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ABSTRACT 

 

Ice clouds account for significant uncertainties in our understanding of the 

current climate as well as our ability to predict future changes. The high spatiotemporal 

variability of ice clouds coupled with their unique microphysical and macrophysical 

properties, makes modelling efforts difficult. To reduce uncertainties associated with 

modeled ice cloud properties, it is essential to have long-term global measurements of 

ice cloud characteristics. Previous studies have shown a measurement gap exists in ice 

cloud sensitivity and could potentially be filled by sub-millimeter (sub-mm) wave 

measurements.  

We present a retrieval algorithm based on the optimal estimation framework 

designed to retrieve ice cloud properties, which combines sub-mm and infrared (IR) 

radiometric and polarimetric measurements. Sub-mm and IR observations of ice clouds 

are complementary and exploit ice particle scattering that effectively modulates the 

upwelling background radiation from water vapor. The primary retrieval quantities are 

cloud ice water path (IWP), ice particle effective diameter (Deff), including optional 

cloud top height. A novel part of this algorithm is that it utilizes polarized brightness 

temperatures (TBs) in both the high-frequency sub-mm and IR wavelength regimes, of 

which there is a lack of studies exploring the benefits. A state-of-the-art database of 

cloud ice optical properties is incorporated into the Atmospheric Radiative Transfer 

Model (ARTS) to stochastically simulate TBs from CloudSat observations over the 

tropics, which we use to conduct retrieval experiments. Retrieved cloud properties are 
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compared to the true values and statistically analyzed. Information content in measured 

TBs is also used to evaluate retrieval performance and is expressed quantitatively in 

terms of degrees of freedom for signal (DOF) and Shannon Information Content (SIC). 

Although retrieval precision varies with cloud scene, the algorithm is demonstrated to 

effectively infer IWP and Deff over a wide range of cloud and atmospheric conditions and 

shows the best performance for clouds with moderate to low IWP and Deff.  

 

  

 

 

 

 

 

  

 

 

 

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my advisor, Dr. Yang, for providing me the opportunity to 

attend graduate school and learn from the incredible scientists at Texas A&M 

University, as well as those at domestic and international conferences. I would also like 

to thank Dr. Yang and my committee members, Dr. Bowman, Dr. Rapp, and Dr. Bishop, 

for their guidance and support throughout the course of this research and in times of 

great difficulty.  

 Thanks go out to my friends and colleagues for their valuable discussions 

concerning this research project, and the department faculty and staff for making my 

graduate life at Texas A&M University a great experience. I am especially grateful to 

Dr. Souichiro Hioki and Dr. Masanori Saito for their extraordinary mentorship and kind 

encouragements. I would also like to thank Dr. Dong Wu, Dr. Patrick Stegmann, Dr. 

Guanglin Tang, and Mr. James Coy for their valuable discussions regarding radiative 

transfer and retrieval techniques. Lastly, I would like to thank my partner for all her love 

and support.  



 

v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors  

This work was supported by a dissertation committee consisting of Professors 

Ping Yang, Kenneth Bowman, and Anita Rapp of the Department of Atmospheric 

Sciences, and Professor Michael Bishop of the Department of Geography.  

 A significant portion of this research was conducted with advanced computing 

resources provided by Texas A&M High Performance Research Computing.  

 All other work conducted for this dissertation was completed by the student 

independently 

Funding Sources 

 The research efforts reported in this dissertation were supported by NASA Earth 

and Space Science Fellowship (NESSF, 80NSSC17K0363). 



 

vi 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT ....................................................................................................................... ii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

CONTRIBUTORS AND FUNDING SOURCES .............................................................. v 

TABLE OF CONTENTS .................................................................................................. vi 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ......................................................................................................... xiii 

1. INTRODUCTION .......................................................................................................... 1 

1.1. Climate Change ....................................................................................................... 1 
1.2. Importance of ice cloud characterization/measurements ........................................ 2 
1.3. Representation of ice clouds in climate models ...................................................... 3 
1.4. Satellite remote sensing of ice clouds ..................................................................... 8 
1.5. Scope of this research and thesis objectives .......................................................... 10 

2. REMOTE SENSING .................................................................................................... 13 

2.1. Introduction ........................................................................................................... 13 
2.2. Sub-mm observations of ice clouds ...................................................................... 17 
2.3. Ice cloud signals in the sub-mm spectral range ..................................................... 19 

2.3.1. Complex permittivity of ice ........................................................................... 26 
2.3.2. Ice particle size distribution ........................................................................... 27 
2.3.3. Ice particle shape ............................................................................................ 27 
2.3.4. Ice particle orientation .................................................................................... 28 

2.4. Microwave observations of polarized radiation .................................................... 29 

3. SCATTERING AND RADIATIVE TRANSFER THEORY ...................................... 31 

3.1. Introduction ........................................................................................................... 31 
3.2. Scattering theory ................................................................................................... 34 
3.3. Definition of polarization and the Stokes Vector .................................................. 37 
3.4. Ice particle single scattering properties ................................................................. 38 

3.4.1. Phase matrix ................................................................................................... 39 



 

vii 

 

3.4.2. Extinction matrix ............................................................................................ 40 
3.4.3. Absorption vector ........................................................................................... 41 

3.5. Vector radiative transfer equation ......................................................................... 42 

4. METHODS ................................................................................................................... 44 

4.1. Atmospheric Radiative Transfer Simulator (ARTS) ............................................. 44 
4.2. Forward model and ARTS setup ........................................................................... 45 

4.2.1. Description of the atmosphere ........................................................................ 45 
4.2.2. Sensor characteristics ..................................................................................... 48 
4.2.3. Surface properties ........................................................................................... 49 
4.2.4. Gas absorption ................................................................................................ 49 
4.2.5. Scattering radiative transfer solver ................................................................. 51 
4.2.6. Speed improvements ...................................................................................... 54 

4.3. Channel selection .................................................................................................. 65 
4.4. Polarization difference analysis ............................................................................ 70 
4.5. Synthetic data generation ...................................................................................... 74 
4.6. Retrieval overview ................................................................................................ 76 

4.6.1. Optimal estimation framework ....................................................................... 77 
4.6.2. Levenberg-Marquardt iteration ...................................................................... 80 
4.6.3. Information content ........................................................................................ 82 

5. SUB-MM RADIANCES AND ICE CLOUD PROPERTIES ..................................... 85 

5.1. Temperature dependence of refractive index ........................................................ 86 
5.1.1. Impact of temperature dependent refractive index on retrievals .................... 89 
5.1.2. Temperature sensitivity of sub-mm refractive indices and information 
content ...................................................................................................................... 97 
5.1.3. Conclusions .................................................................................................. 103 

5.2. Ice particle shape ................................................................................................. 104 
5.2.1. Impact of particle shape on retrievals ........................................................... 106 
5.2.2. Particle shape and information content ........................................................ 111 
5.2.3. Conclusions .................................................................................................. 118 

6. SUB-MM POLARIZATION SIGNALS OF ICE CLOUDS ..................................... 123 

6.1. Impact of polarization on ice cloud property retrievals ...................................... 123 
6.2. Impacts of particle orientation on TB and PD ..................................................... 130 
6.3. Mixture of randomly and horizontally oriented particles .................................... 140 
6.4. Conclusions ......................................................................................................... 150 

7. ICE CLOUD PROPERTY RETRIEVALS ................................................................ 152 

7.1. Synthetic data ...................................................................................................... 152 
7.2. Ice cloud property retrievals ................................................................................ 156 



 

viii 

 

8. SUMMARY AND OUTLOOK ................................................................................. 163 

9. REFERENCES ........................................................................................................... 167 

 



 

ix 

 

LIST OF FIGURES 

 Page 

Figure 1.1: Zonal annual mean IWP from various climate models in IPCC AR4 data 
archive. ................................................................................................................ 4 

Figure 1.2: Zonally averaged annual mean CIWC from GCM simulations in CMIP5 ..... 6 

Figure 2.1: Diagram illustrating ice water content/ice water path measurement 
methods ............................................................................................................. 14 

Figure 2.2: Zonally averaged IWP of satellite datasets over ocean ................................. 16 

Figure 2.3: Sensitivity of TB to IWP and Deff for five sub-mm channels and one IR 
channel. ............................................................................................................. 21 

Figure 2.4: Illustration of TB depression (∆𝑇𝐵) of sub-mm radiation due to              
ice clouds .......................................................................................................... 22 

Figure 2.5: Sensitivity of ∆𝑇𝐵 to IWP and Deff for five sub-mm channels and one IR 
channel .............................................................................................................. 24 

Figure 4.1: Schematic of a 1D atmosphere in ARTS ....................................................... 47 

Figure 4.2: Schematic of the iterative method in the ARTS DOIT scattering solver ...... 53 

Figure 4.3: Schematic depiction of zenith (𝜃) and azimuth (𝜑) angles ........................... 56 

Figure 4.4: Forward model TB accuracy as a function of IWP and Deff at 640 GHz ....... 63 

Figure 4.5: Forward model TB accuracy as a function of IWP and Deff at 874 GHz. ...... 64 

Figure 4.6: Forward model TB accuracy as a function of IWP and Deff at 12 µm ........... 64 

Figure 4.7: Illustrative example lookup table (LUT) for two arbitrary bands ................. 68 

Figure 4.8: Average sensitivity for all unique pairs of channels in the selection     
study .................................................................................................................. 70 

Figure 4.9: PD sensitivity to IWP and Deff at two sub-mm and two IR channels ............ 72 

Figure 4.10: An overview of the retrieval framework ..................................................... 77 

Figure 5.1: Temperature sensitivity of the refractive index in the sub-mm         
spectral region ................................................................................................... 87 



 

x 

 

Figure 5.2: Single scattering albedo for two sub-mm channels at three temperatures ..... 88 

Figure 5.3: Mean Bias Error (MBE) of retrieved IWP for only sub-mm   
measurements ................................................................................................... 91 

Figure 5.4: MBE of retrieved Deff as a function of IWP for sub-mm and IR 
measurements ................................................................................................... 93 

Figure 5.5: MBE of retrieved IWP for sub-mm and IR measurements ............................ 95 

Figure 5.6: MBE of retrieved Deff for sub-mm and IR measurements ............................. 96 

Figure 5.7: DOF for temperature sensitivity experiments using only sub-mm 
measurements ................................................................................................... 99 

Figure 5.8: DOF for temperature sensitivity experiments using sub-mm and IR 
measurements ................................................................................................... 99 

Figure 5.9: SIC for temperature sensitivity experiments using only sub-mm 
measurements ................................................................................................. 102 

Figure 5.10: SIC for temperature sensitivity experiments using sub-mm and IR 
measurements ................................................................................................. 103 

Figure 5.11: Illustration of the four ice particle habits in shape sensitivity study ......... 106 

Figure 5.12: Retrieved IWP for all ice particle shapes considered, using only         
sub-mm measurements ................................................................................... 108 

Figure 5.13: Same as Fig. 5.12, except Deff is retrieved ................................................. 109 

Figure 5.14: Retrieved IWP for all ice particle shapes considered, using sub-mm and 
IR measurements ............................................................................................ 110 

Figure 5.15: Same as Fig. 5.14, except Deff is retrieved ................................................. 111 

Figure 5.16: Mean SIC of retrievals for all ice particle shapes, using sub-mm 
measurements ................................................................................................. 113 

Figure 5.17: Mean SIC of retrievals for all ice particle shapes, using sub-mm and     
IR measurements ............................................................................................ 113 

Figure 5.18: DOF of retrievals for all ice particle shapes, using sub-mm 
measurements ................................................................................................. 115 



 

xi 

 

Figure 5.19: DOF of retrievals for all ice particle shapes, using sub-mm and             
IR measurements ............................................................................................ 115 

Figure 5.20: SIC of retrievals for all particle shapes, using polarized sub-mm and IR 
measurements ................................................................................................. 117 

Figure 5.21: DOF of retrievals for all particle shapes, using polarized sub-mm and IR 
measurements ................................................................................................. 118 

Figure 6.1: PD sensitivity to Deff for sub-mm and IR channels when                       
IWP = 100 g/m2 .............................................................................................. 126 

Figure 6.2: Retrieved Deff using four different polarized sub-mm and IR measurement 
combinations ................................................................................................... 129 

Figure 6.3: Illustration of ice particle models used in the particle orientation   
analysis ........................................................................................................... 132 

Figure 6.4: Graphical representation of azimuthal orientation and tilt angle 𝛽 ............. 133 

Figure 6.5: PD and TB sensitivity to particle size, assuming randomly oriented ice 
particles ........................................................................................................... 135 

Figure 6.6: PD and TB sensitivity to particle size, assuming azimuthally oriented ice 
particles with tilt angle of 𝛽 = 0° ................................................................... 137 

Figure 6.7: Same as Fig. 6.6 except with a particle tilt angle of 𝛽 = 30° ..................... 139 

Figure 6.8: PD and TB sensitivity at 670 GHz to particle size, assuming azimuthally 
oriented particles with tilt angle 𝛽 = 0° ......................................................... 142 

Figure 6.9: PD and TB sensitivity at 886 GHz to particle size, assuming azimuthally 
oriented particles with tilt angle 𝛽 = 0° ......................................................... 143 

Figure 6.10: Same as Fig. 6.8, except 𝛽 = 30° .............................................................. 145 

Figure 6.11: Same as Fig. 6.9, except 𝛽 = 30° .............................................................. 146 

Figure 6.12: PD and TB sensitivity at 670 GHz to particle orientation mixing fraction 
(f), assuming oriented particles with 𝛽 = 0° .................................................. 148 

Figure 6.13: PD and TB sensitivity at 886 GHz to particle orientation mixing fraction 
(f), assuming oriented particles with 𝛽 = 0° .................................................. 149 

Figure 7.1: 2D histogram of cloud top heights and geometric thicknesses assumed in 
generating synthetic measurements ................................................................ 153 



 

xii 

 

Figure 7.2: 2D histogram of IWP and Deff values assumed in generating synthetic 
measurements ................................................................................................. 154 

Figure 7.3: VMR profiles for the main absorbing species included in generating 
synthetic measurements .................................................................................. 155 

Figure 7.4: Clear-sky TB as a function of frequency for three atmospheric scenarios .. 158 

Figure 7.5: ∆𝑇𝐵 as a function of IWP and Deff at 448 GHz ........................................... 159 

Figure 7.6: Retrieved IWP and Deff corresponding to ID 101 in Tables 7.1 and 7.2 ...... 161 

Figure 7.7: Retrieved IWP and Deff corresponding to ID 112 in Tables 7.1 and 7.2 ...... 162 

 



 

xiii 

 

LIST OF TABLES 

 Page 
 
 
Table 4.1: Channels considered in the channel selection process .................................... 66 

Table 4.2: CloudSat products and variables used to generate synthetic    
measurements ................................................................................................... 75 

Table 5.1: Error of retrieved IWP and Deff from assuming different ice particle shape 
models ............................................................................................................. 120 

Table 7.1: Measurement combinations used in example retrievals ............................... 157 

Table 7.2: Error of retrieved IWP and Deff for the different measurement 
combinations ................................................................................................... 160 



 

 

 

1 

1. INTRODUCTION  

 

1.1. Climate Change 

As the world population rapidly approaches eight billion people and significant 

portions begin or continue the push for industrialization, it is more important now than 

ever to solidify our understanding of the current climate, so that we may better predict 

what the future holds, particularly through the lens of globalization. Although we are 

terrestrial beings, our impacts on the Earth can be spread, often perniciously, through the 

Earth-atmosphere system. Not unlike other dynamic systems in nature, the atmosphere 

exhibits significant spatiotemporal variability. We experience rapid variability of 

atmospheric properties, such as pressure, humidity, and precipitation as weather. 

Localized, long term (typically decades) statistics of the weather define the climate.  

  It is evident that the Earth’s climate is changing. Previous studies incorporating 

both models and measurements showed that global average temperatures are increasing, 

and precipitation patterns are evolving (Soloman et al., 2007). Additionally, studies 

which focused more on the attribution of the aforementioned changes showed they are 

caused by anthropogenic influences (Hegerl et al., 2007). The most recent 5th 

Assessment Report by the Intergovernmental Panel on Climate Change (IPCC) noted 

that the human influence on the climate system is clear, with anthropogenic emissions of 

greenhouse gasses at the highest point in history, and that recent climate changes have 

widespread impacts both on human and natural systems (IPCC, 2014). For these reasons, 

it is imperative that we have a rigorous understanding of the climate system. 
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1.2. Importance of ice cloud characterization/measurements 

Ice clouds account for significant uncertainties in our understanding of the 

current climate as well as our ability to predict future changes. In part, this is because 

they have unique microphysical (e.g., cloud optical thickness, ice particle shape/size) 

and macrophysical (e.g., cloud top height/temperature, total ice mass, cloud horizontal 

extent) properties (Liou, 1986). While liquid water is sometimes present, ice clouds are 

primarily composed of ice particles which occur in very complex shapes and 

consequently increase the difficulty of modeling studies. Also distinct to ice clouds is 

their location. Their high altitude contributes to their differing radiative properties, as 

compared to other clouds. Because of these inherent difficulties in modeling ice clouds, 

they continue to be an ongoing focus of atmospheric remote sensing (Xie et al., 2011).  

Although it is well documented that ice clouds modulate the Earth’s radiative 

budget, the overall impact ice clouds have on the climate system remains unclear. One 

difficulty in discerning the net effect of ice clouds on the Earth’s energy budget is their 

large spatiotemporal variability. Ice clouds cover at least 20% of the Earth at any given 

moment, and up to 60 – 70% in the tropics (Buehler et al., 2007). This variability, 

coupled with their unique microphysical properties, yields a strong but conflicting 

influence on the radiation budget. Ice clouds contribute to warming of the atmosphere 

through the absorption and re-emission of outgoing longwave infrared radiation, referred 

to as the greenhouse effect. Conversely, ice clouds reflect incoming shortwave radiation, 

consequently cooling the atmosphere. This is referred to as the albedo effect. Thus, the 

net radiative effect of ice clouds is a function of their macrophysical and microphysical 
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properties (Liou, 1986; Ramaswamy and Ramanathan, 1989). Therefore, a holistic 

understanding of these ice cloud properties is paramount to achieve the robust modeling 

necessary to accurately quantify their net radiative effect, and subsequently understand 

their current and future climactic impact.  

1.3. Representation of ice clouds in climate models 

As previously mentioned, ice clouds can have opposing impacts on the Earth’s 

radiation budget by means of the greenhouse and albedo effects, and these mechanisms 

account for a significant source of uncertainty in modeling and estimating climate 

sensitivity. The net magnitude and sign of these feedbacks in global climate models 

(GCMs) are almost exclusively determined by model assumptions (Stephens, 2005). 

Clouds in GCMs can be generally described by four factors or properties, all of which 

should be realistically represented: cloud cover, cloud optical thickness, cloud water 

mass, and cloud particle sizes. Therefore, to successfully model ice clouds for radiation 

budget considerations, we need independent and accurate knowledge of the above 

properties, which serve as model tuning parameters.  

A particular parameter of importance is cloud ice mass per unit volume of air, 

called ice water content (IWC), or its counterpart integrated through the depth of the 

cloud, referred to as ice water path (IWP). There exist significant discrepancies in 

IWC/IWP among GCMs, which can differ by as much as an order of magnitude, 

particularly in the tropics (John and Soden, 2006; Waliser et al., 2009; Eliasson et al., 

2011; Li et al., 2012). This is highlighted in Fig. 1.1 taken from John and Soden (2006) 

(left panel) and Eliasson el al. (2011) (right panel), which both show zonal averages of 
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IWP for different climate models. These inter-model discrepancies are chiefly a function 

of differing model assumptions or parameterizations regarding the representation of ice 

cloud microphysical and optical properties. Microphysical processes in ice clouds are 

complex and have significant variation in space and time, and consequently those 

endeavoring to model them must make a trade-off between computational expense and 

the degree to which they include physically realistic ice cloud processes. An important 

objective for climate modeling is to correctly model the energy budget. However, our 

current understanding of clouds is insufficient, and consequently balancing the energy 

budget is often detrimental to the realism of the modeled cloudiness. Until we have 

significantly improved our understanding of cloud behavior, the bulk amount of cloud is 

used as a prognostic variable (Sundqvist, 2002). 

 

 
Figure 1.1: Zonal annual mean IWP from various climate models in IPCC AR4 data archive. 
Left: The climatology of zonal annual mean IWP from various climate models in the IPCC AR4 
data archive. From John and Soden (2006). Right: Zonal averages of IWP for climate models 
from 100 years of monthly mean data. Reprinted from Eliasson et al., 2011. 
 



 

 

 

5 

 There are several issues models must overcome concerning cirrus clouds. For 

instance, models face problems generating ice clouds because the processes which 

generate them are poorly resolved. This is especially the case in the tropics, where 

synoptic scale water vapor and cirrus are initially produced from microscale processes. 

These processes must be parameterized, which leads to large uncertainties (DelGenio, 

2002). There are additional issues arising not only from the generation of ice clouds, but 

also the vertical transport of water vapor and formation of ice cloud particles. The 

former is an issue of vertical resolution (i.e., too few atmospheric layers). The latter is a 

function of relative humidity and assumptions regarding ice/cloud condensation nuclei 

(i.e., aerosol content). Further details regarding the shortcomings of the representation of 

cirrus clouds in models are beyond the scope of this thesis, and the reader is directed to 

DelGenio (2002) and references therein. 

It logically follows that in order to minimize the uncertainties associated with 

cirrus clouds in climate models, the current necessary assumptions (e.g., ice particle size 

and mass) must be constrained by long term global measurements, or a climatology, of 

ice cloud characteristics. However, studies such as that conducted by Waliser et al. 

(2009) emphasize the deficiency of available cloud property measurements, which can 

be used to constrain the models. While there exist global and continuous datasets of 

satellite retrieved cloud properties, using them to constrain or validate climate models is 

far from trivial for many reasons (Eliasson et al., 2011). The inconsistency of ice mass 

among models and difficulty in validating ice mass in models and reanalyses using 

satellite observations is highlighted in Fig. 1.2, taken from Li et al. (2012). The figure 
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shows the vertical distribution of ice mass in terms of cloud ice water content (CIWC) 

and total ice water content (TIWC), from models and reanalyses (Fig. 1.2a-s) that 

specifically provide output on cloud ice. From the figure it is evident that some models 

capture similar magnitudes of IWC but fail to represent the spatial distribution. For 

example, the two GFDL models (Fig. 1.2n-o) both capture the ITCZ in tropical regions 

but show a significant underestimation of ice mass in the extratropical storm tracks. 

Observations are also provided in Fig. 1.2t-w for comparison to the models.  

 

 
Figure 1.2: Zonally averaged annual mean CIWC from GCM simulations in CMIP5 (a-m). Also 
shown is TIWC from GFDL (n) CM3 and (o) AM3, CIWC from (p) UCLA CGCM, (q) NASA 
GEOS5, (r) ECMWF-Interim reanalysis, (s) MERRA reanalyses as well as the (t) ensemble-
mean and (w) observed estimate standard deviation of four CIWP observed estimates. Reprinted 
from Li et al., 2012. 
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A primary obstacle in using satellite retrieved cloud properties to validate and 

constrain models is actually the definition of IWP and the treatment of clouds and 

precipitation in models, which explicitly separate ice cloud particles into precipitating 

particles and suspended particles. Conversely, retrieved IWP typically includes both 

suspended and precipitating particles (Waliser et al., 2009). Although satellite derived 

IWPs are defined in the same fashion, there are significant differences among existing 

datasets. These differences arise from differing characteristics inherent in satellite 

retrievals, such as the portion of the electromagnetic spectrum from which the 

measurements are taken (i.e., microwave to visible), active versus passive measuring, the 

viewing angle (i.e., nadir versus limb), and microphysical assumptions (i.e., ice particle 

shape and size distribution). Because there are fundamental differences in measurement 

techniques, they exhibit sensitivity to distinct parts of the cloud column. 

Notwithstanding the differing definitions of IWP between models and satellite retrievals, 

if there is a gap in sensitivity to a particular part of the cloud column or cloud 

microphysical conditions, observation to model comparisons will continue to be 

ambiguous. Therefore, we must ensure that any existing observational gaps in ice cloud 

sensitivity are filled so that we have a more holistic representation of global ice cloud 

characteristics in which to validate and constrain model IWP. Evidence for the existence 

of such a gap and the need for additional observations to fill it is provided in subsequent 

sections. 
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1.4. Satellite remote sensing of ice clouds 

Observing Earth from space has been a significant motivator for launching 

satellites ever since the first successful weather satellite (Television InfraRed 

Observation Satellite, TIROS) was launched in 1960 (Stroud 1960). Since then, there 

have been numerous satellites launched for myriad applications, but all with the same 

general goal of sensing (i.e., observing) the Earth from space. Scientists and scholars 

have fervently analyzed these observations (or measurements) and sought to extract 

information from them to better understand atmospheric, terrestrial, and oceanic 

properties. Satellite measurements are now a critical tool by which we can glean 

information on the world around us, and current continuous monitoring has facilitated 

substantial advancements in our understanding of weather processes and the climate 

system. Furthermore, global remote sensing provides an important constraint on 

parameterizations used in models for both weather and climate applications.  

In the most general sense, remote sensing hinges on our understanding of 

electromagnetic radiation and the manner in which it interacts with various constituents 

in the Earth-atmosphere system. More specifically in the case of using passive satellite 

remote sensing to infer cloud property information, satellites detect radiation of a 

particular wavelength (or frequency) that is then combined with some known physics of 

the objects of interest (e.g., ice clouds), and from the two we can infer something about 

certain properties of these objects (e.g., cloud ice mass). Although this inference, or 

retrieval, of cirrus cloud properties relies on several assumptions which are briefly 

mentioned below, we can identify and estimate the properties of cirrus clouds and clouds 
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in general from satellite measurements using two approaches: active and passive remote 

sensing. The discussion of remote sensing provided here only extends to passive remote 

sensing, and therefore is not a comprehensive overview of satellite remote sensing. 

Remote sensing based on wavelengths from the visible to the microwave have 

been used to observe and infer ice cloud properties for decades now. Numerous past 

studies utilized measurements from the ground, airplanes, and satellites to characterize 

ice cloud microphysical and radiative properties. A detailed discussion of how ice clouds 

interact with atmospheric radiation is provided in Chapter 2. Regardless of the 

measurement type and retrieval technique, it can be challenging to infer even the most 

basic physical ice cloud parameters, such as ice mass and particle size distribution (PSD) 

from remote sensing measurements. A fundamental reason this is the case is because 

there is no analytical solution to the radiative transfer equation (introduced in Chapter 3). 

Even if this were not the case it still relies on a number of assumptions, such as the 

presence of local thermodynamic equilibrium (LTE), that radiation is monochromatic 

(i.e., at one wavelength/frequency), that scattering of radiation by atmospheric media is 

elastic (i.e., no change in wavelength/frequency with scattering), and that the cloud is 

vertically and horizontally homogeneous. Assumptions notwithstanding, the inversion 

from the measurements to cloud properties (retrieval) can also be problematic. For 

example, the inversion can be an ill-posed problem where you have too many unknowns 

and not enough measurements. This problem is discussed in greater detail in Chapter 4.  

The aforementioned difficulties of relating satellite measurements to ice cloud 

properties are more general and extend to other remote sensing applications. There are 
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also complications more specifically related to inferring even basic physical properties 

of ice clouds, such as ice mass and PSD. One concern is that an instrument measuring 

radiation in a specific area of the electromagnetic spectrum is the most sensitive to ice 

particle sizes proportionate to the wavelengths used. The natural variability of ice 

particle size ranges from µm to cm, so it follows that using measurements from 

wavelengths most sensitive to only a discrete subset of the PSD can lead to uncertainties 

in retrieved properties. For example, if one is using visible, infrared, and millimeter 

wave measurements (i.e., sensitive to the ends of the PSD), it follows that inferred ice 

mass from these measurements would be erroneous. More simply put, in order to deduce 

ice mass from measurements we need assumptions on the complete PSD, and if our 

measurements can only “see” a particular portion of the PSD then our inferred ice mass 

is not representative of the full PSD of ice particles within the cloud (Rydberg et al., 

2007). 

1.5. Scope of this research and thesis objectives 

 The overarching goal of this work is to better understand the interaction of sub-

mm radiation with ice clouds, and subsequently how observations in this spectral region 

can be leveraged to improve ice cloud property retrievals for the purpose of constraining 

and/or validating these parameters within models. The primary focus is on improving 

quantification of ice cloud properties in the tropics, particularly the column density of 

ice, or IWP, from simulated spaceborne measurements in the sub-mm spectral region, 

since models and existing measurements can vary by as much as an order of magnitude. 

As high frequency sub-millimeter microwave (frequencies greater than ~300 GHz) 
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spaceborne measurements are not yet available, the strategy to accomplish the aims of 

this work involves generating physically representative synthetic data with the aid of a 

radiative transfer simulator. Furthermore, we conduct a series of numerical experiments 

concerning the sensitivity of sub-mm radiation to various ice cloud properties, with an 

emphasis on polarization signals due to ice clouds, in order to select the most appropriate 

sensing frequencies. With insight from these experiments, we develop an optimal 

estimation-based inversion framework suitable for nonlinear problems in order to 

reliably infer ice cloud properties from our synthetic data.  

This work is intended to provide insights into the characterization of ice cloud 

properties with sub-mm spaceborne measurements for the benefit of upcoming launches 

of sub-mm radiometers by NASA, as well as other international agencies. More broadly, 

the research presented here aims to contribute to one of NASA’s overarching goals in 

Earth Science: advance the understanding of the change in Earth’s radiation 

balance…that result from changes in atmospheric composition.   

 This thesis is organized as follows: Chapter 2 provides a brief overview of ice 

cloud observations in the sub-mm spectral region, as well as physical insights into the 

interaction of sub-mm radiation with ice clouds. This chapter also introduces the 

polarization of sub-mm radiation scattered by ice clouds.  

 Chapter 3 presents a brief discussion of the theoretical background of scattering, 

formally defines polarization and introduces the concept of the Stokes vectors. This 

chapter also defines the single scattering properties and includes a brief overview of the 

vector radiative transfer equation.  
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 Chapter 4 introduces the radiative transfer simulator used as the forward model 

and describes the setup in the context of this work. This chapter also includes 

discussions of channel selection, the polarization signal due to ice clouds, and the 

methods for generating synthetic data. Lastly, it outlines the optimal estimation-based 

retrieval framework and introduces the concept of information content.  

 Chapter 5 presents some of the aforementioned numerical experiments to 

demonstrate the sensitivity of sub-mm radiances to properties of cloud ice particles, such 

as the refractive index and shape.  

 Chapter 6 provides more rigorous discussion on the polarization signals of ice 

clouds in the sub-mm spectral region in the context of ice cloud property retrievals. This 

chapter also details how ice particle orientation impacts cloud polarization signals and 

discusses the potential of inferring particle orientation from polarized spaceborne 

measurements.  

 Chapter 7 demonstrates and compares ice cloud property retrievals for various 

sets of sub-mm and IR channels, both with and without including polarized 

measurements.  

 Chapter 8 presents the overall summary and conclusions of this thesis, 

particularly in the context of the stated aims and goals of this research. Thoughts on the 

future of sub-mm remote sensing of ice cloud properties are also presented in brief.   
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2. REMOTE SENSING 

 

2.1. Introduction 

The discussion presented in Chapter 1 emphasized the importance of providing a 

climatology of global remotely sensed ice cloud properties to constrain and validate 

climate models. There are many existing remote sensing techniques which operate at 

wavelengths from the visible to microwave that have been used to fill this need. 

However, as briefly mentioned in the previous chapter, not all measurement wavelengths 

are sensitive to the same size of particles in the cloud, or even the same portions of the 

cloud. The two previous statements are demonstrated in Fig. 2.1, which combines 

figures from Waliser et al. (2009) and Eliasson et al. (2011) and shows the various 

measurement methods for estimated cloud ice water path (IWP) as well as the vertical 

location in the cloud in which these measurement techniques exhibit the highest 

sensitivity.   

As is evident from the right panel of Fig. 2.1, techniques developed to infer ice 

cloud properties in the infrared and visible (IR+VIS) are sensitive to the uppermost layer 

of thick clouds. Previous studies have shown that these techniques are reliable for thin 

ice clouds but tend to saturate for moderate to large amounts of cloud ice (Wu et al., 

2008). An advantage of active measurements is that they can provide information on the 

vertical profile, however they only provide limited spatial coverage. For example, active 

visible techniques such as the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) have a footprint of 333 m (Winkler et al., 2010), and active microwave 
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techniques (RADAR) such as the CloudSat radar have a footprint of 1.4 km (Stephens et 

al., 2008). It is also evident from the figure that lidar is primarily applicable to thin 

clouds. Conversely, passive and active microwave measurements can penetrate thick 

clouds and provide information on the vertical structure of ice within the cloud. This is 

because the wavelengths in the microwave spectrum are roughly proportional to the 

sizes of frozen hydrometeors and are sensitive to ice particles (Wu et al., 2008). 

However, current passive spaceborne microwave instruments are confined to frequencies 

less than 190 GHz (wavelengths greater than ~1.5 mm) and are therefore most sensitive 

to large frozen hydrometeors such as snow, and much less sensitive to small ice 

particles.  

 

 
Figure 2.1: Diagram illustrating ice water content/ice water path (IWC/IWP) measurement 
methods (left). Reprinted from Waliser et al., 2009. Schematic figure of a thick cloud, where 
columns indicate approximately where in the vertical cloud the different measurements are 
sensitive (right). Reprinted from Eliasson et al., 2011.  
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Due to the significant differences in characteristics and sensitivities of the 

techniques mentioned above, it is reasonable to assume that they would provide different 

values of IWP. This large variance in estimated IWP is shown in Fig. 2.2, taken from 

Eliasson et al. (2011), which shows the zonally averaged IWP over oceans for several 

different satellite datasets. When comparing this figure to Fig. 1.2, you can see there is 

more consistency in IWP among observations than models, but the observed values still 

differ significantly. As these differences increase, so does the difficulty in using them to 

constrain and validate model output. It is important to note here the difficulty in 

comparing satellite datasets of retrieved IWP, which is in large part due to the 

uncertainty in estimating the cloud top height and base from these retrievals. Based on 

the previous discussion of the relation of particle size and wavelength used to the 

particle’s scattering properties, this should be no surprise (i.e., large wavelengths have 

difficulty detecting thin cirrus clouds and visible/infrared wavelengths detect more thin 

cirrus but saturate for thick clouds).  
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Figure 2.2: Zonally averaged IWP of satellite datasets over ocean. Date range is July 2006 to 
April 2008. The grey shaded area represents an uncertainty interval, estimated to be 40% 
(Heymsfield et al., 2008). Reprinted from Eliasson et al., 2011. 
 

There are additional shortcomings to techniques leveraging the aforementioned 

spectral ranges. For example, IWP products derived using measured reflected solar 

radiation are only applicable during the daytime, have high sensitivity only to particles at 

the top of the cloud, and saturate for moderate amounts of cloud ice. Thermal infrared 

methods are sensitive to larger particle sizes and IWP, but still saturate for clouds with 

moderate optical thickness and IWPs. In contrast, current active and passive microwave 

methods are insensitive to optically thin clouds (i.e., smaller particles and lower IWP) 

(Jiminez et al., 2007). Thus, our existing remote sensing measurements utilizing the 

visible, infrared, and microwave (e.g., less than 190 GHz (~ 1.5 mm) passive and 94 

GHz (~3 mm) active) spectral regions leave a gap in sensitivity between infrared (small 

ice particles) and microwave (large ice particles). Furthermore, as previously mentioned 

if we use measurements that are only sensitive to a discrete portion of the PSD, then the 
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estimated ice mass will only be representative of this portion of the PSD. Therefore, this 

gap in sensitivity between small and large ice particles also produces a lack of sensitivity 

to moderate IWP values (e.g., ~100 – 200 g/m2). In order to obtain the necessary 

globally retrieved ice cloud parameters to constrain and validate the models, we need 

additional measurements to fill this gap in ice cloud sensitivity.  

2.2. Sub-mm observations of ice clouds 

Previous studies have investigated the performance of various subsets of sub-

millimeter (sub-mm) measurements to fill the gap in ice cloud sensitivity (Gasiewski, 

1992; Evans and Stephens, 1995a, b; Evans et al., 1998, 1999, Maio et al., 2002). For the 

purpose of observing high ice clouds with smaller particles, the Submillimeter-Wave 

Cloud Ice Radiometer (SWCIR) was developed by JPL to fly on the NASA DC-8 and 

observe cloud ice using channel frequencies up to 643 GHz. A study by Evans et al. 

(2002) demonstrated that the retrieval algorithm developed for SWCIR had an overall 

median retrieval errors of ~30% for IWP and ~15% for median mass equivalent sphere 

diameter. A subsequent sub-mm sensor, the Compact Scanning Submillimeter Imaging 

Radiometer (CoSSIR), was deployed during the Cirrus Regional Study of Tropical 

Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) 

campaign in 2002. CoSSIR utilized a combination of mm and sub-mm wave channels up 

to 640 GHz. While the sub-mm channels were noisier than expected, which led to poorer 

sensitivity to lower IWP clouds, the observations of CoSSIR further confirmed that the 

higher frequency sub-mm channels had an increased sensitivity to ice particle size than 

their lower frequency counterparts. An additional result of this study was the suggestion 
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of including an 874 GHz channel to improve the sensitivity to ice clouds comprised of 

smaller ice particles. 

Although the above instruments are airborne, NASA has been making a 

significant effort for decades to advance spaceborne sub-mm technologies for remote 

sensing of ice clouds. Recently, NASA leveraged emerging CubeSat opportunities to 

develop IceCube, which is an 883 GHz radiometer aboard a 3U CubeSat that was 

launched from the International Space Station (Wu et al., 2019). IceCube produced the 

first global map of IWP from a spaceborne nadir sub-mm sensor. NASA is also funding 

a follow up mission SWIRP: Compact Submm-Wave and LWIR Polarimeters, which 

will use three channels in the mm (220 GHz), sub-mm (323, 424, 680 GHz), and IR (12 

µm) bands. It is necessary to mention that sub-mm spaceborne measurements (above 

200 GHz) are not entirely new. Several limb sounders have employed sub-mm 

frequencies around 600 GHz to observe ice clouds, such as the Microwave Limb 

Sounder aboard the Aura satellite (Wu et al., 2009), the Odin Sub-Millimetre 

Radiometer (Odin-SMR; Murtagh et al., 2002), and the Superconducting Submillimeter-

Wave Limb-Emission Sounder (SMILES; Kikuchi et al., 2010) instruments. Limb 

viewing instruments however are beyond the scope of this work and more details can be 

obtained in the references above.  

There are additional noteworthy studies which focused on sub-mm radiometry, 

such as that by Di Michele and Bauer (2006) which explored channels from 5 to 200 

GHz and determined that suitable frequency bands differ for rain over land, clouds over 

ocean, and snow over land and ocean. Jiminez et al. (2007) took a different approach and 
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investigated an instrument that employed measurements around water vapor lines (183, 

325, and 448 GHz) and window channels (234, 664, and 874 GHz). The benefits of sub-

mm combined with previous theoretical investigations and successful field campaigns 

have led organizations such as the European Organisation for the Exploitation of 

Meteorological Satellites (EUMETSAT) to explore and plan missions, namely the near 

future launch of the Meteorological Operational Satellite – Second Generation (MetOp-

SG) with the sub-mm Ice Cloud Imager (ICI) (Buehler et al., 2012; Liu et al., 2018; 

Eriksson et al., 2020c). NASA has pushed the state of the art of spaceborne sub-mm 

measurements through sensors such as the aforementioned IceCube and follow up 

mission SWIRP.  

2.3. Ice cloud signals in the sub-mm spectral range 

 Intuitively, to fill the gap between ice cloud particle size sensitivities between 

infrared (small particles) and passive/active microwave measurements (large particles) 

requires exploration of observations that are higher frequency (smaller wavelength) than 

our current passive microwave radiometers. The push to higher frequencies is also 

motivated by the weak scattering signals at frequencies lower than 94 GHz. As 

mentioned in the previous section, the benefits of sub-mm wave measurements (from 

~300-1000 GHz) to fill the gap in ice cloud sensitivity have been explored, and led to the 

planning, development, and successful deployment of a spaceborne radiometer (e.g., 

IceCube).  This section highlights the benefits of using measurements in the sub-mm 

spectral region to characterize ice cloud properties and makes the case for their ability to 
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complement existing measurements, thus filling this observational gap in cloud ice and 

providing a more holistic understanding of ice cloud properties.  

 Before noting the benefits of sub-mm measurements, it is necessary to start with 

a discussion of the manner in which sub-mm radiation interacts with ice clouds. As 

mentioned previously, microwaves (passive and active) are capable of penetrating into 

most clouds and provide some information on the vertical structure within the cloud. At 

lower passive microwave frequencies (e.g., less than ~65 GHz), the emission from liquid 

clouds dominates the weak scattering signal, but at higher frequencies the scattering 

effects by ice clouds become significant. This is because the imaginary part of the 

refractive index for pristine ice is much smaller than the real part. As a result, ice 

particles are weak absorbers and subsequently emit little sub-mm radiation, which makes 

the ambient temperature of ice clouds inconsequential to radiometric measurements. It 

then follows that sub-mm radiation primarily interacts with ice particles through 

scattering. Consequently, as upwelling sub-mm radiation (arising from 

absorption/emission of water vapor below the cloud) reaches and interacts with ice 

particles in the cloud, some of the radiation is scattered out of the line of sight of a 

downward viewing spaceborne sensor. This has the effect of reducing the brightness 

temperature (TB) that a spaceborne sensor would measure compared to clear sky.  

Figure 2.3 shows how TB at several sub-mm frequencies changes as a function of 

IWP (left panel) and Deff (right panel). When looking at the left panel, there is a 

monotonic decrease in TB in the two highest sub-mm channels (640 and 874 GHz) as 

IWP increases, meaning there is sensitivity for inferring IWP. However, there is very 
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little sensitivity for the other sub-mm channels to IWP, with 448 GHz showing almost no 

sensitivity. The IR channel has good sensitivity to IWP for values less than ~50 g/m2. 

This decline in sensitivity is due to the increase of optical thickness within the cloud. 

When looking at the right panel, there is significant sensitivity of the two highest 

frequency sub-mm channels to Deff less than ~110 µm. The increase in TB at a particular 

Deff for these two channels is likely due to increased multiple scattering. Therefore, 

certain TBs correspond to two different Deff values. This can be problematic in terms of 

retrieval because there are multi-valued solutions to the inverse problems. At 325 GHz, 

there is good sensitivity to Deff up to ~300 µm. In the IR channel, there is a nice 

monotonic relationship between TB and Deff, but sensitivity is noticeably smaller for 

smaller sized particles. Note, there is no sensitivity exhibited to either IWP or Deff at 448 

GHz and TB remains close to constant and near the clear-sky TB. This hints at the 

possibility of using 448 GHz to glean information on clear-sky TB.  

 

 
Figure 2.3: Sensitivity of TB to IWP and Deff for five sub-mm channels and one IR channel. In 
the left panel Deff  is fixed at 50 µm and in the right panel IWP is fixed at 100 g/m2. 
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Considering a blackbody with roughly the same terrestrial temperature as the 

Earth viewed from space (280 K), the spectral (monochromatic) radiance in W/m2/sr/Hz 

emitted at a microwave wavelength of ~1.54 cm (20 GHz) is approximately ten orders of 

magnitude less (10-10) less than the maximum radiance, which corresponds to a 

wavelength of 10.3 µm. Therefore, it is not practical to express terrestrial radiation in 

Wm-2sr-1Hz-1 and is why it is typically expressed in TB, which is defined as the 

temperature of an equivalent blackbody that would give the same radiance at the 

considered wavelength (Rees, 2001, Chapter 2). For the remainder of this thesis, the 

aforementioned reduction in TB from cloud scattering compared to clear sky is referred 

to as TB depression (∆𝑇𝐵) or cloud induced radiance (Tcir), defined as 

∆𝑻𝑩	(𝐨𝐫	𝑻𝒄𝒊𝒓) = 	𝑻𝑩𝑪𝒍𝒆𝒂𝒓	𝑺𝒌𝒚 − 𝑻𝑩𝑪𝒍𝒐𝒖𝒅𝒚. 	(𝟐. 𝟏) 
  

Figure 2.4 provides a simple illustration of the principle of TB depression and sub-mm 

remote sensing for ice clouds.  

 

 
Figure 2.4: Illustration of TB depression (∆𝑻𝑩) of sub-mm radiation due to ice clouds. 
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Previous studies have demonstrated the usefulness of mm and sub-mm 

measurements to infer ice cloud properties, such as IWP and ice particle effective 

diameter (Deff) (Evans et al., 1999; Wang et al., 2001).  Compared to the visible, infrared 

(IR), and lower frequency microwave spectral ranges, sub-mm wavelengths exhibit 

notable advantages. One such advantage is that the wavelengths in this spectral region 

are comparable to ice particle sizes which account for most of the ice mass in the cloud. 

As a result, the scattering process is in the Rayleigh and Mie regimes, and the extinction 

of ice clouds (i.e., radiometric signal) is primarily related to the volume (or mass) of the 

ice particles and is also sensitive to the ice particle shape and size (Maio et al., 2001). 

Because the effect of the interaction of ice particles with the upwelling radiation 

impinging from below the cloud is to scatter radiation partly out of the line of sight of 

the detector, we see a TB decrease (or ∆𝑇𝐵 increase) as cloud cover increases. This 

relationship between TB depression (∆𝑇𝐵) and the mass of cloud ice (or IWP) is another 

significant benefit of using sub-mm radiometry. The difficulty in relating the ∆𝑇𝐵 to ice 

mass primarily arises in the case of high IWP, where the signal saturates due to increased 

multiple scattering. However, the upwelling radiation does not saturate for most ice 

clouds, meaning that the radiative transfer remains linear (i.e., ∆𝑇𝐵 is proportional to 

IWP). 

Figure 2.5 shows simulations similar to those in Fig. 2.3, except ∆TB is shown in 

the y-axis. Similar patterns are evident in these figures, such as the high sensitivity to 

IWP when IWP is small (< 50 g/m2) for the IR channel until the signal is saturated. 

Again, we see a good relationship between the highest frequency sub-mm channels to 
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IWP, with some saturation occurring when IWP becomes large. In the right panel, there 

is significant sensitivity to Deff for the highest frequency sub-mm channels, but ∆TB 

again reaches a maximum and begins to decrease. Note however, that ∆TB at 325 GHz 

and 12 µm exhibits a mostly monotonic response to Deff and could possibly be used to 

mitigate the multivalued solution problem in the highest sub-mm frequencies.  

 

 
Figure 2.5: Sensitivity of ∆TB to IWP and Deff for five sub-mm channels and one IR channel. In 
the left panel Deff  is fixed at 50 µm and in the right panel IWP is fixed at 100 g/m2. 
 

Lastly, since there is significant water vapor absorption in this frequency range, 

the lower atmosphere is opaque in most cases, meaning that emission from the surface 

and low clouds does not contribute to the upwelling radiation. This simplifies retrievals 

over surfaces with differing emissivity. It is important to mention however, that while in 

general we can imagine the interaction of ice clouds with sub-mm radiation as simply a 

layer of ice resting atop a radiation source, the resultant cloud signal is also a function of 

cloud height. For example, if the conditions are such that the ice cloud altitude is too 
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low, then the lower portion of the cloud will be in the vertical region which is influenced 

by water vapor absorption. This is the so-called water vapor screening effect, and to 

mitigate this we must employ different channels with different sensing heights, or clear 

sky weighting functions.  

Because of these benefits, sub-mm wave measurements have the capacity to 

obtain information from upper tropospheric ice cloud layers and improve the retrieval of 

ice cloud properties. However, even the most ideal measurement systems are incomplete 

without a retrieval system, which necessitates an accurate forward model (i.e., radiative 

transfer solver). The accuracy of the forward model, and consequently the retrieval, 

relies on the quality of necessary assumptions on the microphysical properties of ice 

particles within the cloud. The radiative properties (e.g., cross-sections and phase 

matrix) are contingent on the physical properties of the scattering object. It follows that a 

realistic representation of ice particles within clouds is a significant factor contributing 

to retrieval accuracy. The remainder of this section provides a brief discussion of some 

microphysical properties which significantly influence the radiative (e.g., scattering) 

properties of ice particles, particularly as they relate to the following section on the 

polarization of sub-mm radiation. While it is also necessary to understand the properties 

below for liquid hydrometeors, the following sections are solely concerned with frozen 

hydrometeors in the context of ice cloud remote sensing. A more detailed discussion of 

the single scattering properties of ice particles is provided in Chapter 3. 
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2.3.1. Complex permittivity of ice 

It is necessary to have knowledge of the dielectric properties of ice in order to 

successfully model cloud radiative properties. One such property is the complex 

permittivity, which is a measure of the polarizability of a dielectric object and is equal to 

the square of the particle refractive index. The complex permittivity of pure ice is one of 

the foundational components which determine ice scattering properties. However, it 

depends on many factors and it is therefore challenging to acquire the true value of the 

permittivity of ice particles. A study by Jiang and Wu (2004) developed an empirical 

model based on an existing model and parameterizations for the purpose of analyzing 

Microwave Limb Sounder (MLS) cloud measurements. They demonstrated that for ice 

particles ranging from ~100-300 µm, a 20% uncertainty in the imaginary part of the 

permittivity results in up to ~10% errors in extinction coefficient and single scattering 

albedos, and that only a 5% uncertainty in the real part produces the same magnitude of 

errors. It is important to note that the error decreases as observing frequency increases, 

with the highest frequency (640 GHz) having an error of ~1%. A study by Xie et al., 

(2009) found that absolute variations of brightness temperatures due to uncertainties in 

ice permittivity were more than 1K, although this work focused on millimeter 

microwave frequencies (89-183 GHz). As an additional complication, the refractive 

index of ice is sensitive to temperature in the sub-mm spectral region. Ding et al. (2017) 

demonstrated the sensitivity of ice particle scattering properties in the sub-mm region to 

ice refractive index at different temperatures. In Chapter 5 we present an information 

content-based investigation of the temperature effects on the refractive index, and 
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subsequent contributions to ice cloud property retrieval biases over sub-mm and infrared 

wavelengths.  

2.3.2. Ice particle size distribution 

 The particle size distribution (PSD) provides the number of particles per unit 

volume having a diameter (or radius) D, in the range of D + dD and typically follows 

some known distribution (e.g., gamma or lognormal). It is necessary to assume some 

size distribution of ice particles when modeling their radiative properties. Since the 

scattering capability of an ice particle (or any scattering object) is a function of its size 

and the considered wavelength, it logically follows that variation in the PSD contributes 

to the difficulties in understanding the interaction of radiation with clouds and 

consequently can be a source of significant uncertainties in remote sensing of ice cloud 

properties (Hogan et al., 2006).  

2.3.3. Ice particle shape 

 The shapes of ice particles can be quite complex and vary significantly within 

individual clouds and from cloud to cloud. This  complexity in shape makes 

quantifying ice particle scattering and absorption effects from measured radiation non-

trivial. It has typically been the convention to assume ice particles as spheres for the 

purpose of radiative transfer and retrievals (e.g., Evans et al., 2005). This is due to the 

simplicity of calculating the single scattering properties of spheres compared to irregular 

particles, since these properties are strongly a function of particle shape. However, over 

the last couple of decades, improvements in electromagnetic light scattering calculations 

have allowed for more realistic representations of ice particles, such as plates, hexagonal 
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columns, and aggregates. The computational burden required to compute the single 

scattering properties of more complex irregular shapes (and at different wavelengths) is 

still in most cases quite large even for state-of-the-art supercomputers. Furthermore, 

computing the scattering properties for irregularly shaped ice particles is not something 

that can be achieved on the fly. Fortunately, there exist databases of single scattering 

properties for various irregular shapes which are of substantial benefit to researchers 

without access to such computing facilities (e.g., Yang et al., 2005; Brath et al., 2020). In 

Chapter 5 we investigate how assuming a particular ice particle shape model to represent 

natural ice particles influences particle single scattering properties, and the subsequent 

impact in remote sensing applications of ice cloud properties.  

2.3.4. Ice particle orientation 

 Computing the scattering properties of cloud ice particles depends on the 

dielectric properties of the particles, as well as their shape, size distribution, and 

orientation. Ice particles in clouds are usually irregularly shaped and randomly oriented 

(Noel et al., 2006), but due to aerodynamic forces preferential orientation is possible 

(Noel et al., 2005). Preferential orientations can increase the scattering effects of ice 

particles, and more specifically can enhance polarization signals in passive sub-mm 

measurements (Xie et al., 2012; Defer et al., 2014). Due to the difficulty of computing 

single scattering properties of ice particles with a preferred orientation (e.g., horizontal), 

it is typically the case that particles are assumed to be randomly oriented in remote 

sensing application. However, since ice particles do in some cases exhibit a preferential 

orientation, which influences particle scattering (such as generating halos and arcs) and 
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the polarization of scattered sub-mm radiation, it is important to be cognizant of the 

implications of particle orientation in remote sensing of ice cloud properties. In Chapter 

6 we explore how particle orientation, such as horizontal, impacts simulated polarized 

TBs. 

2.4. Microwave observations of polarized radiation 

As previously presented, higher microwave frequencies (e.g., sub-mm) exhibit 

significant scattering signals from frozen hydrometeors compared to their lower 

frequency counterparts. This often serves to reduce the observed TB and can provide 

information on the properties of ice clouds. How sub-mm radiation interacts with frozen 

hydrometeors (e.g., ice particles) is complicated because it is a function of cloud 

properties, such as the mass of ice and the particle size distribution (PSD), as well as 

properties of the particles, such as their shape, orientation, and dielectric properties. 

Observations show that irregularly shaped ice particles within clouds can possess a 

preferred orientation, which is an important consideration for the transfer of radiation in 

the atmosphere. It is well known that this preferred orientation produces strong 

dichroism effects, and subsequently induces a polarization difference (PD) between 

horizontal and vertical polarization observations (Evans and Stephens, 1995b; Maio et 

al., 2003). Particles polarize incoming polarized radiation due to scattering, and since 

sub-mm radiation interacts with ice particles primarily through scattering, polarization 

considerations are important. In order to simplify radiative transfer and remote sensing 

algorithms, ice particles have usually been assumed to be spherical and randomly 

oriented, and radiation emanating from the cloud was assumed to be unpolarized. 
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However, PD can be combined with TB to provide additional information and further 

constrain retrievals of ice cloud properties. For the purpose of this thesis, we define PD 

as 

𝑃𝐷 = 	𝑇𝐵! − 𝑇𝐵"	, (2.2) 

where subscripts v and h correspond to vertical and horizontal polarization states, 

respectively. A more detailed discussion of polarization signals in the sub-mm spectral 

region due to ice clouds, as well as the value added by polarized measurements to ice 

cloud property retrievals is provided in Chapters 6 and 7.   
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3. SCATTERING AND RADIATIVE TRANSFER THEORY 

 

3.1. Introduction 

Electromagnetic radiation is an important process that facilitates energy transfer 

in the atmosphere, and electromagnetic scattering by particles is important in many 

atmospheric remote sensing applications (Mishchenko et al., 2002; Liou, 2002). More 

specifically, electromagnetic radiation refers to oscillating electric and magnetic fields 

that transport electromagnetic energy as they travel through a medium. The propagation 

of electromagnetic radiation through a medium, such as the Earth’s atmosphere, and the 

interaction with the matter within is described by the theory of atmospheric radiative 

transfer. Radiation can be absorbed, scattered or emitted, as it interacts with atmospheric 

constituents such as gases, aerosols, or hydrometeors. The relative importance of each 

type of interaction depends on the type of particle (e.g., liquid, ice, dust aerosol, etc.) and 

the wavelength of interest within the electromagnetic spectrum.  

As previously mentioned, ice particles typically interact with sub-mm 

electromagnetic radiation through scattering. The importance of incorporating 

polarization into radiative transfer and remote sensing applications in this spectral region 

is first mentioned in Chapter 2 and emphasized further in Chapters 4, 5, and 6. 

Therefore, it is important to provide a general overview of electromagnetic light 

scattering and polarization and describe the single scattering properties necessary for 

these applications. We can further clarify particle scattering electromagnetically if we 

consider the particle as a discrete elementary electric charge. If an oscillating 
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electromagnetic wave impinging on the particle excites the charge such that it oscillates 

with the same frequency as the incident wave, secondary electromagnetic waves will 

radiate in all directions.  In the case of an absorptive particle, energy will be dissipated 

from the incident wave into the particle. Scattering and absorption are both mechanisms 

which reduce the amount of energy from the incoming wave, and the sum of the 

magnitudes of their respective reductions is referred to as extinction.  

 The example above of an electromagnetic wave impinging on and exciting a 

discrete electric charge (particle), or even an aggregate of charges, understates the 

complexity of electromagnetic scattering. In reality, the secondary waves that are the 

products of each oscillating charge also interact with and excite other nearby charges. 

Superimposing the secondary waves in order to quantify the total scattering field now 

becomes significantly more complicated because we must account for the phase 

differences of the waves, which are a function of the particle and the configuration of the 

charges comprising it (Mishchenko et al., 2002). Therefore, it is impractical to compute 

the scattered field by superimposing all secondary waves produced by these charges. A 

much more tractable approach is to consider a macroscopic particle that is comprised of 

elementary charges with some particular density and refractive index. We can then solve 

the Maxwell equations for this new macroscopic electromagnetic field to calculate the 

scattered field.    

 Now we have a formalism in which to compute scattered radiation for a single 

particle or an ensemble comprised of a limited number of elements. However, in reality 

it is often the case that radiation is scattered by large groups of particles with significant 
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spatiotemporal variability, for instance clouds of ice crystals, water droplets, or aerosol 

particles. As mentioned above, a collection of particles can be treated as a fixed 

ensemble at a given time. However, since measurement time is finite, we actually 

measure a statistical average over a substantial number of different ensemble 

realizations.  

Solving the Maxwell equations in this fashion is not computationally feasible, so 

we must make approximations or assumptions to significantly simplify the problem. Let 

us assume that particles within the cloud are sufficiently distant from one another such 

that their scattering is independent of one another, e.g., each particle scatters as if the 

others did not exist. We could then approximate the scattered field as the sum of the 

fields generated by individual particles. This is the so-called single scattering 

approximation. If the assumption holds that each particle is randomly positioned, 

sufficiently distant from all other particles (i.e., in the far field zone) and that we can 

ignore phase interferences (i.e., incoherent scattering), then the scattering (and 

absorption) properties of a small volume element of particles can be computed by 

summing the respective properties from all particles within that volume.  

 The single scattering approximation is not valid when the medium contains a 

large number of particles. In this case we must consider the interaction of each particle 

with the incident radiation as well as radiation scattered by other particles, i.e., each 

particle scatters radiation which has already been scattered by another particle. This is 

referred to as multiple scattering and the approach here is to solve the radiative transfer 

equation. It is important to note that this approach still assumes scattering particles are 
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randomly positioned and are sufficiently separated such that extinction (scattering plus 

absorption) within a volume element can be calculated by incoherently adding the 

respective properties of all particles within this volume.  

This chapter provides the theoretical background and definitions involving 

scattering and polarization and forms a basis for the introduction of the radiative transfer 

equation discussed in section 3.5, which is necessary to understand simulations and 

models presented in subsequent chapters. Regarding some concepts in this chapter, such 

as methods to compute the single scattering properties, detailed derivations are beyond 

the scope and framework of this thesis, and in these cases qualitative explanations are 

provided. The scattering theory presented here is primarily referenced from Mishchenko 

et al. (2002), Liou and Yang (2016), and detailed derivations related to concepts in this 

chapter can be found in these references.  

3.2. Scattering theory 

Light is made up of electromagnetic waves which propagate at the speed of light 

c, as governed by the fundamental Maxwell’s equations. Electromagnetic radiation can 

be described by properties such as phase 𝛿, intensity I and polarization, and is 

characterized by electric and magnetic vectors E and H, respectively. If the vibration of 

the electric vector E is focused on a particular plane along the propagation direction, it 

can be said that the light is polarized in that direction. By leveraging the above 

properties, we can gain information through remote sensing. Note that the particular 

quantity to be exploited is a function of the measurement technique and spectral region.  
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 Let’s consider monochromatic (single wavelength) electromagnetic waves that 

propagate in the z direction, and express them in terms of the complex valued electric 

field components 

𝐄! = e!𝐸!#e$%('($)*$+!)	 (3.1)  

𝐄" = e"𝐸"#e$%('($)*$+") (3.2) 

where k is the wavenumber, t is the time, 𝜔 is the angular frequency, ev,h are the 

amplitudes, and 𝛿!," denote the phases. If the wave encounters a particle along its 

propagation path, there are two physical mechanisms which can remove energy from the 

incident wave, absorption and scattering. This removal, or attenuation, of energy from 

the incident wave is referred to as extinction and is defined as the sum of the energy 

attenuated due to both scattering and absorption. If the wave is propagating through a 

non-absorbing medium, scattering will be the sole mechanism of extinction. A 

discussion of absorption is presented in later sections.  

How radiation incident on a scattering object is scattered depends on the 

wavelength/frequency as well as inherent properties of the scattering object, such as the 

size, shape, orientation, and refractive index. Here we introduce an important parameter 

called the size parameter that describes the relationship between the size of the 

scattering object and the wavelength of the incident radiation, defined as 

𝑥 =
2𝜋𝑟
𝜆 	 (3.3) 

where r is the radius of the scattering object and 𝜆 is the wavelength. As mentioned 

above, scattering processes lead to extinction of energy contained in the incident wave. 
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Furthermore, all scattering processes induce polarization of incoming light. Light is 

considered polarized in a certain direction when the vibration of the electric vector, E in 

Eqns. 3.1 and 3.2, is concentrated in that direction along the propagation direction. Thus, 

we can define the polarization direction as the direction of the electric vector. For 

example, the v and h subscripts in these equations denote vertical and horizontal 

polarization, respectively. More specifically, the electric field vector is decomposed into 

two components, Ev and Eh, which are orthogonal to each other (i.e., parallel and 

perpendicular) in relation to an arbitrary reference plane through the direction of 

propagation z. In addition to the direction of vibration of the electric vector, we need to 

consider the phase difference between the two components of this vector to further 

describe the polarization of light as possibly circular or elliptical polarization. The phase 

difference between the two waves and the relative magnitudes of Ev0 and Eh0 (the 

vertical and horizontal electric field components at time 0) in the above equations 

determines the polarization. More simply, we can now quantitatively say that the 

polarization is defined by the orientation of the electric field and the extent to which it 

varies with time.  

 In addition to polarization, to gain a more holistic understanding of scattering 

processes we need to define two more terms, permittivity and permeability. Together, 

they are complex values which characterize the response in a medium to external electric 

and magnetic fields, respectively. In order to relate these properties to the complex 

valued electric field components (shown in the equations above), it is necessary to 

provide a few other relations. The angular frequency 𝜔 is related to the cyclical 
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frequency 𝜈 as 𝜈 = 2𝜋𝜔 and the wavenumber 𝑘 is related to the wavelength 𝜆 as 𝑘 =

	2𝜋 𝜆⁄ . Additionally, it holds that the wavenumber 𝑘 = '.
/
= '

/ √𝜖0𝜇0 , where the 

refractive index 𝑛 = √𝜖0𝜇0, the relative permittivity is 𝜖0, and the relative permeability 

of the medium is 𝜇0. As mentioned above, the permeability and permittivity can take on 

complex values, and consequently the refractive index and wavenumber can also be 

complex-valued, i.e., 𝑛 = 𝑛0 + 𝑖𝑛% and 𝑘 = 𝑘0 + 𝑖𝑘% = (𝑛0 + 𝑖𝑛%)
'
/
. From this, we can 

write Eqns. 3.1 and 3.2 as follows: 

𝐄! = e!𝐸!#e$)#*e$%('($)$*$+!)	 (3.4) 

𝐄" = e"𝐸"#e$)#*e$%('($)$*$+")	. (3.5) 

It is evident from these equations that the wave now propagates at a different speed. 

Furthermore, there is now an attenuating exponential which is dependent on the 

magnitude of the imaginary refractive index 𝑛%. This equation highlights the impact of 

refractive index on scattering calculations for both ice and liquid hydrometeors, which 

are needed in remote sensing applications. It is important to note that the refractive index 

(for liquid water and ice) varies significantly with frequency. Furthermore, in the 

microwave spectral region, as is used in this work, there is a considerable dependence of 

the refractive index on temperature (Ding et al., 2017). This dependence, and the 

subsequent impact on radiative transfer calculations and retrievals, is discussed in more 

detail in Chapter 5.  

3.3. Definition of polarization and the Stokes Vector 

 In the previous section we defined polarization in terms of the relative 

magnitudes of the amplitudes and phase differences of the electric field. However, 
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typical instruments used in remote sensing are not capable of measuring electric or 

magnetic fields. Therefore, to understand polarization through measurements, we have to 

define it in terms of something instruments can measure, i.e., intensity. For this, we 

define the Stokes vector: 

𝐈 = J

𝐼
𝑄
𝑈
𝑉

O =
1
2P

𝜖#
𝜇#
⎣
⎢
⎢
⎡
𝐸#!𝐸#!∗ + 𝐸#"𝐸#"∗
𝐸#!𝐸#!∗ − 𝐸#"𝐸#"∗

−𝐸#!𝐸#"∗ − 𝐸#"𝐸#!∗
𝑖(𝐸#"𝐸#!∗ − 𝐸#!𝐸#"∗ )⎦

⎥
⎥
⎤
	 (3.6) 

where asterisks signify complex conjugation. It is then possible to express the Stokes 

vector as total intensity of an electromagnetic wave, and in terms of the vertical and 

horizontal polarizations: 

𝐼 = 	 𝐼! + 𝐼"	 (3.7) 

𝑄 =	 𝐼! − 𝐼" . (3.8) 

Since we only consider linear polarization in this work, the U and V components are 

omitted. We now have measurable quantities relating to the polarization of 

electromagnetic radiation. 

3.4. Ice particle single scattering properties 

 This section provides a very brief overview of the single scattering properties 

which are necessary to quantify scattering, extinction, and absorption by ice particles. A 

thorough discussion of the various methods available to calculate the single scattering 

properties of ice particles is beyond the scope of this thesis, but a brief description of the 

methods applicable in the sub-mm spectral region is provided in Chapter 5.  
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3.4.1. Phase matrix 

 The transformation of the Stokes vector of an incident wave to that for a 

scattered wave is described by the phase matrix. Every element of the 4 x 4 phase matrix 

is real-valued, has units of area, and depends on the scattering angle (𝜃 from 0 to 2p 

relative to 0° = the propagation direction z) and azimuth angle (𝜙 from 0 to p relative to 

the defined direction of vector x = 0°). For the purpose of light scattering and radiative 

transfer, if no assumptions are made concerning the position (i.e., orientation) or shape 

of the particle, the scattering phase matrix is typically denoted P with the following 

format: 

𝐏 = J

𝑃22 𝑃23 𝑃24 𝑃25
𝑃32 𝑃33 𝑃34 𝑃35
𝑃42 𝑃43 𝑃44 𝑃45
𝑃52 𝑃53 𝑃54 𝑃55

O . (3.9) 

The first element (i.e., phase function P11, or the magnitude or intensity of the 

ray) is usually normalized to unity over the scattering angle sphere (area 4p) as: 

] 𝑑𝜙
36

#

]
𝑃22(𝜃)
4𝜋

sin(𝜃) 𝑑𝜃
6

#
= 1. (3.10) 

It is convenient here to define the asymmetry factor, g, as the first moment of the phase 

function: 

𝑔 =
1
2] 𝑃

2

$2
(𝑐𝑜𝑠𝜃) cos 𝜃𝑑𝑐𝑜𝑠𝜃 (3.11) 

When particles are considered randomly oriented and have a plane of symmetry, we can 

apply the law of reciprocity (van de Hulst, 1957). As a result, we have the following 

relationships between the phase matrix elements: P12 = P21, P13 = -P31, P14 = P41, P23 = -
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P32, P24 = P42, P34 = -P43. Furthermore, we derive the following relationships: P13 = P14 

= P23 = P24 = 0, and P31 = P32 = P41 = P42 = 0 (Liou, 2002). Consequently, there is 

symmetry in the phase matrix such that only six elements are nonzero and different, P11, 

P12, P22, P33, P34, and P44. Therefore, non-spherical particles which are randomly 

oriented and obey the law of reciprocity possess the following phase matrix 

𝐏 = J

𝑃22 𝑃23 0 0
𝑃23 𝑃33 0 0
0 0 𝑃44 𝑃45
0 0 −𝑃45 𝑃55

O . (3.12) 

However, when considering a particle with a preferential azimuthal orientation and there 

is no plane of symmetry, the law of reciprocity cannot be applied, and the full phase 

matrix is required. 

3.4.2. Extinction matrix 

 First, we define the extinction coefficient, 𝛽7, as the product of the mass 

extinction cross section and the density of the particle. The extinction coefficient can 

essentially be thought of as optical depth (𝜏), since the two are related by the following: 

𝜏 = ] 𝛽7
8

9
𝑑𝑧. (3.13) 

Since extinction is simply the sum of scattering and absorption, it logically follows that 

𝛽7 is the sum of the absorption and scattering cross sections. It is convenient here to 

define the single-scattering albedo, 𝜔j, as the ratio of the scattering and extinction 

coefficients, i.e., 

𝜔j =
𝛽:
𝛽7
. (3.14) 



 

 

 

41 

When considering horizontally oriented particles, the extinction coefficient is 

governed by the energy characteristics of the incident beam and its state of polarization, 

or dichroism of the scattering media (Liou, 2002). As a result of dichroism, the 

extinction coefficients corresponding to the Stokes vector are represented by the 4 x 4 

extinction matrix (Liou, 2002). In the special case of the exact forward direction 

(scattering direction 0°), attenuation of incident radiation is expressed by the extinction 

matrix, K. When particles are assumed to be randomly oriented with at least one plane of 

symmetry, the extinction matrix is independent of direction and polarization, and is 

subsequently diagonal. However, when assuming a horizontal particle orientation the 

extinction matrix has only three independent elements and may be written according to 

Mishchenko (1991) as 

𝐊 =

⎣
⎢
⎢
⎢
⎡
𝛽; 𝛽<=> 0 0
𝛽<=> 𝛽7 0 0
0 0 𝛽7 𝛽/<=>
0 0 𝛽/<=> 𝛽7 ⎦

⎥
⎥
⎥
⎤
, (3.15) 

where 𝛽<=> and 𝛽/<=> are the polarized and cross-polarized components of the extinction 

coefficients with respect to the incident Stokes vector. Here we also define extinction 

efficiency, 𝑄79(, as the ratio of the extinction cross section to the average projected area 

of the particle. 

3.4.3. Absorption vector 

 If the temperature of a particle is above absolute zero, it will emit radiation. 

When assuming local thermodynamic equilibrium (LTE), the emissivity of a medium is 

equal to its absorption. The energetic and polarization characteristics of such emitted 
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radiation is described by a four component Stokes emission column vector. For the 

Stokes emission vector, also called the particle absorption vector, we can derive the 

absorption vector as a function of the Planck blackbody radiation (ARTS Theory Guide; 

Eriksson et al., 2020b). To calculate this value, which is required by ARTS, we need 

𝑄79(, (1 − 𝜔j), as well as particle area, volume, density, and intended IWP.  

3.5. Vector radiative transfer equation 

 Under the assumptions of fully elastic scattering and local thermodynamic 

equilibrium, the radiative transfer equation including polarization and multiple scattering 

is: 

d𝐈(𝜈, 𝐫, 𝐧o)
d𝑠 = −𝐊(𝜈, 𝐫, 𝐧o)𝐈(𝜈, 𝐫, 𝐧o) + 𝐚(ν, 𝐫, 𝐧o)𝐵?,<(𝜈, 𝐫) 

+] 𝐙
56

#
(𝜈, 𝐫, 𝐧o, 𝐧o@)𝐈(𝜈, 𝐫, 𝐧o@)d𝐧o@, (3.16) 

where s is the distance along the propagation direction 𝐧o, 𝜈 is the frequency, r is the 

position in the atmosphere (relative to the origin of the coordinate system, generally 

within the scattering particle), Z is the phase matrix, a is the absorption vector, K is the 

extinction matrix, 𝐵?,< is the Planck function of the incident radiation (generally 

sunlight) at atmospheric pressure p, and I is the specific intensity vector. The specific 

intensity vector is a superposition of the Stokes parameters and fully describes the 

incident radiation, e.g., 𝐈 = (I, Q, U, V)A. It is also important to note that K, a, and Z are 

bulk or ensemble averaged quantities. Equation 3.16 describes radiation along a 

particular line of sight and is modulated by the three terms on the right-hand side of the 

equation. The first term is a sink (i.e., the negative sign) and represents attenuation due 
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to extinction. The sources of this attenuation are absorption and scattering out of the line 

of sight. The remaining terms are both source terms, with the second one being a 

blackbody emission source. The third term (second source term) describes radiation 

which is scattered from any direction into the line of sight. It is the primary task of 

radiative transfer models to solve Eq. 3.16. There are many methods to solve this 

equation, and the iterative scattering solver available in ARTS that was used for the 

work presented is described in Chapter 4. 
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4. METHODS 

 

4.1. Atmospheric Radiative Transfer Simulator (ARTS)  

A large amount of research has been devoted to developing dedicated forward 

models (radiative transfer simulators) to simulate satellite radiances for different sensors 

operating in different spectral regions. Radiative transfer models can be described as 

either physical (e.g., line-by-line) or fast models (e.g., Radiative Transfer for TIROS 

Operational Vertical Sounder; RRTOV). Physical models are more computationally 

expensive, although parameterizations can be used to improve speed, but the accuracy 

then depends on the parameterizations. Since this work involves conducting many 

numerical experiments of a hypothetical sub-mm spaceborne radiometer, this study uses 

a physical model, specifically the Atmospheric Radiative Transfer Simulator (ARTS). 

This section provides a general description of ARTS and highlights certain aspects 

which are relevant to the rest of this work but is by no means a comprehensive 

description of ARTS. More details regarding the capabilities of ARTS is presented in 

Buehler et al. (2018). For further information on the usage and underlying theory behind 

ARTS, the reader is directed to the ARTS User Guide (Eriksson et al., 2020a) and ARTS 

Theory Guide (Eriksson et al., 2020b), which are included in the ARTS distribution. 

ARTS is open-source and can be freely downloaded from 

https://www.radiativetransfer.org/getarts/. 

ARTS is a publicly available vector radiative transfer model initially developed 

to deal with passive millimeter (mm) and sub-millimeter (sub-mm) measurements but 
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has since been extended to cover the complete thermal infrared (IR) spectral range 

(Buehler et al., 2018). Since ice clouds primarily scatter sub-mm radiation, it is essential 

to use a model such as ARTS which solves the radiative transfer equation (RTE) 

considering multiple scattering. To achieve the most realistic simulation, a radiative 

transfer model should consider the effects of preferentially oriented non-spherical 

particles, which both serve to polarize upwelling radiation. The treatment of 

polarization, which is implemented in ARTS, requires that the radiative transfer equation 

be solved in full Stokes Vector form and not simply for scalar intensity. 

4.2. Forward model and ARTS setup  

Brightness temperatures of upwelling radiation from ice clouds and for a clear 

sky are simulated using ARTS version 2.2. Auxiliary data describing the atmospheric 

profile and cloud characteristics (e.g., ice particle scattering properties) are input into 

ARTS to simulate all four components of the Stokes Vector with respect to the two 

vertically integrated cloud parameters of interest, ice water path (IWP) and ice particle 

effective diameter (Deff). The following sections provide a brief overview of important 

components of ARTS and how they relate to the forward model employed in this work. 

Finally, since ARTS is a physical model and therefore slower than other models, we 

present some optimizations to improve computation speed.  

4.2.1. Description of the atmosphere 

 ARTS can model the atmosphere with differing dimensionality ranging from 1D 

to 3D. In the 1D case, the atmosphere is considered to be spherically symmetric, 

meaning that there is no latitudinal or longitudinal variation in atmospheric properties 



 

46 

 

(e.g., temperature, water vapor) and these quantities only vary with the vertical pressure 

coordinate. Furthermore, due to the spherical geometry of the 1D case, radiation varies 

only with vertical viewing direction (i.e., viewing zenith angle) and has no azimuthal 

dependence. It is important to note that 1D in this case is simply a naming convention 

chosen for simplicity and convention by the ARTS developers and does not represent a 

true one-dimensional atmosphere. Clouds or clear sky in the 1D case imply a completely 

cloud covered or cloud-free Earth, but this simply means that a satellite pixel views a 

small enough area that when radiation is scattered to another vertical grid column, the 

cloud (or cloud-free) characteristics are the same at the same level. While this is 

obviously unrealistic, it differs little from cloud with a significant horizontal extent (and 

model grid cells or satellite pixels are assumed small enough that sub grid-scale clouds 

average out on a large scale), so there is merit in using a 1D setup to explore the upper 

limit of how ice clouds scatter and polarize upwelling sub-mm radiation. The 1D case is 

used exclusively for the remainder of work presented. A schematic of a 1D atmosphere 

inside ARTS is shown in Fig. 4.1. 
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Figure 4.1: Schematic of a 1D atmosphere in ARTS. Due to the spherically symmetric nature of 
the atmosphere, the radius of the ellipsoid, surface, and all pressure levels are constant 
everywhere. Fields are specified by a value at each pressure level. The cloud box can extend 
either from the surface to a specified pressure level, or between two pressure levels (as shown 
above). The surface must be above the lowermost pressure level, as indicated in this figure. 
Reprinted from ARTS User Guide, 2020. 
 

The gray area in Fig. 4.1 denotes the “Cloud box” which contains the simulated 

cloud and other scattering objects. In order to reduce computational time, scattering 

calculations are limited to the cloud box which is defined vertically by two pressure 

surfaces. The top boundary condition to compute the scattering within the cloud is the 

incoming clear sky radiation. Therefore, it is important to ensure that when determining 

the lower and upper cloud box boundaries, no radiation emanating from the cloud be 

allowed to reenter the cloud box in another location. An example of this would be a case 

in which there is an optically thin layer between the cloud and the ground, and ground 

reflection is significant. To be precisely correct, the cloud box should extend to the 

ground. However, since scattering calculations are only conducted within the cloud box, 

this significantly increases computation time. For the purpose of this work the ground is 

treated as a blackbody (not reflecting radiation), and due to significant water vapor 
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absorption in the sub-mm range, the atmosphere between the cloud and ground is 

optically thick. Consequently, radiation emerging from and reentering the cloud box is 

not a concern in this work. This is beneficial in that the cloud box can be moved away 

from the surface and be much smaller, which reduces computation time for scattering 

calculations. 

4.2.2. Sensor characteristics 

The handling of observation geometry in ARTS is very flexible and can be used 

to effectively simulate different observation geometries and sensor characteristics. 

ARTS requires that both the viewing directions and observed location be specified. The 

observation location is expressed by latitude, longitude, and the geometric altitude. 

Viewing directions are defined by the azimuthal and zenith angles. For the purpose of a 

1D atmosphere, there is no horizontal variation in atmosphere/cloud properties so 

latitude and longitude can be arbitrary, and radiation is only a function of zenith angle, 

so azimuth angle is unimportant. In this study we simulate TBs corresponding to a 

typical conical scanning radiometer with a viewing zenith angle of 53.5˚.   

ARTS has the ability to perform monochromatic pencil beam simulations but can 

also be provided a sensor response function to convolve a spectrum. Since there are 

currently no operational down-looking spaceborne instruments operating at the sub-mm 

frequencies considered in this work, the sensor response function is assumed to be a 

Gaussian centered at the desired frequency with some assumed half width at half 

maximum. Further details of the specific frequencies and wavelengths utilized in this 

work are provided in Section 4.3. 
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4.2.3. Surface properties 

The radiative background is the radiative intensity at a starting point of the 

propagation path that is in the direction of the line of sight. Four possible radiative 

backgrounds exist in ARTS, including space, the surface, the surface of the cloud box, 

and the interior of the cloud box. The radiative background of the surface is the sum of 

surface emission and radiation reflected by the surface. When considering microwave 

frequencies less than 200 GHz, the surface has a significant impact on the upwelling TB. 

However, frequencies greater than 200 GHz have an absorption spectrum which is 

dominated by water vapor lines and continuum absorption. Therefore, the surface 

contribution to upwelling radiation for these frequencies is negligible, except in very dry 

conditions. While emissivity can simply be user specified in ARTS, it does include the 

FAST microwave Emissivity Model version 6 (FASTEM) (Kazumori and English, 

2015), which calculates emissivity based on incidence angle, frequency, and surface 

wind/temperature. Although ice cloud remote sensing in the sub-mm spectral region is 

advantageous because low clouds and the surface do not contribute to the upwelling 

radiation, for simplification and consistency a constant surface emissivity of 0.6 is 

prescribed, which corresponds to ocean surfaces. 

4.2.4. Gas absorption 

Absorption coefficients are obtained in ARTS through a combination of line-by-

line calculations as well as continua and complete absorption models (e.g., Rosenkranz, 

1993; Rosenkranz, 1998). Line-by-line calculations are more accurate, but since the gas 

absorption must be computed at each point along the propagation path, it is much more 



 

50 

 

computationally expensive. The general idea is that the complete models are meant to be 

used alone, and the pure continua are meant to be used in conjunction with explicit 

ARTS line-by-line calculations. To reduce computation time for comparable simulations 

(same absorbing species and volume mixing ratios), ARTS allows for the preparation of 

a gas absorption lookup table. It is also possible to calculate the absorption matrix on-

the-fly within radiative transfer calculations. As previously mentioned, ice particles 

primarily scatter sub-mm radiation and absorption is negligible. Therefore, only gaseous 

absorption is included in this work for the purpose of simulating clear sky and cirrus 

induced brightness temperatures (TBs).  

Gaseous absorbers considered for all sub-mm frequencies in this study are N2, 

O2, and H2O. Water vapor has a strong electric dipole moment and subsequently has a 

significant number of rotational transitions in this spectral region. Absorption due to 

water vapor is computed with the complete absorption model by Rosenkranz (1998), 

which is specially designed to quickly calculate absorption in frequencies from 1-1000 

GHz. The total water vapor absorption computed by the model is described by the sum 

of line and continua absorptions. A complete absorption model is also used to calculate 

the absorption due to diatomic oxygen (O2) (Rosenkranz, 1993). In the case of molecular 

nitrogen, it contains no magnetic or electric dipole moment and shows no rotational 

spectral signal for the microwave frequencies considered in this work. Regardless, 

nitrogen can absorb radiation in this spectral region through collision induced absorption 

(CIA). However, this effect is particularly small compared to absorption due to water 

vapor, so we do not consider CIA for the purpose of this work and simply employ the 
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continua model outlined in Rosenkranz (1993). Further details of the continua and 

complete models, such as line catalogs and line shape functions are beyond the scope of 

this document. For more information, the reader is directed to ARTS Theory and sources 

within.  

 Characterizing gaseous absorption for IR wavelengths requires a substantial 

increase in the number of monochromatic pencil beam calculations compared to the 

microwave spectral region. To accurately determine IR gaseous absorption and 

subsequently radiances, it is necessary to have profiles of atmospheric gases. To reduce 

computation time of IR radiances, we employ a gas absorption lookup table, which 

includes absorption due to H2O, O3, N2O, O2, HNO3, ClO, and N2. There are additional 

methods to reduce the time to simulate IR radiances, as described in section 4.2.6.  

4.2.5. Scattering radiative transfer solver 

Scattering of sub-mm radiation by molecules and aerosols can be neglected, but 

ice clouds primarily scatter in the mm and sub-mm spectral region. This requires the 

radiative transfer equation (RTE) to be solved with the consideration of multiple 

scattering, which ARTS handles in a rigorous manner. ARTS is capable of fully 

polarized radiative transfer calculations, where the polarization state is expressed in 

terms of the Stokes formalism. There are two scattering solvers provided in ARTS, a 

Monte Carlo (MC) and a Discrete Ordinate Iterative (DOIT) solver. In simple terms, the 

DOIT method solves the radiative transfer equation at a number of discrete zenith 

angles, with accuracy dependent on the grid discretization. Although DOIT is 

implemented in ARTS for 1D and 3D atmospheres, it is recommended for use only with 
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1D atmospheres. Therefore, since this study only considers a 1D atmosphere the DOIT 

scattering solver is used exclusively. A brief description of the DOIT scattering solver is 

provided here. Further details concerning DOIT can be found in Chapter 9 of the ARTS 

Theory Guide (Eriksson et al., 2020b) and Emde et al. (2004). 

A schematic of the DOIT method is shown in Fig. 4.2, adapted from ARTS 

Theory. It is important to note that the first guess field (typically clear-sky radiance) can 

be chosen arbitrarily, so by choosing a first guess that is close to the solution the number 

of required iterations can be reduced. A convergence test is performed after each 

iteration and if the difference in the absolute value of all Stokes vector elements for the 

new and old radiation fields is smaller than some user defined limit, then the final 

solution is reached. Therefore, due to the computational burden of iterative methods, 

defining the appropriate convergence criteria is a balance between accuracy and 

computation time. The user can also define differing convergence limits for different 

Stokes Vector components. In this work we adopt a convergence limit of 0.01 K (in 

Rayleigh Jeans brightness temperature) for the first component of the Stokes Vector and 

0.001 K for all other components.  
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Figure 4.2: A schematic of the iterative method in the ARTS DOIT scattering solver. Adapted 
from ARTS Theory Guide, 2020. 
 

 The DOIT method leverages the single scattering approximation, meaning that 

the optical depth for one propagation path is assumed to be much less than 1 and 

subsequently multiple scattering can be ignored along this path step. Users are able to 

define propagation path step lengths, and therefore can select a coarse grid inside the 

cloud box. However, it is important to note that it is incumbent on the user to ensure the 

optical depth, due to scattering along propagation paths, is sufficiently small such that 

the single scattering approximation is valid. The optical depth along a propagation path 

is a function of the single scattering properties of the scattering/absorbing media, with 

the maximum optical depth (𝜏) due to particles defined as 

𝜏BC9 = 〈𝑲〉 ∙ ∆𝑠	, (4.1) 

where 〈𝑲〉 is the ensemble averaged extinction matrix and ∆𝑠 is the length of the 

propagation path step. It is assumed that 𝜏BC9 ≪ 0.05 for all the radiative transfer 

simulations used in this work. Ensuring the optical depth due to particles along the 
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propagation path is sufficiently small (i.e., particle number density is small) allows 

application of the single scattering approximation.  

  When using iterative methods to solve the vector radiative transfer equation, it is 

important to consider the vertical resolution (number of grid points) within the cloud box 

since that is what determines the number of iterations. For example, suppose we assume 

N pressure levels inside the cloud box. Since the radiation field is updated at each grid 

point with consideration only paid to the adjacent grid cells, at least N-1 iterations are 

necessary to propagate scattering effects from lowest levels in the cloud to the top of the 

cloud. Therefore, previous iterative methods suffer when a fine grid resolution is 

required within the cloud to resolve cloud inhomogeneities. As a solution, ARTS 

employs a “sequential update of the radiation field” which divides updates to the 

radiation field into three parts (e.g., down-looking, up-looking, and limb). By using this 

method, the number of iterations no longer depends on how many pressure levels are 

prescribed for the cloud and is now only a function of the cloud optical thickness or 

number of multiple scattering events. Further details concerning the sequential update 

technique are beyond the scope of this thesis and are provided in ARTS Theory. Even 

though this method improves speed when considering high resolution in clouds, 

numerical experiments conducted to determine an optimal vertical cloud resolution show 

that a minimum of ten pressure levels within the cloud is necessary for TB to converge.  

4.2.6. Speed improvements 

The success of operational retrievals relies on a fast forward model which can 

simulate real world measurements. Although it is not a goal of this work to provide an 
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operational ice cloud retrieval algorithm, increased forward model speed significantly 

reduces the computational time to conduct numerical experiments (e.g., sensitivity 

analyses) which are important for algorithm development. The following sections 

highlight some factors which influence forward model computation time, as well as 

techniques that are used to reduce this time.  

4.2.6.1. Zenith angle considerations 

As noted above, DOIT relies on discretization of the scattering field zenith 

angles. The zenith angle is simply the angle between the zenith direction and the desired 

line of sight. It is evident from this statement that the zenith angle thus depends on how 

the zenith (or nadir) is defined. In ARTS, zenith directions are defined to be along the 

line which passes the center of the coordinate system and the point of concern. Fig. 4.3 

provides a schematic definition of zenith and azimuth angles for a particular line of 

sight. From the figure it is evident that zenith angle has a valid range of 0-180° 

depending on if the instrument is down or up-looking. For a nadir (down-looking) 

instrument 𝜃 = 180°. As mentioned previously, for this work we consider the viewing 

zenith angle (VZA) of a typical spaceborne scanning radiometer to be 𝜃 = 53.5°. In 

ARTS, this VZA corresponds to an upward-looking instrument and therefore we must 

adjust the VZA within ARTS to ensure we are modeling the proper viewing geometry.   
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Figure 4.3:A schematic depiction of zenith (𝜽) and azimuth (𝝋) angles. Adapted from ARTS 
User Guide, 2020. 
 

 The accuracy of the DOIT method is largely a function of the discretization of 

the zenith angle. This can be explained by considering the intensity as a function of 

zenith angle. It makes sense that the intensity at 𝜃 = 0° (upward-looking) approaches 

zero while 𝜃 = 180° (downward-looking) provides maximum intensity, and that a 

significant increase of intensity occurs at roughly 𝜃 = 90°. This is because thermal 

emission from the ground and lower atmosphere is considerably larger than that from 

trace gases in upper atmosphere. Since the Stokes Vector at the intersection point of two 

propagation paths is obtained by interpolation, there can be significant interpolation 

errors if the discretization of the zenith angle grid is too coarse. One solution would be to 

utilize very fine resolution equidistantly spaced zenith angle grids, but this substantially 

increases computation time. Consequently, a method is required to optimize the zenith 

angle grid. To mitigate this, the scattering integral is computed on a coarser zenith angle 

grid, since the accuracy does not suffer, and the zenith angle grid is optimized to provide 

the radiation field to a certain accuracy.  



 

57 

 

 Another concern regarding the zenith angle grid arises when attempting to 

simulate infrared radiances. For the infrared wavelengths used in this work, the 

scattering phase function has a pronounced forward peak, while in the microwave 

spectral region the phase function is much smoother. Therefore, since the DOIT method 

discretizes the phase function, an extremely fine angular grid may be needed to fully 

characterize strongly nonlinear phase functions, as is the case with the forward peak in 

infrared simulations. This is also the case any time the phase function has significant 

oscillations. There are existing techniques to deal with this issue, however none are 

currently implemented in ARTS. Therefore, we treat this problem by truncating the 

scattering phase matrix and provide it and other necessary scattering properties to ARTS. 

The truncation technique used is the 𝛿-fit method, which fits the phase function with a 

limited number of Legendre polynomials in order to accurately simulate radiance. 

Specific details of the 𝛿-fit method are beyond the scope of this thesis but are provided 

in Hioki et al. (2016). 

4.2.6.2. Bulk optical properties 

 The length of time needed to simulate cloudy TBs in ARTS can be significant, 

depending on the atmosphere/cloud conditions and the frequency of interest. A 

substantial amount of that time is dedicated to preparing the bulk scattering properties 

for ARTS (e.g., extinction/phase matrix and absorption vector). Preparing these 

properties involves integrating values from a database over a particle size distribution 

(PSD). The PSD utilized in this work is a gamma distribution defined as: 

𝑛(𝐷) = 	𝑁#𝐷D𝑒$EF	 (4.2) 
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where D is the size or maximum dimension of the particle, N0 is the intercept parameter, 

𝜆 is the slope parameter, and 𝜇 is the shape parameter. A gamma distribution with 

effective variance of 0.1 is used as the PSD exclusively in this work unless otherwise 

noted. From the PSD, we know the number of particles present as a function of particle 

size. This is then used to compute the ice particle effective diameter (Deff). Deff is 

essentially a ratio of the volume of the PSD to its projected area, or more technically the 

ratio of the 3rd and 2nd moments of the size distribution. For nonspherical particles Deff is 

calculated as follows: 

𝐷𝑒𝑓𝑓 =
3
2
∫ 𝑉(𝐷)𝑛(𝐷)d𝐷F%&'
F%#(

∫ 𝐴(𝐷)𝑛(𝐷)d𝐷F%&'
F%#(

, (4.3) 

where Dmax and Dmin are the maximum and minimum sizes of the particles, and n is the 

number of ice particles as determined by the PSD (Yang et al., 2005).  

 Since there is no function built into ARTS to compute the single scattering 

properties of ice particles, they must be supplied as input. While there are methods in 

ARTS to calculate particle size distributions, single scattering properties files are very 

large even for an individual frequency. Therefore, to save computational resources, bulk 

optical property calculations are conducted external to ARTS and include the following 

steps:  

1. Extract values of maximum dimension, total volume and projected area, 

extinction efficiency, single scattering albedo, asymmetry parameter, and 

scattering phase matrix elements for a specific wavelength from the optical 

property database (e.g., Yang et al., 2005). 
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2. Calculate the desired effective diameter using the equation above. 

3.  Combine the desired ice water path (IWP) with the prescribed cloud geometric 

thickness to determine the number of particles in each layer within the cloud 

according to the following equations: 

𝐼𝑊𝐶 = 	] 𝜌%/7𝑉(𝐷)𝑛(𝐷)d𝐷
F%&'

F%#(

	 (4.4) 

𝐼𝑊𝑃 = ] 𝐼𝑊𝐶	d𝑧
*)*+

*,*)
	 (4.5) 

where IWC is the ice water content, n is the again the number density, 𝜌%/7 is the 

density of ice, and V is the volume in the first equation and ztop is the cloud top 

height and zbot is the cloud base height in the second equation.  

Preparing the bulk optical properties in this fashion saves computational time and makes 

it easier to prescribe a particular Deff and IWP within the cloud, which are the two main 

parameters of interest. 

4.2.6.3. Lookup table generation 

 Forward model simulations necessary for retrievals can be acquired in two ways. 

First, an online model can be used in which the radiative transfer simulator is run at each 

retrieval iteration. This requires a very fast radiative transfer simulator. There is also the 

option of an offline model in which many radiative transfer simulations are conducted 

and put into a lookup table (LUT) for retrieval purposes. A LUT essentially stores the 

dependent variables (e.g., TB) as a function of the independent variables (e.g., Deff and 

IWP). The benefit of the online model is the ability to compare measurements to model 

output at any point in the parameter space without sacrificing accuracy due to 
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interpolation. However, when using an offline model and LUT, the speed is significantly 

increased but the resolution of the LUT becomes an important consideration. The desired 

resolution is a function of the nonlinearity between the dependent and independent 

variables, retrieval type, and memory constraints. Intuitively, if the LUT has a coarse 

grid, the accuracy of TB attained from interpolation between two IWP values depends 

more heavily on how linear the response of TB is to IWP between IWP1 and IWP2. The 

effect of nonlinearity when interpolating decreases as resolution increases, and if the TB 

is computed for infinitesimal increments of IWP, then there would be no error due to 

interpolation. However, this is obviously not feasible and there has to be some practical 

trade-off between the range and resolution of the LUT.  

 Using ARTS, we can simulate TB at two orthogonal polarizations for sub-mm 

frequencies in ~30-40 seconds, including the time needed to prepare the bulk scattering 

properties. Computation time significantly increases for infrared simulations, taking 

~120-130 seconds. This increase is mainly due to the increased gas absorption 

computation. This length of times obviously precludes ARTS from being an online 

model. Consequently, it was necessary to modify the forward model to develop LUTs 

that can be used for retrievals. A sizeable amount of effort was placed on developing a 

forward model which strikes a balance between efficiency and accuracy. A modified 

Akima interpolation scheme is selected, which is piecewise cubic Hermite interpolation. 

The Akima algorithm also produces piecewise polynomials with continuous first order 

derivatives, and is used to compute the Jacobians (or weighting function), which is a 
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matrix of the partial derivative of the forward model output with respect to the state 

vector element as, 

𝐊%G = 𝜕𝐹%(𝐱) 𝜕𝑥G.⁄ 	 (4.6) 

Note, it is common to represent the Jacobian and the extinction matrix (i.e., Eq. 3.15) 

with K. For the remainder of this document, K represents the Jacobian, and the 

extinction matrix is denoted as K.  

The details of the original Akima formulation can be found in Akima (1970). 

This algorithm was selected because it produces fewer undulations compared to spline 

interpolations, is well equipped to deal with rapid changes between flat regions, and 

because it is a local cubic interpolant, it generalizes to 2-D and higher dimensional n-D 

grids. In the original Akima algorithm, the slope is computed on the desired interval and 

the derivative at a sample point is simply the equally weighted average of nearby slopes. 

In the modified algorithm, more weight is given to the side with a lower slope, 

subsequently helping to reduce overshoot. Equations for the original weights for an 

interval from xi to xi+1 are 

𝑤2 = |𝑆%I2 − 𝑆%|	 (4.7) 

𝑤3 = |𝑆%$2 − 𝑆%$3|, (4.8) 

where 𝑆% is the slope in the interval. The new weights used are as follows: 

𝑤2 = |𝑆%I2 − 𝑆%| +
|𝑆%I2 + 𝑆%|

2
	 (4.9) 

𝑤3 = |𝑆%$2 − 𝑆%$3| +
|𝑆%$2 + 𝑆%$3|

2
	 (4.10) 
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 Through careful selection of the parameter space discretization and interpolation 

method, the time needed to simulate TB for changes in Deff and IWP is significantly 

reduced. The TB simulation time with ARTS is reduced from ~30 s to ~0.2 s for sub-mm 

and from ~120 s to ~0.1 s for infrared. It is also essential that the accuracy does not 

suffer. To verify the accuracy, we compute TB at discrete values of IWP and Deff directly 

in ARTS and compare these values to those obtained through interpolation of the much 

coarser resolution LUT. Figures 4.4, 4.5, and 4.6 show the differences in TB computed 

with ARTS versus TB computed with the interpolated forward model for 640 GHz, 874 

GHz, and 12µm, respectively. First, note that TB is accurate to within 0.5 K over the 

entire parameter space for both sub-mm and infrared bands. The accuracy of sub-mm 

TBs in Figs. 4.4 and 4.5 is well within the uncertainties of measured TB from the 

Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR; Evans et al., 

2005) flown during the Tropical Composition, Cloud and Climate Coupling (TC4) 

experiment (Toon et al., 2010). Uncertainties obtained from calibration target fluctuation 

statistics for retrievals on 19 July 2007 were 2.38 and 4.03 K at 640 and 874 GHz, 

respectively (Evans et al., 2012).    

It is also evident when comparing the accuracy of sub-mm TB (Figs. 4.4 and 4.5) 

to infrared TB (Fig. 4.6) computed from the LUTs, that infrared TB is overall more 

accurate than its sub-mm counterpart. This is because the response of sub-mm TB to 

changes in IWP and Deff  is significantly more nonlinear than in the infrared, which is 

demonstrated in Fig. 2.3. Considered individually, these figures also provide insight into 

the areas of the parameter space where a nonlinear response of TB to IWP and Deff 
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occurs, and consequently retrievals may have larger uncertainties. Nonlinearity, 

particularly in the context of the combination of multiple measurements is further 

discussed in section 4.6. Generally speaking, the parameters of interest in a retrieval are 

determined as the ones that most closely simulate the observations. Therefore, it is 

essential to understand the forward model error and represent it appropriately in the 

retrieval scheme. It is important to note that we compute TB accuracy shown in these 

figures assuming a single layer ice cloud from 9 to 11 km, a typical tropical atmosphere, 

and a roughened hexagonal column aggregate particle shape. Similar analyses are 

conducted for varying cloud top heights (6-15 km), atmospheric profiles, particle shapes 

(e.g., plate, single hexagonal column), and frequencies (e.g., 243, 325, and 448 GHz). 

For brevity, those results are not included here, but in all cases TB accuracy remains 

within the uncertainties provided in Evans et al., 2013. 

 
Figure 4.4: Forward model TB accuracy as a function of IWP and Deff at 640 GHz. 
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Figure 4.5: Forward model TB accuracy as a function of IWP and Deff at 874 GHz. 
 

 

 
Figure 4.6: Forward model TB accuracy as a function of IWP and Deff at 12 µm. 
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 As mentioned in Chapter 2, TB depression (∆𝑇𝐵) or cloud induced radiance, is 

the difference between observed cloudy radiance and that for the same atmosphere 

without clouds and is nicely correlated to ice mass in the sub-mm spectral region. 

Consequently, it is not sufficient to understand the TB error for only cloudy 

observations. Therefore, we compute the clear sky TB at sub-mm frequencies for a 

typical tropical atmosphere and compare that to TB computed after applying random 

Gaussian noise to the same atmospheric profile. The forward model TB error for the 

purpose of subsequent retrievals is then represented as 

𝛿𝑇𝐵 = �𝛿𝑇𝐵/>7C03 + 𝛿𝑇𝐵/>=JKL3 	, (4.11) 

where 𝛿𝑇𝐵/>=JKL is TBARTS – TBinterp (as shown in Figs. 4.4 – 4.6) averaged over the 

entire parameter space and 𝛿𝑇𝐵/>7C0 as described above. For example, assuming a 

cloudy and clear sky TB errors of 0.5 and 0.25 K, respectively, ∆𝑇𝐵 has an error of 0.56 

K.  

4.3. Channel selection 

Sub-millimeter wave remote sensing of ice clouds has been widely investigated 

in recent years to retrieve ice cloud mass and particle size, although most work to this 

point has been theoretical. Determining the optimal number and frequencies of channels 

to provide measurements for retrievals is not straightforward, and various methods are 

available for this determination. Here we employ a simple novel approach to quantify 

the sensitivity, and therefore the applicability of a wide range of frequencies to 

simultaneously retrieve IWP and Deff. We compute LUTs of TB as a function of IWP and 
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Deff for a selection of frequencies near water vapor lines and oxygen lines, and in 

atmospheric windows, shown in Table 4.1. If an offset frequency is listed, the radiance is 

measured at two frequencies, the center frequency plus and minus the offset (such as 

182.3 and 184.3 GHz in the first channel), because the atmosphere is more transparent at 

those frequencies than at the center frequency, so the radiance is obtained from a lower 

atmospheric layer. 

 

Table 4.1: Channels considered in the channel selection process. Units are GHz unless denoted 
otherwise (* indicates channel wavelength in the specified number of µm).Wavelengths are also 
provided in parentheses (in µm) for the microwave channels. 
Center frequency [GHz](µm) Offset frequencies [GHz] Absorber 

183.3 (~1635.5 µm) 1, 3, 7 Water vapor 
220 (~1362.7 µm) 2.5 Water vapor 
325 (~922.4 µm) 1.5, 3.5, 9.5 Water vapor 

380.2 (~788.5 µm) 0.8, 1.8, 3.3, 6.2 Water vapor 
448 (~669.2 µm) 1.4, 3, 7.2 Water vapor 

487.2 (~615.3 µm) 0.8, 1.2, 3.3 Oxygen 
640 (~468.4 µm) - Window 
874 (~343.0 µm) - Window 

11* - Infrared window 
12* - Infrared window 

 

Orthogonality between two LUTs of differing wavelengths or frequencies is a 

measurement of sensitivity, or more precisely, the ability to infer (or retrieve) the two 

parameters separately from measurements at these wavelengths. In other terms, if LUTs 

are orthogonal in a particular region of the parameter space, the two measurements 

contain sufficient information content such that these parameters are entirely separable. 

However, in reality, LUTs are rarely orthogonal or even consistent throughout the 

parameter space. We provide some examples below further explaining sensitivity. 
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Figure 4.7 is a hypothetical LUT showing the TBs as a function of IWP and Deff 

computed in two arbitrary channels (while unlabeled here, the red and black lines 

correspond to roughly evenly spaced values of IWP and Deff in the realistic natural 

range). From this figure the idea of sensitivity becomes clearer. In the upper right corner 

of the figure corresponding to high TBs at both bands, the isolines for IWP and Deff 

show moderate separation for IWP (in black), but for Deff it is not possible to 

differentiate one isoline from another. Therefore, in this part of the parameter space, we 

can say that there is little information content in these two measurements to retrieve 

particle size, but there is significantly more information about IWP. This is a situation in 

which the inverse problem is simultaneously over and under-constrained, meaning the 

number of unknowns (2; IWP, Deff) is equal to the number of measurements (2; 

TBBands1,2), but the number of independent pieces of information is less than the number 

of unknowns. Consequently, we can say these measurements have little sensitivity to Deff 

in this portion of the parameter space.  

A different problem can arise and is illustrated by the bottom left part of Fig. 4.7 

corresponding to low TB’s for both bands. If you think of the LUT as being a plane in 

IWP, Deff, and TB space, you can see that it is “folded” in on itself when TBs for both 

bands are small. This becomes a problem of uniqueness (i.e., multi-valued solutions) and 

implies there exists distinct states which map onto the same location in measurement 

space. In this situation, we cannot distinguish either state using the measurements, and 

therefore they possess no sensitivity to IWP and Deff in this portion of the parameter 

space. Conversely, when looking at the center of the LUT (e.g., TBBand1 = 220K and 
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TBBand2 = 245K) it is evident the isolines of Deff and IWP become more orthogonal. This 

is indicative of higher information content, higher sensitivity, and subsequently, the 

ability to simultaneously infer IWP and Deff from these measurements within a 

reasonable range of uncertainty. Note that this example is incomplete because it does not 

account for many factors such as random TB errors, nonuniform ice particle sizes in the 

satellite pixel, a partly cloudy pixel, or contaminants such as cloud water droplets or 

aerosols.  

 

 
Figure 4.7: Illustrative example lookup table (LUT) for two arbitrary bands. The TB calculated 
at the different bands as provided as a function of IWP (black lines) and Deff (red lines). 
 

In order to determine the optimal combination of frequencies to employ in the 

retrieval, we must first quantify the orthogonality of all combinations of LUTs computed 

from the candidate frequencies in Table 4.1. To quantify orthogonality, we compute the 
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determinant of the Jacobian over the entire state space, denoted S (hereafter also referred 

to as sensitivity): 

𝑆(𝐿𝑈𝑇2, 𝐿𝑈𝑇3, 𝐼𝑊𝑃, 𝐷𝑒𝑓𝑓) = ��

𝜕𝑇𝐵2
𝜕𝐼𝑊𝑃

𝜕𝑇𝐵2
𝜕𝐷𝑒𝑓𝑓

𝜕𝑇𝐵3
𝜕𝐼𝑊𝑃

𝜕𝑇𝐵3
𝜕𝐷𝑒𝑓𝑓

��	 , (4.12) 

where TB1 and TB2 are the brightness temperatures simulated at two different 

frequencies. For this analysis, TBs are the average of their vertical and horizontally 

polarized components. We discuss the implications of polarization in subsequent 

sections. If two LUTs are orthogonal, the determinant will be -1 or +1. Therefore, if the 

magnitude of the absolute value of the determinant approaches 1, it is indicative of 

higher orthogonality or sensitivity and denotes a high potential of the two bands to 

retrieve IWP and Deff simultaneously. Because we must compute sensitivity for every 

unique combination of bands and state-space pairs, the results are multidimensional and 

difficult to succinctly plot. Therefore, to demonstrate the performance of these bands for 

typical cloud conditions, the sensitivity is averaged over all discrete parameter space 

pairs when IWP and Deff range from 10-200 g/m2 and 10-100 µm, respectively. Figure 

4.8 shows the results of these calculations. There are two important takeaways from this 

figure:  

1) In general, there is merit in combining infrared and sub-mm measurements to 

retrieve IWP and Deff simultaneously. 

2) The sub-mm channels, which demonstrate the highest sensitivities when paired 

with infrared bands, are 640 and 874 GHz.  
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Since this study is of a demonstrative nature, the rest of the presented work focuses on 

sub-mm frequencies of 640 and 874 GHz, and infrared wavelengths of 11 and 12 µm. 

 

 
Figure 4.8: Average sensitivity for all unique pairs of channels in the selection study. This figure 
includes all synthetic pixels with IWP (Deff) less than 200 g/m2 (100 µm).  
 

4.4. Polarization difference analysis 

Particles can polarize incoming unpolarized radiation through scattering, and 

since microwave radiation interacts with ice particles primarily through scattering, 

polarization considerations here are important. One technical distinction is that polarized 

radiative transfer calculations require more than simply the phase function and 

absorption, scattering and extinction coefficients. When solving the vector radiative 

transfer equation, we need the entire phase and extinction matrix, as well as the 

absorption coefficient vector. This increases the computational burden of preparing the 
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scattering properties for ARTS. However, a benefit of ARTS is that the scattering solver 

(DOIT) generates the entire radiation field, which can be valuable in gaining a physical 

understanding of the polarization effects within the cloud. Previous studies such as Xie 

and Maio (2011) show that the polarization difference (PD) is proportional to the mass 

of ice in the cloud, but they only considered frequencies up to 340 GHz. One objective 

of this thesis is to extend the investigation of the effects of different cloud parameters on 

polarization signals to higher sub-mm frequencies (640 and 874 GHz) where we expect 

higher sensitivity to smaller ice particle scattering. 

To facilitate this investigation, we compute the PD, defined as the difference of 

brightness temperatures at two orthogonal (vertical and horizontal) polarization states 

(TBv – TBh). PD can provide information on microphysical properties such as particle 

shape, size, and orientation. Based on the results of the channel selection study, we 

initially explore PD for the two sub-mm window frequencies stated above, since 

scattering signatures are more evident, as well as two IR channels (11, 12 µm). The 

results are shown in Fig. 4.9, assuming a single layer ice cloud from 9 to 11 km 

containing ice particles which are aggregates of severely roughened hexagonal columns 

that are randomly oriented and follow a gamma PSD.  
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Figure 4.9: PD sensitivity to IWP and Deff at two sub-mm and two IR channels. Each figure 
represents a different IWP (50, 100, 200, and 400 g/m2). The solid lines denote the two sub-mm 
channels (640, 874 GHz) and the dashed lines represent two infrared channels (11, 12 µm).  
 

In all panels of Fig. 4.9, PD is positive for sub-mm frequencies and increases 

monotonically at a particular Deff as IWP increases (i.e., from top left panel to bottom 

right). When considering a single IWP, PD increases with Deff  until reaching a peak at 

some critical Deff, and then declines toward zero as Deff continues to increase. The 

occurs because as particles become larger multiple scattering begins to dominate, and 

there is less vertically polarized radiation scattered into the line of sight. Also, note that 

this critical Deff is different for the two sub-mm frequencies and is smaller for the larger 

frequency. Since the opacity is greater at higher frequencies which are more sensitive to 

smaller particles, PD begins to decrease at smaller particle sizes for larger frequencies.  
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When particles are randomly oriented, polarization signals are due to radiation 

which is scattered into the line of sight because it is the only phase matrix that has 

nonzero off-diagonal elements. Positive PD values occur when radiation scattered out of 

the direction of propagation is horizontally polarized, leaving vertically polarized 

radiation in the propagation direction. Horizontally polarized radiation is scattered into 

the direction of propagation. Consequently, if less radiation is scattered into than out of 

the line of sight, then the PD will be positive.  

Again, note that regardless of IWP, sub-mm PD increases to a maximum at some 

critical particle size, and then decreases toward zero as Deff continues to increase. This 

decrease is likely due to the increased multiple scattering. Therefore, we can say that PD 

is mainly sensitive to ice particles in a certain range of sizes, and this range is a function 

of the frequency and cloud conditions. Although the magnitude varies based on cloud 

conditions, the Deff peak remains consistent and indicates that sub-mm PD is more 

sensitive to smaller ice particles and IR is more sensitive to larger particles. Also note 

that PD for IR channels saturates for a constant Deff as IWP. In other words, assuming a 

Deff of 200 µm in all four panels, PD decreases as IWP increases. This saturation effect, 

or decrease in PD as IWP increases, is due to the increase in optical thickness. However, 

sub-mm PD does not saturate or diminish as IWP increases (at a constant Deff). 

Accordingly, the lack of saturation in sub-mm bands as IWP increases demonstrates the 

potential for retrieving particle diameter in optically thick clouds.  

When IWP and Deff are small, IR is more sensitive to smaller particles, but the 

sub-mm PD signal is likely not detectable for these small particles. However, as 
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expected for small IWP, cloud scattering from sub-mm channels is less than scattering 

from IR channels, and therefore the relative magnitude of PD from microwave channels 

should be smaller. Conversely, when IWP is large, the relative magnitude for IR 

becomes smaller than sub-mm, for small particles. These differing areas of sensitivity 

provide evidence that a combination of PD measurements in these wavelength regimes 

is potentially beneficial in determining of ice particle diameter for a wide range of cloud 

optical thickness values. This conclusion, however, is limited to clouds assuming 

randomly oriented hexagonal column aggregate shapes. The influence of particle shape 

on PD and TB is provided in Chapter 5 and impacts due to particle orientation are 

presented in Chapter 6.  

4.5. Synthetic data generation 

 Due to the current lack of availability of spaceborne sub-mm measurements, it is 

necessary to generate synthetic data that is physically representative of typical 

atmospheric and cloud properties in order to conduct the numerical experiments essential 

in retrieval algorithm development. To accomplish this, we leverage one year of data 

(2008) from various CloudSat (Stephens et al., 2008) products. CloudSat is one part of a 

constellation of satellites referred to as the A-Train (e.g., CloudSat, CALIPSO, 

PARASOL, Aqua, Aura, GCOM-W1) flying in the same sun-synchronous orbit roughly 

705 km above the Earth’s surface. Aboard CloudSat is the Cloud Profiling Radar (CPR) 

operating at a nominal frequency of 94 GHz, providing a vertical resolution of 500 m, 

and cross and along-track resolutions of 1.4 km and 1.8 km, respectively.  
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 The first step in data generation involves filtering. Since this work focuses on 

tropical ice clouds, we remove all pixels outside ±20° latitude. We then extract data 

from these three CloudSat products: 2B-CLDCLASS-LIDAR, 2C-ICE, and ECMWF-

AUX. The variables utilized are provided in Table 4.2. Additional filtering is conducted 

to ensure that the cloud phase is solely ice and we eliminate clouds which have multiple 

layers, so that concerns of vertical inhomogeneity do not significantly impact our 

simulations. These cloud and profile parameters are provided to ARTS to simulate TB 

and PD, at a viewing angle of 53.5°. There are known limitations and uncertainties in 

these CloudSat products. Consequently, measurements synthesized from these values 

would likely not be in complete agreement with anticipated future satellite sub-mm 

measurements. However, we feel that generating data in this fashion still carries a 

sufficient physical representation of atmospheric and cloud conditions. This is ultimately 

useful for conducting numerical experiments needed to develop a retrieval algorithm to 

infer properties of tropical ice clouds from sub-mm and IR measurements, in advance of 

building and launching a satellite instrument sensing at these frequencies.  

 

Table 4.2: CloudSat products and variables used to generate synthetic measurements 
Product Variables Notes 
2B-CLDCLASS-LIDAR Cloud Phase Ice phase only 
 Cloud Layer Single layer only 
 Cloud Layer Base  
 Cloud Layer Top  
2C-ICE Retrieved IWP Ensure IWP > 0 g/m2 

 Retrieved Effective Radius Ensure Deff > 10 g/m2 

ECMWF-AUX Pressure  
 Temperature  
 Specific Humidity  
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4.6. Retrieval overview 

Optimal estimation is a form of nonlinear regression intended to solve the inverse 

problem but can be thought of more broadly as a balance between what measurements 

can inform us about the state and our previous knowledge of the state. This method is 

selected due to its straightforward treatment of experimental errors (Sourdeval et al., 

2013). We also include the information content as an additional metric of quantifying 

retrieval quality. It is important to consider information content in addition to overall 

retrieval accuracy, because there may be a set of measurements that carry substantial 

information only in highly under-constrained problems. This can lead to significant 

uncertainties in retrieval products due to the ill-posed nature of the problem. Taken 

together, retrieval accuracy and information content effectively provide a quantitative 

description of the retrieval process from observations to final products and also present a 

mechanism for critical objective assessments of different algorithms.  

A general overview of the retrieval method is provided in Fig. 4.10. The first 

stage involves combining the single scattering properties (e.g., phase/extinction matrices 

and absorption vectors) of a specified ice particle habit (shape) with atmospheric (e.g., 

temperature, pressure, and volume mixing ratios of all relevant absorbing species) and 

cloud (e.g., cloud top height and geometric thickness) properties to produce the LUTs. In 

the second stage, TB and PD are computed from the LUT corresponding to an initial 

guess of IWP and Deff. Further details of the retrieval method and information content is 

provided in the following sections. 
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Figure 4.10: An overview of the retrieval framework. All starred boxes are inputs into the 
retrieval.  
 

4.6.1. Optimal estimation framework 

The optimal estimation method is used to solve an inverse problem and in 

essence, fits forward model output to measurements under the constraints of some a 

priori probability distribution of the state vector (Rodgers, 2000). The problem to be 

solved is described as 

𝐲 = F(𝐱, 𝐛) + 𝛜	 (4.13) 

𝐱 = 	 �
𝐼𝑊𝑃
𝐷7MM
…

�	 (4.14) 

𝐲 = J

∆𝑇𝐵N5#OP*
∆𝑇𝐵QR5OP*
𝑇𝐵23SB
…

O	, (4.15) 

where x is the state vector, y is the measurement vector, b is the model parameter vector, 

F(x, b) is the forward model (i.e., simulated measurement vector), and ϵ is the 

measurement model uncertainty vector. In the measurement vector y, ∆TB corresponds 

to the brightness temperature difference (i.e., TBclear sky – TBcloudy). The model parameter 

vector, b, contains ancillary parameters that are not perfectly known to the observer and 
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not retrieved from the measurements, but are needed by the forward model (e.g., the 

assumed ice particle model, satellite viewing zenith angle, and cloud top height). Note 

that the above quantities in x and y represent examples of possible state and 

measurement vector quantities, and therefore is not meant to imply these are the only 

values used in the rest of the presented work.  

We find the optimal estimation of the state vector by minimizing the following 

scalar cost function, 

J = [𝐲 − F(𝐱, 𝐛)]A𝐒𝐲$𝟏[𝐲 − 𝐅(𝐱, 𝐛)] + (𝐱 − 𝐱V)A𝐒V$𝟏(𝐱 − 𝐱V), (4.16) 

where Sa and Sy are the a priori uncertainty covariance matrix and the measurement 

covariance matrix, respectively. It is evident from the equation above that if the 

probability density function (PDF) attributed to xa is not too narrow (i.e., retrieval 

parameters not highly constrained by a priori assumptions), the cost function offers an 

assessment of the consistency between the forward model and the measurements. 

Because of nonlinearity in this problem, there is no general explicit expression for 

locating optimal solutions.  Therefore, they must be found numerically and iteratively 

(Rodgers 2000). For this purpose, the Levenberg-Marquardt iterative method is used to 

find the zero of the gradients of the cost function J. Following the formalism of Rodgers 

(2000), the threshold of an optimal solution should be roughly the number of 

measurement elements, 𝑚 (i.e., ~3 shown in Eq. 4.15). Since no actual sub-mm 

measurements are currently available, the measurement noise has to be estimated. 

Because of this, we select a threshold of 2𝑚 to obtain an optimal solution, which is 
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slightly larger than that outlined in Rodgers (2000). The measurement error covariance 

matrix is separated into the following: 

𝐒W = 𝐒XYZ + 𝐒[;V\ + 𝐒]^_^`Y^, (4.17) 

where Sfwd is the uncertainty due to assumptions made in the forward model such as the 

atmospheric profile, Smeas represents noise related to satellite measurement signals, and 

Sunknown denotes the uncertainty associated with cloud and atmospheric characteristics 

that are challenging to quantify, such as cloud 3D effects. In order to calculate the 

forward model uncertainty, many simulations are conducted in which water vapor and 

temperature profiles are perturbed and added to random Gaussian noise. Since there are 

currently no spaceborne sub-mm sensors operating at the frequencies used in this work, 

we assume a noise equivalent temperature difference (NE∆T) of 2 K for all sub-mm 

channels. NE∆T is the TB difference that produces a change in signal equivalent to the 

radiometer noise level. This value is based on estimates from clear-sky flight data. For 

Sunknown, we assume a diagonal matrix, and since it is very challenging to quantify 

uncertainty due to cloud inhomogeneity and 3D effects (clouds partly obscuring each 

other when viewed from the side), we assume a constant proportion of 5% of the signal 

in all channels. Cloud inhomogeneity and polarization effects will have follow-on 

impacts for ice cloud retrievals which depend on 1D unpolarized forward models. 

Differences arising between 3D and 1D have two main causes: 

1. Field of view (FOV) averaging over radiances that are in the nonlinear radiative 

transfer regime, or have a large optical path, will cause systematic biases when 

compared to a 1D representation with equivalent FOV averaged cloud optical 
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depth. This is referred to as beam-filling and is not much of a concern for sub-

mm measurements, since sub-mm typically lies in the linear radiative transfer 

regime. 

2. Actual 3D radiative transfer effects resulting from photon transport perpendicular 

to the viewing direction through inhomogeneity which is not present in the 1D 

representation. This is the 3D radiative transfer effect.   

Note that rigorous characterization of cloud 3D effects is beyond the scope and 

framework of this thesis. 

 Another reason Optimal Estimation algorithms are a popular choice for remote 

sensing retrievals is the explicit parameterization of the sources of error and the 

capability to propagate them into approximations of retrieval uncertainty. The error is 

defined as 

𝐒$2 = 𝐊A𝐒W$2𝐊 + 𝐒V$2, (4.18) 

where K is the Jacobian matrix defined in Eq. 4.6. Retrieval uncertainty is the square 

root of the diagonal elements of S. 

4.6.2. Levenberg-Marquardt iteration 

 A significant issue in retrievals is the existence of nonlinear inverse problems, 

which can arise from having a nonlinear forward model, or can be imposed by an a 

priori constraint (i.e., a non-Gaussian pdf as a priori information). The primary 

difference between linear and nonlinear problems is that in the nonlinear case there is no 

general explicit expression for locating optimal solutions. Consequently, optimal 

solutions in the nonlinear case must be found numerically and iteratively. Newtonian 
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iteration is an uncomplicated numerical method capable of finding the zero of the 

gradients of the cost function if the problem is only moderately nonlinear (Rodgers, 

2000). Methods such as Newton’s and Gauss-Newton will locate the minimum of the 

cost function in one step if the cost function is precisely quadratic in x. Conversely, it is 

possible that the surface is so poorly represented by a quadratic that a step taken is 

meaningless or even increases the residual. To mitigate this, the Levenberg-Marquardt 

(LM) algorithm was developed to find the local minimum of the nonlinear least squares 

problems.  

 The original iteration proposed by Levenberg (1944) included a damping term 

(𝛾%) which is chosen at each step to minimize the cost function. The LM algorithm 

combines two numerical minimization techniques. If 𝛾 approaches 0, then the step tends 

toward the Gauss-Newton method, and if 𝛾 approaches infinity, the step tends toward the 

steepest descent method (Rodgers, 2000). Therefore, we can say the LM algorithm 

adaptively adjusts the parameter updates between the Gauss-Newton and the steepest 

descent update. The iteration equation is 

𝐱%I2 = 𝐱% + [(1 + 𝛾)𝐒V$2 + 𝐊%A𝐒a$2𝐊%]$2 

�𝐊%A𝐒a$2[𝐲 − 𝐅(𝐱%)] − 𝐒V$2[𝐱% − 𝐱V] . (4.19) 

There is some experimentation required when utilizing this method to determine an 

appropriate initial 𝛾 as well as the factor by which it increases or decreases each 

iteration. The conventional approach, which is adopted for this work, is to select a large 

initial 𝛾 value so that the first updates are small steps in the steepest descent direction. 

The overall flow of the iteration process is as follows. For the first iteration, we provide 



 

82 

 

an initial x and 𝛾, and then the cost value is computed. From there, we compute a new x 

based on Eq. 4.19 and compute the cost again. If this cost is greater than the previous 

one, we increase 𝛾 and try again (without updating x). We compute the cost again based 

on the new 𝛾, and if the cost is less than the previous cost value (which is the goal) then 

we check for convergence. The retrieval has converged on an optimal solution if J%I2 −

J% is small (typically less than 1) and J%I2 < 𝑚, where 𝑚 is the number of elements in the 

measurement vector y. This is a typical convergence criterion. As mentioned in the 

previous section, we define an optimal solution for the purposes of this work using 2𝑚 

(e.g., if the number of elements in the measurement vector is 2, we denote a solution as 

optimal if the cost function is less than 4). 

4.6.3. Information content 

Solving the inverse problem is not always straightforward. For example, the 

problem could be ill-conditioned or ill-posed, and is often nonlinear. To acquire an 

understanding of the nature of the problem, investigating properties of the information 

contained in the measurements is useful. Previous studies have implemented information 

content theory analyses before, or in conjunction with, retrievals to quantify the amount 

of information expected for the parameters to be retrieved successfully (e.g., Sourdeval 

et al., 2013). Through this analysis, retrieval algorithms can be designed in a way to 

maximize the information in measurements, therefore ensuring that sufficient 

information is present to retrieve the parameters of interest.  

  In this study, we first compute the degrees of freedom for signal (DOF), which 

represents the number of independent pieces of information (related to the parameters to 



 

83 

 

be retrieved) present in the measurement. In broader terms, we can consider DOF as an 

intuitive non-dimensional metric of the value added by the observations projected onto a 

specific state variable. We define DOF as 

𝐷𝑂𝐹 = tr(𝐀)	, (4.20) 

where A is the averaging kernel matrix, which is the derivative of the posterior state with 

respect to the true state, defined as 

𝐀 = 𝜕𝐱¦
𝜕𝐱§ 	. (4.21) 

Another way to understand A is to think about the diagonal terms as representative of the 

sensitivity of each retrieved parameter to its corresponding truth.  

 The second aspect of information content utilized in this study is Shannon 

Information Content (SIC), which is essentially a measure of the relative improvements 

to our a priori knowledge that results from the addition of measurements (Rodgers 

2000). Since the idea of SIC is typically less familiar and intuitive than DOF, we present 

this simple analogy. Conceptually, it is analogous to refining a tape measure by 

subdividing each prior division into several new divisions, which is a function of SIC. 

Therefore, the larger the SIC, the more information content is present, subsequently 

leading to a higher resolution of tick marks and allowing one to resolve the quantity of 

interest more accurately. For completeness, we include a brief summary of salient 

characteristics of the information content methodology. In this work, the information 

content SIC is defined as the reduction in entropy S between states Px(final state) and 

Pa(initial state), 

𝑆𝐼𝐶 = 𝑆(Pb) − 𝑆(PV)	. (4.22) 
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If we assume that distributions of the above states are Gaussian, information can be 

rewritten in terms of their covariances S, 

𝑆𝐼𝐶 =
1
2 log3

|𝐒b𝐒V$2|	, (4.23) 

where the initial state covariance (Sa) is typically represented as the expected 

climatological range of ice cloud properties, and the final state covariance (Sx) is 

described by the error covariance matrix of the retrieved cloud properties (L’Ecuyer et. 

al., 2005). 
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5. SUB-MM RADIANCES AND ICE CLOUD PROPERTIES 

 

 Since there are currently no available spaceborne sub-mm measurements at the 

frequencies considered in this study, and because there are missions planned to leverage 

sub-mm measurements for ice cloud property retrievals, an overarching goal of this work 

is to develop a holistic understanding of how sub-mm radiation interacts with ice clouds. 

To that end, a significant portion of this project is devoted to conducting a series of 

numerical experiments to investigate the response of upwelling sub-mm radiation to 

differing ice cloud characteristics. A particular emphasis is placed on understanding 

vertical and horizontal polarization signatures, and their ability to provide additional 

information on ice cloud microphysical properties, such as particle shape and 

orientation. Expanding our knowledge of the interaction of ice clouds with sub-mm 

radiances allows for the development of robust algorithms to infer ice cloud properties 

once planned sensors are operational and data is available. Furthermore, as it is 

necessary to make assumptions in retrievals to reduce the degrees of freedom of the 

problem to make it more tractable, conducting these numerical experiments facilitates 

assessment of the impact and appropriateness of these assumptions.  

In Chapter 4 we outlined the tools and methods necessary to accomplish the 

above goals. In this chapter we present some of the numerical experiments conducted. 

The sensitivity of the refractive index of ice to temperature in the sub-mm spectral 

region and the subsequent impact of assuming a fixed cloud top height (i.e., temperature) 

on retrievals of IWP and Deff is discussed in Section 5.1. In Section 5.2 we demonstrate 
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how assuming a single ice particle shape (or habit) impacts such retrievals when using 

unpolarized measurements. We also investigate the additional information content 

provided by polarized measurements, since polarization is sensitive to particle shape.  

5.1. Temperature dependence of refractive index  

 As mentioned in Chapter 1, General Circulation Models vary in their estimation 

of cloud IWP by as much as an order of magnitude. Imposing constraints from 

observations is difficult for several reasons, but a major challenge is that ice mass 

retrievals are generally ill conditioned (i.e., less information content in the observations 

than in the solution). Even with the benefits mentioned in Chapter 2 of sub-mm 

radiometry to infer ice mass, it is necessary to make assumptions in ice cloud retrievals 

such as particle shape which effects the particle single scattering properties. Previous 

studies such as Ding et. al. (2017) have demonstrated the sensitivity of ice particle single 

scattering properties in the sub-mm spectral region to ice refractive index at certain 

temperatures. Here we present an information content-based investigation of the 

temperature effects on the refractive index, and subsequent contributions to ice cloud 

property retrieval biases over sub-mm and infrared wavelengths.  

 Accurate calculations of the single scattering properties of ice particles, such as 

extinction efficiency (𝑄79(), single scattering albedo (𝜔j), asymmetry parameter (g), and 

scattering phase matrix (P), are essential to accurately retrieve ice cloud properties. 

Successful calculation of these properties requires knowledge of the complex refractive 

index of ice, as well as its dependence to environmental factors such as temperature. 

Recall, the real part of the refractive index determines the phase speed of 
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electromagnetic waves (i.e., how fast it propagates through a medium) and the imaginary 

part is related to the rate of absorption of the wave. Figure 5.1 below, taken from Ding et 

al. (2016), shows the dependence of the real and imaginary parts of the refractive index 

on temperature and sub-mm frequencies up to ~1000 GHz. From this figure you can see 

that the real part of the refractive index exhibits a weaker frequency dependence than the 

imaginary part and remains fairly constant over this frequency and temperature range. 

The imaginary part decreases with increasing frequency but increases with increasing 

temperature.   

 

 
Figure 5.1: Temperature sensitivity of the refractive index in the sub-mm spectral region. The 
base ten log of the imaginary (real) part is shown in the y (x) axis. Reprinted from Ding et al., 
2017.   
 

The sensitivity of the refractive index to temperature can lead to errors in 

retrievals, if for instance you assume a particular cloud height/temperature that varies 

from the temperature at which the single-scattering properties are calculated. Figure 5.2 



 

88 

 

demonstrates how the temperature sensitivity of the refractive index can lead to 

differences in single scattering albedo. From Fig. 5.2 we see that as temperature 

increases, the single scattering albedo decreases. This makes sense because as 

temperature increases the imaginary part of the refractive index increases, and 

consequently so does absorption. To better understand the sensitivity of the single-

scattering properties of ice particles to temperature and subsequent implications in cloud 

property retrievals, we pose the following scientific questions: 

1. What is the bias of retrieved IWP and Deff when assuming a fixed temperature in 

scattering property calculations at sub-mm frequencies? 

2. If a bias exists, is it reduced by the addition of infrared (IR) measurements, in 

which the refractive index is less sensitive to temperature? 

 

  
Figure 5.2: Single scattering albedo for two sub-mm channels at three temperatures. Albedo is 
shown as a function of particle maximum diameter (Dmax)    
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5.1.1. Impact of temperature dependent refractive index on retrievals 

To address the above questions and explore how the temperature dependence of sub-

mm refractive indices impacts retrievals, we employ the following experimental setup: 

• Control: single-scattering properties are computed at 200 K, which are used to 

generate both the synthetic data as well as the retrieval lookup table (LUT).  

• Experiment 1: synthetic data is the same as in the control, but the single-

scattering properties used to generate the retrieval LUT are computed at 230 K. 

• Experiment 2: same as Experiment 1, except single-scattering properties and 

subsequent retrieval LUT are computed at 250 K. 

• Experiment 3: variable temperature is used to compute single-scattering 

properties, which correspond to the cloud top height. This is used for both the 

data generation and the retrieval.  

In order to determine the retrieval bias, we calculate the Mean Bias Error (MBE) 

defined as total, or in terms of IWP or Deff as: 

MBEA`cVd = mean¯𝐱ce];,f,g − 𝐱e;cef;h;Z,f,g°; 		𝐱 = ²𝐼𝑊𝑃g, 𝐷𝑒𝑓𝑓g³ (5.1) 

MBEijk = mean¯𝐱ce];,f,g − 𝐱e;cef;h;Z,f,g°; 		𝐱 = ²𝐼𝑊𝑃g, 150µm³ (5.2) 

In Eqns. 5.1 and 5.2, i = 500, meaning we compute the error of one pixel 500 times then 

take the mean value of these errors to be the MBE. 

We also employ two metrics of information content, degrees of freedom for 

signal (DOF) and Shannon Information Content (SIC). In all simulations a 1 km thick 

ice cloud from 9 to 10 km is assumed for a tropical atmosphere, and the viewing zenith 

angle is 53˚. Ice particles are assumed to follow a gamma size distribution with an 
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effective variance of 0.1. Figure 5.3 shows the MBE of retrieved IWP for the 

experiments defined above, when only using sub-mm measurements. The Control and 

Experiment 3 have roughly the same distribution and magnitude of MBE. This is not 

surprising since they both utilize LUTs generated from single-scattering properties 

which are calculated at the cloud top temperature. As expected, Experiment 2 shows the 

poorest performance, since it contains the largest gap in temperatures used to generate 

the synthetic data and LUTs.  

Next, focus on the uppermost right area of the panels in Fig. 5.3 where IWP and 

Deff are large. As you move from the Control to Experiments 1 and 2, this area goes from 

overestimating IWP (negative MBE) to underestimating it (positive MBE). A similar 

result is shown in Ding et al. (2017). This can be explained by the following. As IWP 

increases, a smaller fraction of atmospheric emission below the cloud is transmitted to 

the top of the cloud. As IWP continues to grow, it reaches a threshold at which the cloud 

obstructs nearly all radiation emitted below the cloud. Consequently, the sensor is now 

simply measuring the radiation above the cloud, which is practically invariant with IWP. 

In the case of Experiment 2, the retrieval LUT is generated from scattering properties 

calculated at 250 K compared to those used to generate the synthetic data which are 

computed at 200 K. As IWP and Deff increase to produce an increasingly optically thick 

cloud, TB computed from 250 K is larger than TB computed at 200 K. This leads to an 

underestimation of retrieved IWP, and in the case of Fig. 5.3 a positive MBE.  

It is also worthwhile to note that the differences among the presented 

experiments primarily occurs at large particle sizes. This is because the dependence of 
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the single-scattering properties on temperature increases at higher frequencies and larger 

particles. Above we presented an explanation for the positive MBE at high IWP and Deff 

in Experiment 2. Now let us consider the enhanced negative MBE for large Deff and 

moderate IWP values. As temperature increases, the imaginary part of the refractive 

index increases, and the single scattering albedo decreases. This signifies and increase in 

absorption and a decrease in scattering. As a consequence, TB and ∆𝑇𝐵 are biased low 

and high, respectively, which results in the overestimation of IWP and produces the 

enhanced negative MBE seen in the bottom left panel of Fig. 5.3.  

 

 
Figure 5.3: Mean Bias Error (MBE) of retrieved IWP for only sub-mm measurements. Each 
panel represents one of the experiments mentioned above. X and Y axes denote the log (base 10) 
of Deff [µm] and IWP [g/m2], respectively.  
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but isolate the response to individual IWP and Deff values. The results are provided in 

Fig. 5.4, which shows MBE of retrieved Deff as a function of IWP at intermediate and 

larger Deff values (150 and 250 µm). The first things to note about this figure is that 

Experiment 2 again exhibits the largest bias, and there is little difference between 

Experiment 3 and the Control. However, the main takeaway from this figure is the 

transition from negative to positive bias shown in the right panel. Notice that when IWP 

is less than roughly 100 g/m2 the bias from the experiments is negative, and as IWP 

increases the bias becomes positive. This is primarily due to the nonlinearity of sub-mm 

TB and ∆TB for the IWP and Deff values shown in Fig. 5.4. In this region of the 

parameter space, the nonlinearity is significant, and leads to ∆𝑇𝐵 peaks at roughly 130 

and 200 µm for 874 and 640 GHz, respectively. To clarify, when plotting ∆𝑇𝐵 as a 

function of Deff for a particular IWP shown in Fig. 5.4, ∆𝑇𝐵 is almost zero for very small 

Deff values and increases with increasing Deff until reaching a maximum at roughly 130 

µm (for 874 GHz and IWP of 100 g/m2), and then decreases as Deff increases. Therefore, 

the reason all the biases of retrieved Deff are negative in the left panel, is because a Deff of 

150 µm corresponds to mostly the left side of the ∆𝑇𝐵 peak. As mentioned previously, 

as the temperature at which the single-scattering properties becomes larger, TB decreases 

and ∆𝑇𝐵 increases. This causes the retrieval to overestimate the true Deff, and hence the 

negative MBE in the left panel of Fig. 5.4. The converse is true for the right panel. An 

increase in ∆𝑇𝐵 resultant from single-scattering properties calculated at a higher 

temperature leads the retrieval to underestimate the true Deff. Again, note that the right 

panel suffers most from the nonlinear response of TB to Deff, leading to a multivalued 
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solution problem. Therefore, it may be necessary to add additional measurements which 

are sensitive in that range to further constrain the retrieval. Lastly, note the magnitude of 

the differences among experiments in the two panels, and that the larger magnitude for 

Deff of 250 µm further demonstrates the dependence of the single-scattering properties on 

temperature increases for larger particles. 

 

  
Figure 5.4: MBE of retrieved Deff as a function of IWP for sub-mm and IR measurements. The 
true values of Deff are set to 150 µm (left) and 250 µm (right). Units are in µm. 
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(Fig. 5.6). Based on how MBE is defined, a positive value implies the retrieval is 

underestimating the true value.  

When comparing Figs. 5.3 and 5.5, we see improvement in the Control (top left 

panels). However, there is little or no improvement to the remaining experiments. This 

means there is not sufficient information content or sensitivity present in the IR 

measurements to overcome the bias which results from assuming the incorrect 

temperature to compute the scattering properties of ice particles. In addition, it is further 

evident that the poorest performance corresponds to Experiment 2. In this panel we 

again see that the MBE of retrieved IWP is negative in many cases, with a significant 

enhancement of negative MBE when particles are large. The reason for this is the same 

as described above for the same phenomenon in Fig. 5.3. To reiterate, as the temperature 

at which the single-scattering properties are computed increases, the imaginary part of 

the refractive index increases, and the single scattering albedo decreases. The net effect 

is increased absorption and decreased scattering, which leads ∆𝑇𝐵 to be biased high and 

results in the retrieval overestimating the true IWP (i.e., a negative MBE).   
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Figure 5.5: MBE of retrieved IWP for sub-mm and IR measurements. Units are in g/m2. 
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adding an IR measurement most often results in the retrieval converging on the smaller 

of the two possible Deff values. This leads the retrieval to underestimate the true Deff and 

consequently produces a positive MBE. However, for IWP values outside those that 

show a positive MBE of retrieved Deff, adding an IR measurement results in the retrieval 

converging on the true solution.  

 

 
Figure 5.6: MBE of retrieved Deff for sub-mm and IR measurements. Units are in µm.  
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particle single-scattering properties calculated at 250 K is larger than TB when scattering 

properties are computed at 200 K. This translates to a reduced ∆𝑇𝐵. Because ∆𝑇𝐵 

decreases with increasing Deff in this part of the parameter space (negative slope), the 

reduction in ∆𝑇𝐵 that results from calculating particle scattering properties at a higher 

temperature leads to a larger retrieved Deff, and consequently a negative MBE.  

These experiments show that the temperature assumed in calculating the single 

scattering properties of ice crystals leads to a bias in sub-mm TB, and subsequently 

retrieved IWP and Deff. The larger the discrepancy between the temperature assumed in 

light scattering calculations and the temperature within the cloud, the larger potential for 

significant bias of retrieved IWP and Deff . While the addition of IR measurements can 

improve such retrievals, the relative improvement from this additional measurement 

does not wholly compensate for the bias introduced from assuming an unrepresentative 

temperature to calculate the scattering properties of ice particles. This is one indication 

that the cloud top height should also be retrieved. Finally, it is worth reiterating that the 

dependence of the single-scattering properties on temperature increases for larger 

particles.  

5.1.2. Temperature sensitivity of sub-mm refractive indices and information 

content 

In addition to conducting retrievals, we leverage degrees of freedom for signal 

(DOF) and Shannon Information Content (SIC), to further understand how the 

temperature dependence of sub-mm refractive indices impacts ice cloud property 

retrievals. Details of the DOF and SIC are provided in Chapter 4. The DOF of retrievals 
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using only sub-mm measurements and retrievals which include an IR measurement are 

presented in Figs. 5.7 and 5.8, respectively. When looking at the sub-mm only case (Fig. 

5.7), note that there are several pixels with little or no information in the area of low IWP 

and Deff. As a technical note, the retrieval can still converge on a solution that is not 

“optimal”, meaning the cost function converged, but to a larger value than what is 

prescribed for an “optimal” retrieval. This criterion is typically set to equal the number 

of elements, m, in the measurement vector (Rodgers 2000). However, for this work we 

select a threshold for an optimal solution to be 2m, which in the case of sub-mm only is 

4. This allows for solutions with increased measurement noise, and because there are no 

current spaceborne measurements we erred on the side of larger values when estimating 

measurement noise. If the retrieval does not return an optimal solution, the resultant 

DOF and SIC are not included in the average. Furthermore, if the percent of pixels 

which provide an optimal solution in a bin is more than one standard deviation from the 

median value for the entire parameter space, we do not average the values of DOF or 

SIC in that pixel and it is marked white.  
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Figure 5.7: DOF for temperature sensitivity experiments using only sub-mm measurements. 
 

 

 
Figure 5.8: DOF for temperature sensitivity experiments using sub-mm and IR measurements. 
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An important takeaway in comparing DOF for both the sub-mm only case (Fig. 

5.7) and the case when IR is included (Fig. 5.8) is that the magnitude of DOF is much 

larger in the latter. The largest DOF values increase from ~1 when only sub-mm 

measurements are utilized and increases to ~1.4 after including an IR measurement in 

the retrieval. Recall, DOF represents the number of independent pieces of information 

(related to the parameters to be retrieved) present in the measurement. It is also useful to 

think about DOF in terms of the trace of the averaging kernel matrix, A. The averaging 

kernel matrix, as defined in Eq. 4.20, is the derivative of the posterior state with respect 

to the true state. In other words, the diagonal elements of A represent the sensitivity of 

each retrieved parameter to its corresponding truth. Taking the trace simply sums up 

these diagonal elements to provide the total DOF. A larger DOF, with 2 being the 

theoretical maximum for these retrievals, therefore signifies sufficient information is 

present to simultaneously retrieve the two parameters of interest. In other words, there 

exists sufficient independent pieces of information such that the two parameters are 

separable. The increase of DOF between Figs. 5.7 and 5.8 further demonstrates the 

usefulness of including IR and sub-mm measurements to simultaneously infer IWP and 

Deff.  

Now comparing the different experiments for both cases, it is apparent that there 

is little distinction among them in terms of information content, although it is evident 

that Experiment 2 exhibits the lowest overall DOF. This makes intuitive sense as the 

temperature difference used in the single scattering property calculations (i.e., synthetic 

data and retrieval LUT) is the largest. Figures 5.7 and 5.8 also illustrate the lack of 
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information for large IWP and Deff. This is expected because as IWP and Deff increases, 

the difference between clear and cloudy sub-mm TB saturates due to increased optical 

thickness and multiple scattering within the cloud. Therefore, in the case of these 

optically thick clouds, there is not sufficient information content in the measurements 

(independent pieces of information) to infer either IWP or Deff, let alone both 

simultaneously.  

Let us now look at the SIC corresponding to the sub-mm only retrieval and when 

IR is added, which is presented in Figs. 5.9 and 5.10, respectively. Recall that SIC is 

essentially a measure of the relative improvements to our a priori knowledge that results 

from the addition of measurements (Rodgers, 2000). Figures 5.9 and 5.10 show that 

there is still little information when IWP and Deff are large. Note, there is again low 

information content (small SIC) for sub-mm only retrievals (Fig. 5.9) when IWP and Deff 

are small. This means that for optically thin clouds (small IWP and Deff), sub-mm 

measurements provide little improvement to our a priori knowledge regarding the IWP 

and Deff of these clouds. However, when adding an IR measurement (Fig. 5.10) there is a 

significant increase in SIC for lower IWP and moderate to small sized particles, where 

IR measurements are sensitive. Also note the maximum magnitude of SIC in the sub-mm 

only case is ~2 and increases to 5.5 when an IR measurement is included. This again 

speaks to the usefulness of combining sub-mm and IR measurements.  

Similar to DOF, there is also little variance in SIC among the different 

experiments, with the exception to some extent of Experiment 2. In terms of both DOF 

and SIC, the most noticeable difference between Experiment 2 and the others is the 
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reduction of information at moderate Deff values and large IWP. This happens because 

this is an area which already has particularly low sensitivity to Deff. For example, if we 

again consider plotting ∆𝑇𝐵 as a function of Deff, we see that for moderate IWP and large 

Deff the slope of the curve small. Therefore, it is easy to imagine how in this case a small 

change in the y-axis of this imaginary plot can lead to a significant change in x. 

Consequently, by assuming a specific temperature to calculate the single scattering 

properties of ice particles can lead to a difference of several K when computing TB. 

 

 
Figure 5.9: SIC for temperature sensitivity experiments using only sub-mm measurements.  
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Figure 5.10: SIC for temperature sensitivity experiments using sub-mm and IR measurements.  
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in ice cloud property retrievals, we simulated synthetic data using ice particle single 

scattering properties which were computed at 200 K, and retrieval LUTs are computed at 

different temperatures.  

These experiments show that the temperature assumed in calculating the single 

scattering properties of ice crystals leads to a bias in sub-mm TB, and subsequently to 

biases of retrieved IWP and Deff. The larger the discrepancy between the temperature 

assumed in light scattering calculations and the temperature within the cloud, the larger 

the bias in retrieved IWP and Deff. While the addition of IR measurements can improve 

such retrievals, the relative improvement from this additional measurement does not 

wholly compensate for the bias introduced from assuming an unrepresentative 

temperature to calculate the scattering properties of ice particles. This is one indication 

that the cloud top height should also be retrieved. An information content analysis 

further demonstrated the benefits of combining sub-mm and IR measurements, and 

provided a better understanding of the magnitude and location (i.e., where in the 

parameter space) of improvements from adding IR. We also demonstrated that 

sensitivity of the refractive index to temperature primarily manifests in retrieval bias 

when the two assumed temperature differences become significant.   

5.2. Ice particle shape 

A fundamental assumption in ice cloud remote sensing is the ice particle shape, or 

habit. Early studies assumed ice particles to be spherical, primarily due to the ease in 

computing the scattering properties (i.e., Mie theory). Since then, significant 

advancements have been made in calculating single scattering properties (light scattering 
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calculations). Such advancements include the improved geometric optics method 

(IGOM; Yang and Liou, 1996) and the Invariant Imbedding T-Matrix (II-TM) method 

(Bi and Yang, 2014). For the sub-mm frequencies considered in this work, the size 

parameter is sufficiently small such that the II-TM is suitable for all realistic particle 

sizes and the IGOM is applied only for large particles at high frequencies (Ding et al., 

2017).  

In this section, we investigate how particle shape influences particle single-scattering 

properties and the subsequent impact of assuming a particular shape in remote sensing 

applications of ice cloud properties. Although the shape impact should be greater for 

visible and near infrared channels, where single scattering albedos could result in 

significant multiple scattering, it is important to understand these impacts for microwave 

channels as well. To this end, we select several different ice particle models, including 

an aggregate of severely roughened hexagonal columns as used in the MODerate 

Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud products (MC6), an 

aggregate of smooth hexagonal columns, a single plate, and a single hexagonal column. 

Depictions of the particles are provided in Fig. 5.11. For this analysis we only utilize the 

two highest frequency sub-mm channels, 640 and 874 GHz, as well as one IR channel at 

12 µm. The IWP and Deff are varied within clouds while other cloud characteristics such 

as the cloud top height (10 km), geometric thickness (1 km), and particle size 

distribution (gamma with effective variance of 0.1) are kept constant. For this analysis 

we pose the following scientific questions: 
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1. What is the bias of retrieved IWP and Deff in sub-mm bands due to assumed ice 

particle habit? 

2. How does that bias change when IR bands are incorporated into the retrieval? 

3. What additional information can be gained from adding polarization 

measurements? 

 

 
Figure 5.11: Illustration of the four ice particle habits used in the shape sensitivity study. Shown 
is an aggregate of severely roughened hexagonal columns (top left), aggregate of smooth 
hexagonal columns (top right), plate (bottom left), and single hexagonal column (bottom right).  
 

5.2.1. Impact of particle shape on retrievals 

The experimental setup of this analysis is as follows. All synthetic data is 

generated assuming the MC6 ice particle. We then perform separate retrievals, each 

assuming one of the four available habits shown in Fig. 5.11. Furthermore, two separate 

cases are considered. Since ice particles scatter sub-mm radiation more efficiently than 

IR radiation, we first investigate the impact of particle shape on retrievals of IWP and 

Deff using only sub-mm measurements. In the second case, we include IR measurements 

and compare with sub-mm only retrievals to glean further insight to the value added 

from IR measurements. Since the focus of this analysis is to understand the impact of 
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particle shape on sub-mm TB, and subsequently retrievals, we select the MC6 particle 

for generating all IR synthetic data and retrieval LUTs. In addition to the retrievals, we 

perform information content analyses utilizing the two metrics of information content 

used in Section 5.1, DOF and SIC. These information content analyses are again 

conducted for both IWP and Deff over the entire parameter space.  

Figure 5.12 shows the retrieval of IWP for the first scenario (sub-mm only case). 

As is evident from the figure, retrieved IWP agrees pretty well with the true IWP for all 

shapes considered. The MC6 particle (top left Fig. 5.12) provides the highest level of 

agreement in IWP, which is expected and serves as a control in this analysis since the 

MC6 particle is used to both generate synthetic data and compute the retrieval LUT. 

Interestingly, the single column performed better than the aggregate of smooth columns. 

The scale of surface roughness assumed in the MC6 particle is much less than these sub-

mm wavelengths, and therefore have little impact on the scattering properties. However, 

the inclusion of surface roughness provides a noticeable difference in retrievals of IWP. 

It is also evident when looking at the RMS errors shown in Fig. 5.12 that IWP retrieved 

assuming a plate particle deviated the most from the control (top left Fig. 5.12).  
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Figure 5.12: Retrieved IWP for all ice particle shapes considered, using only sub-mm 
measurements. Each of the four sub-panels correspond to a different ice particle habit, labeled at 
the top. 
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agreement between the different particle shapes as for retrieved IWP. This is because the 

cloud induced radiance (∆𝑇𝐵), or the difference between clear and cloudy TB, is 

proportional to the volume (mass) of ice. The plate particle again provides the largest 

bias or deviation from the control, as confirmed by the large RMS error. It is important 

note that retrieved Deff deviates the most from the true value for moderate particle sizes 
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particle sizes is nearly quadratic, and therefore the solution to the inverse problem is 
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Figure 5.13: Same as Fig. 5.12, except Deff is retrieved. 
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assumed habits be consistent (i.e., mass and volume). More simply, of the four particle 

shapes assumed two are bulky aggregates and two are single particles with differing 

aspect ratios, and retrievals of IWP when combining IR and sub-mm measurements 

should assume a consistent shape (i.e., both bulky particles or single particles with 

commensurate masses and volumes).  

 

 
Figure 5.14: Retrieved IWP for all ice particle shapes considered, using sub-mm and IR 
measurements. Each of the four sub-panels correspond to a different ice particle habit, labeled at 
the top. 
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degree of nonlinearity in sub-mm regime is too high to mitigate the issue of multi-valued 

solutions. 

 

 
Figure 5.15: Same as Fig. 5.14, except Deff is retrieved. 
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scattering). SIC is also small in some cases for optically thin clouds, when IWP and Deff 

are small. In the case of optically thin clouds, ∆𝑇𝐵 is small because there is little 

difference in the clear sky and cloud induced TB. Recall SIC is essential the measure of 

the relative improvements to our a priori knowledge that results from the addition of 

measurements. Therefore, it makes sense that SIC is smaller here for these sub-mm 

measurements because we are “asking” them to improve a priori knowledge of simply 

the radiative background (i.e., the water vapor profile).  In addition, Fig. 5.16 shows that 

SIC varies little for the different shapes assumed here.  

We draw similar conclusions when looking at SIC for the second scenario (Fig. 

5.17). SIC again decreases towards zero when IWP and Deff are large. However, 

comparing this figure to its counterpart from the first scenario (Fig. 5.16) it is evident 

that the magnitude of SIC increased throughout the parameter space, and particularly 

when IWP and Deff are small. Taking the rationale for low SIC for sub-mm 

measurements in optically thin clouds a step further, it is straightforward to intuit that 

adding IR measurements provides the largest increase to SIC in the areas of low IWP and 

Deff where they have the highest sensitivity.  
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Figure 5.16: Mean SIC of retrievals for all ice particle shapes, using sub-mm measurements. 
 

 

 
Figure 5.17: Mean SIC of retrievals for all ice particle shapes, using sub-mm and IR 
measurements. 
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To further address first two questions posed at the beginning of this section and 

understand the influence of assumed ice particle shape on sub-mm ice cloud property 

retrievals and the benefits of including IR measurements, we compute the DOF for all 

shapes. The DOF for the first (640 and 874 GHz) and second scenario (640, 874 GHz, 

12 µm) are shown in Figs. 5.18 and 5.19, respectively. Recall that DOF is equivalent to 

the number of independent pieces of information from the measurements. When 

comparing the panels in Fig. 5.18, we again see that there is little to no information for 

optically thick clouds (large IWP and Deff), and information is decreased for optically 

thin clouds (small IWP and Deff). It is again the case that DOF does not vary significantly 

among the different particle shapes, but it is evident there is a loss of information in 

particular regions of the parameter space for different shapes.  

Now let us compare Figs. 5.18 and 5.19 which correspond to the two scenarios. 

The most obvious takeaway is that adding IR measurements increased the information 

content for all shapes, particularly for moderate IWP and Deff values. As a technical 

reminder, the retrieval can still converge on a solution that is not “optimal”, meaning the 

cost function converged, but to a larger value than what is prescribed for an “optimal” 

retrieval. This criterion is typically set to equal the number of elements, m, in the 

measurement vector. However, for this work we select a threshold for an optimal 

solution to be 2m. Consequently, if the percent of pixels which provide an optimal 

solution in one bin is more than one standard deviation from the median value for the 

entire parameter space, we do not average the values of DOF or SIC in that pixel and is 

marked white. 
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Figure 5.18: DOF of retrievals for all ice particle shapes, using sub-mm measurements. 
 

 

 
Figure 5.19: DOF of retrievals for all ice particle shapes, using sub-mm and IR measurements.  
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particular PD. To do this we again compute SIC and DOF, and the results are shown in 

Figs. 5.20 and 5.21, respectively. However, since the previous figures demonstrated an 

increase of information content from the addition of IR measurements, in this analysis 

we only consider the second scenario (640 and 874 GHz, 12 µm). Comparing the SIC 

with the addition of polarization (Fig. 5.20) to its counterpart without polarization (Fig. 

5.17) it is evident that the magnitude of SIC is increased from a maximum of ~3 to ~8 

when polarization is included. SIC increases the most for optically thin clouds, at least in 

the case of the control (MC6) and plate particle. When comparing the magnitude and 

distribution of SIC for the different particle shapes, note that the single column has the 

lowest SIC over the entire parameter space, but particularly in the case of optically thick 

clouds (large IWP and Deff). However, when looking at the plate particle (bottom left of 

Fig. 5.20) we see that SIC is actually increased for the optically thick case. This points to 

the potential of using a mixture of habits, in this case an aggregate of columns and a 

single plate, in conjunction with polarized sub-mm and IR measurements to provide 

more information about particle size and IWP under optically thick cloud conditions.  

 The DOF for this scenario are shown in Fig. 5.21. Most notably, when 

comparing this figure to its counterpart without polarization (Fig. 5.19), we see that the 

magnitude of DOF increases from the addition of polarization. Recall from Chapter 4 

that DOF is the number of independent pieces of information carried out by the 

measurements, and therefore ranges from zero to the number of elements in the state 

vector. When polarization is included, we now see DOF values that approach 2, which 

corresponds to full information. So, if the measurement error variance-covariance matrix 
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is diagonal (i.e., meaning no correlation between the measurements), one could think of 

each diagonal element of A (the averaging kernel matrix) to be the partial DOF 

corresponding to that state vector element. This figure shows the total DOF, but since 

some values are close to 2, that means there is almost full information on each parameter 

provided by the measurements. It is again interesting to note that compared to other 

particles or when polarization is not included, there is a noticeable increase of 

information for high IWP and Deff when considering the plate particle. This further hints 

at the possibility of utilizing a mixture of particle shapes to increase information content 

throughout the entire parameter space.  

 

 
Figure 5.20: SIC of retrievals for all particle shapes, using polarized sub-mm and IR 
measurements.  
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Figure 5.21: DOF of retrievals for all ice particle shapes, using polarized sub-mm and IR 
measurements. 
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control), an aggregate of smooth hexagonal columns, a single plate, and a single 

hexagonal column. The scattering phase functions for the two aggregate particles are 

very similar, so we do not expect a significant difference between these two particles. 

However, both the single plate and column particles have phase functions such that the 

scattered intensity is smaller for these particles, particularly in the side and 

backscattering directions. Therefore, we expect significant differences between the 

single particles and bulky aggregate particles.  

 The root mean square (RMS) errors of retrieved IWP and Deff for the control 

particle (MC6) as well RMS differences between the control and that corresponding to a 

particular particle are presented in Table 5.1. As shown in the table, sub-mm only 

retrievals of IWP deviated little from the control case when the aggregate of smooth 

columns or single hexagonal column is assumed. However, the RMS of IWP when 

assuming a plate particle is considerably larger. Similar results are seen for sub-mm only 

retrievals of Deff, with exception of the single column particle which actually had a 

slightly lower RMS than the control particle. The RMS of IWP and Deff for the control 

particle decrease slightly when IR measurements are added. However, with the 

exception of the single plate particle, RMS actually increased for all other particles. 

Overall, the single plate particle provided again provided largest difference between true 

and retrieved IWP and Deff values. As a reminder, because the primary goal of this is to 

understand the impact of particle shape on sub-mm TBs, and subsequently ice cloud 

property retrievals, the shape assumed for all IR synthetic data and retrieval LUTs is the 

control (MC6) particle. Overall, the retrievals presented in this section show that there is 
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a nonnegligible bias of retrieved IWP and Deff from the assumption of ice particle shape. 

Biases of retrieved IWP were larger than those for Deff, and in both cases the bias is the 

largest when a single plate particle is assumed. An additional takeaway from the 

retrievals presented in section 5.2.1 is that when combining measurements from two 

different spectral regimes, in this case sub-mm and IR, it is necessary that the assumed 

habits be consistent (i.e., in mass and volume).  

 

Table 5.1: Error of retrieved IWP and Deff from assuming different ice particle shape models. 
The RMS for the control (MC6) particle is provided and RMS associated with the other particle 
models is reported as the difference from the control. Sub-mm frequencies include 640 and 874 
GHz, and IR wavelength is 12 µm.  
  Sub-mm  Sub-mm & IR 
Habit Type IWP (g/m2) Deff (µm) IWP (g/m2) Deff (µm) 
MC6 (control) 22.84 30.97 22.00 30.78 
Smooth Column Agg. +5.22 +0.97 +6.38 +4.81 
Single Plate  +19.88 +11.39 +16.06 +11.70 
Single Column +2.83 -1.75 +3.77 -0.55 

 

In addition to quantifying how assumed ice particle shape impacts ice cloud 

property retrievals, we explored the influence of shape on the information content 

provided in the measurements. There is a less noticeable difference in the two metrics of 

information content utilized here (SIC and DOF) among the assumed habits than is 

demonstrated in the retrievals. However, when comparing the two scenarios (sub-mm 

only, sub-mm and IR), it is evident that there is a significant increase in both DOF and 

SIC from the addition of IR measurements. This is particularly the case for moderate 

IWP and Deff values, where IR measurements are sensitive. These results further 
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demonstrate the benefit of combining IR and sub-mm measurements for the retrieval of 

ice cloud properties.  

Lastly, we investigated the benefit (in terms of information content) from adding 

polarization measurements to the retrieval. The addition of polarization increased the 

maximum magnitude of SIC from ~3 to 8. Among the different particle shapes assumed, 

the single column had the lowest SIC and DOF. However, when considering the plate 

particle, information content is increased compared to all other cases (even the control) 

for optically thick clouds (large IWP and Deff). The maximum magnitude of DOF 

increased from ~1.3 in the case of no polarization to ~2 when polarization is added. 

Because there are two parameters being retrieved in these analyses, the theoretical 

maximum DOF attainable is 2. Therefore, for optically thin clouds (low IWP and Deff) 

where DOF approaches 2, the addition of polarization means that there is almost full 

information on each parameter provided by the measurements. Just as with SIC, 

assuming a plate particle in the retrieval increases the DOF for optically thick clouds, an 

area of the parameter space where little to no information is seen in all other cases. The 

principal takeaway from these results is that it may be useful to employ a mixture of 

particle shape models, particularly a bulky (aggregate) and single particle shape model, 

in conjunction with polarized sub-mm and IR measurements to increase the information 

content for optically thick clouds, which sub-mm and IR otherwise demonstrate little to 

no sensitivity.  

As a caveat, the analyses in this section are performed assuming the ice particle 

is completely randomly oriented in space. Therefore, these results do not necessarily 
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extend to the case in which the particle has some preferential orientation. The impact of 

particle shape on its single scattering properties, and subsequently the retrieval of ice 

cloud properties, is expected to be larger when some preferential orientation is assumed. 

This is especially true when polarization is necessary. Further investigation of how 

assuming a particular particle orientation influences polarized and unpolarized TB is 

presented in Chapter 6. 
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6. SUB-MM POLARIZATION SIGNALS OF ICE CLOUDS 

 

 Recall from Chapter 3, the polarization of electromagnetic radiation can be 

described by the Stokes parameters. From these parameters, one can compute brightness 

temperatures at two orthogonal polarization states (vertical and horizontal), as well as 

the difference between the two, or the polarization difference (PD). Physically, PD is 

induced by different scattering efficiencies of ice particles at these two different 

polarization states. Therefore, PD can provide rich information on ice cloud 

microphysical properties, such as particle size, shape and orientation. In Chapter 5, we 

discussed how particle shape impacts sub-mm TB and PD in terms of ice cloud property 

retrievals and information content. This chapter builds on the previous discussions of 

polarization and aims to provide a more holistic understanding of ice cloud polarizations 

in the sub-mm spectral region. In Section 6.1 we present further investigation of the 

value added by polarized measurements to retrievals of ice cloud microphysical 

properties and comment on the practical difficulties of incorporating PD in such 

retrievals. The impacts of particle orientation on sub-mm TB and PD, particularly for 

horizontally oriented particles is provided in Section 6.2. In Section 6.3 we investigate 

polarization signals for mixtures of randomly and horizontally oriented particles, as well 

as the potential to infer the fraction of oriented particles from polarized measurements.  

6.1. Impact of polarization on ice cloud property retrievals  

This section further explores the benefits of measured ice cloud polarization 

signatures to infer ice cloud properties. We also discuss the difficulties associated with 
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implementing sub-mm polarization measurements. To this end, we pose the following 

scientific questions: 

1. How does the addition of polarimetric measurements improve sub-mm retrievals 

of ice cloud microphysical properties, such as Deff? 

2. What subsets of frequencies provides the most benefit, particularly in terms of 

Deff?  

3. Does the ratio of polarization difference at different bands provide additional 

useful information? 

For these simulations we assume a single layer ice cloud from 9 to 11 km 

comprising randomly oriented aggregates of severely roughened hexagonal columns, 

and an IWP of 100 g/m2. With these assumptions we compute PD for various sub-mm 

and infrared combinations, which is provided in Figure 6.1. Before discussing the values 

in Fig 6.1, it is important to further discuss the origin of polarization signals. When ice 

particles exhibit no preferential orientation (randomly oriented), polarization signals 

arise from radiation which is scattered into the line of sight. Recall that in this case only 

the phase matrix contains non-zero off-diagonal elements. Therefore, in the case of 

positive PD, the scattering efficiency at vertically polarized radiation is larger than its 

horizontal counterpart. Now returning to Fig. 6.1, it is evident that for the sub-mm 

channels PD increases rapidly as Deff increases until reaching a maximum at some 

critical Deff, then decreases towards zero. This is because as particles become larger 

multiple scattering begins to dominate, and there is less vertically polarized radiation 

scattered into the line of sight. It is also important to note that this critical Deff is different 
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for all three sub-mm channels and becomes larger as frequency decreases. Because the 

opacity is greater at higher frequencies which are more sensitive to smaller particles, PD 

begins to decrease at smaller particle sizes for higher frequencies (e.g., ~65 µm at 874 

GHz and ~95 µm at 640 GHz). 

An important takeaway from Fig. 6.1 in terms of ice cloud property retrievals is that 

most of the sub-mm channels exhibit significant sensitivity to Deff, and the PD at several 

closely spaced channels could be useful for its retrieval. However, there is an issue of 

multivalued solutions that must be cautiously navigated, meaning that two different 

particle sizes can produce the same PD. One way to mitigate this dilemma is to add 

additional measurements. For example, the ratio of PD at a window channel (640 GHz) 

and water vapor absorption line (325 GHz) monotonically decreases as Deff increases. 

Although it quickly approaches zero, the high sensitivity lends confidence to its ability 

to retrieve Deff, particularly for Deff less than ~100 µm. Conversely, PD at 12 µm 

monotonically increases with increasing Deff. The prevailing consensus is that it is not 

necessary to consider polarization for IR measurements. However, based on Fig. 6.1 

(and further discussions below), we argue that including IR PD can provide useful 

information to constrain Deff retrievals, particularly for large particles where sub-mm 

sensitivity is low.  
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Figure 6.1: PD sensitivity to Deff for sub-mm and IR channels when IWP = 100 g/m2. Colored 
lines denote different measurement bands, and the dashed line denotes the ratio of PD at two 
sub-mm frequencies (640 and 325 GHz). 
 

 In Chapter 5, we demonstrated how information content, such as DOF and SIC, 

is increased by adding polarization measurements. As a next step, utilize the 

measurements shown in Fig. 6.1 to determine which frequency, or set of frequencies, 

improves retrievals of Deff. The results of these retrievals are presented in Fig. 6.2. As a 

benchmark to compare against other retrievals, we retrieve Deff using TBs at 640 GHz, 

874 GHz, and 12µm without considering polarization (top left panel of Fig. 6.2). The 

remaining retrievals all consider polarization, such as is shown the upper right panel 

which includes PD at 640, 874 GHz, and 12µm. An additional sub-mm channel is added 

in the bottom left panel (325, 640, 874 GHz; 12 µm). Finally, in the bottom right panel 
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that all retrievals shown also use TBs, or more precisely ∆𝑇𝐵, and are supplemented with 

PD (i.e., the measurement vector contains both TB and PD for a given frequency). In 

these simulations we again assume the particle shape model is an aggregate of 

roughened hexagonal columns following a gamma particle size distribution.  

As is evident from the RMS errors, Fig. 6.2 demonstrates the relative 

improvement of retrieved Deff from the addition of polarization. For example, the top left 

panel in which polarization is not considered exhibits poor consistency between 

retrieved and true Deff for mid-sized particles (~125-325 µm), producing an RMS of 

~42.48 µm. The top right panel utilizes the same channels but considers polarization for 

all three. You can see from this panel that the addition of polarization reduces the RMS 

to 35.60 µm and improves retrieval performance for Deff greater than ~200 µm. 

However, retrieval performance decreased for particles less than this size. This is due to 

the multi-valued nature of the problem when considering PD. This is further clarified by 

looking at Fig. 6.1, which shows for example that a PD of 2.5 K corresponds to two 

different Deff values for both 640 and 874 GHz. It is straightforward to imagine that the 

two Deff values which correspond to a PD of 2.5 K represent two different minimums in 

the cost function. Therefore, it is possible the retrieval becomes trapped in one of these 

minimums, eventually converging on a solution which corresponds to a local minimum 

and not a global minimum, which corresponds to the true value. This is evident in the 

retrievals. For example, when the true Deff is 50 µm, some retrieved values are as large 

as 100-150 µm. This indicates that the retrieval was trapped and ultimately converged on 
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the solution corresponding to the right side of the PD peak in Fig. 6.1, when the true 

solution is on the opposite side.  

As a first attempt to mitigate this issue, we include an additional sub-mm channel 

at 325 GHz and the results are in the bottom left panel of Fig. 6.2. In this case the RMS 

has again decreased and is now roughly 30.8 µm. Also note that compared to the top 

right panel where retrieved Deff often overestimates the true value, the opposite is now 

true. Finally, we add the ratio of PD at two channels (640, 325 GHz) and the results are 

shown in the bottom left panel of Fig. 6.2. Looking at this panel we see that the RMS has 

again decreased slightly to ~30.2 µm, and less underestimation of the true Deff is present 

than was the case for the previous panel. For the simulations presented in this section, 

there is not a considerable difference between these final two retrievals. If in fact, there 

is only a nominal improvement in all cases provided by the additional measurement in 

the last panel (640/325 GHz), then the most sensible choice for a retrieval would be the 

one corresponding to the bottom left panel, even though the final retrieval includes a 

ratio of existing channels and needs no new measurements (i.e., 448 GHz). This is 

simply because the Optimal Estimation framework used in these retrievals requires 

inversions of matrices, and a larger measurement vector equates to a higher 

computational demand to compute the inverse of these matrices. 
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Figure 6.2: Retrieved Deff using four different polarized sub-mm and IR measurement 
combinations. Top left: 640, 874 GHz, and 12 µm (no polarization), Top right: PD (640GHz, 
874 GHz; 12 µm), Bottom left: PD (325, 640, 874 GHz; 12 µm), Bottom right: PD (325, 640, 
874, 640/325 GHz; 12 µm).  
 

While there is rich information content present in polarized measurements, this 

section highlights the practical difficulties of incorporating PD in retrievals, such as the 

issue of multivalued solutions. Figure 6.2 demonstrates the relative improvement of 

adding polarization to retrieve Deff, with the configuration in the bottom right panel 

producing overall the closest agreement between real and retrieved values. However, 

further simulations are necessary to test the accuracy of this configuration in retrievals of 
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both Deff and IWP over a wider range of atmospheric and cloud conditions. A sample of 

some such simulations is presented in Chapter 7. It is important to reiterate that 

polarization is influenced by cloud microphysical properties, such as particle 

composition, shape, and orientation. In Chapter 5 we investigated the consequences, in 

terms of cloud property retrievals and information content, of assuming a particular 

particle shape model to represent natural ice particles. In this section we build on that 

analysis and present essentially a simple channel selection study based on the relative 

improvement of incorporating polarized measurements in cloud property retrievals. 

However, these results only apply to clouds in which ice particles are randomly oriented. 

Ignoring orientation can negatively bias vertically polarized observations and positively 

bias horizontally polarized observations. A further analysis how particle orientation 

impacts polarization is provided in the next section.  

6.2. Impacts of particle orientation on TB and PD 

 For the previous analyses in this chapter, we assume ice particles to be 

completely randomly oriented in space, which is a common assumption in ice cloud 

remote sensing. However, studies have demonstrated that ice particles do not necessarily 

possess a random orientation. Gong and Wu (2017) used measurements from the 

spaceborne Global Precipitation Measurement (GPM) Microwave Imager (GMI) to 

show that polarized microwave scattering signals attributed to ice clouds can be 

explained by the non-sphericity and orientation of the particles. A study by Zeng et al. 

(2018) also used polarized measurements from GMI (at 166 GHz) to analyze the 

distribution of ice particle orientation in optically thick ice clouds. Zeng et al. (2018) 
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used PD to indicate the general orientation of ice particles, with positive PD values 

suggesting horizontally oriented particles and the magnitude of PD directly proportional 

to the percentage of horizontally oriented ice particles. In this study they concluded that 

horizontally oriented ice particles in thick clouds are common from the tropics to high 

latitude. Therefore, when incorporating polarized sub-mm measurements in ice cloud 

property retrievals it is essential to understand how the orientation of non-spherical ice 

particles influences polarization. It is important here to note that we currently have no 

instrument or method capable of determining the particle shape and orientation, and 

therefore results presented in this section are strictly indicative of the error stemming 

from assuming a randomly oriented particle.  

 To understand the errors of sub-mm TB and PD which result from the 

assumption that non-spherical ice particles be randomly oriented, we simulate TBs and 

PDs associated with random and azimuthal orientations. As a point of clarification, 

when particles are said to be preferentially or azimuthally oriented, we assume that the 

particles are randomly oriented in the azimuth. While it is possible that certain particles 

under the influence of electrostatic forces or wind shear can possess a systematic 

azimuthal alignment, this situation is not considered in this study. Ice particle scattering 

properties delineate the interaction between the particles and electromagnetic radiation, 

and therefore these properties directly affect simulations and retrievals of sub-mm and 

IR observations of ice clouds. This reduces the amount of information which can be 

retrieved from observations, and consequently full exploitation of polarization signals in 

retrievals requires scattering properties of oriented particles. Therefore, for these 



 

132 

 

simulations we utilize the single scattering property database for azimuthally oriented 

particles, as outlined in Brath et al. (2020), which includes scattering properties for two 

particle shapes, a hexagonal plate and an aggregate of plates. The shapes are indicated in 

Fig. 6.3.  

 

 

 Figure 6.3: Illustration of the ice particle models used in the particle orientation analysis. On the 
left is a hexagonal plate and an aggregate of hexagonal plates is shown on the right. Adapted 
from Brath et al., 2020.  
 

The Brath database also provides scattering properties of these particles for 

varying tilt (or canting) angles, which corresponds to azimuthally oriented particles with 

a specific orientation to the horizon (Brath et al., 2020). A graphical representation of 

basic horizontal and tilted orientations is provided in Fig. 6.4. Specific details of how 

scattering properties for oriented particles are calculated is beyond the scope of this 

work. The reader is directed to Brath et al. (2020) for such details.   
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Figure 6.4: Graphical representation of azimuthal orientation and tilt angle 𝜷. Adapted from 
Brath et al., 2020.  
 

 In order to isolate how the orientation of these two assumed particle shapes 

impacts polarized sub-mm TBs, we make a simple assumption that all particles in the 

cloud are the same size (i.e., monodisperse distribution). This removes any possible 

influence on the calculations from a particular particle size distribution. Under this 

monodisperse assumption, the particle number density (PND) within the cloud is given 

as, 

𝑃𝑁𝐷 =
3𝐼𝑊𝐶
4𝜋𝜌𝑟4

, (6.1) 

where IWC is the ice water content, or mass density of ice within the cloud, 𝜌 is the 

density of pure ice (taken as 917 kg/m3), and r is the equal volume sphere radius of the 

particle. Assuming a monodisperse PSD, a viewing zenith angle of 53.5˚, and a 2 km 

thick ice cloud from 9 to 11 km, we compute TB for both V and H polarizations at two 

sub-mm frequencies (670, 886 GHz). Note that these frequencies differ slightly from 

those used previously (640, 874 GHz), and are selected because these are frequencies at 

which the single scattering properties explicitly calculated. Calculating TB at 640 and 

874 GHz would require interpolation of the single scattering property database to these 

frequencies, and therefore to avoid the possibility of interpolation errors influencing the 
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results, 670 and 886 GHz are selected. Given the size of the scattering database, this also 

significantly reduces computational burden.  

 Figure 6.5 shows PD and TB as a function of volume equivalent diameter (Dveq) 

at 670 (top panel) and 886 GHz (bottom panel) when assuming a randomly oriented 

single plate shape. Each colored line denotes a different IWP, ranging from 50 to 400 

g/m2. Looking at Fig. 6.5 it is evident the PD curves exhibit a similar bell shape as is 

shown in Fig. 6.1. For smaller particles, PD increases with increasing IWP until you a 

critical particle size (e.g., ~175 µm at 670 GHz). Once particles become larger than this 

size, multiple scattering dominates, and the PD signal saturates and eventually 

decreases. Again, note that PD reaches a maximum value at smaller particle sizes for 

886 GHz than at 670 GHz, because multiple scattering starts to occur at smaller particles 

for higher frequencies. As previously mentioned, sub-mm TB (or ∆𝑇𝐵) is proportional to 

IWP, at least up to a certain IWP value at which the signal is saturated. This is further 

evident when looking at the right column of Fig. 6.5. For example, in the top right panel, 

TB at 200 µm decreases at roughly the same rate as IWP doubles. Looking at 886 GHz 

(bottom right of Fig. 6.5), it is apparent that for a 200 µm particle the TB difference from 

IWP of 200 to 400 g/m2 is much less than the difference between 100 and 200 g/m2. This 

is indicative of increased multiple scattering, and consequently higher extinction of sub-

mm radiation within the cloud.  
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Figure 6.5: PD and TB sensitivity to particle size, assuming randomly oriented ice particles.  
The top (bottom) row corresponds to 670 (886) GHz. A randomly oriented single hexagonal 
plate is the assumed particle shape. Each line corresponds to a specific IWP, becoming darker as 
IWP increases. 
 

 Now that we have some understanding how PD and TB vary with particle size 

and IWP when assuming a randomly oriented hexagonal plate particle, we run the same 

simulation considering an azimuthally oriented particle with no titling angle (𝛽 = 0). 

These results are shown in Fig. 6.6. The first thing to note is the magnitude of the 

polarization signal is well over an order of larger. The maximum PD at both frequencies 

when assuming a randomly oriented particle ranges from 3.4 to 6.5 K depending on IWP 

and particle size. Under the assumption of an azimuthally oriented plate, we now see PD 
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values of over 100 K (at 664 GHz). This is a significant enhancement of the polarization 

signal, and therefore I think it is an important aside to consider what it means to have a 

positive PD and how we can then physically relate this to particle orientation. First, 

since we define PD as the difference between vertical and horizontally polarization 

states, a large positive PD indicates that vertically polarized TB is significantly larger 

than its horizontal counterpart. As discussed in the previous section, when particles are 

randomly oriented, the polarization signal results from radiation which is scattered into 

the line of sight. Let us now consider the impact of extinction on the polarization signal.  

Attenuation of radiation by a particle can impact both the intensity and 

polarization state of the light. For azimuthally oriented particles, the sign of PD is 

influenced by two competing mechanisms. One such mechanism is dichroism, which is 

this precisely the situation described above where the particle attenuates radiation at 

different polarization directions differently. This is manifested by a non-diagonal 

extinction matrix. The other mechanism as mentioned above is radiation which is 

scattered into the line of sight. For downward looking simulations, as those presented 

here in which the scattering objects are between the sensor and the primary radiation 

source, dichroism is predominately the reason for the large positive PD values. More 

precisely, this partial vertical polarization is the result of a positive Q component of the 

Stokes vector, or the difference in the vertical and horizontal intensity components. As a 

caveat, the PD values shown in Fig. 6.6 are larger than what is expected from actual 

spaceborne observations. This is because assumptions made here, such as a 
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monodisperse size distribution and that every particle in the cloud is azimuthally 

orientated, are not representative of naturally occurring cloud conditions.  

 

 
Figure 6.6: PD and TB sensitivity to particle size, assuming azimuthally oriented ice particles 
with tilt angle of 𝛽 = 0˚. 
 

Although PD has significantly increased as a result of the particle’s horizontal 

orientation (for the reasons mentioned above) the change in TB is significantly smaller, 

which can be seen by comparing the right columns of Figs. 6.5 and 6.6. However, note 

there is now much less sensitivity of TB to IWP, particularly as IWP gets larger than 100 
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g/m2. For the largest IWP considered (400 g/m2), we now see TB start to increase at 

roughly 250 and 120 µm for 670 and 886 GHz, respectively. The interpretation of this 

behavior is as follows. As IWP or particle size increases, we expect an enhancement of 

the scattering effect, which results from an increase in particle number density or 

scattering efficiencies. Once particle sizes and IWP become large enough, the optical 

depth of the cloud increases and the multiple scattering effect dominates, and it is 

possible multiple scattering increases stochasticity in the scattering process. 

Furthermore, because the opacity is larger for high frequency channels which are more 

sensitive to smaller IWP and particle sizes, we see PD (TB) begin to decrease (increase) 

at smaller particle sizes and IWPs at 886 GHz compared to 670 GHz.  

The results shown in Fig. 6.6 assume an azimuthally oriented particle with no 

tilting or canting angle (𝛽 = 0°). Generally speaking, scattering data of azimuthally 

randomly oriented particles depends on incidence angle as well as two scattering angles 

(Brath et al., 2020). Complexity is further increased by adding a tilt angle. To understand 

the impact of tilting on simulated PD and TB, we assume an azimuthally oriented 

particle with a tilt angle of 30˚. The results are provided in 6.7, and as expected the 

magnitude of PD is significantly less than when 𝛽 = 0°, but larger than in the case of 

total random orientation. To glean more insight, consider scattering properties, such as 

the extinction matrix K. Extinction of the difference between vertical and horizontal 

polarization is described by the K21 element of the matrix. As previously mentioned, 

when a particle is randomly oriented K21 is zero. However, in the case of an azimuthally 

oriented particle, this element exhibits a significant dependence on tilt angle (as well as 
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incidence angle). The magnitude of K21 is the largest when 𝛽 is 0˚ and has a negative 

value. As 𝛽 increases, the magnitude of K21 increases until it becomes positive at a 𝛽 of 

roughly 55˚ and the largest positive K21 occurs when 𝛽 = 90˚. This explains why PD 

decreases as you increase 𝛽 from 0˚ (Fig. 6.6) to 30˚ (Fig. 6.7). The sensitivity of K21 to 

𝛽 also depends on the size parameter. For small to moderate size parameters the 

sensitivity is the largest, and large size parameters exhibit little to no sensitivity of K21 to 

𝛽.   

 

 

 
Figure 6.7: Same as Fig. 6.6 except with a particle tilt angle of 𝛽 = 30°. 
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6.3. Mixture of randomly and horizontally oriented particles 

From the previous section, we now have some insight into what drives the 

polarization signature corresponding to hexagonal plate particles that are totally random 

and azimuthally randomly oriented, as well as the influence of particle tilt angle on the 

polarization signature. For those simulations we made the assumptions that the particle 

size distribution is monodisperse and that all particles within the cloud possess the same 

orientation and tilting angle. However, we know this is not physically representative of 

ice clouds, and previous studies have shown that particles of a certain size and location 

in the cloud exhibit an azimuthal orientation, with the rest of the particles in the cloud 

being randomly oriented. Therefore, the aim of this section is to understand how 

polarization signatures vary when we assume certain percentages of the particles (by 

mass) azimuthally oriented, with the remainder being totally oriented.  

To accomplish this, our simulation setup is as follows. First, we retain the same 

IWP values used in the previous section and assume that certain percentages of the total 

mass of ice corresponds to azimuthally oriented particles, with the remainder being 

randomly oriented. For example, assuming 10% of the particles corresponding to an IWP 

of 100 g/m2 are azimuthally oriented means that we now have IWPa = 10 g/m2 and IWPt 

= 90 g/m2, where the subscripts a and t correspond to azimuthal and total, respectively. 

We also assume that all azimuthally oriented particles are located at the top of the cloud, 

since previous studies have shown these particles typically occur at the top of the cloud. 

Think of this as stratifying the cloud into two layers, with randomly oriented particles 

comprising the bottom layer and azimuthally oriented particles comprising the top layer. 
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The cloud top height and geometric thickness are the same as assumed in the previous 

section. We can now describe PD in terms of IWP, Dveq, 𝛽, and f, where f is the fraction 

of particles that are horizontally oriented.  

Figures 6.8 and 6.9 show PD (left column) and TB (right column) as a function 

of Dveq when azimuthally oriented particles comprise 5% (top row), 10% (middle row), 

and 30% (bottom row) at 670 and 886 GHz, respectively. When looking at PD in Fig. 

6.8, first notice that as the fraction of particles that are azimuthally oriented increases 

(from top row to bottom), the magnitude increases. Regardless of f, there are nice 

relationships between PD and IWP as well as TB and IWP, particularly as the particle 

size approaches 100 µm. Another interesting result is that TB is essentially invariant with 

f, at least for the values shown here. Figure 6.9 shows similar trends for PD and TB 

computed at 886 GHz. However, as mentioned previously, because the opacity is larger 

at higher frequency channels which are more sensitive to smaller IWP and particle sizes, 

we see PD begin to decrease at smaller particle sizes and IWPs at 886 GHz compared to 

670 GHz. This evident when looking at PD for 𝑓 = 30° (bottom left panel). PD at the 

largest IWP (darkest green line) is starting to decrease as the particle size becomes large. 

Although, Figs. 6.8 and 6.9 only provide results at 𝑓 = 5, 10, and 30%, the trends 

described above hold for 5, 10, 20, 30, 40, and 50% fractions of azimuthally oriented 

particles, but in order to conserve space are not provided.  
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Figure 6.8: PD and TB sensitivity at 670 GHz to particle size, assuming azimuthally oriented ice 
particles with tilt angle 𝛽 = 0°. The top (middle, bottom) row corresponds to 5% (10%, 30%) 
fraction (f) of azimuthally oriented particles. The colors correspond to different IWP values. 
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Figure 6.9: PD and TB sensitivity at 886 GHz to particle size, assuming azimuthally oriented ice 
particles with tilt angle 𝛽 = 0°. The top (middle, bottom) row corresponds to 5% (10%, 30%) 
fraction (f) of azimuthally oriented particles. The colors correspond to different IWP values.   
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 In the previous section, we demonstrated that PD and TB can vary significantly 

with tilt angle 𝛽. The logical next step is to determine if the relationships between IWP, 

PD, and f shown in Figs. 6.8 and 6.9 hold when we assume some tilting angle for the 

azimuthally oriented particles. To accomplish this, we simulate PD and TB in the 

previous fashion and simply change 𝛽. The results of these simulations are provided in 

Figs. 6.10 and 6.11 for 670 and 886 GHz, respectively. The first thing to notice about 

Figs. 6.10 and 6.11 is that the magnitude of PD decreased as 𝛽 increased to 30°, which 

makes sense based on previous figures and discussions. Maximum PD values at 670 

GHz when 𝛽 = 0° are approximately 5, 7, and 17 K for f values of 5, 10, and 20%, 

respectively. When 𝛽 = 30°, the corresponding PD maximums for f values of 5, 10, and 

30% decrease to roughly 4, 5, 10 K. The same is true when looking at the results for 886 

GHz. It is also worth noting again the TB is essentially invariant with f and 𝛽, at least for 

the values of f and 𝛽 considered here. There are several important points from Figs. 6.8 

through 6.11 which should be emphasized: 

1. TB and PD are both exhibit high sensitivity to particle size and IWP, regardless 

of 𝛽,  f, or frequency. This is particularly true for large particles.  

2. Simulated TBs are essentially invariant with f and 𝛽.  

3. The magnitude of simulated PD at a given particle size and IWP increases as the 

proportion of azimuthally oriented particles, f, increases.  

It is important to again note that the results presented here only apply to a single 

hexagonal plate particle with a monodisperse particle size distribution, and a tropical 

summer atmosphere. The most noteworthy takeaway from these simulations is provided 
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in point 3 above, which raises the question: Is it possible, given a particular particle size 

and IWP, to use the corresponding PD measurements to determine the fraction of ice 

particles which are azimuthally oriented? 

 

 
Figure 6.10: Same as Fig. 6.8, except 𝛽 = 30°.   
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Figure 6.11: Same as Fig. 6.9, except 𝛽 = 30°.   
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 To address the question posed above, we now assume a particular IWP and 

particle size, then plot PD and TB as a function of the percentage of azimuthally oriented 

particles present in the cloud. The results for 670 and 886 GHz are provided in Figs. 6.12 

and 6.13, respectively. These figures show PD (left column) and TB (right column) as a 

function of percent mix, meaning the percent of total IWP that is azimuthally oriented. 

The different shades of red lines correspond to different IWP values, with the darkest 

line corresponding to the highest IWP. When looking at Fig. 6.12, the first thing to note 

is there is a very linear response of PD and TB to the fraction of horizontally oriented 

particles for a particular particle size and IWP. When comparing PD (left column) to TB 

(right column), it is evident that TB shows little sensitivity to f. Conversely, PD is 

significantly more sensitive to the mixing fraction of azimuthally and randomly oriented 

particles, particularly as IWP and particle size becomes large. Note that when the particle 

size is small (top row Fig. 6.12), PD responds similarly to changes in f and IWP, 

compared to large particle sizes. However, the magnitude of PD corresponding to these 

IWP values is small (less than 1K), meaning the signal to noise ratio is low and 

consequently it may not be possible to extricate the signal from the noise. However, this 

is not an issue though for larger particle sizes (~50 µm or larger), particularly when IWP 

is large. It is important to note, we computed PD and TB (as in Fig. 6.12) for particle 

sizes ranging from 10-100 µm in increments of 10 µm, but only show a subset (20, 50 

and 100 µm) to conserve space. These additional figures all show the same results 

however, of a very linear relationship between PD and percent mix.  
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Figure 6.12: PD and TB sensitivity at 670 GHz to particle orientation mixing fraction (f), 
assuming oriented particles with 𝛽 = 0°. The top (middle, bottom) row corresponds to a Dveq of 
20 µm (50 µm, 100 µm). The colors denote different IWP values. 
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Figure 6.13: PD and TB sensitivity at 886 GHz to particle orientation mixing fraction (f), 
assuming oriented particles with 𝛽 = 0°. The top (middle, bottom) row corresponds to a Dveq of 
20 µm (50 µm, 100 µm). The colors denote different IWP values. 
 

Figure 6.13 shows the results at 886 GHz. Similar linear responses of PD to 

percent mix are again evident. However, note PD (left column) for large particles 
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(bottom row) now shows PD at the largest IWP (400 g/m2) decreasing after reaching 

~30% mix and is actually smaller than PD corresponding to 200 g/m2 after ~40% mix. 

Recall that as IWP or particle size increases, we expect an enhancement of the scattering 

effect, which results from an increase in particle number density or scattering 

efficiencies. When particle size or IWP becomes large enough, the optical depth of the 

increases such that the multiple scattering effect dominates. Also note that the magnitude 

of PD for 886 GHz is roughly two times larger than for 670 GHz for the two smallest 

particle sizes shown in the figures but is proportional PD at 670 GHz for the largest 

particle size (100 µm). These figures were also produced assuming 𝛽 = 30°, but look 

nearly identical to Figs. 6.12 and 6.13 that assume 𝛽 = 0°. The only noticeable 

difference is that the magnitude of PD for 𝛽 = 30° is less than Figs. 6.12 and 6.13, and 

therefore the results for 𝛽 = 30° are not included here.  

6.4. Conclusions  

As previously mentioned, PD can provide rich information about cloud 

microphysical properties, such as ice particle shape, size and orientation. In this chapter, 

we investigate the impact of polarization measurements on cloud property retrievals. 

Figure 6.2 demonstrates the relative improvement of adding polarization to retrieve Deff 

with the bottom right panel producing overall the closest agreement between real and 

retrieved values. In this chapter we also explored how particle orientation influences 

simulated TB and PD. Lastly, we investigated the impacts of assuming a mixture of 

azimuthally and randomly oriented particles. The linear response of PD to the 

percentage of azimuthally oriented particles lends confidence to the potential of using 
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PD at the sub-mm frequencies to infer, or retrieve, the fraction of horizontally oriented 

particles within the cloud. One important closing note is to recall that the magnitude of 

PD is much smaller for randomly oriented particles than their azimuthally oriented 

counterparts. This is important because the large Q, or the second element of the Stokes 

vector, can significantly influence simulated intensity values if one is not solving the 

vector radiative transfer equation.    
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7. ICE CLOUD PROPERTY RETRIEVALS 

 

In Chapter 4 we provided a simple channel selection study based on the 

orthogonality (sensitivity) of LUTs for a variety of sub-mm and infrared channels. From 

this study we concluded that the combination of two sub-mm channels (640, 874 GHz) 

and one infrared (12 µm) demonstrated the highest sensitivity for IWP less than 200 

g/m2 and Deff less than 100 µm. However, this analysis did not include the effects of 

polarization. In Chapter 6, we presented an additional channel selection analysis which 

focused on the relative improvements of adding polarized measurements, or more 

precisely PD, to retrieve Deff. In this Chapter we build on the two previous channel 

selection analyses and present examples of retrieved IWP and Deff for different 

combinations of frequencies, both with and without polarization, in order to determine 

which combination of measurements provides the closest estimate to the true values.  

7.1.  Synthetic data 

 Before defining the various measurement frequencies to be used, it is useful to 

provide a brief discussion concerning the synthetic data to be used in the retrievals. In an 

effort to make the synthetic data as physically realistic as possible, TB and PD in the 

presence of ice clouds are simulated with atmospheric and cloud characteristic data from 

several CloudSat products, as outlined in Chapter 4. Since this work is primarily focused 

on retrieval of tropical ice cloud properties, we only select data within ±20° latitude. 

From this data we extract cloud characteristics such as cloud top/base height. Figure 7.1 

is a 2D histogram showing the cloud top height (ordinate) and cloud geometric thickness 
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(abscissa) from CloudSat. This figure shows a wide range of cloud top heights, from ~7 

to 18 km, with the highest concentration of pixels having a top height of ~13 km.  

 

 
Figure 7.1: 2D histogram of cloud top heights and geometric thicknesses assumed in generating 
synthetic measurements.  
 

From this CloudSat data, we obtain IWP and Deff, which are necessary to 

simulate measurements and are also used as the “true” IWP and Deff to compare against 

their retrieved counterparts. Figure 7.2 is a 2D histogram describing the range and 

concentrations of IWP (abscissa) and Deff (ordinate). This figure shows that for the 

majority of the pixels IWP is less than 200 g/m2 and Deff is less than 100 µm, which 

corresponds to the range of cloud conditions designated for the channel selection study 

presented in Chapter 4 and discussed at the beginning of this chapter. However, much 
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larger values of IWP are also shown in Fig. 7.2, which are typically problematic for sub-

mm retrievals. 

 

 
Figure 7.2: 2D histogram of IWP and Deff values assumed in generating synthetic measurements. 
These values are used as the “true” values to compare against retrieved values.  
 

 In addition to the cloud property information shown in Figs. 7.1 and 7.2, we also 

require vertical profiles of pressure, temperature, and concentrations of absorbing 

species. The most important among these in the sub-mm spectral region is water vapor, 

particularly for high frequencies where water vapor screening can be problematic. Figure 

7.3 shows the volume mixing ratios (VMR) of the main absorbing species considered in 

these simulations as a function of pressure. Note the significant variance of water vapor 

(top panel) compared to O2 and O3. Therefore, in order to reduce the computational 

burden and to add simplicity in generating the synthetic data, we simply compute the 

mean profile for O2 and O3 and assume that profile when simulating TB and PD for all 
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pixels. All temperature and specific humidity profiles are obtained from the ECMWF-

AUX product in order to maintain consistency with CloudSat retrievals. Previous 

sensitivity studies demonstrated assuming a mean profile of O2 and O3 VMRs produced 

changes in TB and PD that are much less than those ascribed to measurement uncertainty 

or noise. 

 

 
Figure 7.3: VMR profiles for the main absorbing species included in generating synthetic 
measurements.  
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 In all simulations an aggregate of severely roughened hexagonal columns is 

assumed as the ice particle shape model. We also assume that particles are randomly 

oriented and follow a gamma size distribution with and effective variance of 0.1. The 

viewing zenith angle is set at 53.5°, which is consistent with existing microwave conical 

scanners. Details specific to the retrieval setup, including the measurement bands, is 

presented in the next section.  

 

7.2. Ice cloud property retrievals 

With the aforementioned CloudSat data (Figs. 7.1 through 7.3) and assumptions 

of the particle habit and particle size distribution, we can now simulate TB and PD for 

the purpose of the retrievals. In this chapter we consider four different sub-mm 

frequencies (325, 448, 640, 874 GHz) and one IR wavelength (12 µm). From these 

bands, we identify 12 different measurement combinations, which are provided in Table 

7.1. For ease of reference, each combination is given a particular ID number. The 

superscript + by a particular channel means that polarization, or PD, is included in 

addition to TB. For example, 640 GHz listed in the table will contribute only TB to the 

measurement vector, whereas 640+ will contribute TB and PD. There is an exception, 

however, which is noted by the asterisk in ID 112. In this case, only PD at 325 GHz is 

included in the measurement vector. The same is the case for 640+/325+, where strictly 

the ratio of PD is included. These combinations are selected based on sensitivity and 

numerical analyses in an effort to provide estimates of IWP and Deff that most closely 

match the true values.  
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Table 7.1 Measurement combinations used in example retrievals. All units are GHz, with the 
exception of 12, which is in µm. Values with a superscript denote polarization is included (i.e., 
both TB and PD are in the measurement vector, and an asterisk denotes only PD is included but 
not TB. 
ID Number Values   
101 640 874    
102 640 874 12   
103 325 448 640 874  
104 640+ 874+    
105 640+ 874+ 12+   
106 640 874 12+   
107 325 448 640 874 12 
108 448 640 874   
109 448 640 874 12  
110 448+ 640+ 874+ 12+  
111 325+ 448+ 640+ 874+ 12+ 

112 *325+ 640+ 874+ 12+ *640+/325+ 

 

 As a point of clarification, all sub-mm channels shown in Table 7.1 use the 

difference between cloudy TB and that associated with a clear sky, or ∆𝑇𝐵. Therefore, 

success of the retrieval depends on our ability to obtain an accurate representation of 

clear-sky TB, which can be a large obstacle for sub-mm remote sensing of ice cloud 

properties. One way to obtain clear-sky TB is by simultaneously retrieving the water 

vapor profile and subsequently calculating TB via a radiative transfer simulator. 

However, for the purposes of the retrievals presented in this thesis, we use a proxy value. 

Numerical simulations showed that TB at 448 GHz, which is a water vapor absorption 

band, closely approximates the clear-sky TB over a wide range of cloud conditions. 

Figure 7.4 shows clear-sky TB as a function of frequency for a tropical, mid-latitude 

winter, and sub-arctic summer atmosphere, where water vapor profiles are expected to 

vary significantly. Notice at 448 GHz, TB is approximately the same for all three 

conditions.  



 

158 

 

 
Figure 7.4: Clear-sky TB as a function of frequency for three atmospheric scenarios. Lines 
correspond to tropical, mid-latitude winter, and sub-arctic summer atmospheres.  
 

 Going one step further, we compute TB at 448 GHz in the presence of ice clouds, 

and for a wide range of IWP and Deff. Figure 7.5 shows ∆𝑇𝐵 as a function of IWP and 

Deff. As is evident from the figure, the magnitude of ∆𝑇𝐵 is small over the entire range 

of IWP and Deff values. Therefore, for all retrievals conducted in this chapter, TB at 448 

GHz is used as a proxy for clear-sky TB, even 448 GHz is not used to explicitly infer 

IWP or Deff.   
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Figure 7.5: ∆𝑇𝐵 as a function of IWP and Deff at 448 GHz. ∆𝑇𝐵 is defined as TBclear sky – TBcloudy. 
 

 In order to determine the quality of retrievals using the different band 

combinations, we compute the root mean square (RMS) error and R2 value for both IWP 

and Deff. Recall when discussing the retrieval methodology in Chapter 4, that it is 

necessary to provide some a priori value of the parameters to be retrieved. It is common 

practice to select a climatological value, however, for the purpose of the retrievals 

presented here we simply take the mean values of IWP and Deff to be the a priori 

estimate. There is a total of 17076 pixels (measurements) comprising this synthetic 

dataset, with a mean IWP and Deff of 67.1 g/m2 and 63.7 µm, respectively. Instead of 

showing a figure for all 12 retrievals shown in Table 7.1, the results are provided for 

convenience in Table 7.2. However, some example figures are provided below for 

clarity. 
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Table 7.2: Error of retrieved IWP and Deff for the different measurement combinations. Note the 
superscript + denotes that polarization is included in the retrieval, and an asterisk denotes only  
PD is included but not TB. 
  IWP Deff 

ID # Values RMS R2 RMS R2 

101 640, 874 24.57 0.929 15.82 0.651 
102 640, 874, 12 26.53 0.919 14.69 0.744 
103 325, 448, 640 24.66 0.929 15.77 0.660 
104 640+, 874+ 24.66 0.927 15.84 0.657 
105 640+, 874+, 12+ 25.32 0.925 15.10 0.741 
106 640, 874, 12+ 25.77 0.922 14.97 0.727 
107 325, 448, 640, 874, 12 26.45 0.918 14.90 0.741 
108 448, 640, 874 24.63 0.928 15.83 0.651 
109 448, 640, 874, 12 26.54 0.919 14.70 0.743 
110 448+, 640+, 874+, 12+ 25.39 0.923 15.15 0.738 
111 325+, 448+, 640+, 874+, 12  26.08 0.917 14.86 0.742 
112 *325+, 640+, 874+, 12+, *640+/325+ 18.02 0.962 7.36 0.937 

 

 One initial takeaway from Table 7.2 is that the RMS of retrieved IWP is larger 

than the RMS for Deff, however Deff retrievals have a larger R2. This is due to the large 

bias of retrieved IWP for large IWP values where sub-mm channels lose sensitivity. 

Also, note that ID 112 exhibited a much better performance than its counterparts. To 

understand this behavior, let us look at an example retrieval. Figure 7.6 shows retrieved 

IWP (left) and Deff (right) corresponding to ID 101 in Table 7.2. When looking at the left 

panel, it is evident that retrieved IWP more closely approximates the true value for low 

IWP. This makes sense because sub-mm sensitivity to IWP is greatly reduced as IWP 

becomes larger, primarily due to the multiple scattering effect becoming dominant. 

Another noteworthy feature in Fig. 7.6 is the striping pattern present in both IWP and 

Deff. This stripe occurs at the a priori values because there is insufficient information 

content in the measurements, and consequently the retrieval converges on the a priori 
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value. This is not surprising because there are only 2 elements in the measurement 

vector.  

 

 
Figure 7.6: Retrieved IWP and Deff corresponding to ID 101 in Tables 7.1 and 7.2. IWP (Deff) is 
shown in the left (right) panel. 
 

 In order to mitigate this information content problem seen in Fig. 7.6 it is 

necessary to add additional measurements. However, ignoring the results in Table 7.2, 

the choice of which measurements to include is not trivial. In Fig. 7.6 we see that 

retrieved Deff poorly estimates the true value, particularly for smaller Deff. Therefore, it is 

likely prudent to include polarization measurements which are sensitive to Deff, or even 

the ratio of PD at two channels, as was shown in Fig. 6.1 to be very sensitive to small 

and moderate sized particles. This procedure is almost akin to solving a puzzle. We 

know an area of the parameter space which lacks sensitivity, and we then select different 

measurements based the physical characteristics which might make them beneficial in 

the retrieval. In this case, the last puzzle piece corresponds to ID 112 in Tables 1 and 2. 

This configuration contains 325 GHz, but only PD. This is because there is only minimal 
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sensitivity to IWP for moderate sized IWP, although is sensitive to Deff. ID 112 also 

incorporates TB and PD at 640 GHz, 874 GHz, and 12 µm, as well as the ratio of PD 

(640/325 GHz). It is evident from Table 7.2 that this combination showed the best 

retrieval performance, so let us now look at the results, shown in Fig. 7.7. 

 

 
Figure 7.7: Retrieved IWP and Deff corresponding to ID 112 in Tables 7.1 and 7.2. IWP (Deff) is 
shown in the left (right) panel 
 

When looking at Fig. 7.7, we see a better agreement for retrieved and true IWP 

values when IWP is large. There is also a significant improvement seen for moderate Deff 

values, which is due to the addition of the ratio of two sub-mm PDs. Overall, this 

selection of measurements provides a much better estimation of the true values that the 

other combinations. Based on these results, we feel confident that retrievals conducted 

with these spaceborne sub-mm and IR polarimetric measurements can accurately infer 

ice cloud properties such as IWP and Deff.  
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8. SUMMARY AND OUTLOOK 

 

 The overarching goal of this thesis was to improve our understanding of how 

sub-mm wave radiation interacts with ice clouds, and subsequently develop a 

methodology to infer, or retrieve, ice cloud properties from spaceborne polarized sub-

mm and IR measurements. An additional aim of this thesis is to provide insight to those 

working towards future sub-mm sensor launches, such as those by NASA and other 

international agencies, as outlined in Chapter 2. The approach to accomplish this 

involved three key aspects.  

The first aspect involved conducting a series of numerical sensitivity analyses to 

ascertain how sub-mm radiances respond to changes in ice cloud properties, such as 

cloud ice mass (IWP), particle size (Deff), shape and orientation, and cloud top height. A 

discussion of these sensitivity studies is provided in Chapter 5. Our results confirmed 

that sub-mm radiation is most sensitive to small Deff and low IWP. We further showed 

that sensitivity to particle shape is low but incorporating a mixture of ice particle shape 

models in retrievals could provide additional information content to a wider range of 

IWP and Deff values. The analyses in Chapter 7 showed that sub-mm PD is extremely 

sensitive to particle orientation. From our analyses we conclude that the sensitivity to 

particle shape is increased when particles are assumed to be azimuthally (horizontally) 

oriented. 

The second aspect was the development of a retrieval algorithm capable of 

reliably characterizing ice cloud properties with sub-mm and IR measurements. An 
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optimal estimation-based framework is selected for the retrieval along with the 

Levenberg-Marquardt iteration scheme, which is appropriate for nonlinear inverse 

problems. Details of the retrieval are provided in Chapter 4. We also chose to 

incorporate information content as an additional metric of quantifying retrieval quality. 

Taken together, retrieval accuracy and information content effectively provide a 

quantitative description of the retrieval process from observations to final products. 

Retrieval performance for different combinations of sub-mm frequencies, both with and 

without polarization, is presented in Chapter 7.  

Finally, we analyzed sub-mm polarized scattering signals of ice clouds to 

determine their sensitivities to particle shape and orientation. From these analyses we 

conclude that the effect of particle orientation on polarized cloud scattering signatures in 

the sub-mm spectral region cannot be ignored. Furthermore, the large Q (second element 

of Stokes vector) due to horizontally oriented particles can significantly influence 

simulated intensity values when solving the scalar versus the vector radiative transfer 

equation. We also investigated the impacts of mixtures of horizontally and randomly 

oriented particles within clouds, and this analysis lends confidence to the ability of 

polarized sub-mm measurements to infer the fraction of horizontally oriented particles in 

the cloud. These analyses are provided in Chapter 6.  

 This doctoral research project contributes to furthering our understanding of how 

sub-mm radiation interacts with ice clouds and provides insight and tools useful to 

retrieve ice cloud properties from spaceborne sub-mm measurements. In particular, a 

novel part of the algorithm presented here is that is utilizes polarized TBs in both the 
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high-frequency sub-mm and IR wavelength regimes, of which there is a lack of studies 

exploring the benefits. Furthermore, the myriad numerical analyses conducted to 

quantify the sensitivity of simulated TBs to assumed ice cloud properties, such as 

particle shape and orientation, provides information concerning the uncertainty of 

retrieved cloud microphysical properties. At the time of writing this dissertation, we 

believe that this study provides the most exhaustive assessment of uncertainties in 

simulated sub-mm and IR measurements due to model assumptions, and the subsequent 

implications in terms of retrieved cloud properties and measurement information 

content. Knowledge of these uncertainties is a useful tool for future researchers, not only 

for constraining existing retrievals, but aids the development of new retrieval algorithms 

to infer ice cloud properties from sub-mm and IR polarized measurements. However, as 

the need and desire for polarized measurements increases, a rigorous characterization of 

cloud 3D effects is necessary, but is beyond the scope and framework of the presented 

research. While systematic biases due to field of view averaging are less impactful in the 

sub-mm spectral region (as compared to thermal IR), it is important future work to 

quantify these beam-filling effects, in addition to actual 3D radiative transfer effects.  

Furthermore, while we showed the implications of particle orientation on 

polarized measurements to be significant, the ratio of azimuthally oriented to randomly 

oriented particles is small in most cases. Therefore, even though this signal is large, 

given the difficulty and complexity of assuming azimuthally oriented particles in cloud 

property retrievals as we have shown, we recommend that ice particle models be 

randomly oriented, and the presence of oriented particles be treated in terms of the 
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measurement error covariance.  Lastly, in addition to informing future research efforts to 

constrain ice cloud property retrievals and develop new spectrally consistent synergistic 

algorithms ranging from the thermal IR to the sub-mm, more broadly this research 

contributes to one of NASA’s overarching goals in Earth Science: advance the 

understanding of the change in Earth’s radiation balance…that result from changes in 

atmospheric composition.  
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