jVj

∥∥
1

+ λ2uj ‖Vj‖2

]
+
λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]

≤3

2

∑
j∈J

[
2λ1

√
|Ij|

∥∥WIj ,j
∥∥
∞ ‖Vj‖2 + λ2uj ‖Vj‖2

]
+
λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]

≤3λ1

√
J (max

j∈J

√
|Ij|

∥∥WIj ,j
∥∥
∞) ‖V‖F +

3λ2

√
J

2
(max
j∈J
|uj|) ‖V‖F

+
λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]

≤3
[
λ1

√
J (max

j∈J

√
|Ij|

∥∥WIj ,j
∥∥
∞) + λ2

√
J (max

j∈J
|uj|) + λ2τ ‖B∗‖F

]
‖V‖F −

λ2τ

2
‖V‖2

F .

(2.17)

From (2.16), we can see that:

0 ≤ 3

2
PS(V)− 1

2
PSC (V) +

λ2τ

2

[
−‖V‖2

F + 2 ‖B∗‖F ‖V‖F
]

which implies V ∈ C(B∗;λ1, λ2, τ) with C(B∗;λ1, λ2, τ) defined in Assumption 1. Then under

Assumption 1, we have that γ
2

∥∥∥B̂−B∗
∥∥∥2

F
≤ 1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2
. After some derivations, we

get

∥∥∥B̂−B∗
∥∥∥
F
≤

6(λ1

√
J maxj∈J

√
|Ij|

∥∥WIj ,j
∥∥
∞ + λ2

√
J maxj∈J |uj|+ λ2τ ‖B∗‖F )

γ + λ2τ
(2.18)
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We plug Eq. (2.18) into Eq. (2.17) and obtain:

1

2n

∥∥∥X̃vec(B̂−B∗)
∥∥∥2

2
≤

18(λ1

√
J maxj∈J

√
|Ij |

∥∥WIj ,j
∥∥
∞ + λ2

√
J maxj∈J |uj |+ λ2τ ‖B∗‖F )2

γ + λ2τ
.

To consider the converge rate of Eq. (2.18), we study the rate conditions of λ1 and λ2 in The-

orem 1. First, we introduce the well-known result of the maximum of a series of sub-Gaussian

random variables in Lemma 1.

Lemma 1. If ε1, . . . , εn are sub-Gaussian random variables that P (εi ≥ t) ≤ exp(− t2

2σ2
i
) .

ε1, . . . , εn do not need to be independent. We denote σ2 = maxi(σ
2
i ) and there exists C that

P (max
i
|εi| ≥ t) ≤ Cn exp(− t2

2σ2
).

By Lemma 1 and Assumption 2, we obtain that with probability going to 1,

max
i,j
| 1
n
εiXiju

−1
j | ≤

C2

n
max
i
|εi| = O(C2

√
log(n)

n
σ),

where C2 = maxj ‖u−1
j Xj‖∞. As a result, λ2 should have a rate of at least O(C2

√
log(n)/n) as

n→∞.

For λ1, we have:

max
j∈J

∥∥∥∥ 1

n
εTdiag(Xj)H

−
j W−1

j

∥∥∥∥
∞
≤ C1

n
max
j∈J ,k

|εT (H−j )k|,

where (H−j )k is the kth column of H−j , and C1 = maxj∈J ‖Xj‖∞maxj∈J ‖W−1
j ‖∞. By the

definition of H−j , it is easy to check by linear algebra that ‖H−j ‖∞ ≤ 1 and ‖(H−j )k‖2
2 ≤ n . Thus,

by the general Hoeffding’s inequality [43], there exists a constant C such that

P (|εT (H−j )k| ≥ t) ≤ C exp(− t2

σ2‖(H−j )k‖2
2

) ≤ C exp(− t2

σ2n
) (2.19)
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Then each εT (H−j )k is also a sub-Gaussian random variables. Combining Lemma 1, we obtain:

P (max
j∈J ,k

|εT (H−j )k| ≥ t) ≤ C(n− 1)|J | exp(− t2

2σ2n
),

and

max
j∈J

∥∥∥∥ 1

n
εTdiag(Xj)H

−
j W−1

j

∥∥∥∥
∞

= O(C1

√
log(n|J |)/n).

λ1 should have a rate of at least O(C1

√
log(n|J |)/n) as n→∞.

Corollary 1 can be directly derived by Theorem 1 and the rate of λ1 and λ2.

To consider the effects of adaptive learning, if W−1
ICj ,j

= O(
√

log(n)/n) for each j ∈ J , we

still use the general Hoeffding’s inequality but include the weight W−1
k,j for k ∈ ICj :

P (|εT (H−j )kW
−1
k,j | ≥ t) ≤ C exp(− t2

σ2‖(H−j )kW
−1
k,j‖2

2

) ≤ C∗ exp(− t2

σ2 log(n)
).

For the other k ∈ ICj , Eq. (2.19) still holds, and then we can derive that λ1 should have a rate of at

least O(C1n
−1/2 max

(
log(|J |maxj∈J |Ij|), log(n) log(n|J |))/n

)−1/2. When n is large enough,

this rate becomes O(C1

√
log(|J |maxj∈J |Ij|)/n).

2.8.2 Proof of Theorem 2

Proof. We begin by introducing some notations. UseMj to denote the MST of an original graph

G with |bini
i1,j
− bini

i2,j
| as the distance between (i1, i2) ∈ E for the j th variable, that is,

Mj = arg min
M∈T

∑
(i1,i2)∈M

|bini
i1,j
− bini

i2,j
|,

where T is the set of all spanning trees of G. We call the edges that connect vertices from two

different clusters as the bridges for clusters. For notational simplicity, we drop the index j from

Mj and some other notations depending on j in the remaining proof as long as the context is

subject to no confusion. We denote B(G) as the set of bridges in G for the true clusters of B∗j , and
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denote Q(M) =
∑

(i1,i2)∈M |bini
i1,j
− bini

i2,j
|.

Now we decompose T by the number of bridges included in each spanning tree. We define:

Tr = {M ∈ T : |B(M)| = r}.

It is easy to see that Tr = ∅ for r < Rj − 1 and r ≥ n. Also, {Tr} are disjoint and
⋃
r Tr = T .

We first prove thatM ∈ TRj−1 with probability tending to 1 as n → ∞, which depends on the

following lemma:

Lemma 2. For eachM ∈ Tr with Rj ≤ r < n, there existsM′ ∈ Tr−1 thatM′ can be formed

fromM by deleting a bridge in B(M) and then adding an edge (not bridge) in E \ B(G).

Proof of Lemma 2: Select an arbitrary bridge (s, t) in B(M). Since M is a MST, when

deleting (s, t) fromM,M will split into two sub-graphsMs andMt. There are now two cases

to examine. In the first case,Mt includes vertices that in the same cluster of s; by the assumption

that the sub-graph of the vertices in the same cluster is connected in G, we can find a vertex i in

Mt and a vertex j inMs that both i and j comes from the cluster of s and (i, j) ∈ E \ B(G), By

adding (i, j), we obtain a new spanning tree with the number of bridges r − 1, which isM′. A

similar conclusion holds when Ms includes vertices that in the same cluster of t. In the second

case,Mt does not include observations of that in the same cluster of s, andMs does not include

observations that in the same cluster of t. We could not findM′ ∈ Tr−1 by adding an edge.

Now we prove that there is at least one bridge in B(M) satisfying the first case when Rj ≤

r < n. If there is no bridge satisfying the first case, then when we delete all the r bridges inM, we

can obtain r+ 1 disjoint sub-graphs, where the vertices of different sub-graphs are not in the same

clusters. Thus, there will be at least r + 1 > Rj clusters among observations, which contradicts

to the fact that the true number of clusters is Rj . As a result, for anyM ∈ Tr with Rj ≤ r < n,

we could find a bridge (s, t) that satisfies the first case and then construct a MSTM′ ∈ Tr−1. This

ends the proof of Lemma 2. With M and M′ defined in Lemma 2, we consider the difference
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between Q(M) and Q(M′). Under the true coefficient matrix B∗, define:

η = min{|b∗i1,j − b
∗
i2,j
| : (i1, i2) ∈ B(G)} (2.20)

It is obvious that η should be larger than 0 otherwise two clusters will share the same value of

coefficient and merge together. For (i1, i2) ∈ E \ B(G), |b∗i1,j − b
∗
i2,j
| = 0.

Since Bini is a consistent estimator, which means that for any σ and each bini
ij , |bini

ij −b∗ij| < σ with

probability tending to 1 as n→∞. Select σ < η/4.Then for any (i1, i2) ∈ E \ B(G) and (i3, i4) ∈

G, |bini
i1,j
− bini

i2,j
| − |bini

i3,j
− bini

i4,j
| ≥ η − 4σ > 0. As a result, Q(M)−Q(M′) > 0 with probability

tending to 1 as n → ∞. Thus, arg minM∈Tr−1 Q(M) ≤ Q(M′) < arg minM∈Tr Q(M) for

Rj ≤ r < n, andM∈ TRj−1 is proved.

The last thing we need to prove is that |Ij| = |B(Gj)| ≤ 2|B(M)| = 2(Rj − 1), where Gj is

the variable-specific chain graph constructed by the DFS algorithm ofM with a random starting

vertex. This result can be obtained by directly applying Lemma1 Eq. (16) of [28].
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3. STRUCTURED REGULARIZED MATRIX DECOMPOSITION BASED BICLUSTERING

3.1 Introduction

Biclustering is a technique that investigates the structure of a data matrix and discovers the

latent subgroups of rows and their associated columns that are strongly related to each other. These

latent subgroups are called biclusters. In many applications, samples are represented by rows (or

columns) of the matrix, and correspondingly features are represented by columns (or rows). In

the conventional clustering problem, samples are grouped as clusters based on the entire feature

set, whereas in biclustering, the characteristics of samples from each cluster are well-explained

by only a distinct subset of features. For example, in the study of single-cell RNA sequencing

data, researchers try to cluster cells according to their gene expression levels. However, different

subtypes of cells are related to different groups of genes, and the critical genes of a particular

subtype could barely provide any information for other subtypes. Meanwhile, most genes are not

useful for identifying the cell subtype and are redundant for the study. Biclustering can be useful

to cluster cells and discover the associated critical genes simultaneously.

The idea of relating groups of samples and features is first introduced by [44]. The conventional

approaches of biclustering are mainly built on the following four strategies: row and column clus-

tering combination [45, 46], greedy search [47, 48, 49], divide-and-conquer [50], and exhaustive

bicluster enumeration [51]. [52] provides a survey of conventional biclustering methods.

In spite of all these developments, the biclustering problem can still be challenging to solve,

since the complex structure of a data matrix may lead to various layouts of biclusters that are hard

to be revealed by existing methods. For example, Figure 3.1 includes four typical layouts of three

biclusters. The rows and columns in the same cluster are aligned together (e.g., after a permutation

of rows and columns) and form a grey block. The blue parts of the blocks indicate the overlapping

between different biclusters. In the most complicated layout shown in Figure 3.1d, any pair of
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(a) (b) (c) (d)

Figure 3.1: Different layouts of biclusters in the data matrix: (a) The simplest case: Different
biclusters are totally separated and do not share any rows or columns. (b) The adjacent biclusters
overlap with each other and share a part of entries. (c) Different biclusters could contain exactly the
same group of rows but entirely different groups of columns. (d) Arbitrary overlapping is allowed
among multiple biclusters, which is one of the most complicated cases. In (c) and (d), some rows
or columns are not included in any bicluster.

two biclusters can overlap, and many rows and columns are not included in any bicluster. Most of

the existing approaches are designed to fit a specific layout of biclusters e.g., Figure 3.1a to 3.1c,

and they encounter difficulties when facing a complicated case such as Figure 3.1d. In real-world

applications, one does not know the layout of biclusters in the data matrix in advance, motivating

us to develop a new method to handle complex layouts of biclusters.

The purpose of this chapter is to develop a new structured regularized matrix decomposition

based biclustering method that is suitable to deal with the complex structure of data matrix such as

in Figure 3.1d. Particularly, our method allows the overlapping of multiple biclusters, and it can

effectively screen out the rows and columns that are not involved in any bicluster. When designing

our method, we treat the raw data matrix as the summation of several latent sparse matrices, each

of which reflects the effects of a distinct bicluster to the data matrix [53]. From this view, we

transform the biclustering problem into a matrix decomposition problem, which in turn is cast into

a least-squares optimization problem with a properly defined sparsity-inducing penalty called the

exclusive Lasso penalty. Because of the novel use of this penalty in biclustering problems, we refer

to our method as BiClustering with the Exclusive Lasso penalty (BCEL).

BCEL can be considered as a substantial improvement over several existing SVD based biclus-

tering methods [54, 55, 56, 57, 58]. Compared with existing methods, BCEL has the following
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advantageous features:

• While most SVD based methods extract the biclusters in a sequential manner, BCEL simul-

taneously identifies multiple biclusters. The simultaneous approach does not suffer from the

error accumulation problem encountered by the sequential approach, leading to improved

performance.

• The exclusive Lasso penalty respects the grouping structure of the biclusters, so the com-

petition of rows and columns being included in biclusters is done separately within each

cluster.

• The bicluster membership is decided by a subsampling based procedure called stability se-

lection. The results from this procedure are more stable than directly using the outputs from

the penalized least-squares problem.

The effectiveness of BCEL has been demonstrated by a simulation study that compares it with

several existing biclustering methods.

Here is an outline of the rest of this chapter. In Section 3.2, we present an overview of the

existing structured regularized matrix decomposition based biclustering methods through a unified

framework. Section 3.3 develops our proposed method, including formulation of the optimization

problem, derivation of a computational algorithm, handling of missing data, and selection of tuning

parameters. A simulation study is presented in Section 3.4. Section 3.5 applies the new method on

a single-cell RNA sequencing dataset and compares it with other methods.

3.2 Structured Regularized Matrix Decomposition

3.2.1 Unified Framework

We present a unified formulation of biclustering that uses structured regularized matrix decom-

position and show that this formulation synthesizes various existing biclustering methods. Let X ∈

41



Rn×p be a n×p data matrix. We model X as the summation of r matrices A1,A2, . . . ,Ar ∈ Rn×p

and an error matrix E ∈ Rn×p:

X =
r∑

k=1

Ak + E, (3.1)

where each Ak, representing the effects of a bicluster, is a sparse matrix with non-zero entries

concentrating on a subgroup of rows and columns, and the error matrix E has entries that can be

assumed to be i.i.d. random samples from a zero-mean distribution. After properly aligning the

rows and columns of Ak, the non-zero entries of Ak can form a block like the grey one in Figure

3.1. We obtain different biclustering models by making different assumptions on the structure of

each Ak. Figure 3.2 gives three commonly used structures.

(a) (b) (c)

Figure 3.2: Different structures of the non-zero entries in Ak: (a) Constant structure: The effect
of a bicluster is the same for all its entries. (b) Additive structure: The effect of a bicluster on its
entries is the summation of the row effect and the column effect. (c) Multiplicative structure: The
effect of a bicluster on its entries is the multiplication of the row effect and the column effect.

Using model Eq. (3.1) as guidance, we can develop a biclustering method by solving the fol-

lowing optimization problem:

min
Ak∈G(Ak),k=1,...,r

‖X−
r∑

k=1

Ak‖2
F +

r∑
k=1

F (Ak), (3.2)

where F (Ak) is a penalty function on Ak to encourage it to have a specified property, and G(Ak)
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is the support of Ak.

Figure 3.3 depicts two different ways of forming model Eq. (3.1). In Figure 3.3a, X is assumed

to have a checkerboard structure after rearranging its rows and columns. Each Ai consists of a

block of X with non-zero entries, which are assumed to be a constant. The corresponding model,

called the block model, has the advantage of efficiently representing the structure in Figure 3.1c,

but may have difficulties in representing overlapping biclusters. In Figure 3.3b, each Ak = ukv
T
k

is a rank-1 matrix, where uk ∈ Rn and vk ∈ Rp are two sparse vectors whose none zero entries

represent respectively the selection of rows and columns for the kth bicluster. Defining U =

(u1,u2, . . . ,ur) ∈ Rn×r and V = (v1,v2, . . . ,vr) ∈ Rp×r, we can rewrite model Eq. (3.1) as

X =
r∑

k=1

ukv
T
k + E = UVT + E. (3.3)

This is called a multiplicative model.

In the following subsections, we give an overview of existing matrix decomposition based

biclustering methods and show that many of them are special cases of either the block model or

the multiplicative model. A summary of the main methods is shown in Table 3.1.

Table 3.1: Summary of structured regularized matrix decomposition based biclustering methods.

Method Model Based Structure Seq/Simul Allow Overlapping

sparseBC Block Constant Simul No
OECMBS Block Constant Simul No
COBRA Block Constant Simul No
SSVD SVD Multi Seq Yes
RoBiC SVD Multi Seq Yes
SRRR SVD Multi Simul Yes
nmfsc NMF Multi Simul Yes
Plaid - Addi Seq Yes
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(a) Block model

(b) Multiplicative model

Figure 3.3: Examples of matrix decomposition based biclustering models.

3.2.2 Block Models

Three existing methods fall in the category of block models. They are “sparse biclustering of

transposable data" (sparseBC) [59], “optimal estimation and completion of matrices with biclus-

tering structures" (OECMBS) [60], and “Convex BiclusteRing Algorithm" (COBRA) [61].

The sparseBC method [59] assumes that the matrix elements are normally distributed with a

bicluster-specific mean term and common variance. Thus it transforms the biclustering problem to

a regularized log-likelihood maximization problem. The `1-norm penalty is applied to the means

of the biclusters in order to obtain sparse and interpretable biclusters. Denoting C1, . . . , CK and

D1, . . . ,DR as the partitions of rows and columns respectively corresponding to the biclusters, the

sparseBC solves the following optimization problem:

min
C1,...,CK ,D1,...,DR,µ∈RK×R

1

2

K∑
k=1

R∑
r=1

∑
i∈Ck

∑
j∈Dr

(Xij − µkr)2 + λ

K∑
k=1

R∑
r=1

|µkr|,

where µkr denote the mean parameter for the block/bicluster corresponding to rows in Ck and
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columns in Dr. The algorithm of sparseBC solves the above problem by iteratively updating the

partitions of rows and columns and estimating the block mean by soft-thresholding the sample

mean of the block. OEMCBS [60] is essentially the same model as sparseBC but allowing missing

values. To achieve needed regularization, OEMCBS imposes a bound for the means of the biclus-

ters instead of using the `1-norm penalty in sparseBC. Both sparseBC and OEMCBS use a descent

algorithm to solve a non-convex problem, and thus there is no guarantee convergence to global

optimal.

COBRA [61] considers a convex objective function to solve the biclustering problem. By

penalizing the differences between rows and between columns in the objective function, similar

rows and columns tend to merge to create clusters. Specifically, COBRA solves the following

convex optimization problem:

min
X̃
||X− X̃||2F + λ{ΩW(X̃) + ΩW̃(X̃T )},

where W = (wij) and W̃ = (w̃ij) are weight matrices, ΩW(X̃) =
∑

i<j wij||X̃·,i − X̃·,j|| is

a weighted sum of all pairwise distances of the columns, and ΩW̃(X̃T ) is a weighted sum of all

pairwise distances of the rows. Compared with sparseBC and OEMCBS, COBRA has two main

advantages. Firstly, it is a convex problem that has a unique global minimizer, which can be

obtained by applying the alternating direction method of multipliers (ADMM). Secondly, COBRA

provides a solution path of the partition of rows and columns. As λ increases gradually from a

small to a big value, the existing clusters of rows and columns will merge gradually as well and

form subgroups of rows and columns with different sizes. The limitation of COBRA is that the

ADMM algorithm is computationally slow and not scalable to large matrices.

3.2.3 SVD based Methods

The mathematical basis of several existing SVD based biclustering methods is the multiplica-

tive model Eq. (3.3). These methods include “Rank-one Biclusters" (RoBiC) [54], “Sparse SVD"

(SSVD) [55], “sparse reduced rank regression" (SRRR) [56], and so on.
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RoBiC [54] finds each bicluster using a two-step procedure. In the first step, it computes the

best rank-one approximation uvT of the matrix X by using SVD. In the second step, RoBiC sorts

the elements of u and fits a hinge function to them to identify the rows that belong to the bicluster,

and do the same operation on v to identify the columns that belong to the bicluster. Let usel denote

the vector obtained by replacing with zero those elements of u that do not belong to the bicluster,

and define vsel similarly. The residual matrix Xres = X − uselv
T
sel removes the effect of the

identified bicluster for the data matrix X. To find other biclusters, the two-steps can be repeated

sequentially on the residual matrices after removing the effect of the bicluster found in the previous

iteration. RoBiC does not directly solve an optimization problem and can not be automated.

SSVD [55] also finds the biclusters in a sequential manner. To find each bicluster, SSVD solves

the following optimization problem:

min
s,u,v,‖u‖2=‖v‖2=1

||X− suvT ||2F + sλu

n∑
i=1

w1,i|ui|+ sλv

p∑
j=1

w2,j|vj|, (3.4)

where s is the scale parameter, λu and λv are non-negative penalty parameters, and w1,i and w2,j

are suitably chosen weights as used in the adaptive Lasso. After each bicluster is found, its effect

can be removed from the data matrix similarly as in RoBiC to form the new data matrix. Then,

the optimization problem Eq. (3.4) is solved to obtain the next bicluster. SSVD solves Eq. (3.4)

through an iterative algorithm. It starts from the first pair of singular vectors obtained by SVD. In

each iteration, v and s are updated with u fixed at the value from the previous iteration, and then

u and s are updated with v fixed at its most recent update. Later, [57] develops a stable version of

SSVD called S4VD by incorporating the stability selection, a subsampling-based variable selection

technique.

There are also several methods related to SSVD. [58] proposes “Penalized Matrix Decom-

position" (PMD), which is similar to SSVD. Instead of adding penalty terms, PMD solves the

biclustering problem via adding constraints on the support of u and v. [62] solves biclustering

problem of binary matrices by changing the square loss function in Eq. (3.4) to the negative of a
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Bernoulli log-likelihood function.

SRRR [56] is designed for sparse reduced-rank regressions and, as a special application, can

be used for solving the biclustering problem. When specialized to finding one bicluster in the data

matrix X, it solves the following optimization problem

min
s,u,v,‖u‖2=‖v‖2=1

‖X− suvT‖2
F + λ|s|

n∑
i=1

p∑
j=1

wi,j|ui| |vj|, (3.5)

where wi,j are suitably defined weights. Because of the penalty term, the optimal u and v are

sparse vectors, whose non-zero entries correspond to rows and columns included in a bicluster.

Note that Eq. (3.5) is a similar penalized optimization formulation as Eq. (3.4) but with a differ-

ent penalty function. Instead of sequentially identifying the biclusters, [56] develops an iterative

exclusive extraction algorithm to extract all biclusters in parallel. Specifically, to identify r biclus-

ters, we consider a multiplicative model as shown in Eq. (3.3). One initially starts from a rank-r

approximation of X, denoted as

X̃(0) =
r∑

k=1

X̃
(0)
k =

r∑
k=1

s
(0)
k u

(0)
k v

(0)
k ,

then solves the optimization problem Eq. (3.5) with X replaced by X −
∑

k′ 6=k X̃
(0)
k′ to obtain an

update of Xk, k = 1, . . . , r. The r optimization problems can be solved in parallel. These steps

are iterated until convergence is reached.

3.2.4 NMF based Method

The non-negativity constraint of the parameters is common in many applications of bicluster-

ing. “NMF with sparseness constraints" (NMFSC) [63] finds the sparse decomposition of X with

each entry of U and V constrained to be non-negative. To seek the sparsity in the columns of U

and V, they build up a sparseness measurement based on the relationship between the `1 norm and
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the `2 norm. For any vector x ∈ Rn, the sparseness of x is defined as:

S(x) =

√
n− (

∑n
i=1 |xi|)/

√∑n
i=1 x

2
i√

n− 1
. (3.6)

The optimization problem of NMFSC is:

min
U,V
||X−UVT ||, (3.7)

subject to

S(ui) = tu, S(vi) = tv, U ≥ 0, V ≥ 0.

where tu and tv are two tuning parameters, and U ≥ 0 denotes uik ≥ 0 for all i, k, and the

same interpretation is applied to V ≥ 0. Notice that NMFSC is not designed for the biclustering

problem, and thus the constraints on S(x) may not fit the biclustering problem well. We can solve

Eq. (3.7) by iteratively updating U and V through the gradient descent while keeping projecting

each column of U and V to the non-negative space.

3.2.5 Plaid

Plaid [53] is perhaps the first method to use matrix decomposition for biclustering. Plaid as-

sumes that non-zero entries of each Ak in model Eq. (3.1) follow the additive structure θi,j =

αi + βj , where i, j are indices for the row and the column. Similar to SSVD, Plaid sequentially

seeks the latent subgroups and minimizes the following loss function for each bicluster:

LPlaid =
n∑
i=1

p∑
j=1

(Xij − θijρiκj)2,

subject to θij = αi + βj,

(3.8)

where ρi and κj are the binary indicator variables to reflect inclusion of ith row and j th column

in the bicluster, and αi and βj are the effects of ith row and j th column. After each bicluster is

discovered, when minimizing Eq. (3.8) for the next bicluster, Xij are replaced by the residuals
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after removing the effects of the discovered biclusters. The Plaid objective function Eq. (3.8) can

be minimized using an iterative algorithm where each cycle updates in turn the θ values, the ρ

values, and the κ values. During the iteration process, ρi and κj are allowed to have continuous

values as a relaxation, and they are only forced to take 0-1 values in the last few iterations.

Interestingly, the Plaid model can be viewed as a special case of the multiplicative model

Eq. (3.3) where U and V have a specific structure. In fact, by constructing the two matrices:

U =



α1ρ1 ρ1

α2ρ2 ρ2

...
...

αnρn ρn


and V =



κ1 β1κ1

κ2 β2κ2

...
...

κp βpκp


,

we can rewrite Eq. (3.8) into:

LPlaid = ||X−UVT ||2F , (3.9)

which is the least squares criterion for fitting model Eq. (3.3) when U and V are restricted to the

specific forms given above.

3.3 Proposed Method

In the section, we will develop a new biclustering method based on multiplicative matrix de-

composition. Our new method improves over the SVD based methods reviewed in the previous

section by using a novel penalty that induces sparsity on each composition vector of the matrix

decomposition. Our method enjoys the same advantage of allowing overlapping biclusters as other

SVD based methods. Section 3.3.1 formulates the optimization problem for our method. Sec-

tion 3.3.2 presents a computational algorithm. Section 3.3.3 discusses how to handle missing data.

Section 3.3.4 provides a method for tuning parameter selection.

3.3.1 Biclustering with the Squared `1,2-norm Penalty

Consider the multiplicative matrix decomposition model Eq. (3.3), where X is decomposed
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as the summation of r rank-1 matrices ukv
T
k plus an error term. Since nonzero elements of uk

and vk indicate selection of rows or columns of the kth bicluster, sparsity in all pairs of uk and vk

implies a biclustering structure. We minimize the squared reconstruction error ‖X−
∑r

k=1 ukv
T
k ‖2

together with a suitable penalty term that encourages sparsity in each pair of uk and vk, giving the

biclustering structure. Precisely, we minimize the following loss function:

L(U,V) = ||X−UVT ||2F + λ1P1,2(U) + λ2P1,2(V),

P1,2(U) =
r∑

k=1

(
n∑
i=1

|uik|)2, P1,2(V) =
r∑

k=1

(

p∑
j=1

|vjk|)2,
(3.10)

where λ1, λ2 are penalty parameters.

In this formulation, the `1-norm penalty is applied on both uk and vk, i.e., ‖uk‖1 =
∑n

i=1 |uik|,

‖vk‖1 =
∑p

j=1 |vjk|, and the squared `2-norm is used to combine these `1-norms. The penalty

P1,2(·) is called the squared `1,2-norm penalty or the exclusive Lasso penalty in the literature,

which was proposed previously for the multi-task feature selection problem [64]. Because of use

of this penalty, we shall refer to our method as BiClustering with the Exclusive Lasso penalty

(BCEL).

The squared `1,2-norm penalty is a composite penalty that respects the group structure among

the parameters [65]. Particularly, it facilitates element selection within each group. [66] studied the

statistical properties of the penalized least-squares estimator using the squared `1,2 penalty in linear

regression problems. In our loss function Eq. (3.10), the elements in uk or vk, k = 1, . . . , r, are

treated as one group, and application of the `1-norm penalty on uk or vk, k = 1, . . . , r, performs

element selection within each group. Using the squared `2-norm to combine the `1-norms ensures

that the selection competition is within each group. Note that it is not desirable to use the `1-norm

to combine the `1-norms, i.e., to use ‖U‖1 =
∑r

k=1

∑n
i=1 |uik| and ‖V‖1 =

∑r
k=1

∑p
j=1 |vjk| as

the penalty function. When doing this, the group structure in U and V will be lost.

The proposed BCEL has several advantages compared to the matrix decomposition based meth-

ods reviewed in the previous section. First, BCEL discovers multiple biclusters simultaneously,
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while most existing SVD methods are sequential biclustering methods. Although the sequential

methods are easy to implement, the latter biclusters may be highly influenced by the former biclus-

ters since the error accumulates during the algorithm. Therefore these methods may not give good

results in practice. We will show in Section 3.5 that BCEL significantly improves over the clus-

tering performance of SSVD in the analysis of the single-cell RNA sequencing dataset. Second,

BCEL completes parameter selection and estimation in one step and achieves more stable results

than the two-step methods such as RoBiC. Third, as discussed in Section 3.2, BCEL is built on the

multiplicative decomposition model and allows overlapping biclusters. Thus it can outperform the

block decomposition models such as sparseBC when there is overlapping among biclusters. We

shall demonstrate the advantage of BCEL in a comparative study to be presented in Section 3.4.

3.3.2 Algorithm

3.3.2.1 Outline

Since L(U,V) in Eq. (3.10) includes a multiplicative form of two parameter matrices U and

V, L(U,V) is not a convex function of (U,V). However, when fixing V, L(U,V) is a convex

function of U, and when fixing U, L(U,V) is a convex function of V. This suggests an iterative

algorithm that alternately optimizes over U and V.

Specifically, when V is fixed, minimizing L(U,V) is equivalent to:

min
U∈Rn×r

||vec(XT )−DV · vec(UT )||22 + λ1P1,2(U) + cV (3.11)

with

DV =



V 0 · · · 0

0 V · · · 0

...
... . . . ...

0 0 · · · V


∈ Rnp×nr,

and cV is a constant determined only by V. Clearly, (3.11) is a penalized linear regression problem,
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where vec(XT ) is the response vector, DV is the design matrix, vec(UT ) is the coefficient vector

to be estimated, and P1,2(U) is the squared `1,2-norm penalty used in Eq. (3.10). This is a convex

problem that can be efficiently solved.

Likewise, when U is fixed, minimizing L(U,V) becomes:

min
V∈Rp×r

||vec(X)−DU · vec(VT )|22 + λ2P1,2(V) + c′U, (3.12)

where

DU =



U 0 · · · 0

0 U · · · 0

...
... . . . ...

0 0 · · · U


∈ Rnp×pr,

and c′U is a constant only related to U. Eq. (3.12) is a penalized linear regression problem with the

same form as Eq. (3.11) and can be solved in the same way.

The above discussion leads to Algorithm 2, which is an alternating minimization algorithm. It

is easy to see that in each iteration, L(Ut+1,Vt+1) ≤ L(Ut+1,Vt) ≤ L(Ut,Vt). According to

Lemma 3.2 proposed by [67], the accumulation point of the sequence {(Ut,Vt)} generated by the

alternating minimization is a stationary point of the problem, and thus Algorithm 2 can converge

to a stationary point.

We shall discuss next how to solve the penalized regression problems Eq. (3.11) and Eq. (3.12).

Algorithm 2 Alternating Minimization for BCEL

Input: X, r, λ1, λ2, U0 ∈ Rn×r, and V0 ∈ Rp×r.
Iterate until convergence: For t = 0, 1, 2, . . . :

1. Obtain Ut+1 by solving Eq. (3.11) with V fixed at Vt.

2. Obtain Vt+1 by solving Eq. (3.12) with U fixed at Ut+1.

52



3.3.2.2 Regression with the Squared `1,2-norm Penalty

Both Eq. (3.11) and Eq. (3.12) are penalized linear regression problems with the squared `1,2-

norm penalty and can be solved using the same algorithm. To simplify notation, we use the stan-

dard form of the penalized linear regression problem to present our algorithm. Let y ∈ Rn be the

response vector of sample size n, and X ∈ Rn×p be the n× p design matrix corresponding to sam-

ple size n and p features. It is assumed that the p features are pre-classified into r disjoint groups

G1,G2, . . . ,Gr, ∪Gi = {1, 2, . . . , p}, and Gi ∩ Gj = ∅ for any i 6= j. The penalized least-squares

regression problem with the squared `1,2-norm penalty minimizes the following objective function:

f(b) = ||y −Xb||22 + λ
r∑
i=1

(
∑
j∈Gi

|bj|)2, (3.13)

where bj is the j th entry of the coefficient vector b ∈ Rp. It is obvious that Eq. (3.11) and Eq. (3.12)

are special forms of Eq. (3.13). Although f(b) in Eq. (3.13) is a convex function of b, the presence

of the absolute value function makes f(b) non-differentiable and complicates its optimization.

Several algorithms have been proposed in the literature to minimize f(b). [68] developed an

iterative re-weighted algorithm, where in each iteration, b is updated by solving a system of p

linear equations. The algorithm has a computational complexity of O(p3), making it not efficient

for big p. [66] developed a cyclic coordinate descent algorithm, updating the entries of b one-by-

one. This algorithm may have slow convergence when p is big, and it is not suited for parallel

computing.

As a result, we provide an efficient iterative algorithm to minimize f(b) by using the prox-

imal gradient method [69], which combines the ideas of the Majorization-Minimization (MM)

algorithm [35] and the proximal operator. Our algorithm updates b in blocks, i.e., it updates the

elements of b in each group Gi together. The computation of updates of these groups is also

parallelizable.

Applying the MM algorithm to minimize f(b), we need to define a majorizing function g(b|b∗)

that satisfies g(b|b∗) ≥ f(b) and g(b∗|b∗) = f(b∗). The MM algorithm iteratively updates
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b by minimizing g(b|b∗) with b∗ being the value of b obtained in the previous step. To define a

majorizing function, we denote L as the Lipschitz constant of the function h(b) = ∇‖y−Xb‖2
2 =

XTXb−XTy, which means that |h(b[)− h(b])| ≤ L||b[ − b]||2 for any b[,b] ∈ Rp. The value

of L is not unique, and a proper value of L is two times of the largest eigenvalue of XTX [36]. It

is easily seen that the following is a majorizing function of f(b) in Eq. (3.13):

g(b|b∗) :=||y −Xb∗||22 + 2(XTXb∗ −XTy)T (b− b∗)

+ L||b− b∗||22 + λ
r∑
i=1

(
∑
j∈Gi

|bj|)2.

Suppose bt is the value of b at step t of the iteration. The MM algorithm obtains the update

bt+1 by minimizing g(b|bt) over b at the step t+ 1. By some algebra, we see that

bt+1 = arg min
b
||bt − 1

L
(XTXbt −XTy)− b||22 +

λ

L

r∑
i=1

(
∑
j∈Gi

|bj|)2. (3.14)

By setting z = bt − 1
L

(XTXbt −XTy) and λ∗ = λ/L, the right hand size of Eq. (3.14) can be

recognized as a proximal operator associated with the squared `1,2-norm:

proxEL(z, λ∗) = arg min
b
||z− b||22 + λ∗

r∑
i=1

(
∑
j∈Gi

|bj|)2. (3.15)

Since the pre-defined groups G1, . . . ,Gr are disjoint in our problem, the objective function of

proxEL(·) can be regarded as a summation of the functions of parameters in different groups.

Thus we can split Eq. (3.15) into r smaller problems:

proxEL,i(zGi , λ
∗) = arg min

bGi

∑
j∈Gi

(zj − bj)2 + λ∗(
∑
j∈Gi

|bj|)2, (3.16)

where bGi is the sub-vector of b that includes the parameters for Gi, and zGi denotes the sub-vector

of z that contains the entries corresponding to bGi . Each problem in Eq. (3.16) is a proximal

operator associated with the squared Lasso penalty and is a convex problem. Unlike the proximal
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operator associated with the Lasso penalty, this proximal operator does not have a closed-form

solution. We shall develop a computational algorithm to compute this proximal operator.

Consider the following standard form of the proximal operator associated with the squared

Lasso penalty:

proxSL(z, λ) = arg min
b
||z− b||22 + λ||b||21, z ∈ RD. (3.17)

We solve Eq. (3.17) by using a method similar to the algorithm proposed by [70]. Our solution is

derived in three steps: (1) We provide an analytic form of proxSL(z, λ) using the KKT conditions

when the non-zero index set of b is assumed known. (2) We show that there are only D + 1

candidates for the non-zero index set of proxSL(z, λ). (3) We provide a way to identify the true

non-zero index set form the d+ 1 candidates.

We first introduce some notations. Denote b̂ = proxSL(z, λ∗). Let S be the non-zero index

set of b̂, and l(b) = ‖z − b‖2
2 + λ‖b‖2

1. Let a1, a2, . . . , aD be the permutation of the index

1, 2, . . . , D such that |za1| ≥ |za2| ≥ · · · ≥ |zaD |. We define a list of strictly monotonous index

sets S0 ⊂ S1 ⊂ · · · ⊂ SD that S0 = ∅ and Sd = {a1, . . . , ad} for d = 1, 2, . . . , D.

Now we provide details of the three steps of deriving the solution of Eq. (3.17). First, if S is

known, we can obtain an analytic form of b̂ by investigating the KKT conditions of Eq. (3.17).

This is given in the following Lemma.

Lemma 3. By KKT conditions, for each i ∈ S, the solution of bi satisfies the following equation:

− 2(zi − bi) + 2λ||b||1sign(bi) = 0. (3.18)

Consequently, we have:

b̂i =

 sign(zi)
[
|zi| − λ

1+λ|S|(
∑

i∈S |zi|)
]
, i ∈ S,

0, i /∈ S.
(3.19)

Second, we investigate the properties of b̂, and the results are given in Lemma 4.
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Lemma 4. The optimal solution b̂ satisfies the following properties:

(i) The sign of b̂i must be the same as that of zi unless b̂i = 0;

(ii) |b̂i| ≤ |zi|;

(iii) If |zi| > |zj|, then |b̂i| ≥ |b̂j|.

From Lemma 4(iii), it is easy to see that S can only be chosen from D + 1 candidates

S0,S1, . . . ,SD.

Third, S can be determined using the next Lemma.

Lemma 5. S can be found by solving the following optimization problem:

S = arg max
Sd

d, subject to |zad | >
λ

1 + λd

∑
i∈Sd

|zi| or d = 0. (3.20)

The proofs of Lemmas 3–5 are given in Section 3.6.3. These results suggest the following

algorithm for computing proxSL(z, λ): First find S of the optimal solution via Eq. (3.20) and then

calculate b̂ by Eq. (3.19).

Combining the algorithm of computing the proximal operator with the MM algorithm, we

arrive at an algorithm for solving the penalized least-squares problem Eq. (3.13). This algorithm

is presented in Algorithm 3.

Now we discuss the computational complexity of Algorithm 3. First, Algorithm 3 requires

one time calculation of XTy and XTX, whose complexity is O(np2). For each iteration, step 1

of Algorithm 3 requires O(p) calculations to obtain z. Step 2 solves r proximal operators. Set

Di = |Gi|, and then
∑r

i=1Di = p. For the proximal operator associated with Gi, it requires

O(Di log(Di)) to order the elements in zGi , O(Di) to solve Eq. (3.20), and O(Di) to calculate

Eq. (3.19). On the other hand, [36] shows that the proximal gradient algorithm needs O(1/ε)

iterations to achieve ε tolerance of convergence error. To summarize, the overall computational

complexity of Algorithm 3 is at most O(p log(maxiDi)/ε + np2). In practice, one can further
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Algorithm 3 Regression with the Squared `1,2-norm Penalty

Input: X, y, G1,G2, . . . ,Gr, b0, λ, and L.
Iterate until convergence: For t = 0, 1, 2, . . . , update bt+1 from bt by:

1. z = bt − 1
L

(XTXbt −XTy)

2. Update bt+1 = proxEL(z, λ/L) by solving r proximal operators Eq. (3.16).

For each group Gi, solve b̂Gi = proxSL(zGi , λ/L):

(a) Order |z1|, |z2|, . . . , |zDi
| in zGi and construct the corresponding list of strictly

monotonous index sets S0 ⊂ S1 ⊂ · · · ⊂ SDi
.

(b) Solve Eq. (3.20) to get the non-zero index set S.

(c) Calculating b̂Gi using Eq. (3.19) with S given in b).

3. Concatenate b̂Gi to obtain bt+1.

parallel the calculation of matrix multiplication and r proximal operators in step 2 to reduce the

computing time of Algorithm 3.

3.3.3 BCEL with Missing Data

The problem of missing data is a common occurrence in real-world applications, in which

some entries of the data matrix are not observed in the study. Our algorithms are readily applicable

when the data matrix has entries missing completely at random. Let Ω = (ωi,j) ∈ {0, 1}n×p be

the indicator matrix of missing entries. If the (i, j)th entry of X is observed, ωij = 1; otherwise,

ωij = 0, indicating that the (i, j)th entry of X is missing.

To describe how to apply our algorithms, we can arbitrarily fill in a value (say, 0) at missing

entries of X. To handle missing data, we revise the original loss function of Eq. (3.10) to:

L(U,V|Ω) = ||Ω◦(X−UVT )||2F +λ1P1,2(U)+λ2P1,2(V), (3.21)

where ◦ denotes the element-wise product of two matrices. The only difference between Eq. (3.10)

and Eq. (3.21) are at the squared loss term. When missing data are present in X, we only calculate
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the squared errors where the entries of X are observed. The alternating minimization algorithm,

Algorithm 2, is still applicable for minimizing Eq. (3.21) by only using available entries of X.

Similarly, Algorithm 3 can also be applied without any issues.

3.3.4 Stability Selection of Tuning Parameters and Bicluster Membership

The number of biclusters r, the row penalty parameter λ1, and the column penalty parameter

λ2 are three tuning-parameters in our method BCEL. Following a common practice used method

for selecting rank numbers in penalized matrix decomposition [71], we use the cross-validation

(CV) to select r.

It is more involved to come up with a good selection of λ1 and λ2. We can restrict attention

to their selection for fixed r. Two commonly used methods for tuning parameter selection are

Information Criterion (IC) and CV. However, we found that neither method works well for BCEL.

For the IC method, it is difficult to define an effective IC in the presence of two penalty parameters.

In practice, CV tends to select a relatively small value for λ1 and λ2, resulting in redundant rows or

columns being included into biclusters. We propose to adopt the idea of the stability selection [72]

to decide on the two penalty parameters, and more importantly, we use stability selection to make a

stable selection of the rows and columns included in the biclusters. The stability selection method

was designed for variable selection problems with one penalty parameter, and we need to extend it

to handle our bicluster problem with two penalty parameters.

3.3.4.1 Traditional Stability Selection

We first give a brief introduction to the stability selection. The stability selection is a variable

selection scheme proposed by [72] that uses subsampling to determine the amount of regulariza-

tion, as well as controlling the rate of falsely selected variables (which is also called the Type I

error rate in multiple testing) for finite sample size.

The traditional stability selection is defined on the variable selection problem with only one

tuning parameter λ ∈ Λ, where Λ is the set of possible values of λ. Suppose that there are p

parameters to be estimated in the model, and the index set of the true non-zero parameters is S∗.
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The stability selection scheme tries to estimate S∗ by subsampling. Use I to denote a randomly

subsampled set of the original data containing 50% samples. With B times of subsampling, we

obtain B different subsampled data sets I1, . . . , IB. Let Ŝλ(Ik) denote the index set of variables

that are selected when we solve the problem using the data Ik and the tuning parameter λ. Then,

for each variable i, we can estimate the probability that variable i is included using randomly

subsampled set by the relative frequency of i in Ŝλ(Ik), k = 1, . . . , B:

P̂ (i ∈ Ŝλ(I)) =
1

B

B∑
k=1

I(i ∈ Ŝλ(Ik)). (3.22)

Given a threshold π ∈ (0.5, 1) and Λ, the index set of non-zero parameters selected by the

stability selection is defined as

Ŝstable = {i : max
λ∈Λ

P̂ (i ∈ Ŝλ(I)) ≥ π, i ∈ {1, 2, · · · , p}}. (3.23)

Set ŜΛ(I) = ∪λ∈ΛŜλ(I). Denote qΛ = E|ŜΛ(I)|, which is the average number of selected

variables for a randomly subsampled set. V = (S∗)C ∩ Ŝstable is the set of falsely selected variables

for the stability selection. Under the assumptions that the distribution of {I(i ∈ Ŝλ, i ∈ SC)} is

exchangeable where Ŝλ is the selected index set with λ on the whole dataset and that the original

model is not worse than random guessing, [72] shows in their Theorem 1 that the expected number

of the falsely selected variables (E(|V|)) is bounded by

E(|V|) ≤ 1

2π − 1

q2
Λ

p
, (3.24)

Suppose one wants to control the expected falsely selection rate, E(|V|)/p, to be no more than

rf . Through bounding the right hand side of Eq. (3.24) by rf , it is sufficient to have qΛ ≤

p
√

(2π − 1)rf . Then Λ can be determined to satisfy this condition. [72] finds that the results

of stability selection is not sensible to the selection of π in the range of (0.6, 0.9).

In a particular case when the variable selection result of the model is monotonous and contin-
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uous with respect to the penalty parameter, that is, for any two values λa, λb ∈ Λ with λa < λb,

we have P̂ (i ∈ Sλa(I)) ≥ P̂ (i ∈ Sλb(I)). Then qΛ = E|ŜΛ(I)| = E|Ŝλmin(I)| only depends on

λmin = inf Λ and we only need to determine λmin such that E|Ŝλmin(I)| ≤ p
√

(2π − 1)rf . Notic-

ing that |Ŝλmin(I)| =
∑p

i=1 I(i ∈ Ŝλmin(I)) and using Eq. (3.22) to estimate P (i ∈ Ŝλmin(I)), we

reduce the problem to find a λmin such that
∑p

i=1 P̂ (i ∈ Ŝλmin(I)) ≤ p
√

(2π − 1)rf , which can

be solved by a search algorithm.

After obtaining λmin, the stability selection uses Eq. (3.23) with Λ = {λmin} to construct the

index set of selected non-zero parameters Ŝstable. In other words, a parameter is determined to

be non-zero by the stability selection if the relative frequency that this parameter is non-zero in

repeated subsampling is no less than the pre-specified threshold π.

3.3.4.2 Stability Selection for BCEL

We now describe how to extend the stability selection of one penalty parameter to BCEL that

includes two penalty parameters. Likewise, we measure the stability of variable selection using the

probability that a variable is selected (or detected) by repeated subsampling.

We begin by defining a subsampling scheme for BCEL. For each subsampled matrix, we create

a new matrix of the same dimension as the original data matrix X, whose entries are either copied

from X or treated as missing. Specifically, we randomly select 50% of the entries of X and place

them in the same positions in the new matrix, and the rest 50% entries of the new matrix are

missing. Let Ω ∈ Rn×p be an indicator matrix, indicating for which position the data is copied to

the new matrix, i.e., the (i, j)th entry of Ω is equal to 1 when xij is copied, and 0 when xij is not

copied. For each subsampled matrix, we estimate U and V by solving:

min
U∈Rn×r,V∈Rp×r

‖Ω ◦ (X−UVT )‖2
F + λ1P1,2(U) + λ2P1,2(V). (3.25)

Note that this is exactly the same as the missing value problem Eq. (3.21) and can be solved by

Algorithm 2 as discussed above.

For a fixed pair of tuning parameters (λ1, λ2), let Ŝ(λ1,λ2)
1 (Ω) and Ŝ(λ1,λ2)

2 (Ω) denote respec-
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tively the index sets of non-zero entries in estimated U and V when using the subsampled matrix

corresponding to Ω. Let Λ1 and Λ2 be respectively the sets of possible values for λ1 and λ2.

Set Ŝ(Λ1,Λ2)
1 (Ω) = ∪(λ1,λ2)∈(Λ1,Λ2)Ŝ(λ1,λ2)

1 (Ω) and Ŝ(Λ1,Λ2)
2 (Ω) = ∪(λ1,λ2)∈(Λ1,Λ2)Ŝ(λ1,λ2)

2 (Ω). Let

q1 = E|Ŝ(Λ1,Λ2)
1 (Ω)| and q2 = E|Ŝ(Λ1,Λ2)

2 (Ω)| be the expected number of non-zero entries of U and

V in repeated subsampling. As Λ1 and Λ2 vary, the values of q1 and q2 will vary correspondingly.

The idea of stability selection is to determine appropriate choice of Λ1 and Λ2 such that the rate

of expected falsely detected non-zero entries in estimated U and V is controlled. To simply the

problem, we may use some insight from our alternating minimization algorithm in Algorithm 2.

When V is fixed, via Eq. (3.11), we can see that the selection results of non-zero entries in U is

continuous and monotonous to λ1. Similarly, when U is fixed, via Eq. (3.12), the selection results

of non-zero entries in V is continuous and monotonous to λ2. Therefore, following the strategy

used in the traditional stability selection, instead of determining the sets Λ1 and Λ2, we can focus

on determining λ1,min = inf Λ1 for λ1 and λ2,min = inf Λ2 for λ2, as the impact of Λ1 and Λ2 on

the values of q1 and q2 are mostly determined by λ1,min and λ2,min.

Suppose we want to control the rate of expected falsely detected non-zero entries in estimated

U and V to be no more than rf,1 and rf,2, respectively. By using Eq. (3.24), it is sufficient to

have q1 ≤ rn
√

(2π − 1)rf,1 and q2 ≤ rp
√

(2π − 1)rf,2. Since q1 and q2 will decrease as λ1,min

and λ2,min increase, it is easy to find a pair of (λ1,min, λ2,min) with large values that satisfies q1 ≤

rn
√

(2π − 1)rf,1 and q2 ≤ rp
√

(2π − 1)rf,2. However, if λ1,min and λ2,min are too big, then q1

and q2 will be too small, leading to the undesirable result that U and V estimated by BCEL will

have too small number of non-zero entries. Therefore, we would like to balance the number of

the truly detected non-zero entries and falsely detected non-zero entries. To this end, suggested by

Eq. (3.24), for each fixed pair of (λ1,min, λ2,min), we consider the following estimators of the upper

bound of the false detection rate,

r̂f,1 =
1

2π − 1
(
q̂1

rn
)2, r̂f,2 =

1

2π − 1
(
q̂2

rp
)2, (3.26)
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where q̂1 and q̂2 are estimates based on subsampling, obtained similarly as in the traditional stability

selection, and rn and rq are the total number of entries of U and V, respectively. We provide a pair

of acceptable intervals, denoted as (rlow
f,1 , r

up
f,1), (rlow

f,2 , r
up
f,2). Then we search, e.g., using the bisection

method, for a pair (λ̂1,min, λ̂2,min) such that its corresponding r̂f,1 and r̂f,2 satisfy rlow
f,1 ≤ r̂f,1 ≤ rup

f,1

and rlow
f,2 ≤ r̂f,2 ≤ rup

f,2. This method will give a desired balance. The details of the stability

selection to find (λ̂1,min, λ̂2,min) are given in Algorithm 4.

Algorithm 4 Stability Selection for Tuning Parameters

Input: X, r, B1, (λlow
1 , λup

1 ), (λlow
2 , λup

2 ), (rlow
f,1 , r

up
f,1), (rlow

f,2 , r
up
f,2), π, and α > 0.

Initialization: Set λ1 = λlow
1 and λ2 = λlow

2 .
While (TRUE):

1. For i = 1 to B1:

(a) Construct a randomly subsampled matrix whose 50% entries are non-zero and
copied from X and indexed by Ωi.

(b) Solve Eq. (3.25) with Ωi and get a pair of estimates of U and V.

2. Calculate q̂1 and q̂2 based on B1 pairs of estimates of U and V.

3. Calculate r̂f,1 and r̂f,2 by Eq. (3.26).

4. If rlow
f,1 ≤ r̂f,1 ≤ rup

f,1 and rlow
f,2 ≤ r̂f,2 ≤ rup

f,2:

BREAK.

5. For s = 1, 2:

(a) If r̂f,s>r
up
f,s, set λlow

s ← λs and λs ← αλlow
s +λ

up
s

α+1
.

(b) If r̂f,s<rlow
f,s , set λup

s ← λs and λs ← αλlow
s +λ

up
s

α+1
.

Output: (λ̂1,min, λ̂2,min) = (λ1, λ2).

After obtaining λ1,min and λ2,min, we can use the stability selection to decide on the bi-clustering

membership of the rows and columns. This corresponds to decide on which entries of U and V
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are non-zero. We encounter a difficulty that is specific to the BCEL. Specifically, since its ob-

jection function is invariant to permutation of the columns of U and V, the estimated U and V

from two randomly subsampled matrices may not be aligned and thus are not comparable. This

causes problem when estimating the probability of an entry of U or V is non-zero. There is no

simple algorithm to align solutions obtained for different subsampled matrices. As a remedy, we

propose a method to construct the estimated U and V from different subsampled data matrices

while making sure that the columns obtained using different subsamples are in good alignment

and thus comparable.

Specifically, we first build a “reference" estimator of U and V using the full data, i.e., the

original matrix X, and the penalty parameters λ̂1,min and λ̂2,min. Denote the estimates to be Ûfull

and V̂full. Then, for each subsampled data matrix associated with the index matrix Ω, we find a

solution pair of U and V by

Ûi=arg min
U
‖vec(ΩT ) ◦

[
vec(XT )−DV̂full

·vec(UT )
]
‖2

2 + λ̂1,minP1,2(U), (3.27)

and

V̂i=arg min
V

‖vec(Ω) ◦
[
vec(X)−DÛfull

·vec(VT )
]
‖2

2 + λ̂2,minP1,2(V). (3.28)

Since Ûfull and V̂full are used to construct the design matrix DÛfull
and DV̂full

in the two penalized

regression problems Eq. (3.27) and Eq. (3.28), the ordering of the columns of Ûi and V̂i from

different subsamples is fixed, and therefore these Ûi and V̂i are comparable. Then for each entry

of U and V, we can calculate the relative frequency (or estimated probability) it is non-zero based

on repeated subsampling. If this relative frequency is more than a pre-specified threshold π, the

entry is claimed to be non-zero by the stability selection, and it is set to zero otherwise. Algorithm 5

details the steps of the stability selection to determine the non-zero entries of U and V.

By setting the entries of Ûfull and V̂full that are not selected by the stability selection to 0, we

can obtain a new pair of estimates of U and V that follows the bicluster membership determined

by the stability selection. We denote the final estimates as Ûstable and V̂stable.
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Algorithm 5 Stability Selection for Bicluster Membership

Input: X, r, B2, λ̂1,min, λ̂2,min, and π.
Steps:

1. Estimate Ûfull and V̂full by solving Eq. (3.10) with the penalty parameters (λ̂1,min,λ̂2,min).

2. For i = 1 to B2:

(a) Construct a randomly subsampled matrix whose 50% entries are non-zero and
copied from X and indexed by Ωi.

(b) Calculate Ûi with V̂full and Ωi by Eq. (3.27).

(c) Calculate V̂i with Ûfull and Ωi by Eq. (3.28).

3. For each entry of U and V, calculate the relative frequency that it is not zero in Ûis and
V̂is.

4. The entries of U and V with the above relative frequency larger than π are signaled as
the non-zero entries determined by the stability selection.

3.4 Numerical Study

In this section, using simulated datasets, we evaluate the performance of the proposed BCEL

method and compare it with several existing biclustering methods. We consider several represen-

tative matrix decomposition based methods reviewed in Section 3.2. In particular, we include in

our comparison sparseBC from block decomposition methods, S4VD (the stable version of SSVD)

from SVD based methods, NMFSC from NMF based methods, and Plaid. We also include two

widely used traditional methods, Bimax [50] and ISA [45]. We used public domain R packages

that implemented these methods, i.e., sparseBC from the sparseBC package, S4VD from the

s4vd package, NMFSC from the fabia package, Plaid and Bimax from the biclust package,

and ISA from the isa2 package.

3.4.1 Evaluating Methods

Because the correct or ground-truth biclustering is known for our simulated data, we can use

the true bicluster labels to evaluate a given biclustering method. We shall define some measures

64



to quantify the extent to which the detected biclusters match the true biclusters. To present the

technique details, we first introduce some notations. Recall that r is the number of true biclusters.

The true biclusters are denoted as T = {T1, . . . , Tr}, where Ti = {(s, t) : s ∈ Ri and t ∈ Ci}

collects the indexes of elements included in the ith bicluster, and Ri and Ci collect respectively

the row and column indices. Let r̂ denote the number of detected biclusters by a biclustering

method, which can be different from r. Let P = {P1, . . . ,Pr̂} denote the detected biclusters with

Pj = {(s, t) : s ∈ R̂j and t ∈ Ĉj}, where R̂j and Ĉj are respectively the index sets of rows and

columns in the j th detected bicluster.

Matching based measures. Assume M : {1, . . . , r} → {1, . . . , r̂} is an injection mapping

from the index set of true biclusters to the index set of detected biclusters. If r̂ < r, we add

r − r̂ empty biclusters to the collection of detected biclusters. The mappingM matches the true

bicluster Ti with the detected bicluster PM(i) for i = 1, . . . , r. The following Jaccard coefficient

measures the overall degree of overlapping between the true biclusters and the corresponding de-

tected biclusters matched byM:

Jaccard(M) =

∑r
i=1 |Ti ∩ PM(i)|∑r
i=1 |Ti ∪ PM(i)|

.

We call Mm the maximum matching mapping if it maximizes the Jaccard coefficient among all

possible injection mappings:

Mm = arg max
M

Jaccard(M).

The mappingMm gives the highest possible degree of overlapping and can be used to evaluate

biclustering methods as follows. For the ithbicluster, define the bicluster specific precision and

recall to be

precisioni =
|Ti ∩ PMm(i)|
|PMm(i)|

, recalli =
|Ti ∩ PMm(i)|

|Ti|
,

and the F-measure to be the harmonic mean of the precision and recall values,

Fi =
2

1/precisioni + 1/recalli
.
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Taking the average over all biclusters of the precision, recall, and F-measure gives three overall

measures of bicluster performance.

The way to generate the maximum matching here is related to the “consensus score" method

proposed by [73]. The consensus score method maximizes the sum of bicluster-wise values of the

Jaccard coefficient to find the mapping between two sets of biclusters, while our method focuses

on the overall Jaccard coefficient.

Contingency table based measures. A drawback of the maximum matching is that it only

considers the one-to-one correspondence between the true biclusters and the predicted biclusters.

Sometimes, a biclustering method can discover more biclusters than the true number of biclusters,

and/or a true bicluster can correspond to multiple detected biclusters. The maximum matching

may under-evaluate the performance of the biclustering method for such cases. Thus, different

performance measures are desirable to complement the maximum matching based measures.

We treat the detected biclusters as the result of a binary classification problem for entries of

the data matrix, and the data generating procedure tells about the ground-truth biclustering mem-

bership. Then contingency table based measures widely used to evaluate classification/clustering

results can be applied [74]. Specifically, for each entry of the data matrix, it is classified as a posi-

tive case if it is included in one of the detected biclusters and as a negative case if not. Then, each

entry can be grouped into one of the four categories: i. true positive (TP), if the entry is in one

of Ti and one of Pj; ii. false negative (FN), if the entry is in one of Ti but none of Pj; iii. false

positive (FP), if the entry is not in any Ti but in one of Pj; iv. true negative (TN), if the entry is not

in any of Ti or Pj . We use TP, FN, FP, and TN to denote the count of entries in each category. To

take care of overlapping between biclusters, i.e., a matrix entry may belong to multiple biclusters,

we make the following adjustment to the counts: If an entry presents respectively a1 and a2 times

in the true and detected biclusters, then we add a2 to TP and a1 − a2 to FN when a1 ≥ a2, and add

a1 to TP and a2 − a1 to FP when a1 < a2.

We build three measures as below. The Jaccard coefficient measures the percentage of TP
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among the total number of entries included in either a true or detected bicluster and is defined as

Jaccard =
TP

TP + FN + FP
.

It reflects the similarity of two groups of biclusters. The Rand Statistics (RS) is defined as

RS =
TP + TN

TP + FP + FN + TN
.

It calculates the fraction of TP and TN over all entries of the data matrix, showing the percentage

of entries whose classification results are agreed by the true and detected biclusters. The precision

TP
TP+FP and the recall TP

TP+FN measure respectively the percentage of TP in entries included in the

detected or the true biclusters. The Fowlkes-Mallows (FM) measure is defined as the geometric

meas of the precision and recall values:

FM =

√
TP

TP + FP
· TP

TP + FN
.

All of the above measures have a range of [0, 1]. The larger the value of the measure is, the better

the performance of a method.

3.4.2 Simulation Study

In our simulation study, we generate the observed data matrix X ∈ Rn×p with r true biclusters

that can overlap with each other arbitrarily as illustrated in Figure 3.1d. The data generating model

is

X = UVT + E,

where U = (u1,u2, . . . ,ur) ∈ Rn×r and V = (v1,v2, . . . ,vr) ∈ Rp×r, and the entries of E ∈

Rn×p are independently generated from the standard normal distribution. Non-zero entries of uk

and vk indicate membership of the kth bicluster. We fixed n to be 100, p = 200 or p = 2000, and

considered r = 3 or r = 6. This gives us four simulation settings.
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Let Rk and Ck denote respectively the index set of rows and columns of the kth bicluster.

Let m1k denote the number of rows and m2k the number of columns that are involved in the kth

bicluster. We generated m1k from U(10, 60), and generated m2k from U(15, 70) for p = 200 or

from U(150, 700) for p = 2000. We then generated Rk and Ck by randomly selecting m1k rows

and m2k columns from the totals of n rows and p columns. The entries of uk and vk are generated

according to:

 uik ∼ U(1, 2) if i ∈ Rk

uik = 0 otherwise
,

 vjk ∼ U(1, 2) if j ∈ Ck

vjk = 0 otherwise
.

For each of the simulation setting, we generated 100 data matrices, applied different bicluster-

ing methods on them, and calculated the evaluation measures to compare these methods. When

applying BCEL, we set (rlow
f,1 , r

up
f,1) = (0.1, 0.3), (rlow

f,2 , r
up
f,2) = (0.1, 0.3), π = 0.65, B1 = 20, and

B2 = 200.

Table 3.2 and Table 3.3 summarize the comparison results of simulation with r = 3 and r = 6

respectively using the evaluation methods described in the previous subsection. BCEL is the best

performer in all four settings for all seven different measures except for “precision" when p =

2000, for which BCEL ranks the second or the third and is very close to the first. BCEL achieves the

impressive higher than 0.9 value in almost all settings and evaluation measures. Comparing with

another SVD based method, BCEL substantially improves over the sequential approach of S4VD.

Plaid achieves the second place overall when r = 3 but performs badly when r = 6, suggesting

that it is not robust to depart from its assumption of additive structure. The sparseBC has mediocre

performance when r = 3, but the performance deteriorates significantly when r = 6. NMFSC

and two traditional methods, Bimax and ISA perform poorly in most settings and performance

measures. These results clearly show the superiority of BCEL over other methods.

To graphically compare the performance of different methods, Figure 3.4 presents the discov-

ered biclusters by BCEL and a few other methods in one arbitrarily chosen simulation matrix of

p = 200 and r = 3. We only include BCEL, sparseBC, S4VD, and Plaid in the figure since
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Table 3.2: Performance comparison of different biclustering methods on simulated data matrices
with r = 3. Mean and standard derivation of each performance measure is calculated based on 100
simulation runs.

p Method
Maximum Based Contingency Table Based

Jaccard Precision Recall F Jaccard Rand FM

200

BCEL 0.976 0.970 0.994 0.967 0.976 0.995 0.988
(0.027) (0.035) (0.017) (0.032) (0.027) (0.006) (0.014)

sparseBC 0.423 0.778 0.397 0.463 0.521 0.888 0.708
(0.175) (0.149) (0.169) (0.174) (0.173) (0.063) (0.132)

S4VD 0.521 0.798 0.634 0.608 0.682 0.910 0.817
(0.120) (0.156) (0.167) (0.140) (0.123) (0.048) (0.083)

NMFSC 0.232 0.452 0.303 0.268 0.280 0.798 0.447
(0.035) (0.081) (0.090) (0.061) (0.034) (0.039) (0.037)

Plaid 0.563 0.868 0.542 0.598 0.703 0.932 0.828
(0.211) (0.194) (0.208) (0.209) (0.183) (0.051) (0.122)

Bimax 0.147 0.746 0.154 0.212 0.315 0.846 0.554
(0.037) (0.112) (0.037) (0.056) (0.036) (0.044) (0.034)

ISA 0.169 0.932 0.232 0.314 0.192 0.790 0.357
(0.080) (0.090) (0.100) (0.104) (0.068) (0.065) (0.089)

2000

BCEL 0.957 0.922 0.997 0.924 0.957 0.991 0.978
(0.053) (0.097) (0.003) (0.093) (0.053) (0.011) (0.027)

sparseBC 0.375 0.673 0.294 0.372 0.478 0.899 0.686
(0.153) (0.004) (0.125) (0.147) (0.167) (0.035) (0.122)

S4VD 0.599 0.655 0.849 0.645 0.504 0.831 0.709
(0.049) (0.031) (0.028) (0.077) (0.051) (0.034) (0.035)

NMFSC 0.200 0.429 0.263 0.208 0.272 0.823 0.435
(0.015) (0.004) (0.013) (0.029) (0.015) (0.004) (0.016)

Plaid 0.738 0.999 0.750 0.814 0.855 0.972 0.924
(0.216) (0.001) (0.167) (0.134) (0.051) (0.011) (0.028)

Bimax 0.149 0.786 0.164 0.224 0.319 0.876 0.560
(0.057) (0.113) (0.070) (0.093) (0.029) (0.049) (0.024)

ISA 0.196 0.995 0.320 0.389 0.227 0.830 0.413
(0.010) (0.007) (0.110) (0.059) (0.009) (0.016) (0.037)
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Table 3.3: Performance comparison of different biclustering methods on simulated data matrices
with r = 6. Mean and standard derivation of each performance measure is calculated based on 100
simulation runs.

p Method
Maximum Based Contingency Table Based

Jaccard Precision Recall F Jaccard Rand FM

200

BCEL 0.958 0.947 0.981 0.943 0.960 0.984 0.979
(0.050) (0.057) (0.051) (0.057) (0.045) (0.020) (0.024)

sparseBC 0.103 0.539 0.093 0.118 0.180 0.664 0.415
(0.034) (0.066) (0.031) (0.038) (0.067) (0.075) (0.075)

S4VD 0.370 0.651 0.472 0.422 0.612 0.816 0.763
(0.100) (0.142) (0.158) (0.126) (0.108) (0.053) (0.080)

NMFSC 0.168 0.332 0.234 0.185 0.212 0.604 0.355
(0.014) (0.040) (0.039) (0.029) (0.019) (0.049) (0.024)

Plaid 0.143 0.180 0.089 0.097 0.199 0.517 0.373
(0.111) (0.122) (0.063) (0.068) (0.135) (0.319) (0.234)

Bimax 0.138 0.593 0.133 0.170 0.291 0.709 0.533
(0.029) (0.111) (0.025) (0.036) (0.042) (0.057) (0.042)

ISA 0.128 0.866 0.180 0.241 0.151 0.636 0.335
(0.049) (0.092) (0.066) (0.072) (0.049) (0.077) (0.053)

2000

BCEL 0.913 0.871 0.995 0.881 0.913 0.965 0.955
(0.067) (0.079) (0.043) (0.069) (0.067) (0.022) (0.037)
(0.067) (0.079) (0.043) (0.069) (0.067) (0.022) (0.037)

sparseBC 0.098 0.509 0.086 0.111 0.177 0.66 0.413
(0.035) (0.057) (0.036) (0.048) (0.06) (0.093) (0.067)

S4VD 0.351 0.487 0.56 0.396 0.505 0.719 0.694
(0.085) (0.12) (0.179) (0.113) (0.074) (0.037) (0.052)

NMFSC 0.145 0.351 0.188 0.158 0.192 0.612 0.337
(0.013) (0.051) (0.029) (0.03) (0.018) (0.067) (0.019)

Plaid 0.148 0.197 0.091 0.105 0.207 0.508 0.371
(0.12) (0.152) (0.073) (0.086) (0.164) (0.343) (0.259)

Bimax 0.131 0.575 0.142 0.17 0.314 0.737 0.557
(0.022) (0.142) (0.032) (0.05) (0.029) (0.083) (0.026)

ISA 0.137 0.891 0.199 0.26 0.161 0.636 0.346
(0.075) (0.097) (0.094) (0.099) (0.073) (0.106) (0.095)
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the other three methods in Table 3.2 have relatively poor performance. In Figure 3.4, the blue,

yellow, and green colored areas correspond respectively to the regions of three biclusters detected

by biclustering, and the maximum matching mapping is used to label the detected clusters. We

observe that BCEL almost recovers the original layout of three biclusters and is capable of dealing

with the overlapping between biclusters. S4VD also discovers the main shape of three biclusters,

but it fails to recover the overlapping part of the blue bicluster and the yellow bicluster. Plaid has

difficulty in detecting overlapping biclusters although it should have the capacity by design. At

last, sparseBC only discovers three non-overlapping biclusters, which is not surprising, since it

assumes a checkerboard structure of the data matrix.

(a) Ground Truth (b) BCEL (c) sparseBC

(d) S4VD (e) Plaid

Figure 3.4: Comparison of the discovered biclusters from different biclustering methods.

3.5 Single-Cell RNA Sequencing Data Analysis

The latest Next Generation Sequencing (NGS) technologies allow researchers to obtain gene

expression information at the single-cell level and provide new opportunities to resolve compre-

hensive studies of individual cells. Single-cell RNA sequencing (scRNA-seq), for example, can

reveal the cell-to-cell variations and infer the underlying gene regulatory networks. Since cellar
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heterogeneity is an essential characteristic of scRNA-seq, uncovering the true diversity of cells is

crucial to better understand the relationship and responsibility of genes and different types of cells.

As discussed in Section 3.1, biclustering may provide a valuable tool to discover the latent groups

of homogeneous cells and the associated reacting genes without using any prior information about

the relationship between cells and genes.

To illustrate the application of BCEL on the scRNA-seq dataset, we consider a subset of data

from a study on the mouse brain cells by [75]. That study included the expression levels of around

15000 genes on 37,069 mouse brain cells. By using the well-known cell-type-specific marker

genes and dimension reduction methods, six major cell subtypes were identified among all cells.

With known labels of cell subtypes, for each cell subtype, the genes were ranked via statistics

tests so that the genes with higher rank express more differently in this cell subtype than other cell

subtypes. The top ranked genes for each cell subtype were treated as the most discriminating genes

(called marker genes) that help identify this cell subtype from all cells.

We now build a sub-dataset of the above scRNA-seq dataset to compare different biclustering

methods. We randomly sample 200 cells for each cell subtype and obtain 1200 cells in total. We

focus on genes among at least one of the top 500 rank genes of six subtypes. Since the top rank

genes for different subtypes can overlap, the number of these genes is 2846. Additionally, we

randomly select another 500 genes from the whole gene list. These genes are treated to have no

business with the cell type. The sub-dataset is then constructed by selecting the gene expression

data corresponding to the 3346 genes and 1200 cells in the original data matrix and is stored in a

3346 × 1200 data matrix that each row represents a gene and each column represents a cell. To

adjust the cell size factor, we divide each column of the data matrix by the mean expression level of

the entries in this column. We then take the logarithm transformation to the whole dataset since the

distribution of each gene’s expression level usually has a long right-tail. The transformed dataset

are shown in Figure 3.5a.

We applied four biclustering methods, BCEL, sparseBC, S4VD, and Plaid on this dataset.

Three other biclustering methods, NMFSC, Bimax, and ISA, that did not perform well in the

72



Table 3.4: Performance comparison of different biclustering methods on the scRNA-seq data.

Method
Matching Based Contingency Table Based

Jaccard Precision Recall F Jaccard Rand FM

BCEL 0.390 0.519 0.617 0.486 0.342 0.826 0.518
sparseBC 0.351 0.785 0.371 0.435 0.338 0.877 0.516

S4VD 0.154 0.163 0.763 0.215 0.112 0.354 0.312
Plaid 0.199 0.765 0.216 0.231 0.197 0.792 0.329

Method
F for Six Cell Subtypes with the Maximum Matching Mapping

IMMUNE OLG NEURON VASC ASC EPC

BCEL 0.396 0.242 0.675 0.644 0.583 0.380
sparseBC 0.372 0.000 0.583 0.783 0.493 0.378

S4VD 0.219 0.203 0.216 0.360 0.137 0.154
Plaid 0.072 0.376 0.260 0.011 0.645 0.020

simulation study were not included. The subtypes of the cells and corresponding marker genes as

determined by [75] are used as the ground truth when evaluating the biclustering methods.

Table 3.4 presents the performance comparison of different methods on the scRNA-seq dataset.

For matching based measures, BCEL has the highest Jaccard coefficient. Although BCEL is only

the second best in terms of precision and recall, it has the highest F-measure, indicating that BCEL

gives the best compromise on precision and recall among all methods. In contrast, sparseBC has

the highest precision but low recall, S4VD has the highest recall but very low precision. For

contingency table based measures, BCEL is the best performer in terms of Jaccard coefficient and

FM, and is the second best in terms of RS but very close to the first ranked sparseBC. Table 3.4

also shows the F-measure for different cell subtypes with the maximum matching mapping. We

observe that BCEL has the best F-measure values in three cell subtypes and is the second-best in

the other three subtypes. As a comparison, sparseBC cannot detect the differential genes for the

OLG subtype, S4VD has relatively low values of F-measure in all six subtypes, Plaid almost fails

to detect the subtypes of IMMUNE, VASC, and EPC.

Figure 3.5 graphically show the biclusters detected by different methods. For each bicluster,

the genes included in this bicluster are highly expressed in the cells included in this bicluster,
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indicating that these genes may affect the functions of this group of cells. We first observe that all

of the four methods except S4VD can recover the group structures of cells and avoid to include

the redundant genes, while S4VD produces many overlapping biclusters that are not present in

the ground truth. Comparing with sparseBC and Plaid, BCEL discovers more genes than the true

differential genes for each subtype of cells, and it includes more cells in the detected biclusters.

This is in accordance with the result in Table 3.4 that BCEL has lower precision but higher recall

than sparseBC and Plaid. On the other hand, although the extra genes detected by BCEL are not

marker genes as reported in the original paper [75], they show high expression levels in the original

data and could be function-related genes. Consistent with Table 3.4, we see that sparseBC fails to

discover the differential genes of the OLG subtype, and Plaid has difficulty in discovering genes for

three cell subtypes, IMMUNE, VASC, and EPC. Figure 3.5a indicates that the differential genes

for the OLG subtype have relatively low expression levels compared with differential genes for

other subtypes. This may be the reason that all methods have a low F-measure value for OLG in

Table 3.4.

3.6 Proof

3.6.1 Proof of Lemma 3

For bi 6= 0, multiple sign(bi)/2 to both sides of Eq. (3.18) to obtain

− (|zi| − |bi|) + λ
n∑
i=1

|bi| = 0. (3.29)

Taking the summation of the above equations for i ∈ S, we get:

−
∑
i∈S

|zi|+
∑
i∈S

|bi|+ λ|S|
∑
i∈S

|bi| = 0.

Simple algebra yields ∑
i∈S

|bi| =
1

1 + λ|S|
∑
i∈S

|zi|.
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(a) Original Data (b) Marker Genes

(c) BCEL (d) sparseBC

(e) S4VD (f) Plaid

Figure 3.5: Biclustering results of different methods for the scRNA-seq data: (a) Original gene
expression matrix; (b) Ground truth of cell groups and the marker genes for each group; (c)-
(f) Grouped cells and corresponding genes for different biclustering methods. Columns of each
matrix represent cells arranged according to subtypes indicated by the colored horizontal bar on
the top. Rows of each matrix represent genes. Each color in the matrices represents a bicluster,
and the overlapping parts are marked in black color. The labels of the biclusters are obtained using
the maximum matching mapping.

75



Plugging this into Eq. (3.29) gives

|bi| = |zi| −
λ

1 + λ|S|
∑
i∈S

|zi|.

Together with sign(bi) = sign(zi) (Lemma 4(i)), we have b̂i = sign(zi)(|zi| − λ
1+λ|S|

∑
i∈S |zi|).

3.6.2 Proof of Lemma 4

Proof by contradiction: Denote b̃ = (b̃1, b̃2, . . . , b̃d)
T . Set l(b) = ||z− b||22 + λ||b||21.

(i) For any b̃, if b̃i · zi < 0, it is easy to check that l((b̃1, . . . , b̃i−1, 0, b̃i+1, b̃d)
T ) < l(b̃).

(ii) For any z̃ with an element |b̃i| > |zi|, we have l((b̃1, . . . , b̃i−1, zi, b̃i+1, b̃d)
T ) < l(b̃).

(iii) Suppose i < j, for any z̃ = (z̃l) satisfying (|b̃i| − |b̃j|)(|zi| − |zj|) < 0 and z̃l = zl for

l 6= i, j, we have l((b̃1, . . . , b̃i−1, sign(zi)|b̃j|, b̃i+1, . . . , b̃j−1, sign(zj)|b̃i|, b̃j+1, . . . , b̃d)
T )

< l(b̃).

To conclude, b̃ satisfying any of (i)-(iii) will not be the optimal solution of Eq. (3.17).

3.6.3 Proof of Lemma 5

We claim that, if Sd satisfies the property that |zad | > λ
1+λd

∑
i∈Sd |zi|, then Sd−1 satisfies the

same property, i.e., |zad−1
| > λ

1+λ(d−1)

∑
i∈Sd−1

|zi|. This can be easily seen by algebra.

Let b̂d denote the estimator calculated by using Eq. (3.19) with S = Sd. We show that

l(b̂d) ≤ l(b̂d−1) (3.30)

and the equality holds if b̂dad = 0. This result implies that S should be Sd with the largest d that

satisfies |zad| > λ
1+λd

∑
i∈Sd |zi|.
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It remains to prove the above result. Using Eq. (3.19), we obtain

l(b̂d) =
∑
i∈Sd

(b̂di − zi)2 +
∑
i/∈Sd

(zi)
2 + λ(

∑
i∈Sd

|b̂di |)2

=d · ( λ

1 + λd

∑
i∈Sd

|zi|)2 +
∑
i/∈Sd

(zi)
2 + λ · ( 1

1 + λd

∑
i∈Sd

|zi|)2

=
λ

1 + λd
(
∑
i∈Sd

|zi|)2 +
∑
i/∈Sd

(zi)
2.

Similarly,

l(b̂d−1) =
λ

1 + λ(d− 1)
(
∑
i∈Sd−1

|zi|)2 +
∑
i/∈Sd−1

(zi)
2.

Take the difference to obtain

l(b̂d)− l(b̂d−1)

=
λ

1 + λd
(
∑
i∈Sd

|zi|)2 − λ

1 + λ(d− 1)
(
∑
i∈Sd−1

|zi|)2 − (zad)2

=(
λ

1 + λd
− λ

1 + λ(d− 1)
)(
∑
i∈Sd−1

|zi|)2

+
2λ

1 + λd
|zad |(

∑
i∈Sd−1

|zi|) + (
λ

1 + λd
− 1)|zad |2

=− λ2

(1 + λd)(1 + λ(d− 1))
(
∑
i∈Sd−1

|zi|)2

+
2λ

1 + λd
|zad |(

∑
i∈Sd−1

|zi|)− (
1 + λ(d− 1)

1 + λd
)|zad|2

=− 1 + λ(d− 1)

1 + λd
(|zad | −

λ

1 + λ(d− 1)

∑
i∈Sd−1

|zi|)2 ≤ 0.

If the equality holds, we must have |zad| − λ
1+λ(d−1)

∑
i∈Sd−1

|zi| = 0, which by some algebra

implies |zad | − λ
1+λd

∑
i∈Sd
|zi| = 0, which in turn implies b̂dad = 0.
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