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ABSTRACT

In many applications arising from geosciences, one needs to solve problems with multiple

scales. For examples, simulating the complex flow, porous media applications and so on. To

capture the multiscale features of a problem with heterogeneous property by the traditional finite

element method, one need to use the fine mesh. Consequently the computation is accurate but the

efficiency is compromised because of the large number of the degree of freedoms used. One idea

is to improve the computation efficiency while preserve the accuracy is to design basis which can

resolve multiscale features of the problem on coarse mesh. A class of methods have been proposed

based on this methodology and in this work, I am going to develop the multiscale methods on

solving some important problems. The first two applications of the multiscale modeling in this

work are based on the Quasi-gas-dynamic (QGD) model. In particular, we study QGD model in

a multiscale environment. This is not only because of the challenges in solving and analyzing the

equation; but also because of its wide applications in solving other types of equations, for example,

paraxial wave equations.

It should be noted that the key step in the multiscale methods is to find the multiscale basis

defined on the coarse mesh. This is the most time consuming step which usually involves con-

structing snapshot or auxiliary space, and solving spectral problems. In particular, there are heavy

computations when one is dealing with nonlinear or time dependent problems. Besides basis are

problems dependent, i.e., given a new heterogeneous input, one need to evaluate a new set of basis;

hence it is not flexible to apply the methods on solving stochastic problems .

Deep learning is a branch in the machine learning and started to show its power in computer

science since 2010’s. It is accurate meanwhile very efficient in many computer vision and language

processing applications. Deep learning usually consists of two steps: training and testing. Given a

model which is well trained by a data set, one can evaluate the new example which has common

features as the training data set very efficiently and accurately. This motivates us solving the

multiscale problems with the deep learning approach. In the second part of this work, we will

ii



show some problems which are solved by combining the multiscale methods and deep learning.

The deep learning approach indeed improves the efficiency of the traditional method.
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NOMENCLATURE

Ω Spatial domain

κ Permeability

T h Fine-scale partition

T H Coarse-scale partition

h Fine mesh size
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ω Coarse neighborhood

χ Partition of unity

Ki,m Coarse oversampled region

φ Spectral basis function

ψ Multiscale basis function

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Generalized multiscale finite element methods (GMsFEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Snapshot space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Offline spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Constraint energy minimization GMsFEM (CEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 The spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 The construction of the multiscale basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Deep and reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. COMPUTATIONAL MULTISCALE METHODS FOR QUASI-GAS DYNAMIC EQUA-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Multiscale method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 The method and discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Semi-discretized scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Fully discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. COMPUTATIONAL MULTISCALE METHODS FOR PARAXIAL WAVE APPROX-
IMATIONS IN HETEROGENEOUS MEDIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 The Proper orthogonal decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Multiscale method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Spatial discretization: CEM-GMsFEM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Construction of multiscale reduced basis functions using POD. . . . . . . . . . . . . . . . 37
3.3.3 Fully discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 The first experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 The second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4. LEARNING ALGORITHMS FOR COARSENING UNCERTAINTY SPACE AND
APPLICATIONS TO MULTISCALE SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Problem settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 The coarsening of the parameter space. the main idea . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Space coarsening — generalized multiscale finite element methods . . . . . . . . . . 53
4.2.3 The idea of the proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Deep learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Clustering net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 Adversary network severing as an additional loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 High contrast heterogeneous fields with moving channels . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2.1 Cluster Assignment in a Local Coarse Element . . . . . . . . . . . . . . . . . . . . . 64
4.4.2.2 Relation of error and the number of clusters . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2.3 Comparison of cluster-based method with tradition method . . . . . . . . 67

4.4.3 Effect of the adversary net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. MULTIAGENT REINFORCEMENT LEARNING ACCELERATED MCMC ON MUL-
TISCALE INVERSION PROBLEM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Actor-Critic reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Probabilistic MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Multi-level MCMC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Explanations of the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Discussions of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Detailed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Reinforcement learning setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



5.4.2 The first experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 Multilevel MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 RL accelerated MCMC (RLMCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.5 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.6 ε− greedy RL-MCMC (eRLMCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.7 Test on diagonal channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



LIST OF FIGURES

FIGURE Page

1.1 Domain Partition T H . Reprinted with permission from "Computational multiscale
methods for quasi-gas dynamic equations" by Boris Chetverushkin, Eric Chung,
Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal
of Computational Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Oversampling region with m = 1. Reprinted with permission from "Computa-
tional multiscale methods for quasi-gas dynamic equations" by Boris Chetverushkin,
Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published
in Journal of Computational Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Permeability field κ with contrast values 103. Reprinted with permission from
"Computational multiscale methods for quasi-gas dynamic equations" by Boris
Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang.
To be published in Journal of Computational Physics by Elsevier. . . . . . . . . . . . . . . . . . . . . . 24

2.2 Convergence history in ea (left) and eL2 (right) with α = 0.1. Reprinted with
permission from "Computational multiscale methods for quasi-gas dynamic equa-
tions" by Boris Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and
Zecheng Zhang. To be published in Journal of Computational Physics by Elsevier. . . 25

2.3 Convergence history (time dependent source) in ea (left) and eL2 (right) with α =
0.1. Reprinted with permission from "Computational multiscale methods for quasi-
gas dynamic equations" by Boris Chetverushkin, Eric Chung, Yalchin Efendiev,
Sai-Mang Pun and Zecheng Zhang. To be published in Journal of Computational
Physics by Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Left: The pattern of permeability field c in Ω. Right: Permeability field for all
different z have the same pattern but different contrasts ranges from 10 to 20). . . . . . . . 45

3.2 The relative error at terminal time in z-direction. Y axis is the relative error. X
axis is the z direction. We measure the relative error at the terminal time of each z
grid points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Marmousi permeability field. Each c(zk) is obtained by taking a fine element in
each coarse element of size 6× 6 in this fine grid field of size 600× 600 . . . . . . . . . . . . . 46

3.4 Marmousi Example. The relative error at terminal time in z-direction. Y axis is
the relative error. X axis is the z direction. We measure the relative error at the
terminal time of each z grid points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



4.1 Illustration of coarsening of space and uncertainties. Different clusters for differ-
ent coarse blocks. On the left plot, two coarse blocks are shown. On the right
plot, clusters are illustrated. Reprinted with permission from “Learning Algo-
rithms for Coarsening Uncertainty Space and Applications to Multiscale Simu-
lations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung,
2020. Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI.. . . . . . . . . . . . . . . . . . . . . . 53

4.2 Work flow of the proposed method. Reprinted with permission from “Learning Al-
gorithms for Coarsening Uncertainty Space and Applications to Multiscale Simu-
lations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung,
2020. Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI.. . . . . . . . . . . . . . . . . . . . . . 55

4.3 Cluster network. Reprinted with permission from “Learning Algorithms for Coars-
ening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng
Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics,
8(5):720, 2020, Copyright [2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Deep learning algorithm. Reprinted with permission from “Learning Algorithms
for Coarsening Uncertainty Space and Applications to Multiscale Simulations”
by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020.
Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 The complete network. Reprinted with permission from “Learning Algorithms
for Coarsening Uncertainty Space and Applications to Multiscale Simulations”
by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020.
Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Heterogeneous fields, the yellow strips are the channels. Reprinted with permission
from “Learning Algorithms for Coarsening Uncertainty Space and Applications to
Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and
Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI. . . 63

4.7 Cluster results of 28 samples, images shown are heterogeneous fields, the num-
ber on top of each image is the cluster assignment ID number. Reprinted with
permission from “Learning Algorithms for Coarsening Uncertainty Space and Ap-
plications to Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin
Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright
[2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Cluster results of 20 samples, images shown are heterogeneous fields, the num-
ber on top of each image is the cluster assignment ID number. Reprinted with
permission from “Learning Algorithms for Coarsening Uncertainty Space and Ap-
plications to Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin
Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright
[2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



4.9 The l2 error when the number of clusters changes, colors represent the number of
GMsFEM basis. Reprinted with permission from “Learning Algorithms for Coars-
ening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng
Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics,
8(5):720, 2020, Copyright [2020] by MDPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 The l2 error cluster solution (11 clusters) vs. solution by real κ(x, ŝ). Color rep-
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1. INTRODUCTION

Problems with musicale features widely exist in the real world. To capture the features of all

scales of the multiscale problems, fine scale discretization should be used; however, it is compu-

tationally expensive to capture heterogeneous properties using very fine mesh. For this reason,

we consider the coarse mesh methods. The coarse mesh methods require less number of degree

of freedoms (basis) and hence are computational friendly. To resolve the multiscale features and

preserve the accuracy, coarse mesh basis which are defined on either coarse elements or the coarse

neighborhoods should be well designed. Many methods basing the coarse mesh principle have

been proposed and these methods include homogenization-based approaches [1, 2, 3, 4, 5, 6, 7],

multiscale finite element methods [8, 9, 10, 11], generalized multiscale finite element methods

(GMsFEM) [12, 13, 14, 15, 16, 17, 18], constraint energy minimizing GMsFEM (CEM-GMsFEM)

[19, 20], nonlocal multi-continua approaches (NLMC) [21], metric-based upscaling [22], hetero-

geneous multiscale method [23, 24], localized orthogonal decomposition (LOD) [25, 26], equation

free approaches [27, 28, 29], computational continua [30, 31, 32], hierarchical multiscale method

[33, 34, 35], and so on. Some of these approaches, such as homogenization-based approaches,

are designed for problems with scale separation. In porous media applications, the spatial hetero-

geneities are complex and do not have scale separation. In addition, they contain large jumps in the

coefficients. As a result, the coarse grid does not resolve scales and contrast. For these purposes,

we have introduced a more general concept: GMsFEM and CEM-GMSFEM, where multiple basis

functions are designed to solve problems on a coarse grid [20, 21]. In this work, I will first review

and then apply the GMsFEM and the CEM-GMsFEM approaches to solve a branches important

problems.

Coarse mesh basis evaluation plays a key role in the multiscale finite element methods and it re-

quires heavy computation, in particular when one is solving nonlinear or time dependent problems.

This step usually involves constructing the snapshot or auxiliary space, and solving a spectral prob-

lem. Besides this is a problems dependent step, i.e., given a different heterogeneous input, people
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need to design a different set of basis. For problems with stochastic natural, the multiscale method

is no longer efficient since people need to solve a large number of multiscale problems.

Deep learning method was first studied in 1980’s and researchers have realized its power in

solving many computer science problems. It is accurate and reset the benchmarks in many com-

puter vision applications like the recognition, classification, segmentation, super resolution; and it

also introduces some new and active research topics like the images generation and captioning. Be-

sides the success in the computer vision, deep learning also makes breakthroughs in other area like

the language processing. While the methods create the new benchmarks, the computation speed

and memory in the real-time applications are not compromised. Deep learning methods consist

of training and testing. People need to first train a model by using a large number training sam-

ples. The training step is slow and is usually realized by performing a variant of gradient descent

method; however, given a well trained model, people can evaluate the new testing sample which

shares some common features as training data set very efficiently and accurately.

Deep learning can also be taken as a model reduction technique. People have established the

relation between the neural network layers and image features in the computer vision applications

[36, 37, 38]. This motivate us designing networks which play the role of the model reduction. We

hence propose to introduce the deep learning in solving problems with multiscale natural. In the

rest of this section, I am first going to review the GMsFEM and CEM methods. Next, I will give a

brief introduction of the deep learning method. Finally, I am going to summarize the applications

of the multiscale methods and the deep learning approach in this dissertation.

1.1 Generalized multiscale finite element methods (GMsFEM)

In this section, I will introduce the GMsFEM. For more details about this method, please refer

to [12, 13, 14, 15, 16, 17, 18].

Consider the second order elliptic equation Lu = f in D with proper boundary conditions;
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denote the the elliptic operator as:

L(u) = − ∂

∂xi
(kij(x)

∂

∂xj
u). (1.1)

Special case of the elliptic operator is L(u) = −∇ · (κ∇u), where κ(x) is the permeability field.

Let the spatial domain D be partitioned by a coarse grid T H ; this does not resolve the multiscale

features. Let us denote K as one cell in T H and refine K to obtain the fine grid partition T h (blue

box in Figure 1.1). We assume the fine grid is a conforming refinement of the coarse grid. See

Figure 1.1 for details.

Figure 1.1: Domain Partition T H . Reprinted with permission from "Computational multiscale
methods for quasi-gas dynamic equations" by Boris Chetverushkin, Eric Chung, Yalchin Efendiev,
Sai-Mang Pun and Zecheng Zhang. To be published in Journal of Computational Physics.

For the i-th coarse grid node, let ωi be the set of all coarse elements having the vertex i (green

region in Figure 1.1). We will solve local problems in each coarse neighborhood to obtain set of

multiscale offline basis functions {φωii }; and finally solve the problem using the offline basis.

1.1.1 Snapshot space

We need to first construct the snapshot space. There are several options and we will introduce

the harmonic extension of the fine grid functions defined on the boundary of ωi. Let us denote

δhl (x) as fine grid delta function, which is defined as δhl (xk) = δl,k for xk ∈ Jh(ωi) where Jh(ωi)

denotes the boundary nodes of ωi. The snapshot function ψωil is then calculated by solving local
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problem in ωi:

L(ψωil ) = 0 (1.2)

subject to the boundary condition ψωil = δhl (x). The snapshot space V ωi
snap is then constructed as

the span of all snapshot functions.

1.1.2 Offline spaces

The offline space V ωi
off is derived from the snapshot space and is used for computing the solution

of the problem. We need to solve for a spectral problem and this can be summarized as finding λ

and v ∈ V ωi
snap such that:

aωi(v, w) = λsωi(v, w),∀w ∈ V ωi
snap, (1.3)

where aωi is symmetric non-negative definite bilinear form and sωi is symmetric positive definite

bilinear form. When L(u) = −∇ · (κ∇u), by convergence analysis, they are given by

aωi(v, w) =

∫
ωi

κ∇v · ∇w, (1.4)

sωi(v, w) =

∫
ωi

κ̃v · w. (1.5)

In the above definition of sωi , the function κ̃ = κ
∑
|∇χj|2 where {χj} is a set of partition of

unity functions corresponding to the coarse grid partition of the domain D and the summation is

taken over all the functions in this set. The offline space is then constructed by spanning the first

Li eigen-functions corresponding to eigenvalues. Finally we are trying to find uoff ∈ Voff such

that

a(uoff , v) =

∫
D

fv,∀v ∈ Voff (1.6)

where a(u, v) =
∫
D
κ∇u · ∇v, if L(u) = −∇ · (κ∇u).
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1.2 Constraint energy minimization GMsFEM (CEM)

The CEM method [19, 20] is also used to capture the multiscale features on the coarse mesh.

One of the advantages of the CEM method is that one can prove the first order coarse mesh con-

vergence, from which one can establish many theoretical results by applying the CEM methods on

solving other problems. The CEM method is motivated by the the global basis convergence prop-

erty; however the global basis which are derived by solving the energy minimization problems on

the whole domain cannot be used in practice due to the global support of the basis. Researchers

hence proposed to build the local basis, which is inspired by the exponential decay property of the

global basis. By the estimate of the difference between the global and local basis, one can prove

the convergence of the local basis. The multiscale method consists of two steps. First, form an

auxiliary space by spectral decomposition. Second, construct multiscale space.

1.2.1 The spectral decomposition

We consider solving the same problem as before. Define V (Ki) as the restriction of the abstract

space V on the coarse element Ki. We consider a local spectral problem: Find λ
(i)
j ∈ R and

φ
(i)
j ∈ V (Ki) such that

ai(φ
(i)
j , v) = λ

(i)
j si(φ

(i)
j , v) for all v ∈ V (Ki). (1.7)

Here, ai : V (Ki)× V (Ki) and si : V (Ki)× V (Ki) can be chosen as:

ai(v, w) =

∫
Ki

κ∇v · ∇w,

si(v, w) =

∫
Ki

κ̃v · w.

where κ̃ :=
∑Nc

j=1 κ|∇χms
j |2. The functions {χms

j }Ncj=1 are the standard multiscale finite element

basis functions which satisfy the partition of unity property. More precisely, χms
j is the solution of
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the following system:

∇ · (κ∇χms
j ) = 0 in each K ⊂ ωj,

χms
j = gj on ∂K \ ∂ωj,

χms
j = 0 on ∂ωj.

Here, we define ωj :=
⋃
{K : xj ∈ K} the coarse neighborhood corresponding to the coarse node

xj . The function gj is continuous and linear along the boundary of the coarse element. We assume

that the eigenvalues λ(i)
j are arranged in ascending order and we pick `i ∈ N+ corresponding

eigenfunctions to construct the local auxiliary space V (i)
aux := span{φ(i)

j : j = 1, · · · , `i}. We

assume the normalization si
(
φ

(i)
j , φ

(i)
j

)
= 1. After that, we define the global auxiliary multiscale

space Vaux :=
⊕N

i=1 V
(i)

aux . We remark that the global auxiliary multiscale space is used to construct

multiscale basis functions that are orthogonal to the auxiliary space with respect to the weighted

L2 inner product s(·, ·).

Note that the bilinear form si(·, ·) defines an inner product with norm ‖·‖s(Ki) :=
√
s(·, ·) in the

local auxiliary space V (i)
aux . Based on these local inner products and norms, one can naturally define

a new inner product and norm for the global auxiliary space Vaux as follows: for all v, w ∈ Vaux,

s(v, w) :=
N∑
i=1

si(v, w) and ‖v‖s :=
√
s(v, v). (1.8)

The inner product and norm defined above can be extended for the abstract space V . In addition,

we define π : L2(Ω)→ Vaux as the projection with respect to the inner product s(·, ·) such that

πu = π(u) :=
N∑
i=1

`i∑
j=1

si(u, φ
(i)
j )φ

(i)
j for all u ∈ L2(Ω).
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1.2.2 The construction of the multiscale basis functions

In this section, we present the construction of the multiscale basis functions. First, we define

an oversampling region for each coarse element. Specifically, given a non-negative integer m ∈ N

and a (closed) coarse element Ki, we define the oversampling region Ki,m ⊂ Ω such that

Ki,m :=

 Ki if m = 0,⋃
{K : Ki,m−1 ∩K 6= ∅} if m ≥ 1.

See Figure 1.2 for an illustration of oversampling region. For simplicity, we denote K+
i the

oversampled region Ki,m for some nonnegative integer m.

Figure 1.2: Oversampling region with m = 1. Reprinted with permission from "Computa-
tional multiscale methods for quasi-gas dynamic equations" by Boris Chetverushkin, Eric Chung,
Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal of Computational
Physics.

Let V0(K+
i ) be the subspace of V (K+

i ) with zero trace on the boundary ∂K+
i . For each eigen-

function φ
(i)
j ∈ Vaux, we define the multiscale basis ψ(i)

j,ms ∈ V0(K+
i ) to be the solution of the

equation:

a(ψ
(i)
j,ms, v) + s

(
π(ψ

(i)
j,ms), π(v)

)
= s(φ

(i)
j , v) for all v ∈ V0(K+

i ), (1.9)

where s(·, ·) is defined as in (1.8).
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Then, the multiscale space is defined as Vms := span
{
ψ

(i)
j,ms : i = 1, · · · , N, j = 1, · · · , `i

}
.

By construction, we have dim(Vms) = dim(Vaux). Finally, we seek a solution in the Vms space by

standard finite element approximation.

1.3 Deep and reinforcement learning

Deep learning [39] was a branch of the machine learning and it was first studied in late 1980’s.

The success of the Alex Net [40] in early 2010’s draw people’s attention on the deep learning

research. Since then, the deep learning became very successful in many research areas including

computer vision, language processing and so on.

Most of the deep learning algorithms contain two steps: training and testing. In the training

stage, people are given samples and then people train a network using the samples by gradient

descent algorithm. In the testing stage, people fit the trained network with a testing sample and

make the prediction, which is computational efficiently.

Because of the efficiency in the testing and accuracy of the algorithm, deep learning method

has been used in the computational multiscale heterogeneous problems [41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 52, 53, 41].

In the computer vision applications, people have built the relation between the network lay-

ers and the image features. Also, people can prove the equivalence of the linear network and the

principle component analysis (PCA) which can be taken a a simple dimension reduction technique

[39]. This motivate us using the network as a method of model reduction. We hence proposed sev-

eral deep learning based algorithms which solve the traditional multiscale problems in an efficient

way.

1.4 Organization of the dissertation

In this work, I will solve and analyze problems with multiscale features. We apply GMsFEM

and CEM in the spatial discretization and derive the mathematical analysis. I will present four

works. The first two works are based on the quasi gas dynamic models (QGD). In the first work

which is detailed in chapter 2, I describe the QGD model and illustrate the discretization techniques
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of solving the equations. Stability and convergence analysis will also be shown.

The second project (see chapter 3) is based on the analysis of the QGD model which is pre-

sented in the first section. In this part, we consider solving a full wave equation using the paraxial

approximation. I will not focus on the approximation theory; instead, I will study the resulting

equations of the approximation. These equations are of QGD type and we can apply the analysis

derived before on solving the problem; however, in practice, the dimension of the result system

is high and it is not practical to solve the entire system. The idea to solve this issue is to ap-

ply the proper orthogonal decomposition (POD). I will present the details of the POD and give

convergence analysis of the method.

The next two topics are more computational related which rely on the deep learning method.

In the chapter 4 of the dissertation , I introduce an unsupervised deep clustering algorithm which

is used to coarsen the uncertain space. We will compare the deep learning algorithm with the

traditional algorithms and our algorithm can also be applied to solve other problems with the

uncertainty.

The last chapter (5) is also deep learning based project; however, deep learning is used as

a tool in the reinforcement learning setup. This work provides a deep reinforcement learning

(RL) alternative to accelerating the Monte Carlo Markov Chain (MCMC). I will review the RL

background and present the proposed method. To verify our method, we solve an inverse problem

whose underlying model has multiscale property. The GMsFEM method comes in this project as

we design the forward solver using the multiscale methods.
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2. COMPUTATIONAL MULTISCALE METHODS FOR QUASI-GAS DYNAMIC

EQUATIONS *

2.1 Introduction

The simulations of complex flows play an important role in many applications, such as porous

media, aerodynamics, and so on. There are various model equations used for simulation purposes,

which vary from kinetic to continuum models, such as the Navier-Stokes equations. There are

several intermediate-scale models that are successfully used in the literature, which includes the

quasi-gas dynamic (QGD) system of equations. The QGD model has shown to be effective for

various applications. The QGD model equations are derived from kinetic equations under the

assumption that the distribution function is similar to a locally Maxwellian representation. The

QGD model has an advantage that it guarantees the smoothing of the solution at the free path

distance. The QGD equations are extensively described in the literature [54, 55, 56, 57, 58, 59].

In the chapter, we consider a simplified QGD system involving second derivatives with respect

to the time, in addition to spatial diffusion. In literature, this model has also been used to regularize

purely parabolic equations by adding a hyperbolicity. This regularization has been employed in

designing efficient time stepping algorithms [55, 57, 58].

We consider the QGD model in a multiscale environment. More precisely, we consider a sim-

plified QGD model (see (2.1)) and introduce multiscale coefficients. These coefficients represent

the media properties and spatially vary. The applications of these equations can be considered in

porous media for compressible flows. The heterogeneities of the coefficients represent the media

properties, which can have large variations. Our objective in this work is to make some first steps

in understanding multiscale systems in these hyperbolic quasi-dynamic systems.

In the chapter, we would like to solve the QGD model equations on a coarse grid that is much

larger compared to spatial heterogeneities. There are many methods for coarse-grid approximation

*Reprinted with permission from "Computational multiscale methods for quasi-gas dynamic equations" by Boris
Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal of
Computational Physics by Elsevier.
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as we have discu Our goal is to design an approach for hyperbolic quasi-dynamic systems.

For spatial discretization, we adopt the idea of CEM-GMsFEM presented in [19] and con-

struct a specific multiscale space for approximating the solution. Starting with a well-designed

auxiliary space, we construct multiscale basis functions (supported in some oversampling regions)

which are minimizers of a class of constraint energy minimization problems. One of the theo-

retical benefits of the CEM-GMsFEM is that the convergence of the method can be shown to be

independent of the contrast from the heterogeneities; and the error linearly decreases with respect

to coarse mesh size if the oversampling parameter is appropriately chosen. Our analysis indicates

that a moderate number of oversampling layers, depending logarithmically on the contrast, seems

sufficient to archive accurate approximation. The present CEM-GMsFEM setting allows flexibly

adding additional basis functions based on spectral properties of the differential operators. This

enhances the accuracy of the method in the presence of high contrast in the media. It is shown that

if enough basis functions are selected in each local patch, the convergence of the method can be

shown independently of the contrast.

For temporal discretization, we use a central finite difference scheme to discretize the first and

second order time derivatives in the equation. We show that the corresponding fully-discretized

scheme is stable under a relaxed version of the CFL condition. In order to prove the stability

and convergence of the full discretization, we first establish an inverse inequality in the multiscale

finite element space. This result relies on the localized estimate between the global and local

multiscale basis functions [19]. A complete convergence analysis is presented in this work. In

particular, the error estimate of semi-discretization is shown in Theorem 2.4.3. For the complete

analysis of the fully-discretized numerical scheme, the main result is summarized in Theorem

2.4.8. Throughout the part of analysis, we need proper regularity assumptions on the source term

and initial conditions. Numerical results are provided to illustrate the efficiency of the proposed

method and it confirms our theoretical findings.

The remainder of the chapter is organized as follows. We provide in Section 2.2 the background

knowledge of the problem. Next, we introduce the multiscale method and the discretization in Sec-
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tion 2.3. In Section 2.4, we provide the stability estimate of the method and prove the convergence

of the proposed method. We present the numerical results in Section 2.5. Finally, we give conclud-

ing remarks in Section 2.6.

2.2 Preliminaries

Consider the quasi-gas dynamics (QGD) model in a polygonal domain Ω ⊂ Rd (d = 2, 3):

ut + αutt −∇ · (κ∇u) = f in (0, T ]× Ω,

u|t=0 = u0 in Ω,

ut|t=0 = v0 in Ω,

u = 0 on ∂Ω.

(2.1)

Here, ut denotes the time derivative of the function u, α is a constant, κ : Ω → R is a time-

independent high-contrast permeability field such that 0 < γ ≤ κ(x) ≤ β for almost every x ∈ Ω,

f is a source term with suitable regularity, and T > 0 is the terminal time. Further, we assume that

the initial conditions u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω).

We clarify the notation used throughout the work. We write (·, ·) to denote the inner product in

L2(D) and ‖·‖ for the corresponding norm. Let H1
0 (Ω) be the subspace of H1(Ω) with functions

having a vanishing trace and the corresponding dual space is denoted by H−1(Ω). Moreover, we

write Lp(0, T ;X) for the Bochner space with the norm

‖v‖Lp(0,T ;X) :=

(∫ T

0

‖v‖pX dt
)1/p

1 ≤ p <∞,

where X is a Banach space equipped with the norm ‖·‖X .

Instead of the original PDE formulation, we consider the variational formulation corresponding

to (2.1): Find u ∈ L2(0, T ;H1
0 (Ω)) with ut ∈ L2(0, T ;L2(Ω)) and utt ∈ L2(0, T ;L2(Ω)) such that

(ut, v) + α (utt, v) + a(u, v) = (f, v) (2.2)

12



for all v ∈ V := H1
0 (Ω). Here, we define a(u, v) :=

∫
Ω
κ∇u · ∇v dx for all u, v ∈ V . Employing

Galerkin’s method and the method of energy estimate, one can show the well-posedness of the

variational formulation (2.2). See [60, Chapter 7.2] for more details.

In this research, we apply the constraint energy minimizing generalized multiscale finite ele-

ment method (CEM-GMsFEM) to approximate the solution of the above QGD model. First, we

introduce fine and coarse grids for the computational domain. Let T H = {Ki}Ni=1 be a conforming

partition of the domain Ω with mesh size H > 0 defined by

H := max
K∈T H

(
max
x,y∈K

|x− y|
)
.

We refer to this partition as the coarse grid. We denote the total number of coarse elements as

N ∈ N+. Subordinate to the coarse grid, we define the fine grid partition T h (with mesh size

h � H) by refining each coarse element K ∈ T H into a connected union of finer elements. We

assume that the refinement above is performed such that T h is also a conforming partition of the

domain Ω. Denote Nc the number of interior coarse grid nodes of T H and we denote {xi}Nci=1 the

collection of interior coarse nodes in the coarse grid.

2.3 Multiscale method

We have reviewed the CEM-GMsFEM in the introduction. For the QGD equation, it has the

similar formulation. We want to recall the localization property of the local multiscale basis.

Remark 2.3.1. The local construction of multiscale basis function ψ(i)
j,ms supported in K+

i is moti-

vated by the following global construction: Find ψ(i)
j ∈ V such that

a(ψ
(i)
j , v) + s

(
π(ψ

(i)
j ), π(v)

)
= s(φ

(i)
j , v) for all v ∈ V . (2.3)

We then define Vglo := span
{
ψ

(i)
j : i = 1, · · · , N, j = 1, · · · , `i

}
. It has been shown in [19] that

the decomposition V = Vglo ⊕ Ker(π) holds and this decomposition is orthogonal with respect to

the energy bilinear form a(·, ·). We will use this property to prove the inverse inequality (Lemma

13



2.4.5) below.

Using the result of [19, Lemma 5], we have the error estimate of localization: For any multi-

scale function vms =
∑N

i=1

∑`i
j=1 α

(i)
j ψ

(i)
j,ms ∈ Vms, there exists a function vglo =

∑N
i=1

∑`i
j=1 α

(i)
j ψ

(i)
j ∈

Vglo such that

‖vglo − vms‖2
a . (m+ 1)dE

N∑
i=1

`i∑
j=1

(
α

(i)
j

)2

. (2.4)

Here, m is the number of oversampling, E := 3(1 + Λ−1)
(
1 + (2(1 + Λ−1/2))

)1−m
is the factor

of exponential decay, and Λ := min
1≤i≤N

λ
(i)
`i+1 with

{
λ

(i)
j

}
being obtained from (1.7).

2.3.1 The method and discretization

In this section, we discuss the discretizations of the equation (2.2). Let ums ∈ Vms be the

multiscale approximation to the exact solution u. In particular, the function ums solves

((ums)t, v) + α ((ums)tt, v) + a(ums, v) = (f, v) for all v ∈ Vms. (2.5)

For time discretization, we first partition the temporal domain (0, T ) into equally NT pieces with

time step size ∆t. For any function v = v(t), we use the following finite differences to approximate

time derivatives appearing in the QGD model:

vt ≈
v(tn+1)− v(tn−1)

2∆t
=: Dtv

n and vtt ≈
v(tn+1)− 2v(tn) + v(tn−1)

(∆t)2
=: Dttv

n.

The fully discretization of the equation (2.2) reads: Find uTH := (unH)NTn=0 with unH ∈ Vms such that

for any n = 1, · · · , NT − 1,

(Dtu
n
H + αDttu

n
H , v) + a(unH , v) = (fn, v) for all v ∈ Vms, (2.6)

where fn := f(tn).
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2.4 Convergence analysis

In this section, we analyze the convergence of the multiscale method. Throughout the work,

we denote a . b if there is a generic constant C > 0 such that a ≤ Cb. We write a .T b if there is

a constant CT depending on T such that a ≤ CT b. We denote ‖·‖ = ‖·‖L2(Ω) and ‖·‖a :=
√
a(·, ·).

2.4.1 Semi-discretized scheme

We first consider the stability and error estimate in semi-discretization. The following results

give a stability estimate for the scheme (2.5).

Lemma 2.4.1. Let ums ∈ Vms be the solution of the equation (2.5). Then,

α ‖(ums)t(T )‖2 + ‖(ums)(T )‖2
a . α ‖v0‖2 + ‖u0‖2

a + ‖f‖2
L2(0,T ;L2(Ω)) . (2.7)

Proof. Let v = (ums)t in (2.5). We have

‖(ums)t‖2 +
1

2

d

dt

(
α ‖(ums)t‖2 + ‖ums‖2

a

)
= (f, (ums)t) ≤ ‖f‖ · ‖(ums)t‖ .

We remark that if f ≡ 0, the scheme is of energy conservation. Integrating over (0, T ) leads to

2

∫ T

0

‖(ums)t‖2 dt+ α ‖(ums)t(T )‖2 + ‖ums(T )‖2
a ≤ α ‖v0‖2 + ‖u0‖2

a + 2

∫ T

0

1√
2
‖f‖ ·

√
2 ‖(ums)t‖ dt

≤ α ‖v0‖2 + ‖u0‖2
a +

1

2

∫ T

0

‖f‖2 dt+ 2

∫ T

0

‖(ums)t‖2 dt

using Cauchy-Schwarz inequality. This completes the proof.

To estimate the error bound for semi-discretization scheme, we introduce the definition of

elliptic projection.

Definition 2.4.2. For any function v ∈ V , we define the elliptic projection v̂ ∈ Vms of the function

v such that

a(v − v̂, w) = 0 for all w ∈ Vms. (2.8)
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Next, we analyze the convergence of the proposed multiscale method. For any function v ∈ V ,

we define the energy functional E : V → R such that E(v) :=
√
α ‖vt‖ + ‖v‖a. It is not difficult

to verify that

E(v + w) =
√
α ‖vt + wt‖+ ‖v + w‖a ≤

√
α (‖vt‖+ ‖wt‖) + ‖v‖a + ‖w‖a = E(v) + E(w)

for any v, w ∈ V . That is, the triangle inequality holds for the energy functional. Note that for any

v ∈ V , we have

(E(v))2 =
(√

α ‖vt‖+ ‖v‖a
)2

. α ‖vt‖2 + ‖v‖2
a .

We have the following error estimate for the semi-discretization of the QGD model.

Theorem 2.4.3. Let u ∈ V be the solution to (2.2) and ums ∈ Vms be the multiscale solution to

(2.5). Assume that the number of oversampling layers m = O(log(βγ−1H−1)) and {χms
j }Ncj=1 are

bilinear partition of unity. Then, for any t ∈ (0, T ], the following error estimate holds

‖u(t)− ums(t)‖a .T HΛ−1/2, (2.9)

where Λ = min
1≤i≤N

λ
(i)
`i+1 and {λ(i)

j } are the eigenvalues obtained by solving (1.7).

Proof. Denote û the elliptic projection of the exact solution u. We write

e := u− ums = u− û︸ ︷︷ ︸
=:ρ

+ û− ums︸ ︷︷ ︸
=:θ

= ρ+ θ.

Denote F := f − ut − αutt. Note that the function û satisfies the equation:

a(û, v) = (F , v) for all v ∈ Vms.

Using the result of [19, Lemma 1], we obtain that

‖ρ‖a = ‖u− û‖a . HΛ−1/2
∥∥κ−1/2F

∥∥ and ‖ρt‖ = ‖(u− û)t‖ . H2Λ−1
∥∥κ−1/2Ft

∥∥ .
16



Therefore, we have

E(ρ) .
√
αH2Λ−1

∥∥κ−1/2Ft
∥∥+HΛ−1/2

∥∥κ−1/2F
∥∥ . HΛ−1/2.

Next, we analyze the term E(θ). Subtracting (2.5) from (2.2), we obtain

(et, v) + α (ett, v) + a(e, v) = 0 for all v ∈ Vms.

Note that, by the property of elliptic projection, we have a(ρ, v) = 0 for all v ∈ Vms. That is, we

have

(θt, v) + α (θtt, v) + a(θ, v) = ((û− u)t + α(û− u)tt, v)

for all v ∈ Vms. Denote G := (û− u)t + α(û− u)tt. Let v = θt ∈ Vms and use the same technique

for proving the stability result (2.7), one can show that

(E(θ))2 . α ‖θt(0)‖2 + ‖θ(0)‖2
a + ‖G‖2

L2(0,T ;L2(Ω)) .

Note that θt(0) and θ(0) are given by the initial conditions of quasi gas-dynamics equation. If we

choose ums(0) be such that

a(ums(0), v) = a(u0, v) for all v ∈ Vms,

then θt(0) = θ(0) = 0 because of the property of elliptic projection. Therefore, we have

E(θ) . ‖G‖L2(0,T ;L2(Ω)) . ‖ρt‖L2(0,T ;L2(Ω)) + α ‖ρtt‖L2(0,T ;L2(Ω)) .T H
2Λ−1.

To conclude, we show that

E(u− ums) ≤ E(ρ) + E(θ) .T HΛ−1/2. (2.10)
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This completes the proof.

2.4.2 Fully discretization

In this section, we analyze the method in fully discretization. First, we define σaux := max
1≤i≤N

(
max

1≤j≤`i
λ

(i)
j

)
.

We observe that the inverse inequality (in the multiscale space) holds. To prove the inverse inequal-

ity in Vms, we first prove the following lemma.

Lemma 2.4.4. For any vms =
∑N

i=1

∑`i
j=1 α

(i)
j ψ

(i)
j,ms ∈ Vms, the following estimation holds

N∑
i=1

`i∑
j=1

(α
(i)
j )2 ≤ (1 +D) ‖vms‖2

s , (2.11)

where D is a generic constant depending on the value of σaux.

Proof. Let vms =
∑N

i=1

∑`i
j=1 α

(i)
j ψ

(i)
j,ms ∈ Vms. By the variational formulation (1.9), for any φ(l)

k ∈

Vaux, we have

s(πvms, φ
(l)
k ) =

N∑
i=1

`i∑
j=1

α
(i)
j s(πψ

(i)
j,ms, φ

(l)
k ) =

N∑
i=1

`i∑
j=1

α
(i)
j

(
s(πψ

(i)
j,ms, πψ

(l)
k,ms) + a(ψ

(i)
j,ms, ψ

(l)
k,ms)

)
.

Denote blk = s(πvms, φ
(l)
k ) and b = (blk), we have

‖c‖2 ≤ ‖A−1‖2 · ‖b‖2,

where A ∈ Rp×p is the matrix representation of the bilinear form

s(πψ
(i)
j,ms, πψ

(l)
k,ms) + a(ψ

(i)
j,ms, ψ

(l)
k,ms)

with p =
∑N

i=1 `i and c =
(
α

(i)
j

)
∈ Rp. We then estimate the largest eigenvalue of A−1. Define

an auxiliary function φ :=
∑N

i=1

∑`i
j=1 α

(i)
j φ

(i)
j ∈ Vaux and ψms ∈ Vms to be the solution of the
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following equation:

a(ψms, ω) + s(πψms, πω) = s(φ, πω) for all ω ∈ Vms. (2.12)

On the other hand, by [19, Lemma 2], there is a function z ∈ V such that

πz = φ and ‖z‖2
a ≤ D‖φ‖2

s.

Here, D is a generic constant depending on the value of σaux (cf. [19, Lemma 2]). Taking ω = z in

(2.12) and using the fact that s(φ, φ) = ‖c‖2
2, we have

‖c‖2
2 = a(ψms, z) + s(πψms, φ) ≤ ‖ψms‖a‖z‖a + ‖πψms‖s‖φ‖s

≤ (1 +D)
1
2‖φ‖s

(
‖ψms‖2

a + ‖πψms‖2
s

) 1
2 .

Denote Ψ ∈ Rp the vector representation of ψms and (·, ·)2 the `2 Euclidean inner product on Rp.

This implies that
‖c‖2

(AΨ,Ψ)2

≤ (1 +D)
1
2 .

This implies that ‖A−1‖2 ≤ (1 +D)
1
2 . It follows that ‖c‖2

2 ≤ (1 +D)‖b‖2
2 ≤ (1 +D)‖vms‖2

s.

Lemma 2.4.5 (Inverse Inequality). Assume that {χms
j }Ncj=1 is a set of bilinear partition of unity. For

any vms ∈ Vms, there is a constant Cinv > 0 such that

‖∇vms‖a ≤ CinvH
−1β1/2 ‖vms‖ . (2.13)

Proof. Let v ∈ Vglo. Applying the orthogonality of Vglo, we get

‖v‖2
a = a(v, v) = a(v, πv) ≤ ‖v‖a ‖πv‖a ≤ ‖v‖a σ

1/2
aux ‖πv‖s ,
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which implies that ‖v‖a ≤ σ
1/2
aux ‖πv‖s.

Next, for any vms =
∑N

i=1

∑`i
j=1 α

(i)
j ψ

(i)
j,ms ∈ Vms, let v =

∑N
i=1

∑`i
j=1 α

(i)
j ψ

(i)
j ∈ Vglo. We claim

that ‖πv‖s ≤
∑N

i=1

∑`i
j=1(α

(i)
j )2. Notice that by (2.3), we have

‖πv‖2
s = s(πv, πv) =

N∑
i=1

`i∑
j=1

α
(i)
j s(πψ

(i)
j , πv) =

N∑
i=1

`i∑
j=1

α
(i)
j

(
s(φ

(i)
j , πv)− a(ψ

(i)
j , v)

)
= s(φ, πv)− a(v, v) = s(φ, πv)− ‖v‖2

a

with φ :=
∑N

i=1

∑`i
j=1 α

(i)
j φ

(i)
j . This implies that

‖πv‖2
s ≤ s(φ, πv) ≤ ‖φ‖s ‖πv‖s =⇒ ‖πv‖2

s ≤ ‖φ‖
2
s =

N∑
i=1

`i∑
j=1

(
α

(i)
j

)2

using the orthogonality of the auxiliary basis functions. By the inequalities (2.4) and (2.11), we

have

‖vms‖2
a ≤ ‖(v − vms)‖2

a + ‖v‖2
a

. (m+ 1)dE
N∑
i=1

`i∑
j=1

(
α

(i)
j

)2

+ σaux‖πv‖2
s

.
(
(m+ 1)dE + σaux

) N∑
i=1

`i∑
j=1

(
α

(i)
j

)2

.
(
(m+ 1)dE + σaux

)
(1 +D) ‖vms‖2

s .

Using the definition of s-norm, this gives that ‖vms‖a ≤ CinvH
−1β1/2 ‖vms‖ holds for any vms ∈ Vms

with C2
inv = (1 +D)

(
(m+ 1)dE + σaux

)
.

Recall that uTH := (unH)NTn=0 with unH ∈ Vms is the solution to (2.6). The following result gives

the stability estimate of the fully discretization.

20



Lemma 2.4.6 (Stability of the method). Assume that the CFL condition

α− 1

2
C2

invβH
−2(∆t)2 ≥ δ (2.14)

holds for some constant δ > 0. Then, the fully discretization method (2.6) is stable; that is,

α

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥+ ‖unH‖a .

(
∆t

n∑
k=1

∥∥fk∥∥+ α

∥∥∥∥u1
H − u0

H

∆t

∥∥∥∥+
∥∥u1

H

∥∥
a

+
∥∥u0

H

∥∥
a

)
. (2.15)

Proof. Let v = un+1
H − un−1

H in (2.6). We have

1

2∆t

∥∥un+1
H − un−1

H

∥∥2
+

α

(∆t)2

(
un+1
H − unH − (unH − un−1

H ), un+1
H − unH + unH − un−1

H

)
+a(unH , u

n+1
H − un−1

H ) = ∆t

(
fn,

un+1
H − un−1

H

∆t

)
.

Define En,H :=
1

2

(
α

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+ a(un−1
H , unH)

)
. It implies that

α

(∥∥∥∥un+1
H − unH

∆t

∥∥∥∥2

−
∥∥∥∥unH − un−1

H

∆t

∥∥∥∥2
)

+ a(unH , u
n+1
H )− a(un−1

H , unH) ≤ (fn, un+1
H − un−1

H )

=⇒ En+1,H ≤ En,H +
1

2
(fn, un+1

H − un−1
H ).
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Note that

En,H =
1

2

(
α

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+ a(unH , u
n−1
H )

)

=
α

2

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+
1

4
a(unH , u

n
H) +

1

4
a(un−1

H , un−1
H )− 1

4
a(unH − un−1

H , unH − un−1
H )

≥ α

2

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+
1

4
a(unH , u

n
H) +

1

4
a(un−1

H , un−1
H )− 1

4

∥∥(unH − un−1
H )

∥∥2

a

≥ α

2

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+
1

4
a(unH , u

n
H) +

1

4
a(un−1

H , un−1
H )− 1

4
C2

invH
−2β(∆t)2

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

=
1

2

(
α− 1

2
C2

invH
−2β(∆t)2

)∥∥∥∥unH − un−1
H

∆t

∥∥∥∥2

+
1

4

(
‖unH‖

2
a +

∥∥un−1
H

∥∥2

a

)
.

Then, we have

En+1,H − En,H ≤
1

2
(fn, un+1

H − un−1
H ) ≤ 1

2
∆t ‖fn‖

(∥∥∥∥un+1
H − unH

∆t

∥∥∥∥+

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥)
≤ 1

2
∆t ‖fn‖ ·

√
2

δ

(√
En+1,H +

√
En,H

)
,

√
En+1,H −

√
En,H ≤

1√
2δ

∆t ‖fn‖ =⇒
√
En,H ≤

√
E0,H +

∆t√
2δ

n∑
k=1

∥∥fk∥∥ .
This implies that

α

∥∥∥∥unH − un−1
H

∆t

∥∥∥∥+ ‖unH‖a .

(
∆t

n∑
k=1

∥∥fk∥∥+ α

∥∥∥∥u1
H − u0

H

∆t

∥∥∥∥+
∥∥u1

H

∥∥
a

+
∥∥u0

H

∥∥
a

)
.

This completes the proof.

Remark 2.4.7. According to the CFL condition (2.15), the fully discretization (2.6) is stable if

and only if the temporal step size ∆t > 0 satisfies the following inequality: for some constant

δ ∈ (0, α),

∆t ≤
H
√

2(α− δ)
β1/2Cinv

.

The above condition for the temporal step size is relaxed since the coarse mesh size H is much

larger than that of the fine mesh. In other words, with the proposed multiscale method, one may
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use a larger temporal step size (comparing to that of any fine-scale methods) in simulations while

maintaining the stability of the explicit discretization; however, this is still a restrictive time step

and we plan to study implicit or implicit-explicit schemes in future.

Recall that u ∈ V is the solution of (2.2). The total error between u := (u(tn))NTn=0 and uTH can

be split into two parts: the spatial discretization error u(tn) − ums(tn) and the time discretization

error ums(tn)− unH . Here, ums ∈ Vms is the solution of (2.5). Using the result of (2.10), we have

‖u(tn)− ums(tn)‖a .T HΛ−1/2.

Next, we estimate the time discretization error. Let ẽn := unms− unH with unms := ums(tn). Subtract-

ing (2.5) from (2.6), we obtain

(
ẽn+1 − ẽn−1

2∆t
, v

)
+ α

(
ẽn+1 − 2ẽn + ẽn−1

(∆t)2
, v

)
+ a(ẽn, v) = (Hn, v) for all v ∈ Vms,

where

Hn := (ums)t + α(ums)tt −
un+1

ms − un−1
ms

2∆t
− αu

n+1
ms − 2unms + un−1

ms

(∆t)2
.

Using the result of (2.15), one can obtain

α

∥∥∥∥ ẽn+1 − ẽn
∆t

∥∥∥∥+ ‖ẽn‖a . α

∥∥∥∥ ẽ1 − ẽ0

∆t

∥∥∥∥+ ‖ẽ1‖a + ∆t
n∑
k=1

{∥∥∥∥(ums)t −
uk+1

ms − uk−1
ms

2∆t

∥∥∥∥
+α

∥∥∥∥(ums)tt −
uk+1

ms − 2ukms + uk−1
ms

(∆t)2

∥∥∥∥} .
(2.16)

Under the assumption of some additional regularity and appropriate initial conditions, the right-

hand side of (2.16) scales like H + (∆t)2.

Finally, we have the error estimate for the fully discretization scheme.

Theorem 2.4.8. Assume that u, ums, and f are smooth enough with respect to the variable t. Let
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ũH(t) be the piecewise linear function that interpolates uTH in time. Then

‖u− ũH,ms‖L2(0,T ;a) .T H + (∆t)2, where ‖·‖L2(0,T ;a) :=

(∫ T

0

‖·‖2
a dt

)1/2

.

2.5 Numerical experiments

In this section, we present several numerical experiments to demonstrate the efficiency of the

proposed method. We set the computational domain Ω = (0, 1)2. We partition the domain into

100× 100 rectangular elements and refer it as a fine mesh T h with mesh size h =
√

2/100.

In the example below, we solve the QGD model (2.2) with f(x1, x2) = sin(πx1) sin(πx2).

Terminal time T = 4.0 is set and step size ∆t is chosen subjected to the CFL condition. The

initial conditions are u0 = v0 = 0. Practical experiments showed that ∆t = 10−5 provides a

sufficient and rather sharp choice for the stability with small value of α and high value of contrast.

To implement the scheme, we set u0
H = u1

H = 0. We use the permeability field κ with contrast 103

(see Figure 2.1).
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Figure 2.1: Permeability field κwith contrast values 103. Reprinted with permission from "Compu-
tational multiscale methods for quasi-gas dynamic equations" by Boris Chetverushkin, Eric Chung,
Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal of Computational
Physics by Elsevier.
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We solve the fully discretization (2.6) and seek unH ∈ Vms. We define the corresponding relative

L2 and energy errors between the multiscale solution and the exact solution (up to a fine-scale) as

follows:

eL2 :=
‖u(T )− uNTH ‖s
‖u(T )‖s

and ea :=
‖u(T )− uNTH ‖a
‖u(T )‖a

,

where ‖·‖a =
√
a(·, ·) and ‖·‖s =

√
s(·, ·).

We present the convergence history in the energy and L2 norms when the coarse mesh size is

H =
√

2/5,
√

2/10, and
√

2/20, respectively. The number of oversampling layers m is set to be

3, 4, and 6 in all experiments. The number of multiscale basis functions is `i = 3 in each local

coarse element Ki. We test with different values of α = 0.001, 0.005, 0.1, 0.5, 1, 5, and 10. The

results of eL2 and ea are shown in Tables 2.1 and 2.2, respectively. A first-order convergence in

energy norm and second-order convergence in L2 norm have been observed as expected; see Figure

2.2 for illustration.
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Figure 2.2: Convergence history in ea (left) and eL2 (right) with α = 0.1. Reprinted with per-
mission from "Computational multiscale methods for quasi-gas dynamic equations" by Boris
Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be pub-
lished in Journal of Computational Physics by Elsevier.

25



H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01

√
2/5 3 2.07e-03 4.85e-05 2.09e-05 5.40e-06 9.49e-07 9.49e-07 9.49e-07

√
2/10 4 9.39e-06 2.12e-07 1.60e-07 4.17e-08 1.99e-08 1.99e-08 1.99e-08
√

2/20 6 1.95e-07 5.38e-09 2.45e-09 6.92e-10 6.92e-10 6.92e-10 6.92e-10

Table 2.1: Convergence in relative L2 norm for different α. Reprinted with permission from
"Computational multiscale methods for quasi-gas dynamic equations" by Boris Chetverushkin,
Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal of
Computational Physics by Elsevier.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01

√
2/5 3 2.08e-02 8.76e-03 8.54e-03 8.55e-03 8.53e-03 8.53e-03 8.53e-03

√
2/10 4 1.75e-03 6.28e-04 6.74e-04 6.86e-04 6.84e-04 6.84e-04 6.84e-04
√

2/20 6 1.89e-04 5.19e-05 5.11e-05 5.09e-05 5.08e-05 5.08e-05 5.08e-05

Table 2.2: Convergence in relative energy norm for different α. Reprinted with permission from
"Computational multiscale methods for quasi-gas dynamic equations" by Boris Chetverushkin,
Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be published in Journal of
Computational Physics by Elsevier.

We also test our algorithm on a problem with time dependent source. In this example, we set

f(x1, x2, t) = sin(πt) sin(πx1) sin(πx2). All the other settings are same with the first example.

The convergence in L2 and energy norm are presented in Tables 2.3 and 2.4. Convergence rate in

both norms are observed, please check Figure (2.3) for the illustration.
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Figure 2.3: Convergence history (time dependent source) in ea (left) and eL2 (right) with α =
0.1. Reprinted with permission from "Computational multiscale methods for quasi-gas dynamic
equations" by Boris Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng
Zhang. To be published in Journal of Computational Physics by Elsevier.

H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01

√
2/5 3 3.00e-01 7.83e-01 1.89e-01 7.41e-03 7.57e-03 7.11e-03 6.76e-03

√
2/10 4 1.07e-03 3.41e-03 8.82e-04 4.80e-05 4.40e-05 4.16e-05 3.98e-05
√

2/20 6 1.03e-05 2.70e-05 6.52e-06 3.46e-07 3.17e-07 3.00e-07 2.87e-07

Table 2.3: Convergence (time dependent source) in relative L2 norm for different α. Reprinted
with permission from "Computational multiscale methods for quasi-gas dynamic equations" by
Boris Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be
published in Journal of Computational Physics by Elsevier.
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H m α = 10 α = 5 α = 1 α = 0.5 α = 0.1 α = 0.05 α = 0.01

√
2/5 3 2.0198 1.5981 1.0128 0.8306 0.8304 0.8299 0.8295

√
2/10 4 0.0656 0.0589 0.0565 0.0557 0.0558 0.0558 0.0558
√

2/20 6 0.0072 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

Table 2.4: Convergence (time dependent source) in relative energy norm for different α. Reprinted
with permission from "Computational multiscale methods for quasi-gas dynamic equations" by
Boris Chetverushkin, Eric Chung, Yalchin Efendiev, Sai-Mang Pun and Zecheng Zhang. To be
published in Journal of Computational Physics by Elsevier.

2.6 Concluding remarks

In this work, we have proposed a novel computational multiscale method based on the idea of

constraint energy minimization for solving the problem of quasi-gas-dynamics. The spatial dis-

cretization is based on CEM-GMsFEM which provides a framework to systematically construct

multiscale basis functions for approximating the solution of the model. The multiscale basis func-

tions with locally minimal energy are constructed by employing the techniques of oversampling,

which leads to an improved accuracy in the simulations. Combined with the central difference

scheme for the time discretization, we have shown that the fully discrete method is stable under

a relaxed version of CFL condition and has optimal convergence rates despite the heterogeneities

of the media. Numerical results have been presented to illustrate the performance of the proposed

method.
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3. COMPUTATIONAL MULTISCALE METHODS FOR PARAXIAL WAVE

APPROXIMATIONS IN HETEROGENEOUS MEDIA

3.1 Introduction

Paraxial wave approximation have been used to approximate wave equations with a preferred

direction [61, 62]. To be more specific, we study the approximation of the full wave equation:

ρ∂ttu−∇ · (µ∇u) = 0. (3.1)

Here,∇ denotes the gradient operator in R3; ρ and µ are positive functions in R3. We then consider

the paraxial approximation of (3.1) in D × Ω ⊆ R3: for (z, x) ∈ D × Ω with the boundary

Γ := ∂(D × Ω), find v = σ1/2u such that

c−1∂ttv + ∂t(∂zv)− 1

2
∇x · (c∇xv) = 0 in D × Ω× (0, T ],

v(z, x, 0) = v0(z, x) in D × Ω,

∂tv(z, x, 0) = v1(z, x) in D × Ω,

v(z, x, t) = g(z, x, t) in Γ× (0, T ].

(3.2)

Here,∇x denotes the gradient operator defined in the bounded domain Ω ⊂ R2; D = [d1, d2] ⊂ R

is a bounded domain; v0 and v1 are initial conditions; g is boundary condition and T > 0 is a given

terminal time.

Wave equations of this type have a propagation direction z which plays a role of time [63].

Many real-world problems can be solved by the paraxial approximation; in particular in the areas

of geology [64], under water acoustics [65, 66, 67, 68] and optics [69, 70, 71]. There are two

benefits for using the paraxial approximation instead of the full wave equation [61, 62]: (i) it is

easier to be realized and computationally more efficient; and (ii) it makes it possible to use the

approximation as an evolution equation in z direction. The second property makes it possible to
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solve the problem as an equation evolving in z direction; we hence can discretize (∂zv) by applying

classical difference scheme. Consequently, we obtain a quasi-gas-dynamic (QGD) equation which

have been thoroughly studied in literature [72, 55, 57].

It is very common in the geological problems [64] that the media is variable and heterogeneous;

that is, c is non-homogeneous given a cross section in z and is changing in z direction. This brings

in two difficulties. The first to mention is the multiscale property brought by the heterogeneous

field. The second difficulty is the intense work in solving a QGD model given a z cross-section

in the z evolution. Throughout the work, we are going to study (3.2) with variable and heteroge-

neous media. We will derive scheme in discretizing the time and z evolution and also provide our

approach to solve the problems mentioned before.

As we have discussed, the model has heterogeneous in z direction. Directly solving this prob-

lem on fine mesh can capture the multiscale features; however, this is computationally intense

and this issue becomes exacerbate when people are solving time-dependent problems. Therefore,

many methods which solve the multiscale problems on coarser mesh have been proposed. These

include homogenization-based approaches [1, 2, 3, 4, 5, 6, 7], multiscale finite element methods

[8, 9, 10, 11], generalized multiscale finite element methods (GMsFEM) [18, 12, 13, 14, 15, 16,

17], constraint energy minimizing GMsFEM (CEM-GMsFEM) [19, 20], nonlocal multi-continua

(NLMC) approaches [21], metric-based upscaling [22], heterogeneous multiscale method [23, 24],

localized orthogonal decomposition (LOD) [25, 26], equation free approaches [27, 29, 28], com-

putational continua [30, 31, 32], hierarchical multiscale method [33, 34, 35], and so on. Some of

these approaches, such as homogenization-based approaches, are designed for problems with scale

separation. In this work, we apply the CEM-GMsFEM [19, 20] and provide the convergence anal-

ysis of our proposed scheme based on the coarse mesh convergence results of the CEM-GMsFEM.

The second difficulty of the problem is the variable media. If we discretize z evolution using

some classical difference scheme, each z level is a QGD model with heterogeneous. This model

can be solved in the framework of CEM-GMsFEM [72]; however the coarse scale basis evaluation

is time consuming; in particular, this process will be repeated for each level of z. We hence
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proposed the proper orthogonal decomposition (POD) technique [73] which is target to find low

dimensional subspace such that the error of the orthogonal projection is minimized in the sense of

the norm induced by the inner product of the original space. To be more specific, the proposed

method can be summarized as follows:

We proposed a method to solve a paraxial wave model with variable and heterogeneous media.

We first apply the Backward-Euler scheme in the discretization of the ∂zv. This leads to a set

of two dimensional (space) QGD models (3.3); we call this level of discretization the quasi-time

scheme and an unconditional stability result is established. To further discretize the problem, we

apply the central scheme to deal with the time derivative vtt, vt; and then use CEM-GMsFEM

in space on coarse scale to capture the heterogeneous brought by the media. We then prove that

the full discretization scheme is stable in an energy norm under some CFL condition by using an

inverse inequality in the multiscale space.

The key of the CEM-GMsFEM method is to construct the CEM basis. The standard procedure

is first to build the auxiliary multiscale basis by solving local spectral problems in coarse mesh; we

then can construct the CEM basis by evaluating a set of energy minimization problems. Due to the

variable media, we need to construct a set of basis for each QGD model and the solution of the full

discretized scheme is in the space of all multiscale basis. This is time consuming; and we hence can

apply the POD technique to find the best set of orthogonal basis in the sense of L2 minimization;

that is, the projection error of the full discretized solution onto the POD basis is optimal in the

norm induced by the original space. In practice, we collect CEM basis for some QGD models and

then construct POD basis of the space spanned by all CEM basis; the POD models will finally be

solved by using POD basis. A convergence analysis of the POD approximation is established and

the numerical results prove the algorithm is successful.

The remainder of the chapter is organized as follows. In Section 3.2, we present some pre-

liminaries of the model problem and briefly overview the framework of proper orthogonal de-

composition. Section 3.3 is devoted to the multiscale methods and we will briefly overview the

construction of multiscale basis function within the framework of the CEM-GMsFEM. In Section
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3.4, we present a complete analysis of the proposed computational multiscale method. We then

present some numerical results to demonstrate the efficiency of the proposed method in Section

3.5. Concluding remarks are drawn in Section 2.6.

3.2 Preliminaries

In this section, we present some preliminaries of the model problem. For simplicity, we assume

the homogeneous boundary condition g = 0 is equipped in the model problem (3.2). The extension

of inhomogeneous case is straightforward. The system (3.2) is the one we shall consider throughout

the remainder of this chapter and we shall develop computational multiscale methods in order to

solve this problem efficiently. We remark that under appropriate regularity assumptions on initial

and boundary conditions, the problem (3.2) has a unique solution such that

t→ v(z, x, t) ∈ W 1,∞(0, T ;L2(D × Ω)) ∩ L∞(0, T ;L2(D × Ω)),

z → v(z, x, t) ∈ L∞(D,H1(0, T ;L2(Ω))).

The last property enables us to consider z as an evolution direction. The result is an application of

the semigroup theory and the Hille-Yoshida theorem. See [62, Section 4] for more details.

Instead of the PDE formulation (3.2), we consider its corresponding variational formulation.

In the following, we treat z as an evolution direction and use backward Euler method to discretize

the term ∂zv. We divide the domain D = [d1, d2] along z-direction into K pieces. We write, for

k = 0, 1, · · · , K,

vk = v(zk) with zk = d1 + k∆z and d2 = d1 +K∆z.

The quasi-time discretization of (3.2) reads: find θk ∈ V for k = 1, · · · , K − 1 such that

(
θ̈k, w; zk

)
c

+
1

∆z

(
θ̇k − θ̇k−1, w

)
+

1

2
a(θk, w; zk) = 0 for all w ∈ V := H1

0 (Ω) (3.3)
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or equivalently

∆z
(
θ̇k, w; zk

)
c

+
(
θ̇k, w

)
+

∆z

2
a(θk, w; zk) =

(
θ̇k−1, w

)
for all w ∈ V,

where (v, w; zk)c :=
∫

Ω
c−1(zk)vw dx, (v, w) :=

∫
Ω
vw dx, and a(v, w; zk) :=

∫
Ω
c(zk)∇v·∇w dx.

Here, we denote v̇ := ∂tv and v̈ := ∂ttv. We assume that c ∈ L∞(D × Ω) and we denote

cmax := ‖c‖L∞(D×Ω). Employing Galerkin’s method and the method of energy estimate, one can

show the well-posedness of the variational formulation (3.3). Denote ‖v‖ :=
√

(v, v), ‖v‖c(zk) :=√
(v, v; zk)c, and ‖v‖a(zk) :=

√
a(v, v; zk). We establish the following stability estimate for the

quasi-time discretization (3.3).

Lemma 3.2.1. Let {vk}Kk=0 ⊆ V solve the equation (3.3). Then, the following stability estimate

holds:

‖ ˙vK‖2
L2(0,T ;L2(Ω)) + ∆z

K∑
k=1

Ek(vk(T )) . ‖v̇0‖2
L2(0,T ;L2(Ω)) + ∆z

K∑
k=1

Ek(vk(0)),

where we denote Ek(v) := ‖v̇‖2
c(zk) + 1

2
‖v‖2

a(zk).

Remark 3.2.2. The term Ek(vk(0)) = ‖v1(zk)‖2
c(zk) + 1

2
‖v0(zk)‖2

a(zk) on the right-hand side of the

inequality above is determined by the initial conditions.

Proof of Lemma 3.2.1. Taking w = v̇k, we have

∆z

2

d

dt

(
‖v̇k‖2

c(zk) +
1

2
‖vk‖2

a(zk)

)
+ ‖v̇k‖2 − (v̇k−1, v̇k)

= ∆z (v̈k, v̇k; zk)c + (v̇k − v̇k−1, v̇k) +
∆z

2
a(vk, v̇k; zk) = 0.

Thus, we have

∆z

2

d

dt

(
‖v̇k‖2

c(zk) +
1

2
‖vk‖2

a(zk)

)
+ ‖v̇k‖2 = (v̇k, v̇k−1) ≤ ‖v̇k‖ ‖v̇k−1‖ .
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Multiplying by 2 and integrating over (0, T ], we have

∆z

(
‖v̇k(T )‖2

c(zk) +
1

2
‖vk(T )‖2

a(zk)

)
+ 2

∫ T

0

‖v̇k‖2 dt

≤ 2

∫ T

0

‖v̇k‖ ‖v̇k−1‖ dt+ ∆z

(
‖v̇k(0)‖2

c(zk) +
1

2
‖vk(0)‖2

a(zk)

)
≤
∫ T

0

‖v̇k‖2 dt+

∫ T

0

‖v̇k−1‖2 dt+ ∆z

(
‖v̇k(0)‖2

c(zk) +
1

2
‖vk(0)‖2

a(zk)

)
.

Therefore, we have

‖v̇k‖2
L2(0,T ;L2(Ω)) + ∆z

(
‖v̇k(T )‖2

c(zk) +
1

2
‖vk(T )‖2

a(zk)

)
≤ ‖v̇k−1‖2

L2(0,T ;L2(Ω)) + ∆z

(
‖v̇k(0)‖2

c(zk) +
1

2
‖vk(0)‖2

a(zk)

)
.

Summing over k = 1, · · · , K, we obtain the desired result and this completes the proof.

3.2.1 The Proper orthogonal decomposition

In this section, we briefly introduce the proper orthogonal decomposition (POD) method. This

method aims to generate optimally ordered orthogonal basis functions in the least squares sense for

a given set of theoretical, experimental, or computational data. Reduced-order models or surrogate

models are then obtained by truncating this set of optimal basis functions, providing considerable

computational savings over the original high-dimensional problems.

Let X be a real Hilbert space endowed with inner product (·, ·)X and norm ‖·‖X . We set

V := span{y1, y2, · · · , yn} with each yi ∈ X for i ∈ {1, · · · , n}. We refer to V as ensemble

consisting of the snapshots {yi}ni=1, at least one of which is assumed to be non-zero. Let {ψk}Nk=1

denote a set of orthonormal basis functions of V with N := dim(V) ≤ n. Then, each member of

the ensemble can be expressed as

yj =
N∑
k=1

(yj, ψk)Xψk

for each j ∈ {1, · · · , n}. The POD method consists in choosing the orthonormal basis functions

such that for every ` ∈ {1, · · · ,N} the mean square error between the elements yj (for any j ∈
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{1, · · · , n}), and the corresponding `-th partial sum is minimized on average:

min
{ψk}`k=1

1

n

n∑
j=1

∥∥∥∥∥yj − ∑̀
k=1

(yj, ψk)Xψk

∥∥∥∥∥
2

X

subject to (ψk, ψt) = δkt for any k, t ∈ {1, 2, · · · , `}.

(3.4)

Here, δkt denotes the Kronecker-delta function. A solution {ψk}`k=1 to (3.4) is called a POD-basis

of rank `. We introduce the correlation matrix

K =

(
1

n
(yj, yi)X

)
∈ Rn×n

corresponding to the snapshots {yj}nj=1. The matrix K is positive semi-definite and has rank N .

The minimization problem (3.4) can be reduced to an eigenvalue problem

Kv = λv. (3.5)

We sort all the positive eigenvalues in a decreasing order as λ1 ≥ λ2 ≥ · · · ≥ λN > 0 and the

associated eigenvectors are denoted by vk with k = 1, · · · ,N . It can be shown that the POD-basis

of rank ` ∈ N+ with ` ≤ N is formed by

ϕk =
1√
λk

n∑
j=1

(vk)jyj for k = 1, · · · , `. (3.6)

Here, (vk)j is the j-th component of the eigenvector vk. The basis functions {ϕk}`k=1 form a

POD-basis of rank ` and we have the following error formula.

Proposition 3.2.3. Let λ1 ≥ λ2 ≥ · · · ≥ λN > 0 be the positive eigenvalues of K in (3.5) and

v1, · · · , vN ∈ Rn be the associated eigenvectors. Then, {ϕk}`k=1 given by (3.6) forms a set of
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POD-basis of rank ` with ` ≤ N . Moreover, we have the error formula

1

n

n∑
j=1

∥∥∥∥∥yj − ∑̀
k=1

(yj, ϕk)Xϕk

∥∥∥∥∥
2

X

=
N∑

k=`+1

λk.

In practice, we shall make use of the decay property of eigenvalues in λk and choose the first

` dominant eigenvalues such that the ratio ζ :=
∑N
k=`+1 λk∑N
k=1 λk

is small enough to achieve an expected

accuracy, for instance ζ = 1%. One would prefer the eigenvalues decays as fast as possible so that

one can ensure high accuracy with a few POD basis functions.

3.3 Multiscale method

In this section, we develop the computational multiscale method in order to solve the paraxial

approximation. For spatial discretization, we will apply the CEM-GMsFEM. In particular, for

each node zi ∈ D along the z-direction, we will construct a set of multiscale basis functions in the

spirit of CEM-GMsFEM. To further reduce the dimension of the multiscale space, we will perform

POD procedure related to these CEM basis functions. Once the multiscale space is constructed,

one can use leapfrog scheme to discretize time derivatives and solve the resulting fully-discretized

problem.

3.3.1 Spatial discretization: CEM-GMsFEM

We are going to apply the CEM-GMsFEM framework to discretize the space. Then, we per-

form the POD procedure on the snapshot space V and we denote {ψk}Nk=1 the corresponding POD

basis functions with cardinality N ∈ N+. We then define V `
POD := span{ψk}`k=1 for a given

positive number ` ≤ N .
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3.3.2 Construction of multiscale reduced basis functions using POD

In this section, we present the construction of multiscale reduced basis functions using the POD

technique. First, we define {vCEM,k}Kk=0 ⊂ VCEM to be the solution of the following equation:

(v̈CEM,k, w; zk)c +
1

∆z
(v̇CEM,k − v̇CEM,k−1, w) +

1

2
a(vCEM,k, w; zk) = 0 for all w ∈ VCEM. (3.7)

Space X = H1 and inner product associated with X is defined as (u, v)H1 = (∇u,∇v) + (u, v)

for u, v ∈ X; the corresponding norm will then be defined as ‖.‖H1 :=
√

(., .)H1 . Next, we define

the snapshot space V as the collection of:

yj := vCEM(t, zj−1), yj+K+1 := v̈CEM(t, zj−1), j = 1, · · · , K + 1,

and

yj+2K+2 = ∂̃v̇CEM(t, zj) :=
v̇CEM(t, zj)− v̇CEM(t, zj−1)

∆z
, j = 1, · · · , K.

Then, we perform the POD procedure on the snapshot space V as described in section (3.2.1).

It should be noted that the correlation matrix is defined as Kij := 1
3K+2

(yj, yi)H1 . We denote

{ψk}Nk=1 the corresponding POD basis functions with cardinalityN ∈ N+. We then define V `
POD :=

span{ψk}`k=1 for a given positive number ` ≤ N .

3.3.3 Fully discretization

In this section, we present the fully discretization for the problem (3.3). We can further consider

the discretization in time. We divide (0, T ] into N pieces and write

vn = v(tn) with tn = n∆t and ∆t =
T

N
.

Specifically, we use first- and second-order central difference schemes. We define τ := ∆t∆z.

The fully discretization reads: for k = 1, · · · , K − 1 and n = 1, · · · , N − 1, find {vnk} ⊂ V `
POD
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such that

(
vn+1
k − 2vnk + vn−1

k

(∆t)2
, w; zk

)
c

+

(
vn+1
k − vn−1

k

2τ
, w

)
+

1

2
a(vnk , w; zk) =

(
vn+1
k−1 − v

n−1
k−1

2τ
, w

)
(3.8)

for all w ∈ V `
POD. In short, we discretize implicitly in z and explicitly in time. We show that

the fully discretization is stable in time. To this aim, we first recall the inverse inequality for the

multiscale space, which is proved in [72].

Proposition 3.3.1 (Lemma 4.5 in [72]). Assume that {χms
j,k}

Nc
j=1 is a set of bilinear partition of unity.

For any v ∈ VCEM, there is a constant Cinv > 0 such that

‖∇v‖a ≤ CinvH
−1β1/2 ‖v‖ .

Then, we have the following stability result for (3.8).

Lemma 3.3.2. Suppose that the following CFL condition

1

cmax

− 1

4
C2

invH
−2β(∆t)2 ≥ δ2,

holds for some δ > 0. Then, we have the following stability estimate:

1

4τ

N∑
n=1

∥∥vn+1
K − vn−1

K

∥∥2
+

K∑
k=1

EN,k ≤
1

4τ

N∑
n=1

∥∥vn+1
0 − vn−1

0

∥∥2
+

K∑
k=1

E0,k.

Proof. Define the energy as follows:

En,k :=

∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

c

+
1

2
a(vn+1

k , vnk ).

Using the inverse inequality for the multiscale functions, one can show that
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En,k =

∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

c

+
1

2
a(vn+1

k , vnk )

=

∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

c

+
1

4
a(vn+1

k , vn+1
k ) +

1

4
a(vnk , v

n
k )− 1

4
a(vn+1

k − vnk , vn+1
k − vnk )

≥
∥∥∥∥vn+1

k − vnk
∆t

∥∥∥∥2

c

+
1

4

(∥∥vn+1
k

∥∥2

a
+ ‖vnk‖

2
a

)
− 1

4
C2

invH
−2β(∆t)2

∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

≥
( 1

cmax

− 1

4
C2

invH
−2β(∆t)2

) ∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

+
1

4

(∥∥vn+1
k

∥∥2

a
+ ‖vnk‖

2
a

)
≥ 0.

Next, taking w = vn+1
k − vn−1

k in (3.8) and denoting fnk−1 = vn+1
k−1 − v

n−1
k−1 , we have

1

2τ

∥∥vn+1
k − vn−1

k

∥∥2
+

∥∥∥∥vn+1
k − vnk

∆t

∥∥∥∥2

c

−
∥∥∥∥vnk − vn−1

k

∆t

∥∥∥∥2

c

+
1

2
a(vnk , v

n+1
k − vn−1

k ) =
1

2τ

(
fnk−1, v

n+1
k − vn−1

k

)
.

Then, it implies that

1

2τ

∥∥vn+1
k − vn−1

k

∥∥2
+ En,k − En−1,k =

1

2τ

(
fnk , v

n+1
k − vn−1

k

)
≤ 1

2τ

∥∥vn+1
k−1 − v

n−1
k−1

∥∥∥∥vn+1
k − vn−1

k

∥∥
≤ 1

4τ

(∥∥vn+1
k−1 − v

n−1
k−1

∥∥2
+
∥∥vn+1

k − vn−1
k

∥∥2
)

=⇒ 1

4τ

∥∥vn+1
k − vn−1

k

∥∥2
+ En,k ≤

1

4τ

∥∥vn+1
k−1 − v

n−1
k−1

∥∥2
+ En−1,k.

Summing over n = 1, · · · , N , we have

1

4τ

N∑
n=1

∥∥vn+1
k − vn−1

k

∥∥2
+ EN,k ≤

1

4τ

N∑
n=1

∥∥vn+1
k−1 − v

n−1
k−1

∥∥2
+ E0,k.

Therefore, summing over k = 1, · · · , K, we have

1

4τ

N∑
n=1

(
K∑
k=1

∥∥vn+1
k − vn−1

k

∥∥2 −
K−1∑
k=0

∥∥vn+1
k − vn−1

k

∥∥2

)
+

K∑
k=1

EN,k ≤
K∑
k=1

E0,k
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and
1

4τ

N∑
n=1

∥∥vn+1
K − vn−1

K

∥∥2
+

K∑
k=1

EN,k ≤
1

4τ

N∑
n=1

∥∥vn+1
0 − vn−1

0

∥∥2
+

K∑
k=1

E0,k.

This completes the proof.

Remark 3.3.3. It should be noted that the CFL condition depends on the cmax := ‖c‖L∞(D×Ω).

It also relies on Cinv which comes from the inverse inequality (Lemma 2.4.5). From the proof

of the lemma, Cinv depends on the highest permeability of the medium. We are using the CEM

method which is a coarse mesh method, hence the coarse mesh size H will make the CFL much

less restrictive. The idea to improve the CFL is to use the time implicit scheme; more precisely, use

a(vn+1
k , w; zk) in (3.8); however, the stability is hardly to be proved in this case. This will become

our future work.

3.4 Convergence analysis

In this section, we present the convergence analysis of the proposed POD-based multiscale

method for the paraxial wave equation. Let vCEM ∈ VCEM be the semi-discretized solution which

solves the problem (3.7).

Throughout this section, we assume that the coercivity and boundedness of this bilinear form

hold. Specifically, there exist two constants γ and β, independent of any zk ∈ D, such that

γ‖u‖2
H1(Ω) ≤ a(u, u; zk) and a(u,w; zk) ≤ β‖u‖H1(Ω)‖w‖H1(Ω) (3.9)

for any u,w ∈ V . We denote (·, ·)H1 the H1-norm such that (u, v)H1 = (∇u,∇v) + (u, v) for any

u, v ∈ V with its associated norm being ‖·‖H1 :=
√

(·, ·)H1 .

We have the following lemma for the proper orthogonal decomposition with the Hilbert space

X = VCEM and ‖v‖X := ‖v‖L2(0,T ;H1(Ω)).

Lemma 3.4.1 (cf. Proposition 1 and Equation (7) in [73]). Let vCEM ∈ VCEM be the semi-discretized

solution which solves the problem (3.7) and Kij := 1
3K+2

(yj, yi)H1 be the correlation matrix and

λk be the corresponding eigenvalues sorted ascending. For any integer ` with 0 < ` ≤ N , the

40



following error formula holds:

1

3K + 2

∫ T

0

K+1∑
k=1

∥∥∥∥∥vCEM(t, zk)−
∑̀
j=1

(vCEM(t, zk), ψj)H1 ψj

∥∥∥∥∥
2

H1

+
K∑
k=1

∥∥∥∥∥∂̃v̇CEM(t, zk)−
∑̀
j=1

(
∂̃v̇CEM(t, zk), ψj

)
H1
ψj

∥∥∥∥∥
2

H1

+
K+1∑
k=1

∥∥∥∥∥v̈CEM(t, zk)−
∑̀
j=1

(v̈CEM(t, zk), ψj)H1 ψj

∥∥∥∥∥
2

H1

dt

 =
N∑

k=`+1

λk.

(3.10)

Next, we define the Ritz-projection P ` : V → V `
POD by:

(P `v, ψ)H1 = (v, ψ)H1 for all ψ ∈ V `
POD, (3.11)

for any v ∈ V . We have the following estimate for the projection operator.

Lemma 3.4.2. Let {zk}K+1
k=1 ⊂ D. For any ` ∈ {1, 2, ...,N} and v ∈ V , the projection operator

P ` satisfies the following estimate:

1

K + 1

K+1∑
k=1

∫ T

0

∥∥vCEM(zk)− P `vCEM(zk)
∥∥2

H1 dt .
N∑

k=`+1

λk. (3.12)

Proof. Let v ∈ V be arbitrary. By the definition of the projection P `, we have

∥∥v − P `v
∥∥2

H1 = (v − P `v, v − P `v)H1 = (v − P lv, v − ψ)H1 ≤
∥∥v − P `v

∥∥
H1 ‖v − ψ‖H1

for all ψ ∈ V `
POD. This implies that,

∥∥v − P `v
∥∥
H1 . ‖v − ψ‖H1 for all ψ ∈ V `

POD. (3.13)
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The lemma follows immediately by Lemma 3.4.1 and (3.13).

Clearly, from the proof of Lemma 3.4.2, the corollary below follows immediately.

Corollary 3.4.3. Let vCEM ∈ VCEM be the semi-discretized solution which solves (3.7). Then, the

following estimates hold:

1

K

K∑
k=1

∫ T

0

∥∥∥∂̃v̇CEM(zk)− P `∂̃v̇CEM(zk)
∥∥∥2

H1
dt .

N∑
i=`+1

λi (3.14)

and

1

K + 1

K∑
k=0

∫ T

0

∥∥v̈CEM(zk)− P `v̈CEM(zk)
∥∥2

H1 dt .
N∑

i=`+1

λi. (3.15)

Let {Uk}Kk=0 ⊂ V `
POD be the semi-discretized solution satisfying the following equation

(Ük, φ; zk)c + (∂̃U̇k, φ) +
1

2
a(Uk, φ; zk) = 0 (3.16)

for all φ ∈ V `
POD with appropriate initial condition U0. Here, we denote ∂̃U̇k := U̇k−U̇k−1

∆z
.

We are now able to analyze the error. Assume that {vnk} ⊂ V `
POD solves (3.8), {Uk}Kk=0 ⊂ V `

POD

solves (3.16), and the function vCEM ∈ VCEM solves (3.7). We decompose the error into three parts:

vnk − vCEM = vnk − Uk(tn)︸ ︷︷ ︸
=:µk

+Uk(tn)− P `vCEM︸ ︷︷ ︸
=:νk

+P `vCEM − vCEM︸ ︷︷ ︸
=:ρk

.

Due to Lemma 3.4.2, we have

1

K

K∑
k=1

‖ρk‖2
L2(0,T ;H1(Ω)) .

N∑
k=`+1

λk.
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It should be noted that
∑N

k=`+1 λk comes from the POD and is the typical error in the POD

analysis. The error decay to 0 very fast; and by the theory, this error is optimal [73] (please check

Proposition (3.2.3)) since the POD solves a minimization problem (3.4). Next, using the notation

∂̃νk = νk−νk−1

∆z
for all k = 1, ..., K and the equation (3.7), we obtain

(ν̈k, ψ; zk)c + (∂̃ν̇k, ψ) +
1

2
a(νk, ψ; zk) = −(P `v̈CEM, ψ; zk)c − (∂̃P `v̇CEM, ψ)− 1

2
a(vCEM, ψ; zk)

= (v̈CEM − P `v̈CEM, ψ; zk)c + (∂̃v̇CEM − ∂̃P `v̇CEM, ψ)

for any ψ ∈ V `
POD. Let us denote

hk := ∂̃v̇CEM − ∂̃P `v̇CEM and wk := v̈CEM − P `v̈CEM.

By Corollary 3.4.3, it follows that

1

K

K∑
k=1

‖hk‖2
L2(0,T ;H1(Ω)) +

1

K + 1

K∑
k=0

‖wk‖2
L2(0,T ;H1(Ω)) .

N∑
i=`+1

λi.

Using the same technique of showing Lemma 3.2.1, one can obtain an estimate for νk:

‖ν̇k‖2
L2(0,T ;L2(Ω)) + ∆z

K∑
k=1

Ek(νk(T )) . ∆z
K∑
k=1

‖hk‖2
L2(0,T ;H1(Ω)) + ‖wk‖2

L2(0,T ;H1(Ω)) .
N∑

i=`+1

λi.

It remains to estimate the term µk. This error comes from the temporal discretization and it follows

that

‖µk‖2
L2(0,T ;H1(Ω)) =

∫ T

0

‖µk‖2
H1 dt =

∫ T

0

O(τ 2)dt = O(τ).

Denote vk(t) the piecewise linear function that interpolates {vnk} in time. As a result, we have the

following error estimate

1

K

K∑
k=1

‖vnk − vCEM‖2
L2(0,T ;H1(Ω)) . O(τ) +

N∑
i=`+1

λi. (3.17)

43



We remark that the error between the solution θ (that solves (3.3)) and the solution vCEM has the

relation: ‖θ − vCEM‖L2(0,T ;H1(Ω)) = O(H). Therefore, the whole error estimate reads as follows:

1

K

K∑
k=1

‖θ − vnk‖
2
L2(0,T ;H1(Ω)) . O(H2) +O(τ) +

N∑
i=`+1

λi. (3.18)

3.5 Numerical experiments

In this section, we present some numerical results to demonstrate the efficiency of the pro-

posed computational multiscale method. In (x1, x3) dimension, we discretize the domain using

the POD-based CEM-GMsFEM. The fine mesh size h = 1
100

and the coarse mesh is H = 10h.

We compute the numerical solutions vNk for all k = 1, · · · , K and compare it with the reference

solution vf (z, x, T ) for all z ∈ D which are computed by using the underlying fine mesh. We will

measure the relative error, which is defined as follows:

Relative Error =
‖vNk − vf (zk, x, T )‖a(zk)

‖vf (zk, x, T )‖a(zk)

.

3.5.1 The first experiment

In the experiment below, we set the terminal time T = 0.05 and Ω = (0, 1)2. We set the

initial condition to be v(0, x, t) = sin(πx1) sin(πx3) sin(t) where x = (x1, x3) ∈ Ω; also we set

homogeneous initial condition for all z, i.e., v(z, x, 0) = 0 for all (z, x) ∈ D × Ω. The temporal

direction and z-direction are discretized as in the scheme (2.6). We choose the time step to be

∆t = 10−5 and the step size in z-direction is ∆z = 10−4. We set K = 30, i.e., the z direction is

partitioned into 30 levels and D = [0, 30 ·∆z].

In this experiment, the pattern of the permeability field c(x) is given in Figure 3.1 (Left). In x1-

and x3-directions, the permeability will follow the same pattern. However, along the z-direction,

the permeability field c(x) has different values of contrast. See Figure 3.1 (Right) for an illustration

for this layer-structured heterogeneous media. In particular, we partition the permeability field

along the z-direction into 3 different layers; the value of contrast in the yellow region within each
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layer are equal to 10, 15, and 20, respectively. We remark that the patterns keep the same as

demonstrated in Figure 3.1 (Left).

To get the POD basis, we first calculate the CEM basis for each layer and then obtain the POD

basis by performing the SVD on the combined basis space. We choose 100 POD basis from the

total 300 CEM basis.

Figure 3.1: Left: The pattern of permeability field c in Ω. Right: Permeability field for all different
z have the same pattern but different contrasts ranges from 10 to 20).

The record of relative error for all zk at the terminal time is plotted in Figure 3.2. One can

observe from the graph that the scheme is stable as expected.

Figure 3.2: The relative error at terminal time in z-direction. Y axis is the relative error. X axis is
the z direction. We measure the relative error at the terminal time of each z grid points
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3.5.2 The second example

In the second experiment, we consider the Marmousi examples. More precisely, given zk ∈ D,

c(zk) is a Marmousi permeability field as shown in Figure (3.3).

Figure 3.3: Marmousi permeability field. Each c(zk) is obtained by taking a fine element in each
coarse element of size 6× 6 in this fine grid field of size 600× 600

In this example, initial and boundary data are set the same as before. We set T = 0.005 and

dt = 0.000005. ∆z = 10−4 and we consider 10 z levels, i.e., K = 10 and D = [0, 10 ·∆z]. Each

c(zk) which is a Marmousi permeability is obtained by taking data from a very fine Marmousi

field of size 600 × 600. To be more specific, we partition the fine field (600 × 600) into a coarse

grid mesh of size 100 × 100 whose coarse element size is 6 × 6; then in each coarse element, we

random pick up a fine element and formulate our computational fine grid (100×100) as combining

all selected elements accordingly.

To get the POD basis, we first calculate the CEM basis 3 layers (k = 0, 4, 8) and then obtain

the POD basis by performing the SVD on the combined basis space. We choose 50 POD basis

from the total 300 CEM basis. The record of relative error for all zk at the terminal time is plotted

in Figure 3.4. One can observe from the graph that the scheme is accurate.
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Figure 3.4: Marmousi Example. The relative error at terminal time in z-direction. Y axis is the
relative error. X axis is the z direction. We measure the relative error at the terminal time of each
z grid points
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4. LEARNING ALGORITHMS FOR COARSENING UNCERTAINTY SPACE AND

APPLICATIONS TO MULTISCALE SIMULATIONS *

4.1 Introduction

Many problems are multiscale with uncertainties. Examples include problems in porous media,

material sciences, biological sciences, and so on. For example, in porous media applications,

engineers can obtain fine-scale data about pore geometries or subsurface properties at very fine

resolutions. These data are obtained in some spatial locations and then generalized to the entire

reservoir domain. As a result, one uses geostatistical or other statistical tools to populate the media

properties in space. The resulting porous media properties are stochastic and one needs to deal with

many porous media realizations, where each realization is multiscale and varies at very fine scales.

There are other realistic problems which have multiscale properties with uncertainties such as the

multiscale public safety systems, [74], multiscale social networks [75]; these problems usually

have more data.

Simulating each realization can be computationally expensive because of the media‘s multi-

scale nature. Our objective is to simulate many of these realizations. To address the issues associ-

ated with spatial and temporal scales, many multiscale methods have been developed [76, 77, 78,

79, 80, 81, 82, 83, 84, 85]. These methods perform simulations on the coarse grid by developing

reduced-order models. However, developing reduced-order models requires local computations,

which can be expensive when one deals with many realizations. For this reason, some type of

coarsening of the uncertainty space is needed [86]. In this paper, we consider some novel ap-

proaches for developing coarsening of uncertainty space as discussed below.

To coarsen the uncertainty space, clustering algorithms are often used; but a proper distance

function should be designed in order to make the clusters have physical sense and achieve a reduc-

tion in the uncertainty space. The paper [86] proposed a method that uses the distance between

*Reprinted with permission from “Learning Algorithms for Coarsening Uncertainty Space and Applications to
Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathemat-
ics, 8(5):720, 2020, Copyright [2020] by MDPI.
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local solutions. The motivation is that the local problems with random boundary conditions can

represent the main models with all boundary conditions. Due to a high dimension of the uncertainty

space, the authors in [86] proposed to compute the local solutions of only several realizations and

then use the Karhunen–Loeve expansion [87] to approximate the solutions of all the other realiza-

tions. The distance function is then defined to be the distance between solutions and the standard

K-means [88] algorithm is used to cluster the uncertainty space.

The issue with this method is computing the local solutions in the local neighborhoods. It

is computationally expensive to compute the local solutions; although the KL expansion can save

time to approximate the solutions of other realizations, one still needs to decide how many selected

realizations we need to represent all the other solutions. In this paper, we propose the use of

deep learning methodology and avoid explicit clustering as in earlier works. We remark that the

development of deep learning techniques for multiscale simulations are recently reported in [52,

50, 89, 90, 91].

In this work, to coarsen the uncertainty space, we propose a deep learning algorithm which

will learn the clusters for each local neighborhood. Due the nature of the permeability fields, we

can use the transfer learning which uses the parameters of one local neighborhood to initialize the

learning of all the other neighborhoods. This saves significantly computational time.

The auto encoder structure [39] has been widely used in improving the K-mean clustering al-

gorithm [92, 93, 94]. The idea is to use the encoder to extract features and reduce the dimension;

the encoding process can also be taken as a kernel method [95] which maps the data to a space

which is easier to be separated. The decoder is used to upsample the latent space (reduced dimen-

sion feature space) back to the input space. The clustering algorithm is then used to cluster the

latent space, which will save time due to the low dimension of the latent space and also preserve

the accuracy due to the features extracted by the encoder.

Traditionally, the learning process is only involved in reconstructing the input space. Such

kind of methods ignore the features extracted by latent space; so, it is not clear if the latent space is

good enough to represent the input space and is easily clustered by the K-means method. In [94],
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the authors proposed a new loss which includes the reconstruction loss meanwhile the loss results

from the clustering. The authors claimed that the new loss improves the clustering results.

We will apply the auto encoder structure and the multiple loss function; however, we will

design the auto encoder as a generative network, i.e., the input and output space are different. More

precisely, the input is the uncertain space (permeability fields) and the output will be the multiscale

functions co-responding to the uncertain space. Intuitively, we want to use the multiscale basis to

supervise the learning of the clusters so that the clusters will inherit the property of the solution.

The motivation is the multiscale basis can somehow represent the real solutions and permeability

fields; hence, the latent space is no longer good for clustering the input space but will be suitable

for representing the multiscale basis function space.

To define the reconstructing loss, the common idea is the mean square error (MSE); but many

works [96, 97, 98, 37] have shown that the MSE tends to produce the average effect. In fact,

in the area of image super-resolution [96, 97, 98, 37, 99, 100, 101, 102, 103, 104, 105] and other

low level computer vision tasks, the generated images are usually over-smooth if trained using

MSE. The theory is the MSE will capture the low frequency features like the background which

is relatively steady; but for images with high contrast, the MSE will usually try to blur the images

and the resulting images will lose the colorfulness and become less vivid [96]. Our problem has

multiscale nature and we want to capture the dominant modes and multiscale features, hence a

single MSE is clearly not enough.

Following the idea from [37, 97], we consider adding an adversary net [106]. The motivation

is the fact that different layers of fully convolutional network extract different features [36, 37, 38].

Deep fully convolutional neural networks (FCN) [107, 108, 109, 110, 111, 112] have demonstrated

its power in almost all computer vision tasks. Convolution operation is a local operation and the

network with full convolutions are independent with the input size. People now are clear about the

functioning of the different layers of the FCN. In computer vision task, the lower layers (layers

near input) tend to generate sharing features of all objects like edges and curves while the higher

layers (near output) are more object oriented. If we train the network using the loss from the
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lower layers, the texture and details are persevered, while the higher layers will keep the general

spatial structure.

This motivates us using the losses from different layers of the fully convolutional layers. Mul-

tiple layers will give us a multilevel capture of the basis features and hence measure the basis in a

more complete way. To implement the idea, we will pretrain an adversary net; and input the multi-

scale basis of the generative net and the real basis. The losses then come from some selected layers

of the adversary net. Although it is still not clear the speciality of each layer, if we consider the

multiscale physical problem, the experiments show that the accuracy is improved and, amazingly,

the training becomes easier when compared to the MSE of the basis directly.

The uncertain space coarsening (cluster) is performed using the deep learning idea described

above. Due to the space dimension, we will perform the clustering algorithm locally in space; that

is, we first need a spatial coarsening. Due to the multiscale natural of the problem, this motivates us

using the generalized multiscale finite element methods (GMsFEM) which derive the multiscale

basis of a coarse neighborhood by solving the local problem. GMeFEM was first proposed in

[113] and further studied in [76, 77, 78, 79, 80, 81, 82, 83]. This method is a generalization of

the multiscale finite element method [114, 115]. The work starts from constructing the snapshot

space for each local neighborhood. The snapshot space is constructed by solving local problems

and several methods including harmonic extension, random boundary condition [116] have been

proposed. Once we have the snapshot space, the offline space which will be used as computing the

solution are constructed by using spectral decomposition.

Our method is designed for solving PDEs with heterogeneous properties and uncertainty.

The heterogeneity and uncertainty in our models come from the permeability κ(x, s). To verify

our method, we numerically simulate around 240,000 local spatial fields which contain complex

information such as the moving channels. Our model is then trained and tested based on the gen-

erated spatial fields. It should be noted that our method could be applied to some other realistic

problems which contain large-scale data such as detecting extreme values with order statistics in

samples from continuous distributions [117], as well as to some other subjects, e.g., multiscale
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social networks [75] and the multiscale public safety systems [74]. These topic will be studied in

the future.

The rest of the work is organized as follow: in Section 4.2, we consider the problem setup and

introduce both uncertain space and spatial coarsening. In Section 4.3, we introduce the structure

of the network and the training algorithm. In Section 4.4, we will present the numerical results.

The paper ends with conclusions.

4.2 Problem settings

In this section, we will present some basic ideas involving the use of the generalized multiscale

finite element method (GMsFEM) for parameter-dependent problems. Let D be a bounded do-

main in R2 and Ω be the parameter space in RN . We consider the following parameter-dependent

elliptic problem:

−∇ · (κ(x, s)∇u(x, s)) = f(x, s), (x, s) ∈ D × Ω, (4.1)

u(x, s) = 0, (x, s) ∈ ∂D × Ω, (4.2)

where κ(x, s) is a heterogeneous coefficient depending on both the spatial variable x and the pa-

rameter s, and f ∈ L2(D) is a given source. We remark that the differential operators in Equation

(4.1) are defined with respect to the spatial variable x. This is the case for the rest of the paper.

4.2.1 The coarsening of the parameter space. the main idea

The parameter space Ω is assumed to be of very high dimension (i.e., large N ) and consists of

very large number of realizations. For a given realization, the idea is to find its representation in

the coarse space and use the coarse space to perform the computation. We will use the deep cluster

learning algorithm to perform the coarsening. Due to the heterogeneous properties of the proposed

problem, fine mesh is used; this will bring difficulties in coarsening the parameter space and in

computation of the solution. We hence perform the parameter coarsening locally in the space D,

i.e., we also coarsen the spatial domain. To coarsen the spatial domain, we use coarse grids and
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consider the GMsFEM.

In Figure 4.1, we present an illustration of the proposed coarsening technique. On the left

figure, the coarse grid blocks in the space are shown. Each coarse grid has a different cluster in

the uncertainty space Ω, which corresponds to the coarsening of the uncertainty space. The main

objective in multiscale methods is efficiently finding the clustering of the uncertainty space, which

is our main goal.

Figure 4.1: Illustration of coarsening of space and uncertainties. Different clusters for different
coarse blocks. On the left plot, two coarse blocks are shown. On the right plot, clusters are illus-
trated. Reprinted with permission from “Learning Algorithms for Coarsening Uncertainty Space
and Applications to Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev
and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI.

4.2.2 Space coarsening — generalized multiscale finite element methods

It is computationally expensive to capture heterogeneous properties using very fine mesh.

For this reason, we use GMsFEM to coarsen the spatial representation of the solution. The coars-

ening of the parameter space will be performed in each local spatial neighborhood. We will achieve

this goal by the GMsFEM, which has been discussed in the introduction of this paper.
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4.2.3 The idea of the proposed method

We present the general methodology in this section. The target is to save the time in computing

the GMsFEM basis φωik for all ωi and for all uncertain space parameters. We propose the clustering

algorithm to coarsen the uncertain space in each local neighborhood. The key to the success of

the clustering is that: the cluster should inherit the property of the solution, that is, the local

heterogeneous fields κ(x, s) clustered into the same group should have similar solution properties.

When the cluster is learned by the some learning algorithm, the only computation involved is to

fit the local neighborhood of the given testing heterogeneous field into some cluster. This is a feed

forward process including several convolution operations and matrix multiplications and compared

to the direct computing, we save a lot of time in computing the spectral problem in Equation (1.3)

and the inverse of a matrix Equation (1.6). The detailed process is illustrated in the following chart

(Figure 4.2):

1. (Training) For a given input local neighborhood ωj , we train the cluster (which will be de-

tailed in next section) of the parameter space Ω and get the clusters Sj1, ..., S
j
n, where n is the

number of clusters and is uniform for all j. Please note that we may have different cluster

assignments in different local neighborhoods.

2. (Training) For each local neighborhood ωj and cluster Sji , define the average κ̄ij and compute

generalized multiscale basis for κ̄ij .

3. (Testing) Given a new κ(x, s) and for each local neighborhood ωj , fit κ(x, s) into a Sji by

the trained network (step 1) and use the pre-computed GMsFEM basis (step 2) to find the

solution.

It should be noted that we perform clustering using the heterogeneous fields; however, the

cluster should inherit the property of the solution corresponding to the heterogeneous fields. This

makes the clustering challenging. The performance of the standard K-means algorithm relies on

the initialization and the distance metric. We may initialize the algorithm based on the clustering of
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the heterogeneous fields but we need to design a good metric. In the next section, we are going to

introduce a learning algorithm which uses an auto-encoder structure and multiple losses to achieve

the required clustering task.

Figure 4.2: Work flow of the proposed method. Reprinted with permission from “Learning Algo-
rithms for Coarsening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng
Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020,
Copyright [2020] by MDPI.

4.3 Deep learning

The network is consisted of two sub networks. The first one is targeted to performing the clus-

tering and the second one, which is the adversary net, will serve as the reconstruction of loss func-

tion.

4.3.1 Clustering net

The cluster net is aimed for clustering the heterogeneous fields κ(x, s); but the resulting clusters

should inherit the properties of the solution corresponding to the κ(x, s), i.e., the heterogeneous
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fields grouped in the same cluster should have similar corresponding solution properties. This

similarity will be measured by the adversary net which will be introduced in Section 4.3.3. We

hence design the network demonstrated in Figure 4.3.

Figure 4.3: Cluster network. Reprinted with permission from “Learning Algorithms for Coars-
ening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng Zhang, Eric T.
Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright
[2020] by MDPI.

The input X ∈ Rm,d, where m is the number of samples and d is the dimension of one local

heterogeneous field, of the network is the local heterogeneous fields which are parametrized by

the random variable s ∈ Ω. The output of the network is the multiscale basis (first GMsFEM

basis) which somehow represents the solution corresponding to the coefficient κ(x, s). This is a

generative network which has an auto encoder structure. The dimension reduction function F (X)

can be interpreted as some kind of kernel method which maps the input data to a new space which

is easier to be separated. This can also be interpreted as the learning of a good metric function for

the later performed K-mean clustering. We will perform K-means clustering algorithm in latent

space F (X). G(·) will then transfer the latent space data to the space of multiscale basis function.

This process can be taken as a generative process and we reconstruct the basis from the extracted
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features. The detailed algorithm is as follow (see Figure 4.4 for an illustration):

Figure 4.4: Deep learning algorithm. Reprinted with permission from “Learning Algorithms for
Coarsening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng Zhang,
Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copy-
right [2020] by MDPI.

Steps illustrated in Figure 4.4:

1. Initialize the networks and clustering the output basis function.

2. Compute the loss function L (defined later) and run optimization.

3. Cluster the latent space by K-means algorithm (reduced dimension space, which is a middle

layer of the cluster network); the latent space data are computed using the previous optimized

parameters; the assignment will be denoted as A.

4. Basis functions whose corresponding inputs are in the same cluster (basing on assignment

A) will be grouped together. No training or fitting-in involved in this step.

5. Repeat step 2 to step 4 until the stopping criteria is met.

4.3.2 Loss functions

Loss function is the key to the deep learning. Our loss function is consisted of cluster loss and

the reconstruction loss.

1. Clustering loss C(θF , θG): this is the mean standard deviation of all clusters of the learned

basis and θ is the parameters we need to optimize. It should be noted that the loss here is
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computed using the learned basis instead of the input of the network. This loss controls the

clustering process, i.e., the smaller the loss, the better the clustering in the sense of clustering

the multiscale basis. Let us denote κij as jth realization in ith cluster; G(F (κij)) ∈ Rd will

then be jth learned basis in cluster i and let θG and θF be the parameters associated with G

and F , the loss is then defined as follow,

C(θF , θG) =
1

|A|

|A|∑
i

Ai∑
j

1

Ai
‖G(F (κij))− φ̄i‖2

2, (4.3)

where |A| is the number of clusters which is a hyper parameter and Ai denotes the number

of elements in cluster i; φ̄i ∈ Rd is the mean of cluster i. This loss clearly serves the purpose

of clustering the solution instead of the input heterogeneous fields; however, in order to

guarantee the learned basis are closed to the pre-computed multiscale basis, we need to

define the reconstruction loss which measures the difference between the learned basis and

the pre-computed basis.

2. Reconstruction loss R(θF , θG): this is the mean square error of multiscale basis Y ∈ Rm,d,

where m is the number of samples. This loss controls the construction process, i.e., if the

loss is small, the learned basis are close to the real multiscale basis. This loss will supervise

the learning of the cluster. It is defined as follow:

R(θF , θG) =
1

m

m∑
i

‖G(F (κi))− φi‖2
2, (4.4)

where G(F (κi)) ∈ Rd and φi ∈ Rd are learned and pre-computed multiscale basis of ith

sample κi separately.

The entire loss function is then defined as L(θF , θG) = λ1C+λ2R, where λ1, λ2 are predefined

weights. We are going to solve the following optimization problem:

min
θG,θF

L(θF , θG) (4.5)
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for the required training process.

4.3.3 Adversary network severing as an additional loss

We have introduced the reconstruction loss which measures the similarity between the learned

basis and the pre-computed basis in the previous section. It is the mean square error (MSE) of

the learned and pre-computed basis. MSE is a smooth loss and easy to train but there is a well

known fact about MSE that this loss will blur the image. In the area of image super-resolution

and other low level computer vision tasks, the loss is not friendly to inputs with high contrast and

the resulting generated images are usually over smooth. Our problem has multiscale nature and is

similar with the low level computer vision task, i.e., this is a generative task; hence blurring and

over smoothing should happen if the model is trained by MSE. To define a great reconstruction

loss is important.

Motivated by some works about the successful application of deep fully convolutional network

(FCN) in computer vision, we design a perceptual loss to measure the error. It is now clear that the

lower layers in the FCN usually will extract some general features shared by all objects like the

horizontal (vertical) curves, while the higher layers are usually more objects oriented. This gives

people the insight to train the network using different layers. Johnson then proposed the percep-

tual loss [37] which is the combination of the MSE of selected layers of the VGG model [118].

The authors claim in their paper that the early layers tends to produce images that are visually

indistinguishable from the input; however if reconstruct from higher layers, image content and

overall spatial structure are preserved but color, texture, and exact shape are not.

We will adopt the perceptual loss idea and design an adversary network to compute an addi-

tional reconstruction loss. The network structure can be seen in Figure 4.5.

The adversary net is fully convolutional with input and output both pre-computed multiscale

basis. The network has an auto encoder structure and is pre-trained; i.e., we are going to solve the
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following minimization problem:

min
θA

1

m

∑
i

‖f(φi)− φi)‖2
2, (4.6)

where φi is the multiscale basis and f is the adversary net associated with trainable parameter θA.

Denote fj(·) as the output of layer j of the adversary network. The additional reconstruction loss

is then redefined as:

A(θF , θG) =
1

m

m∑
i=1

∑
j∈I

‖fj(G(F (κi)))− fj(φi)‖2
2, (4.7)

where I is the index set which contains some layers of the adversary net. The complete optimiza-

tion problem can be now formulated as:

min
θG,θF

λ1C + λ2R + λ3A. (4.8)
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Figure 4.5: The complete network. Reprinted with permission from “Learning Algorithms for
Coarsening Uncertainty Space and Applications to Multiscale Simulations” by Zecheng Zhang,
Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copy-
right [2020] by MDPI.

4.4 Numerical experiments

In this section, we will demonstrate a series of experiments. We are going to apply our method

on problems with high contrast including moving background and moving channels. he experi-

ments are related to subsurface simulations. The moving background and moving channels sim-

ulate some important characteristics in the field. We numerically generate heterogeneous fields

which contain moving channels and varying well rates. In Section 4.4.1, we first demonstrate a set

of simulated heterogeneous oil fields to be used to train and solve the PDE modeling the reservoirs

simulation; the deep learning model settings are also detailed in this section. In Section 4.4.2,
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we simulate some other more complicated heterogeneous fields and conduct the experiments to

demonstrate the power of clustering algorithm. This experiments can show that our method is ro-

bust to handle complicated problems. In the last section, we will solve the PDE using the proposed

method based on the heterogeneous field proposed in Section 4.4.1 and compute the relative error

to demonstrate the accuracy of our method.

4.4.1 High contrast heterogeneous fields with moving channels

We consider solving Equations (4.1)–(4.2) for a heterogeneous field with moving channels and

changing background. Let us denote the heterogeneous field as κ(x), where x ∈ [0, 1]2, then

κ(x) = 1000 if x is in some channels which will be illustrated later and otherwise,

κ(x) = eη·sin(7πx)sin(8πy)+sin(10πx)sin(12πy),

where η follows discrete uniform distribution in [0, 1]. The channels are moving and we include

cases of the intersection of two channels and formation and dissipation of the channels in the

fields. These simulate the realistic petroleum oil fields. In Figure 4.6, we demonstrate 20 hetero-

geneous fields.
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Figure 4.6: Heterogeneous fields, the yellow strips are the channels. Reprinted with permission
from “Learning Algorithms for Coarsening Uncertainty Space and Applications to Multiscale Sim-
ulations” by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathe-
matics, 8(5):720, 2020, Copyright [2020] by MDPI.

It can be observed from the images that, vertical channel (at around x = 30) (not always) inter-

sects with horizontal channels (at around y = 40); and the channel at x = 75, y = 25 demonstrates

the case of generation and degeneration of a channel.

We train the network using 600 samples using the Adam gradient descent. We find that the

cluster assignment of 600 realizations in uncertain space is stable(fixed) when the gradient descent

epoch reaches a certain number, so we set the stopping criteria to be: the assignment does not

change for 100 iteration epochs; and the maximum number of iteration epochs is set to be 1000.

We also find that the coefficients in Equation (4.8) can affect the training result. We set λ1 = λ2 =

λ3 = 1.
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It should be noted that we train the network locally in each coarse neighborhood. The fine

mesh element has size 1/100 and 5 fine elements are merged into one coarse element.

The dimension reduction network F contains 4 fully connected layers to reduce the size of

local coarse elements from 100 to 60, 40, 30, 20 gradually. The K-means clustering is conducted in

space F (x) of dimension 20; the reconstruction netG is designed symmetrically with the reduction

network F . The adversary net is fully convolutional. All convolution layers except the last layer

have kernels of size 3 by 3 with stride 1; we use 1 by 1 convolution in the last layer to reduce the

number of channels to 1. The number of channels is doubled if the spatial dimension is reduced

and half-ed if the spatial dimension is increased. Max pooling of size 2 by 2 is used to reduce the

spatial dimension in the encoder; and to increase the dimension in the decoder, we perform the

nearest neighbor resize followed by convolution [119].

4.4.2 Results

We will present the numerical results of the proposed method in this section. We are going to

show the cluster assignment experiment first, followed by two other experiments which demon-

strate the error of the method.

4.4.2.1 Cluster Assignment in a Local Coarse Element

Before diving into the error analysis, we will show some of the cluster results in a local neigh-

borhood. In this neighborhood, we manually created the cases such as: the extraction of a channel

(longer), the expansion of a channel(wider), the discontinuity of a channel, the diagonal channels,

the intersection of channels, and so on. In Figure 4.7, the number on top of each image is the

cluster assignment ID number.
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Figure 4.7: Cluster results of 28 samples, images shown are heterogeneous fields, the number on
top of each image is the cluster assignment ID number. Reprinted with permission from “Learn-
ing Algorithms for Coarsening Uncertainty Space and Applications to Multiscale Simulations”
by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics,
8(5):720, 2020, Copyright [2020] by MDPI.

We also demonstrate the clustering result in Figure 4.8 of another neighborhood which is

around (25, 45) in Figure 4.6. From the results in both Figures 4.7 and 4.8, we observe that our

proposed clustering algorithm based on deep learning is able create a good clustering of the pa-

rameter space. That is, heterogeneous coefficients with similar spatial structures are grouped in the

same cluster.
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Figure 4.8: Cluster results of 20 samples, images shown are heterogeneous fields, the number on
top of each image is the cluster assignment ID number. Reprinted with permission from “Learn-
ing Algorithms for Coarsening Uncertainty Space and Applications to Multiscale Simulations”
by Zecheng Zhang, Eric T. Chung, Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics,
8(5):720, 2020, Copyright [2020] by MDPI.

4.4.2.2 Relation of error and the number of clusters

In this section, we will demonstrate the error change when the hyperparamter—the number of

clusters—increases. Given a new realization κ(x, ŝ) where ŝ denotes the parameter and a fixed

neighborhood, suppose the neighborhood of this realization will be fitted into cluster Si by the

model trained. We compute κ̄i = 1
|Si|
∑|Si|

j=1 κij where |Si| is the number of points in this cluster Si.

The GMsFEM basis of this neighborhood can then be derived using κ̄i. We finally construct the

solution using the GMsFEM basis pre-computed in all neighborhoods. We define the l2 relative

error as :

ratio =

∫
D

(u− uH)2dx∫
D
u2dx

, (4.9)

where u is the exact solution computed by finite element method with fine enough mesh and uH

is the solution of the proposed method. We test the network on newly generated 300 samples and

take the average of the errors.

In this experiment, we calculate the l2 relative error with the number of clusters increases.
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The number of clusters ranges from 5 to 11; and for each case, we will train the model and compute

the l2 relative error. The result can be seen in Figure 4.9 and it can be observed from the picture

that, the error is decreasing with the number of cluster increases.

Figure 4.9: The l2 error when the number of clusters changes, colors represent the number of GMs-
FEM basis. Reprinted with permission from “Learning Algorithms for Coarsening Uncertainty
Space and Applications to Multiscale Simulations” by Zecheng Zhang, Eric T. Chung, Yalchin
Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright [2020] by MDPI.

4.4.2.3 Comparison of cluster-based method with tradition method

In the second experiments, we first compute the l2 relative error (defined in Equation (4.9)

with uH denoting the GMsFEM solution) of traditional GMsFEM method with given κ(x, ŝ). This

means that the construct multiscale basis functions using the particular realization κ(x, ŝ). We then

compare this error with the cluster method proposed (11 clusters). The comparison can be seen in

Figure 4.10.
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Figure 4.10: The l2 error cluster solution (11 clusters) vs. solution by real κ(x, ŝ). Color rep-
resents number of basis. Reprinted with permission from “Learning Algorithms for Coarsening
Uncertainty Space and Applications to Multiscale Simulations” by Zecheng Zhang, Eric T. Chung,
Yalchin Efendiev and Wing Tat Leung, 2020. Mathematics, 8(5):720, 2020, Copyright [2020] by
MDPI.

It can be seen that the difference is negligible when the number of clusters reaches 11. We can

then benefit from the deep learning; i.e., the fitting of κ(x, ŝ) into a cluster is fast; and since we

will use the pre-computed basis, we also save time on computing the GMsFEM basis.

4.4.3 Effect of the adversary net

The target of this task is not the learning of multiscale basis; the multiscale basis in this work

is just a supervision of learning the cluster. However, to demonstrate the effectiveness of the ad-

versary network, we also test the the effect of the adversary net. There are many hyper-parameters

like the number of clusters and coefficients of the loss function which can affect the result; so to

reduce the influence from the clustering, we remove the clustering loss from the training, so this

is a generative task which will generate the multiscale basis from the output of the first network in

Figure 4.5. The loss function now can be defined as:

min
θG,θF

λ1R + λ2A, (4.10)

where R and A are defined in Equations (4.4) and (4.7), separately; and λ1 and λ1 are both set to

be 1. We compute the relative error with Equation (4.9) first by using the learned multiscale basis
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which is trained by Equation (4.10); and second by using the multiscale basis trained without the

adversary loss Equation (4.7), i.e.,

min
θG,θF

A. (4.11)

The l2 relative error improves from 41.120439 to 36.760918 if we add one middle layer from

the adversary net.

We also calculate the MSE difference of two learned basis (by loss Equation (4.10) and Equa-

tion (4.11), separately) and real multiscale basis, i.e., we calculate ‖Blearned basis − Breal basis‖MSE ,

where Blearned basis refers to two basis trained with Equation (4.10) and Equation (4.11), separately

and Breal basis is the real multiscale basis formed using the input heterogeneous field. The MSE

amazingly decreases from 0.9073400 to 0.748312 if we use basis trained with the adversary loss

Equation (4.10). This can show the benefit from the adversary net.
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5. MULTIAGENT REINFORCEMENT LEARNING ACCELERATED MCMC ON

MULTISCALE INVERSION PROBLEM

5.1 Introduction

The method of Monte Carlo Markov Chain (MCMC) has been widely used in solving inverse

problems [120, 121, 122, 123]. There are two issues which limit the computation speed of the

MCMC algorithm. The first to mention is the evaluation of the forward solver. To compute the

posterior distributions, computationally demanding simulations are needed for evaluating accep-

tance probabilities driven by forward problems. This issue can be partially solved by applying the

multi-level algorithms proposed in [122]. Instead of using one solver, the multi-level algorithms

apply different solvers and perform the multi-level acceptances/rejections. If the coarser solver re-

jects the proposal, then a new proposal is proposed. Since coarse solvers are easy to be evaluated,

the rejection process can be accelerated.

Multi-level algorithms can naturally be incorporated with the multiscale inverse problems. This

is due to the nature of the multiscale finite element methods [124, 125, 19, 72]. Multiscale basis

functions defined on a coarse grid of the computational domain are calculated by solving some

local cell problems. Then, we can select different basis functions and use them in coarse forward

solvers. In this work, we will use the generalized multiscale finite element methods (GMsFEM) as

a forward solver.

Another issue associated with the MCMC is the proposal generator. The earliest methods

developed by Metropolis [126] use the random walk to generate the proposal. Many other methods

[127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139] including using kernel adaptation,

Hamiltonian dynamics, Langevin dynamics, parallel marginalization, kernel coupling and multiple

chain simulation, parallelization have been proposed to improve the efficiency of MCMC methods.

Deep learning method has been widely applied to solve the problem with multiscale features [50,

41, 52]. In this work, we will recourse to the reinforcement learning approach and propose to use
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the reinforcement learning to accelerate the MCMC sampling.

Reinforcement learning (RL) has been studied since the last century. With the development of

deep learning, deep reinforcement learning has been applied to solve various problems. Model-free

RL algorithm is one of the two most common RL algorithms. It usually includes Q-learning and

policy iteration methods (actor critic) [140, 141, 142, 143, 144, 145, 145, 146, 143, 147, 148, 148,

149, 150, 151, 152, 153, 154]. In this work, we are going to study the combination of the policy

iteration method with the MCMC algorithms. The target of the policy iteration RL is to learn an

acceptable policy such that the expected future reward is maximized. Most of the models have a

single agent that is in charge of predicting the behavior; however, there are problems which require

the interplay (cooperation, competition) among multiple agents. Many multi-agent algorithms then

have been proposed [155, 156, 157, 158, 159]. One of the essential principles of multi-agent design

is to centralized the critics but decentralized the actors. This means that the actors make decisions

using local information while the critic is centralized learnt using global information.

In this work, we proposed an RL alternative to accelerate the MCMC. The main idea is to use

the RL policy as the proposal generator in the MCMC process. More precisely, the RL agent is

learning a distribution of actions, and we can make a new proposal by sampling an action from this

distribution; that is, the action sampled will modify the current state and we hence obtain the new

proposal. The MCMC then comes and either rejects or accepts this proposal as standard. Since the

proposal generated may be rejected by MCMC which involves heavy computation, it is natural to

use the off-policy algorithm; that is, instead of generating an entire trajectory which is used to learn

the critic in the RL, we only run the policy for one time and get a state action state transaction.

This saves much time, however, brings in the exploration issue. We hence proposed to apply the

ε-greedy strategy to overcome this issue. To be more specific, we use the RL policy as the proposal

with a certain probability p and use the random walk, which is guaranteed to convergence with

probability 1− p.

We will verify our method by solving a time-dependent flow inverse problem. Inversely locat-

ing the high permeability channels given the measurements is a challenging problem. Our goal is to
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identify the heterogeneous permeability field such that the corresponding solution is closed to the

measurement (observation). To be more specific, the underlying model of the inversion problem is

a parabolic equation as follows:

ut −∇ · (κ∇u) = f(x, t) in D × [0, T ],

u(x, 0) = g(x) x ∈ D,
∂u

∂n
= h(x, t) t ∈ [0, T ] and x ∈ ∂D,

(5.1)

where D ⊂ Rd (with d ∈ {2, 3}); ∂D denotes the boundary of the domain and n is the unit

outward normal vector; κ(x) is a high-contrast permeability field and contains some channelized

features. The measurement is the solution of the model at given region and the target is to find the

permeability κ(x) such that ‖F − F(κ(x))‖ is small, where F is the observation and F(·) is the

forward solver by which we use to calculate the solution of the input permeability field.

We achieve our goal by sampling a sequence of permeability fields which are characterized as

the state in the reinforcement learning framework. The sampling is supervised by the RL agent,

and the new sampling will be either rejected or accepted by the MCMC algorithm. We solve a

challenging problem with multi-channels and use a multi-agents RL algorithm. The basic idea is

to use agents to capture the channels. Each agent is decentralized to learn a policy which will

locate one channel. All agents work cooperatively, and the critic is centralized learnt. The more

concrete setting will be presented in Section 5.4. To summarize our contribution, we proposed an

algorithm which uses multi-agent RL to accelerate the MCMC sampling. We verify our method

by solving two challenging inverse problems with the multiscale property.

The rest of the work is organized as follow. In Section 5.2, we will introduce the preliminar-

ies of the works. These include the generalized multiscale finite element method, reinforcement

learning and the probabilistic MCMC formulation. Our proposed method is presented in Section

5.3. We conduct several numerical experiments in Section 5.4 to verify our idea.
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5.2 Background

5.2.1 Actor-Critic reinforcement learning

We consider the multi-agent extension of the Markov decision processes (MDPs). A Markov

game with N agents is defined by a set of state S and a set of actions A1, ...,AN and a set of

observations O1, ...,ON for each agent i. To choose an action ai, each agent will follow the policy

πθi(ai|si) : Oi×Ai → [0, 1], which is a distribution of the actions given current observation si; the

policy πθi(.) depends on the parameter θi and can be formulated as a network. The agents will then

move to the next state s′ = {s′1, ..., s′N} by sampling from the transition probability distribution

T (s′|s, a) ∈ [0, 1], where s is the set of current observations and a = {a1, ..., aN} is the set of

actions of each individual agent. Each agent i obtains a reward ri(si, ai) : Oi ×Ai → R given the

current observation si and the action ai determined by the policy; the reward of all agents can be

denoted as r(s, a) : S ×A → R where A = A1 × ...×AN is the set of all actions.

We denote the trajectory of length T formed in this Markov process as τ : S×A×S×A...S×A,

the associated probability will then be denoted as pθ(τ). The target of the reinforcement learning

is to maximize the expected return:

J(θ) = Eτ [R],

where R is the reward of the trajectory and θ = {θi, ..., θN} are the parameters associated with the

policy of each agent; to be more specific,

max
θ
J(θ) = max

θ
Eτ∼pθ(τ)

[∑
t

r(st, at)

]
,

where (st, at) is the state-action pair at step t in the trajectory τ . This optimization process can be

implemented by moving in the direction∇J(θ) which is called policy gradient.

There are several approaches to estimate the expected return. The most simple choice is the

REINFORCE algorithm proposed by Sutton [153], that is, Rt =
∑T

j=t γ
j−trj , where γ is the
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discount factor which determines how much the policy favors the immediate reward over the long-

term gain; to be more specific,

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(a
t|st)

)(
T∑
t′=t

γt
′−tr(st

′
, at
′
)

)]
, (5.2)

The REINFORCE algorithm usually leads to high variance and this issue can be ameliorated by

approximating the expected return. One choice is to approximate the state value function Q(s, a) :

S ×A → R which is defined recursively [154] as:

Q(s, a) = Es′ [r(s, a) + γEa′∼πθ(Q(s′, a′))]. (5.3)

The policy gradient will then become:

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(a
t|st)

)
Q(st, at)

]
. (5.4)

By varying the advantage function A (state value function Q and REINFORCE are two special

cases), many practical algorithms have been proposed [151]. In this work, we will consider the

advantage function defined as:

A(s, a) = Q(s, a)− V (s), (5.5)

where V (s) : S → R is the state value function which is the expectation of Q,

V (s) = Ea∼πQ(s, a). (5.6)

The approximation of the advantage function have been thoroughly studied in [151]. In this work,

we will use:

r(s, a) + γVω(s′)− Vω(s), (5.7)
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where Vω is the approximation of the value function and can be formulated as a network with

parameter ω. This approximation is a special case of the γ−just (unbiased) operator [151] when

Vω = V and typically has lower variance. We now introduce the basic actor-critic algorithm here:

1. Generate trajectories by policy πθ.

2. Get the updated advantage function Aω by learning Vω(.) with the trajectories.

3. Update the policy πθ by optimize the objective J(θ):

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(a
t|st)

)
A(st, at)

]
.

It should be noted that we use the off-policy algorithm in practice. That is, in step 1 above, we run

the policy for one time and get a state action state transaction. This transaction will be saved into

reply buffer and we train the value function in step 2 by sampling some transactions from the reply

buffer. The off-policy algorithm is fast but may result in the local convergence. We will discuss

this issue in detail in the numerical example sections. In this work, we use the actor-critic (AC)

algorithm incorporated with the MCMC algorithm. The proposed algorithm will be detailed in

later sections.

5.2.2 Probabilistic MCMC

This problem can be summarized as sampling the permeability field which has high contrast

channels given pressure data with some measurement error. Denote P (κ|F ) as the conditional

probability of the permeability field κ given the observation F , we then will sample permeability

from the P (κ|F ). By the Baysian’ formula, it follows that:

p(κ|F ) ∝ P (F |κ) · P (κ),

where P (κ) is prior, P (F |κ) is the likelihood and Π(κ) = p(κ|F ) is the posterior. There are some

errors associated with the likelihood function. The first to mention is the error of the observation of
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F . The second error comes from the forward solver denoted as F which solves the model problem

given the sample permeability κ. We will assume the total errors follows the normal distribution

with standard deviation σf ; this gives us that,

P (F |κ) ∝ exp{−‖F −F(κ)‖2
2

σ2
f

} (5.8)

Sampling from Π(κ) can be accomplished by the MCMC methods. In this work, we will build

the algorithm basing on the Metropolis-Hasting algorithm [127]. It should be noted that in the

computation of the posterior Π(κ), intense computation will be involved in evaluating the forward

solver F . To improve the efficiency of computing the acceptance rate and give fast rejection, we

adopted the multi-level MCMC algorithm basing on the GMsFEM.

We use GMsFEM coarse solvers F1, ...,FL defined in Section (1.1); then the corresponding

posterior will be denoted as:

Πl ∝ exp{−‖F −Fl(κ)‖2
2

σ2
f

}P (κ). (5.9)

We use q(y|x) as the proposal generator in which x is the current sampling and y is the proposal.

The multi-level MCMC algorithm is detailed at the end of this chapter (5.2.3).
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5.2.3 Multi-level MCMC algorithm

Algorithm 1: MLMCMC

1 Set the total number of levels L;

2 Given input sm, sample a new proposal c from the proposal generator q(.|sm);

3 Compute the acceptance probability:

ρ0(c, sm) = min

{
1,

Π0(c)q(sm|c)
Π0(sm)q(c|sm)

}

4 Set c0 = c with the probability ρ0(c, sm) and c0 = sm with the probability 1− ρ0(c, sm);

5 for l = 1, ..., L do

6 Compute the acceptance probability by,

ρ(cl−1, s
m) = min

(
1,

Πl−1(sm)Πl(cl−1)

Πl−1(cl−1)Πl(sm)

)

Set cl = cl−1 with the probability ρ(cl−1, s
m) and cl = sm with the probability

1− ρ(cl−1, s
m);

7 end

8 Set sm+1 = cL and return sm+1;

Remark 5.2.1. It should be noted that once the proposal is rejected at some level, the following

levels computation can be avoided since the accept probability is equal to 1 and cl = sm for all

following l. This means that the proposal will be rejected by coarser solver which requires less

computation time.

5.3 Proposed approach

The traditional MCMC algorithm can be accelerated by multi-level MCMC since the multi-

level MCMC uses coarse solver which gives faster rejection computation; however MCMC can

be further improved by modifying the proposal generator. We hence proposed the multi-agent

reinforcement approach.
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5.3.1 Explanations of the algorithm

Each channel in the target permeability field can be parametrized and taken as observations (si)

in the RL algorithm; and each agent is in charge of chasing for one target channel of quadrilateral

shape. Actions (Ai) are defined so that each rectangle can be reshaped or moved; and action

distribution of each agent is determined by the policy πθi(.|si). Detailed setup can be seen in

Section 5.4.1.

To be more clear, each agent is like a robot; at the beginning of the simulation, each robot

stands at some position in the field, then they can transform and move individually so that the

output of the forward solver at the end of simulation is closed to the real observation. The pseudo

algorithm has 3 iterative steps and please check Appendix 5.3.3 for the details of the algorithm:

1. Each RL agent return a new local proposal for its own channel according to its own policy;

make a new state by combining all proposals.

2. Apply standard multilevel MCMC to accept or reject the new state. If the new state is

rejected, go back to step 1; otherwise proceed to the step 3.

3. Update the RL agents (policy and critic) using the past trajectory offline and then go back to

step 1.

The first step above is the sampling process in MCMC algorithm and we replace the random

proposal q(y|x) by the reinforce. More precisely, the sampling (for a single agent) is achieved by

following three steps below:

1. Given current state si.

2. Sample an action ai from the policy πθi(.|s).

3. Execute action ai to get the next state s′i.

That is, q(s′i|si) = πθi(ai|si), such that s′i is acquired by taking action ai at state si.
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5.3.2 Discussions of the algorithm

There are some key notes of the algorithm.

1. Due to the evaluation of the forward solvers in the MCMC step, it is not realistic to run the

policy multiple times and get a long enough trajectory to update the RL agents (step 3). We

hence apply the off-policy algorithm as discussed before. This may result in the local conver-

gence since the RL agent may never explore some regions in the solution space and we are

learning the value function greedily. This exploitation (or the under exploration) issue will

result in the early stopping in our problem. More precisely, proposals with large probabili-

ties suggested by the RL policy will be very likely rejected by MCMC; meanwhile, the low

probabilities actions are easily to be accepted by MCMC but are hard to be sampled. Conse-

quently, the sampling process becomes slow and we call this phenomenon “early stopping".

We will demonstrate this phenomenon in details later on the numerical example sections; but

to solve this issue, we consider the ε-greedy strategy. That is, we use the RL policy as the

proposal with a certain probability p and use the random walk proposal which is guaranteed

to convergence with probability 1− p.

2. We use the the decentralized actor and centralized critic principle. To be more specific, the

policy πθi(.|si) of each agent i predict the action distribution depending only on the local

observation si. Once agent i moves to new observation s′i and obtains the new state ŝ′ =

{s′1, ..., s′i, si+1, sN}, we can evaluate the reward r using the global information ŝ′; the critic

value function Vi(.|ωi) will then be updated accordingly. Intuitively, the centralized critic

is able to enhance the cooperation among all agents. The expected value reward (Vi(|ωi))

for one observation-action pair (of one agent) relies on the global state information; hence

the agent will not make decision greedily only improving its own reward, instead, individual

move will be beneficial to the global reward. In our problem, it is natural to evaluate the

forward solver using global information, that is, we need all channels in order to compute

the reward; hence the centralized critic should be a good choice.
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3. (Intuition of the idea) Instead of moving to a state greedily, the RL algorithm is supposed to

move to a state which has better expected reward to go. This is accomplished by the critic

learning in the RL iteration. Hence, the proposal generated by the RL agent should give

faster convergence than the random sampling.

5.3.3 Detailed algorithm

We first initialize the algorithm. Please check algorithm in Algorithm (2).

1. Set the max length of the trajectory T

2. Initialize the critic net Vl(.|ωl). the policy network πθl(, |s) for all agent l = 1, ..., C

3. Initialize the target net V̂l(.|ω′l) by setting ω′l ← ωl

4. Initialize the reply buffer D

5. Initialize the starting state st = (st1, ..., s
t
C)

Remark 5.3.1. We have several remarks regarding the algorithm. We need to call MLMCMC

algorithm to generate samples; however, in the implementation of the MLMCMC algorithm, the

proposal generation is completed in 2 steps. First, we can sample an action from πθl(.|stl); and

then we execute the action to get the proposal.

To initialize the reply buffer, we randomly generate samples (st, r, st+1); to get the reward of

the transaction, we use the most coarse forward solver to evaluate the solution. This saves a lot of

time in generating samples and the performance is not compromised.

5.4 Numerical examples

In this section, we are going to demonstrate 3 sets of the numerical experiments. The first

experiment (Section (5.4.2), (5.4.3), (5.4.4), (5.4.6) ) and the third experiments (Section (5.4.7))

are aimed at showing the efficiency of the proposed method; the second experiment in section

(5.4.5) is used to explain the early stopping of the RL method. The RL setup is presented in

Section (5.4.1).
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Algorithm 2: Replay Buffer A2C with MCMC
1 for t = 0, ..., T do
2 for l = 0, ..., C do
3 while stl == st+1

l do
4 Run c = MLMCMC(stl) with the proposal generator q = πθl;
5 Set st+1

l = c;
6 end
7 Random select S samples {(sj, rj, s′j)}Sj=1 from the reply buffer D; the sample of

agent l will be denoted as (sl,j, s
′
l,j);

8 Calculate the target for each sample by Vtar,l(sl,j|ω′l) = r(sj, s
′
j) + γV̂l(s

′
l,j|ω′l)

using the target network and the selected samples;
9 Update the critic network Vl(ωl) (over the batch) by optimizing,

LVl(ωl) =
1

S

S∑
j=1

(Vl(sl,j|ωl)− Vtar,l(sl,j|ω′l))2

10 Calculate the advancement Al(sl,j, s′l,j) = r(sj, s
′
j) + γVl(s

′
l,j|ωl)− Vl(sl,j|ωl)

based on the critic network for all samples in the batch;
11 Update the policy πθl by optimizing

Lπl(θl) =
1

S

S∑
j=1

(−Al(sl,j, s′l,j) log πθl(s
′
l,j|sl,j))

12 Update the target network by:
13

ω′l ← εω′l + (1− ε)ωl
14 end
15 Set st+1 = (st+1

1 , ..., st+1
C ) and store (st, r(st, st+1), st+1) in the buffer;

16 end
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5.4.1 Reinforcement learning setup

In this section, we will model our problem under the reinforcement learning framework. There

are 3 basic elements that we need to define to model our problem: S, {O}Ni=1, {A}Ni=1 and the

reward r(s, a).

The target of the inversion problem is to find the high contrast channel such that the observa-

tion loss is minimized. In the framework of the RL, each agent is in charge of one channel and

moves to the target channels step by step. To simplify the setting of the problem, we assume all

channels have quadrilateral shape and we hence characterize a channel by a tuple of 4 parameters

(x, y, w, d), where (x, y) is the coordinate of the lower left vertex of the channel while (w, d) stands

for the width and height. The observation of each agent is then defined as:

Oi = {(x, y, w, d)}, i = 1, ..., N (5.10)

and the state is consisted of all observations and is then defined as:

S = {(x1, y1, w1, d1), ..., (xN , yN , wN , dN)}, (5.11)

where N is the number of channels. Since we are using the decentralized actor, each agent will

modify its prediction basing on the local information; we hence define the 8 actions for each agent.

Also, we assume the transition is deterministic and then the state and action can be summarized as
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follow:

T
(
(x− h, y, w, d)|(x, y, w, d), a

)
= 1, a = shift to the left

T
(
(x+ h, y, w, d)|(x, y, w, d), a

)
= 1, a = shift to the right

T
(
(x, y − h,w, d)|(x, y, w, d), a

)
= 1, a = shift downwards

T
(
(x, y + h,w, d)|(x, y, w, d), a

)
= 1, a = shift upwards

T
(
(x, y, w − h, d)|(x, y, w, d), a

)
= 1, a = squeeze horizontally

T
(
(x, y, w + h, d)|(x, y, w, d), a

)
= 1, a = stretch horizontally

T
(
(x, y, w, d− h)|(x, y, w, d), a

)
= 1, a = squeeze vertically

T
(
(x, y, w, d+ h)|(x, y, w, d), a

)
= 1, a = stretch vertically,

where h is the size of one fine element. We assume the deterministic transition, hence define the

reward as

r(s, a) = r(s, s′) = ‖F − FL(s)‖ − c1‖F − FL(s′)‖+ c2,

where (s, s′) are the current and proceeding states respectively; c1 and c2 are two hyper-parameters

to set; FL is the coarse scale forward solver and F is the observation. Throughout all the experi-

ments, the observation is the pressure at wells.

We random choose the starting position for each channel and run the algorithm. At each

step, we compute ‖F − FL(s)‖. We will demonstrate the convergence of the multilevel MCMC

(MCMC), MCMC improved by RL (RLMCMC) and an ε − greedy update version of the RLM-

CMC algorithm (eRLMCMC).

5.4.2 The first experiment setup

The target permeability field with two high contrast channels are shown in Figure (5.1). The

source with 2 injection wells and 2 production wells is defined as following (see Figure (5.1) for
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the illustration):

f(x) =



20, x ∈ [0.1, 0.2]× [0.1, 0.2],

−5, x ∈ [0.8, 0.9]× [0.1, 0.2],

20, x ∈ [0.2, 0.3]× [0.8, 0.9],

−5, x ∈ [0.75, 0.85]× [0.55, 0.65]

(5.12)

The solution of the system is shown in Figure (5.1) and we obtain the solution using the fine mesh

(h = 1/100). It should be noted that we only use the data at the given wells as the observation

data.

Figure 5.1: Left: the target permeability field. The permeability of the field at the channels is equal
to 1000 and is equal to 1 otherwise. Middle: source of the system. Right: corresponding solution.

5.4.3 Multilevel MCMC

We will first demonstrate that the conventional multilevel MCMC algorithm (MCMC). It should

be noted that we do not use prior in the algorithm, that is, P (κ) = 1 in the (5.9). Also, we use

the uniform proposal. Please see Figure (5.2) for the convergence of the MCMC method. In Fig-

ure 5.2, the x-axis is the sampling steps and please note that, only the accepted samplings are

recorded; while the y-axis represents the difference between the measurement and the solution.
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Figure 5.2: Convergence of the Multilevel MCMC. The Y axis is: ‖F − FL(s)‖ and X axis is the
steps of the sampling.

Our large scale experiments show that the convergence speed of the traditional method is slow

when compared to the proposed method which is shown in the next section.

5.4.4 RL accelerated MCMC (RLMCMC)

In this experiment, we accelerate the conventional MCMC by the reinforcement learning. To be

more specific, the proposal is replaced by the RL agent policy. All the other hyper-parameters will

be kept the same as the previous experiment. Please check Figure (5.3, left) for the convergence of

the RL-MLMCMC; the comparison of two method can be seen in Figure (5.3, right).

Figure 5.3: Left: the convergence of the the RL-MCMC method. Right, the comparison of the
MCMC method and the proposed method. RED: Proposed, BLUE: MCMC.

The CPU time for the computation can be seen in Table (5.1). We can see the faster convergence

of the RLMCMC method; however, we also observe the early stopping of the RLMCMC, that is,
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almost all new proposals proposed by RL agents will be rejected by the MCMC algorithm. In this

experiment, this phenomenon happens at around 100 steps. This will slow down the convergence

of the method. We will explain the reason of this in the next section and give an update of the

method in section (5.4.6).

5.4.5 Early stopping

We observed the early stopping phenomenon of the RLMCMC; that is, almost all new pro-

posals suggested by the actors are rejected by the MCMC algorithm. The good news is, our large

scale experiments show that the stopping predictions have satisfying results and this stopping can

be controlled by the adjusting the learning rate. Please check the Figure (5.3, left).

The direct reason of the early stopping is: the probabilities for two actions which are in a pair

(eg, move to the left and move the right) have multi scales as RL learning goes. By the formula of

the calculating the acceptance rate (1), the acceptance rate becomes extremely low and hence the

new proposal which is sampled with large probability suggested by the RL agent is rejected. This

causes the slow sampling process.

The fundamental reason of the multi-scales probabilities is the RL exploration problem. We

use the off-policy RL, that is, the value function is updated from samples in the reply buffer. The

benefits of the off-policy strategy is: we do not need to run the policy for multiple times and get a

trajectory, which is super time consuming. That means if the agent never explores a region, it has

no information about that region and hence makes decision only depending on the region it has

explored. To explain this issue better, let us consider a simpler model.

The target permeability has only one channel (Figure (5.4, left)); and we have 1 injection well
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and 3 production wells (Figure (5.4), middle), that is, source is defined as:

f(x) =



−5, x ∈ [0.45, 0.55]× [0.2, 0.3],

−5, x ∈ [0.45, 0.55]× [0.7, 0.8],

20, x ∈ [0.1, 0.2]× [0.45, 0.55],

−5, x ∈ [0.8, 0.9]× [0.45, 0.55]

(5.13)

Figure 5.4: One channel example. Left: the target permeability field. The permeability of the field
at the channels is equal to 1000 and is equal to 1 otherwise. Middle: source of the system. Right:
corresponding solution.

In this example, we assume we know (y, w, d) and only x is unknown, that means the agent

only needs to move to the right or left. We use one agent. State (observations) will be formulated

same as before; however, the action space contains two actions: move to the left and move to the

right. To better demonstrate the probability evolution and avoid the eraly stopping caused by the

MCMC rejection, we use only RL to make the sampling and there is no MCMC involved.

The guess starting position will be to the right of the target place. This means that the agent

only has information of moving to the left; hence the probability of moving to the left increases

drastically before the agent passes over the target position; the multiscale in probabilities happens
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then. In the formula of the acceptance rate, q(sm|c) is the probability of moving to the right which

is small compared to q(c|sm) which is moving to the left. This results in the low acceptance rate.

Please check Figure (5.5) for the illustration of the evolution of the probability distribution.

Our experiments show that the early stopping prediction has been good enough when compared

to the traditional MCMC algorithm; however, this brings the under-exploration issue to the RL

algorithm. To solve this issue, we employ the ε − greedy method to upgrade the RLMCMC

algorithm.

Figure 5.5: Left: Probability of going left. Right: Probability of going right. In both graphs, the y
axis is the probability and x axis is the training step.

5.4.6 ε− greedy RL-MCMC (eRLMCMC)

To solve the early stopping issue the RL-MCMC method, we proposed the ε − greedy RL-

MCMC (eRLMCMC) method. The idea is to apply the ε − greedy strategy and mix the RL-

MCMC and MCMC method. To be more specific, in each step, we use RL policy as proposal with

the probability ε and use uniform policy with probability 1− ε.

Please check Figure (5.6, Left) for the convergence of eRLMCMC; and the computation time

is shown in Table (5.1).
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Figure 5.6: Left: the convergence of the the eRLMCMC method. Right, the comparison of all 3
methods. RED: RLMCMC, BLUE: MCMC, YELLOW: eRLMCMC

Method Number of Steps Time

MCMC 289 8060.6s

RLMCMC 191 7274.6s

eRLMCMC 349 9680.4s

Table 5.1: Computation time of the first example

In this table, we compared the computational time for all three methods. It should be noted that

the average step time of the RLMCMC method (proposed method) is larger than the that of the

traditional method. This is because of the computations needed in training the RL agent. However,

we can observe that the RLMCMC method has shorter total computation time and better result

(see Figure 5.6 (Right)); this shows that the proposals suggested by the RL agent are meaningful

and can lead to the convergence in a more efficient way. Similar results can be seen in the second

examples Table 5.2. Our method hence works.

5.4.7 Test on diagonal channels

In the first set of experiments, we assume the underlying channels are horizontal or vertical;

however there are cases in the real applications that the channels are diagonal. In this set of
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experiments, we will test more challenging example with diagonal channels; however, the state

and action formulations are kept the same as before, that is, we still use the rectangles which are

parallel with the domain boundaries as the predicting states (observations).

We use the same source term but the channels are diagonal. Please check Figure (5.7) for the

details.

Figure 5.7: Problem with the diagonal channels. Left: the target permeability field. The perme-
ability of the field at the channels is equal to 1000 and is equal to 1 otherwise. Middle: source of
the system. Right: corresponding solution.

Same as before we will compute ‖F−FL(s)‖ and demonstrate the results of applying MCMC,

RLMCMC and eRLMCMC. Please check Figure (5.8) for the individual results of three methods.

Figure 5.8: Left: MCMC result. Middle: MCMC improved by RL (RLMCMC). Left: ε− greedy
strategy RLMCMC

We also observe the early stopping of the RLMCMC method and hence use the ε − greedy

strategy to improve the RL algorithm. The comparison of three methods are shown in Figure (5.9).
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Figure 5.9: Left: MCMC vs RLMCMC; blue curve is the MCMC and red curve is the RLMCMC.
Left: MCMC vs RLMCMC vs eRLMCMC; blue curve is the MCMC, red curve is the RLMCMC
and yellow is the eRLMCMC.

We can observe from Figure (5.9) that the RLMCMC does improve the convergence speed of

the MCMC method. The ε−greedy strategy further improves the result by extending the sampling

process. The comparison of the computational time is shown is in Table (5.2).

Method Number of Steps Time

MCMC 383 8048s

RLMCMC 174 6062.4.6s

eRLMCMC 347 13472.4.4s

Table 5.2: Computation time of the third example (Diagonal channels)

From Table 5.2, we can see that our methods still work. One may notice the long total com-

putation time of the eRLMCMC method. This happens because of the rejections. We apply the

ε-greedy strategy; however, setting ε is tricky. In this experiment, we set a relative large ε. This

means more rejections will be suggested by the MCMC and hence results in the long computation

time; but this strategy indeed extends the trajectory and gives us a better convergence result.
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6. SUMMARY AND CONCLUSIONS

Let us now conclude the dissertation. We first discuss the quasi gas dynamic (QGD) (in chapter

2) in the multiscale setting. This model is later used in the paraxial approximation project.

In this work, we have proposed a novel computational multiscale method based on the idea of

constraint energy minimization for solving the problem of quasi-gas-dynamics. The spatial dis-

cretization is based on constrain energy minimization generalized multiscale finite element meth-

ods (CEM-GMsFEM) which provides a framework to systematically construct multiscale basis

functions for approximating the solution of the model. The multiscale basis functions with lo-

cally minimal energy are constructed by employing the techniques of oversampling, which leads

to an improved accuracy in the simulations. Combined with the central difference scheme for the

time discretization, we have shown that the fully discrete method is stable under a relaxed ver-

sion of CFL condition and has optimal convergence rates despite the heterogeneities of the media.

Numerical results have been presented to illustrate the performance of the proposed method.

Secondly, in chapter 3, we discuss a new approach to solve a full equation in the multiscale

environment. Instead of solving the full wave equation, we apply the paraxial approximation which

results in a QGD equation give a certain spatial level. For the spatial discretization, we employed

the CEM-GMsFEM methods, which is proved to be efficient to reduce the dimension of the model

in space. We then combined the technique of POD to further reduce the dimension along the quasi

time direction. A complete analysis of the proposed algorithm has been provided. Numerical

results are provided to demonstrate the effectiveness and efficiency of the proposed method.

Deep learning has been showing its power in solving the computer vision, language processing

and many other problems since 2010. In this dissertation, we also present two works in which we

use the deep learning techniques to solve the traditional multiscale problems.

In chapter 4, we propose a deep learning clustering technique within generalized multiscale

finite element methods (GMsFEM) to solve flows in heterogeneous media. The main idea is to

cluster the uncertainty space such that we can reduce the number of multiscale basis functions for
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each coarse block across the uncertainty space. We propose the adversary loss motivated by the

perceptual loss in the computer vision task. We use convolutional neural networks combined with

some techniques in adversary neural networks, where the loss function is composed of several parts

that includes terms related to clusters and reconstruction of basis functions. We present numerical

results for channelized permeability fields in the examples of flows in porous media.

Reinforcement learning was firstly studied in the late 1980‘s. With the development of the deep

learning, deep reinforcement learning becomes a powerful tool in the control theory and computer

science applications. We use the deep reinforcement learning in the last project presented in this

dissertation.

In chapter 5, we proposed to use the RL agent as a proposal generator in the MCMC algorithm.

We invented a multi-agents actor critic algorithm which will accelerate the MCMC sampling. We

verify our idea in solving an inverse problem with multiscale. As far as we know, this is the first

time, RL is used in the combination with the MCMC sampling. Many experiments are provided

and showed the success of our method.
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