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ABSTRACT 

 

Establishing mechanistic and causal understanding of a material’s function 

requires the ability to solve the inverse problem of relating function to atomistic 

properties and to subsequently examine how synthetic processes can be designed to 

arrive at desired atomistic configurations. Though detailed mechanistic study and data-

driven methodology the processing-structure-property relationships of a synthetic design 

space can be leveraged to converge on the desired functional properties. Through the 

examples of VO2 and metal halide perovskites, materials of great current interest due to 

their desirable properties of a metal-insulator transition (MIT) and high photovoltaic 

performance respectively, we have established mechanistic understanding and 

predictivity of relationships between synthesis and materials properties. This work 

explores chemical doping in the VO2 system as a vector to modify the MIT properties 

and establish mechanistic understanding of the modulation observed when doping with 

tungsten, boron, germanium, and iridium. The interplay of defect dynamics, phase 

transition kinetics, and crystallographic modification in these doped systems result in 

mechanisms that lower and raise MIT temperatures, afford control over the MIT 

hysteresis, create a dynamical response, and stabilize entirely new metastable crystal 

structures. The synthesis of CsPbBr3 perovskite nanoparticles proves to be a successful 

case study in the utility and flexibility of machine learning to predict outcomes, such as 

nanoparticle thickness, from sparse and incomplete data as well as to provide 

quantitative insight into the mechanisms driving the shape of the reaction landscape. 
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Sparse expensive synthetic data benefit from machine-learning-directed navigation as it 

is more efficient and tolerant to uncertainties than simpler experimental exploration 

methods. The utility of this type of the machine learning and feature analysis when 

combined with Bayesian learning for chemical and material syntheses has potential for 

high-quality predictions with small and/or high-dimensional datasets with implications 

for automated experimentation and engineering where solving the inverse problems may 

provide human-like insight to automation processes. 
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1 

1. INTRODUCTION*  

 

1.1. Overview 

 Successful design of a functional material requires an understanding of the 

relationship between materials properties, chemical composition, atomistic structure, and 

the synthetic processes necessary to arrive at the desired atomistic configuration. 

Serendipitous discovery of a material with optimal properties or an optimal synthetic 

process though a guess and check process is rare and an unrealistic strategy for targeted 

materials design. The design of functional materials presents a challenge of often having 

high dimensional design spaces with many factors influencing the materials properties 

and synthetic outcomes while also having a high cost of experimentation making 

untargeted exploration unfeasible. This challenge can be addressed by developing 

mechanistic understanding of structure—function correlations of the material property 

being designed and the underlying physical principles or through efficient data-driven 

navigation of the design space describing either a synthetic result or a structure-property 

relationship. Comprehensive mechanistic understanding that links structure and 

composition to a specific property will aid materials design by providing insight into 

design features that will have the most impact on the desired outcome, thereby lowering 

the number of variables that need to be explored to tune a property. In a complementary 

fashion, data-driven machine learning approaches using existing data can build inference 

in the inverse direction allowing for the statistical analysis of the most impactful 
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features. Mapping the desired properties to processing parameters can help guide the 

choice of where to sample next beyond “guess and check” or one variable at a time 

(OVAT) methodology, thereby enabling efficient exploration of materials or synthetic 

design spaces in search of a desired synthetic outcome or functional property.  

This dissertation will explore the complementary use of mechanistic 

understanding of alloying processes and data-driven inference for improved materials 

and processing design in two parts. Firstly, chapters 2, 3, and 4 will discuss improving 

the design of a metal-insulator transition (MIT) material by building mechanistic 

understanding of the influence of dopants on the transformation temperature and 

hysteresis of VO2. Secondly, chapter 5 will discuss mapping a processing design space 

by using machine learning to predict the quantum confinement of CsPbBr3 perovskite 

nanoparticles. 

1.2. The Rugged Material Design Space of VO2 

VO2 is an electron correlated transition metal oxide with strongly coupled spin, 

charge, lattice, orbital, and atomic degrees of freedom, which undergoes a change in 

physical properties including electrical conductivity, optical transmittance, specific heat, 

thermal emissivity and magnetic susceptibility when transitioning from the low-

temperature M1 phase to the high-temperature R phase (Figure 1.1).[1–6] This switching 

behavior underpins potential applications in devices such as Mott field-effect transistors, 

thermal emissivity coatings, optical limiters, infrared modulators, neuromorphic 

computing elements, and many more.[3,7,8] VO2 has an equilibrium transition temperature 

(Tc) of around 67 °C; however, the critical transition temperature, hysteresis width  
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between the heating and cooling transition, sharpness of the transition, magnitude of the 

transition, as well as the overall dynamics of this phase transition, can be modulated by 

factors that alter the coupling between atomistic and electronic structure. The 

thermodynamics and kinetics of the solid—solid transformation are amenable to 

modulation through incorporation of dopants, point defects, strain and strain induced 

Figure 1.1. A) Crystal structures of the M1 and R phases of VO2. B) Resistance change 

across a single nanowire of VO2 (optical image in inset) with red indicating the heating 

transition and blue indicating the cooling transition.[5] Reprinted from ref. 5; Copyright 

2014, the American Chemical Society C) Transmission spectra of VO2 in the M1 phase 

(black) and the R phase (red) with a typical solar radiation spectrum plotted on the left 

axis. To illustrate the infrared blocking capabilities of VO2.
[6] Reprinted from ref. 6; 

Copyright 2017, the American Chemical Society 
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extended defects, domain size, and crystallinity. Fine control over the temperatures and 

dynamics of this phase transition is crucial for enabling the design of this material for 

device applications. Figure 1.2 shows an illustrated plot of the modulations of the 

transition temperature observed in the case of size and the chemical dopants boron and 

tungsten as well as the structures of the R and M1 phase containing a boron dopant.[9] 

The martensitic nature of this phase transition, a diffusionless propagation of a 

symmetry-changing lattice distortion, allows these compositional and morphological 

changes to have a large influence on the nucleation and growth of this transition.[10] 

 

 Incorporation of various elemental dopants is a particularly well studied method 

of modulating this phase transition temperature. Figure 1.3 depicts the observed effect 

of 15 unique dopants on the phase and MIT modulation of VO2 reported in 

literature.[8,11–16] Modulation to both higher and lower transition temperature is reported 

Figure 1.2. (Left) Schematic plot of the modulation of the heating and cooling transition 

temperatures (Th and Tc respectively) upon doping and particle size with an illustration 

of defect-nucleated phase growth. (Right) Crystal structures of the R and M1 phases of 

VO2.
[9] Reprinted from ref. 9; Copyright 2020, the American Chemical Society 
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as well as narrowing and widening of the hysteresis between the forward and reverse 

transition temperatures. The wide range of observed effects of doping on VO2 presents a 

viable vector for tuning the MIT allowing the phase transformation behavior to be 

tailored to a  

 

specific application. Unlocking this potential of VO2 will require precise synthetic 

control and mechanistic understanding of the drastically different effects manifested 

when incorporating different elements into the crystal lattice. Currently, mechanistic 

understanding of the atomistic structure-property relationship of dopants lies behind a 

particularly opaque curtain of the many physical and chemical factors that can 

Figure 1.3. Current reported literature values of the heating and cooling transition 

temperature modulation for 15 unique dopants as well as a color scale representing 

hysteresis modulation.[8] Reprinted from ref. 8; Copyright 2020, the Elsevier 
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potentially influence the rugged energy landscape of vanadium oxide—for instance, 

dopants induce (anisotropic) internal strain, aliovalent dopants add electrons or holes to 

the band structure, alter defect formation energies, and change the potency and 

distribution of defects that serve as nucleation sites. This complexity and the 

singularities arising from the strongly coupled spin, charge, orbital, lattice, and atomic 

degrees of freedom, along with low availability of data makes the VO2 system poorly 

suited for building structure-property correlations from experimental data and machine 

learning models. In this case structure-property insight must be built from 

comprehensive mechanistic studies of doped and alloyed VO2 systems to discover the 

underlying physical factors that must be leveraged to obtain fine control over functional 

material properties.  

This dissertation presents the mechanistic study of four dopant systems with 

large variation in their effects on VO2. Chapter 2 presents analysis of the influence of 

tungsten doping on the hysteresis and Tc of the MIT transition of VO2 as a result of a 

change in nucleation mechanism via internal anisotropic strain. Chapter 3 describes the 

decoupling of the Tc from the hysteresis in a dynamical response mechanism brought 

about though interstitial boron doping. Chapter 4 presents the finding of iridium doping 

stabilizing a new metastable tunnel-structured phase of VO2. Lastly as a technical 

introduction to the effects of a dopant on VO2 recent findings on the interplay of 

germanium doping and oxygen vacancies will be presented in the following introductory 

section.  
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1.2.1. The intertwined roles of synthesis, defects, and Ge doping on the Metal-

Insulator Transition of VO2 

A broad trend observed in VO2 doping is that substitutional dopants that have 

been recorded to raise the equilibrium transition temperature (Tc) higher tend to be of 

smaller atomic radii and lower oxidation state, such as Ge4+ or Ti4+,[12,13,17] than those 

that lower the Tc like Mo6+ and W6+.[18,19] Germanium doping in particular has been 

observed to raise the transition temperature in excess of 90°C for thin films.[12] With the 

increasing interest of using VO2 in neuromorphic computing applications that use the 

 

metal—insulator transition as a proxy for neuronal spikes, higher transition temperatures 

are necessary to enable function operating temperatures typical of data servers of 80-

100°C. In order to investigate the mechanism of stabilization of the M1 phase of VO2 

Figure 1.4. DSC Traces for hydrothermally synthesized (blue) and solid-state-

synthesized (orange) Ge-doped VO2. 
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upon germanium incorporation, doped VO2 particles were synthesized via two synthetic 

methods, hydrothermal synthesis and solid-state synthesis.  

 Figure 1.4 plots the differential scanning calorimetry (DSC) traces of the 

outcome of the individual synthetic methods. There is a stark contrast in the phase 

transformation between the two synthetic methodologies with the solid-state synthesis 

displaying sharp phase transition peaks with a hysteresis similar to undoped VO2 and Tc 

shift in accordance with increased stabilization of the M1 phase.  

 

The hydrothermally prepared sample displays a quite different asymmetric heating and 

cooling transition with an extremely broad, non-gaussian, cooling transition that shows 

an exothermic heat flow ranging from 64°C to 39°C. Powder X-ray diffraction (Figure 

Figure 1.5. Powder XRD patterns for the solid state (gray) and hydrothermally (red) 

synthesized samples of VO2 showing a match to the M1 phase of VO2. hkl positions for 

GeO2 are included to for reference. 
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1.5) confirms both samples are M1 phase VO2 at room temperature leading to conclude 

the observed transition enthalpy is indeed from the MIT transition in VO2.  

 The origin of the drastic differences in hysteresis and cooling transition 

temperature must lie in the synthesis methodology. A main difference between 

hydrothermal and solid-state methods is the matrix during synthesis. The hydrothermal 

synthesis reduces and crystallizes an aqueous HVO3 precursor with isopropanol in the 

presence of GeO2. At high temperature (250°C) and pressure, the aqueous environment 

precipitates doped VO2 nanocrystals based on the Pourbaix diagram. Conversely the 

solid-state methodology consists of premade undoped VO2 sealed in an ampoule under 

vacuum with GeO2 and heated in excess of 900°C. The solid-state diffusion of the 

germanium and the sintering of the VO2 results in micrometer-sized large alloyed 

polycrystalline particles. The matrix of the hydrothermal samples can be though to be 

oxygen rich where the newly forming crystallites have an abundance of oxygen in the 

matrix around them while the solid-state matrix can be considered oxygen poor due to 

the only source of oxygen being the VO2 and GeO2 precursors.  

 Oxygen vacancies and point defects are known to be potent nucleation sites for 

the phase transition in VO2 that may influence the forward and reverse transitions 

independently.[20,21] These synthetic environments are thus posited to be affecting the 

concentration of oxygen vacancies, requiring overcooling to nucleate the monoclinic 

phase during the cooling transition. Figure 1.6 shows DFT calculations for the 

formation energy of charged defects including the substitutional doping of Ge at a 

vanadium site (Gev), the formation of an oxygen vacancy (vacO), and an oxygen vacancy 
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in the presence of a germanium dopant (Gev + vacO). In an oxygen-poor environment, 

the formation of vacancies requires lower energy than in an oxygen-rich environment 

with both favorable conditions for substitutional Ge doping. Additionally, in the oxygen-

rich case, vacancies have a higher energetic cost in the presence of substitutional 

germanium making it more unfavorable to form vacancies in the system overall.  

 

 

If nucleation sites such as oxygen vacancies are strongly suppressed in 

germanium-doped VO2 formed in an oxygen-rich environment, the nucleation of the 

phase transformation can be severely hindered even if the thermodynamic equilibrium 

temperature is increased. As such, considerable super-cooling below the thermodynamic 

equilibrium temperature is required to nucleate the monoclinic phase. In contrast, the 

Figure 1.6. A and B show the formation energies for charged defects in oxygen rich and 

oxygen poor environments respectively. Formation energies were calculated for 

substitutional doping of Ge at a vanadium site (GeV), the formation of an oxygen vacancy 

(vacO), and an oxygen vacancy in the presence of a germanium dopant (GeV + vacO). 
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concentration of oxygen vacancies is known to have much less of an impact on the 

heating M1→R transition where extended defects such as twin planes can instead serve 

as the nucleation sites. These preliminary results show the complex interplay of synthetic 

conditions, point defects, and the thermodynamics and kinetics of the VO2 phase 

transition illustrating the complexity of this system. By building our understanding of the 

role of defects and dopants in VO2, we continue to get closer to the fine control over the 

design of this material and its phase transition necessary for its use in advanced device 

applications.[8,22]  

1.3. Navigating the design space of inorganic materials synthesis using statistical 

methods and machine learning. 

Data-driven approaches have brought about a revolution in manufacturing, 

enabling levels of customization and control that were unimaginable with traditional 

mass-manufacturing.[23,24] Advances in digital manufacturing and nanoscale fabrication 

have further paved the way to the utilization of a much-expanded palette of materials in 

technological applications. Powerful as they are, digital manufacturing approaches 

remain constrained in their ability to structure matter at nanoscale dimensions. An 

important, yet unresolved, challenge lies at the interface of data science and materials 

synthesis. From the perspective of inorganic materials chemistry, a fundamental obstacle 

to the precise structuring of matter that remains to be resolved is to control reaction 

trajectories to stabilize crystalline solids with precise composition, atomic connectivity 

(crystallization of a specific polymorph), microstructural dimensionality (particle size, 

shape, layer thickness, or grain size), and surface structure (texture or surface 
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crystallographic facets). Typically, materials syntheses are developed almost entirely in 

an empirical manner, based on fragmented knowledge of the underlying sequences of 

chemical reactions, heterogeneous and homogeneous equilibria, and their coupling with 

mesoscale mass transport and energy transfer phenomena. Much of current research 

practice comprises Edisonian trial-and-error methods involving changing a single 

synthetic variable and observing the response. Such methods are not just inherently 

inefficient in their exploration of potentially vast design spaces (spanning multiple 

process variables, reaction sequences, as well as structural parameters and reactivities of 

precursors and capping ligands) but furthermore do not provide a satisfactory 

understanding of the underlying chemical and physical principles, ultimately stymying 

the application of modern process design tools.  

The functionality of materials derive from complex convolutions of composition 

and (atomistic as well as mesoscale) structure, which in turn are determined by their 

processing history. The design of materials for a specific application requires unraveling 

the interplay between physical principles that underpin materials function; weighing 

trade-offs across frontiers of candidate solutions to identify optimal solutions that satisfy 

multiple constraints; and mapping efficient pathways from starting precursors to arrive at 

the target material composition and structure. Navigation of synthetic design spaces is 

challenging because often the structures that are of greatest use are metastable in nature, 

resident within shallow wells on rugged energy landscapes (Figure 1.7A).[25–

27] Considerable effort has focused on the application of data science methods to 

accelerate the investigation of structure—property relationships based on mining of 
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crystallographic databases and first-principles calculations of known and putative 

structures in search of specific function.[28–32] For instance, machine learning of 

experimental and computational data has enabled high-accuracy predictions of bandgap 

and crystal structure.[33–37] However, explorations of reaction trajectories and mapping of 

response surfaces of materials synthesis spaces with a view towards learning process–

structure and process–property relationships are much less common.[26,38–42] 

 

 

1.3.1. Towards machine-learning-aided inverse synthesis design 

Challenges in the application of data science methods to materials synthesis stem 

from the high dimensionality of problems where n synthesis variables create an n-

dimensional space for exploration, the sparsity and expense of available data, and the 

non-monotonicity and extreme non-linearity of many thermodynamic functions 

(evidenced as phase transitions).[43–46] Furthermore, understanding synthesis requires 

Figure 1.7. (A) Illustration of a rugged energy landscape showing metastable and 

equilibrium energy wells for polymorphs of HfO2. (B) Schematic illustration of a data-

driven approach to feature engineering and inverse synthesis design. 

 

 

 



 

14 

 

elucidation of process–structure relationships or using processing–function relationships 

as a proxy. Modeling the former requires the decoding of structure into numerical 

descriptor(s) or limits the modeling to expressions that accept categorical variables as 

inputs. The latter, in turn, requires that the entire design space be reasonably represented 

by a single or small subset of properties. This would typically translate the task of 

‘learning’ a synthesis to the task of optimizing a specific property (e.g., particle size). 

The strength of coupling between spin, charge, orbital, lattice, and compositional 

degrees of freedom determine the shape of thermodynamic energy landscapes of 

periodic solids.[26,46] Strong coupling amongst the degrees of freedom can make it 

difficult to traverse along pathways to arrive at specific polymorphs. 

In conventional high-temperature synthesis, as a system relaxes towards 

equilibrium, from an initial high-energy state, it scans the landscape for efficient paths to 

enable dissipation of the available free energy. Conventional metallurgical and ceramic 

processing provide a large excess of energy, enabling the material to readily find its way 

towards equilibrium, without being trapped in a metastable state, although there are 

notable examples, particularly in phase-transforming materials, in which the trapping in 

metastable states is highly history/processing-dependent.[47] However, given the 

challenges with ensuring homogeneous energy and mass flows across the system, and 

the sensitivity of crystallization processes to mesoscale phenomena, such processes can 

be difficult to control. Solution-phase synthesis, chimie douce routes, and templated 

processes (e.g., molecular beam epitaxy and pulsed laser deposition) can potentially 

allow for more deterministic navigation of energy landscapes such as to trap the material 
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in a local minimum (Figure 1.7A). However, the intrinsic path-dependence of these 

methods increases the dimensionality and complexity of the reaction space.[48–51] Data 

science methods hold promise for “learning” the design space and enabling the design of 

synthetic pathways that connect starting precursors and the target structure. In principle, 

machine learning allows for the possibility of inverse design synthesis (Figure 1.7B); the 

generation of models which can take a target structure as the input and predict synthetic 

routes to generate materials with those properties as outputs.[52–55] Increasingly complex 

problems have been addressed working towards modeling systems with high costs of 

experimentation, optimization with multiple target objectives, and providing greater 

understanding of error in systems with relatively limited amounts of data. 

Statistical regression and machine learning methods can aid the mapping of 

pathways between the target material and precursors based on the fusion of disparate 

types of data. First, data mined from the literature provide access to specific 

hyperplanes, in that it is typically data collected through consideration of one-variable-

at-a-time (OVAT), which is analogous to examining a singular plane of experiments 

within a high dimensional reaction space wherein each variable adds another dimension 

to the space. These hyperplanes oftentimes reflect chemical intuition, serendipity, 

accessibility of specific precursors, or a combination thereof in terms of experimental 

design, and can provide valuable inputs to algorithms and provide a means of seeding 

initial experiments (albeit failed experiments typically go unreported and thus vast 

sections of the design space are underrepresented in the literature). Codified prior 

knowledge of thermodynamics and chemical concepts allow for the application of 
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specific constraints (e.g., knowledge of decomposition temperatures or solubility guide 

precursor selection). Results from first-principles calculations and molecular dynamics 

simulations, oftentimes coupled with metaheuristic algorithms (simulated annealing or 

basin hopping),[54,55] algorithms that screen different optimization procedures for their 

facility with converging at a minimum, can guide exploration of the adjacent phase space 

to identify potential intermediates that can be exploited as waystations to the target, or 

conversely, to avoid thermodynamic dead ends. Accurate first-principles descriptions of 

entire systems and energy landscapes are inaccessible in most cases owing to inadequate 

energy resolution and high computational costs. The available inputs can then inform the 

targeted navigation of the synthesis design spaces without having to perform full 

factorial experiments across multiple dimensions of chemical, process, and temporal 

variables. Microfluidic platforms,[30] high-throughput robotic arm dispensation systems, 

entirely mobile robots,[56] and parallelized hydrothermal platforms[57] have emerged as 

alternatives for rapidly acquiring data to test the validity of data-driven synthesis models. 

A major advantage afforded by machine-learning-aided approaches is the ability 

to progress beyond expensive one-variable-at-a-time (OVAT) sampling methods to more 

efficiently explore synthetic landscapes, minimization of sampling bias often inherent in 

human intuition, and a decrease in likelihood of arrival at a local minimum hyperplane. 

Perhaps more importantly, machine learning algorithms are generalizable and can thus 

be used as a means of “rule discovery”, thereby unraveling hidden correlations and 

providing fundamental chemical and physical insight of the underlying 

reactivity.[58] Here, we will outline the use of design of experiments in exploration of 
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synthetic landscapes and discuss how machine learning algorithms can complement 

these statistical sampling techniques in order to accelerate materials discovery 

referencing some illustrative examples from the literature. 

1.3.2. Beyond guess and check: design-of-experiments and connections to machine 

learning 

Data is at the core of any machine learning model, and for applications in 

materials science, the lack of data, format of data, and quality of data can frequently 

represent a bottleneck to progress. For problems in which data is not available 

elsewhere, starting with the design-of-experiments (DOE) sampling techniques, rather 

than OVAT methods, can often afford a more richly diverse dataset that is readily 

amenable to modeling with machine learning algorithms.[59–61] An abiding challenge is 

to determine the best approaches to represent chemical structure and composition in a 

manner amenable to the application of statistical regression tools. A major research 

question is thus to identify the structural and compositional motifs, processing 

conditions, and reaction sequences that are most strongly associated with the synthetic 

outcomes. Such “feature engineering” (Figure 1.7B) is pivotal to developing a scored 

experimental design approach that allows for identification of the key descriptors 

underpinning a specific synthetic output and enables iterative improvement of the 

synthesis models. 

Predating the use of machine learning methods, DOE methodologies have shown 

considerable value in materials synthesis.[40,62–66] These methods aim to first broadly 

sample large design spaces with as few experiments as possible utilizing approaches 
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such as full and fractional factorial designs, random sampling, or, more recently, 

Bayesian optimization in which probability estimates from the model are continuously 

updated as new data is acquired. These sampling methods are typically coupled with 

response surface modeling to generate a rough model of the system through use of a 

simple regressor.[67,68] As a notable example of this approach, Murphy and co-

workers[69] explored the seed-mediated silver-assisted growth of gold nanorods using 

fractional factorial DOE along eight independent experimental parameters. In the 

synthesis, gold seeds are prepared by combining a solution containing a gold precursor 

and capping ligand (e.g., cetyltrimethylammonium bromide (CTAB)) with a solution 

containing the reducing agent. The seed solution is then added to a solution containing a 

capping ligand, additional gold precursor, a weaker reducing agent, and silver nitrate. 

Numerous studies had previously evaluated effects of different reaction parameters using 

traditional OVAT methods and had determined that the concentration of gold seeds, 

temperature, amount of silver nitrate, and concentration of the ascorbic acid reducing 

agent were all of relevance to determining the aspect ratio of nanorods.[70–73] Using DOE 

methods, the authors not only demonstrated all of the trends observed previously with 

the separate OVAT studies but also determined that the interaction of variables was 

significant. They demonstrated that while there is a positive correlation between 

concentration of silver nitrate and the nanorod length, it has no primary effect on the 

length and instead demonstrates a secondary interaction with the amount of reducing 

agent. These results provided valuable insight into the true role of silver nitrate and the 

general mechanisms of anisotropic growth. While it was previously postulated that silver 
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or silver bromide absorbed on the gold surface may serve as a blocking layer resulting 

from underpotential deposition on certain crystallographic faces, the correlation of 

AgNO3 concentration with the concentration of reducing agent indicates that it more 

likely shields charge for negatively charged species headed towards the negatively 

charged (as a result of Br− adsorption) nanocrystal surface. The authors postulated that 

surface adsorption of Br− ions directs anisotropic growth. 

In DOE studies, the initial round of sampling is frequently used as a means of 

down-selecting to variables with the highest influence on synthetic outcomes through 

feature selection (Figure 1.7B), allowing for the possibility of a second round of more 

dense sampling of the design space of interest. In the steepest ascent approach this 

involves iterative sampling in the direction which heads towards an optimum in output. 

While the data is ascending, a first-order model is used which does not account for 

curvature in the output data. Once near the apex in data, a second order model which 

accounts for curvature of the data provides a better fit.[57] Mora-Tamez et al.[40] explored 

the colloidal synthesis of Ni2P nanoparticles to generate a model predicting particle size. 

In the first-order design, six possible factors were screened for influence on the size of 

nanoparticles followed by a second-order design model of the dependence on the 

strongest influencing factors; triphenylphosphine/nickel ratio and temperature. This 

model was then corroborated with four additional samples all resulting in particles with 

excellent agreement to the predicted values well within experimental error. The high 

monodispersity of nanoparticles and low experimental noise of the chosen synthetic 

method implemented within a microfluidic platform combined with the lack of complex 
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variable correlation in this study allowed an accurate response surface model to be built 

from a relatively small (9 sample) DOE chosen dataset. This methodology is useful for 

analyzing the trends, magnitude of influence, and correlation of a large set of variables. 

As it is typically implemented, DOE is best suited for optimization problems. 

The interpolation offered with response surfaces can be predictive for small design areas 

with linear or quadratic trends but often is constrained in its ability to analyze design 

spaces with more complex responses and systems where exploration, rather than 

optimization, is the focus. When coupled with the capabilities of machine learning 

algorithms and with the incorporation of features representative of chemical structure 

and composition, the opportunities for systematic exploration of synthetic landscapes are 

greatly expanded. Figure 1.8 depicts a workflow for machine-learning-aided navigation 

of synthetic design space. 
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2. MODULATING THE HYSTERESIS OF AN ELECTRONIC TRANSITION: 

LAUNCHING ALTERNATIVE TRANSFORMATION PATHWAYS IN THE 

METAL—INSULATOR TRANSITION OF VANADIUM(IV) OXIDE* 

 

2.1. Overview 

Materials exhibiting pronounced metal—insulator transitions such as VO2 have 

acquired great importance as potential computing vectors and electromagnetic cloaking 

elements given the large accompanying reversible modulation of properties such as 

electrical conductance and optical transmittance. As a first-order phase transition, 

considerable phase coexistence and hysteresis is typically observed between the heating 

insulator→metal and cooling metal→insulator transformations of VO2. Here, we 

illustrate that substitutional incorporation of tungsten greatly modifies the hysteresis of 

VO2; both increasing the hysteresis as well as introducing a distinctive kinetic 

asymmetry wherein the heating symmetry-raising transition is observed to happen much 

faster as compared to the cooling symmetry-lowering transition, which shows a 

pronounced rate dependence of the transition temperature. This observed kinetic 

asymmetry upon tungsten doping is attributed to the introduction of phase boundaries 

resulting from stabilization of nanoscopic M2 domains at the interface of the monoclinic 

M1 and tetragonal phases. In contrast, the reverse cooling transition is mediated by point 

defects, giving rise to a pronounced size dependence of the hysteresis. Mechanistic 

elucidation of the influence of dopant incorporation on hysteresis provides a means to 
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rationally modulate the hysteretic width and kinetic asymmetry, suggesting a remarkable 

programmable means of altering hysteretic widths of an electronic phase transition. 

2.2. Introduction 

Reversible solid—solid phase transformations bring about a pronounced 

modulation of properties such as electrical conductance, dielectric permittivity, optical 

transmittance, and magnetic remanence underpinned often by only a slight distortion of 

structure induced as a function of a state variable such as temperature, strain, or 

pressure.[1–6] First-order solid—solid phase transformations in early transition metal 

oxides such as HfO2, ZrO2, VO2, and likely NbO2, are thought to follow a diffusionless 

martensitic pathway involving a lowering of symmetry upon cooling.[5,7–10]The first-

order nature of these transitions implies a pronounced discontinuity of lattice enthalpy at 

the transition temperature; the relative phase stabilities of the martensite and austenite 

determine the transition temperature. Systems manifesting first-order phase transitions 

characteristically exhibit hysteresis between the symmetry lowering and symmetry 

raising transitions with the hysteretic width posited to be a function of the mismatch in 

structure between the low- and high-symmetry phases.[11] Considering temperature-

induced transitions, supercooling of the high-temperature phase, super-heating of the 

low-temperature phase, and the resulting thermal hysteresis depend on a number of 

parameters including the composition-dependent free energy landscape, microstructure, 

dopants, and dimensionality;[12] hysteresis effects can furthermore have a dynamical 

origin as a result of sluggish nucleation and growth kinetics often manifested at finite 

particle sizes.[13]  
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The hysteresis thus manifested in martensitic transitions is tremendously 

consequential for practical applications; mitigating hysteresis can extend the lifetime and 

diminish degradation of materials subjected to prolonged thermal cycling such as 

demonstrated in the case of a Zn45Au30Cu25 alloy by engineering close geometric 

compatibility of the austenite and martensite.[14] Alternatively, a large hysteretic width in 

a thermal or voltage-driven phase transition reflects greater non-volatility of the 

individual states and is potentially useful for the fabrication of memristive device 

architectures.[15–17] Mechanistic understanding of hysteretic phenomena is thus vital in 

order to engineer precise tunability of the distinctive structural and electronic 

instabilities of transition metal oxides as required for practical applications. 

Of the abovementioned binary oxides, vanadium(IV) oxide (VO2) is a material of 

great interest as a result of its large metal—insulator transition at ca. 67°C. A 

pronounced modulation of many physical properties of VO2, some by orders-of-

magnitude, is manifested at this temperature including its electrical conductivity, optical 

transmittance, thermal emissivity, specific heat, Seebeck coefficient, and magnetic 

susceptibility.[2,18–20] The modulation of these properties underpins potential applications 

in device constructs spanning the range from Mott field-effect transistors and thermal 

emissivity coatings to optical limiters, infrared modulators, and reconfigurable RF 

devices.[15,19] In order to fully realize the potential of this material, the properties of the 

electronic transition including the critical transition temperature (Tc) and hysteresis 

width need to be predictively tunable. For Mott memory applications utilizing 

memristive and memcapacitive properties, a small hysteresis will enable rapid switching, 
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whereas a large hysteresis is expected to facilitate stable and non-volatile on/off states 

resistant to spontaneous resetting with minimal energy dissipation.[15]  

The origin of the metal—insulator transition in VO2 has been extensively debated 

in the past since the transition exhibits characteristics of both a Mott—Hubbard 

transition underpinned by a change in electron correlation and a Peierls’ transition with 

electron—phonon coupling as the primary driving force.[5,21–23] Additionally the phase 

nucleation of metallic and insulating phases has been examined to elucidate the 

influence of conditions such as strain, doping, pressure, defects, and scaling to 

nanometer-sized dimensions.[24–28] It is worth noting that as a result of electron 

correlation and the manifestation of a complex phase diagram with multiple accessible 

metastable states, hysteretic effects remain to be conclusively elucidated for this 

system.[11,14,29,30] The underlying structural transition takes the material from a low-

temperature monoclinic M1 insulating phase (space group: P21/c) or alternatively a 

monoclinic M2 insulating phase (space group C2/m) stabilized under strain to a high-

symmetry rutile metallic phase R with space group P4/2mnm (Figure 2.1).[31–33] Figures 

2.1a—c illustrate that the three structures differ primarily in terms of the V—V 

separation and the degree of canting of VO6 octahedra along the rutile c axis. Figure 2.1a 

shows that the M1 polymorph is characterized by two distinct V—V separations of 2.65 

and 3.13 Å; this distortion is furthermore preserved in the M2 phase, which has 

sequential chains of evenly spaced and alternating short and long V—V distances. The 

rutile structure with higher symmetry has a consistent V—V separation of 2.87 Å along 

the c direction. 
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Much work has focused on the modulation of the critical transition temperature 

(Tc) of VO2 by substitutional and interstitial doping with different cations and anions, 

introduction of defects such as oxygen vacancies, and by the addition of strain to the 

system.[34–42] Fan et al. have examined hysteretic effects within a single nanobeam and 

observe a symmetrical decrease in hysteresis with increasing defect concentration for 

unstrained nanobeams.[27] Since defects can serve as nucleation sites, increasing defect 

density is correlated with a higher nucleation probability. In contrast, an asymmetric 

D E 

Figure 2.1. Atomistic structure renditions of (A) M1; (B) M2; and (C) R polymorphs of 

VO2. Scanning electron microscopy (SEM) images of (D) undoped and (E) W-doped 

VO2 particles prepared by the oxalic acid reduction of V2O5 under hydrothermal 

conditions ((E) depicts VO2 particles with a W concentration of ca. 0.23 at.%). 
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response has been observed for strained clamped nanobeams wherein the cooling 

(R→M1) transition temperature increases, signifying a decrease in the amount of 

supercooling, with increased defect concentration, whereas the heating transition 

remains unmodified. These authors suggest that in the latter clamped systems that are 

under anisotropic strain, the heating M1→R transition is more likely to nucleate at 

extended defects such as twin planes, which reflect higher energy domains on the free 

energy surface as compared to point defects.[13,27] Consequently, the introduction of 

localized point defects does not modify the heating M1→R transition but has a 

disproportionate effect on the cooling R→M1 transition. Recent work by Miyazaki and 

co-workers suggest that co-doping with appropriate amounts of Cr and Nb can almost 

entirely suppress the thermal hysteresis in the metal—insulator transition of VO2 

although the underlying mechanism for the suppressed hysteresis remains to be 

elucidated.[30] In contrast other studies have suggested that doping with atoms such as 

tungsten and molybdenum increases the hysteretic width;[34,43] however, a clear 

correlation between dopant incorporation and hysteresis has not been established and a 

reliable mechanistic description remains elusive. Here, we examine the influence of 

substitutionally doping tungsten atoms within the vanadium sublattice of VO2 on the 

hysteresis between the heating insulator→metal and cooling metal→insulator 

transitions. The availability of detailed atomistic understanding of the local structure of 

tungsten dopant sites and their influence on the surrounding VO2 lattice make W-doped 

VO2 an ideal system for elucidating structure—hysteresis correlations.[43–46] In previous 

work, z-contrast high angle annular dark field scanning transmission electron 
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microscopy (HAADF STEM) measurements have enabled us to establish that W atoms 

substitutionally occupy vanadium sites in VO2 wherein they induce anisotropic strain.44 

No evidence for occupation of interstitial sites or multi-atom dopant clusters was 

observed.  Modeling of radial distribution functions measured from extended X-ray 

absorption fine structure (EXAFS) spectroscopy also suggest the stabilization of WO6 

octahedra that induces a local “tetragonal-like” distortion as also predicted by density 

functional theory calculations.[43,47] We demonstrate here that W-doping acts much in the 

same way as tensile strain in terms of inducing asymmetric broadening of hysteresis and 

further illustrate that the extent of W doping greatly modifies the extent of asymmetry of 

the hysteresis. Dopant control of hysteresis achieved within single-crystalline free-

standing nanostructures provides an unprecedented means to control an important aspect 

of the electronic instability of these materials and is imperative for integration of such 

materials within memristive device architectures. 

2.3. Results and Discussion 

The M1 monoclinic polymorph is the thermodynamically stable phase of VO2 at 

room temperature in the absence of strain. Under compressive strain or upon 

substitutional doping with elements such as Cr or Al, the M2 phase can be 

stabilized.[48,49] It is now clear that the M1 and M2 phases (Figures 2.1a and b) represent 

two discrete free-energy valleys that represent alternative structural modifications 

accessible upon reducing the symmetry of the tetragonal rutile phase (Figure 2.1c). 

Indeed, Ginzburg—Landau mapping of symmetry relationships across the tetragonal—

monoclinic phase transition suggests that neither of the two phases can be considered an 
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intermediate for transformation of the other polymorph to the higher symmetry 

tetragonal structure.[50,48] However, the two monoclinic distortions can coexist within 

strained systems due to inhomogeneous strain gradients established within strained 

nanobeams of VO2.
[51] The monoclinic phases can each further stabilize multiple ferroic 

variants, which are typically separated by twin boundaries;[52,53] however, twin planes are 

symmetry forbidden in the high-symmetry rutile phase.[52–54] Figures 2.1d and e depict 

SEM images of undoped and W-doped VO2 nanostructures stabilized by hydrothermal 

synthesis, respectively. The structures depicted are a mixture of nanostars comprising 

multiple single-crystalline nanowires attached at a center junction as well as unattached 

single-crystalline wires. These specific morphologies result from the oxalic acid 

structure directing agent used in synthesis. The “asterisk-like” assemblies are fragmented 

into single-crystalline wires upon grinding and such samples have been analyzed in the 

measurements noted below. The confined dimensions of these single-crystalline 

nanostructures make these structures particularly useful as model systems for examining 

the influence of doping on phase stabilities and hysteresis without confounding factors 

such large scale grain boundaries and dopant segregation. 

 The phase transition of undoped and W-doped VO2 has been examined by 

temperature-dependent powder XRD in order to ascertain the influence of doping on the 

M1 and R phase stabilities. Figure 2.2 depicts in situ temperature-dependent powder 

XRD patterns (acquired in the 2θ range from 27.2° to 28.4° (Figures 2.2a,b,e,f) and 63° 

to 67° (Figures 2.2c,d,g,h) showing the most pronounced changes) for undoped VO2 and 

VO2 with 0.51 at.% substitutional incorporation of tungsten (as determined from 
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inductively coupled plasma mass spectrometry analysis).[43] Extended diffraction 

patterns acquired in the 2θ range from 25—70° are depicted in Figure A.1 (Appendix 

A).  The sample has been heated from 30 to 100°C then cooled back to 30°C with 

spectra acquired at 5°C intervals. All reflections are indexed to either the M1 (Joint 

Committee on Powder Diffraction Standards (JCPDS) 43-1051) or R (JCPDS 79-1655) 

phases of VO2 with the relative proportion varying as a function of temperature. The 

intensity modulation maps in Figure 2.2 highlight the 2θ range from 27.2—28.4° and 

64—66°, which correspond to reflections that exhibit the most pronounced changes 

across the M1 to R transition. Upon heating of the undoped sample, Figure 2.2A shows a 

strong reflection at 2Ɵ=27.8° corresponding to the separation between M1 [011] planes; 

this reflection is greatly diminished in intensity at 65°C; at which temperature, a 

pronounced reflection appears at 2θ = 27.7°, which is attributed to the separation 

between the [110] planes of the R-phase. Upon cooling, Figure 2.2B indicates that the 

M1 [011] reflection is recovered but only at a temperature of 55°C, illustrating a clear 

hysteresis between heating and cooling transitions. Figure 2.2C depicts a pronounced 

splitting of the reflection indexed to the [013] planes of the M1 polymorph at 2θ = 65° to 

reflections that can be indexed to the [310] and [002] planes of the R phase at 64.7° and 

65.3° upon heating. The splitting characteristic of the R phase is most clearly discernible 

starting at 65°C at which point the sample is predominantly in the R phase. Upon 

cooling, the two reflections collapse to a single reflection corresponding to the [011] 

reflections of the M1 polymorph at a temperature of 55 °C.   
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Similar structural distortions are observed for the 0.51 at.% W-doped VO2 

sample with a couple of notable exceptions. The first most notable difference is that at 

room temperature, reflections attributed to both M1 and R phases are observed 

(specifically, the M1 [011] and R [110] reflections) suggesting a much more extended 

phase coexistence regime for these two polymorphs. The second difference is that the 

transformation upon heating to a fully R phase occurs at a much lower temperature (ca. 

45°C) as compared to undoped VO2 (Figs. 2.2E and G). Upon cooling to room 

temperature, the R phase is found to persist (Figs. 2.2F and H as well as Figure A.1) 

suggesting that W-doping not only induces a pronounced diminution of the transition 

temperature as is well known but also induces significant supercooling of the high-

Figure 2.2. Temperature-dependent XRD patterns plotted as intensity modulation maps. 

Maps acquired for (A—D) undoped and (E—H) W-doped VO2 (with ca. 0.51 at.% W 

doping) nanostructures. The red and blue indices depict reflections for R and monoclinic 

M1 phases of VO2, respectively. The regions of the diffraction patterns delineated here 

are characterized by the most pronounced changes resulting from the thermally driven 

structural transformation. The extended diffraction patterns are shown in Figure A.1. 
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symmetry phase.[43–46,55] Figure 2.3A and 2.3B depict a direct comparison between 

XRD patterns acquired for W-doped (WxV1-xO2 with x of ca. 0.051) and undoped VO2 at 

30 °C (A) and 100 °C (B). At low temperatures, we note both a broadening of the 

reflections and a shift to lower 2θ values when W is substitutionally doped. The 

broadening is a result of multiple X-ray coherent domains within a single-crystalline 

nanowire as well as the presence of anisotropic strain.[44,46] The increased lattice spacing 

is the result of lattice expansion induced by incorporation of larger W atoms in V sites as 

per Vegard’s law. Interestingly, the increased lattice spacing is discernible only for 

specific planes, for instance, the separation between [011] planes is increased from 3.209 

Å to 3.278 Å, whereas the separation between the [211] planes is unchanged. In other 

words, Figure 2.3 suggests an anisotropic influence of W-doping on the VO2 lattice, 

which creates inhomogeneous strain gradients in the M1 phase (vide infra).[44,46] 

Comparing the XRD patterns at 100°C, Figure 2.3B indicates stabilization of the R 

phase with and without doping. Interestingly, upon W doping, the reflections are 

uniformly shifted to lower 2θ values, suggesting homogenous lattice expansion of the 

rutile phase as a result of dopant incorporation. The observation of inhomogeneous strain 

generated in the M1 phase as a result of substitutional W incorporation being alleviated 

upon transitioning to the rutile phase has further been evidenced by strain analysis of 

high HAADF STEM and it was posited that the depression of the transition temperature 

upon dopant incorporation results in large measure from a greater driving force for 

resolving atomic instabilities in proximity of the dopant atoms.[44]  
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Another key observation from XRD studies of doped and undoped VO2 depicted 

in Figure 2.2 and Figure A.1 is the clear manifestation of hysteresis between the heating 

M1→R and cooling R→M1 transitions. Considering undoped VO2, the transition 

temperature from M1 to R is 65°C (Figures 2.2A and C). When the sample is cooled, the 

reverse R→M1 transition occurs between 60—55 °C (Figures 2.2B and D). The 5—10°C 

temperature differences between the M1 to R and the R to M1 phase transformations 

illustrates a pronounced hysteresis.[56] For the 0.51 at.% W-doped sample, the M1 to R 

Figure 2.3. A) Room-temperature (30°C) and B) high-temperature (100°C) XRD 

patterns acquired for undoped and W-doped VO2 (WxV1-xO2 with x of ca. 0.051). Breaks 

in the horizontal-axes are included to highlight the part of the scale with the most 

pronounced differences. 
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phase transition temperature is depressed to 45°C.[43] However, the R phase is retained 

down to room temperature suggesting a greatly expanded phase coexistence regime and 

substantially greater hysteresis.  

Given that it is a first-order transition, the metal—insulator transition of VO2 is 

accompanied by a considerable consumption (M1→R) or release (R→M1) of latent heat. 

The latent heat comprises a lattice enthalpy component resulting from the structural 

distortions accompanying the phase transition, which is compensated in part by a 

modulation of the phonon entropy as well as the conduction entropy of the 

electrons.[57,58] In order to examine dynamical evolution of the thermal hysteresis upon 

doping, differential scanning calorimetry (DSC) measurements have been performed for 

both doped and undoped VO2 at various scan rates as depicted in Figure 2.4. Two 

parameters are defined to aid the interpretation of the thermal analysis data; Tmax, which 

represents the temperature at the maximum height of the transition peak and is indicative 

of the maximum transformation rate, and Tonset, which represents the onset temperature 

of the transition measured as the intersection of the baseline with the steepest slope of 

the peak. Figure 2.4A depicts DSC traces acquired at various scan rates for undoped 

VO2 indicating a symmetrical evolution of Tmax towards a temperature of ca. 66°C with 

decreasing scan rate upon both heating and cooling. The consistent narrowing of the 

hysteresis with decreasing scan rate implies manifestation of a significant kinetic 

dependence on the timescales accessible within these measurements (from 0.1 to 20°C 

min-1). The total hysteresis width, ΔThyst, can be interpreted as a combination of rate-

dependent kinetic and rate-invariant components, which are denoted as ΔThyst
kinetic and 
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ΔThyst
intrinsic, respectively, as illustrated in Figure 2.4c. The intrinsic hysteresis width for 

undoped VO2 is only ca. 1.1 °C, representing the difference between a temperature of 

66.0 ± 0.1°C for heating and 64.9 ± 0.1°C for cooling across the measured scan rates. 

 

 

Figure 2.4. Scan-rate dependent DSC results for A) undoped VO2, and B) W-doped VO2 

(ca. 0.23 at.% W doping)[59]. The gradient from lighter to darker colors corresponds to a 

decrease of the scan rate with light blue and yellow representing 15°C/min decreasing 

through the rates 10, 5, 3, 1°C/min to dark blue and red for cooling and heating, 

respectively. Tonset and Tmax have been deduced from the observed traces. Evolution of 

Tonset and Tmax for C) undoped VO2, and D) W-doped VO2 (ca. 0.23 at.% W doping), as a 

function of the heating/cooling rate.  ΔThyst is decomposed into a kinetic contribution, 

ΔThyst
kinetic, which decays as the temperature ramp rate is decreased; intrinsic 

(thermodynamic) contributions that remain independent of ramp rate are denoted as 

ΔThyst
intrinsic. 
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 Figure 2.4b shows the DSC traces for W-doped VO2 with notably broader peaks 

due to inhomogeneity in transition temperature either between particles or across 

domains within individual particles. Figure 2.4d suggests that hysteresis behavior in W-

doped VO2 is considerably altered. The temperature of the heating transition is 

essentially scan-rate-invariant, whereas the temperature of the cooling transition 

monotonically increases with decreasing scan rate bringing about a pronounced 

asymmetry; the hysteretic width for this system is thus determined greatly by the cooling 

transition. Indeed, this asymmetry is consistently observed upon increasing the 

concentration of incorporated W dopants and in particular corresponds to a pronounced 

modification of the phase transformation pathway for the heating M1→R transition, 

which facilitates a much more rapid transformation. 

As previously established in the literature, substitutional incorporation of 

tungsten decreases the Tc as a function of dopant concentration by making the R phase 

more thermodynamically stable at lower temperatures.[43,44] Figure 2.5 plots the 

maximum transition temperature measured for W-doped VO2 during heating and cooling 

cycles for two different scan rates (10 and 1°C min-1) as a function of the transition 

temperature. The approximate W doping concentration is determined based a ca. 

52°C/at.% W correlation between the transition temperature and tungsten concentration 

previously established for these materials by inductively coupled plasma mass 

spectrometry, which has been confirmed as an accurate measurement of homogenous 

doping based on atomic resolution electron microscopy studies.[43,44,59] Considering the 

1°C min-1 scan to most closely approximate thermodynamic conditions, the hysteresis is 
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increased from 1.1°C min-1 for undoped VO2 to ca. 6.6—7.2 °C min-1 for the W-doped 

samples. The extended phase stability of the R phase gives rise to an extended phase 

coexistence regime and thus increased hysteresis. However, the hysteresis (ΔThyst
intrinsic) 

remains essentially invariant as a function of dopant concentration. Intriguingly, a 

pronounced kinetic asymmetry is observed between the heating and cooling transitions 

across all the doped samples. The cooling transitions are conspicuously far more rate- 

 

Figure 2.5. Tmax for heating and cooling (as measured by DSC) at 10 and 1°C min-1 scan 

rates as a function of tungsten concentration (the active dopant concentration is calculated 

using the Tmax heating at 1°C min-1 using a correlation of -52°C decrease of transition 

temperature per at.% W as noted previously for these materials.[59]) 
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dependent as compared to the heating transitions. The magnitude of the kinetic 

hysteresis appears to remain essentially invariant with increasing tungsten concentration. 

In order to elucidate the origins of the increased thermal hysteresis and 

unprecedented kinetic asymmetry noted upon W-doping, it is important to consider the 

distinctive origins of the M1→R and R→M1 transitions. At the atomistic scale, the 

structural transformations follow a diffusionless (and reversible) Martensitic pathway 

that nevertheless must be first nucleated at a discrete site and then propagated across the 

particle volume in the form of a transformation dislocation.[13] For undoped and 

unstrained VO2, it has been posited that both the M1→R and →M1 transitions are 

nucleated at point defects. Indeed, the extent of supercooling of the high-temperature 

phase and superheating of the low-temperature phase are decreased with increasing 

concentration of point defects since the nucleation probability is increased with 

increasing defect density.[27] In contrast, in strained VO2 nanobeams, the introduction of 

nanotwinned M1 domains derived from anisotropic strain gradients gives rise to twin 

boundaries that represent higher energy segments of the free energy landscape; these 

twin boundaries serve as more favorable nucleation sites for initiation of the phase 

transformation, thereby facilitating a distinctive transformation pathway exclusively 

available for the M1→R transition (in contrast, the symmetry of the R phase does not 

permit stabilization of twinned domains in the high-temperature phase).[27] Indeed, recent 

atomistic high-angular annular dark field imaging of a similar M1→R transition in HfO2 

has for the first time provided direct evidence for twin boundaries serving as preferential 

nucleation sites for initiation of the symmetry-raising phase transition. In contrast, the 
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cooling R→M1 transition is still mediated by point defects in the absence of such 

ferroelastic domain formation.[13] The hysteretic behavior of undoped VO2 depicted in 

Figure 2.4 is consistent with the idea of point-defect-mediated pathways for both M1→R 

and R→M1 transformations. In this picture, rapid scan rates require a greater driving 

force to initiate nucleation, whereas slower scan rates allow for a greater proportion of 

local higher energy segments in the free energy landscape (a broader range of 

imperfections) to serve as nucleation sites. In contrast, the hysteretic behavior of W-

doped VO2 nanowires is reminiscent of clamped or strained nanobeams that are 

conducive to domain formation and thereby have an alternative set of sites that allow for 

more facile nucleation of the M1→R transition. 

In order to examine domain formation, atomic-resolution high-angle annular dark 

field (HAADF) images and selected area electron diffraction (SAED) patterns have been 

acquired for a W-doped VO2 sample (WxV1-xO2 with x of ca. 0.008) at 25°C after first 

quenching the sample to -180 °C where the entire particle was confirmed to be in the M1 

phase. The sample examined here has a metal—insulator transition temperature of ca. 

28°C, which thus allows for imaging of phase heterogeneity.[59] Remarkably, Figure 2.6 

shows the unambiguous formation of phase domains and considerable phase coexistence 

across a single particle upon warming to 25°C. The SAED patterns indicate diffraction 

spots derived from nanoscale M2 domains in addition to M1 and R-phases. Distinctive 

electron diffraction spots attributed to  R, M1, and M2 are highlighted 

in blue, green, and red, respectively. These diffraction spots have been used to construct 

a composite phase map as described in the previous work by Asayesh-Ardakani et al.[46] 
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The phase map shown in Figure 2.6B depicts red M2 domains interspersed between 

green M1 and blue R-domains. Figure A.2 depicts another example of the stabilization of 

M1, M2, and R domains. The anisotropic strain induced by W-doping, as also observed 

in the XRD data of Figure 2.3, is observed here to stabilize nanoscopic M2 domains at 

the interface with incipient R-phase nuclei;[44,46] the stabilization of M1/M2/R phase 

boundaries is likely energetically more favorable as compared to a direct M1/R phase 

boundary. The doped system thus mimics a three-phase-regime observed for 

compressively strained nanowires albeit induced here as a result of chemical strain.[51,33]  

 

Figure 2.6. Atomic-resolution HAADF TEM image of a WxV1-xO2 particle (with x of ca. 

0.008) acquired at 25°C  after warming from -180°C. A) TEM image and diffraction 

patterns with distinct diffraction spots indexed to R (blue), M1 (green), and M2 (blue) 

polymorphs. B) Composite map depicting the spatial distribution of the three phases. C-

E) SAED patterns for R, M1, and M2 polymorphs. 
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It is important to note that unlike the quasi 2D ordering found in epitaxially 

strained nanowires,[27] the formation of M2 domains in this system appears to show little 

by way of periodic ordering leading to the conclusion that the stochastically doped W 

atoms create complex inhomogenous strain gradients resulting in aperiodic M2 domains 

stabilized to minimize energy.[44] A phase field modeling approach will likely be 

necessary to model the spatiotemporal propagation of these domains. The absence of 

reflections characteristic of the M2 phase in the powder XRD patterns of Figures 2.2 and 

2.3 is not surprising considering the few-unit-cell-thickness spans of the stabilized 

domains, which given their low X-ray coherence contributes primarily to broadening of 

the closely spaced M1 reflections. Figure A.3 shows a corresponding TEM image and 

selected area electron diffraction pattern acquired for an undoped VO2 nanowire. Solely 

M1 domains are observed. While TEM examination of undoped VO2 cannot entirely rule 

out phase coexistence occurring over a much narrower temperature range, distinctive 

multiphasic domains corresponding to M1, M2, and R phases have not been observed in 

the absence of W-doping for these unconstrained nanowires.  

It is worth noting that extensive scanning tunneling microscopy studies of 

undoped VO2 nanowires have allowed for visualization of discrete nucleation events 

giving rise to R-phase domains but have not provided any evidence for stabilization of 

the M2 phase.[60,61] These studies suggested the nucleation and growth of distinctive low-

resistance sites with metallic character; no semiconducting or insulating domains were 

seen to be stabilized at the interface between the incipient metallic domains and the 

insulating (M1) matrix.[61] The appearance of the M2 phase and the inevitable 
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stabilization of M1/M2 phase boundaries can thus be directly attributed to the anisotropic 

strain generated as a result of tungsten doping.[44]  The phase boundaries provide a 

wealth of relatively higher free energy sites within the particle that can serve to nucleate 

the phase transformation. Indeed, much like clamped nanobeams, the localized 

anisotropic strain gradients generated by dopant incorporation greatly modify the M1→R 

transformation pathway; the extended defects (M1/M2 phase boundaries, M1/M1 twin 

boundaries) stabilized by doping are far more effective as compared to point defects at 

facilitating the M1→R transformation, thereby reducing superheating and giving rise to 

the mostly scan-rate-invariant heating transformation observed in Figures 2.4 and 2.5. 

The resulting R phase does not form twin walls and thus point defects are thought to 

remain the primary means for nucleating the reverse R→M1 transition.[50,54] 

 Experimental evidence supporting the role of point defects in determining the 

dynamical thermal hysteresis effects comes from evaluation of VO2 nanocrystals of 

varying dimensions using variable rate DSC. Smaller particles have fewer point defects 

in general as a result of self-purification effects wherein defects can readily migrate to 

surfaces and be eliminated.[13,62,63] The reduced density of defects is thus expected to 

decrease the nucleation probability, thereby requiring a greater driving force to induce 

the transformation and resulting in increased hysteresis.[6,64] For this analysis, four 

undoped samples of different dimensions have been examined:[39,43] the particles have 

been prepared by reduction of V2O5 using different reducing agents, oxalic acid (average 

length of 7.0±2.0 μm, average width of 500±100 nm); 2-propanol (average length of 

4.3±3.0 μm, average width of 210±70 nm); 2-propanol followed by ball milling (average 



 

49 

 

length of 215±196 nm, average width of 110±90 nm); and acetone (average length of 

1.6±1.0 μm, average width of 180±70 nm); and ultrasmall VO2 (quasi-spherical particles 

with a diameter of 44±31 nm prepared as described in the Materials and Methods 

section).[39] Size distributions for particles prepared by these methods are depicted in 

Figure A.4. Figure 2.7 plots the hysteresis width (ΔThyst) at both 1°C min-1 and 10 °C 

min-1 as a function of the approximate particle volume deduced from the size distribution  

 

Figure 2.7. Plot depicting the evolution of hysteresis width measured during heating and 

cooling cycles at scan rates of 1 and 10°C min-1 for undoped VO2 nanocrystals as a 

function of particle volume. Size distributions used to derive particle volumes are 

provided in Figure A.4. 
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histograms (the relevant values are listed in Table 2.1). The overall hysteresis is seen 

to initially scale inversely with volume, from 22.1°C measured for the ultra-small VO2 

nanocrystals with a diameter of 44±31 nm to 4.2°C for the large micron-sized particles 

prepared by oxalic acid reduction of V2O5; however, the size scaling is greatly 

diminished at larger particle sizes, which show only a relatively small difference in their 

hysteretic widths. The scaling with volume can be rationalized based on a diminished 

defect density and thus reduced density of nucleation sites for smaller particles as well as 

the influence of a restricted nucleation volume; beyond a certain volume, the particle 

size is much larger than the nucleation volume and the defect density is high enough 

such that a change in volume has a negligible effect on the availability of nucleation 

sites. Consequently, the two larger samples prepared by reduction of V2O5 using oxalic 

acid and 2-propanol show little difference in the hysteretic widths (4.2 and 5.0 °C, 

respectively) or rate dependence. The hysteresis of the undoped samples of varying 

particle sizes contain distinctive kinetic and intrinsic components for both heating and 

cooling transitions with the one exception being the heating transition for the ultra-small 

VO2 nanocrystals where the kinetic component appears to have been eliminated. Given 

the exceedingly low defect density for these particles, which give rise to the large 

observed hysteresis of 22.1°C, the most likely explanation is that the measured span of 

scan rates (from 1—20°C min-1) does not substantially modify the distribution of defect 

sites that can serve to nucleate the phase transformation. The volume scaling of thermal 

hysteretic widths thus provides compelling evidence for the influence of point defects 

and their effect on nucleation probability in mediating the structural transformations. 
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Table 2.1. Transition temperatures measured during heating and cooling transitions for 

VO2 nanocrystals with varying dimensions at scan rates of 1 and 10°C/min 

Method of 

Preparation 

Length 

(nm) 

Width 

(nm) 

10°C min-1 

Heating 

(°C) 

10°C min-1 

Cooling 

(°C) 

1°C min-1 

Heating 

(°C) 

1°C min-1 

Cooling 

(°C) 

Oxalic acid 

reduction 

n/a 7000 

± 400 

68.5 61.9 67.3 63.0 

2-propanol 

reduction 

4300 ± 

3000 

210 ± 

70 

68.7 61.9 68.0 63.0 

Acetone 

reduction 

1600 ± 

1000 

180 ± 

70 

68.7 59.9 67.4 61.3 

2-propanol 

reduction 

(milled) 

215 ± 

196 

110 ± 

90 

69.9 60.8 68.8 61.7 

Ultrasmall n/a 44 ± 

31 

59.0 34.7 58.9 36.7 

 

 

 

The data above suggests that substitutional incorporation of tungsten atoms on 

the vanadium sublattice of VO2 modifies the heating M1→R transition by introducing 

phase boundaries that serve as nucleation sites, thereby eliminating the kinetic hysteresis 

derived from point-defect nucleation. The cooling R→M1 transition is still mediated by 

point defects resulting in a pronounced asymmetry. The overall thermal hysteretic width 

is thus determined in large part by this latter transition. Figure 2.4 indicates that 

incorporation of W nevertheless greatly increases the intrinsic hysteresis, suggesting that 

substantially greater undercooling is required to drive the R→M1 transition.  

In order to examine the influence of tungsten doping of VO2 on the point defect 

concentration, density functional theory (DFT) has been used to contrast the energy of 

formation for an oxygen vacancy within a tungsten-doped VO2 lattice versus an undoped 

lattice in both the M1 and R phases. A supercell with composition of V32O64 is used as 

the model system and formation energy for oxygen vacancy formation, ΔF, is computed 
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as described in the Methods section. This supercell with a tungsten atom substitutionally 

doped in a vanadium site (V31O64W1) represents a doping amount of ca. 3 at.%. A major 

caveat with the use of DFT arises from its inadequacies with the treatment of electron 

correlation. Contrasting band theory and dynamical mean field theory approaches for 

treating the dynamically evolving electron—phonon coupling and electron correlation 

across the metal-insulator transition of VO2 have been developed.[21,65] Electron 

correlation is furthermore sensitive to strain as recently shown by Mukherjee and co-

workers and is furthermore likely to be considerably modified in the M2 polymorph as 

compared to the M1 polymorph.[33,66,67] While a precise treatment of electron correlation 

and particularly the extent to which it is affected by strain, doping, and defect dynamics 

is not currently accessible, the calculations presented herein nevertheless allow for an 

evaluation of the influence of W doping on the stabilization of oxygen vacancies. Figure 

A.5 depicts V31O64W1 supercells in the M1 and R phases with a single oxygen vacancy.  

The numerical value of ΔF represents the energy cost of a vacancy being introduced 

within the VO2 lattice. Table 2.2 lists formation energies and ΔF values for creation of 

an oxygen vacancy in doped and undoped VO2 in both R and M1 phases. A comparison 

of ΔF values for doped and undoped VO2 illustrates that oxygen vacancy formation is 

relatively less favored for the doped sample in both R and M1 phases by about 730 and 

1410 meV, respectively. The destabilization of oxygen vacancies upon W-doping can be 

rationalized based on the formal valence of the doped atoms being W6+, which renders 

the loss of oxygen atoms more difficult.[43] The relatively large magnitude of the energy 

differentials illustrate the influence of tungsten on defect stability again with the caveat  
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Table 2.2. Total energies and energy of oxygen vacancy formation computed for 

undoped and W-doped VO2 in M1 and R phases. 

Phase Cell F (eV/cell) ΔF 

R 

V32O64 -238.92 -- 

V31O64W1 -238.66 -- 

V32O63 (O vacancy) -236.27 2.65 

V31O63W1 (O vacancy) -235.28 3.38 

M1 

V32O64 -235.93 -- 

V31O64W1 -235.26 -- 

V32O63 (O vacancy) -236.29 -0.36 

V31O63W1 (O vacancy) -234.22 1.05 

 

 

 

that it has not been possible to fully treat correlation effects given the complexity of this 

system.[66] Relating back to the observations of Figures 2.4 and 2.5, a reduced point 

defect concentration resulting from an increased formation energy upon tungsten doping 

implies the need for greater undercooling to engender the R→M1 phase transition (as 

also illustrated by Figure 2.7). Indeed, one influence of tungsten doping appears to be to 

decrease the oxygen vacancy concentration, thereby increasing the hysteretic width. 

Furthermore, the F values in Table 2.2 suggest that introduction of an oxygen vacancy 

stabilizes the M1 phase over the R-phase for undoped VO2 but stabilizes the R-phase 

over the M1 phase for W-doped VO2, which further leads to an extended phase 

coexistence regime. 
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Figure 2.8 schematically illustrates the distinctive mechanisms of the structural 

transformations in doped and undoped VO2 determined based on the experimental data 

and results of DFT calculations noted above. The left scheme shows the mechanism for 

undoped VO2 particles where both the M1→R (white to red) and R→M1 (red to white) 

transitions are nucleated at point defects (blue dots) in a symmetrical manner as 

observed for VO2 nanobeams,27 and consistent with the symmetric kinetic hysteresis 

observed in Figure 2.4A. The pronounced inverse modulation of the thermal hysteresis 

width with particle volume for undoped VO2 observed in Figure 2.7 further corroborates 

the central role of point defects as nucleation sites. In contrast, the right scheme in 

Figure 2.8 illustrates that upon the substitutional incorporation of W-dopants within the 

VO2 lattice, the R→M1 transition is still nucleated at point defects but the M1→R 

transition is instead nucleated at newly introduced extended defects (grey), specifically 

heterophasic interphases of M1 and M2 as directly observed in Figure 2.6 or at M1/M1 

twin domains. The presence of these extended defects greatly facilitates the M1→R 

transformation and almost entirely eliminates the kinetic hysteresis component measured 

for this transformation. The phase boundaries and stabilization of the M2 phase is 

analogous to the behavior of clamped VO2 beams and is thought to result from 

anisotropic strain gradients induced upon W-doping of the monoclinic VO2 lattice.27,44 In 
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contrast, the formation of twins is symmetry forbidden in the R-phase and thus a 

continued kinetic hysteresis is observed for the R→M1 transformation. The 

incorporation of W-dopants further increases the energy of formation of an oxygen 

vacancy in the VO2 lattice as per Table 2.2, and the resulting decrease in point defect 

density results in greater supercooling and a wider hysteresis. The distinct mechanisms 

for the M1→R and R→M1 transitions creates a pronounced asymmetry of the kinetic 

hysteresis as observed in Figures 2.4B and 2.5. 

2.4. Conclusions 

Tungsten-doped VO2 presents a pronounced kinetic asymmetry during the 

metal—insulator phase transition that stems from the operation of disparate nucleation 

mechanisms for the heating M1→R (mediated at twin boundaries and extended phase 

Figure 2.8. Schematic depiction of the mechanisms of M1→R and R→M1 

transformations for undoped (left) and W-doped (right) VO2 
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boundaries) and cooling R→M1 (mediated by point defects) transitions. These effects 

can be explained by tungsten dopants inducing anisotropic strain within the system, 

thereby increasing the likelihood of extended defects and stabilizing the formation of 

nanoscale M2 domains as observed for mechanically strained VO2 systems. The ease of 

nucleating the transformation controls the apparent hysteresis at a given temperature 

ramp rate and tungsten concentration. Insight into this effect allows for better 

understanding of the underlying mechanisms of the hysteresis in doped VO2 systems and 

suggests a means for rational modulation of thermal hysteresis widths as required for 

applications within memrsitive and memcapacitative elements. 

2.5. Experimental 

2.5.1. Synthesis 

W-doped and undoped VO2 nanostructures were synthesized hydrothermally 

based on the hydrothermal reduction of V2O5 powder (primarily micron-sized particles, 

Beantown Chemicals) using either anhydrous oxalic acid (Sigma-Aldrich), acetone 

(Sigma-Aldrich), or 2-propanol (Sigma-Aldrich) as the reducing agent, as reported in 

previous work.43 Tungstic acid (H2WO4, Sigma Aldrich) was used as the dopant 

precursor. In a typical reaction for the preparation of W-doped VO2, 300 mg V2O5, 450 

mg of oxalic acid, and the appropriate amount of the dopant precursor were mixed with 

15 mL of deionized water (ρ = 18.2 MΩ cm-1, purified using a Barnstead International 

NANOpure Diamond system). Particle dimensions were varied by mixing 300 mg V2O5 

with either 5 mL 2-propanol and 11 mL of deionized water or 9 mL of acetone and 7 mL 

of deionized water.43,68 In each case, the mixtures were placed within 23 mL 
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polytetrafluoroethylene cups and heated within a high-pressure autoclave reactor for 72 

h. A reaction temperature of 250 °C was used with oxalic acid as the reducing agent, 

whereas a reaction temperature of 210 °C was used with 2-propanol or acetone as the 

reducing agents. Upon completion of the hydrothermal reaction, the samples were 

recovered by vacuum filtration and washed with copious amounts of deionized water 

and acetone. Subsequently, samples were annealed under a flow of argon (150 mL·min-

1) at 550 °C for 3 h within a tube furnace in order to relieve strain. A 2-propanol reduced 

sample was also further processed to a smaller size though ball milling (SPEX 

Sampleprep 5100) under ambient conditions with beads of yttrium stabilized zirconia 

(Inframat Advanced Materials – 3.0mm).  

In order to elucidate the influence of particle size on hysteresis, ultra-small VO2 

nanocrystals were synthesized based on adapting a previously reported procedure.69,70 

Briefly, amorphous VOx was prepared by dissolving 0.5 g NH4VO3 in 15 mL deionized 

water at 100oC. After dissolution of the metavanadate precursor, 0.75 mL of 5% 

hydrazine (N2H4) was added dropwise and allowed to stir for 30 min while maintaining 

the reaction mixture at 100oC. After 30 min, the total volume was adjusted back to 15 

mL and subject to bath sonication (Branson 5510) for 5 min to obtain a homogeneous 

dispersion. The amorphous dispersion of VO2 was then transferred to a 23 mL 

polytetrafluoroethylene cup and heated within a sealed high-pressure autoclave reactor 

(Parr Instruments) at 250°C for 24 h. After cooling, the obtained nanocrystals were 

washed with water using three successive cycles of dispersion by ultrasonication and 

precipitation by centrifugation (8000 rpm, 10 min). 
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2.5.2. Characterization 

Powder X-ray diffraction (XRD) patterns were acquired using a Bruker D8-Vario 

X-ray powder diffractometer equipped with a Cu Kα (λ = 1.5418Å) source and operated 

at 40 kV accelerating voltage and 40 mA current with a MTC oven attachment for 

heating experiments. Variable temperature measurements were acquired at 5°C intervals 

in the temperature range from 30 to 100°C.  

Differential scanning calorimetry (DSC) analysis was performed using a TA 

instruments Q2000 instrument. The temperature was scanned from 0 to 100°C and back 

again to 0°C at ramp rates ranging from 0.1 to 20°C min-1. Aluminum T-Zero pans were 

used for DSC experiments under a purge flow of Ar gas. 

The size and morphology of the prepared materials were investigated using scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images 

of the nanocrystals were collected on a JEOL JSM-7500F instrument operated at an 

accelerating voltage of 5.0 kV. TEM images were acquired using a JEOL JEM-2010 

instrument operated at a 200 kV accelerating voltage. Particle size distributions were 

deduced based on analysis of 100—200 individual particles using ImageJ software. 

High-angle annular dark field TEM (HAADF-TEM) imaging was performed using a 

probe-corrected JEOL JEM-ARM200CF instrument with a cold field-emission gun 

operated at a 200 kV bias. The convergence angle was 22 mrad, whereas the inner angle 

of the HAADF detector was 90 mrad. Modeling of diffraction data was performed using 

SingleCrystal software (CrystalMaker Software Ltd., Oxford, England, 2017); structural 
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information of VO2 phases was obtained from Pearson’s Crystal data (ASM 

International, Materials Park, Ohio, USA, 2013). 

2.5.3. Density Functional Theory Modeling 

Supercell total energies were calculated based on DFT as implemented in the Vienna 

ab-initio Simulation Package (VASP).71 The generalized gradient approximation (GGA) 

under the Perdew-Burke-Ernzerhof (PBE) formalism was used to describe exchange 

correlation terms. Pseudopotentials were generated by the projector augmented wave 

(PAW) method and a cut-off energy of 533 eV for the plane wave basis was set. 

Structures were considered to be relaxed when the change in total energy between 

successive steps was reduced below 10-6 eV. Supercells of 96 atoms were created for 

undoped and W-doped VO2 rutile and monoclinic M1 structures. The formation energy 

of an oxygen vacancy in these structures was calculated with a vacancy concentration of 

1:95 total atoms. 

The formation energy F (per cell) is calculated as follows: 

𝑭 =  𝑬𝒄𝒆𝒍𝒍 − ∑ 𝒏𝒊𝑬𝒊
𝟎

𝒊      2.1 

and ΔF for stabilization of an oxygen vacancy in VO2:
72 

∆𝑭 =  (𝑬𝒄𝒆𝒍𝒍
𝑽𝒂𝒄 − ∑ 𝒏𝒊𝑬𝒊

𝟎
𝒊 ) −  (𝑬𝒄𝒆𝒍𝒍 − ∑ 𝒏𝒋𝑬𝒋

𝟎
𝒋 )    2.2 

where 𝐸𝑐𝑒𝑙𝑙 is the bulk cell energy, 𝐸𝑖
0 is the energy of the ith atom reference state, and 

𝑛𝑖 is the cell count of the ith atom. 
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3. ATOMIC HOURGLASS AND THERMOMETER BASED ON DIFFUSION OF A 

MOBILE DOPANT IN VO2* 

 

3.1. Overview 

Transformations between different atomic configurations of a material oftentimes 

bring about dramatic changes in functional properties as a result of the simultaneous 

alteration of both atomistic and electronic structure. Transformation barriers between 

polytypes can be tuned through compositional modification, generally in an immutable 

manner. Continuous, stimulus-driven modulation of phase stabilities remains a 

significant challenge. Utilizing the metal–insulator transition of VO2, we exemplify that 

mobile dopants weakly coupled to the crystal lattice provide a means of imbuing a 

reversible and dynamical modulation of the phase transformation. Remarkably, we 

observe a time- and temperature-dependent evolution of the relative phase stabilities of 

the M1 and R phases of VO2 in an “hourglass” fashion through the relaxation of 

interstitial boron species, corresponding to a 50 °C modulation of the transition 

temperature achieved within the same compound. The material functions as both a 

chronometer and a thermometer and is “reset” by the phase transition. Materials 

possessing memory of thermal history hold promise for applications such as 

neuromorphic computing, atomic clocks, thermometry, and sensing. 
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3.2. Introduction 

The presence of adjacent minima within free energy landscapes of periodic solids 

(along axes such as temperature, pressure, strain, or alloying) allows for reversible 

switching of properties as a result of the structural rearrangement of atoms. A structural 

transformation along such landscapes often brings about pronounced alterations of 

electronic structure and accompanying electronic, ferroelectric, optical, and magnetic 

properties; such modulations of functional properties have been utilized for diverse 

applications spanning the range from neuromorphic computing to thermochromic 

windows,[1−3] memory storage,[4] and transformation toughening.[5,6] Martensitic 

transitions, which are characterized by the reversible and diffusionless motion of atoms 

upon a spontaneous change in symmetry of the unit cell, are particularly facile and 

provide numerous examples wherein the hysteresis between forward and reverse 

transitions can be controlled through compositional modulation and strain.[7,8] 

Compositional modulation through doping or alloying generally changes the relative 

phase stabilities of adjacent energy wells and the barrier to the transformation between 

the wells within a thermodynamic energy landscape in an immutable manner, enabling 

the trapping of metastable phases under ambient conditions. Much less studied is the role 

of dopants that are diffusive in nature, that are weakly coupled to the lattice, and whose 

mobility thereby endows a dynamical aspect to the relative phase stabilities of the 

adjacent wells. In this article, we utilize a canonical metal–insulator transition material 

VO2 to demonstrate a remarkable time-dependent evolution of the relative phase 

stabilities of insulating monoclinic (M1) and metallic rutile (R) phases (in an “hourglass” 
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fashion) as a diffusive dopant species relaxes from a high-energy site wherein it is 

initially positioned upon a thermally induced phase transition. Such an in situ 

modulation of phase stabilities creates a readable thermal-history-dependent signal with 

the heating transition temperature serving as a characteristic readout; remarkably, this 

signature is completely reset upon returning to the low-temperature phase. We determine 

that the dynamically varying local structure of diffusive B dopant atoms provides a 

means of accessing this reconfigurable time- and thermal-history-dependent response 

that derives from intrinsic material properties. 

The ability to realize a history-dependent nonlinear response is a key tenet for the 

creation of neuromorphic architectures, which have attracted considerable interest as a 

means of energy efficient computing.[1,9] Materials exhibiting pronounced metal–

insulator transitions (MIT) underpinned by electron correlation can serve as active 

elements exhibiting such neuromorphic function provided their temporal response can be 

rendered programmable. VO2 is characterized by a change of almost 5 orders of 

magnitude in its electronic transport properties upon the MIT at ∼67 °C. The extent of 

coupling of the electronic Mott transition with a structural M1–R transition has been the 

subject of much discussion.[10−13] The introduction of dopant atoms alters the phase 

stabilities of insulating M1 and metallic R phases and the heights of the barriers between 

them. In the case of tungsten as a substitutional dopant on the vanadium sublattice, the 

larger ionic radius of the dopant induces strongly anisotropic strain whereas its 

hexavalent character endows considerably increased metallicity resulting in an overall 

destabilization of the low-temperature M1 phase with respect to the high-temperature 
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metallic phase.[10,14,15] Other dopants induce the stabilization of altogether different 

polymorphs; for instance, Cr- and Al-doping (or coherent epitaxial strain) stabilizes the 

M2 phase,[16−18] interstitial hydrogen doping stabilizes orthorhombic variants,[19] and Ir 

doping stabilizes a 1D tunnel-structured phase.[20] The introduction of B atoms as 

interstitial dopants within VO2 selectively stabilizes the R phase over the M1 phase.[21,22] 

The distinctive location of boron dopants within interstitial sites causes the incorporated 

boron atoms to be weakly coupled to the anion and cation sublattice imbuing a mobility 

that results in a dynamical response in the monoclinic phase hitherto not observed for 

conventional static substitutional dopants. Such a mobility of the interstitially 

incorporated dopant atoms is shown to be coupled to the stability of the monoclinic 

phase and modulates the MIT in a resettable and history-dependent manner. In this 

manuscript, we detail the behavior of thermal memory effects in B-doped VO2 and 

explore the inherent metastability of B dopants that brings about a kinetically controlled 

modulation of the MIT temperature across a 45 °C temperature range. Analysis of the B 

local coordination environment as well as the evaluation, via first-principles 

calculations, of B dopant site energies, charge, and diffusion pathways allows for the 

development of a mechanistic picture of the observed dynamical response. 

3.3. Results and Discussion 

3.3.1. Temporally Evolving Metal–Insulator Transition of B-Incorporated VO2 

VO2 exhibits a hysteretic martensitic-type first-order transition from a 

monoclinic M1 phase to a high-symmetry rutile (R) phase at 67 °C. The transition 

temperature has been shown to be modified through alloying with various dopants to 
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span the range from 23 to 96 °C for the heating transition and from −19 to 90 °C for the 

cooling transition.[9,22−24] Options for postsynthetically modulating the transition 

temperature are limited and include the irreversible creation of defects through high-

energy irradiation or subjecting nanobeams to tensile strain, both of which have limited 

reversibility.[25,26] The dynamical and reversible modulation of the transition temperature 

of VO2 has not thus far been achievable using a chemical vector. 

Hydrothermally prepared VO2 nanoparticles have been reacted with a molecular 

boron-containing precursor through rapid thermal annealing to obtain boron atoms 

lodged in interstitial sites[22] as described in the methods section and schematically 

illustrated in Figure 3.1A. Figure 3.1B depicts differential scanning calorimetry (DSC) 

plots measured for undoped VO2, 1.8 atom % B-incorporated VO2, and 5.2 atom % B-

incorporated VO2 denoting the critical temperatures (Tc) of the heating and cooling 

transitions based on the maxima of endothermic and exothermic heat flows 

accompanying the phase transitions, respectively. Incorporation of B atoms depresses 

the transition temperature by ∼10 °C/atom % B.[22] Figure 3.1C shows powder X-ray 

diffraction (XRD) patterns for the same samples acquired at 22 °C; the full diffraction 

patterns and scanning electron microscopy images of the samples are shown in Figure 

B.1. The (001) reflection of the monoclinic phase shifts slightly to lower 2θ values upon 

doping with 1.8 atom % B; Rietveld refinement of the diffraction patterns of B-

incorporated VO2 and VO2 nanoparticles subjected to rapid thermal annealing without 

the molecular precursor (Table B.1, Figure B.2) demonstrates that B incorporation 

brings about a slight lattice expansion along the a and c axes resulting in a 0.4% increase 
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in volume. No evidence is observed for crystalline boron oxides or orthorhombic/M2 

phases of VO2, which have been reported previously to be associated with interstitial 

hydrogen incorporation,[27] substitutional doping of trivalent cations,[28] and anisotropic 

strain.[29] Reflections derived from a minority V8O15 impurity phase (JCPDS no. 71-

0041) are observed[22] but do not contribute to the observed MIT behavior.[30] 

Indeed, evidence for interstitial instead of substitutional incorporation is derived 

from (i) B K-edge XANES spectra that will be discussed below, which has been 

assigned with the help of XCH-XAS calculations delineating spectral fingerprints for 

trigonal and tetrahedral interstitial sites; (ii) high-angle annular dark-field scanning 

transmission electron microscopy images indicating no modulation of intensity on 

vanadium sites and concomitant electron energy loss spectra showing the presence of 

boron atoms within the VO2 lattice;[22] (iii) the ability to eliminate B atoms from the 

lattice by annealing to a temperature of 500 °C, where no comparable removal of 

substitutional dopants has been observed (Figure B.3A shows that the transition 

temperature for both heating and cooling transitions are shifted to higher temperatures 

corresponding to extrusion of boron from the lattice; Figure B.3B shows that rapid 

thermal annealing temperatures of >960 °C results in complete elimination of interstitial 

B from the VO2 lattice); and (iv) density functional theory calculations that will be 

presented below contrasting the stability of boron incorporation at interstitial and 

substitutional sites. 
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Figure 3.1. A) Schematic illustration of the diffusive doping of B atoms in VO2 

nanobeams. B) DSC traces measured for B0.052VO2, B0.018VO2, and undoped VO2 

acquired at a scan rate of 10°C/min and offset along the vertical axis for clarity. The 

critical transition temperatures (Tc) are designated as the peaks of the exothermic and 

endothermic heat flows for the heating and cooling scans, respectively. A monotonic 

depression of the phase transition is observed as a function of the B concentration. 

Additionally, the width of hysteresis ΔT(Hysteresis) between the heating and cooling 

transitions is increased from 7°C for undoped VO2 to 18 and 22°C for B0.018VO2 and 

B0.052VO2, respectively. C) Powder XRD patterns for B0.052VO2, B0.018VO2, and undoped 

VO2 in the 2Ɵ range from 26—29.5° and 35.2—38.2°. Reflections corresponding to the 

M1 phase of VO2 are plotted along the bottom horizontal axis as per Joint Committee on 

Powder Diffraction Standards (JCPDS) #. 043-1051, whereas reflections corresponding 

to the R phase of VO2 are plotted along the top horizontal as per JCPDS# 79-1655. 

Undoped and B0.018VO2 samples are indexed to the M1 phase of VO2, whereas the pattern 

for the B0.052VO2 sample is indexed to the R polymorph of VO2. The incorporation of B 

atoms depresses the M1 → R transition temperature by ca. 10°C/at.% B[22] such that the 

observed stabilization of R polymorph at room temperature for the B0.052VO2 sample is 

consistent with a depression of the critical transition temperature for 5.2 at.% B-doping. 

Reflections derived from a minority V8O15 impurity phase (JCPDS no. 71-0041) are 

asterisked[22] but do not contribute to the observed MIT behavior.[30]
   



 

73 

 

 

Figure 3.2 exhibits the results of differential scanning calorimetry (DSC) 

experiments performed on VO2 nanoparticles incorporating 5.2 atom % boron that 

illustrate the dynamical behavior of this material. Figure 3.2A shows the overlaid 

thermal profiles of 49 experimental heat treatment cycles performed on the same sample 

systematically varying isothermal hold time (intervals of 15, 30, 45, 60, 90, 120, and 180 

min) and the isothermal temperature (from −50 to 10 °C). Figure 3.2B plots the 

resulting Tc, the temperature corresponding to peak heat flow for the heating 

transition,[31] as a function of isothermal hold time and temperature. The measured 

transition temperatures reflect unique coordinates specific to the thermal and temporal 

history of the samples, which derive from the dynamical diffusion of B atoms in the 

M1 phase as will be elucidated below. Panels C and D of Figure 3.2 show DSC data 

corresponding to slices of the 2D array in Figure 3.2A illustrating the effects of 

increasing isothermal temperature (held at a constant 90 min isothermal time) and 

isothermal time (held at a constant −10 °C isothermal temperature), respectively. All 

temperature changes throughout this series of experiments, cooling from the R phase to 

−60 °C, heating to the isothermal hold temperature, and heating from the isothermal hold 

temperature back to the R phase, were performed at a rate of 10 °C/min. Intriguingly, the 

corresponding cooling R → M1 transition was observed to show no analogous dynamical 

shift of the transition temperature (Figure B.4). Figure B.4 further shows that B 

incorporation distinctively alters the rate-dependence of the heating transition as 
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compared to undoped VO2; the transition is shifted to a higher temperature at slower 

rates, corresponding to increased residence time in the M1 phase. 

 

 

 

Figure 3.2. Time-dependent evolution of the metal–insulator transition of B-alloyed 

VO2. (A) Thermal profiles of DSC experiments probing structural relaxation kinetics 

within the M1 phase of B0.052VO2. The series of measurements shown in panels C and D 

are highlighted with blue vertical and orange horizontal bars, respectively. Vertical 

series such as the blue highlight correspond to a constant annealing time where the 

annealing temperature has been varied. Horizontal series such as the orange highlight 

correspond to a constant annealing temperature where the annealing time has been 

varied. (B) Three-dimensional representation of Tc as a function of isothermal annealing 

temperature and time for the thermal profiles shown in (A). An Arrhenius model is 

overlaid for comparison (see also Figure B.4F,G). (C) DSC traces corresponding to a 

series of measurements scanned at 10 °C/min from −60 to 100 °C with 90 min 

isothermal annealing intervals at temperatures ranging from −50 to 10 °C, highlighted as 

the vertical series in blue. (D) DSC traces of a series of measurements scanned at 10 

°C/min from −60 to 100 °C with isothermal annealing at −10 °C for time intervals 

ranging from 15 to 180 min, highlighted as the horizontal series in orange. For panels A–

D the cycles where the material was held at 0 and 10 °C contain a population of particles 

that have transitioned to the R phase before annealing. The observed shift is recorded for 

the fraction that had remained M1 as seen in panel C as the lightest blue/furthest shifted 

peak. (E) Schematic illustrating the time-dependent variation of transformation 

temperature of VO2 as derived from the DSC measurements. 
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Figure 3.2B illustrates a pronounced increase in the heating transition 

temperature as a function of both isothermal residence time and temperature. At the 

lowest isothermal temperature of −50 °C, a residence time of 180 min does not 

substantially alter the transition temperature as compared to not having an isothermal 

period. In contrast, holding the sample at 10 °C for an interval of 180 min shifts the 

transition temperature upward by greater than 15 °C. A window between −30 °C up to 

the transition temperature is observed wherein the time spent alters the transition 

temperature of the heating M1 → R transition and is hereafter denoted as the “annealing” 

regime. Within this regime, the elapsed time is directly correlated with an increase of the 

M1 → R transition temperature; the latter experimental observable provides a precise 

“clock”-like measure of the time elapsed after cooling. In other words, the results 

suggest that a thermally activated process is operational below the M1 → R transition 

temperature, which governs the state of the system from which the subsequent M1 → R 

phase transition is initiated. The quenched system appears to remain in a higher energy 

state (and can be transitioned back to the R phase at a lower temperature), whereas the 

relaxed or annealed system appears to be at lower energy and corresponding transitions 

to the R phase at a higher temperature. 

The gray surface in Figure 3.2B denotes an Arrhenius kinetic fit indicating a 

thermally activated process. A single population model was built using a single 

activation energy (Ea) of 0.96 eV which provided the fewest residuals in a first order fit 

assuming a 1 × 1013 attempt frequency (A) based on the typical bond vibrational 

frequencies in oxides.[32] A single activation energy model proved a poor fit for the 
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experimental data (as sketched in Figure B.4F). A series of five activation energies 

centered around 0.98 eV (in increments of ±0.04 eV) was examined to model a 

continuum of activated processes contributing to the observed dynamic relaxation of this 

material (Figure B.4G), corresponding to a simplified distributed activation energy 

model.[32] This model assumes fractions of B-doped VO2 in the sample such that the total 

observed relaxation is a summation of their effects with φi representing the fraction of 

the whole population with a given Ea such that the sum of i fractions equals 1. Assuming 

five equal fractions such that φi = 1/5 of Ea
i = [0.90, 0.94, 0.98, 1.02, 1.04] and an 

attempt frequency (A) of 1 × 1013, the relaxation of each fraction from metastable 

[B]ms to relaxed [B]rel is calculated as a first-order rate: 

[𝑩]𝒎𝒔
𝒊 = 𝝓𝒊[𝑩]𝒎𝒔     3.1 

 

 
𝝏[𝑩]𝒓𝒆𝒍

𝒊

𝝏𝒕
=

−𝝏[𝑩]𝒎𝒔
𝒊

𝝏𝒕
= 𝒌𝒊[𝑩]𝒎𝒔

𝒊      3.2 

 

𝑘𝑖 = 𝐴𝑒 (
−𝐸𝑎𝑖

𝑘𝑇
)     3.3 

Such a model provides a substantially improved fit to the observed 

phenomenology and is the function plotted as the gray surface in Figure 3.2B. The 

improved fit is thought to arise from variations in dopant concentrations, inhomogeneous 

strain, or defects, across ensembles of particles, which alter diffusion pathways of boron 

atoms, altering the barrier height of this activated process around the central barrier of 

0.98 eV as discussed in greater detail below. A phenomenological sketch of the dynamic 

activated process is summarized in Figure 3.2E and illustrates the remarkable 

resettability of the process. In every case, regardless of the thermal profile adopted to 
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probe the sample and irrespective of the extent of relaxation, the effect is reset when 

transitioning back from the R phase. 

Additional experimentation contrasted the effects of heating and cooling rates on 

the transitions of two differently doped samples (Figure B.4) with that of undoped VO2. 

Also, the effects of varying transition rates independently and the effects of additional 

cooling in the M1 phase (Figure B.5) were examined. Figure B.4 shows a smaller rate 

dependence of the cooling transition for the B-incorporated samples as compared to 

undoped VO2 suggesting easier nucleation of the M1 phase in the doped samples, which 

is ascribed to the presence of more potent nucleation sites.[10,33] The heating transition 

shifts to higher temperature with slower rates which is concordant with the conclusion 

from Figure 3.2 that the thermal history in the M1 phase enables modulation of the M1 to 

R transition temperature as a function of time and temperature. The extent of cooling 

was found to have negligible effect. In summary, the data show (1) that applying 

sufficient thermal energy to the system while maintaining in the M1 phase relaxes the 

system from a quenched to a relaxed state and (2) that the extent of transformation 

between the unrelaxed (quenched) and relaxed states follows an Arrhenius exponential 

dependence on the annealing temperature. Both observations denote the operation of a 

thermally activated process for B-doped VO2 in the M1 phase that does not have 

parallels in undoped VO2. 

The in situ DSC annealing experiments plotted in Figure 3.2 provide insight into 

the dynamics of the relaxation process on relatively short time scales. In an attempt to 

explore the maximal limit of the relaxed state, a more gradual thermal ramp spanning the 
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course of 7 days has been performed using a programmable water bath. The utilization 

of a slow ramp rate allows for the annealing temperature to slowly increase as the M1 → 

R transition increases (due to the relaxation process) allowing for the highest annealing 

temperature possible. The temperature has been increased following the sequence plotted 

in Figure 3.3A for two samples to access intermediate and fully relaxed states. The upper 

portion of Figure 3.3A displays the first cycle of the DSC trace following removal from 

the water bath. The black curve represents the second cycle where the B0.052VO2 sample 

once again reflects the 8.5 °C Tc of the quenched state indicating that the sample has 

been reset after transitioning from M1 → R. The DSC trace of the first relaxation 

experiment (labeled “intermediate”) has been subjected to a stepwise decrease in ramp 

rate, shown in blue, and exhibits two endothermic features, one sharp feature at 39.3 °C 

and another smaller and broader transition at 56.3 °C, representing two different 

populations within the sample. The DSC trace of a second water-bath-aided relaxation 

experiment (labeled “relaxed”) has been subjected to a still slower exponential decrease 

in ramp rate, shown in red, and exhibits a primary endothermic transition at 53.2 °C and 

a smaller shoulder at 55.8 °C. All subsequent water bath/DSC relaxation experiments for 

this sample exhibit transitions at ∼56 °C (or lower) indicating that this value corresponds 

to a quasi-equilibrium limit for this B-doped VO2 sample. Figure 3.3A illustrates that the 

magnitude of the Tc shift spans a remarkable 45 °C from a quenched sample 

(transitioning at 8.5 °C) to a fully relaxed state (transitioning at 53.2 °C). The M1 → R 

transformation peak is further greatly sharpened upon relaxation suggestive of a 

convergence or funneling of the population distributions within this sample to a quasi-
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equilibrium state. Figure B.6A shows analogous data for B0.018VO2, which has been 

simply allowed to relax at room temperature for 40 and 323 days, evolving from a Tc of 

44.1 °C for the quenched sample to an intermediate state of 53.5 °C after 40 days and 

a Tc of 58.1 °C corresponding to the fully relaxed state after 323 days. Notably, the 

relaxation process does not correspond to the expulsion of B from the lattice. The  

 

Figure 3.3. Evidencing a thermally activated process below the phase transition. (A) 

DSC traces of B0.052VO2 immediately upon cooling (quenched or “unrelaxed” state) and 

for the same sample upon relaxation from −20 °C to 40 °C within an external water bath 

at different temperature ramp rates (corresponding rates are shown in the lower plot) 

yielding intermediate and fully relaxed structures. (B) Illustration of energy landscape of 

the MIT transition as a function of temperature of the system and diffusion of B atoms 

between interstitial sites. (C, D) Evolution of ΔH and ΔS, respectively, as a function of 

isothermal temperature for isothermal times of 45, 90, and 180 min, as outlined 

in Figure 3.2A for the B0.052VO2 sample. 
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observed behavior is completely reversible upon further thermal cycling as demonstrated 

in Figure B.6B, which shows that the cycle directly after transitioning from a relaxed 

state mirrors the scan taken before relaxation occurred. 

In terms of energy landscapes of structural transformations, the data (Figure 

B.6B) suggest that following the R → M1 phase transition (akin to resetting of the 

“hourglass”), the M1 lattice is positioned in a higher-energy metastable state that is only 

slightly lower in energy as compared to the R state and can thereby be readily 

transitioned back to the latter state at low temperatures. However, given sufficient time 

and thermal energy, the metastable state can relax through a thermally activated process 

to the lowest-energy quasi-equilibrium state of the M1 phase. This is substantially lower 

in energy compared to the metastable state and thereby transitions at a higher 

temperature (Figure 3.3B). According to this hypothesis, the phase transformation 

temperature indicates the extent of relaxation from the quenched metastable to the 

relaxed quasi-equilibrium structure (akin to time-variant flow within an hourglass) and, 

as such, reflects the thermal history and elapsed time since the last “reset”. 

In order to further examine the thermodynamics of the phase transformation and 

better understand the dynamical modulation of the transition temperature upon boron 

incorporation, we have evaluated the latent heat (M) of the M1 → R transition with 

respect to enthalpic (H) and entropic (S) contributions. Latent heat (M) has been 

calculated by integration of the exothermic DSC trace for a series of isothermal 

annealing experiments from the combinations of isothermal time and temperature 

variations depicted in Figure 3.2A. Around a first-order phase transition, one can express 
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the Gibbs free energy of transformation as ΔG = ΔH – TΔS. At the thermodynamic 

transition temperature, Tc, the Gibbs free energies of the M1 and R phases are equal and 

it follows that ΔH = TcΔS. Using this relationship and assuming the temperature 

independence of the latent heat and the entropy of the transformation, one can estimate 

the latter, provided we have a good estimate for the thermodynamic transition 

temperature, Tc. Because of hysteresis, this quantity is unobservable but it can be 

estimated as bounded by the measured transformation temperatures during heating and 

cooling. Estimating Tc at the midpoint of the transformation range, we have estimated 

ΔS. Panels C and D of Figure 3.3 show ΔH (A) and ΔS (B) as a function of isothermal 

temperature for annealing times of 45, 90, and 180 min. A correlated change in both 

entropy and enthalpy is observed when the metastable quenched state is annealed to the 

relaxed state. The correlation of entropy and enthalpy shows that the change in the 

thermodynamic stability of the M1 and R phases, as illustrated in Figure 3.3B, is driven 

by both a change in the relative phase enthalpy and electronic entropy (doping changes 

not just the lattice enthalpy but also conduction entropy differential). This behavior is 

consistently observed across all of the samples. 

The presence of multiple transformation peaks in the intermediate relaxed state 

(Figure 3.3A) suggests a hierarchy of metastable states within the landscape. The broad 

range of transition temperatures in the quenched sample (Figure 3.3A) suggests that 

immediately following the R → M1 transition, the VO2 lattice relaxes into an array of 

shallow-energy metastable states such that a relatively broad distribution of thermal 

energies can bring about a transformation back to the R phase (but there is only a 
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relatively small differential separating the metastable M1 states and the R state). 

Annealing at temperatures below the Tc allows the lattice to overcome the activation 

energy barrier associated with transitioning to quasi-equilibrium states; multiple 

metastable states relax into a narrow distribution of quasi-equilibrium states, thereby 

narrowing the observed endotherm for the M1 → R transition from such states 

(Figure 3.3A). Nucleation to the R phase from these lower-energy relaxed states requires 

overcoming a greater energy differential, which is manifested in higher transition 

temperatures. Beyond the “hourglass” idea of relaxation into the quasi-equilibrium state, 

an important finding from the perspective of functional applications is the ability to tune 

the heating transition (and therefore hysteresis) for the same exact sample across a range 

of 45 °C adjacent to room temperature simply based on thermal history without any 

alteration of composition. 

3.3.2. Unraveling the Atomistic Origins of the Hourglass 

We now turn our attention to delineating the atomistic origins of this dynamically 

evolving low-temperature transformation, which constitutes the second axis 

in Figure 3.3B. Since such a phenomenon has not been observed in undoped or other 

previously reported strained or substitutionally doped VO2 systems,[10,13,14,20] it is 

reasonable to infer that the B dopant plays a distinctive role in the dynamics of the M1 → 

R transition. It is worth noting that unlike the vast majority of dopants examined for 

VO2, B is able to diffuse across the VO2 lattice owing to its small atomic radius (0.88 Å 

for four-coordinate B atoms)[34] and high diffusivity.[21,22] One possible origin of 

differences between the quenched and relaxed state is a change in the strain profile 
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across the system as a result of B diffusion.[10,14] However, powder XRD measurements 

acquired at −163 °C for relaxed and quenched states of the B0.052VO2 sample are shown 

in Figure B.6C and are superimposable with no discernible shifts that would indicate a 

transition dominated by alleviation of strain effects (thermal relaxation profiles used are 

shown in Figure B.6D,E). 

Given the absence of significant changes in the average structure of the 

VO2 lattice and in light of the relatively long relaxation time scales between metastable 

and quenched states, the specific sites occupied by B atoms warrant further attention and 

have been evaluated with the help of density functional theory (DFT) calculations at the 

generalized gradient approximation (GGA) + Hubbard U theory level. While DFT is 

severely constrained in its treatment of electron correlated materials owing to bandgap 

and delocalization errors, the large supercells required to model the low dopant 

concentrations render the materials here intractable by dynamical mean field theory and 

many body GW approaches.[11,35,36] We have converged on a U parameter (U = 3.4 eV) 

that captures the electronic structure of the two polymorphs (Figure B.7A and B.7B). 

The use of a large unit cell and a U parameter that accounts for electron correlation 

enables us to use the DFT calculations to guide spectral interpretation and to develop a 

physically intuitive albeit inevitably reductionist (in the absence of accurate 

determination of energetics) model of the phenomena under consideration. 

Within their respective unit cells, six M1 and three R unique interstitial sites have 

been identified by applying symmetry operations (defined by the respective space 

groups) on the 68 geometrically determined sites located using the AFLOW software 
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package.[37] The formation energies (Ef) of each unique interstitial site has been 

calculated using DFT such that Ef is defined as: 

 

Ef = E(BVO2) – E(VO2) – E(B)     3.4 

 

where E(BVO2) is the total energy of a VO2 supercell containing one B atom (BV32O64, 

corresponding to 3.1 atom % B incorporation in VO2), E(VO2) is the energy of an 

undoped VO2 supercell, and E(B) is the energy of a single B atom based on a 36 atom 

unit cell (space group R3̅m). This supercell size is in the range of experimentally 

observed B concentrations while still being computationally tractable in DFT+U 

calculations. Coordinates and Ef values for each interstitial location within the M1 and R 

unit cell are listed in Table B.2. Upon transition from a rutile state, the doped supercell 

adopts a metastable distortion around the boron atom that does not occur when 

substituting boron into a monoclinic M1 lattice as a starting point. To simulate the 

generation of possible metastable states caused by the boron defect across the R → 

M1 phase transition, a rutile-like configuration was used as a starting point for the 

relaxation. This structure was generated by shifting the vanadium atoms of a monoclinic 

supercell by linear interpolation toward the R structure, which increases uniform spacing 

along the c-axis and reduces twisting of the vanadium pairs. From this starting 

configuration, the ions were relaxed back to a monoclinic configuration resulting in the 

metastable M1 configuration. This metastable state has a different lowest energy 

configuration for the boron position than is found in the relaxed monoclinic M1 phase or 

the R phase (Video S1 illustrates the distortion of this quenched metastable state in 
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comparison to the monoclinic M1 phase). Figure 3.4A–C depict the lowest energy 

interstitial sites for B atoms in the R phase, metastable M1 phase, and relaxed M1 phase, 

respectively. Figure 3.4E shows normalized Ef values for the interstitial locations of B 

Figure 3.4. Energetics of boron interstitial sites in VO2 and delineation of spectroscopic 

signatures. (A–C) DFT calculated coordination environments for B-doped VO2, 

illustrating the most thermodynamically favorable interstitial sites for B incorporation 

for R (A, R(1)), quenched M1 (B, M1(6)), and relaxed M1 (C, M1(1)). Vanadium atoms 

are depicted as blue spheres, oxygen atoms as red spheres, and B atoms as green spheres. 

Lattice parameters for the doped M1 structure with different concentrations of boron can 

be found in Table B.2. Full calculated supercells are shown in Figure B.8. (D) Overlay 

of quenched (inverted) and relaxed (blue/red/green) states to illustrate distortion (see 

also Video S1). (E) Normalized formation energies of B incorporation into different 

interstitial location within the R (red), metastable M1 (violet), and relaxed M1 (blue) 

supercells. Table B.2 catalogs the specific sites and their energetics. Panels F and G 

display the formation energies of charged defects for oxygen rich and oxygen poor 

conditions, respectively. The energies were calculated for substitutional boron defects at 

the oxygen sites (Bo), substitutional boron defects at the vanadium sites (Bv), and 

interstitial boron defects (Bi). For both oxygen-rich and oxygen-poor environments, the 

most stable defect at the calculated Fermi level (Figure B.7) of ϵF = 0.48 and 0.62 is a 2+ 

interstitial boron defect Bi. 
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sites in the R and metastable M1, and M1 supercells where M1(1) and M1(1)* as well as 

M1(5) and M1(5)* are the symmetrically equivalent sites with the asterisk denoting the 

metastable M1 distortion. All stable sites have a tetrahedral coordination with 

neighboring oxygen atoms except the trigonally coordinated M1(6)*, which is the lowest 

energy boron position of the distorted metastable M1 state shown in Figure 3.4C. The 

three lowest energy sites highlighted in red in Figure 3.4E are posited to correspond to 

the path traversed by boron atoms from the transition from rutile to unrelaxed 

monoclinic to relaxed monoclinic. Notably, a small thermal population of boron atoms 

may occupy higher energy sites, but given the relative energetics, the most stable sites 

are expected to be strongly favored. 

To better understand the nature of the interstitial boron atoms, the formation 

energies have been evaluated for different charged states of boron and contrasted to the 

stability of substitutional defects on the cation and anion sublattice. Calculation 

methodologies are detailed in the methods section. Panels F and G of Figure 3.4 show 

the defect diagrams of boron-associated interstitial and substitutional defects under O-

rich and O-poor conditions, respectively. To determine the equilibrium Fermi level at the 

synthesis temperature, the formation energy of native defects has been calculated 

assuming that the native point defects play a dominant role (Figure B.7C and B.7D). The 

equilibrium Fermi level under O-rich and O-poor conditions is pinned in the range 0.48 

and 0.62 eV, respectively, at the synthesis temperature. In both regimes, the most stable 

defect is a boron interstitial (Bi) with a 2+ state. Moreover, a substitutional boron on the 

vanadium site (BV) may be occupied as a minority defect type. Density of states plots for 
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the monoclinic and rutile phases are shown in Figure B.7A and B.7B, confirming that 

the calculations capture the insulating nature of the monoclinic phase and the metallic 

nature of the rutile phase. 

We note in Figure B.7C and B.7D that (+1/–1) transition levels of BV are located 

∼0.2 eV above the valence band maximum, which is potentially indicative of 

negative U behavior. A similar behavior is observed for substitutional boron atoms in 

lattice oxygen sites (BO). As such, further analysis is warranted to determine the origins 

of this unusual form. Conventional negative U behavior is often associated with 

localized charges created around defects and the significant local relaxation of the lattice 

in proximity of the defect. In our case, we find neither localized charge states nor large 

lattice relaxations near the B atom. Figure B.7E and B.7F plots the charge density of the 

top valence band states for various charged BV defects (+2, +1, 0, −1, and −2). The 

valence electrons are not localized around the boron defect but are instead seen to be 

delocalized across the lattice, as expected in the case of shallow defects. Indeed, this is 

consistent with the orbital-resolved density of states (DOS) plot in Figure B.7G–J, which 

reveals that the electronic states associated with the B atom are localized deep within the 

valence band and are thus unlikely to contribute to the valence/conduction states near the 

Fermi level. Hence, the charged defects do not have a charged state localized on the 

defect atom as often observed in the case of deep defects of large bandgap insulators. In 

light of the absence of localized electronic states on the B atom, no strong B-related 

lattice relaxation is expected. Hence, the “negative U” like behavior observed in the 

defect formation energy diagram is not a result of Anderson’s lattice relaxation. In other 
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words, although DFT+U captures the essentials of the band gap of the M1 and R phases 

of VO2, it is still challenging to predict the total energy of such strongly correlated 

system accurately, which is beyond the scope of this work. The large size of the unit cell 

renders this system intractable to more accurate dynamical mean field theory 

approaches. 

Experimental evidence for alteration of the B local structure during 

transformation from the quenched to relaxed state is derived from B K-edge X-ray 

absorption near-edge structure (XANES) spectroscopy measurements. XANES involves 

the excitation of core-level electrons to partially occupied and/or unoccupied states and 

thus serves as a sensitive element-specific probe of electronic structure.[38,39] Figure 3.5B 

plots B K-edge XANES spectra, corresponding to excitation of B 1s electrons to B 2p 

hybrid states, acquired at room temperature for quenched M1 B0.004VO2 (red line), 

relaxed M1 B0.052VO2 (black line), and R B0.052VO2 (blue line). The low B concentration 

of the B0.004VO2 sample is imperative to obtain a quenched sample that is still in the 

M1 phase, since the R → M1 transition for B0.052VO2 is below room temperature 

(Figure 3.1B). The low concentration required to stabilize quenched M1 provided far 

less signal intensity but delineates stark spectral differences from the unrelaxed sample. 

Spectral signatures in B K-edge XANES spectra can be assigned to specific bonding 

modes and local coordination environments (a) based on comparison to data acquired for 

known periodic solids with varying coordination and local symmetry of B sites and (b) 

first-principles excited state core hole X-ray absorption spectroscopy (XCH-XAS) 

calculations.[22,39−45] A list of B standards and the corresponding spectral signatures, 
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assignments, and references used in this study are compiled in Table B.3. Trigonally 

coordinated B atoms bonded to oxygen atoms are characterized by absorption features at 

194 and 203 eV, corresponding to 1s → π* and 1s → σ* transitions, respectively, to sp2-

hybrid B–O final states. Tetrahedrally coordinated B is defined by an absorption feature 

at 198 eV, which corresponds to a 1s → σ* transition populating sp3-hybrid B–O final 

states. Also associated with tetrahedrally coordinated B is a feature at 200 eV, which is 

thought to be a multiple-scattering resonance.[40] When the sample is in the R phase 

state, the XANES spectrum shows features associated with both trigonal and tetrahedral 

B–O coordination geometries. However, the spectra measured for relaxed M1 and 

quenched M1 samples show significant differences. Absorption features in the B K-edge 

spectrum acquired for relaxed M1 B0.052VO2 are primarily associated with tetrahedral 

coordination (197–200 eV), with only a small absorption at 194 eV associated with 

trigonal coordination. In contrast, for the quenched M1 B0.004VO2 sample the opposite is 

true; absorption features characteristic of tetrahedral coordination are absent, and the 

predominant feature observed is the 1s → π* transition at 194 eV associated with 

trigonal coordination. The corresponding 203 eV 1s → σ* transitions are below the 

detection limit given the low B concentration in the sample and are further confounded 

by multiple scattering resonances that give rise to the baseline, which are not captured in 

the DFT simulations. The stark change in local electronic structure and coordination 

between the quenched and relaxed M1 samples indicates a change is coordination 

geometry from trigonal to tetrahedral geometry during the relaxation, consistent with the 
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most stable B interstitial geometries in metastable M1 and relaxed M1 polymorphs 

Figure 3.5. Boron diffusion pathways and energetics of diffusion. (A) Energy profile of 

the minimum energy pathway between the metastable trigonal M1(6)* site and the 

lowest-energy tetrahedral interstitial site M1(1) as calculated using NEB. Red spheres 

represent oxygen atoms; green spheres represent B atoms. (B) B K-edge XANES spectra 

of B-doped VO2 samples measured at room temperature. The relaxed 

M1 B0.052VO2 sample was relaxed in situ as described in Figure B.9E,F, and the 

corresponding DSC scan is shown in Figure B.9G. The quenched M1 B0.004VO2 and R 

B0.052VO2 samples were heated to 100 °C and rapidly quenched to 0 °C and brought to 

room temperature immediately prior to the measurement. (C) Calculated B K-edge 

XANES spectra of B-doped VO2. Calculated spectra correspond to a low energy relaxed 

tetrahedral site and an analogous metastable trigonal site. Final state assignments of the 

spectral features are assigned based on the symmetries of the states observed in the 

isosurface plots shown in panels D–F. Features are labeled with their character as 

assigned from isosurface plots of the final states. Isosurfaces are furthermore labeled 

with the energy of the transition feature. 

 

 

 



 

91 

 

inferred from the DFT+U calculations in Figure 3.4. 

The change in local boron coordination environment is more directly 

corroborated by modeling the B K-edge XANES spectra using DFT for different B 

interstitial sites. Figure 3.5C shows the B K-edge spectrum calculated using the XAS-

XCH[44] approach. The lowest energy tetrahedral sites in the R and M1 phases as well as 

an analogous metastable trigonal site to represent the quenched M1 phase have been 

calculated. This method provides an orbital-specific description of the origin of the 

XANES features. The simulated spectra show good agreement with the experimental 

spectra (with the exception of rutile polymorph, wherein multiple coordination 

geometries are found to coexist in the experimental spectrum). Observed transitions in 

the simulated XANES spectra correspond to the final states depicted in the isosurfaces 

of Figure 3.5D–F. Chemically meaningful assignments of the spectral features can be 

obtained by visualizing these isosurfaces and analyzing their orbital character. The 

absorption features between 197 and 200 eV for relaxed M1 and R structures are 

assigned to the excitation of a core B 1s electron to a σ* state corresponding to 

hybridization between B 2p and O 2p states. An analogous transition for the quenched 

M1 structure with trigonal coordination of B atoms is observed between 200 and 205 eV. 

The absorption feature for the quenched M1 at 193.9 eV is assigned to the excitation of a 

core B 1s electron to a B 2p–O 2p hybrid π* state. The B 1s → π* transition is observed 

for approximately trigonal planar geometries and is a distinctive spectral signature of 

interstitial sites occupied by B atoms in quenched M1 phase. The isosurface assignments 

are in excellent agreement with the assignments based on B standards (Table B.3). 
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Additional simulated XANES spectra for substitutionally doped B in O and V sites 

within the M1 structure are shown along with the associated isosurface assignments 

in Figure B.9. The simulated spectra for B substitutionally doped in vanadium and 

oxygen sites show substantial differences in terms of the spectral shapes and manifolds 

from the experimental results as compared to the interstitial simulations. When 

considered with the lower stability of these defects shown in Figure 3.4F,G and in light 

of the experimental results summarized above, including the extrusion of B atoms upon 

annealing above 500 °C (Figure B.3), the stabilization of interstitial boron dopants 

appears to be more favored as compared to substitutional boron incorporation on the 

cation or anion sublattice. Taken together, the experimental XANES spectra and XCH-

XAS simulations provide definitive experimental evidence for the diffusion of B atoms 

from trigonal planar to tetrahedral local coordination environments and establish a 

distinctive spectral signature of B atoms trapped in a metastable site. 

The nudged elastic band (NEB) method has been used to examine potential 

diffusion pathways and energy barriers for B atoms within M1 VO2.
[46,47] The initial and 

final interstitial B sites have been selected as the lowest energy boron position in the 

metastable quenched state upon transformation from R → M1 transitioning to the lowest 

energy B site in the undistorted relaxed M1 state. The XANES spectra of the quenched 

VO2 sample suggest an initially trigonal B coordination environment immediately 

following the R → M1 transition. Our initial starting point is the trigonal M1(6)* as the 

most stable state in the quenched distorted M1 state and while the final state is selected 

as tetrahedral M1(1), the lowest-energy equilibrium site; these selections are fully 



 

93 

 

consistent with the experimental XANES data and its assignments (Figure 3.5C–F). 

While many possible diffusion pathways exist for B atoms positioned in some of the 

higher energy sites shown in Figure 3.4E, we have plotted the pathway of the M1(6)* 

state to the M1(1) state in Figure 3.5A for a cell with a 2+ global charge (pathways for 

other charges are shown in Figure B.9A) as the most likely illustrative pathway 

connecting the lowest lattice energy configurations. The energy barrier for diffusion 

between the sites is ∼0.9 eV, which is consistent with barriers deduced from the 

Arrhenius kinetic modeling of the experimental data shown in Figure 3.2B and Figure 

B.4G. The minimal alteration of the energy barrier for different global charges in Figure 

B.9A is consistent with the delocalization of charges evidenced in Figure B.7 and the 

absence of charge localization around the boron atom. 

The cooling transition from R → M1 may bring B atoms into several metastable 

states with the M1(6)* and M1(5)* close in energy, contributing to the broadness of the 

M1 → R transition from the incipient quenched state. The M1 → R transformation from 

B situated within the most energetically preferred site requires considerably greater 

energy given its relative stability with respect to the initial metastable quenched state (as 

also sketched in Figure 3.3B). Figure 3.5A illustrates the change in local coordination of 

the boron atom upon relaxation from the trigonal M1(6)* site to the tetrahedral M1(1) 

site as labeled. The diffusion of B atoms on the time scales observed in this experiment 

can be attributed to a coupled distortion of the lattice that takes the system out of its 

metastable quenched state and into its thermodynamic minimum. In summary the B 
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atom finds itself in a metastable state upon transition from R → M1 structural transition 

and relaxes toward the most stable configuration through a thermally activated process. 

To the best of our knowledge, there are few parallels to the observed dynamic 

modulation of the phase transition stemming from intrinsic lattice degrees of freedom 

(and not just domain switching derived from microstructural properties). There are some 

parallels to the phenomenon of martensite aging observed in shape memory alloys such 

as Au–Cu–Zn (L21-M18R)(48) and In–Tl (FCC-FCT; disordered),[49,50] wherein a 

degree of intrinsic modulation of the symmetry raising transition temperatures and 

critical stress is observed as a function of kinetic relaxation of the martensitic state. Such 

phenomena have been attributed to defect migration and the evolution of symmetry 

conforming defect states.[51] 

3.4. Conclusions 

In summary, we demonstrate that incorporation of a mobile interstitial dopant 

species imbues a means of dynamically modulating the insulator–metal transition 

temperature of VO2. Without engineering any change in composition, the critical 

transition temperature of a singular sample can be varied across a temperature range of 

45 °C (in close proximity of room temperature) by controlling the thermal history and 

the time elapsed since the material was cooled from the R to the M1 phase. The dynamic 

modulation of the transition temperature is explicable considering that the most 

energetically favored sites for B atoms vary throughout the transition between the 

M1 and R polymorphs with an intermediate metastable trigonal state. Consequently, 

raising the system to the R phase and then cooling it down to the M1 phase stations the B 
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atom in an energetically disfavored trigonal site and leaves the system in a metastable 

initial state that is energetically only slightly more stable than the R phase (and can be 

transitioned to the latter at a lower temperature). Over a period of time, the B atoms 

diffuse in real space to energetically more favorable tetrahedral configurations through a 

thermally activated process, bringing the system to a quasi-equilibrium arrangement that 

represents a deeper valley in the free energy landscape. Transformation to the R phase is 

more hindered from this configuration, resulting in a pronounced increase of the 

transition temperature. Consistent with the idea of an activated atomic diffusion process, 

the relaxation time exhibits an Arrhenius dependence on temperature. B K-edge XANES 

and DFT calculations suggest a short hop from an initially trigonal coordinated site to a 

tetrahedrally coordinated site as the system relaxes from a quenched metastable structure 

to the stable monoclinic polymorph. Heating past the M1 → R transition temperature 

results in the B atoms being situated in higher symmetry sites and serves as a means of 

resetting the relative populations of metastable and quasi-equilibrium states upon 

cooling. 

The incorporation of B as a mobile dopant thereby endows a temporal history to 

the phase transition that depends on the atomistic diffusion barriers encountered by B 

atoms and that can be determined using the heating transition temperature. In addition to 

the “hourglass” time and thermal history dependence of the experimentally measured 

transition temperature, B-doped VO2 is seen to exhibit a programmable time-variant 

modulation of conductance, which has potential for utilization in neuromorphic circuits 
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and memory devices. Future work will examine the influence of other diffusive dopant 

atoms in VO2 and of B in analogous correlated systems such as NbO2. 

3.5. Experimental 

3.5.1. Synthesis of VO2 Nanowires 

VO2 nanowires with lateral dimensions of 210 ± 70 nm and lengths in the range 

of 4.0 ± 3.0 μm were prepared as reported in our previous work based on the 

hydrothermal reduction of V2O5 by 2-propanol. Briefly, 1.600 g of V2O5 (Sigma-

Aldrich, St. Louis, MO) was reduced to VO2 with 10 mL of 2-propanol (Fisher, Fair 

Lawn, NJ) dissolved in 65 mL of deionized water (prepared with a Barnstead 

International NANOpure Diamond ultrapure water system ρ = 18.2 MΩ cm–1). The 

hydrothermal reaction was performed at 210 °C for 72 h in a 125 mL autoclave. The 

supernatant was discarded, and the precipitate was rinsed with acetone (Macron Fine 

Chemicals, Center Valley, PA). The samples were then placed within a quartz tube, 

which was annealed using a tube furnace to a temperature of 550 °C (ramping at a rate of 

∼45 °C/min) for 3 h under flowing Ar gas at a rate of 800 mL/min. 

3.5.2. Incorporation of B by Diffusive Doping 

2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (97%) was purchased from 

Sigma-Aldrich (St. Louis, MO). In a typical reaction, an amount of 20 mg of 

VO2 nanowires was dispersed in 1.00 mL of mesitylene by ultrasonication, and 200 μL 

of 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was added to the reaction mixture. 

The reactants were allowed to stir for 2.5 h at 120 °C under an Ar ambient in a Schlenk 

flask. The VO2 nanowires were recovered by centrifugation, rinsed with toluene, and 
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annealed using a 2 mL porcelain combustion boat (VWR, Sugar Land, TX) to a 

temperature of 900–950 °C for 1 min under an Ar ambient in a quartz tube furnace as 

reported in our previous work.[22] No formation of carbon interstitials or carbides is 

detectable based on HAADF STEM imaging, XPS, and Raman spectroscopy 

measurements.[22] Performing the annealing step using VO2 nanowires without 

adsorption of the molecular precursor likewise induces sintering of the nanowires; 

however, in the absence of B atoms, the relative phase stabilities of the monoclinic and 

rutile phases are essentially unchanged. 

3.5.3. Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) analysis was performed using a TA 

Instruments Q2000 instrument. Aluminum T-Zero pans were used for DSC experiments 

under a purge flow of Ar gas. Scan rates were varied from 1 °C/min to 15 °C/min. 

3.5.4. Powder X-ray Diffraction 

Powder X-ray diffraction (XRD) patterns were acquired using a Bruker D8-

Focus Bragg–Brentano X-ray powder diffractometer equipped with a Cu Kα (λ = 1.5418 

Å) source and operated at an accelerating voltage of 40 kV. Low-temperature powder 

XRD patterns were acquired using a Bruker-AXS Venture X-ray (κ geometry) 

diffractometer with Cu Iμs X-ray tube (Kα = 1.5418 Å) with an Oxford Cyrosystem low 

temperature attachment (RT to 110 K). Measurements were acquired at a temperature of 

−163 °C. 
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3.5.5. XANES Spectroscopy 

B K-edge XANES spectra were acquired in the energy range of 185–210 eV at 

the variable line spacing-plane grating monochromator (VLS-PGM) beamline (E/ΔE > 

10 000) of the Canadian Light Source at the University of Saskatchewan in Saskatoon, 

SK. The samples were mounted in a UHV chamber at a pressure of 1 × 10–8 Torr. The 

XANES spectra were measured using the high-energy grating of the beamline yielding a 

spectral resolution of ∼0.1 eV with entrance and exit slit widths of 100 μm. A 

microchannel plate detector was used to collect the fluorescence yield (FLY) signal. All 

spectra recorded were normalized to the intensity of the photon beam as measured by the 

drain current of a Ni mesh (transmission 90%) situated upstream of the sample. 

Three B-doped VO2 samples were analyzed: relaxed-monoclinic (M1) B0.052VO2, 

unrelaxed-M1 B0.004VO2, and rutile (R) B0.052VO2. The relaxed-M1 B0.05VO2 sample was 

relaxed to room temperature in the DSC using the thermal profile given in Figure B.9E 

and S9F. To assess the extent of thermal relaxation, DSC scans of a small aliquot of the 

relaxed-M1 B0.052VO2 sample (shown in Figure B.9G were run in parallel to the XANES 

measurements. The R B0.052VO2 sample was an additional B0.052VO2 sample that was 

reset immediately prior to the XANES measurement by heating to 100 °C (ensuring that 

the sample was not in the relaxed-M1 state) and cooling to room temperature. XANES 

analysis of unrelaxed B-doped VO2 was done using B0.004VO2 because the MIT 

temperature of unrelaxed-M1 B0.052VO2 sample is well below the room temperature 

measurement making the structure in the R phase. The MIT for B0.004VO2 is 58 °C. The 

B0.004VO2 sample was reset immediately prior to the XANES measurement by heating to 
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100 °C (ensuring that the sample was not in the relaxed-M1 state) and cooling to room 

temperature. 

3.5.6. Scanning Electron Microscopy 

SEM images of the nanowires were collected on a Tescan MIRA3 FE-SEM 

(Figure B.1A) and a Tescan FERA3 FIB-SEM (Figure B.1B) operated at an accelerating 

voltage of 20 kV for both instruments. 

3.5.7. First-Principles DFT Calculations 

Prior to first-principles calculations, interstitial sites in the monoclinic (P21/c) 

and tetragonal (P4/2mnm) phases were located using the cages function implemented in 

the AFLOW software.[37] The topological search algorithm selects for unique sites 

within a unit cell by analyzing the site symmetries within the respective space group. 

Boron-doped structures were generated from the list of irreducible sites and 

subsequently relaxed according to the specified DFT parameters. 

The atomistic, electronic structures and total energies were calculated using first-

principles DFT,[52,53] as implemented in the Vienna ab initio simulation package 

(VASP). The projector augmented wave (PAW)[54] method was used to describe the 

electronic configurations of the relevant elements, and the exchange–correlation energy 

functional was modeled using the GGA with the Perdew–Burke–Ernzerhof (PBE) 

form.[55] A plane wave basis set with an energy cutoff of 533 eV was employed. 

Considering the strongly correlated d electrons for vanadium, a Hubbard parameter U is 

applied to the PBE functional in the approach proposed by Dudarev et al.,[56] with Ueff = 

3.4 eV. As illustrated in Figure B.7A and B.7B, this value of U captures the insulating 
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nature of the monoclinic polymorph and the metallic nature of the tetragonal polymorph. 

The doped 97-atom supercells were generated by replicating the monoclinic and rutile 

unit cells by 2 × 2 × 2 and 2 × 2 × 4, respectively. The pristine V32O64 supercells were 

fully relaxed. For the boron doped structures generated from the supercells, all the V, O, 

and B atoms were subsequently relaxed. Potential diffusion pathways and the 

corresponding energy barriers for B atom within M1 VO2 were examined using the 

nudged elastic band (NEB) method,[46,47] where a total of three images were interpolated 

and subsequently relaxed between the initial and final configurations. The convergence 

tolerance for electronic relaxation was set to 10–7 eV, and the maximum residual force 

for ionic relaxation was set to <0.01 eV Å–1. A Monkhorst–Pack mesh with at least 5000 

k-points per reciprocal atom was used for the Brillouin zone integration. 

3.5.8. DFT Calculations of the Formation Energies of Charged Defects 

To mimic the dilute limit, the unit cell structure is enlarged to 2 × 2 × 2 supercell, 

and due to the high computational cost, the k-point sampling is reduced to 2 × 2 × 2 

accordingly. Spin polarization is included for all the defect calculations. The defect 

formation energy is defined by ΔEf(D,q) = E(D,q) – E(bulk) – ∑niμi + q(ϵf + ϵVBM) + 

Ecorr,(57) where E(D,q) and E(bulk) refer to the total energy of the pristine host cell and 

the supercell with defect D in charge state q, respectively. μi is the chemical potential of 

species i involved in the defect, and ni is the number of the atoms added (ni > 0) or 

removed (ni < 1). In this work, we consider three types of defects: B-on-V substitutional 

defect, B-on-O substitutional defect, and B interstitial defect. qϵF represents the electron 

reservoir, and ϵF is the Fermi level with respect to the valence band maximum ϵVBM in 
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the perfect cell. The range of the chemical potential for each species is determined by the 

stability of VO2 relative to the elemental phases and other competing compounds. The 

last term Ecorr in the above equation is the correction to the formation energy caused by 

the interaction between the defect charge and its images and the potential alignment 

between the defect and host cells under the periodic boundary condition employed in the 

DFT calculations.[58] To determine the equilibrium Fermi level, we conducted native 

defect calculations assuming the point defects play a dominating role and solved self-

consistent equations under conditions of charge neutrality.[59]  

3.5.9. XANES Simulation Calculations 

Simulation of X-ray absorption spectra and calculation of orbital density plots 

was performed using the PWscf code in the Quantum ESPRESSO package. The 

sampling of the Brillouin zone was achieved using the Shirley optimal basis set.[60,61] A 

constant value of 192.0 eV is added to all the theoretical spectra in order to align with 

the experimental spectra. For the simulation of the B K-edge XANES spectra, a uniform 

k-point sampling grid of 2 × 2 × 2 was used. The B K-edge simulation uses The XCH-

CAS approach, in which an electron is removed from the 1s inner shell of the excited B 

atom within the VO2 unit cell to account for the excited state core–hole 

interactions.[44,45] The inclusion of the core–hole perturbation is not explicit but is instead 

accounted for using a modified boron pseudopotential with one less electron in the 1s 

orbital for the B K-edge. The excited electron is included in the occupied electronic 

structure, and the entire electronic system is relaxed to its ground state within DFT. In 
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order to reproduce the instrumental broadening observed in experimental spectra, a 

broadening of 0.2 eV was used for the simulated spectra. 

3.5.10. Native Defect Calculations 

In order to determine the Fermi level, native defect calculations have been performed, as 

shown in Fig. B.6C and B.6D. The equilibrium Fermi level is computed by solving self-

consistent equations under the charge neutrality conditions given by [58] 

 

−𝑛𝑒(𝐸𝐹, 𝑇) + 𝑛ℎ(𝐸𝐹 , 𝑇) + ∑ ∑ 𝑞𝐷 ⋅ 𝑐𝐷,𝑞(𝐸𝐹, 𝑇)𝑞𝐷 = 0     3.5 

where 𝑐𝐷,𝑞(𝐸𝐹, 𝑇), 𝑛𝑒 and 𝑛ℎ are defect, free electron and hole concentrations, 

respectively. They can be calculated as the following: 

 

𝑐𝐷,𝑞(𝐸𝐹, 𝑇) = 𝑁𝑠𝑖𝑡𝑒e
−

𝐸
𝑓
𝐷,𝑞

(𝐸𝐹)

𝑘𝐵𝑇       3.6 

𝑛𝑒(𝐸𝐹 , 𝑇) = ∫ 𝑔𝑒(𝐸)𝑓(𝐸 − 𝐸𝐹 , 𝑇)𝑑𝐸
+∞

𝐶𝐵𝑀
     3.7 

𝑛ℎ(𝐸𝐹 , 𝑇) = ∫ 𝑔ℎ(𝐸)(1 − 𝑓(𝐸 − 𝐸𝐹 , 𝑇))𝑑𝐸
𝑉𝐵𝑀

−∞
     3.8 

 

𝑓(𝐸 − 𝐸𝐹 , 𝑇) is the Fermi-Dirac distribution. 𝑔𝑒(𝐸) and 𝑔ℎ(𝐸) are the density of states 

(DOS) of electrons and holes, respectively. Based on the calculated formation energies, 

the equilibrium Fermi levels are 0.5 eV and 0.55 eV for O-rich and O-poor conditions, 

respectively. The corresponding electron densities are ~ 1019 cm-3 and  ~ 1020 cm-3, and 

the hole densities are 1014 cm-3 and  1013 cm-3, respectively. 

 



 

103 

 

3.5.11. In Situ DSC and Water Bath Relaxation Experiments 

In situ DSC annealing experiments were conducted using the instrument defined 

above. For all experiments described in Figure 3.3A, the sample was scanned at 10 

°C/min from −60 to 100 °C at least once before continuing along a given temperature 

outlined in the bottom section of Figure 3.3A. This protocol ensured that the sample was 

fully “reset” into the unrelaxed state before annealing. 

Water bath relaxation experiments were preformed using a PolyScience (AP07R) 

circulating bath with a working temperature range of −40 °C to 200 °C. Samples were 

sealed in a water-tight glass vial in an inert Ar environment. Immediately prior to the 

experiment, the samples were heated to 100 °C for 20 min to convert to the R phase 

before being rapidly cooled to −78 °C with dry ice. 
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4. STABILIZATION OF A METASTABLE TUNNEL-STRUCTURED 

ORTHORHOMBIC PHASE OF VO2 UPON IRIDIUM DOPING* 

 

4.1. Overview 

Metastable compounds accessible through kinetic stabilization or under conditions of 

constrained equilibrium represent a richly varied landscape of structures, properties, and 

function that are oftentimes entirely inaccessible in thermodynamic minima. The 

multiple redox states of vanadium and the ability to modulate the connectivity of 

vanadium and oxygen atoms yields a rich diversity of structures for binary vanadium 

oxides. Here we demonstrate that an orthorhombic quasi-1D polymorph of VO2, 

characterized by extended tunnels with a rectangular cross-section, can be stabilized 

through the substitutional doping of iridium on the vanadium sublattice. The obtained 

structure is considerably distorted from a previously reported paramontroseite mineral 

phase. The metastable phase is obtained in nanoplatelet form and is stable with respect to 

the energetically proximate monoclinic/rutile thermodynamic minima up to a 

temperature of 350°C. The open framework structure and the accessibility of multiple 

redox states at the vanadium center suggests that the polymorph could potentially serve 

as an intercalation host. Beyond the solubility limit of iridium on the vanadium 

sublattice (1.28—3.15 at.% depending on the precursor concentration), metallic Ir 

nanocrystals are found to be homogeneously dispersed on the surfaces of the 
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nanoplatelets indicating a strong interaction between the metal nanocrystals and oxide 

lattice.  

4.2. Introduction 

Kinetically trapped metastable compounds oftentimes exhibit radical departures 

from equilibrium behavior and thereby provide a much more richly varied landscape of 

structures, properties, and functions as compared to those accessible within 

thermodynamic minima.[1,2] Such structures are commonly characterized by unusual 

framework connectivity and atypical coordination environments, thereby providing 

access to electronic structure features that can diverge substantially from comparable 

features in the thermodynamically stable polymorph. For instance, while the hexagonal 

2H phase of MoTe2 with trigonal prismatic coordination of Mo atoms is a 

semiconductor, the monoclinic 1T'-phase is a semi-metal, whereas the orthorhombic Td 

phase has recently been discovered to be a Weyl semi-metal with characteristic 

topologically protected Fermi arcs and is believed to have potential to exhibit novel 

quantum phenomena such as chiral anomalies.[3] In the binary HfO2 system, the 

monoclinic phase is thermodynamically stable, whereas the high-temperature tetragonal 

phase is predicted to exhibit a dielectric constant value that is substantially higher as a 

result of its longer Hf—O bonds, softer low-energy phonon modes, and higher 

bandgap.[4] One approach to stabilization of a metastable compound is to access a regime 

on a multidimensional energy landscape wherein that compound represents the 

energetically most favored polymorph and then preventing quenching to the 

thermodynamically stable polymorph when the relevant constraints are removed. 
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Pressure, strain, surface confinement, and chemical potential are some examples of 

additional dimensions that can be utilized to access metastable phase space.[1,5,6] In this 

work, we demonstrate stabilization of an open-framework VO2 polymorph with 

rectangular tunnels upon substitutional Ir doping on the cation lattice. The structure is 

stable towards the energetically proximate rutile/monoclinic thermodynamic polymorphs 

up to a temperature of 350°C. 

The binary Hf—O phase diagram has several variants other than the monoclinic 

and tetragonal polymorphs noted above; for instance, a cubic polymorph is stable above 

2700°C and an orthorhombic polymorph, stabilized by substitutional Y or Al doping on 

the cation lattice, shows a pronounced ferroelectric distortion with an experimentally 

demonstrated saturation polarization approaching 16 μC/cm2.[7–9] However, the binary 

Hf—O energy landscape appears to be much more sparsely populated as compared to 

the energy landscapes of binary vanadium oxides VO2 and V2O5, which are 

characterized by a multitude of energetically proximate polymorphs.[10–15] Considering 

the d0 compound V2O5, several polymorphs with widely varying lengths of V—O bonds, 

connectivity of vanadium-centered polyhedra, and stacking of (V2O5) sheets are 

experimentally accessible.[10,12,15,16] Such compounds allow for a broad range of 

bandgaps and energy dispersion of V 3d-derived bands as well as define starkly different 

ion conduction pathways with activation barriers that can differ by an order of 

magnitude.[10,16,17] The close energetic proximity of insulating monoclinic and metallic 

tetragonal phases of vanadium(IV) oxide or VO2 make this material a canonical system 

for investigation of metal—insulator transitions; the monoclinic M1 phase undergoes a 
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pronounced metal—insulator transition (MIT) to the high temperature (R) phase at 

65°C.[18] In addition, several other polymorphs are known such as the M2 polymorph, 

which is stabilized by strain or chemical pressure, the M3 phase, metastable VO2(A) and 

VO2(B) phases often accessible from hydrothermal synthesis, and a mineral phase 

paramontroseite or VO2(P).[19–22] The ability to access a rich palette of structural motifs 

with varying connectivity of V—O bonds, tunable linkages of vanadium-centered 

polyhedra, and reconfigurable stacking of extended sheets has profound implications for 

the relative extent of ionicity or covalency and allows for broad tunability of transport 

properties from insulating to semiconducting and metallic regimes.[15] 

The paramontroseite (P) phase of VO2 is a naturally occurring mineral with an 

open framework structure  wherein VO6 tetrahedra define a rectangular tunnel; it is 

distinctive for stabilizing vanadium in a low oxidation state and was first noted by Mores 

and Evans in 1954.[22] In 2008, Wu et al. reported a hydrothermal synthesis that yielded 

“walnut-like” microstructures of VO2(P) based on the reaction of sodium orthovanadate 

and thioacetamide.[23] However, a structure solution was not reported and the presence of 

potential S incorporation within the anion sublattice, commonly observed upon 

hydrothermal thioacetamide reduction, does not appear to have been examined. 

Nevertheless, the rigid tunnel structure and the accessibility of the V4+/V3+ redox couple 

lends itself to Li-ion intercalation and this material has been examined as a potential 

cathode material for battery applications.[23] Additionally, VO2(P) has been shown to 

have an interesting effect on the induction of cell autophagy.[24] Herein, we demonstrate 

that Ir doping on the cation lattice allows for stabilization of a distorted variant of the 
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VO2(P) phase, which is prepared in nanoplatelet form. We report a refined crystal 

structure characterized by quasi-1D tunnels that have rectangular cross-sections, map the 

synthetic regime wherein this polymorph is accessible, and furthermore examine its 

conversion to the thermodynamically stable M1/R polymorphs upon annealing at 350°C. 

The atomic concentration of substitutional Ir incorporated on the V sublattice depends 

on the Ir precursor concentration and a solubility limit of 1.28—3.15 at.% is deduced; 

close to the solubility limit, metallic Ir nanocrystals are found to be stabilized and 

homogeneously dispersed on the surfaces of the nanoplatelets indicating a strong 

interaction between the metal nanocrystals and oxide lattice. 

4.3. Results and Discussion 

The introduction of dopants within extended periodic solids can stabilize subtle 

structural distortions and modify relative phase stabilities, thereby giving rise to a 

substantially altered phase diagram.[11] Such effects can be especially acute for “rugged” 

energy landscapes characterized by a series of closely related polymorphs. For instance, 

the introduction of Al and Cr on the vanadium sublattice of VO2 stabilizes the M2 

polymorph,[25,26] whereas substitutional W- and Mo-doping on the vanadium sublattice 

preferentially stabilizes the R polymorph over the M1 polymorph even rendering the 

former metallic phase accessible at room temperature.[27–29] Interstitial B-doping of VO2 

similarly stabilizes the R polymorph over the M1 polymorph,[30] thereby strongly 

depressing the characteristic metal—insulator transition temperature, whereas in 

contrast, interstitial H incorporation stabilizes two distinct orthorhombic phases, O1 and 

O2.
[31] In this work, we demonstrate the stabilization of a metastable orthorhombic 
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VO2(P) phase with rectangular tunnels upon substitutional Ir doping on the cation 

sublattice of VO2. 

 

 

Figure 4.1 Refinement of the Crystal Structure of the VO2(P) Phase.  (a) Powder XRD 

pattern acquired for orthorhombic VO2 (space group: Pnma); the experimental 

diffraction pattern is plotted as black crosses, the green trace represents the background 

function, the red trace is the Rietveld fit, and the blue trace represents the residuals 

(Rietveld fit subtracted from the experimental pattern). The obtained unit cell 

parameters for the refined structure are: a = 4.7014(5) Å, b = 9.567(1) Å, and c = 

2.9196(4) Å. Refinement statistics are provided in Table C.1. (b) Representation of the 

refined structure as a 2×2×2 supercell viewed along the crystallographic c-axis; the 

quasi-1D tunnels of the structure are projected perpendicular to the a-b plane. Detailed 

views of the structure along each crystallographic axis are depicted in Figure C.1; 

atomic positions, bond distances, and bond angles are presented in Table C.2, C.3, and 

C.4, respectively 
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4.3.1. Structural and Morphological Characterization 

The prepared phase is related to the naturally occurring mineral, paramontroseite, 

which in turn is crystallographically related to the minerals, montroseite (VOOH), 

diaspore (α-AlOOH), and ramsdellite (MnO2).
[22,32,33] A synthetic analog of 

paramontroseite, VO2(P), has since been synthesized under hydrothermal conditions 

although a full structure solution was not provided.[23] In previous literature reports, the 

hydrated montroseite (VO(OH)2) phase has been transformed to VO2(P) upon annealing 

at 120°C providing a means to access this metastable phase, representing a local minima 

on the free-energy landscape, without reversion to the thermodynamic minimum (the M1 

phase of VO2).
[33] It is worth noting that there are stark differences between the naturally 

occurring paramontroseite phase and the Ir-stabilized VO2(P) structure reported in this 

work despite the retention of the quasi-1D tunnel framework.[22,23]  

The novel tunnel-structured orthorhombic polymorph has been stabilized by the 

hydrothermal reduction of V2O5 by oxalic acid in the presence of IrO2 as a dopant 

precursor. The Ir:V molar ratio has been varied from 0.0068:1 to 0.68:1 in the reaction 

mixture although the solubility of Ir in the V lattice is substantially lower than the 

amount of the added precursor and only a fraction of the added Ir is incorporated within 

the VO2 lattice as discussed below. Figure 4.1a shows the powder XRD pattern acquired 

for powders obtained at a Ir:V ratio of 0.0068:1 (the actual Ir content is estimated to be 

1.28±0.40 at.% Ir at V sites based on XPS analysis, vide infra). A Rietveld refinement of 

the powder XRD pattern has been performed and the refined pattern as well as the 

residuals are also plotted in Figure 4.1a. Figure 4.1b depicts the refined structure, which 
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is characterized by quasi-1D tunnels extending along the crystallographic c axis. Figure 

C.1 (Appendix C) depicts other views of the crystal structure; Tables C.1, C.2, and C.3 

list the refined unit cell parameters, atom positions, and bond distances, respectively.  

It is worth noting that the Ir-doped VO2(P) phase is substantially distorted from 

the mineral paramontroseite as discernible from comparison of the XRD patterns of the 

two materials (Figure 4.2). Figure 4.2a contrasts the powder XRD patterns for the Ir-

doped VO2 synthesized in this work with that of a pattern simulated from a previously 

reported structure solution for the mineral phase;[22] the right panel clearly illustrates the 

relative shifts of the reflections, corresponding to a pronounced distortions of the 

rectangular tunnel in the Ir-doped phase with respect to the mineral phase. In particular, 

in the Ir-doped phase stabilized in this work, the lattice is expanded along the b axis, 

whereas a clear contraction of the lattice is evinced along the a axis (evidenced by the 

shift of the {110} reflection to higher 2θ values). Comparing the two structures, in the Ir-

doped phase, the tunnel is expanded by ca. 1.86%, whereas a 3.86% contraction is 

observed along the a axis with respect to the mineral phase; the overall unit cell volume 

is decreased by ca. 2.4% with respect to the mineral phase (Tables C.5 and C.6). 

Figures 4.2b and c contrast the tunnels defined by distorted VO6 octahedra in the 

Ir-doped VO2 and mineral phases, respectively. Figure 4.2d and 4.2e depict the local 

coordination geometry of vanadium atoms in VO6 octahedra, in the Ir-doped VO2 and 

mineral phases, respectively; the octahedra serve as the fundamental building blocks for  
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Figure 4.2. Structural Comparison of Ir-Doped VO2(P) to the Paramontroseite Mineral 

Phase. (a) A comparison of powder XRD patterns for the Ir-doped VO2 phase prepared in 

this work (with a nominal Ir concentration of 1.28±0.40 at.%, depicted in red) to that of 

the paramontroseite mineral phase simulated from the unit cell reported by Evans et al. 

(shown in black).[22] The right panel shows a magnified view of the powder XRD 

patterns in the 2θ range between 18—26°, illustrating both the expansion of the lattice 

along the b axis and contraction of the lattice along the a axis in Ir-doped VO2 relative to 

the naturally occurring mineral. The quasi-1D tunnels defined within (b) Ir-doped VO2 

and (c) the paramontroseite mineral phase are contrasted; the Ir-doped phase shows a 

considerable distortion with respect to the mineral phase. The local coordination 

geometries for VO6 octahedra in (d) Ir-doped VO2 and (e) the paramontroseite mineral 

phase show subtle distortions of V—O connectivity. 
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the tunnels. Tables C.5 and Table C.6 contrast the alteration of the lattice constants with 

respect to previously synthesized VO2(P)[23] and mineral paramontroseite[22] phases. The 

distortions induced upon Ir-doping relative to both the naturally occurring mineral and 

synthetic paramontroseite have a profound effect on the shape, orientation and width of 

the 1D tunnels of the structure. In Figure 4.2c corresponding to the mineral 

paramontroseite phase, the tunnels closely resemble a trapezoid (highlighted in blue) 

with an internal angle of 73.14°; the long side of the trapezoid is slightly distorted with a 

bend of 7.4° from the straight edge. In contrast, the Ir-doped VO2(P) phase depicted in 

Figure 4.2b has tunnels with more rectangular cross-sections (highlighted in red); the 

tunnels are characterized by only a 1.25° deviation from the straight edge and exhibit an 

internal angle of ca. 90°. The anisotropic distortion can best be understood as a 

“straightening” of the tunnel shape to a more symmetric four-sided polygon. The 

increased symmetry of the tunnels furthermore leads to more symmetric quasi-

octahedral coordination environments with average bond distances of 2.25 Å for the Ir-

doped VO2(P) phase. The VO6 octahedra of Ir-doped VO2(P) (Fig. 4.2d) have bond 

angles closer to 90° as compared to the wider spread of bond angles observed in the VO6 

polyhedra (Fig. 4.2e) of the mineral paramontroseite (a quantitative comparison of bond 

angles and bond lengths is presented in in Table C.4).  

Notably, the V—V distances in this structure are rather close to the critical 

distance empirically defined by Goodenough to be the threshold below which increased 

orbital overlap brings about an electronic transition from semiconducting to metallic 

transport. [34] While the distortion induced by Ir doping is rather small along the 
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crystallographic c axis, the change in orbital overlap as a function of Ir doping may 

potentially bring about a pronounced modulation of electronic conductivity and will be 

the focus of future work. 

In order to determine the limits of doping for Ir in VO2 progressively larger 

amounts of IrO2 have been added to the reaction mixture and the products have been 

analyzed by powder XRD. Figure 4.3 shows powder XRD patterns acquired for samples 

prepared with added concentrations of Ir:V ranging from 0.0068:1 to 0.676:1. As will be 

discussed below, the actual Ir content incorporated within the VO2 lattice is substantially 

lower and appears to depend on the precursor concentration (up to a maximum limit 

estimated to be 1.28—3.15 at.% Ir in VO2); the competing nucleation of metallic Ir 

islands is initiated close to the solubility limit. At an added Ir:V precursor concentration 

of 0.0676:1, two broad reflections at 2Ɵ = 40.5 and 47.3°, which can be indexed to 

metallic Ir crystallized in the cubic phase, become discernible. The considerable 

Debye—Scherrer broadening evidenced for these reflections indicates that Ir atoms that 

do not form a solid solution on the cation sublattice of VO2 instead coalesce to form 

metallic Ir nanocrystals. Above an Ir:V concentration of ca. 0.541:1, the VO2(P) phase is 

no longer stabilized and instead the products are a mixture of VO2 crystallized in the M1 

phase along with metallic Ir nanocrystals. An additional phase does appear in the 

samples of V:Ir concentrations of 0.135:1 and 0.270:1 as suggested by the asterisked 

reflections in Figure 4.3. These reflections are attributed to the {102}, {104}, and {216} 
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reflections of karelianite V2O3 (JCPDS # 85-1403), likely resulting from increased 

reduction of V2O5 by oxalic acid under these conditions. 

Figure 4.3. Evolution of Products as a Function of Increasing IrO2 Added to Reaction 

Mixture. XRD patterns for samples prepared with increasing amounts of added Ir 

precursor from bottom to top. The relative ratio of Ir to V added to the reaction mixture 

is labeled on the right. Patterns for VO2(P) (black, as refined and indexed in Fig. 4.1a) 

and cubic iridium metal[44] (red, top) are included for reference. Reflections 

corresponding to the M1 phase of VO2 are indexed in black as per JCPDS/PDF card no. 

043-1051. The asterisked reflections (*) denote the presence of karelianite V2O3 

(JCPDS/PDF # 85-1403) contaminants in samples prepared from 0.135:1 and 0.270:1 

ratios of Ir:V precursors. 
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Electron microscopy has been performed to analyze both the morphology of the 

stabilized VO2(P) materials as well as to examine the Ir nanocrystals stabilized when the 

Ir precursor concentration surpasses the solubility of Ir in the VO2 lattice (Fig. 4.4). 

Figure 4.4a depicts TEM images of VO2(P) nanocrystals corresponding to an added Ir:V 

concentration of 0.0068:1 (XPS suggests that the concentration of incorporated Ir atoms 

is 1.28±0.40 at.%, Fig. 4.5a). Figure 4.4a shows multiple overlapping particles 

suggesting that VO2(P) phase is crystallized as thin nanoplatelets with approximately 

hexagonal lateral cross-sections. The nanoplatelet morphology is further corroborated by 

the SEM image shown in Figure 4.4b. The lateral dimensions of the nanoplatelets have 

been determined to be 47.5 ± 21.1 nm. Figures 4.4c and 4.4d show low-magnification 

and high-resolution TEM images acquired for products obtained with a 0.0338:1 Ir:V 

ratio of precursors in the reaction mixture. In Figure 4.4c, a similar agglomeration of 

VO2 nanoparticles is seen as observed in Figure 4.4a but with the addition of several 

sparsely distributed high-electron-contrast clusters of <5 nm diameter particles on the 

surface of the platelets. Lattice-resolved images such as depicted in Figure 4.4d indicate 

that these particles are metallic Ir nanocrystals with diameters ranging from 2.0—4.0 

nm. Given the small size of X-ray coherent metallic Ir domains and their low 

concentration, it is not surprising that reflections corresponding to metallic Ir are not 

discernible in XRD patterns acquired for this sample (Fig. 4.3) even though nanoscopic 

islands are discernible in HRTEM imaging. Consequently, as will be further discussed 

below, even at this concentration, the Ir precursor content exceeds the solubility of Ir in 

the VO2 sublattice and insoluble Ir atoms coalesce in the form of metallic Ir particles  
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Figure 4.4. Electron Microscopy Characterization of VO2(P) and VO2(P)/Ir 

Heterostructures. (a) Low-magnification TEM and (b) SEM image of Ir-doped VO2(P) 

nanoplatelets. The intended Ir-dopant concentration is 0.0068 Ir/V, whereas XPS 

suggests incorporation of 1.28±0.40 at.% Ir on the V sites. (c) Low-magnification TEM 

and (d) high-resolution TEM image of an Ir-doped VO2(P) nanoplatelet with Ir:V 

precursor ratios of 0.0338:1. (e) Low-magnification TEM of Ir-doped VO2(P) 

nanoplatelet with Ir:V precursor ratios of 0.0676:1. (f) An individual Ir-doped VO2(M1) 

nanoplatelet with Ir:V precursor ratios of 0.676:1. Ir nanocrystals with dimensions of ca. 

2.0—4.00 nm are observed to be dispersed on the VO2 nanoplatelets in the 0.0338:1, 

0.0676 and 0.676:1 Ir:V samples but are much more abundant in the latter. 
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crystallized in the cubic phase. In contrast, Figure 4.4e shows that upon increasing the 

Ir:V precursor ratio to 0.0676:1, the concentration of metallic Ir islands is furthermore 

increased albeit XPS measurements suggest a higher amount of tetravalent Ir atoms as 

well (estimated to be 3.15±0.82 at.%). At a  Ir:V ratio of 0.676:1 in the reaction mixture, 

a high density of well-defined metallic Ir particles with dimensions of ca. 5 nm are 

observed almost entirely coating the VO2 nanocrystals (which at this concentration are 

crystallized in the M1 phase) as depicted in Figure 4.4f. The dispersion of 

nanocrystalline Ir metal on the VO2 surfaces is suggestive of strong interfacial 

interactions and likely derives from d-acid/base interactions as originally suggested by 

Brewer wherein early (V) and late (Ir) transition metals undergo strong orbital mixing of 

d-states yielding homogeneously dispersed clusters on the oxide surface.[35,36] 

4.3.2. Dopant Structure 

In order to elucidate the role of the Ir precursor in stabilizing the VO2(P) phase, 

XPS analysis has been performed on samples prepared with increasing amounts of the 

IrO2 precursor. Figure 4.5a shows that the sample with the lowest amount of added IrO2 

precursor (0.0068 Ir/V) exhibits features at 61.3 and 64.2 eV, which can be assigned to 

emission from Ir 4f7/2 and 4f5/2 states, respectively. In contrast, the precursor IrO2 is 

characterized by Ir 4f7/2 and 4f5/2 features at 61.8 and 64.8 eV, respectively. The shift of 

the features to lower binding energies while still being in the 61.1—62.9 eV range 

characteristic of 4f7/2 features of tetravalent Ir atoms[37–39] suggests the substitutional 

incorporation of formally tetravalent Ir within the VO2 lattice. Based on the survey XPS 

scan, the concentration of Ir within this sample is estimated to be 1.28±0.40 at.%, which  
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Figure 4.5. XPS Analysis of Dopant Oxidation State. High-resolution XPS spectra in 

the binding energy range of 58—68 eV corresponding to photoemission from Ir 4f7/2 

and 4f5/2 for (a) VO2(P) prepared using a 0.0068:1 Ir:V ratio of precursors (an Ir content 

of 1.28±0.40 at.% is deduced from integration of the survey XPS span) and (b) VO2(P) 

sample prepared using a 0.406:1 Ir:V ratio of precursors (an Ir content of 33.88±7.18 

at.% is deduced from integration of the survey XPS span). Fits for Ir4+ in (a) and Ir0 and 

IrO2 (b) are included as a measure of the formal valence of Ir within the prepared 

materials. 
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attests to the low solubility of Ir within the VO2 lattice and is consistent with our 

observation that a good structure refinement can be obtained without accounting for Ir 

fractional occupancies on V sites. No metallic Ir is observed for this sample by XRD, 

XPS, or HRTEM. Increasing the added concentration of the Ir:V precursors to 0.0338:1 

results in the appearance of sparsely distributed metallic islands (Fig. 4.4c) although the 

Ir content is too low to be detectable by XRD. At a Ir:V precursor ratio of 0.0676:1, the 

concentration of tetravalent doped Ir in the VO2 lattice is estimated to be 3.15±0.82 at.% 

by XPS, which represents an upper bound of Ir solubility. The concentration metallic Ir 

nanocrystals is also increased under these conditions as suggested by both TEM and 

XRD analysis (Fig. 4.4e and Fig. 4.3, respectively).  Further increase of the IrO2 

precursor concentration in the reaction mixture does not increase the amount of doped Ir 

and instead metallic Ir nanocrystals and remnant IrO2 are observed, as also discernible 

from Fig. 4.3. Signatures of these two species are clearly discernible in Figure 4.5b 

corresponding to a sample prepared using a 0.406:1 ratio of the V and Ir precursors (the 

survey scan indicates an Ir content of 33.88±7.92 at.%). In other words, higher Ir 

concentrations facilitate increased dopant incorporation within the VO2 lattice, as is 

typical of kinetically stabilized growth regimes up to a limit in the range of 1.28—3.15 

at.%. A competing process for nucleation of metallic Ir is observed at the higher end of 

the solubility range and dominates at higher IrO2 precursor concentrations.  Interestingly, 

while tetravalent Ir is only sparingly soluble in VO2 perhaps as a result of the estimated 

6.25% differential in ionic radii and substantially different extent of covalency, the 
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limited amount of incorporated Ir is sufficient to stabilize the open-framework tunnel 

structure. 

4.3.3. Metastability of the VO2(P) Polymorph  

The stability of the VO2(P) polymorph with respect to the thermodynamically 

stable M1/R polymorphs has been examined using DSC and in situ powder XRD 

measurements. Figure 4.6a shows a DSC trace acquired upon heating and cooling a VO2 

(P) sample (with a substitutional Ir content of 1.28±0.40 at.%) in the range of -20 to 

500°C. Two broad irreversible endothermic features are observed upon heating centered 

at 140 and 300°C with no corresponding features in the cooling trace. Instead, a small 

exothermic peak is observed at ca. 60°C upon cooling; Figure 4.6b indicates that this 

peak is reversible in subsequent cycles with an endothermic feature observed at ca. 68°C 

upon heating and an exothermic feature observed at ca. 58°C upon cooling. These 

transitions can be ascribed to the latent heat absorbed and released to mediate the M1→R 

and R→M1 transitions of VO2, respectively. The latent heat includes a lattice enthalpy 

contribution derived from the structural transformation accompanying the phase 

transition, which is partially offset by change of the phonon entropy as well as alteration 

of the conduction entropy of the electrons.[40,41] 

Figure 4.6c shows the results of in situ powder XRD measurements acquired as 

a function of temperature. Consistent with the broad endothermic peak observed in 

Figure 4.6a, at a temperature of 200°C, the characteristic (110) reflection of the VO2(P) 

phase is greatly diminished in intensity, whereas reflections at higher 2Ɵ values are 

retained, suggesting the loss of long-range order. At a temperature of 300°C, the (110)  
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Figure 4.6. Evaluation of the Thermal Stability of VO2(P). (a) DSC plot corresponding to 

the heating (bottom) and cooling (top) of VO2(P) (with an Ir content of 1.28±0.40 at.%) 

from -20 to 500°C and back down to -20°C. (b) DSC trace for a second cycle wherein the 

material is heated from -20 to 100°C and then back down to -20°C. The endothermic and 

exothermic peaks at 68 and 58°C, respectively, can be assigned to the M1→R and R→M1 

transitions of VO2. (c) Intensity modulation maps reflecting the modulation of powder X-

ray diffraction intensities upon in situ heating and cooling of VO2(P) to a temperature of 

400°C and back down to 30°C. The red and blue indices depict reflections for VO2(P) and 

VO2 (M1), respectively. The red line denotes the complete structural transformation of 

VO2(P) to VO2(R). The white line represents a change from heating to cooling as also 

delineated by the arrows. 
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reflection of the R phase becomes discernible; the second endothermic feature in Figure 

4.6a thus corresponds to crystallization of the R phase. Next, a phase coexistence regime 

is observed with a mixture of VO2(P) and the R phase until complete conversion to the R 

phase occurs between 350 and 400°C as delineated by the red line in Figure 4.6c. Upon 

cooling to 30°C, the monoclinic M1 phase is stabilized, as also suggested by the 

characteristic exothermic feature in Figure 4.6b. The thermally induced conversion of 

VO2(P) to the thermodynamically stable M1 phase upon heating confirms that the tunnel-

structured phase is in fact a metastable structure. 

4.4. Conclusions 

While Ir has a low solubility in VO2 (1.28—3.15 at.% on the cation sublattice 

depending on the precursor concentration), substitutional incorporation of tetravalent Ir 

in VO2, achieved under hydrothermal conditions, results in stabilization of an open-

framework metastable structure characterized by quasi-1D tunnels defined by corner- 

and edge-sharing distorted VO6 octahedra. The incorporation of Ir appears to define 

tunnels with a rectangular cross-section as compared to trapezoid tunnels characteristic 

of a related paramontroseite mineral phase. The materials are obtained in the form of 

ultra-thin nanoplatelets. The metastable tunnel-structured phase is irreversibly 

transformed to the R phase upon thermal annealing to a temperature of ca. 350°C. The 

open quasi-1D tunnel framework and the facile accessibility of oxidative and reductive 

redox couples at the metal center suggest that the prepared frameworks are potential 

intercalation hosts. 
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The stabilization of metallic Ir nanocrystals competes with Ir incorporation in 

VO2; such nanocrystals are found to nucleate at the surfaces of the nanoplatelets and are 

observed to be homogeneously dispersed. The homogeneous dispersion and small 

crystallite size suggests strong interfacial interactions with implications for the design of 

supported catalysts. 

4.5. Experimental 

4.5.1. Synthesis 

Nanoplatelets of VO2(P) were synthesized hydrothermally by adding 300 mg of 

V2O5 (Sigma-Aldrich), 450 mg of oxalic acid (Fisher Scientific), and varying amounts of 

IrO2 dopant (Strem Chemical, ranging from 5 to 500 mg) to 16 mL of deionized water (ρ 

= 18.2 MΩ cm-1, purified using a Barnstead International NANOpure Diamond system) 

in a 23 mL polytetrafluoroethylene cup; the reaction mixture was heated within an 

autoclave (Parr Instrument Company) to 250°C for 72 h. A matte-black powder was 

recovered by vacuum filtration and washed with copious amounts of water and acetone. 

4.5.2. Characterization 

 Powder X-ray diffraction (XRD) data were collected in Bragg—Brentano 

geometry on a Bruker D8-focus short-arm diffractometer equipped with a Lynxeye 

detector. Variable-temperature XRD data were collected using a Bruker D8-Vario X-ray 

powder diffractometer with a MTC oven attachment using Cu Kα radiation (λ= 1.5418Å) 

in an ambient atmosphere of argon. Rietveld analysis of the powder XRD data was 

performed using the EXPGUI interface in the GSAS software suite; all crystal structure 

renditions were generated using the VESTA software suite.[42,43] 
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X-ray photoelectron (XPS) spectra were collected using an Omicron system 

equipped with an Argus detector using a Mg Kα X-ray source with a source energy of 

1253.6 eV. Sample charge neutralization was accomplished using a CN10 electron flood 

source. All high-resolution spectra were measured with an energy step size of -0.05 eV 

and a pass energy of 20 eV in constant analyzer energy (CAE) mode. The energy 

resolution of the XPS measurements was ca. 0.8 eV.  Calibration of all high-resolution 

spectra was performed against the C 1s line of adventitious carbon at ca. 284.8 eV. 

Relative atomic concentrations of V, O, and Ir were determined using the CasaXPS 2.3.16 

software based on application of the Marquardt-Levenberg optimization algorithm. 

Low-magnification transmission electron microscopy (TEM) images were 

collected on a JEOL 2010 electron microscope at an operating voltage of 200 kV. High-

resolution TEM images were acquired on a Tecnai G2 F20 ST instrument at an operating 

voltage of 200 kV. Scanning electron microscopy (SEM) images were acquired on a JEOL 

JSM-7500F field-emission SEM equipped with a high-brightness conical FE gun and a 

low-aberration conical objective lens. A cold cathode UHV field-emission conical anode 

gun was used as the source and imaging was performed at an accelerating voltage of 3 kV.  

Differential scanning calorimetry (DSC) measurements were performed on a 

Thermal Advantage Q2000 instrument under a flowing Ar ambient. Scans were performed 

by scanning the temperature at a rate of 15°C/min from -20 to 500 °C in Tzero aluminum 

pans crimped sealed with Tzero lids. 
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5. MACHINE LEARNING-DIRECTED NAVIGATION OF SYNTHETIC DESIGN 

SPACE: A STATISTICAL LEARNING APPROACH TO CONTROLLING THE 

SYNTHESIS OF PEROVSKITE HALIDE NANOPLATELETS IN THE QUANTUM-

CONFINED REGIME* 

 

5.1. Overview 

The design of a chemical synthesis often relies on a combination of chemical 

intuition and Edisonian trial-and-error methods. Such methods are not just inefficient but 

inherently limited in their ability to quantitatively predict synthetic outcomes, easily 

defeated by complex interplays between variables, and oftentimes based on suppositions 

that are limited in validity. The synthesis of nanomaterials has been especially prone to 

empiricism given the combination of complex chemical reactivity as well as mesoscopic 

nucleation and growth phenomena spanning multiple temporal and spatial dimensions. 

Here, utilizing the synthesis of 2D CsPbBr3 nanoplatelets as a model system, we 

demonstrate an efficient machine learning navigation of reaction space that allows for 

predictive control of layer thickness down to sub-monolayer dimensions. Support vector 

machine (SVM) classification and regression models are used to initially separate 

regions of the design space that yield quantum confined nanoplatelets from regions 

yielding bulk particles and subsequently to predict the thickness of quantum confined 

CsPbBr3 nanoplatelets that can be accessed under specific reaction conditions. The SVM 

models are not just predictive and efficient in sampling the available design space but 
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also provide fundamental insight into the influence of molecular ligands in constraining 

the dimensions of nanocrystals. The results illustrate a quantitative approach for efficient 

navigation of reaction design space and pave the way to navigation of more elaborate 

landscapes beyond dimensional control spanning polymorphs, compositional variants, 

and surface chemistry. 

5.2. Introduction 

Scaling periodic solids to nanometer-sized dimensions gives rise to distinctive 

quantum confinement effects, an increased proportion of atoms residing at surfaces, and 

the elimination of extended defects. Such phenomena have spurred intense interest in the 

programmable growth and assembly of nanomaterials with potential applications in 

optoelectronics, medical diagnostics, catalysis, and energy harvesting. Colloidal 

nanocrystal synthesis represents an important tool in the arsenal of synthetic materials 

chemists and provides access to well-defined monodisperse nanocrystals with surfaces 

passivated by coordinating ligands or electrostatically bound surfactants.[1–4] The 

synthesis of nanocrystals from molecular precursors is generally understood according to 

variations of nucleation and growth theory with the added ligands enabling the temporal 

separation of the two steps, stabilizing specific crystallographic facets through 

preferential binding, and providing control over monomer supersaturation.[5–9] Achieving 

precise synthetic control over the shape and size distributions of these ensembles of 

nanocrystals is imperative for the effective utilization of such materials. Recent efforts 

have sought to expand mechanistic understanding and establish correlations between 

precursor reactivity and the eventual crystal structure, dimensionality, shape, and surface 
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chemistry of nanocrystals; nevertheless, much of synthetic nanochemistry remains 

strongly reliant on the development of empirical synthetic strategies.[10–14] Edisonian 

trial-and-error methods involving changing a single synthetic variable and observing the 

response are standard practice but represent a rather inefficient means of exploring 

potentially vast design spaces. Such methods are furthermore limited in their ability to 

quantitatively predict synthetic outcomes and do not provide a satisfactory 

understanding of variable correlations, factors underpinning challenges with 

reproducibility, and parameters necessary to facilitate the application of modern process 

design tools. Some initial attempts at bringing statistical learning to nanocrystal 

synthesis have invoked design of experiments (DOE) methods such as full and fractional 

factorial sampling coupled with ridge regression to establish correlations between 

synthetic variables and nanocrystal dimensions.[15,16] These methods provide a means of 

rapidly exploring synthetic correlations but impose specific sampling constraints on 

creation of the model and often interpolate large areas of the design space. In contrast, 

machine learning approaches are more versatile in enabling the use of incomplete (and 

sparse) datasets not acquired according to specific constraints allowing for the creation 

of robust models for the prediction of quantitative or qualitative synthetic outcomes. In 

this article, we demonstrate the application of a non-linear data-driven machine learning 

model to predictively control the layer thickness of perovskite halide nanoplatelets. 

The intersection of machine learning and chemistry has provided new 

opportunities spanning the range from atomistic design of solid-state compounds to 

elucidation of ligand parameters underpinning molecular catalysis[17–19] and mapping of 
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compositional gradients in hyperspectral maps of discharged cathode materials.[20] 

Nonlinear modeling, such as using support vector machines for classification or 

regression, has proven to be successful at predicting a wide range of materials properties 

based on elemental parameters and atomic interactions ranging from crystal structure to 

band gap.[21–25] However, such methods have rarely been applied to a singular chemical 

synthesis due to the cost of creating a viable dataset large enough to both provide new 

chemical insights and avoid overfitting. By utilizing existing synthetic results as initial 

datasets, input data can be efficiently acquired to allow for the meaningful use of robust 

nonlinear modeling techniques. Size control in nanocrystal synthesis provides an 

excellent output for evaluating quantitative predictive models developed based on 

existing data. The synthesis of 2D CsPbBr3 perovskite nanoplatelets is used here as a 

model system given the clear layer-thickness-dependent photoluminescence spectral 

signatures that allow for rapid evaluation of size distributions within samples.[26–28]  

Lead halide perovskites have attracted extensive interest as a result of their 

remarkable properties including tunable exciton binding energies, high oscillator 

strengths of bandgap transitions, narrow emission bands, and high photoluminescence 

quantum yields.[29–34] CsPbBr3 is a stable all-inorganic perovskite accessible from 

solution-phase synthesis; dimensional confinement below the characteristic Bohr radius 

of 3.5 nm brings this material to the quantum confined regime and allows for tunability 

of the bandgap as a function of the layer thickness.[35] Discrete photoluminescence 

emission bands characteristic of each layer thickness indicate a pronounced modulation 

of the bandgap from 2.36—3.20 eV upon scaling from the bulk material down to 
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monolayer platelets.[36,37] Control of the layer thickness is generally accomplished 

through ligand-assisted synthesis.[35,38,39] In this work, utilizing photoluminescence 

spectroscopy as the primary probe, we demonstrate a predictive, statistically informed 

model for synthetic control of particle thickness developed using a sparse dataset. A 

machine learning approach for exploration of multivariate design space further provides 

mechanistic insight into the role of the ligand shell in inducing dimensional confinement. 

5.3. Results and Discussion 

5.3.1. Mapping Multivariate Reaction Space 

Figure 5.1A represents an initial data set for the synthesis of CsPbBr3 

nanoplatelets prepared using a hot colloidal method where multivariate reaction 

parameters have been explored by independently varying the reaction temperature (50, 

100, and 150°C at a fixed Pb:alkylamine ratio of 1:20), ligand concentration (in the 1:x 

range spanning x = 5—40 (wherein x is concentration of alkylamine) at a constant 

temperature of 100°C), and chain-lengths of n-alkylamine ligands (C4, C8, C12, and 

C18). The addition of coordinating amine ligands brings about pronounced dimensional 

confinement as schematically illustrated in Figure 5.1B.[38,45] 

Colloidal CsPbBr3 nanoplatelets adopts a distorted orthorhombic crystal structure upon 

dimensional confinement, which stands in contrast to the cubic phase stabilized at high 

temperature (>130°C) and tetragonal phase at intermediate temperatures (88-130°C) of 

bulk CsPbBr3.
[46] The powder X-ray diffraction patterns (XRD) in Figure 5.1C for 

CsPbBr3 nanoplatelets grown using alkylamines with different chain lengths can be 

indexed to the orthorhombic phase.[38,46,47] The average layer thickness (navg.) of 2D 
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CsPbBr3 nanoplatelets is expressed in terms of the number of [PbBr6]
4- octahedral layers. 

Values  

 

 

Figure 5.1. Sampling of the multivariate design space for the synthesis of CsPbBr3 

nanoplatelets. (A) 3D visualization of the average layer thickness as a function of the 

ligand chain-length and concentration at different reaction temperatures with added 

contrast on overlapping data points; (B) schematic illustration of ligand-induced 

dimensional confinement; (C) XRD patterns of CsPbBr3 nanoplatelets as a function of 

the alkylamine chain length; the orange ticks on the horizontal axis correspond to the 

reflections of orthorhombic CsPbBr3 with PDF# 01−072−7929. (D)-(H) PL emission 

spectra of CsPbBr3 nanoplatelets grown under different reaction conditions and (I)-(M) 

corresponding TEM images obtained for these samples. The photoluminescence 

emission spectra have been obtained at an excitation wavelength of 360 nm and are 

fitted to multi-peak Gaussian lineshapes representing the characteristic emission bands 

of different layer thicknesses. 
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of navg. plotted in Figure 5.1A been determined from the photoluminescence (PL) 

emission spectra as described in the experimental section and have been further verified 

by electron microscopy.[38] The photoluminescence emission spectra have been fit to 

multiple Gaussian distributions centered on the wavelengths of the discrete emission 

bands to deconvolute the fractional contribution of individual emission bands. The 

correlation between navg. and the thickness determined by TEM (tm) is illustrated for five 

representative samples in Figures 5.1D—M. Figures 5.1D—H exhibit the 

photoluminescence spectra and Figures 5.1I—M show the corresponding TEM images. 

Unlike II-VI quantum dots, the size distribution of CsPbBr3 2D nanoplatelets is 

not continuous but instead discretized based on the layer thicknesses. Emission spectra 

acquired at each set of reaction conditions are characterized by multiple PL emission 

bands quantized to populations of different layer thicknesses and manually assigned to 

peak positions as previously determined in single-particle PL emission spectra 

measurements.[28,36,38]  Figure D.1 plots the PL emission wavelength of 2D CsPbBr3 

nanoplatelets measured from single-particle measurements versus the vertical dimension 

of nanoplatelets.[38] In the strongly quantum confined regime (below n = 10 and 6 nm), 

the energy bandgap (and consequently the photoluminescence resulting from bandgap 

emission) varies strongly as a function of layer thickness. As the vertical dimension of 

CsPbBr3 nanoplatelets increases to greater than the exciton Bohr diameter, the PL 

emission converges to a maximum wavelength of approximately 525 nm (which reflects 

the 2.36 eV bandgap of bulk CsPbBr3) and no longer varies with thickness. Emission 

bands at 525 nm are assigned to n = 10 layers when computing navg; the validity of this 
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assignment is further examined below.  It is worth noting that the type of alkylamine 

ligand induces subtle shifts of PL emission maxima owing to (i) variations in types and 

concentrations of trap states, (ii) differences in dielectric constants and surface dipoles of 

the ligand shell, (iii) extent of electronic coupling between nanoplatelets.[38,48,49] Instead 

of fitting to the same peak maximum across all conditions, each spectrum has been 

manually fitted to account for these shifts of the PL emission maxima. Figure D.2 shows 

the fitting residual obtained from subtracting the multi-Gaussian fit sum from the 

experimental PL emission spectrum for the CsPbBr3 nanoplatelets synthesized using 

C12 with 1:40 at 100 °C demonstrating that the residuals are negligible and distributed 

randomly around zero. This procedure (in contrast to unconstrained automated fitting 

protocols) yields discrete bands correspondent with the single-particle emission spectra. 

The oscillator strength of 2D CsPbBr3 nanoplatelets can vary somewhat as a 

function of layer thickness depending on the specific synthetic route. However, there is 

considerable literature precedent of the PL quantum yield (QY) of CsPbBr3 perovskite 

nanocrystals in the quantum confined regime being within the same order of magnitude 

(33 % for n = 3, 44.7 % for n = 4, 31 % for n = 5) since these nanocrystals are not as 

prone to surface traps as II-VI semiconductors. Indeed, the elimination of trap states and 

the resulting defect-tolerant band structure is pivotal to the utilization of the relative 

intensities of discrete PL bands as a reliable proxy for the fractional contributions of 

different layer thicknesses.[28,37,40,50,51 Figure D.3 exhibits additional TEM images 

acquired for the five samples noted in Figure 5.1. The average layer thicknesses from 

left to right are navg. = 2.8 (tm = 1.9±0.4 nm), navg. = 3.5 (tm = 2.3±0.4 nm), navg. = 3.5 (tm 
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= 2.5±0.3 nm), navg. = 5.1 (tm = 3.0±0.3 nm), and navg. = 7.9 (tm = 10.3±0.7 nm) ordered 

from thinner to thicker nanoplatelets. A strong correlation is observed between the 

spectroscopic measurements and TEM imaging of layer thicknesses when the dimension 

of 2D nanoplatelets is below the exciton Bohr diameter in the strongly quantum confined 

regime, which corroborates the validity of the former method in providing a quantitative 

metric of layer thickness in the quantum confined regime.  

Table D.1 summarizes the results of the syntheses, shown in Figure 5.1A, and 

the estimated populations corresponding to the different layer thicknesses. Figure 5.1 

illustrates the clear influence that the choice of the ligand exerts on the extent of 

dimensional confinement of 2D CsPbBr3 nanoplatelets. In general, higher ligand 

concentrations, longer alkyl chain lengths, and lower reaction temperatures are observed 

to result in the stabilization of few-layered nanoplatelets in the strongly quantum 

confined regime. In contrast, lower ligand concentrations, shorter chain lengths, and 

higher reaction temperatures bring about rapid growth of thicker nanoplatelets 

approaching the bulk limit. The extent of dimensional confinement is generally 

understood to depend on the crystalline order of the self-assembled monolayer of ligand 

molecules and their dynamic equilibrium with free ligand molecules in solution.45 The 

structure of the ligand shell, the extent of monomer supersaturation, and the rate of 

monomer addition are in turn determined by the length of the alkyl chains, their 

branching, the reaction temperature, and concentrations. In this article, we have sought 

to develop a predictive machine learning model that captures the complex interplay 

between these reaction parameters. 
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In addition to the vectoral exploration shown in Figure 5.1A, 34 additional 

samples were synthesized randomly expanding the dataset to areas of design space that 

do not fall along the initial exploration vectors and are summarized in Table D.2. These 

selections were not selected for design space optimization but in the hope that a more 

random dataset would allow for better sampling of the design space and improve the 

robustness of the machine learning modeling methods.   

5.3.2. Classification, Curation, and Feature Set Development 

The initial dataset of 74 samples has been used to build two models of the 

reaction design space: (a) a classifier to define a boundary between bulk and quantum 

confined particles and (b) a regressor to predict the thickness of particles in the quantum 

confined regime. Figure 5.2 depicts the steps involved in the modeling procedure 

beginning with curation of the dataset and feature set development, followed by 

modeling of both the classifier and regressor, and finally, validation of the regressor 

using samples randomly selected from the quantum confined regime as determined by 

the classifier. 

 The first step in most machine learning processes involves identifying the 

features that best describe the data.[22] In the case of the CsPbBr3 nanocrystal synthesis, 

the goal of relating synthetic parameters to layer thickness limits the selection of features 

to the independent variables explored in the experimental dataset spanning ligand 

choice, ligand concentration, and reaction temperature. In principle, numerous other 

factors can contribute to determining the product distribution, including ambient 

pressure, stirring rate, injection rate, precursor reactivity, and concentration of 



 

145 

 

precursors, which would altogether define an even more complex design space than 

considered here. In this case, in order to constrain the model system and limit the 

dimensionality of independent variables to three, these variables have been held  

 

 

constant. The effect of these variables that have been held constant on the experimental 

dataset shown in Tables D.1 and D.2 is within the experimental noise. It is worth noting 

that characteristics such as precursor concentrations further shift the synthetic landscape 

to enable entirely different synthetic outcomes within the ternary Cs-Pb-Br system such 

as stabilization of the 0D Cs4PbBr6 phase. Clear trends are discernible in Figure 5.1A for 

the independent variables, ligand choice, ligand concentration, and temperature, in terms 

Figure 5.2. Schematic depiction of steps involved in developing a predictive model for 

the synthesis of CsPbBr3 nanoplatelets. 
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of their ability to influence the particle size.[38] A metric needs to be defined that best 

captures the influence of the ligand chemical structure and composition on the kinetics 

of crystal growth to allow for regression and interpolation to new values. A series of 

values have been tabulated for the n-alkylamine physical and chemical properties (Table 

D.3) and compared using both a t-test, as shown in Table 5.1, and by error analysis of a 

models calculated with each descriptor (a wrapper), the results of which are presented in 

Tables D.4 and D.5. The classes being compared in the t-test have been created by 

curating the dataset into two sections: a rigorously quantum confined class comprising 

samples where <5% of photoluminescence intensity arises bulk particles (31 samples, 

shaded grey in Tables D.1 and D.2) and a bulk class comprising all the samples where 

over 50% of the photoluminescence intensity can be ascribed to bulk CsPbBr3 particles 

(17 samples, shaded blue in Tables D.1 and D.2). The heuristic decision to omit samples 

containing 5—50% bulk photoluminescence intensity allows for mitigation of errors in 

misclassifying of samples arising from experimental variability in particle thickness. The 

wrapper, as well as subsequent regressive models, used samples that contained <50% 

bulk photoluminescence intensity (57 samples). 

Table 5.1 computes the t-test scores (equal variance two sample t-test) for 

different chemical and physical properties of n-alkylamines of varying chain lengths 

from 4—18 carbons used as the capping ligands with regards to their effectiveness; the T 

statistic, a relative score with an absolute value representative of the separation of the 

two classes; and the p-values, a normalized value indicating the significant difference 

between the two classes based on the distributions along the tested variables are 
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Table 5.1. T and P value results for t-testing of various alkylamine descriptors. 
Factors Ref. T score p-value 

Diffusion coefficient 20°C 45 4.884 1.30 × 10-5 

Boiling point 59 -4.855 1.43 × 10-5 

Enthalpy of vaporization 59 -4.776 1.86 × 10-5 

Density 60 -4.745 2.06 × 10-5 

Melting point 60 -4.719 2.24 × 10-5 

1H-NMR shift (terminal CH3) 61 4.700 2.39 × 10-5 

Molar mass 60 -4.526 4.23 × 10-5 

Chain length n/a -4.526 4.23 × 10-5 

ΔG agglomeration 100°C 62 4.526 4.23 × 10-5 

Polarizability 59 -4.518 4.35 × 10-5 

1H-NMR shift (-NH2) 61 4.246 1.05 × 10-4 

Dipole moment 63 -4.033 2.05 × 10-4 

pKa 60 -0.525 6.02 × 10-1 

 

delineated for each of tabulated properties. Properties reflective of nonpolar alkyl chains 

that are governed by additive chain-length-dependent intermolecular London dispersion 

forces, such as the diffusion coefficient and boiling point, yield T statistics farthest from 

zero accompanied by the smallest P values. Conversely, properties that in essence are 

associated with the amine functionality, such as pKa, the electronic shielding of the 

amine hydrogens, and the dipole moment yield T statistics closest to zero and the largest 

P values which is indicative of the relative insensitivity of properties determined by the 

amine functionality on the length of the alkyl chains. These results are furthermore 

mirrored for the best performing regression method in the wrapper analysis using leave-

one-out cross-validation to analyze the predictive error as discussed in the next section.  

According to this descriptor analysis, the ligand diffusion coefficient (at constant 

temperature), computed as: 
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𝐷 =
𝑘𝑏𝑇

6𝜋𝜂𝑎
𝑙𝑛(

2𝑎

𝑏
)      5.1 

where kb is Boltzmann’s constant, T is temperature, η is the solvent viscosity, a is the 

radius of the long axis of the molecule, and b is the short axis of the molecule, is 

marginally the best metric for separating the bulk samples from the quantum confined 

regime in the t-test (as well as the top performing descriptor in the wrapper) and thus 

will be used as the numerical representation of choice to denote the alkylamine used in 

synthesis.[45] A singular descriptor representing the amine is most appropriate for the 

intended modeling owing to bias introduced using colinear variables in a feature set of 

only three independent variables. However, combinations of descriptors could be 

particularly useful for multi-objective optimization such as for control over layer 

thickness and quantum yield. The diffusion coefficient has previously been shown to be 

a useful measure of capping ligand effects owing to the ability to capture the shape of 

the molecule and its interaction with the solvent within one numerical parameter.[45] 

Notably, the T scores for reaction temperature and ligand concentration computed in the 

same manner are 2.411 and -3.676, respectively, which suggests that it is the choice of 

ligand rather than these parameters that have the most pronounced impact on the extent 

of dimensional confinement. 

5.3.3. Modeling and Model Validation 

Using the same heuristically separated classes as defined for the t-test, a classifier 

has been generated to separate the bulk samples from the quantum confined regime in 

design space with the objective of first developing a model that provides a predictive 

binary output of “bulk” or “quantum confined”. A three-dimensional non-linear decision 
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boundary has been created to separate these classes along the axes of reaction 

temperature, ligand concentration, and ligand diffusion coefficient. The classes of data 

are seen not to be linearly separable and thus support vector machine (SVM) 

classification has been used with a radial basis kernel (Fig. 5.3) to define the decision 

boundary.[42] The SVM classifier shows no apparent test-set error; leave-one-out cross 

validation (an error metric where a single datum is removed, the model computed, and 

the left out datum is predicted and compared to the true value and repeated for every 

data point in the set to get an average error) exhibits a misclassification error of 2.1% 

indicating that this boundary is both robust and successful at classifying bulk from 

quantum confined nanocrystals as a function of the synthetic conditions. This classifier 

has further been used to select samples for a validation set to evaluate the performance 

of the regressor that will be subsequently described. 

Regression is commonly used to create models in datasets where the relationship 

between the input and output is a known function (e.g., linear, quadratic). However, in 

complex or higher dimensional systems where functions or variable correlation is 

unknown, a non-linear data driven regression oftentimes better captures relationships 

within the data. In order to investigate a model that can predict the average layer 

thickness of CsPbBr3 from a sparse data set, we will examine four regressors: linear, 

quadratic, quadratic with cross terms, and support vector machine regression (SVM) 

using a radial basis kernel, the lead machine learning model. For comparison, several 

other machine-learning based models were tested including SVM with linear, quadratic, 

and cubic kernels, KNN regression with k = 3, and linear ridge regression with penalty λ 
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values ranging from 50-0.001. The results of these models can be found in Tables D.4 

and D.5 where each method was included in the wrapper analysis of the alkylamine 

descriptors. 

A dataset of 53 samples has been used for this analysis including all samples 

from the original experimental data set that contain a majority of quantum confined 

particles (<50% of the photoluminescence is derived from bulk particles). The four 

regressors have been analyzed using leave-one-out cross validation to estimate the error. 

Figure 5.4 shows the cross-validation results in the form of a plot of actual average layer 

thickness plotted versus the predicted average layer thickness according to the regressor 

as well as an evaluation of the root-mean-squared cross-validation errors (RMSE-CV). 

Linear regression provides the largest error with a RMSE-CV of 1.0266 layers; Figure  

Figure 5.3. 3D scatter plot showing the SVM classifier decision boundary (grey 

surface) separating quantum confined samples containing <5% bulk photoluminescence 

intensity (black/left) from bulk samples containing >50% bulk photoluminescence 

emission (red/right). 
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5.4A shows that such a regression overestimates thinner navg. = 2—3.5 layer samples and 

underestimates thicker samples with navg. > 5. The quadratic fit in Figure 5.4B has a 

more even error distribution but is prone to large error, particularly for navg. > 5 

predictions, which appear to be generally underestimated, resulting in a RMSE-CV of 

0.8835 layers. The addition of cross terms to the quadratic regressor, which allows for a 

degree of correlation in the variables (Fig. 5.4C), yields a RMSE-CV of 0.8667 layers 

Figure 5.4. Leave-one-out cross validation results for four different regression models 

predicting the synthesis of CsPbBr3: (A) linear regression (R2 = 0.645), (B) quadratic 

regression (R2 = 0.838), (C) quadratic regression with cross terms (R2 = 0.861), and (D) 

support vector machine regression (R2 = 0.965). The Y = X line is delineated as a 

representation of an ideal prediction. R2 values are for the model fits to the experimental 

data with the full 57 data point set. 
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and a similar result wherein samples of navg. > 5 have large underestimation errors. The 

SVM regressor (Fig. 5.4D) performs the best with a RMSE-CV of 0.7556 layers but still 

shows some underestimation of layer thicknesses for navg. > 5 layers. This regression is 

the top performer of all the tested machine learning models shown in Tables D.4 and 

D.5. This lead model has an aforementioned RMSE-CV of 0.7556 layers, a coefficient of 

determination of 0.895, a gamma of 0.5, a cost of 2.1 and a support vector count of 48. 

The difficulties in accurate prediction of thicker layers derives from assumptions 

made in inclusion of bulk photoluminescence emission as a constant 10 layers, which 

thereby introduces greater error in samples with proportionately larger bulk 

contributions. Note that this is essentially a limitation of the spectroscopic method, 

which allows for clear delineation of layer thicknesses near the quantum confined 

regime but does not allow for multilayered platelets to be distinguished in the bulk 

regime. Figure D.4 plots the RMSE leave-one-out cross validation as a function of the 

estimated bulk thickness demonstrating that the estimate of 10 layers is the best option 

for a bulk estimation to avoid skewing the data to higher averages (which would increase 

the cross-validation error). Despite this underestimation, the RMSE values of the cross-

validation analysis indicate that the SVM model has achieved a reasonable level of 

predictivity for this dataset achieving sub-monolayer accuracy. 

Video D.1 exhibits the four-dimensional design space mapped by the SVM 

model indicating the evolution of the layer thickness as a function of the diffusion 

coefficient and ligand concentration with increasing temperature. Figure 5.5 plots 

contour SVM regressor slices from this model. Examination of the SVM model built 
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from the 57 quantum confined samples indicates that the model approximation of the 

response space is influenced by each independent variable. Figure 5.5A shows a slice of 

the regressor output at 50°C with the color map corresponding to the predicted layer 

thickness for the given synthetic conditions. A minimum of 3.0 average layers can be 

observed at an approximate ligand concentration of Pb:alkylamine of 1:30 for a ligand 

diffusion coefficient of 0.85×10-10 m2/s. The location of this minimum indicates that at 

50°C, increasing the concentration and the chain length (decreasing diffusion 

coefficient) yields smaller predicted thicknesses (up until a precursor:ligand ratio of 1:30 

and diffusion coefficient of 0.85×10-10 m2/s, respectively). Further increases in ligand 

concentration and chain length bring about an increase in thickness. The increase 

observed for 1:x concentrations greater than 1:30 is most likely a result of (i) the rapid 

formation of the ligand shell at high ligand concentrations, which results in shells with 

less regular packing that are more pervious to monomer addition, as well as (ii) the high 

concentration of complexed monomeric species. Both these factors result in more rapid 

crystal growth yielding thicker nanoplatelets. The increase in thickness with diffusion 

coefficients lower than 0.85×10-10 m2/s, corresponding to higher chain lengths, is 

furthermore a reflection of the increased disorder of ligand shells for longer-chain 

alkylamines at low temperatures. Disordered ligand shells with lower packing densities 

allow for easier monomer addition, which results in the growth of thicker nanoplatelets 

(Fig. 5.6).38 Indeed, the self-assembly of n-alkylamines on surfaces proceeds through 

initial adsorption and desorption steps until the system approaches quasi-equilibrium 

close-packed conditions as sketched in Figure 5.6 wherein dispersive interactions have  
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been maximized along the chain lengths, thereby yielding the most optimal enthalpic 

stabilization to offset entropic losses from conformational restrictions.[52] For longer 

chain amines at lower temperatures, thermal desorption is more hindered and thus 

kinetically trapped imperfectly ordered ligand shells are more likely to be stabilized, 

allowing for an increased rate of monomer addition and faster crystal growth.[38,52,53] 

Remarkably, the SVM model accurately captures this complex interplay between 

enthalpic and entropic factors. 

Figure 5.5. Contour plot slices of the SVM regression at temperatures of (A) 50°C, (B) 

82°C, (C) 120°C, and (D) 150°C. Video S1 shows the continuous evolution of the 

contours as a function of temperature. 
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The correlation of average layer thickness of CsPbBr3 nanoplatelets to synthetic 

conditions is not intuitive given the trade-offs between entropic and enthalpic factors, 

kinetics and thermodynamics of ligand shell assembly (Fig. 5.6J), and sensitivity of the 

stabilized phase to ligand denticity, concentration, and branching.[45] In a similar vein, 

temperature both accelerates growth kinetics and monomer diffusion while allowing for 

stabilization of more ordered ligand shells, which retards monomer addition. Naively, 

the highest concentration and longest chain length of ligands can be anticipated to 

stabilize the thinnest nanoplatelets by effectively buffering monomer supersaturation, 

regulating monomer diffusion, and constituting an extended ligand shell. However, the 

highest ligand concentrations or longest chain ligands do not always yield the thinnest 

nanoplatelets. Figure 5.5B shows model results at 82°C where the global minimum of 

the model of 2.4 average layers is observed for similar ligand concentrations and 

diffusion coefficients as in Figure 5.5A indicating that increasing temperature up to 82°C 

allows for the most effective confinement of crystal growth. Figures 5.5C and D plot 

slice contour maps at higher temperatures of 120 and 150°C, respectively; the predicted 

layer thickness increases with temperature across the entire response space in this range.  

The stabilization of relatively thicker layers results from increased diffusion 

coefficients of monomeric species, which facilitates faster crystal growth. The ligand 

concentration and chain length are correlated in the temperature range between 76—

150°C with the local minima shifting to lower concentrations and longer chain lengths 

with increasing temperature, which is reflective of the interplay between formation of a 

well-ordered ligand shell and the mobility of monomeric species. The highest 
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alkylamine concentration of x = 40 induces a phase transformation from CsPbBr3 to an 

altogether different lead-deficient Cs4PbBr6 structure as a result of the amine ligands 

mediating leaching of surficial PbBr2 layers.[41,54] Additionally, the longest chain length 

ligands (e.g., C14 or C18) yield thicker nanoplatelets at low reaction temperatures in the 

range of 50—100°C since at low temperatures, a kinetically trapped disordered ligand 

shell is stabilized (and cannot be rapidly equilibrated to a thermodynamically stable self-

assembled monolayer), which allows for facile diffusion of monomeric species.[38] At 

higher temperatures, longer-chain alkylamines are able to form ordered ligand shells as a 

result of thermally facilitated desorption,[52,53] allowing for quasi-equilibrium conditions 

to be reached. However, monomer diffusion is also greatly enhanced as expected for 

temperature-variant Fickian diffusion.[55] The local minima reflects the achievable 

balance between these two competing influences representative of thermodynamic 

equilibrium and kinetic metastable regimes. In other words, the correlations provided by 

the regression model allow for qualitative mechanistic understanding to be gleaned from 

the SVM model in a non-intuitive manner. 

To illustrate some of the mechanistic regimes, Figure 5.6 provides a schematic 

of the 82°C and 150°C slices of the SVM contour plot also shown in Figures 5.5B and 

5.5D respectively. These illustrations show the entropic effects of ligand concentration 

and chain length at the two different temperatures. Figure 5.6J shows a general 

schematic of the nucleation and growth process differentiating the stabilization of 

ordered ligand shells or kinetically trapped disordered states. Figures 5.6A-I  
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schematically illustrate different ligand shell configurations and their ability to modulate 

monomer addition. 

Figure 5.6. Schematic of crystal growth regimes corresponding to the 82 and 150°C 

slices of the RBF-SVM model. Illustrations of different regimes are shown as follows 

(darker red monomers imply faster diffusion as a result  of higher temperatures): (A) high 

ligand concentration results in a disordered monolayer; (B) conditions allowing for 

optimal ligand shell monolayer formation resulting in the global minimum of layer 

thicknesses accessed in this work; (C) high temperature and concentration as well as 

longer ligand chain lengths yield disordered layers whilst facilitating relatively rapid 

monomer diffusion; (D) longer chain length increases packing disorder (corresponding to 

stabilization of a kinetic product); (E) low ligand concentration enables facile crystal 

growth at sub-monolayer coverages; (F) short chain length allows desorption and 

passivation as well as easier monomer transport, thereby favoring crystal growth; (G) at 

high temperatures, long ligand chain lengths allows for stabilization of somewhat ordered 

ligand shells thereby limiting crystal growth; (H) low ligand concentration and high 

temperature favors ligand desorption enabling facile monomer addition and crystal 

growth; (I) high temperature and short ligand chain length favors facile monomer addition 

and enables rapid crystal growth; (J) schematic illustration of ligand shell formation 

alternatively yielding an ordered monolayer maximizing dispersive interactions 

(thermodynamic product) or becoming trapped within a disordered state representing the 

kinetic product. 
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In order to test for overfitting and analyze the predictivity of the regressors, a 

validation test set of six newly synthesized samples that had no influence on the creation 

of the models has been selected and analyzed. The six samples have been selected to be 

in the <50% bulk regime by sampling randomly from the design space within the  

quantum confined classification of the SVM classifier shown in Figure 5.3. All six 

samples have been synthesized with the alkylamine chain lengths, concentrations, and 

temperatures listed in Table 5.2. All of the samples contain less than 50% contribution 

of photoluminescence signals from bulk crystals (Fig. 5.7 and Table D.6), verifying the 

robustness of the classifier. A range of thicknesses between 3.72 to 7.17 layers have 

been identified, falling within the range of the model. As seen in the cross-validation 

results of Figure 5.4, the model has some degree of underestimation for all regressors as 

a result of the limitations of the spectroscopic method delineated above. The average 

layer thicknesses (navg.) of 2D perovskite nanoplatelets in the validation set as deduced 

from ensemble PL emission spectra and determined from TEM imaging (t) in Figure 5.7 

are listed in Table D.6. Figure D.5 shows additional TEM images acquired for these 

validation samples. The RMSE of the validation set for the linear and quadratic 

regression models was 1.233 and 1.175 layers, respectively. The SVM regression yields 

the lowest error for the validation set as well as the cross validation, the great 

improvement of the quadratic model with the addition of cross terms is not mimicked in 

the leave-one-out cross-validation error estimation leading to the conclusion that the 

SVM regression is the most consistently high performing model. 
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 As a test of the ability of our model to perform as predictive map to entirely new 

samples, an attempt was made to synthesize a sample with a specific thickness and use 

the model to select parameters. The target was to achieve an navg of 3.0 layers using the 

parameters selected from the current RBF-SVM model. Three sets of parameters with 

different chain lengths were selected (Table D.7) and yielded experimental navg values of 

2.90, 2.74, and 2.45 layers, (Figure D.6) all of which are within the observed error seen 

in the leave-one-out cross validation and validation set.  

 

 

Table 5.2. Validation samples and predicted thicknesses from linear, quadratic, 

quadratic with cross terms, and support vector machine (RBF kernel) regressors. 

Chain 
length 

Temp. 
°C Pb:RA=1:x 

Average 
(n) when 
bulk n=10 Linear Δ% Quadratic Δ% 

Quadratic 
(cross) Δ% 

SVM -
RBF Δ% 

7 70 30 4.314 4.526 5% 3.987 -8% 3.661 -15% 3.456 -20% 

7 90 15 6.413 4.922 -23% 4.693 -27% 5.841 -9% 6.935 8% 

16 90 25 3.724 3.864 4% 3.463 -7% 3.304 -11% 3.346 -10% 

18 80 25 4.626 3.587 -22% 3.491 -25% 3.472 -25% 3.734 -19% 

6 70 15 7.172 4.933 -31% 5.319 -26% 6.759 -6% 7.012 -2% 

16 90 40 4.605 3.747 -19% 3.950 -14% 4.355 -5% 4.088 -11% 
   

RMSE: 1.233  1.175  0.645  0.611  

 

 

It is worth noting that given the rapid nucleation and growth within this highly 

ionic system and the high mobility of the precursors, no Ostwald size focusing has been 

attempted. Size monodispersity can be experimentally achieved in nanocrystal synthesis 

through multiple injections or by differentiating nucleation and growth steps through 

variational temperature ramps.[56,57] Our model has sought to relate nanocrystal  
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 nucleation and growth of platelets with discrete layer thicknesses (which stands in 

contrast to colloidal nanocrystals exhibiting a Gaussian size distribution profile) arising 

from the interplay between temperature, concentration, and nature of the amine ligand, 

Figure 5.7. PL emission spectra and TEM images acquired for validation set of 2D 

CsPbBr3 nanoplatelets at different reaction conditions: A,B) C6 with 1:x = 1:15 at 70°C; 

C,D) C7 with 1:x = 1:15 at 90°C; E,F) C7 with 1:x = 1:30 at 70°C; G,H) C18 with 1:x = 

1:25 at 80°C; I,J) C16 with 1:25 at 90°C; and K,L) C16 with 1:x = 1:40 at 90°C. 
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and as such captures the fundamental chemical reactivity and crystallization; it does not 

account for secondary growth processes and process interventions necessary for 

obtaining monodisperse samples, which involve a much more elaborate variable space 

and data related to temporal evolution of nanocrystal growth. Elaboration of the model 

to include time-variant temperature ramps will be the focus of future work to add 

monodispersity as a second synthetic outcome. An additional analysis of the ability of 

this modeling method to deal with sparse datasets has been performed by testing the 

cross-validation error as a function of folds, the fraction of data removed in each 

iteration of validation (e.g., 2 fold is half the dataset). At lower folds (n = 2, 3, 4, etc.) 

the cross-validation error is approximately 50% higher than leave-one-out cross 

validation (Figure D.7). An average performance is reached around 5 folds, which in 

this set leaves out sets of 11 and 12 samples showing that an approximate minimum 

viable sample size for this model is around 45-46 samples. The small number of 

synthetic data needed to create a viable model emphasizes the non-parametric flexibility 

of SVM with a radial basis function kernel allowing for the creation of a robust 

predictive model with little overfitting. 

The establishment of a well-defined predictive model for control over 

dimensional confinement of colloidal CsPbBr3 nanocrystals indeed has significant 

implications for device design and performance. For instance, Kamat and co-workers 

have performed an extensive investigation of the thickness-dependence of device 

performance of CsPbBR3 nanocrystals assembled in thin film form via layer-by-layer 

deposition.[58] Analogously, the layer thickness further correlates to color tunability of 
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the materials with applications in phosphors and optoelectronic devices. The emission of 

CsPbBr3 nanoplatelets is tunable from deep violet for n = 1 to bluish green for n = 6 to 

green for bulk materials. 

5.4. Conclusions 

The hot colloidal synthesis of nanocrystals involves complex phenomena 

spanning the range from molecular reactions to nucleation, monomer addition, and 

crystal growth. The complex reaction variables at play and the multitude of phenomena 

spanning multiple temporal and spatial dimensions are challenging to model from first 

principles, and thus not surprisingly synthetic methods have evolved in a primarily 

empirical manner.  We demonstrate here the utilization of a relatively sparse dataset to 

create a non-linear model for predictive synthesis of CsPbBr3 nanoplatelets with 

controllable layer thickness. The utilization of SVM classification and regression 

provides a means of developing robust predictive models from limited datasets. SVM 

classification is shown to accurately predict the likelihood of a CsPbBr3 synthesis 

creating a majority population of quantum confined nanoplatelets. SVM regression is 

further shown to estimate the average thickness outcome of the synthesis of CsPbBr3 

nanoplatelets within sub-monolayer accuracy.  

The approach demonstrated here is expected to be broadly generalizable to 

designing the synthesis of nanocrystals and illustrates an efficient means of navigating 

potentially vast design spaces. Further elaboration of these methods will utilize the 

spectral data for composite modeling of each individual layer thickness and predict 

distribution and size while investigating the role of changing the solvent/viscosity and 
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ligand type (n, branching, denticity, binding group) as well as the precursor 

concentrations (mapping across the ternary Cs-Pb-Br phase diagram).[54] As such, better 

numerical descriptors of the ligands will need to be developed as an initial step. 

Subsequent models will further be elaborated to multi-objective optimization of multiple 

synthetic outcomes such as quantum yield and monodispersity.  

A major challenge with this approach to modeling of nanocrystal synthesis is the 

bottleneck in rapid characterization of synthetic outcomes; the PL emission 

measurements used here are excellent proxies of size but cannot be used for samples 

without a distinct size-dependent photoluminescence signature wherein a substantial 

statistical analysis of TEM images becomes a necessary probe of average particle size. 

Alternatively, probing the X-ray coherent domain size represents a potential means of 

sampling ensemble averages of nanocrystals and will further be examined as a 

continuous variable. In addition to particle size, such a method can be applied to model 

any numerical output of a synthetic process (e.g., the reaction yield, atomic composition, 

and absorption maxima). 

5.5. Experimental 

5.5.1. Materials 

All chemicals were used as received without further purification. Cesium 

carbonate (Cs2CO3, 99.9%, Alfa Aesar), oleic acid (OLAc, 90%, Aldrich), octadecene 

(ODE, 90%, Aldrich), lead bromide (PbBr2, 98%, Alfa Aesar), n-butylamine (C4, 99%, 

TCI America), n-pentylamine (C5, 98%, Alfa Aesar), n-hexylamine (C6, 99%, Alfa 

Aesar), n-heptylamine (C7, 98%, Alfa Aesar), n-octylamine (C8, 98%, TCI America), n-
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nonylamine (C9, 98%, TCI America), n-undecanylamine (C11, 98%, TCI America), n-

dodecylamine (DA, 98%, Alfa Aesar), n-tetradecylamine (TA, 95%, Aldrich), n-

octadecylamine (ODA, 97%, Alfa Aesar) were used in the synthesis of CsPbBr3 

nanoplatelets. 

5.5.2. Preparation of Cs-oleate precursors 

Cesium-oleate (Cs-OA) precursors for the synthesis of 2D CsPbBr3 nanoplatelets 

were prepared following a previously reported method.[38,40] Briefly, Cs2CO3 (32 mg) 

and 10 mL of oleic acid were mixed in a 50 mL three-neck round-bottomed flask, dried 

under vacuum at 120°C for 30 min, and heated to 150°C under Ar flow in Schlenk 

apparatus until all of the solids were dissolved, yielding a colorless or light yellow 

solution.  

5.5.3. Synthesis of 2D CsPbBr3 nanoplatelets 

All synthetic processes for the preparation of 2D CsPbBr3 nanoplatelets were 

performed under standard Schlenk conditions in an ambient of Ar gas. CsPbBr3 

nanoplatelets were synthesized based on the hot injection of Cs-OA precursors into a 

mixture containing PbBr2, a variable amount of the alkylamine, oleic acid, and ODE.38 

In brief, 15 mg of PbBr2, 0.250 mL of OLAc, and 5 mL of ODE were mixed in a 50 mL 

three-neck round-bottomed flask wherein the desired stoichiometric amount of the 

alkylamine (with alkyl chain lengths ranging from C4—C18) was added to vary the 

Pb:RA molar ratio in the range of 1:5—1:40; the mixtures were degassed under vacuum 

for 30 min at 100°C to form lead oleate. Note that at alkylamine concentrations below x 

= 5, ligand shells cannot be effectively constituted, precluding ligand-induced 
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dimensional confinement, and resulting in the rapid growth of micron-sized cubes. In 

contrast, at higher concentrations of ligands, above x = 40, the complexation of the 

alkylamines with PbBr2 results in stabilization of the lead-deficient Cs4PbBr6 phase.41 

After complete dissolution of PbBr2, the temperature of the flask was set at the desired 

reaction temperature under argon flow, which was varied from 50–150°C. Subsequently, 

1 mL of the as-prepared Cs-OA solution was swiftly injected into the mixture containing 

lead oleate. The reaction mixture was maintained for 10 s at the injection temperature 

and immediately quenched with 15 mL of hexanes to cool the reaction mixture down to 

30—40°C. The precipitate was collected by centrifugation at 12,000 rpm for 10 min and 

then resuspended to form a colloidal dispersion in hexanes. The colloidal dispersion of 

the nanoplatelets in hexanes was used for further characterization.  

5.5.4. Characterization 

U UV-Vis absorption spectra were measured using a Hitachi U-4100 UV-Vis-

NIR spectrophotometer. Photoluminescence emission spectra were acquired using a 

Horiba PTI Quanta-Master series spectrofluorometer with a Xenon arc lamp as the light 

source and a photomultiplier tube (PMT) as the detector. Photoluminescence emission 

spectra were acquired at 360 nm excitation for all of the samples unless otherwise 

specified. UV-vis absorption and photoluminescence emission spectra were acquired by 

diluting the as-prepared colloidal dispersion of nanoplatelets in hexanes. Quartz cuvettes 

with a path length of 1 cm were used for both sets of measurements.  

Powder X-ray diffraction (XRD) measurements were conducted using a Bruker 

D8-Focus Bragg-Brentano X-ray Powder Diffractometer with a Cu Kα radiation source 
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(λ = 1.5418 Å) in the 2Ɵ range of 10—60°. Samples for XRD measurements were 

prepared by drop-casting a colloidal dispersion in hexanes onto a zero-background XRD 

holder. 

High-resolution transmission electron microscopy (TEM) images were acquired 

using a FEI Tecnai G2 F20 ST instrument at an accelerating voltage 200 kV. Samples 

for TEM measurements were prepared by drop-casting dilute hexanes dispersions of the 

nanoplatelets onto 400 mesh TEM grids coated with formvar carbon films.  

5.5.5. Calculation of the average layer thickness (n) of 2D CsPbBr3 nanoplatelets 

The The average layer thickness (navg.) of nanoplatelets in terms of octahedral 

layers is calculated as per the following equations:  

navg. = ∑ (𝑎𝑖 × 𝑛𝑖)∞
𝑖=1  ∙     5.2 

 

ai = 
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑛 𝑖  𝑖𝑛 𝑃𝐿 𝑠𝑝𝑒𝑐𝑡𝑟𝑎

𝑇𝑜𝑡𝑎𝑙𝑙𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑃𝐿 𝑠𝑝𝑒𝑐𝑡𝑟𝑎
    5.3 

 

where navg. is average octahedral layer thickness for a specific sample; ai (i = 1—6 and 

bulk) is the weighting factor corresponding to the population of a specific layer 

thickness; and ni (i = 1—6 and bulk) is the number of octahedral layers. For 

nanoplatelets with n > 6, corresponding to particles above the quantum confined regime, 

a layer thickness of n = 10 has been approximated. Assignments of layer thicknesses (ni) 

have been made based on previously reported single-particle photoluminescence 

maximum emission wavelengths.[38]  The integrated area of the photoluminescence 

emission band corresponding to a specific layer thickness (ni) is divided by the total 
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integrated area of the photoluminescence spectrum to yield the relative proportion of 

each layer (ni) within the sample. Tables D.1 and D.2 list the deconvoluted areal 

intensities for the different syntheses examined in this work. Gaussian lineshapes have 

been used to fit emission bands in each case. 

All statistical models were computed using R 3.4.1 with linear (eq. 4) and 

quadratic (eqs. 5-6) regressions of the following form computed using a linear modeling 

function to determine the coefficients of the regressions: 

𝑦 = 𝑏1 + 𝑏2𝑥1 + 𝑏3𝑥2 + 𝑏4𝑥3     5.4 

 

𝑦 = 𝑏1 + 𝑏2𝑥1 + 𝑏3𝑥1
2 + 𝑏4𝑥2 + 𝑏5𝑥2

2 + 𝑏6𝑥3 + 𝑏7𝑥3
2    5.5 

 

𝑦 = 𝑏1 + 𝑏2𝑥1 + 𝑏3𝑥1
2 + 𝑏4𝑥2 + 𝑏5𝑥2

2 + 𝑏6𝑥3 + 𝑏7𝑥3
2 + 𝑏8𝑥1𝑥2 + 𝑏9𝑥1𝑥3 + 𝑏10𝑥2𝑥3 5.6 

 

The variables xn represent the three input variables and bn represent the coefficients of 

the regression. Eq. 5 includes calculation of coefficients b8-10 allowing for the inclusion 

of variable correlation. The T-test was performed assuming equal variance as a standard 

two sample t-test (eqs. 7-8).  
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𝑇 =  
�̅�1−�̅�2

𝑠𝑝√
1

𝑛1
+

1

𝑛2

       5.7 

 

𝑠𝑝 =  √
(𝑛1−1)𝑠𝑋1

2 +(𝑛2−1)𝑠𝑋2
2  

𝑛1+𝑛2−2
       5.8 

 

The variable X̄ represents the sample means, n the sample sizes and s the sample 

standard deviations with sp the pooled variance. The e1071 R package version 1.6-8 was 

utilized to compute the support vector machine classifier and regressors.[42] All SVM 

calculations were algorithmically tuned to pick the best performing cost terms (all 

kernels) and gamma terms (radial basis function kernel) using “leave-one-out” cross 

validation as a performance metric. Nearest neighbors regression was calculated using 

the FNN R package (version 1.1.2.1) with a k value of 3.[43] Ridge regression was 

performed with the glmnet R package (version 2.0-16) for penalty constants (λ) of 0.001 

to 50.[44]  
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6. CONCLUSIONS AND FUTURE OUTLOOK* 

 

Mechanistic investigations into the influence of dopants in VO2 have allowed us 

to see further into the complex design landscape of this metal insulator material. The role 

of defects as nucleation sites for the MIT of VO2 is incredibly impactful. Defect 

nucleation contributing directly to the broadening of the kinetic hysteresis observed in 

tungsten and germanium doped VO2 allows for the shifting of the thermodynamic 

transition temperature up or down while maintaining a vector to control the hysteresis.[1] 

Boron doping, in addition to lowering the thermodynamic equilibrium temperature of 

VO2 also imparts a dynamic variable hysteresis.[2] The discovery of a relaxation 

mechanism in VO2 doped interstitially with boron presents a fully readable and 

resettable atomic hourglass and thermometer effect. By modulating the stability of the 

insulating M1 phase of VO2 through the kinetic relaxation of the boron dopant, we 

demonstrate a switchable material with built in resettable sensing. The complex energy 

landscape of VO2 is influenced in drastically different ways by the incorporation of these 

various dopants. The phase stabilities are greatly influenced by dopant incorporation, a 

fact that is undeniable in our demonstration in the stabilization of the metastable VO2 (P) 

phase upon iridium doping.[3]  

 Process design of the synthesis of CsPbBr3 as a model system to achieve control 

over the particle thickness and resultant quantum confinement was successful due to the 

utilization of machine learning modeling.[4] Using support vector machine regression, we 
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demonstrated that even with sparse and uneven data predictive utility can be derived to 

build an interpretable model of the synthetic design space. The visualization and 

interpretation of a machine learning model allows for insight into the mechanisms that 

influence a synthetic outcome. This inference and utility can be improved greatly with 

the introduction of designed experimentation and Bayesian iteration leading to future 

work future work modeling synthetic processes in the most efficient manner. 

6.1. Outlook for Predictive Synthesis 

6.1.1. Efficient Routes to Complex Predictivity 

Canonical machine learning techniques are particularly well suited to large 

amounts of data with complex prediction or optimization-based goals.[5,6] While the 

goals of prediction and optimization remain the same for materials synthesis, the cost of 

data is much higher. While response-surface DOE provides a distinct edge over OVAT 

sampling and allows for reliable inferences from a small amount of data, it is often 

unable to handle data that has a more complex response. Machine learning methods have 

the ability to provide valuable insight and to develop useful models that can be further 

iteratively improved. However, the sparsity of datasets and the substantial costs of 

experiments have limited its application in the exploration of synthesis design spaces. 

In recent work, we have performed a study using existing OVAT data supplemented 

with random sampling to build a predictive model of a nanocrystal synthesis.[4] The 

study used only 74 samples to create a model that was able to predict both the conditions 

that will lead to quantum confined CsPbBr3 nanoplatelets and their average thickness for 

a given sample. This relation of three experimental parameters (temperature, ligand 
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choice, and ligand concentration) generated a highly nonlinear response that was 

mapped within one unit cell layer of accuracy using support vector machine regression 

(SVM, Figure 6.1). This supervised learning model chooses the fit that minimizes the 

length of vectors perpendicular to the fit that connect the model to the data. The model 

was physically interpretable in terms of the competition between enthalpic and entropic 

considerations and in distinguishing thermodynamic and kinetic regimes under different 

synthetic conditions. The observed resolution of mapping, ability to handle imperfect 

data, and insight into a nonlinear reaction space was made possible by using machine 

learning. Despite the positive use case shown in this work, the number of experiments 

was high, and parts of the design space may have been under sampled. To increase 

efficiency and lower variability of the response space, more targeted sampling and 

iterative design methods are desirable. Cao et al. have described and demonstrated this 

synergistic relationship between DOE and ML in a perspective article examining the 

optimization of the power conversion efficiency for a bulk heterojunction photovoltaic 

device created via spin casting a mixture of a low-band-gap donor polymer and fullerene 

as an acceptor with the addition of diiodooctane, which is thought to decrease donor–

acceptor phase segregation.[7] These authors specifically considered the influence of the 

weight percentage of the low-band-gap polymer, total solution concentration, spin-

casting speed, and the volume percent of the diiodooctane additive. They sampled the 

reaction space using a fractional factorial, analyzed variance in the data using ANOVA 

analysis to understand feature correlations, and fitted the data using an SVM with a 

radial basis function kernel. The SVM was then used to generate a visual map of the 
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space, which informed the design of a second round of fractional factorial sampling, 

eliminating the addition of diiodooctane as a variable and narrowing the range of the 

other factors to target the area of the space demonstrating the highest power conversion 

efficiency values. While this second round of sampling narrowed in on the optima, a 

purely exploitative approach can potentially converge on local rather than global optima. 

However, this study exemplifies the promise of using a combination of DOE and ML to 

sample, model, and explore a synthesis space. While ML algorithms can oftentimes 

uncover hidden correlations among variables and provide some predictivity, a ‘one-shot’ 

Figure 6.1. Machine learning flowchart (left) and interpretation of the SVM regression 

results (right) from the study of CsPbBr3 perovskite nanocrystal growth by Braham et 

al.[4] Regression heatmaps of the particle thicknesses along the modeled axes of ligand 

chain length and ligand concentration is shown at two temperatures of 82 and 150°C. 

Interpretation and illustration of 9 selected growth regimes are depicted in A-I showing 

findings of chemical significance with a global minimum thickness regime with a close 

packed monolayer (B), entropy-driven monolayer misalignments for high chain lengths 

or concentration (A,C,D), incomplete monolayer formation owing to low ligand 

concentrations or weak intermolecular interactions (E,F,H,I,) and a local minimum at 

high temperature illustrating the shift in ideal monolayer packing conditions as a 

function of temperature (G). Reprinted with permission from ref. 15; Copyright 2019, 

the American Chemical Society.[4] 
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fitting of a model to a space often lacks predictive capability beyond that of 

interpolation. 

Active learning, sometimes referred to as sequential learning, is an iterative 

process where a utility or acquisition function is applied to the output of an initial 

surrogate model (typically a ML model) to strategically select a new area of the design 

space to sample.[8-10] Such an approach, illustrated in Fig. 1.8, allows for rapid updating 

of the model and enables efficient exploration of the synthetic design space. Active 

learning approaches often leverage exploration strategies from global optimization 

methods with a Bayesian-optimization-based approach being most popular.[11] In this 

particular iterative approach, the acquisition functions are based on Bayes Theorem and 

leverage information previously observed to find a posterior distribution using scores 

from the surrogate model. The acquisition function then chooses the most valuable 

experiment to perform next, balancing a preference towards choosing samples that 

would either be the most helpful to improve the extent to which the model captures the 

dataset (exploration) or move towards a predicted maximum or minimum of the 

surrogate function (exploitation). This typically limits use of the Bayesian optimization 

strategy to problems using regression-based models. Just as no single ML model works 

well to fit every dataset, various active learning workflows are better suited for different 

problems.[10] Utility or acquisition functions vary in the degree to which they favor 

exploration or exploitation of the data, allowing for users to focus more on creating 

either the most accurate design space model or finding an optimal solution. Xue et 

al. demonstrated the efficacy of this approach in the systematic exploration of the 
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synthesis of a Ti50 (Ni50-x–y–zCuxFeyPdz) shape memory alloy.[12] In order to optimize the 

transformation temperature, the authors synthesized an initial set of 53 alloys, and 

applied a polynomial model to serve as the surrogate model coupled with iterative 

sampling using expected improvement as the acquisition function. The model effectively 

identified samples with increased transformation temperatures and captured the 

influence of atomic size on local strain and influence of bond strength on the 

transformation temperature. While this process can in principle be used to explore a 

wide variety of synthetic landscapes, examples involving active learning of experimental 

synthesis spaces are still limited. The iterative framework adds another layer of 

constraints on the framing of the problem, as the data must be suitably modeled by a 

regressor in order to reasonably predict the subsequent samples to be measured. 

Strategies for Bayesian sequential learning are currently being developed to overcome 

challenges.[8,13-16] For example, Wang et al. developed a Bayesian optimization approach 

to enable nested-batch sampling.[13] In this method the algorithm predicts the most 

beneficial batch of samples to run next, rather than a ranked list of single experiments. It 

additionally allows for the user to rank variables to avoid variance within a given batch 

of variables that would not be feasible within a batchwise process. This addresses two 

problems which are unique to synthesis; some variables are more expensive to vary than 

others and sampling two drastically different samples may be much more expensive than 

sampling two similar samples. For example, it is often simple to vary concentration, as a 

single stock solution can be made and then diluted to different extents. However, varying 

the reaction temperature may be limited by the number of independent thermal profiles 
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accessible within a single autoclave, or varying the solvent may negate the opportunity 

to work with a stock solution. To consider this constraint, the acquisition function 

estimates the value of information for each batch of samples that could be generated. 

Most Bayesian optimization efforts have focused on single-objective optimization. 

However, in materials chemistry, multiple objectives (along a Pareto frontier) must be 

optimized at once. For instance, minimizing defect density and positioning dopant atoms 

within a particle while controlling particle size. This problem can be framed as 

identifying the optimal sequence of observations (via experiments or simulations) that is 

most efficient at identifying the Pareto frontier of candidate solutions, which is a 

graphical representation of the tradeoffs between two output parameters. In common 

Bayesian optimization methodologies, it is assumed that the search for the global 

optimum of the descriptive function is sequential, evaluating the function one step at a 

time, regardless of the number of objectives to optimize. This means that even in multi-

objective Bayesian optimization it is necessary to quantify the utility of a potential 

experiment as a scalar quantity. A powerful scalar utility metric used in multi-objective 

optimization is the so-called Expected Hyper-Volume Improvement (EHVI).[17] Similar 

to the utility functions used in single-objective Bayesian optimization, EHVI is 

constructed by balancing the exploration and exploitation of the design space in order to 

efficiently locate the Pareto frontier. Recently, we have developed a multi-objective (up 

to three objectives) optimal materials discovery framework[18] and demonstrated its 

efficacy by identifying regions in the microstructural space that yielded optimal 

performance in a precipitation-strengthened NiTi-based shape memory alloy. The alloy 
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composition as well as microstructural features (specifically, the precipitate volume 

fraction) of precipitation-hardened nickel—titanium alloys have been optimized within a 

pre-defined budget of experimental steps.[18] This approach demonstrates the promise of 

multi-objective Bayesian optimization methods to develop optimal sequence of 

experiments allowing for simultaneous control of different synthetic outcomes. 

An alternative approach to overcome the constraints of a Bayesian-based active learning 

approach was demonstrated by Moosavi and co-workers, who decoupled the tasks of 

learning and exploring the space by using a ML algorithm to understand correlations 

among variables and gain insight into the reaction mechanisms, while using a 

metaheuristic global optimization strategy to iteratively explore the space in their search 

for a metal–organic framework (HKUST-1) with the highest surface area.[19] In doing so, 

they relax the need for a good initial fit to a surrogate model and gain greater flexibility 

in choice of ML model, as the model does not need to work well within an optimization 

workflow. Looking broadly for opportunities to leverage tools in adjacent areas of work 

will likely be key in increasing the use and diversity of spaces explored experimentally 

using iterative methods. 

The consistency of microstructure in an alloy is an excellent case study in not 

only synthetic optimization but building fundamental scientific understanding of 

process—structure relationships though statistical learning. The influence of 

microstructure on key materials properties such as tensile strength and cycling fatigue 

creates a crucial need for a clear understanding of processing–structure–property 

relationship that go beyond empirical constructs. Recent studies by Elwany and co-
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workers have applied statistical learning methods to reveal processing—

microstructure/mesostructure relationships in additive manufacturing techniques, 

specifically laser powder-bed fusion.[20,21] Using a Ni–Nb alloy as a model system, this 

work utilizes machine learning and a set of materials properties/processing features (melt 

pool depth, diffusivity of liquid, the Gibbs–Thomson coefficient, and the equilibrium 

partition coefficient) to model an experimental “base truth” dataset of microsegregation 

in the grain structure of the alloy.[21] The statistical model showed a level of predictivity 

to the experimentally compiled dataset but was not able to reach the level of 

multiphysics phase-field simulations. The approach demonstrates that with a sufficient 

dataset and by investigating alternative machine learning or featurization methods, 

design principles underpinning processing–structure relationships can be revealed. 

6.1.2. Looking Forward 

The salient features of OVAT, DOE, ML, and active learning sampling and 

modeling methods are summarized in Figure 6.2. OVAT sampling is limited largely by 

the sampling bias of the scientist and in its limitations in demonstrating correlation 

among variables. While DOE is an excellent and efficient qualitative strategy for 

unraveling the impacts of different variables on a synthetic outcome, the standard 

response surface methodology falls short in fitting highly non-linear responses. Iterative 

processes in DOE are generally exploitative (rather than exploratory) in nature. DOE is 

also incompatible with working from found/sparse data. When designing a new 

modeling or optimization experiment, DOE sampling methods represent an excellent 

choice for building an initial dataset that can be used in conjunction with ML. When 
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refining and improving a ML model, emerging active learning techniques provide 

excellent targeted sampling to achieve a certain goal or for multi-objective optimization, 

given that the function most appropriate for the goal(s) and modeling method is used. 

The combination of DOE, ML, and active learning would allow for a more robust and 

efficient path to navigating the design space of materials synthesis. The sparsity of data 

and the relative cost of synthesis and characterization represent significant barriers. 

Greater flexibility in automated synthesis platforms, either based on microfluidic 

systems or robotic arms performing multiplexed synthesis, hold promise for resolving 

these bottlenecks.[22,23] DOE techniques, ML, and automation of synthesis together 

represent a promising toolbox for accelerating materials synthesis, providing 

foundational understanding of the underlying chemical reactivity, and for extracting 

design principles in order to precisely control reaction trajectories. 
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APPENDIX A.  

SUPPLEMENTARY FIGURES AND TABLES 

 

 

 

 

Figure A.1. Extended powder XRD patterns acquired in the 2θ range from 25—70° for 

(A) undoped and (B) VO2 incorporating 0.51 at.% W as a substitutional dopant. 
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Figure A.2. Atomic-resolution HAADF TEM image of a WxV1-xO2 particle (with x of 

ca. 0.008) acquired at 25°C after warming from -180°C. A) TEM image and diffraction 

patterns with distinct diffraction spots indexed to R (blue), M1 (green), and M2 (blue) 

polymorphs. B) Composite map depicting the spatial distribution of the three phases. 

 

 

. 
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Figure A.3. High-resolution TEM image (left) and selected area electron diffraction 

pattern (right) acquired for undoped VO2 prepared by acetone reduction of V2O5. 

The diffraction pattern and interplanar separations correspond solely to the M1 

phase of VO2 
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Figure A.4. Size distribution histograms for four different sample preparations 

yielding different sized particles. Oxalic acid and ultra-small VO2 yield star shaped 

and spherical particles respectively and thus a single value, the diameter, is shown as 

a measure of the size. 
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Figure A.5. Structural representation of supercell used in defect calculations of doped A) 

M1 and B) R polymorphs of VO2. The oxygen vacancy is represented by a dashed circle, 

whereas the tungsten atom is depicted in silver. Vanadium atoms are depicted in blue 

and oxygen atoms in red. To test for a possible local effect, an oxygen vacancy was 

created at an adjacent site and far from tungsten as seen in Figure A.3 in both rutile and 

monoclinic supercells. After introducing a vacancy, supercell structures were fully 

relaxed. The energy of the rutile cell did not change significantly, less than 6 meV, as a 

result of proximity of the oxygen vacancy to the tungsten atom. 
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Figure B.1. SEM images show A) undoped and B) B0.018VO2; the annealing step resulted 

in the incorporation of B atoms within interstitial sites of VO2 and induces the sintering of 

VO2 nanowires into irregular shaped platelets with lateral dimensions extending to 1.9 ± 

1.0 μm. C) Powder XRD pattern in the 2Ɵ range from 22―70° of undoped VO2, 

B0.018VO2, and B0.052VO2 acquired at 22°C.. Reflections corresponding to the M1 phase of 

VO2 are plotted along the bottom axis as per Joint Committee on Powder Diffraction 

Standards (JCPDS) # 043-1051, whereas reflections corresponding to the R phase of VO2 

are plotted along the top axis as per JCPDS # 79-1655. Undoped and B0.02VO2 samples 

are indexed to the M1 phase of VO2, whereas the pattern for the B0.05VO2 sample is 

indexed to the R polymorph of VO2. The incorporation of B atoms depresses the M1 → R 

transition temperature by ca. 10°C/at.% B(22) such that the observed stabilization of R 

polymorph at room temperature for the B0.05VO2 sample is consistent with a depression of 

the critical transition temperature for 5.2 at.% B-doping. Reflections derived from a 

minority V8O15 phase (JCPDS no. 71-0041) are asterisked and are thought to arise from 

increased VO2 reduction(22) but do not contribute to the observed MIT behavior.(30)  No 

evidence is observed for crystalline boron oxides or orthorhombic/M2 phases of VO2, 

which have been reported previously to be associated with interstitial hydrogen 

incorporation,(27) substitutional doping of trivalent cations,(28) and anisotropic 

strain.(29)  
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Figure B.2. Rietveld refinement of powder X-ray diffraction pattern of undoped VO2 

and B0.018VO2. A) Undoped VO2 was subjected to rapid thermal annealing without 

inclusion of 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane; two distinctive phases are 

identified, monoclinic M1 VO2 and phase 2 and trificlinic V6O13. See also Table B.1. B) 

Phase 1 is monoclinic M1 VO2 and phase 2 is the triclinic V8O15 impurity phase. Two 

distinctive phases are identified, monoclinic M1 VO2 and phase 2 and triclinic V8O15. See 

also Table B.1. 
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Table B.1. Rietveld refinement parameters Tabulated parameters from a Rietveld 

refinement of powder XRD patternes for undoped VO2 subjected to rapid thermal 

annealing without addition of the 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

precursor and 1.8 at.% B-doped VO2. Refinement statistics, including goodness of fit 

(χ2), weighted goodness of fit (wRp) and the individual point residuals (Rp) are listed. 

Undoped VO2 

 Phase 1: VO2(M1) // Space Group: P1 21/c 1 // Wt. Fraction: 0.8662(5) // Vol: 

118.290 (4) Å3 

 α = 90.000(0)° β =122.597(3)° γ = 90.000(0)° 

 a = 5.7561(1) b = 4.529(2) c = 5.385(2) 

 Χ2 = 2.282 wRp = 0.0692 Rp = 0.0538 

 Phase 2: V6O13// Space Group: C 1 2/m 1// Wt. Fraction: 0.133(3) // Vol: 437.9(2) Å3 

 α = 90.000(0)° β = 101.15 (4)°  γ = 90.000(0)° 

 a = 11.943(3) b = 3.6818(7) c = 10.149(4) 

 Χ2 = 2.282 wRp = 0.0692 Rp = 0.0538 

1.8 at.% B-doped VO2 

 Phase 1: VO2(M1) // Space Group: P1 21/c 1 // Wt. Fraction: 0.389(2) // Vol: 118.77 

(2) Å3 

 α = 90.000(0)° β =122.512(8)°  γ = 90.000(0)° 

 a = 5.7635(5) b = 4.5291(4) c = 5.3953(8) 

 Χ2 = 5.824 wRp =  0.0907 Rp = 0.0699 

 Phase 2: V8O15(triclinic) // Space Group: P -1 // Wt. Fraction: 0.610(3) // Vol: 

916.702 (0) Å3 

 α = 99.060(8)° β = 128.398 (8)° γ = 108.925(6)°  

 a = 5.431(7) b = 7.0128(3) c = 37.098(4) 

 Χ2 = 5.824 wRp =  0.0907 Rp = 0.0699 
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Figure B.3. Boron annealing results A) DSC trace for boron doped VO2 with cycles 

before (blue) and after (red) an annealing step within the DSC of a 500°C isothermal hold 

for 2 hours. The shift to higher transition temperature for the heating and cooling 

transition is indicative of the boron diffusing out of the lattice at high temperature 

effectively lowering the observed dopant concentration. B) Resulting peak transition 

temperatures for samples synthesized at various rapid thermal anneal (RTA) temperatures 

with the boron precursor. The depression leading up to 950°C indicates an optimal 

temperature for the degradation of the precursor and diffusion of boron in without 

overshooting to higher temperatures allowing diffusion of boron out of the lattice again. 
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Figure B.4. Additional DSC results – Rate and annealing dependence. Rate-dependent 

DSC traces for A) VO2, B) B0.018VO2, and C) B0.052VO2. The red and blue traces depict 

the evolution of the heating and cooling transitions, respectively, as a function of the scan 

rate. The shading of the trace represents the scan rate such that the slowest rate (1°C/min) 

is the darkest and the fastest rate (15°C/min) is the lightest coloration. The resulting Tc 

values from (A)―(C) are plotted as a function of scan rate in D) with the heating 

transition in red and cooling transition in blue. E) Thermal profile applied during the rate-

dependent DSC experiment for undoped VO2 and B0.02VO2 samples, the B0.05VO2 sample 

was cooled to -60°C owing to the lower shifted MIT but followed the same rate pattern. 

The dash type and shade of the line delineates rate with the most broken/lightest line 

being the fastest and the unbroken/darkest line as the slowest. F) and G) show arrhenius 

models for 49 isothermal experiments described in Fig. 3.2 as a function of varying time 

and temperature at which the sample was held in the monoclinic M1 phase. Black circles 

represent the experimental data and red curves and crosses denote the model predictions. 

Each line represents a different isothermal temperature of -50, -40, -30, -20, -10, 0, and 

10°C ascending from the bottom of the plots. F represents a single activation energy of 

0.96 eV, whereas G represents a combination of 5 activation energies of 0.90, 0.94, 0.98, 

1.02, and 1.06 eV in equal contribution. 
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Figure B.5. Additional DSC results – Rate and turnaround dependence. A) Illustration 

of the procedure employed in DSC Experiments 1―3 for evaluation of a VO2 sample 

with 1.8 at.% B in interstitial sites. Experiment 1 involves varying the cooling rate whilst 

holding the heating rate at 1°C/min (B,C); experiment 2 involves varying the heating 

rate whilst holding the cooling rate at 1°C/min (D,E); and experiment 3 involves varying 

the heating rate whilst holding the cooling rate at 1°C/min and comparing turn around 

temperatures of -30°C and -70°C (F,G). For each experiment, the thermal profiles (B, D, 

F) and resulting Tc values plotted as a function of scan rate (C, E, G) are given. The Tc 

values of the heating transition for the full scan rate dependent measurement shown in 

Fig. B.3D have been added to C and E as a dotted line for comparison. These 

measurements are aimed at separately evaluating the rate dependence of the R → M1 and 
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M1 → R transitions and evaluating the influence of time spent within the low-

temperature phase. The resulting Tc values for constant heating rate and constant cooling 

rate measurements are shown in C and E, respectively, and both exhibit Tc of the heating 

transition (M1 → R) to decreases only marginally with increasing scan rate in 

comparison to the fully rate dependent scans with shifts of less than 1.0°C for both 

constant heating and constant cooling measurements. Such a result indicates that kinetic 

asymmetry does not originate in rate-dependent behavior of either of the transitions and 

suggests that the observed phenomenon derives from the residence time within the M1 

phase. For the experiment in F and G the cooling rate was held constant while the 

heating rate was varied as in D, but for two different turnaround temperatures, -30°C and 

-70°C. The difference in Tc between the -30°C and -70°C measurements was negligible 

indicating that the time the sample spent lower than -30°C does not impact the M1 → R 

transition temperature for this sample. 
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Figure B.6. Probing Quenched and Relaxed States of B-Doped VO2. A) DSC traces of 

B0.018VO2 in the unrelaxed (quenched) state, and states that were thermally-relaxed as a 

function of time at room temperature amounting to intermediate (40 days) and relaxed 

(323 days) structures. B) DSC traces of B0.052VO2 in the unrelaxed (quenched) state, a 

thermally-relaxed state after being held at room temperature for 40 days after being 

relaxed above room temperature in a water bath, and a scan immediately after the cycle 

that was relaxed showing the resetting nature of this material. C) Powder XRD patterns 

measured at -163K for a B0.052VO2 sample in the relaxed and unrelaxed states of the M1 

phase. The unrelaxed sample was heated to 100°C and then rapidly cooled to -163 K. 

Thermal-relaxation profilesand DSC scans before and after resetting are provided for the 

7 (D, F) and 28 (E, G) days before low-temperature XRD. 
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Table B.2. Calculated formation energies and lattice parameters Formation energies and 

atomic coordinates of all unique interstitial B sites in the M1 and R unit cells as well as 

calculated M1 lattice parameters for different levels of interstitial B doping. Sites 

denoted with an (*) indicate the sites in a distorted and unrelaxed intermediate M1 phase 

calculated as metastable when transitioning from rutile in a doped 97 atom 2×2×2 

supercell. 

Location 
Formation Energy 

(eV) 
Coordinates 

x y Z 

M1 - BV32O64 

M1(1) -1.465 0.444 0.750 0.446 

M1(2) -1.465 0.564 0.494 0.313 

M1(3) -0.914 0.473 0.527 0.285 

M1(4) -0.604 0.727 0.209 0.279 

M1(5) -0.604 0.524 0.780 0.433 

M1(6)* 0.348 0.484 0.770 0.451 

M1(5)* 0.384 0.524 0.780 0.473 

M1(1)* 0.705 0.440 0.748 0.441 

R - BV32O64 

R (1) -3.559 0.500 0.750 0.687 

R (2) -2.154 0.120 0.447 0.295 

R (3) -2.590 0.551 0.710 0.628 

Monoclinic lattice change Δvolume (Å3) vol. (Å3) 

boron (at. %) Δa (Å) Δb (Å) Δc (Å)   

1.03 0.384% 0.322% 0.196% 0.628% 121.8 

2.04 0.743% 0.786% 0.354% 1.502% 122.8 

4 2.452% 0.484% 1.577% 6.908% 129.4 
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Figure B.7. Defect and band structure calculations. Density of states for (A) M1 and (B) 

R phases respectively, using a U value of 3.4 eV, which captures the insulating nature of 

the M1 polymorph and the metallic nature of the rutile polymorph. Native defect 

diagrams under (C) O-rich and (D) O-poor conditions. The vertical grey line indicates 

where the equilibrium Fermi level is pinned by the native defects. Charge density of the 

highest energy valence states for (E) BV and (F)BO defects with various charge states. In 

all cases, the charge is delocalized on V and O atoms instead of being localized around 

the B atom, which is expected from shallow defects.  Purple circles indicate the electron 

density on oxygen atoms in the BV defect cell. Analogous to the discussion of the Bv 

defect, the charges associated with BO defect are delocalized also indicated in the also 

the 0 charge state orbital-resolved DOS plots for (G,H) Bv and (I,J) BO defects. Hence, 

no significant lattice distortion is observed in proximity of the B atom. H and J are 

respective magnified views of G and I orbital-resolved projected DOS plots. The 

electronic states associated with the boron atom are mainly located within the deep 

valence band around -8 to -6 eV below the Fermi level, making it unlikely to induce 

significant electron density around the B atom near the Fermi level. This is consistent 

with Fig. B.7C-D where the top valence electrons are mostly delocalized across the V 

and O atoms instead of the B defect. 
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Figure B.8. Calculated suspercells: DFT calculated supercells for B-doped VO2, 

illustrating the most thermodynamically favorable interstitial sites for B incorporation 

for R (A, R(1)), quenched M1 (B, M1(6)), and relaxed M1 (C, M1(1)). Vanadium atoms 

are depicted as blue spheres, oxygen atoms as red spheres, and B atoms as green spheres. 

Lattice parameters for the doped M1 structure with different concentrations of boron can 

be found in Table B.2. Insets show oxygen coordination of boron in each respective 

state. 

 

 

. 



 

203 

 

 

Table B.3. Boron spectral features reference Assignment of B―O electronic transitions 

to spectral features in B K-edge XANES spectra using B standards. 

Assignment Incident 

Photon 

Energy 

(eV) 

Standard Structure References 

B 1s → π* B—O 

(trigonal) 
194.4 H3BO3, B2O3 ,

 

22,38-41 

B 1s → σ* B—O 

(trigonal) 
203.0 H3BO3, B2O3 ,

 

22,39-41 

B 1s → σ* B—O 

(tetrahedral) 
198.2 cubic-BN 

 

22,39,40 

B 1s → σ* B—O 

(tetrahedral) 

multiple scattering 

resonances 

~200 
cubic-BN, 

BPO4 
,

 

22,38,40 
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Figure B.9. Additional NEB and XANES details A) Minimum energy pathways 

obtained from NEB calculations when different charges were added to the supercell. B) 

Calculated B K-edge XANES spectra of substitutionally B-doped VO2 when B occupies 

an O site (black) or a V site (red). Final state assignments of the spectral features are 
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assigned based on the symmetries of the states observed in the isosurface plots shown in 

(C) and (D). Features are labeled with their character as assigned from isosurface plots 

of the final states. Isosurfaces are furthermore labeled with the energy of the transition 

feature. The absorption features at 191 eV and 194 eV for a B atom in a O site are 

assigned to the excitation of a core B 1s electron to π* and σ* states, respectively, 

associated with hybridization between V 3d and B 2p states. The absorption feature at 

206 eV is assigned to a non-bonding B 2p state. The absorption feature at 194 eV for a B 

atom in a V site is assigned to a non-bonding B 2p state. The isosurface structure 

associated with the absorption feature at 200 eV depicts both π* and σ* character for the 

excitation of a core B 1s electron to a hybridized O 2p—B 2p state. The final absorption 

feature at 202 eV is assigned to the excitation of a core B 1s electron to a O 2p—B 2p 

hybrid σ* state. (E,F) Thermal DSC profile expressed as (E) temperature vs. time and (F) 

scan rate vs. temperature, used to thermally-relax the B0.052VO2 sample to room 

temperature prior to Boron K-edge XANES spectroscopy measurements (shown in 

Figure 3.5B). G) DSC cycling measurement scans of the thermally-relaxed B0.05VO2 

sample taken immediately following the Boron K-edge XANES analysis shown in Fig. 

3.5B.  
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Table C.1. Statistics for the Rietveld refinement plotted in Fig. 4.1 (red). Unit cell 

parameters obtained by Rietveld refinement of powder XRD data. 

χ2 = 10.11, Rp = 5.15%, wRp = 6.74% 

Lattice parameter Value (Å) 

a 4.7014(5) 

b 9.567(1) 

c 2.9196(4) 

V 131.33(1) (Å3) 
 

 

Table C.2. Atom positions of crystallographically distinct vanadium and oxygen atoms. 

Note that isotropic thermal parameters, with the exception of vanadium, were set to the 

values tabulated without further refinement. 

Atom 
Label 

x y z Uiso*100 
Fractional 
Occupancy 

V 0.0452(7) 0.1423(4) 0.2500 2.772 1.00 

O1 0.1917(18) -0.2352(11) 0.2500 1.00 1.00 

O2 -0.2411(13) -0.0097(11) 0.2500 1.00 1.00 
 

Figure C.1. Crystal structure renditions of a single unit-cell of VO2 (orthorhombic, 

alternate setting Pbnm) as refined by Rietveld analysis of powder XRD data depicted in 

Figure 4.1a presented along the crystallographic (a) c-, (b) b-, and (c) a-axes. 
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Table C.3. Unique bond distances for V—O bonds within distorted VO6 octahedra as 

obtained by the Rietveld refinement of the powder XRD data presented in Figure 4.1. 

The bond distances are the same as displayed in Figure C.1d. Comparable values for the 

paramontroseite mineral phase as reported by Evans et al. are shown for comparison.[1] 

Bond distances 

Polyhedron 
Bond 

(Atom pair) 

Distance (Å) 

IrO2-doped VO2(P) 
Mineral 

Paramontroseite 

VO6 

V—O1 1.704(7) 1.844 

V—O1 2.040(5) 2.024 

V—O2 2.040(5) 2.024 

V—O3 1.982(9) 2.000 

V—O4 2.142(7) 2.000 

V—O5 2.142(7) 2.126 

Nearest V-V bond V—V 2.9196 2.93 
 

 

Table C.4. Unique bond angles for the VO6 octahedra as obtained by the Rietveld 

refinement of the powder XRD data presented in Fig. 4.1. Comparable values for the 

paramontroseite mineral phase as reported by Evans et al. are shown for comparison.[1] 

Bond angles 

Polyhedron Atom Pairs 
Angle (°) 

IrO2-doped VO2(P) 
Mineral 

Paramontroseite 

VO6 

O1_V_O2 176.2(6) 168.08 

O1_V_O3 95.46(35) 95.7 

O1_V_O4 95.55(13) 91.75 

O1_V_O5 95.55(13) 91.75 

O1_V_O6 95.46(35) 95.7 

O2_V_O3 81.799 92.41 

O2_V_O4 87.1(4) 80.08 

O2_V_O5 87.1(4) 80.08 

O2_V_O6 81.80(28) 92.41 

O3_V_O4 90.29(22) 86.05 

O3_V_O6 85.92(33) 94.21 

O5_V_O4 91.39(31) 92.72 

O5_V_O6 90.29(22) 86.05 
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Table C.5. Lattice parameters obtained for the samples reported in this work compared 

to those reported for the paramontroseite phase in the literature.[1,2] 

Comparison of lattice parameters 

Parameter 
Ir-Doped VO2(P) 

(This work) 
Synthetic 

Paramontroseite 
Naturally Occurring 

Paramontroseite 

a (Å) 4.7014 4.956 4.89 

b (Å) 9.567 9.332 9.39 

c (Å) 2.9196 2.896 2.93 

V (Å)3 131.33 133.9 134.5 
 

 

Table C.6. Change of lattice parameters and unit cell volume for prepared material as 

compared to synthetic and mineral phases reported in the literature.[1,2] 

Parameter 

Strain in Ir-Doped VO2(P) 

Relative to VO2(P) 
Relative to Naturally 

Occurring 
Paramontroseite 

a (Å) -5.137% -3.86% 

b (Å) 2.518% 1.885% 

c (Å) 0.815% -0.355% 

V (Å)3 -1.956% -0.239% 
 

C.1. References 

[1] H. T. Evans, M. E. Mrose, U.S. Geol. Surv. 1954, 861. 

[2] C. Wu, Z. Hu, W. Wang, M. Zhang, J. Yang, Y. Xie, Chem. Commun. (Camb). 

2008, 3891. 
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Figure D.1. PL emission wavelength (or energy bandgap) of 2D CsPbBr3 nanoplatelets 

derived from single-particle measurements plotted as a function of the vertical 

dimension of the nanoplatelets. 
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Figure D.2. Deconvolution of PL emission spectra with multiple Gaussian fitting for 

CsPbBr3 nanoplatelets obtained at the reaction condition of using C12 with 1:20 at 150 

°C. The dotted line at the bottom of the plot represents the residual of the fit. 
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Figure D.3. TEM images of 2D CsPbBr3 nanoplatelets grown under different reaction 

conditions: A,B) C14 with 1:20 at 100°C; C,D) C18 with 1:20 at 100°C; E,F) C18 with 

1:20 at 50°C; G,H) C12 with 1:20 at 150°C; I,J) C12 with 1:10 at 100 °C. 
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Table D.1. Deconvolution of PL emission spectra for an initial sampling of multivariate 

reaction space (40 samples). Multi-peak Gaussian fitting has been used to determine the 

fractional populations for different layer thicknesses (n = 1, 2, 3, 4, 5, 6, and bulk). Grey 

shading indicates samples with < 5% bulk PL emission intensity. Blue shading indicates 

samples with > 50% bulk PL emission intensity.  
Entry Alkyl-

amine 
Chain-
length 

(Cn) 

T 
(°C) 

Conc. 
(x) 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

navg.  

1 4 50 1:20 - 0.204 0.198 0.289 - 0.309 5.95 

2 4 100 1:20 - - 0.060 0.091 0.094 0.755 8.81 

3 4 100 1:5 - - - - - 1.000 10.0 

4 4 100 1:10 - - - - - 1.000 10.0 

5 4 100 1:20 - - 0.035 0.125 0.170 0.671 8.49 

6 4 100 1:30 - 0.045 0.060 0.087 0.146 0.661 8.30 

7 4 100 1:40 - - - - 0.191 0.809 9.23 

8 4 150 1:20 - 0.023 0.028 0.017 - 0.932 9.59 

9 8 50 1:20 0.021 0.508 0.177 0.061 - 0.232 4.84 

10 8 100 1:20 0.009 0.297 0.227 0.113 - 0.354 5.92 

11 8 100 1:5 - - - 0.071 0.243 0.686 8.67 

Figure D.4. Plot of leave-one-out cross-validation RMSE-CV as a function of the bulk 

thickness approximation for linear and SVM with a radial basis function kernel models 

using diffusion coefficient as the alkylamine descriptor. 
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Table D.1. Continued 
Entry Alkyl-

amine 
Chain-
length 

(Cn) 

T 
(°C) 

Conc. 
(x) 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

navg.  

12 8 100 1:10 0.011 0.017 0.109 0.225 - 0.638 8.01 

13 8 100 1:20 0.015 0.326 0.194 0.080 0.071 0.314 5.75 

14 8 100 1:30 0.456 0.383 0.090 0.023 0.017 0.032 2.95 

15 8 100 1:40 - 0.514 0.332 0.078 0.076 - 3.71 

16 8 150 1:20 - - - - 0.053 0.947 9.77 

17 12 50 1:20 0.412 0.527 0.025 0.017 - 0.019 2.78 

18 12 100 1:20 0.047 0.493 0.246 0.119 - 0.096 4.11 

19 12 100 1:5 0.025 0.015 0.035 0.055 - 0.870 9.21 

20 12 100 1:10 - 0.015 0.179 0.141 0.047 0.618 7.92 

21 12 100 1:20 0.460 0.443 0.050 0.027 0.008 0.012 2.75 

22 12 100 1:30 0.387 0.486 0.081 0.025 0.015 0.006 2.83 

23 12 100 1:40 0.030 0.661 0.190 0.070 0.023 0.025 3.56 

24 12 150 1:20 0.013 0.221 0.351 0.229 - 0.186 5.10 

25 14 50 1:20 0.108 0.746 0.083 0.037 0.026 - 3.10 

26 14 100 1:20 0.357 0.524 0.079 0.02 0.019 - 2.81 

27 14 100 1:5 0.024 0.052 0.105 0.087 0.073 0.659 8.09 

28 14 100 1:10 - 0.253 0.426 0.193 0.055 0.073 4.48 

29 14 100 1:20 0.358 0.524 0.079 0.021 0.019 - 2.82 

30 14 100 1:30 0.531 0.378 0.054 0.018 0.019 - 2.62 

31 14 100 1:40 0.098 0.657 0.184 0.039 0.023 - 3.23 

32 14 150 1:20 0.010 0.385 0.312 0.096 0.030 0.168 4.76 

33 18 50 1:20 0.012 0.684 0.179 0.107 - 0.017 3.50 

34 18 100 1:20 0.063 0.589 0.234 0.076 0.039 - 3.44 

35 18 100 1:5 0.019 0.046 0.101 0.096 - 0.738 8.43 

36 18 100 1:10 0.017 0.629 0.185 0.078 0.015 0.076 3.91 

37 18 100 1:20 0.035 0.656 0.125 0.132 0.053 - 3.52 

38 18 100 1:30 0.128 0.692 0.124 0.038 0.018 - 3.12 

39 18 100 1:40 - 0.484 0.245 0.151 - 0.121 4.40 

40 18 150 1:20 - 0.589 0.221 0.097 0.044 0.044 3.89 
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Table D.2. Deconvolution of PL emission spectra for additional random sampling of 

multivariate reaction space (34 samples) performed to expand the dataset to a viable size 

outside of the original experimental vectors. Multi-peak Gaussian fitting has been used 

to determine the fractional populations for different layer thicknesses (n = 1, 2, 3, 4, 5, 6, 

and bulk). Grey shading indicates samples with < 5% bulk PL emission intensity. Blue 

shading indicates samples with > 50% bulk PL emission intensity. 
Entry Chain 

length 
(Cn) 

T 
(°C) 

Conc. 
(x) 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

navg. 

1 4 70 1:35 - 0.031 0.107 0.169 0.482 0.210 6.36 

2 5 50 1:30 - 0.248 0.172 0.221 0.322 0.037 4.84 

3 5 60 1:35 - 0.118 0.124 0.404 0.175 0.179 5.71 

4 5 110 1:40 - - 0.019 0.205 0.183 0.594 8.13 

5 5 150 1:20 - - - - 0.040 0.961 9.84 

6 6 110 1:40 0.012 0.195 0.116 0.211 0.089 0.376 6.43 

7 7 80 1:30 0.110 0.700 0.110 0.030 0.030 0.030 3.33 

8 7 80 1:20 - 0.146 0.192 0.083 0.234 0.345 6.47 

9 9 50 1:40 0.032 0.599 0.249 0.078 0.028 0.014 3.55 

10 9 70 1:25 - 0.743 0.123 0.082 0.037 0.015 3.51 

11 9 80 1:40 - 0.479 0.288 0.111 0.063 0.059 4.11 

12 9 90 1:40 0.035 0.600 0.167 0.131 0.040 0.027 3.70 

13 12 110 1:30 0.112 0.564 0.117 0.114 0.060 0.032 3.64 

14 14 50 1:25 0.065 0.754 0.093 0.043 0.029 0.016 3.31 

15 14 70 1:25 0.136 0.665 0.151 0.027 0.020 - 3.13 

16 14 80 1:20 0.020 0.720 0.200 0.030 0.030 - 3.33 

17 14 120 1:30 0.030 0.341 0.157 0.135 0.155 0.181 5.13 

18 14 120 1:40 - 0.338 0.187 0.069 0.119 0.287 5.69 

19 14 150 1:30 0.040 0.224 0.170 0.173 0.059 0.335 6.00 

20 14 150 1:40 0.046 0.169 0.276 0.188 0.118 0.203 5.38 

21 16 70 1:40 0.052 0.398 0.161 0.274 0.089 0.026 4.10 

22 16 90 1:40 0.115 0.527 0.084 0.033 0.121 0.119 4.24 

23 16 100 1:35 0.029 0.107 0.089 0.072 0.646 0.057 5.54 

24 16 120 1:5 - - - 0.05 - 0.949 9.74 

25 18 50 1:15 0.016 0.503 0.306 0.133 0.033 0.009 3.72 

26 18 50 1:10 0.021 0.217 0.353 0.202 0.136 0.071 4.64 

27 18 60 1:30 0.035 0.529 0.270 0.104 0.048 0.014 3.69 

28 18 60 1:20 0.052 0.529 0.259 0.113 0.033 0.014 3.63 

29 18 70 1:20 0.060 0.512 0.205 0.140 0.054 0.029 3.79 

30 18 100 1:25 0.025 0.306 0.339 0.230 0.073 0.026 4.18 

31 18 110 1:25 0.021 0.271 0.293 0.143 0.149 0.125 4.87 

32 18 120 1:10 - - 0.05 0.11 0.76 0.08 6.09 

33 18 130 1:40 0.036 0.126 0.133 0.247 0.326 0.132 5.49 

34 18 140 1:15 0.012 0.480 0.256 0.109 0.092 0.051 4.09 
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Table D.3. Descriptor values for the alkylamines used for t-test and wrapper evaluation 
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H

3 ) (p
p

m
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1H
-N

M
R

 sh
ift  

(-N
H

2 ) (p
p

m
) 6 

4 73.137 77.3 31.8 0.74 10.60 1.177 6.222 0.742 9.6 224 0.92 1.77 

5 87.163 105.5 34.0 0.755 10.63 1.147 1.740 0.723 11.4 218.15 0.91 1.12 

6 101.19 131.8 36.5 0.77 10.56 1.080 -2.742 1.029 13.2 249.8 0.9 1.17 

7 115.217 156.4 39.3 0.777 10.67 0.991 -7.225 0.837 15.1 250.15 0.89 1.4 

8 129.243 179.4 41.6 0.782 10.65 0.979 -11.707 1.125 16.9 272.15 0.881 1.69 

9 143.27 201.1 43.7 0.798 10.64 0.941 -16.189 0.97 18.7 272.15 0.881 1.14 

12 185.35 258.6 49.6 0.806 10.63 0.822 -29.636 1.384 24.3 300.15 0.89 1.19 

14 213.403 291.9 53.1 0.81 10.62 0.739 -38.601 1.535 27.9 313.15 0.888 1.26 

16 241.456 321.8 56.4 0.813 10.61 0.690 -47.565 1.693 31.6 319.95 0.88 1.26 

18 269.509 348.9 59.3 0.862 10.60 0.648 -56.530 1.86 35.3 326.05 0.88 1.29 
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Table D.4. CsPbBr3 wrapper R2 results for a selection of modeling methods using each 

of the descriptors of the alkylamine ligands for comparison. 
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Linear 0.1927 0.1927 0.2362 0.2278 0.1747 0.0669 0.2416 0.1927 0.1771 0.1924 0.2764 0.2066 0.1700 

Quadratic 0.4945 0.4945 0.5011 0.5020 0.4870 0.2763 0.4893 0.4945 0.4104 0.4941 0.4598 0.3792 0.3100 

Quadratic 
(Cross) 

0.5991 0.5991 0.6002 0.6071 0.5417 0.3902 0.5990 0.5991 0.5439 0.5993 0.5946 0.4169 0.3810 

SVM - RBF 0.8574 0.8589 0.8522 0.8560 0.9429 0.7198 0.8263 0.8499 0.8342 0.8599 0.8208 0.4110 0.8918 

SVM - Linear 0.1282 0.1282 0.2138 0.2091 0.1526 -0.0021 0.2249 0.1282 0.0994 0.1275 0.2463 0.1999 0.1534 

SVM - 
Quadratic 

0.3139 0.3140 0.3581 0.3521 0.1911 0.2960 0.3490 0.3139 0.2692 0.3123 0.3167 0.2081 0.2468 

SVM - Cubic 0.3286 0.3284 0.2837 0.3152 0.2888 0.0328 0.3310 0.3286 0.2369 0.3281 0.2853 0.1783 0.2474 

KNN - K=3 0.0598 0.1181 0.2244 0.0179 0.0402 -0.0033 0.0614 0.1744 0.0588 0.0153 0.1366 -0.0492 -0.0442 

Ridge λ=50 0.1206 0.1919 0.2352 0.1934 0.0601 0.0601 0.0603 0.1896 0.0607 0.1644 0.2740 0.0601 0.0602 

Ridge λ=10 0.1753 0.1926 0.2362 0.2243 0.0607 0.0607 0.0615 0.1925 0.0635 0.1896 0.2762 0.0607 0.0613 

Ridge λ=5 0.1862 0.1927 0.2362 0.2268 0.0608 0.0607 0.0624 0.1926 0.0662 0.1916 0.2763 0.0607 0.0620 

Ridge λ=1 0.1923 0.1927 0.2362 0.2277 0.0610 0.0607 0.0687 0.1927 0.0847 0.1924 0.2764 0.0608 0.0667 

Ridge λ=0.5 0.1926 0.1927 0.2362 0.2278 0.0612 0.0607 0.0762 0.1927 0.1019 0.1924 0.2764 0.0608 0.0723 

Ridge λ=0.1 0.1927 0.1927 0.2362 0.2278 0.0633 0.0608 0.1218 0.1927 0.1535 0.1924 0.2764 0.0610 0.1040 

Ridge λ=0.05 0.1927 0.1927 0.2362 0.2278 0.0657 0.0608 0.1565 0.1927 0.1673 0.1924 0.2764 0.0612 0.1259 

Ridge λ=0.01 0.1927 0.1927 0.2362 0.2278 0.0827 0.0613 0.2249 0.1927 0.1765 0.1924 0.2764 0.0633 0.1627 

Ridge λ=0.005 0.1927 0.1927 0.2362 0.2278 0.0989 0.0617 0.2358 0.1927 0.1769 0.1924 0.2764 0.0657 0.1676 

Ridge λ=0.001 0.1927 0.1927 0.2362 0.2278 0.1496 0.0640 0.2413 0.1927 0.1771 0.1924 0.2764 0.0833 0.1699 
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Table D.5. CsPbBr3 wrapper RMSE-CV results for a selection of modeling methods 

using each of the descriptors of the alkylamine ligands for comparison. 
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Linear 1.0603 1.0603 1.0309 1.0367 1.0707 1.1576 1.0266 1.0603 1.0703 1.0604 1.0024 1.0395 1.0901 

Quadratic 0.8811 0.8811 0.8737 0.8730 0.8802 1.0817 0.8835 0.8811 0.9564 0.8815 0.9175 0.9696 1.0442 

Quadratic 
(Cross) 

0.8398 0.8398 0.8689 0.8506 0.8875 1.1079 0.8668 0.8398 0.8839 0.8391 0.8599 1.0011 1.1134 

SVM - RBF 0.7757 0.7755 0.7670 0.7556 0.7768 0.9755 0.7550 0.7764 0.8494 0.7725 0.7595 1.0016 0.9197 

SVM - Linear 1.1452 1.1451 1.1476 1.1535 1.1384 1.1276 1.1249 1.1452 1.1332 1.1448 1.0616 1.0304 1.0716 

SVM - 
Quadratic 

1.0165 1.0165 1.0614 1.0510 1.0638 1.0434 1.0444 1.0165 1.0225 1.0158 1.0085 1.1192 1.3435 

SVM - Cubic 1.0858 1.0859 1.1078 1.1005 1.0881 1.6240 1.1265 1.0858 1.1986 1.0861 1.2439 1.7287 1.2162 

KNN - K=3 1.0684 1.0348 0.9704 1.0920 1.0795 1.1037 1.0675 1.0012 1.0690 1.0934 1.0239 1.1286 1.1260 

Ridge λ=50 1.0838 1.0529 1.0239 1.0453 1.1130 1.1130 1.1129 1.0529 1.1127 1.0631 0.9962 1.1130 1.1129 

Ridge λ=10 1.0632 1.0581 1.0288 1.0353 1.1177 1.1177 1.1173 1.0579 1.1164 1.0580 1.0003 1.1177 1.1175 

Ridge λ=5 1.0598 1.0591 1.0298 1.0354 1.1186 1.1186 1.1178 1.0590 1.1160 1.0587 1.0013 1.1186 1.1181 

Ridge λ=1 1.0595 1.0600 1.0307 1.0363 1.1193 1.1194 1.1154 1.0600 1.1081 1.0600 1.0021 1.1194 1.1171 

Ridge λ=0.5 1.0598 1.0602 1.0308 1.0365 1.1193 1.1195 1.1117 1.0601 1.1000 1.0602 1.0023 1.1195 1.1150 

Ridge λ=0.1 1.0602 1.0603 1.0309 1.0366 1.1184 1.1197 1.0885 1.0603 1.0766 1.0604 1.0024 1.1195 1.1028 

Ridge λ=0.05 1.0602 1.0603 1.0309 1.0367 1.1172 1.1199 1.0704 1.0603 1.0713 1.0604 1.0024 1.1194 1.0948 

Ridge λ=0.01 1.0603 1.0603 1.0309 1.0367 1.1092 1.1209 1.0341 1.0603 1.0695 1.0604 1.0024 1.1185 1.0853 

Ridge λ=0.005 1.0603 1.0603 1.0309 1.0367 1.1015 1.1221 1.0286 1.0603 1.0698 1.0604 1.0024 1.1174 1.0861 

Ridge λ=0.001 1.0603 1.0603 1.0309 1.0367 1.0781 1.1294 1.0264 1.0603 1.0702 1.0604 1.0024 1.1095 1.0889 
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Table D.6. Deconvolution of PL emission spectra for a validation set of six samples. 

Multi-peak Gaussian fitting has been used to determine the fractional populations for 

different layer thicknesses (n = 1, 2, 3, 4, 5, 6, and bulk). 
Entry Chain-

length 
(Cn) 

T 
(°C) 

Conc. 
(x) 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

navg

. 
TEM 
Thic

k-
ness 
(nm) 

1 6 70 1:15 - 0.030 0.101 0.135 0.334 0.400 7.2 4.0 

2 7 90 1:15 - 0.128 0.175 0.195 0.166 0.336 6.4 3.7 

3 7 70 1:30 0.009 0.392 0.279 0.185 0.068 0.067 4.3 2.5 

4 18 80 1:25 0.059 0.246 0.306 0.119 0.187 0.083 4.6 2.9 

5 16 90 1:25 0.060 0.562 0.192 0.075 0.083 0.027 3.7 2.3 

6 16 90 1:40 - 0.413 0.328 0.068 0.048 0.142 4.6 2.8 
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Figure D.5. TEM images of CsPbBr3 nanoplatelets corresponding to the validation set 

stabilized at different reaction conditions: A) C6 with 1:x = 1:15 at 70°C; B) C7 with 1:x 

= 1:15 at 90°C; C) C7 with 1:x = 1:30 at 70°C; D) C18 with 1:x = 1:25 at 80°C; E) C16 

with 1:x = 1:25 at 90°C; and F) C16 with 1:x = 1:40 at 90°C. 
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Table D.7. Deconvolution of PL emission spectra for samples predicted to be have an 

navg of 3.0.. Multi-peak Gaussian fitting has been used to determine the fractional 

populations for different layer thicknesses (n = 1, 2, 3, 4, 5, 6, and bulk). 
Entry Alkylamine 

Chain-length 
(Cn) 

T 
(°C) 

Conc. 
(x) 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 
bulk 

navg.  

1 9 104 1:32 0.318 0.514 0.131 0.023 0.015 0 2.90 

2 12 50 1:30 0.446 0.439 0.065 0.033 0.017 0 2.74 

3 14 82 1:28 0.642 0.286 0.053 0.018 0 0 2.45 
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Figure D.6. PL emission spectra and Gaussian peak fits for three samples predicted to 

have an navg. of 3.0; A, B, and C correspond to entries 1, 2, and 3 in Table D.7, 

respectively. 

 



 

222 

 

 

 

 

D.1. References 

[1]  W. M. Haynes, D. R. Lide, J. B. Thomas, CRC Handbook of Chemistry and 

Physics : A Ready-Reference Book of Chemical and Physical Data, 97th ed. CRC Press 

2017.  

[2] ACD/Percepta; Advanced Chemistry Development Inc. Toronto. 2017 

[3] J. Cho, Y. H. Choi, T. E. O’Loughlin, L. De Jesus, S. Banerjee, Chem. Mater. 

2016, 28, 6909. 

[4] D. Matulis, V. A. Bloomfield, Biophys. Chem. 2001, 93, 53. 

[5] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeerschd, E. Zurek, G. R. 

Hutchison, J. Cheminform. 2012, 4, 17. 

Figure D.7. Plot of cross-validation error versus the number of folds in cross validation 

for the SVM model with a radial basis function kernel using diffusion coefficient as the 

alkylamine descriptor. 



 

223 

 

[6] National Institute of Advanced Industrial Science and Technology, Spectral 

Database for Organic Compounds. http://sdbs.db.aist.go.jp (acsessed July 25, 2017) 


