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ABSTRACT

We should give the soul of soft robotics by enlarging the concepts of structure design, material

science, fluid mechanics, control theory, and signal processing to embrace the more noble task of

system design. By system design, we refer to design the components that make up the system,

given only the requirements of the overall system. The fundamental challenge is to create theories

of system modeling. The existing design approaches deal with what is sufficient rather than

necessary, locked into the classical thinking of component technology. That is, design the structure

first, followed by material studies and fluid analysis, and add control and signal processing later.

The critical question that we should ask is that whether dramatic performance improvements are

possible by combining different disciplines as a communal pool of resources such that engineers

in different disciplines have more freedom and can talk to each other in design space to solve a

joint optimization problem.

This research studies the approaches to the system design of soft robotics by integrating structure,

materials, fluids, control design, and signal processing using the tensegrity paradigm. Biological

systems perhaps provide the greatest evidence that tensegrity is the most efficient structure. Thus,

the tensegrity paradigm is chosen for this study.

In this research, we first developed the tensegrity structure minimal mass design methods by

nonlinear optimizations. This approach allows one to design any solid or hollow bar tensegrity

structures with any given external forces (w/o gravity) subject to the structure equilibrium conditions

and the maximum stress constraints of structure members (strings yield, bars yield or buckle).

Secondly, the tensegrity system dynamics in fluids are derived and studied in two aspects:

1). Tensegrity structures interface fluid directly. Both Class-1 and Class-k tensegrity dynamics

with fluid forces incorporated are formulated. 2). Tensegrity structures interface fluid by a skin

(membrane) on the structure. The fluid forces are transferred to the structure by the skin on the

tensegrity structure. The algorithms enable our ability to perform Fluid-Structure Interaction (FSI)

studies of any fluid-based (underwater or in the air) tensegrity structures.
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Thirdly, general tensegrity dynamics equations based on the Finite Element Method (FEM) and

the Lagrangian method with nodal coordinate vectors as the generalized coordinates are presented.

This approach allows one to perform nonlinear dynamics, linearized dynamics, and modal analysis

of any tensegrity structures with elastic or plastic deformations subject to any boundary constraints.

Then, to achieve shape control of tensegrity robots, a nonlinear model-based control law is

derived. The control variables (force densities in the strings) appear linearly in the nonlinear

control. To study the control performance, we demonstrated a shape controllable tensegrity airfoil,

whose topology is based on shape accuracy. This shape control method is suitable for the control

of any general tensegrity robots.

Finally, a systematic design approach to integrating the sensor/actuator selection (SAS) and

covariance control design for tensegrity robots are also studied. The SAS method and the feedback

control law problem are converted into an equivalent convex problem, given by a set of LMIs

(linear matrix inequalities). The principles can be used to guide sensor and actuator selections,

analyze the system performance, and work as an interface to integrate structure, control, and signal

processing designs. The theories developed in this research include but are not limited to tensegrity

structures.
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1. INTRODUCTION AND MOTIVATION

1.1 Motivation

Interdisciplinary Engineering: A typical structural control or robotics design problem normally

contains the design of these components: structure, materials, manufacturing, construction, sensing,

computing algorithm, signal processing, and control design. Engineering universities teach these

isolated disciplines. Currently, the theory and education for these isolated disciplines are quite

mature. However, their interactions, which describe the behavior of the interaction of all the

isolated disciplines, are still quite immature.

However, it is straightforward to ask these questions: Why we need to integrate different

disciplines, is there any benefit? How to integrate different disciplines? Should we start at

the state of the art of each discipline? Or should we simply add control after the structure is

designed? Or should we spend more money and effort on the negotiation of engineers with

different backgrounds? While this is the tradition, and indeed there are many useful applications

in retrofitting, this isolation is not the way to obtain the best performance. Synergy is a popular

idea, but when is the whole less than the sum of the parts. The answer is usually. Because we

over-design components for lack of coordination in their design or waste money on components

that are not necessary or make a component much more precise than required.

A misconception is that “The best system is made from the best components”. That is certainly

not true. Often, we gain more in integrating two disciplines than making exceptional improvements

in one discipline. For example, in the airplane wing, aerodynamics engineers first designed the best

shape based on their knowledge in fluid dynamics, then the control engineer came and break the

beautiful shape for control objectives. This is certainly not the right way. A systematic approach

would be to modify shape not by pushing against a reference equilibrium but by modifying the

equilibrium. Of course, this would require much less control effort.

It is important to identify the performance-limiting technologies in a system, such as manufacturing
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precision, signal processing and control algorithms, computational precision, better models for

physics, location of sensors and actuators, etc. However, a system theory is not available that even

allows us to answers these questions. Now, the fact is that there are no instructions on how to

put the isolated and sophisticated component technologies together. We believe that the next great

challenge in engineering is integrating the different disciplines to embrace the much more general

problem of system design. By system design we refer to given the requirements of the overall

system, find the design components that make up the system. This thesis takes some steps toward

system design: the integration of structure, fluids, materials, control, and signal processing.

The Tensegrity Paradigm: Now, the question becomes what kind of structure would be a

suitable paradigm for the integration of various engineering disciplines? For decades, people are

also trying to integrate structure and control design by bending and torturing classical continua

with control forces to make the systems do something that they did not want to do. This is

neither structure effective nor control efficient. Instead of forcing continua and adding actuators

to the old paradigm such as beams, plates, and shells, the integration of the structure and control

disciplines should begin by looking for a new paradigm, looking for ways to integrate choices

of structure design, material, and control architecture. Biological systems perhaps provide the

greatest evidence that tensegrity is the most efficient structure. Many of the macro and microbiological

structures are consistent with tensegrity models. For example, in the living cells, micro-filaments

and micro-tubules are working as tensile and compressive members to control the substrate traction

[1], shown in Figure 1.1. The structure of DNA bundles is consistent with a tensegrity prism

structure [2], shown in Figure 1.2. In human bones, muscles, elbows, spines, they are all tensegrity

structures [8, 9], shown in Figure 1.3. Even in the spider fiber, there are also tensile and compressive

members in its molecular structures [10].

Tensegrity is a coined word: tension and integrity, by Buckminister Fuller [11] for the art form

created by Ioganson (1921) and Snelson (1948) [12]. The tensegrity system is a stable network

of compressive members (bars/struts) and tensile members (strings/cables). By definition, it is

clear that the most fundamental property of the tensegrity system is that all the one-dimensional
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Figure 1.1: Mechanical behavior in living cells consistent with the tensegrity model. Reprinted
from [1].

Figure 1.2: Electron micro-graphs and cylinder models of DNA tensegrity prisms. Reprinted from
[2].

Figure 1.3: Bone, muscle, and intramuscular connective tissue. Reprinted from [3] (left). Hhuman
right elbow. Reprinted from [4] (right).
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structural members are axially loaded [13]. That is to say, the overall structure can be designed

along the load path to make the best of each structure member since bars are best in taking

compression, and strings are best in taking tension. In fact, a few research on form-finding

[14, 15, 16] and topology optimization [17, 18, 19] have shown the ways to find the optimal load

path and to locate structure members with given design objectives.

After decades of study, tensegrity structure has demonstrated its many advantages: 1. Mass

efficiency: the material is only needed in the essential load path, not the orthogonal one [20, 21, 17].

Tensegrity networks can be arranged to achieve strength with little mass. Minimum mass structure

solutions for five fundamental loading conditions in engineering mechanics (compression [22],

tension [23], cantilever [13], torsion [24], and simply supported [25]), as shown in Figure 1.4. 2.

Tension stabilizing: One can change shape/stiffness without changing stiffness/shape [26, 27, 28].

3. Accurate model: there is no material bending, the deformation of each structure member is

only one dimensional, so the uncertainty is only in one direction. Thus, we can get better stability

margins with dedicated materials [29]. Moreover, more accurate structure models can give more

precise control [30]. 4. Less control energy: the flexible structure has an infinite number of

equilibrium states. By sliding along the equilibrium, less control energy is required to morph and

maintain the structure shape [31, 32]. 5. Redundant control inputs (both strings and bars can be

actuators) provide robustness. 6. Energy absorber/harvester: the soft structure and strings can be

used to absorb impact energy [33, 34, 35, 36]. 7. Promote the integration of structure and control

design [7, 37, 38]. Thus, tensegrity structures provide a promising paradigm for integrating these

disciplines.

1.2 Contributions of This Dissertation

This dissertation contains innovative work on soft robotics by integrating structure, materials,

fluids, materials, and control design using the tensegrity paradigm. The major contributions are

listed below:

1. Provided a general approach for the minimal mass design of any solid or hollow bar tensegrity

structures with any given external forces (w/o gravity) subject to the structure equilibrium
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Figure 1.4: Tensegrity solutions to the five fundamental problems in engineering mechanics.

conditions and the maximum stress constraints of structure members (strings yield, bars

yield, or buckle) in a compact matrix form. The methodology yields several nonlinear

programming problems. The principles developed in this research demonstrate a fundamental

insight into both materials and structures.

2. Presented the study of tensegrity system dynamics in fluids, 1). tensegrity structures interface

fluid directly. 2). tensegrity structures interface fluid by a skin (membrane) on the tensegrity

structure. For the first one, we developed Class-1 and Class-k tensegrity dynamics with

fluid force incorporated. For the second one, we demonstrated how the fluid forces can be

transferred to the structure by the skin on the tensegrity structure. This work enables the

ability to do fluid-structure interaction studies of any tensegrity structures. The principles

developed here can also be used for analyzing various kinds of tensegrity structures operating

in the air or underwater.

3. Developed a finite element analysis approach to nonlinear and linearized tensegrity dynamics

based on the Lagrangian method with nodal coordinate vectors as the generalized coordinates.

The developed approach is capable of conducting comprehensive dynamics studies for any

tensegrity structures, including rigid body dynamics, FEM dynamics (bars and strings can

have elastic or plastic deformations), dealing with various kinds of boundary conditions,

and accurate modal analysis. This study provides a deep insight into structures, materials,
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performances, as well as an interface towards integrating control theories.

4. Nonlinear model-based shape control algorithm for Class-1 and Class-k structures with

massless/massive strings. This work paves a road towards integrating structure and control

design. The principles developed here can also be used for 3D morphing airfoil design and

control of various kinds of tensegrity structures.

5. Presented a systematic design approach to integrating the economic sensor/actuator selection

and covariance control design for tensegrity robots. The principles developed in this chapter

can be used to analyze the performance of various types of structures as well as an interface

to integrate structure, control, and signal processing designs. These methods include but are

not limited to tensegrity structures.

1.3 Outline of this Dissertation

Chapter 1 introduces the main themes of this dissertation and the critical issues of interdisciplinary

engineering for structural control and the tensegrity paradigm.

Chapter 2 presents an integration of structures and materials for the static design of tensegrity

structures. We provide a general approach to the minimal mass design of tensegrity structures

with solid and hollow bar cross-sections subject to any given external forces and gravity. The

load stability of structural members is assured by checking the modes of failure of all the structure

members, and global stability is guaranteed by solving a linear matrix inequality with the derived

stiffness matrix. The methodology yields several nonlinear programming problems. The influence

of cross-section of bars and joints on structure mass is also discussed. The algorithms are verified

by D-Bar examples. A deployable tensegrity tower in the presence of lunar gravity to support space

mining is also designed and studied.

Chapter 3 presents an integration of structures and fluids for the analysis of the dynamics

of tensegrity structures. This chapter has two major parts based on how the fluid and tensegrity

structures are interfaced with each other: 1). tensegrity structures interface fluid directly. 2).

tensegrity structures interface fluid by a skin (membrane) on the tensegrity structure. For the first
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part, this chapter provides compact vector and matrix forms of the nonlinear dynamics of class-1

and class-k tensegrity systems with fluid forces incorporated. For the second part, this chapter

studies tensegrity airfoil/hydrofoil interfaces fluid by the skin on the structure. The fluid forces

on the foil surface are obtained by the panel method. Then, we develop a method for discretizing

continuous airfoil curves based on shape accuracy. This method is compared with conventional

methods (i.e., evenly spacing and cosine spacing methods). A tensegrity topology for shape

controllable airfoil is proposed. The surface fluid forces are integrated into the surface supporting

nodes of the structure, which can be used as the external force to simulate the tensegrity system

dynamics. Finally, the airfoil and hydrofoil examples are studied and compared to demonstrate the

approach.

Chapter 4 presents a finite element analysis approach to nonlinear and linearized tensegrity

dynamics based on the Lagrangian method with nodal coordinate vectors as the generalized coordinates.

In this chapter, nonlinear tensegrity dynamics with and without constraints are first derived. The

equilibrium equations in three standard forms (in terms of nodal coordinate, force density, and

force vectors) and the compatibility equation are also given. Then, we present the linearized

dynamics and modal analysis equations with and without constraints. The developed approach is

capable of conducting the following comprehensive dynamics studies for any tensegrity structures

accurately: 1. Performing rigid body dynamics with acceptable errors, which is achieved by setting

relatively high stiffness for bars in the simulation. 2. Simulating FEM dynamics accurately, where

bars and strings can have elastic or plastic deformations. 3. Dealing with various kinds of boundary

conditions, for example, fixing or applying static/dynamic loads at any nodes in any direction

(i.e., gravitational force, some specified forces, or arbitrary seismic vibrations). 4. Conducting

accurate modal analysis, including natural frequency and corresponding modes. Three examples,

a double pendulum, a cantilever truss with external force, and a double prism tensegrity tower,

are carefully selected and studied. The results are compared with rigid body dynamics and FEM

software ANSYS.

Chapter 5 presents a general approach of design, dynamics, and control for tensegrity morphing
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airfoils. Based on reduced order Class-k tensegrity dynamics, a nonlinear shape control law for

any tensegrity systems is derived. A morphing tensegrity airfoil example is given to demonstrate

successful shape control. The approach can be used for the shape control of any tensegrity structures.

Chapter 6 presents a systematic design approach to integrate the economic sensor/actuator

selection and covariance control design for tensegrity robots. The objective is to minimize the

output covariance of the tensegrity robots subject to the specified sensor/actuator budget and

control covariance upper bounds by solving the precision of sensor/actuator and output feedback

control law problems simultaneously. To achieve this goal, we first derived the linearized tensegrity

dynamics with any constraints by taking the total derivative of the nonlinear tensegrity dynamics

and keeping the linear terms. Followed by an uncertainty study of joints in the tensegrity structures

with no control. Then, together with a linear dynamic output-feedback controller, we give the

closed-loop system formulation. The economic sensor/actuator selection method and the feedback

control law problem are converted into an equivalent convex problem, given by a set of LMIs

(linear matrix inequalities). To verify the proposed algorithms, the error of the nonlinear and

linearized dynamics are first compared and checked. A 2D tensegrity morphing airfoil is then

implemented to examine the integrated algorithm.

Chapter 7 summarizes the major conclusions of the work.
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2. INTEGRATING STRUCTURE DESIGN AND MATERIALS: STATIC DESIGN OF

TENSEGRITY STRUCTURES*

This chapter provides a general approach to the minimal mass design of any solid or hollow bar

tensegrity structures with any given external forces subject to the structure equilibrium conditions

and the maximum stress constraints of structure members (strings yield, bars yield, or buckle) in

a compact matrix form. The methodology yields several nonlinear programming problems. Local

stability is assured by checking the modes of failure of all the structure members, and global

stability is guaranteed by solving a linear matrix inequality with the derived stiffness matrix.

To further reduce mass, the choice of the cross-section of bars is also discussed. For practical

problems, joint mass is considered as a penalty to the total structure mass. The principles developed

in this chapter demonstrate a fundamental insight into both materials and structures.

2.1 Introduction

There are five fundamental problems in engineering mechanics: compression, tension, torsion,

cantilever, and simply supported. Each subject has been well studied in continuum mechanics for

hundreds of years. However, does continuum guarantee a minimal mass structure? The answer is

not always. In fact, the minimal mass solution to all these five fundamental questions is tensegrity

structures. For example, Skelton and de Oliveira [39] proved T-Bar and D-Bar systems cost much

less mass than a single continuum bar in taking compression. Inspired by spider fiber, Skelton and

Nagase demonstrated an efficient tensile tensegrity structure with required stiffness constraints

[40]. Nagase and Skelton presented the design of double helix tensegrity (DHT) Structures, which

requires less mass to take torsional loads than continuum cylinders [24]. Ma et al. showed that

a discrete tensegrity truss is more mass efficient in taking cantilever load [18]. Gerardo et al.

demonstrated a mass efficient tensegrity bridge for taking simply supported loads [25].

To design a tensegrity structure, there are two critical issues: 1. specify the connection patterns

*Part of this chapter is reprinted with permission from “A general approach to minimal mass tensegrity” by Muhao
Chen and Robert E. Skelton, 2020. Composite Structures, Volume 248, 112454, Copyright [2020] by Elsevier Ltd.
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of bars and strings. 2. determine the thickness of all the structure members. The first one is

called a form-finding problem, which has been widely studied. For example, Tibert and Pellegrino

classified and discussed the properties of kinematical and static form-finding approaches for tensegrity

structures [41]. Milenko et al. presented a general form-finding method for symmetric tensegrity

structures with shape constraints [42]. Zhang et al. derived an efficient form-finding method

based on the structural stiffness matrix, and the total potential energy [43]. Koohestani proposed

a computationally efficient algorithm for the analytical form-finding of tensegrity structures [14].

Lee et al. implemented a genetic algorithm by using the force density method to get tensegrity

structure topology [17]. The second one is called a minimal mass problem. Few studies have

been conducted. For example, Skelton and de Oliveira introduced a minimal mass method by

introducing a self-similar fractal considering yielding and buckling of structures [39]. Nagase and

Skelton presented major aspects of minimal mass tensegrity problems, but the linear programming

algorithms they presented are for bar and string yielding calculations [44]. Carpentieri et al. gave

a minimal mass design of tensile reinforcements of masonry structures with arbitrary shapes [45].

Fraternali et al. showed a topology optimization and minimal mass design strategy for masonry

domes and vaults [46].

However, none of them present a minimal mass design approach to solid and hollow bar

tensegrity structures without prescribing the mode of failure of bars as well as considering the

structure gravity, stiffness, and structure member cross-sections. This chapter presents a systematic

minimal mass tensegrity framework in a compact matrix form. The principles developed in this

chapter can be used to compute the minimal mass and stiffness of solid and hollow bar tensegrity

structures considering yielding and buckling constraints of each structural member with or without

gravity.

This chapter is structured as follows: Section 2.2 gives the definition of tensegrity structures

and assumptions for static structure designs. Section 2.3 defines the notations of nodal coordinate,

connectivity, structure member, and external force matrices. Section 2.4 formulates the tensegrity

equilibrium equation in terms of force densities in the strings and bars. The force density is used
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as the variable to link structure equilibria, structure mass, and structure stiffness. Section 2.5

derives the minimal mass tensegrity design formulation for both solid and hollow bar tensegrity

structures in terms of structure force density. Section 2.6 presents the minimal mass tensegrity

design algorithms for both solid and hollow bar tensegrity structures w/o gravity. A 2D D-Bar

example is examined to verify the developed algorithms. Section 2.7 derives the general form of

structure stiffness for both solid bar and hollow bar tensegrity. Section 2.8 presents an algorithm to

design minimal mass tensegrity structure subject to gravity and global buckling. Section 2.9 shows

a way of mass saving by changing the shape of bar cross-sections of both solid and hollow bar

tensegrity. Section 2.10 discusses the joint mass penalty for practical considerations. Section 2.11

demonstrates a 3D T5D1 deployable lunar tower to support lunar mining. The details of topology

design, deployment, the study of design parameters, drag analysis, and material studies are given.

And Section 2.12 presents the conclusions.

2.2 Tensegrity Structure Definition and Assumptions

For engineering study and application purposes, we must start with definitions and assumptions

of the word tensegrity and then show the mathematical formulations. The tensegrity has both

compressive and tensile parts, and we label the compressive ones as bars and tensile ones as strings.

Strings and bars may be connected to each other at their nodes, and the connection pattern is

denoted as connectivity. We also distinguish the connections of strings and the connections of bars

and call them string connectivity and bar connectivity. The forces that do not come from strings

within the structure are defined as external forces. Then, the definition of tensegrity is as follows

[5].

Definition 2.2.1. The tensegrity or tensegrity structure or tensegrity system is a stable network of

bars and strings, where bars only take compression and strings only take tension.

From the definition, it is clear that there is no bending in the materials. This is a great advantage

in proving us actuate system models because models who have materials bending are not as

accurate as those who do not have [39]. In a tensegrity structure, if all the bars are hollow pipes,
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we call the structure hollow bar tensegrity; if all the bars are solid rods, we call the structure solid

bar tensegrity. Based on the pattern of how bars and strings are connected, the tensegrity structures

can be classified: 1). Class-0 structure, the structure is a pure string to string network; 2). Class-1

structure, bars in the tensegrity network are only connected to strings; 3). Class-k structure, bars

in the tensegrity network are connected to other bars, and the maximum number of bars connected

to one node in the structure is k (k ≥ 2 ∈ N). To establish the mathematical descriptions of static

laws and minimal mass design approaches for any tensegrity structures, our assumptions are listed

as follows.

Assumption 2.2.1. The structural members (bars and strings) in the tensegrity system have these

properties:

1. The structural members are axially loaded. There is no material bending.

2. All the structural members have torqueless connections, e.g., via negligible small and frictionless

ball-joints.

3. The structure configuration is not changing for the minimal mass design. In other words, the

minimal mass design approach is for the loaded case of the tensegrity structures.

4. Each structural member is homogeneous along its length, so the mass of each structural member

is distributed uniformly along its length.

5. A string can never push along its length. If ||si0|| > ||si||, tension in the string should be

substituted to zero, where the rest length and actual length of the ith string are denoted by ||si0||

and ||si||, and ‖v‖ is the Euclidean norm of vector v.

2.3 Tensegrity Notations

2.3.1 Nodal Coordinates

The position of each node in the tensegrity structure can be expressed in any frame, we choose

to label them with Cartesian coordinates in an inertially fixed frame. Assume the tensegrity

structure has nn number of nodes, the X-, Y-, and Z-coordinates of the ith nodeni (i = 1, 2, · · · , nn)
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can be labeled as xi, yi, and zi. One can write ni ∈ R3 in a vector form:

ni =

[
xi yi zi

]T
. (2.1)

By stacking all the nodes together, we can obtain the nodal matrix N ∈ R3×nn:

N =

[
n1 n2 · · · nnn

]
. (2.2)

2.3.2 Connectivity Matrix

Connectivity matrices denote the topology of the structure or, in other words, how the structural

members (bars and strings) are connected at each node. Conventionally, the connectivity matrices

contain two types: string connectivity and bar connectivity, labeled as Cs ∈ Rα×nn and Cb ∈

Rβ×nn , where α and β are the numbers of strings and bars in the structure. There are two ways to

write the connectivity matrices. The details of the two methods are as follows.

Method 1: Write the connectivity matrices directly. The ith row of Cb, denoted as Cbi =

[Cb](i,:) ∈ R1×β , represents the ith bar, starting form node j (j = 1, 2, · · · , β) to node k (k =

1, 2, · · · , β). The mth (m = 1, 2, · · · , β) entry of Cbi satisfies:

[Cb]im =


−1, m = j

1, m = k

0, m = else

. (2.3)

For β number of bars, the overall structure connectivity matrix Cbi = [Cb](i,:) ∈ R1×β can be

written as:

Cb =

[
CT
b1 CT

b2 · · · CT
bβ

]T
. (2.4)

The ith row of Cs, denoted as Csi = [Cs](i,:) ∈ R1×α, represents the ith string, starting form
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node j (j = 1, 2, · · · , α) to node k (k = 1, 2, · · · , α). The mth (m = 1, 2, · · · , α) entry of Csi

satisfies:

[Cs]im =


−1, m = j

1, m = k

0, m = else

. (2.5)

For α number of strings, the overall structure connectivity matrix Cs ∈ Rn×α can be written

as:

Cs =

[
CT
s1 CT

s2 · · · CT
sα

]T
. (2.6)

Method 2: Write the node indices to generate the connectivity matrices. One can write Cbin ∈

Rβ×2 and Csin ∈ Rα×2 whose two elements in each row denotes the start and end node indices of

one bar or string. Then, a function tenseg_ind2C.m can be written to convert Cbin and Csin to Cb

and Cs [47]. The two methods are equivalent for modeling structures. However, one can get the

insight of the bar/string vectors by method 1. Method 2 is easier to understand the connectivity

relationships and is a better way to go for complex tensegrity structures.

2.3.3 Bars, Strings, and External Force Matrices

The string and bar vectors are contained in the string matrix S =

[
s1 s2 · · · sα

]
∈ R3×α

and in the bar matrix B =

[
b1 b2 · · · bβ

]
∈ R3×β respectively, which satisfy:

S = NCT
s , B = NCT

b . (2.7)
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The external force (in X-, Y-, and Z-directions) on each node wi ∈ R3 (i = 1, · · · , nn) can be

written into a vector form:

wi =

[
wix wiy wiz

]T
. (2.8)

By stackingwi for i = 1, 2, · · · , nn together, we can obtain the external force matrix W ∈ R3×nn:

W =

[
w1 w2 · · · wnn

]
. (2.9)

We describe the force information in the structure members by force density (force per unit length)

vectors of the stings and bars, denoted as γ ∈ Rα and λ ∈ Rβ .

2.4 Equilibria of Tensegrity Structures

Theorem 2.4.1. All tensegrity structures equilibria satisfy:

NK = W, K = CT
s γ̂Cs − CT

b λ̂Cb, (2.10)

has the equivalent form:

Ax = Wvec, x =

γ
λ

 , (2.11)

where the ith row of the matrix A and Wvec are:

A(i, :) = S

∧

(Csei)−B

∧

(Cbei), Wvec(i, :) = Wei, (2.12)

and ei =

[
0 0 · · · 1 · · · 0 0

]T
is a column operator with 1 in the ith element and zeros

elsewhere, •̂ is an operator that convert a vector into a diagonal matrix.
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Proof. For a given tensegrity structure and external force at an equilibrium state we have [39]:

NK = W, K = CT
s γ̂Cs − CT

b λ̂Cb. (2.13)

Substitute Eq. (2.7) into Eq. (2.13), we get:

Sγ̂Cs −Bλ̂Cb = W. (2.14)

Take the ith (i = 1, 2, · · · , nn) column of Eq. (2.14):

Sγ̂Csei −Bλ̂Cbei = Wei, (2.15)

Using the identity x̂y = ŷx for x and y being column vectors, we have:

S

∧

(Csei)γ −B

∧

(Cbei)λ = Wei. (2.16)
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Eq. (4.3.3) can be written in the following matrix form:



S

∧

(Cse1) −B

∧

(Cbe1)

S

∧

(Cse2) −B

∧

(Cbe2)

...
...

S

∧

(Csen) −B

∧

(Cben)


︸ ︷︷ ︸

A∈Rnn×(α+β)

γ
λ

 =



We1

We2

...

Wen


︸ ︷︷ ︸
Wvec∈Rnn

, (2.17)

which can be simply written as:

Ax = Wvec, x =

γ
λ

 . (2.18)

One may observe from Eq. (2.18) is that matrix A is determined by the topology of the

tensegrity structure, andWvec is given by the loading requirements of the structure. Since normally

tensegrity structures have self-stress modes, the matrix A is not full column rank, and from linear

algebra, we know, (I − AA+)Wvec = 0 is satisfied, all the solutions of x are given by [48]:

x = A+Wvec + (I − A+A)z, (2.19)

where A+ ∈ R(α+β)×nn is the Moore-Penrose inverse of matrix A, z ∈ R(α+β) is an arbitrary

vector. Thus, once the topology and loading requirements are given, one can compute the internal
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forces of each structure member. From Eq. (2.19) we know that the solution may not be unique

with the free variable z. The physical meaning is that we can tune the prestress of the tensegrity

structure by the free variable to change the structure stiffness without changing the shape. In

addition, since the force density vector x provides the insight loading information of the structure

members, which can be used as stress bound of each structure member to guide us to achieve a

minimal mass design with stability guaranteed. The design approaches will be discussed in the

following sections.

2.5 Structure Mass Formulation

Let us consider two general tensegrity structure cases: bars are solid rods or hollow pipes (both

kinds of bars have a circular cross-section). To simplify the name, we call them solid bar tensegrity

and hollow bar tensegrity.

2.5.1 Mass Formulation for Solid Bar Tensegrity

Theorem 2.5.1. The minimal mass of a solid bar tensegrity system is achieved when all structure

members fail at the same time:

MS =
ρs
σs

α∑
i=1

γi||si||2 +

β∑
j=1

max{ρb
σb
λj||bj||2, 2ρbλ

1
2
j (
||bj||5

πEb
)
1
2}, (2.20)

has the equivalent form:

MS =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ+
2ρb√
πEb

(vec(bBTBc
5
4Q))Tλ

1
2 ,

(2.21)

where ρs, ρb, σs, σb are the density and yield strength of strings and bars, γi, λj , ||si||, and ||bj||

(i = 1, 2, · · · , α, α is number of strings; j = 1, 2, · · · , β, β is number of bars) are the force

densities (force over member length) and length of each string and each bar, and Eb is Young’s

modulus of bars. Q ∈ Rβ×β is a square matrix with 0s or 1s in its diagonal and 0s elsewhere,

where the diagonal indices of the 1s denotes the buckling bars, and the diagonal indices of the 1s
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of (I −Q) ∈ Rβ×β labels the yielding bars. b•c is an operator taking only the diagonal elements

of a matrix and set the off-diagnal elements into 0s, vec(•) is an operator taking the diagonal

elements of the matrix in the parentheses to form a vector.

Proof. The structure minimal mass MS can be achieved when every string yields and every bar

yields or buckles at the same time. We do not know the mode of failure for each bar in advance,

but the bar mass is equivalent to take the maximum value of these two. Then, total mass can be

written as:

MS =
ρs
σs

α∑
i=1

γi||si||2 +

β∑
j=1

max{ρb
σb
λj||bj||2, 2ρbλ

1
2
j (
||bj||5

πEb
)
1
2}. (2.22)

To simplify the notations, we introduce a label matrix Q ∈ Rβ×β to identify and record the

mode of failure for each bar:

Qjj =


0 λj ≥

4σ2
b ||bj||
πEb

, bar yields

1 λj <
4σ2

b ||bj||
πEb

, bar buckles
, (2.23)

the off diagonal elements of Q are zeros.

The diagonal elements of matrix Q with ones denote buckling as the mode of failure of those

bars, and the diagonal elements of the matrix (I −Q) with ones represent yielding is the mode of

failure of those bars. The bars are now separated into two parts, and the minimal mass formula can

be well defined in a matrix form:

MS =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ+
2ρb√
πEb

(vec(bBTBc
5
4Q))Tλ

1
2 .

(2.24)
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2.5.2 Mass Formulation for Hollow Bar Tensegrity

Theorem 2.5.2. The minimal mass of a hollow bar tensegrity system is achieved when all structure

members fail at the same time:

MH =
ρs
σs

α∑
i=1

γi||si||2 +

β∑
j=1

max{ρb
σb
λj||bj||2,

ρb||bj||√
πEb

(
√
π3Ebr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEb)},

(2.25)

has the equivalent form:

MH =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr4

in + 4(bBTBc 32Q)λ− πr2
in

√
πEb), (2.26)

where ρs, ρb, σs, σb are the density and yield strength of strings and bars, γi, λj , ||si||, and ||bj||

(i = 1, 2, · · · , α; j = 1, 2, · · · , β) are the force densities and length of each string and each bar,

and Eb is Young’s modulus of bars. Q ∈ Rβ×β is the label matrix to identify the mode of failure of

each bar. rin =

[
r1in · · · rjin · · · rβin

]T
is a vector of the inner radius of all the bars.

Proof. Assume yielding is the mode of failure for strings, yielding and buckling are mode of

failures for bars, the structure minimal mass MH can be achieved when all strings yield and each

bars yields or buckles (take the maximum mass of these two) at the same time:

MH =
ρs
σs

α∑
i=1

γi||si||2 +

β∑
j=1

max{ρb
σb
λj||bj||2,

ρb||bj||√
πEb

(
√
π3Ebr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEb)}.

(2.27)

Similarly, we define a label matrix Q ∈ Rβ×β to identify whether each bar is yielding or

buckling:

Qjj =


0 λj ≥

4σ2
b ||bj||
πEb

−
2σbπr

2
jin

||bj||
, bar yields

1 0 < λj <
4σ2

b ||bj||
πEb

−
2σbπr

2
jin

||bj||
, bar buckles

, (2.28)
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the off diagonal elements of Q are zeros.

Similarly, the minimal mass formula for hollow bar tensegrity is given below in a matrix form:

MH =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr4

in + 4(bBTBc 32Q)λ− πr2
in

√
πEb). (2.29)

2.6 Minimal Mass Tensegrity Design w/o Gravity

In this section, we present algorithms in designing the structure member thickness to achieve

structure minimal mass subject to the load requirements and given topology. The idea is that the

static equilibrium equation can be written in terms of force density x of the structure members.

Minimal mass design is to calculate the critical mass that every structure member fails at the same

time. Then, the mass is a function of force density x (bar mass subject to buckling is nonlinear in

its force density). Structure gravity can be viewed as an external force on the structure, but it is

also coupled with structure mass. Thus, the minimal mass tensegrity design problem yields to find

the optimal force density x for given loads and topology of the structure, which can be formulated

as a nonlinear optimization problem.

Theorem 2.6.1. The minimal mass of a tensegrity system at an equilibrium in the given configuration

with external forces is given by a non-linear programming problem:


minimize

x
M

subject to Ax = Wvec, x ≥ ε (ε ≥ 0)

, (2.30)

where M is MS or MH depends on using solid or hollow bars for the structure, ε is the prestress

lower bound assigned to the strings, and ε ≥ 0 is a constant vector that guarantees that all strings

are in tension and all bars are in compression.

Since gravity is unlike a given set of specific external forces that apply to the structure, it is
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determined by the mass of the structure itself. In other words, the statics mass optimization process

is coupled with the gravity force. We separate total force W into two parts W = We +Wg, where

Wg is the gravity force, We is other applied external force, and g is the gravitational acceleration,

i.e., g =

[
0 0 −9.8

]T
is the gravity vector on the Earth.

2.6.1 Minimal Mass Tensegrity Design without Gravity Algorithm

Corollary 2.6.1. The minimal mass of a tensegrity system at an equilibrium in the given configuration

with external forces without considering gravity is given by a non-linear programming problem:


minimize

x
M

subject to Ax = We vec, x ≥ ε (ε ≥ 0)

, (2.31)

where ε is the prestress lower bound assigned to the strings, and ε ≥ 0 is a constant vector that

guarantees that all strings are in tension and all bars in compression.

Notice that to solve Eq. (2.31), one need to specify the label matrix Q. However, one cannot

exactly specify Q for any structure in advance, since it is determined by structure topology and

external force. To obtain a global solution, the nonlinear optimization problem can be solved in an

iterative manner, shown in Algorithm 1.
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Algorithm 1: Minimal Mass No Gravity
1) Given tensegrity structure topology N , Cb, Cs and external force W , compute A and

We vec from Eq. (2.17).

2) Assumes all bar buckles, Q = Iβ×β .

3) Compute force densities x:

while Qi+1 6= Qi do 
minimize

x
M

subject to Ax = We vec, x ≥ ε (ε ≥ 0).

Take λ out of x, check Eq. (2.23) or (2.28), update Q.

i← i+ 1.

end while

2.6.2 Minimal Mass Tensegrity Design with Gravity

The gravity force can be modeled by lumped forces equally distributed on the member nodes

[44].

2.6.2.1 Gravity Formulation for Solid Bar Tensegrity

The gravity force of bars and strings can be expressed as:

W S
g =

1

2
g
ρs
σs

(vec(bSTSc))T γ̂|Cs|+
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T λ̂|Cb|

+
1

2
g

2ρb√
πEb

(vec(bBTBc
5
4Q))T λ̂

1
2 |Cb|, (2.32)
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where | • | is an operator getting the absolute value of each element for a given matrix. Take the

ith column of the above equation, we get:

W S
gi =

1

2
g
ρs
σs

(vec(bSTSc))T γ̂|Cs|ei +
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T λ̂|Cb|ei

+
1

2
g

2ρb√
πEb

(vec(bBTBc
5
4Q))T λ̂

1
2 |Cb|ei (2.33)

=
1

2
g
ρs
σs

(vec(bSTSc))T
∧

|Csei|γ +
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T

∧

|Cbei|λ

+
1

2
g

2ρb√
πEb

(vec(bBTBc
5
4Q))T

∧

|Cbei|λ
1
2 . (2.34)

Arrange all the columns, we get:

W S
g vec =

[
W S
g1
T · · · W S

gi
T · · · W S

gn
T

]T
. (2.35)

2.6.2.2 Gravity Formulation for Hollow Bar Tensegrity

For hollow bar tensegrity, the gravity force of bars and strings can be expressed as:

WH
g =

1

2
g
ρs
σs

(vec(bSTSc))T γ̂|Cs|+
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T λ̂|Cb|

+
1

2
g
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr̂4

in + 4(bBTBc 32Q)λ̂− πr̂2
in

√
πEb)|Cb|. (2.36)
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Take the ith column of the above equation, we get:

WH
gi =

1

2
g
ρs
σs

(vec(bSTSc))T γ̂|Cs|ei +
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T λ̂|Cb|ei

+
1

2
g
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr̂4

in + 4(bBTBc 32Q)λ̂− πr̂2
in

√
πEb)|Cb|ei (2.37)

=
1

2
g
ρs
σs

(vec(bSTSc))T
∧

|Csei|γ +
1

2
g
ρb
σb

(vec(bBTBc(I −Q)))T

∧

|Cbei|λ

+
1

2
g
ρb(vec(bBTBc 12Q))T√

πEb

∧

|Cbei|(
√
π3Ebr4

in + 4(bBTBc 32Q)λ− πr2
in

√
πEb). (2.38)

Arrange all the columns, we get:

WH
g vec =

[
WH
g1
T · · · WH

gi
T · · · WH

gn
T

]T
. (2.39)

2.6.2.3 Minimal Mass Tensegrity Design with Gravity Algorithm

Corollary 2.6.2. The minimal mass of a tensegrity system at an equilibrium in the given configuration

with external forces in the presence of gravity is given by a non-linear programming problem:


minimize

x
M

subject to Ax = We vec +Wg vec, x ≥ ε (ε ≥ 0)

, (2.40)

where M , Wg vec are MS , W S
g vec or MH , WH

g vec which depend on using solid or hollow bars for

the structure, ε is the prestress lower bound assigned to the strings, and ε ≥ 0 is a constant vector

that guarantees that all strings are in tension and all bars in compression.

Similarly to Algorithm 4 for solid bar, to solve Eq. (2.40), one need to specify the label

matrix Q. To obtain a global solution for hollow bar tensegrity considering gravity, the nonlinear
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optimization problem can be solved in an iterative manner, see Algorithm 2.
Algorithm 2: Minimal Mass with Gravity

1) Given tensegrity structure topology N , Cb, Cs and external force W , compute A and

We vec from Eq. (2.17).

2) Assumes all bar buckles, Q = Iβ×β and Wg vec = 0.

3) Compute force densities x:

while Qi+1 6= Qi do
minimize

x
M

subject to Ax = We vec +Wg vec, x ≥ ε (ε ≥ 0).

Take λ out of x, check Eq. (2.23) or (2.28), update Q.

Update Wg vec from Eq. (2.35) or (2.39).

i← i+ 1.

end while

2.6.3 Example: D-Bar Structure w/o Gravity

D-Bar structure has been studied in many composite structure studies. For example, Boz et

al. [49] showed the D-Bar structure could be used as both actuators and sensors. Skelton and

de Oliveira presented that the microstructure of a spider fiber is like a D-Bar structure, and they

implemented a D-Bar structure to build a wave-powered station-keeping buoy (WPSB) System.

Goyal et al. [50] studied mass efficient landers based on D-Bar structures. Zhao and Hernandez

[36] analyzed tunable energy dissipation by D-Bar structures. Thus, we choose a 2D D-Bar

structure as an example, shown in Figure 2.1 is chosen to verify the minimal mass algorithms.

Four kinds of combinations of solid and hollow bars with and without gravity are studied. Using

the same material (aluminum) for all the bars and strings, material information is given in Table

2.1. For convenience in subsequent comparison, the inner radii for all the hollow bars are set to be

0.02 m.
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Figure 2.1: 2D tensegrity D-Bar structure, downward vertical force F (marked in maroon) is
applied at node 4 (marked in blue), node 2 is fixed to the ground. Reprinted with permission
from [5]. Reprinted with permission from [5].

Table 2.1: Material Property for the D-Bar Structure (Aluminum).

Properties Value Units
Yield Stress σ = 1.1× 108 Pa
Young’s Modulus E = 6× 1010 Pa
Mass Density ρ = 2.7× 103 kg/m3

2.6.3.1 D-Bar without Gravity

Firstly, a vertical downward external load F = 1.0×104 N is applied at the top, and the bottom

node is fixed in both x and y directions to the ground. The results show that all bars buckle under

this load, shown in Figure 2.2. The load is then increased to F = 1.0×106 N, where all bars yield,

shown in Figure 2.4. These results agree with the analytical solutions.

Figure 2.2 gives the failure information of bars of the D-Bar structures with solid bars and

hollow bars, respectively. The results are listed in Table 2. It is shown that for solid bar structure,

buckling is the mode of failure for all the bars. The bar mass distributes evenly, and only string 1

has mass. For hollow bars, the mass distribution is the same. The only difference is that the hollow
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Figure 2.2: Tensegrity D-Bar structure, F = 1.0×104 N, all bar buckle. Reprinted with permission
from [5].

bar structure has less mass than the solid bar one.

Table 2.3 indicates that all bars yield when the external load isF = 1×106 N. This supplemental

case also proves that the hollow bar design does not save mass when yielding in the mode of failure

of bars.

2.6.3.2 D-Bar with Gravity

Table 2.4 gives similar information as Table 2.2: hollow bar tensegrity cost less mass than a

solid bar one. And Table 2.4 together with Table 2.2 indicates that for both solid bar and hollow

bar design, minimal structure mass with gravity is slightly larger than without gravity which agrees

well with the physics.
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Table 2.2: Member information of D-Bar structure, F = 1.0 × 104 N, without gravity. BKL and
YLD represent buckling and yielding. Reprinted with permission from [5].

Solid/Hollow No Gravity
Load[N] 1.0× 104

Solid Bars Failure λ[N/m] Mass[kg] r[m]
b1 BKL 5000 2.092 0.0132
b2 BKL 5000 2.092 0.0132
b3 BKL 5000 2.092 0.0132
b4 BKL 5000 2.092 0.0132
Strings Failure γ[N/m] Mass[kg] R [m]
s1 YLD 5000 0.491 0.005
s2 YLD 0 0 0
Mass Sum 8.858
Hollow Bars Failure λ[N/m] Mass[kg] rout[m]
b1 BKL 5000 2.080 0.021
b2 BKL 5000 2.080 0.021
b3 BKL 5000 2.080 0.021
b4 BKL 5000 2.080 0.021
Strings Failure γ[N/m] Mass[kg] r[m]
s1 YLD 5000 0.491 0.011
s2 YLD 0 0 0
Mass Sum 8.810

Table 2.3: Structure mass of D-Bar structure, F = 1.0 × 106 N, without gravity. Reprinted with
permission from [5].

Solid/Hollow Value Units
External Load F = 1.0× 106 N
Minimal Mass (Solid) M = 147.273 kg/m3

Minimal Mass (Hollow) M = 147.273 kg/m3
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Figure 2.3: Structure mass of D-Bar structure, F = 1.0 × 106 N, without gravity. Reprinted with
permission from [5].

Figure 2.4: Tensegrity D-Bar structure, F = 1.0× 106 N, all bar yield. Reprinted with permission
from [5].

Table 2.4: Member information of D-Bar structure, F = 1.0 × 104 N, with 1-g gravity. BKL and
YLD represent buckling and yielding. Reprinted with permission from [5].

Solid/Hollow With Gravity
Load[N] 1.0× 104

Solid Bars Failure λ[N/m] Mass[kg] r[m]
b1 BKL 5033.220 2.099 0.0132
b2 BKL 5033.220 2.099 0.0132
b3 BKL 5033.220 2.099 0.0132
b4 BKL 5033.220 2.099 0.0132
Strings Failure γ[N/m] Mass[kg] r[m]
s1 YLD 5021.740 0.493 0.005
s2 YLD 0 0 0
Mass Sum 8.878
Hollow Bars Failure λ[N/m] Mass[kg] rout[m]
b1 BKL 5033.044 2.087 0.021
b2 BKL 5033.044 2.087 0.021
b3 BKL 5010.202 2.082 0.021
b4 BKL 5010.202 2.082 0.021
Strings Failure γ[N/m] Mass[kg] r[m]
s1 YLD 5021.623 0.493 0.011
s2 YLD 0 0 0
Mass Sum 8.830
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2.7 Tensegrity Structure Stiffness Matrix

2.7.1 Stiffness Matrix for Solid Bar Tensegrity

Theorem 2.7.1. The stiffness matrix Kn for any solid bar tensegrity structure subject to yielding

and buckling constraints is given by:

Knvec(dN) = vec(dW ), (2.41)

where

Kn = (CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)− (CT

b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3), (2.42)

and

Ksi =γi(I3 +
Esi
σs

sis
T
i

||si||2
),

Kbj =λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)− 2Qjj

√
Ebj
π

bjb
T
j

||bj||
3
2

λ
1
2
j .

Proof. Consider a small variation around the equilibrium, N + dN =

[
· · · (nk + dnk) · · ·

]
,

W+dW =

[
· · · (wk + dwk) · · ·

]
, γ+dγ =

[
· · · (γi + dγi) · · ·

]T
, λ+dλ =

[
· · · (λj + dλj) · · ·

]T
,

the statics equation can be written as:

(N + dN)CT
s (

∧

γ + dγ)Cs − (N + dN)CT
b (

∧

λ+ dλ)Cb = W + dW. (2.43)

Notice γ =

[
· · · γi · · ·

]T
and λ =

[
· · · λj · · ·

]T
, we have dγ =

[
· · · dγi · · ·

]T
and
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dλ =

[
· · · dλi · · ·

]T
, then we get:

(N + dN)CT
s (γ̂ + dγ̂)Cs − (N + dN)CT

b (λ̂+ dλ̂)Cb = W + dW. (2.44)

Then, we have:

NCT
s γ̂Cs + dNCT

s γ̂Cs +NCT
s dγ̂Cs + dNCT

s dγ̂Cs−

NCT
b λ̂Cb − dNCT

b λ̂Cb −NCT
b dλ̂Cb − dNCT

b dλ̂Cb = W + dW. (2.45)

Using the fact N(CT
s γ̂Cs − CT

b λ̂Cb) = W and neglect the higher order terms:

(dNCT
s γ̂ +NCT

s dγ̂)Cs − (dNCT
b λ̂+NCT

b dλ̂)Cb = dW. (2.46)

Since S + dS =

[
· · · (si + dsi) · · ·

]
, B + dB =

[
· · · (bj + dbj) · · ·

]
, we have dS =

dNCT
s , dB = dNCT

b ,

(dSγ̂ + Sdγ̂)Cs − (dBλ̂+Bdλ̂)Cb = dW. (2.47)

Let us take a close look at each string and each bar:

[· · · (dsiγi + sidγi)︸ ︷︷ ︸
Ksidsi

· · · ]Cs − [· · · (dbjλj + bjdλj)︸ ︷︷ ︸
Kbjdbj

· · · ]Cb = dW. (2.48)

Eq. (2.48) can be written as:[
Ks1ds1 · · · Ksαdsα

]
Cs −

[
Kb1db1 · · · Kbβdbβ

]
Cb = dW (2.49)
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Vectorize the equation on both sides, we have:

vec(

[
Ks1ds1 · · · Ksαdsα

]
Cs)− vec(

[
Kb1db1 · · · Kbβdbβ

]
Cb) = vec(dW ). (2.50)

Use the properties of the vec operator vec(AXB) = (BT ⊗ A)vec(X):

(CT
s ⊗ I3)vec(

[
Ks1ds1 · · · Ksαdsα

]
)− (CT

b ⊗ I3)

vec(

[
Kb1db1 · · · Kbβdbβ

]
) = vec(dW ). (2.51)

This can be written as:

(CT
s ⊗ I3)


Ks1

. . .

Ksα

 vec(
[
ds1 · · · dsα

]
)−

(CT
b ⊗ I3)


Kb1

· · ·

Kbβ

 vec(
[
db1 · · · dbβ

]
) = vec(dW ). (2.52)

As dS =

[
ds1 · · · dsα

]
and dB =

[
db1 · · · dbβ

]
,

(CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)vec(dS) − (CT

b ⊗ I3)

b.d.(Kb1, · · · , Kbβ)vec(dB) = vec(dW ), (2.53)

where b.d.(•) is an operator that generates block diagonal matrices in the parentheses.

Use dS = dNCT
s and dB = dNCT

b , we get:

(CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)vec{dNCT

s } − (CT
b ⊗ I3)

b.d.(Kb1, · · · , Kbβ)vec{dNCT
b } = vec(dW ). (2.54)
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Use the properties of the vec operator vec(AXB) = (BT ⊗ A)vec(X):

(CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)vec(dN)−

(CT
b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3)vec(dN) = vec(dW ). (2.55)

Then, we get:

{ (CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)− (CT

b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3)︸ ︷︷ ︸
Kn

}

vec(dN) = vec(dW ), (2.56)

where Kn is the stiffness matrix.

Let us take a look at Ksi and Kbj:

Ksi =
dsiγi + sidγi

dsi
= γiI3 + si

dγi
dsi

,

Kbj =
dbjλj + bjdλj

dbj
= λjI3 + bj

dλj
dbj

. (2.57)

We assume the materials are Hookean, the force densities (string in tension, bar in compression)

can be expressed as:

γi = ksi(1−
||si0||
||si||

), λj = −kbj(1−
||bj0||
||bj||

), (2.58)

where ||si0|| and ||bj0|| are the rest length of the ith string and jth bar. Take the derivative of Eq.

(2.58), we get:

dγi
dsi

= ksi||si0||
sTi
||si||3

,
dλj
dbj

= −kbj||bj0||
bTj
||bj||3

, (2.59)
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where ksi and kbj are spring constants. They satisfy:

ksi =
EsiAsi
||si0||

, kbj =
EbjAbj
||bj0||

, (2.60)

whereAsi andAbj are cross section areas, Esi and Ebj are Young’s modules of the strings and bars.

Substitute Eq. (2.59) and Eq. (2.60) to Eq. (2.57), we get:

Ksi = γiI3 + si(ksi||si0||
sTi
||si||3

) = γiI3 +
EsiAsi
||si||3

sis
T
i , (2.61)

Kbj = λjI3 + bj(−kbj||bj0||
bTj
||bj||3

) = λjI3 −
EbjAbj
||bj||3

bjb
T
j . (2.62)

For solid bar tensegrity, use the information of label matrix Q, the mass of a string and mass of

a bar are:

msi =
ρs
σs
||si||2γi,

mbj = (1−Qjj)
ρb
σb
||bj||2λj +Qjj

2ρb√
πEbj

||bj||
5
2λ

1
2
j . (2.63)

Then, the cross section area of a bar and string are given by:

Asi =
msi

ρs||si||
=
||si||γi
σs

,

Abj =
mbj

ρb||bj||
= (1−Qjj)

||bi||λj
σb

+Qjj

2||bj||
3
2λ

1
2
j√

πEbj
. (2.64)

Substitute Eq. (2.64) into Eq. (2.61):

Ksi = γi(I3 +
Esi
σs

sis
T
i

||si||2
),

Kbj = λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)− 2Qjj

√
Ebj
π

bjb
T
j

||bj||
3
2

λ
1
2
j . (2.65)

Summarize Eq. (2.56) and Eq. (2.65) we get stiffness matrixKn for tensegrity structure subject
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to yielding and buckling constraints is given by:

Knvec(dN) = vec(dW ), (2.66)

where

Kn = (CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)− (CT

b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3), (2.67)

and

Ksi =γi(I3 +
Esi
σs

sis
T
i

||si||2
), (2.68)

Kbj =λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)− 2Qjj

√
Ebj
π

bjb
T
j

||bj||
3
2

λ
1
2
j . (2.69)

2.7.2 Stiffness Matrix for Hollow Bar Tensegrity

Theorem 2.7.2. The stiffness matrix Kn for any hollow bar tensegrity structure subject to yielding

and buckling constraints is given by:

Knvec(dN) = vec(dW ), (2.70)

where

Kn = (CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)− (CT

b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3),
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and

Ksi = γi(I3 +
Esi
σs

sis
T
i

||si||2
),

Kbj = λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)−Qjj

Ebj√
πEbj

(
√
π3Ebjr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEbj)

bjb
T
j

||bj||3
.

Proof. For hollow bar tensegrity, use the information of label matrix Q, the mass of a string and a

bar are:

msi =
ρs
σs
||si||2γi, (2.71)

mbj =(1−Qjj)
ρb
σb
||bj||2λj +Qjj

ρb||bj||√
πEb

(
√
π3Ebjr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEb).

Then, the cross-section area of a bar and string are given by:

Asi =
msi

ρs||si||
=
||si||γi
σs

, (2.72)

Abj =
mbj

ρb||bj||
= (1−Qjj)

||bi||λj
σb

+Qjj
1√
πEbj

(
√
π3Ebr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEb).

Substitute Eq. (2.72) into Eq. (2.61):

Ksi =γi(I3 +
Esi
σs

sis
T
i

||si||2
), (2.73)

Kbj =λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)−Qjj

Ebj√
πEbj

(
√
π3Ebjr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEbj)

bjb
T
j

||bj||3
. (2.74)

Summarize Eq. (2.56) and Eq. (2.73) we get stiffness matrixKn for tensegrity structure subject

to yielding and buckling constraints is given by:

Knvec(dN) = vec(dW ), (2.75)
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where

Kn = (CT
s ⊗ I3)b.d.(Ks1,· · · ,Ksα)(Cs ⊗ I3)− (CT

b ⊗ I3)b.d.(Kb1, · · · , Kbβ)(Cb ⊗ I3), (2.76)

and

Ksi = γi(I3 +
Esi
σs

sis
T
i

||si||2
), (2.77)

Kbj =λj(I3 − (1−Qjj)
Ebj
σb

bjb
T
j

||bj||2
)−Qjj

Ebj√
πEbj

(
√
π3Ebjr4

jin
+ 4λj||bj||3 − πr2

jin

√
πEbj)

bjb
T
j

||bj||3
. (2.78)

2.8 Minimal Mass Tensegrity Structure Design with Gravity and no Global Buckling

Theorem 2.8.1. The minimal mass of tensegrity system at an equilibrium is globally stable in

the given configuration with external forces is given by a non-linear programming problem: The

minimal mass problems can be formulated as:


minimize

x
M

subject to Ax = We vec +Wg vec, x ≥ ε0, and eig(Kn) > µI

, (2.79)

where ε0 is the prestress lower bound assigned to the strings, and ε0 ≥ 0 guarantees that all strings

are in tension and all bars are in compression, eig(Kn) returns the eigenvalues of the matrix Kn,

and the system is globally stable at the equilibrium for µ ≥ 0.

Notice that to solve Eq. (2.79), one needs to specify the label matrix Q. However, one cannot

exactly tell Q for any structure in advance because it is determined by structure topology and

external force. To obtain a global solution, the nonlinear optimization problem can be solved in an

iterative manner as described in Algorithm 4.
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Algorithm 3: Minimal Mass Tensegrity subject to Stability and Gravity
1) Given tensegrity structure topology N , Cb, Cs and external force W , compute A and
We vec from Eq. (2.17).
2) Let Q = Iβ×β , Wg vec = 0, ε0 = 0, δε = 0.01, µ = 0.
3) Compute force densities x:
while min{eig(Kn)} < µ do

while Qi+1 6= Qi do {
minimize

x
M

subject to Ax = We vec +Wg vec, x ≥ ε0.

Compute λ from x, check Eq. (2.23), update Q.
Update Wg vec from Eq. (2.35).
i← i+ 1.

end while
Compute stiffness matrix Kn from Eq. (2.42).
ε0 ← ε0 + δε.

end while

Figure 2.5: Solid regular polygon bar cross-section with p sides. Reprinted with permission from
[5].

2.9 Variable Bar Cross-sections

Let a solid or hollow bar has length l0, density ρb, cross-section area A, moment of inertia

I(A), which is a function of bar cross-section shape), Young’s modulus Eb, and yield strength σb,

and the bar is under compressive load f(l0). If a bar yields, the bar mass is:

mY (l0) = ρbAl0, f(l0) = σbA, → mY (l0) =
ρb
σb
f(l0)l0. (2.80)
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If a bar buckles, the bar mass is:

mB(l0) = ρbAl0, f(l0) =
π2Eb
l20

I(A). (2.81)

From the above equation, we know that the mass of a bar subject to yielding is independent

of the bar cross-section shape. In other words, given compressive load f(l0), bar length l0, and

bar material, bar mass cannot be reduced by changing the solid bar cross-section shape if the bar

yields. However, if a bar buckles, bar mass is related to the bar cross-section shape, which is

discussed as follows.

2.9.1 Variable Bar Cross-sections for Solid Bar Tensegrity

Theorem 2.9.1. For solid bar tensegrity, one can save mass by using regular polygon bars with p

sides,

MS =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+ ζsp
2ρb√
πEb

(vec(bBTBc
5
4Q))Tλ

1
2 , (2.82)

where the mass reduction coefficient ζsp = 1
π

√
3pπ

3cotπ
p

+tanπ
p

, for different cross section shape,

triangle ζ3 = 0.9094, square ζ4 = 0.9772, pentagon ζ5 = 0.9916, hexagon ζ6 = 0.9962.

Proof. Let a solid bar with regular polygon with p sides, as shown in Figure 2.5, C is centroid (at

the center of the polygon), p is number of sides (p ≥ 3), b is length of the side, θ = 2π
p

is central

angle for one side, moment of inertia of the regular polygon Ippoly with p sides is given as [51]:

Ippoly =
A2
ppoly

12p
(3cot

π

p
+ tan

π

p
), Appoly =

pb2

4
cot

π

p
, (2.83)

where Appoly is the area of the polygon cross-section.

For a constant cross-section area Appoly, Take the first derivative of Eq. (2.83) with respect to
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p, we get:

∂Ippoly
∂p

=
2Appoly

12p
(3cot

π

p
+ tan

π

p
)(
b2

4
cot

π

p
+
πb2

4p
csc2π

p
)

−
A2
ppoly

12p2
(3cot

π

p
+ tan

π

p
)−

πA2
ppoly

12p3
(−3csc2π

p
+ sec2π

p
) < 0. (2.84)

From Eq. (2.84), we know as p increases, the moment of inertia Ippoly decreases. Mass of a

solid bar subject to buckling with a polygon cross-section is given by:

mppoly =
ρbl

2
0

π

√
12pf(l0)

(3cotπ
p

+ tanπ
p
)Eb

. (2.85)

Moment of inertia of the circle is:

Icir =
πr4

4
, Acir = πr2. (2.86)

Mass of a solid bar subject to buckling with a circular cross-section is given by:

mcir = 2ρbl
2
0

√
f(l0)

πEb
. (2.87)

Then to take the same compressive load f(l0), we can compare the mass of a polygon and a

circular cross-section bar:

ζsp =
mppoly

mcir

=
1

π

√
3pπ

3cotπ
p

+ tanπ
p

, p = 3, 4, 5, · · · . (2.88)

From Figure 2.6, we know that to take the same compressive load, the mass of a polygon

cross-section bar is smaller than a circular one. As the polygon sides increase, the bar mass

increases. A triangle cross-section gives the minimal mass, which is 90.94% of a circular one.

In other words, a triangular cross-section bar can save 9.06% mass compared to a circular one.

Here, we introduce a mass reduction coefficient ζsp, which satisfies mppoly = ζspmcir, (p =
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Figure 2.6: Mass ratio of a solid bar with polygon and circular cross section v.s. polygon sides (p).
Reprinted with permission from [5].

3, 4, 5, · · · ). For different cross section shape, for example, triangle ζ3 = 0.9094, square ζ4 =

0.9772, pentagon ζ5 = 0.9916, hexagon ζ6 = 0.9962.

Eq. (2.24) are for circular solid bars. When buckling is the mode of failure of one bar, we can

replace it with a regular polygon bar to save mass. Then, Eq. (2.24) can be written as:

MS =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+ ζsp
2ρb√
πEb

(vec(bBTBc
5
4Q))Tλ

1
2 . (2.89)
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Figure 2.7: Hollow regular polygon bar cross-section with p sides. Reprinted with permission from
[5].

2.9.2 Variable Bar Cross-sections for Hollow Bar Tensegrity

Theorem 2.9.2. For hollow bar tensegrity, one can save mass by using regular polygon bars with

p sides,

MH =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+ ζhp
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr4

in + 4(bBTBc 32Q)λ− πr2
in

√
πEb), (2.90)

where the mass reduction coefficient ζhp = (

√
12f(l0)l20p

π4Ebr
4
in(3cotπ

p
+tanπ

p
)

+ 1 − 1)/(
√

1 +
4f(l0)l20
π3Ebr

4
in
− 1),

f(l0), l0, and Eb are the force, length, and Young’s modulus of the buckling bar, rin is the radius

of the hollow pipe, for different cross section shape, triangle ζ3 = 0.8270, square ζ4 = 0.9549,

pentagon ζ5 = 0.9833, hexagon ζ6 = 0.9924.

Proof. Let a hollow bar with regular polygon with p sides, as shown in Figure 2.7, C is centroid

(at center of polygon), p is number of sides (p ≥ 3), bout and bin are length of the outer and inner

sides, Aout and Ain are area of the outer and inner polygon, θ = 2π
p

is central angle for one side,
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moment of inertia of the regular polygon Ippoly with p sides is given as [51]:

Ippoly =
(A2

out − A2
in)

12p
(3cot

π

p
+ tan

π

p
), (2.91)

Aout =
pb2
out

4
cot

π

p
, Ain =

pb2
in

4
cot

π

p
. (2.92)

Mass of a hollow bar can be written as:

m = ρbl0(Aout − Ain) = ρbl0
p

4
cot

π

p
b2
in((

bout
bin

)2 − 1). (2.93)

Moment of inertia for a hollow bar can be written as:

Ippoly =
1

12p
(
p2

16
b4
outcot

2π

p
− p2

16
b4
incot

2π

p
)(3cot

π

p
+ tan

π

p
) (2.94)

=
p

192
cot2

π

p
b4
in((
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bin

)4 − 1)(3cot
π

p
+ tan

π

p
) (2.95)

=
p

192
(b4
out − b4

in)cot2
π

p
(1 + 3cot2

π

p
). (2.96)

Since we have f(l0) = π2Eb
l20
I , one can get:

(
bout
bin

)2 =

√
192f(l0)l20

π2pEbcot2
π
p
b4
in(3cotπ

p
+ tanπ

p
)

+ 1. (2.97)

Mass of a hollow bar with a polygon cross-section is given by:

mppoly =
ρbl0p

4
cot

π

p
b2
in(

√
192f(l0)l20

π2pEbcot2
π
p
b4
in(3cotπ

p
+ tanπ

p
)

+ 1− 1). (2.98)

The moment of inertia of a bar with a circular cross-section is:

Icir =
π(r4

out − r4
in)

4
, Acir = π(r2

out − r2
in). (2.99)
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Euler buckling force for a hollow bar with a circular cross-section is:

f(l0) =
π3Eb
4l20

(r4
out − r4

in) =
π3Eb
4l20

r4
in((

rout
rin

)4 − 1). (2.100)

Then, we get:

(
rout
rin

)2 =

√
1 +

4fl20
π3Ebr4

in

. (2.101)

Mass of a hollow bar with a circular cross-section is given by:

mcir = ρbπl0r
2
in(

√
1 +

4f(l0)l20
π3Ebr4

in

− 1). (2.102)

Then to take the same compressive load f(l0), we can compare the mass of a polygon and a

circular cross section bar:

mppoly

mcir

=
pcotπ

p

4π
(
bin
rin

)2(

√
192f(l0)l20

π2pEbcot2
π
p
b4
in(3cotπ

p
+ tanπ

p
)

+ 1

− 1)/(

√
1 +

4f(l0)l20
π3Ebr4

in

− 1), p = 3, 4, 5, · · · . (2.103)

In order to make a fair comparison of polygon cross-sections, we assume the inner cross section

area of the polygon and circular hollow bar are the same, which satisfies πr2
in =

pb2in
4
cotπ

p
. The

physical meaning is that the polygon and circular hollow bars have the same space to fit in the

strings, instruments, electronics etc. Substitute b2
in = 4π

pcotπ
p
r2
in into Eq. (2.103):

ζhp =
mppoly

mcir

= (

√
12f(l0)l20p

π4Ebr4
in(3cotπ

p
+ tanπ

p
)

+ 1− 1)/(

√
1 +

4f(l0)l20
π3Ebr4

in

− 1), p = 3, 4, 5, · · · .

(2.104)

Let us take a close look at this equation by an example, for a steel pipe, Eb = 200 GPa, rin =

0.01 m, l0 = 1 m, and f(l0) = 1, 10, 100, 1000 N, Figure 2.8 gives the results. The results show that
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Figure 2.8: Mass ratio of a hollow bar with polygon and circular cross-section v.s. polygon sides
(p). Reprinted with permission from [5].

to take the same compressive load, the mass of a polygon cross-section bar is smaller than a circular

one. As the polygon sides increase, the bar mass increases, a triangle cross-section gives the

minimal mass, which is 82.7% of a circular one. In other words, a triangular cross-section bar can

save 17.3% mass compared to a circular one. And the compressive load f(l0) has little influence

on the mass reduction ratio as long as the buckling is the mode of failure of the bar. Similarly, we

use the same mass reduction coefficient ζhp, which satisfies mppoly = ζhpmcir, (p = 3, 4, 5, · · · ).

For different cross section shape, for example, triangle ζ3 = 0.8270, square ζ4 = 0.9549, pentagon

ζ5 = 0.9833, hexagon ζ6 = 0.9924.

Eq. (2.29) are for circular hollow bars. When buckling is the mode of failure of one bar, one

can replace the bar with a regular hollow polygon bar to save mass. Then, Eq. (2.29) can be written

as:

M =
ρs
σs

(vec(bSTSc))Tγ +
ρb
σb

(vec(bBTBc(I −Q)))Tλ

+ ζhp
ρb(vec(bBTBc 12Q))T√

πEb
(

√
π3Ebr4

in + 4(bBTBc 32Q)λ− πr2
in

√
πEb).
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Figure 2.9: Tensegrity Shelter, structure complexity is 8 (gives an octagon in the middle), bars are
in black and strings are in red. Reprinted with permission from [5].

2.10 Bar Joint Mass Penalty

It is also important to know the joint information of a tensegrity structure. Because as structure

complexity increases, the numbers of nodes also increase. In a practical problem, the joint mass

will also take a bigger portion of the total structure mass. Here, the joint mass penalty is assigned to

the total structure mass according to the class number of each node (number of bars touching each

other). Joint information vector Jinfo can be obtained from the absolute values of bar connectivity

matrix |Cb|:

JTinfo = 11×β|Cb|. (2.105)

Each column of JTinfo gives the class number of each node. For example, a tensegrity shelter is

shown in Figure 2.9. We can obtain JTinfo =[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1]. It is also easily accessible by programming to abstract the information of all classes of

the structure as well as a class of each joint below. This is a Class 2 structure. Class 1 joints are 1,

2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26. Class 2 joints are 10, 11, 12, 13, 14, 15, 16,

17.
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The penalty mass for joints can be usually treated as a small ratio of a bar mass [39]. For

example, if a bar mass is 1 kg, one can assign Class 1 joint mass is 0.01 kg, Class 2 joint mass is

0.02 kg, and Class K joint mass is 0.01×K kg as a linear fashion.

2.11 Example: Deployable Tensegrity Lunar Tower

The great heroic success of the Apollo program has triggered a strong will, passion, and

enthusiasm of the public. Till now, humans have developed various heavy rockets, put rovers on

other planets, sent people to ISS (International Space Station), and launched probes to the Sun. The

interest is now returning to the moon to utilize its resources. Various Lunar exploration missions

have provided us with information about its abundant useful resources. For example, the entire

lunar surface is covered with an unconsolidated layer of regolith [52], which can be used as a very

efficient material for building a space habitat shield [53]. The moon is especially rich in Ca, Al,

Si, O, Mg, Fe, and Ti [54]. A recent study also shows that a large amount of ice has a permanent

presence in the shadowed lunar polar craters [55]. The goal of this section is to study a feasible

design of a lightweight tower to support moon mining operations.

Scientists have been exploring the idea of mining the moon for some time. Mining ice on

the moon can be achieved by using solar energy to heat the ice and store it as water [56]. Rock

breakage by microwave techniques, mineral processing, and materials manufacturing for ISRU has

also been discussed [57]. Tunnel Boring Machines could offer another safe and efficient approach

for mining on the moon [58]. Sanders presented NASA’s lunar ISRU strategy, which includes plans

for regolith, polar water/volatile mining, commercial opportunities, rovers, and mission schedules

[59]. The mining design of these works mainly focuses on rovers, operations, and extracting

minerals. Some of the important issues are left unsolved for mining in the permanent shaded polar

craters at the high latitude of the moon: 1) a structure to help collect and distribute solar energy

efficiently (mirrors and solar panels to light up the operation area, store energy, and generate heat)

and 2) supporting communication equipment. All these problems lead to the requirement of a lunar

tower.
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This section explores a tensegrity tower to facilitate the application of mining on the moon.

In fact, a few studies have been made on tensegrity tower designs. For example, Sultan and

Skelton demonstrated a deployment strategy for tensegrity structures by a multi-stage three-strut

Snelson-type tensegrity tower [60]. Klimke and Soeren presented a construction process of a

tensegrity tower [61]. Yildiz and Lesieutre studied the approach to obtain effective continuum

beam stiffness properties of tensegrity towers with n struts [62]. However, none of these towers

modeled gravity in the design process and viewed mass design and local & global stability as an

integrated design process. In order to achieve a small amount of valuable supporting resources/mass

in space as possible, this section presents the design and analysis of a minimal mass tensegrity lunar

tower.

2.11.1 Tower Topology Design

Skelton and de Oliveira have proved that T-Bar and D-Bar systems require less mass than

a continuum bar in taking the same compression load f(l0). A three-dimensional T-Bar unit is

shown in Figure 2.10a [63]. Each longitudinal bar in the T-bar structure can be replaced with

another T-bar tensegrity unit while preserving the total length of the structure. Repeating this

self-similar process q times is defined as the complexity of the structure. Figure 2.11a shows a

T-Bar structure of complexity q = 3.

(a) 3D T-Bar unit. (b) 3D D-Bar unit.

Figure 2.10: Three-dimensional tensegrity T-Bar and D-Bar unit, black lines are bars and red lines
are strings.
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(a) Three-dimensional T3 structure. (b) Three-dimensional T3D1 structure.

Figure 2.11: Three-dimensional tensegrity T-Bar and TnD1-Bar structure.

The dual of the T-Bar unit is called a D-Bar structure, which is shown in Figure 2.10b. The

D-bar is also shown to be a more efficient structure in taking a compressive load than a continuum

bar [63]. Another advantage of the D-bar structure is its deployability. The length of the structure

can be changed by controlling the length of the individual strings. We combine the two structures

such that it is both deployable and mass efficient in taking compression. Let us start with a T-Bar

structure with complexity q = n and replace its longitudinal middle bars with 2n D-Bar units

to obtain a TnD1 structure. A 3-dimensional T3D1 is shown in Figure 2.11b. The same TnD1

structure is used to design towers as the payload on top of the tower will exert a compressive load

on two ends of the structure. The simulation and experimental model is shown in Figure 2.12a. A

deployable experimental model, shown in Figure 2.12b.

2.11.2 Tower Deployment Discussion

To construct the tower model, the metal materials for bars are available on the moon [64],

the strings (for example, UHMWPE, Ultra High Molecular Weight Polyethylene) can be shipped

from the earth. There are mainly two ways to deploy tensegrity structures: 1. Altering string

rest-lengths, which are usually realized by a motor-pulley-cable system [65, 66]. 2. Using shape

memory alloy (SMA) tendon wires, which are usually achieved by SMA and DC current supply

devices [67, 68]. The first method has these properties: wider control bandwidth, less cost, more
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(a) Mathematical tower model. (b) Experimental tower model.

Figure 2.12: Three-dimensional T2D1 tensegrity tower models.

environmentally robust, but mechanically more complicated than the second one. For this tower

design, deployability can be achieved by shorting the middle string length of the D-Bar. A shape

control algorithm for class-k tensegrity [7] can be applied to get the deploy sequence, shown in

Figure 2.13.

Figure 2.13: T2D1 Tower deployment from a stowed configuration to a fully deployable one by
shrinking the strings in the D-Bar units.

2.11.3 A Family of Lunar Towers

The tensegrity tower provides a set of non-dimensional figures of merit, i.e., payload fraction,

prestress, minimal mass complexity. A family of towers is shown in Figure 2.14. Thus, one has
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the option to tune the structure topology based on the requirements of different applications. For

a given tower height and payload, Skelton and de Oliveira showed that there exists an optimal

structure complexity for a given compressive load. However, one must also take the construction

feasibility into consideration since the bars can be yield nanoscales, and joint mass can be a big

portion of total mass [63].

Figure 2.14: Deployable towers of varying complexity, the T-Bar and D-Bar angles (the angle
between the sides of the two units and vertical line) are αT = αD = π

18
.

2.11.4 Design Parameters Study of the Tower

The lunar craters vary in size from a few meters to 400 km, the depth of the craters are from

less than 1 meter to 8 km, and a large portion of these craters is around 10 km in diameter and 1

km deep [69]. Here, we present a series of T5D1 tower designs in the presence of lunar gravity for

various requirements. The payloads on the top of the tower include solar panels, communication

devices, and mirrors with an estimated load of mp = 250 kg. Therefore, the compressive force at

the top of the tower is F = mpgmoon = 250× 1.62 N = 405 N.

We are also interested to see how the structure mass varies with different structure materials.

The three combinations are studied: Carbon bars and UHMWPE strings (C-UHMWPE), Carbon

bars and Aluminum strings (C-Al), Aluminum bars and Aluminum strings (Al-Al). The material
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properties are given in Table 2.5. The tower height varies from 50 m to 1.2 km, and the prestress

ε0 as a percentage of the payload force is from 10% to 30%. The the payload fraction (payload

mass/structure mass × 100%) of the towers are shown in in Figure 2.15.

To illustrate the surface plot, let us take a look at the 850 m tall tower, the prestress v.s. payload

fraction is shown in Figure 2.16. The results show that as prestress increases, the payload fraction

decreases. For a fixed prestress value, i.e., 20% prestress, the tower height v.s. payload fraction

is shown in Figure 2.17. The results show that as tower height increases, the payload fraction

decreases exponentially for the T5D1 towers. That is, the tower height is a more sensitive parameter

than prestress to the tower mass. From the material study, we know the structure mass ranking is:

C-UHMWPE ≤ C-Al < Al-Al.

Table 2.5: Material property for bars and strings, source: http://www.matweb.com/.

Properties Carbon UHMWPE Aluminum Units

Yield Stress 1.72× 109 2.70× 109 1.10× 108 Pa

Young’s Modulus 1.38× 1011 1.20× 1011 6.00× 1010 Pa

Density 1, 500 970 2,700 kg/m3

2.11.5 Wind Disturbance Study

One of the most popular functions interpolating wind speed vertical distribution is [70]:

U = U∞(
h

h0

)α, (2.106)

where U is the wind velocity at a different height, U∞ is the standard measured wind velocity, h is

the height, h0 is the U∞ at the reference height, α is the terrain roughness coefficient, for a general

case α = 2. Wind speed is normally measured at a standard height of 10 m above open flat ground
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Figure 2.15: Payload Fraction, Tower Height, and Prestress Percent study of the deployable
tensegrity tower.

Figure 2.16: Prestress Percent v.s Payload Fraction of the deployable tower (tower height 850 m).

[71]. The drag force provided by the wind can be calculated as:

D =
1

2
CdρSU

2, (2.107)
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Figure 2.17: Tower Height v.s Payload Fraction of the deployable tower with a 20% prestress.

Figure 2.18: A typical wind velocity distribution profile.

where ρ is the air density (at 293K and 101.325 kPa, dry air has a density of 1.2041 kg/m3) and Cd

is the drag coefficient, here we use 1.0 for the bars. Results show that for a 100 m tall tower with

20% prestress to support 60 kg in earth gravity, and the structure mass is 156.46 kg with a safety

factor of 1.2. The tower can sustain a wind speed of 9 m/s with a 1.2 structure safety factor without

breaking any of the structural members while supporting itself.
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2.11.6 Packaging Plan

The New Glenn rocket configuration is given in Table 2.6. Space for the payload: 7m in

diameter, 20 m in height, and 769 m3 loading volume. For an 800 m lunar tower supporting 250

kg load with 20% prestress, the tower mass is 8,311 kg. The details are given in Table 2.7, which

fits comfortably in New Glen.

Table 2.6: New Glenn loading configuration, source: https://www.blueorigin.com/new-glenn/.

Items Size

Height 2-stage 82 m (270 ft)

Diameter 7 m (23 ft)

Payload to LEO 45,000 kg (99,000 lb)

Payload to GTO 13,000 kg (29,000 lb)

Table 2.7: Bar mass information of the 800 m tall tower.

Bar Length Number of Bars Mass Fraction

8.82 m 24 1.15%

17.63 m 12 2.31%

25.38 m 96 73.48%

35.27 m 6 4.75%

70.53 m 3 9.27%

122.16 m 3 9.22%
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2.12 Conclusion

This chapter presents a general framework of the minimal mass design for any solid or hollow

bar tensegrity structures with and without gravity. The methodology yields several nonlinear

programming problems. The choice of the cross-section of bars is discussed. Results show that

for a solid and hollow bar (with the same inner cross-section area) if yielding is the mode of

failure, one cannot save mass. If buckling is the mode of failure, one can use a solid or hollow

triangular cross-section shape to save 9.06% or 17.3% mass compared with a circular one. We

also parameterized the class number of a joint versus joints mass. Structure mass is slightly larger

when considering gravity than one without gravity. For the deployable lunar tower example, a

family of lunar towers and deployment methods are presented. The study of the T5D1 tower shows

that to take a 250 kg payload and sustains the weight of the structure itself, prestress or tower

height increases, structure mass increases. The structure mass is more sensitive to tower height

than prestress in the strings. The string material change has little influence on the total structure

mass. The material change of bars is critical to the total structure mass. A simplified wind model

is studied for a 100 m tower to take a 60 kg payload with a 1.2 safety factor, and the tower can

sustain a wind speed of 9 m/s. The packaging plan shows that the New Glenn rocket is able to fit

the material for the 800 m lunar. This minimal mass design framework can be used for the static

design of any truss or tensegrity structures. The principles developed in this chapter facilitate the

understanding of both materials and structures.
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3. INTEGRATING STRUCTURE DYNAMICS AND FLUIDS: TENSEGRITY SYSTEM

DYNAMICS IN FLUIDS

This chapter presents the study of tensegrity system dynamics in fluids. It contains two parts:

1). tensegrity structures interface fluid directly, as shown in Figure 3.1. 2). tensegrity structures

interface fluid by a skin (membrane) on the tensegrity structure, as shown in Figure 3.2. For

the first part, this chapter provides compact vector and matrix forms of the nonlinear dynamics

of class-1 and class-k tensegrity systems with fluid forces incorporated. Firstly, the equation of

motion (both translation and rotation) of a single rod is modeled. Then, the fluid forces by fluid

particles interacting with the rod are modeled and added to the derived dynamic equations of the

rod. Then, by stacking all the governing equations of motion for each rod, compact vector and

matrix forms of class-1 and class-k tensegrity dynamics are formulated. Three examples based

on a three-dimensional prism model with and without considering fluid forces, with and without

fluid inlet velocity, and landing to the ground with and without fluid influence are simulated

and compared. Results show that the simulations match well with physics. The fluid provides

significant damping to the dynamics of the structure. For the second part, this chapter studies

tensegrity airfoil/hydrofoil interfaces fluid by the skin on the structure. The fluid forces on the foil

surface are obtained by the panel method. Then, we develop a method for discretizing continuous

airfoil curves based on shape accuracy. This method is compared with conventional methods (i.e.

evenly spacing and cosine spacing methods). A tensegrity topology for shape controllable airfoil is

proposed. The surface fluid forces are integrated into the surface supporting nodes of the structure,

which can be used as the external force to simulate the tensegrity system dynamics. Finally, the foil

examples are studied and compared to demonstrate the approach. This work enables the ability to

do fluid-structure interaction studies of any tensegrity structures. The principles developed here can

also be used for analyzing various kinds of tensegrity structures operating in the air or underwater.
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Figure 3.1: Structure interfaces fluid directly. From left to right: tensegrity lander, tensegrity
T2-Tower, and tensegrity bridge.

Figure 3.2: Structure interfaces fluid by a skin. From left to right: tensegrity rocket, tensegrity
shelter, and tensegrity manta ray.

Figure 3.3: Left: High speed winds stimulate the vibration of the Tacoma Narrows Bridge, one can
observe one of the oscillation modes of the bridge structure. Right: The resonance condition led
to the crumble of the bridge on Nov. 7, 1940. Reprinted from UPI/Bettmann Newsphotos.
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3.1 Introduction

Fluid-structure interaction (FSI) is an interdisciplinary study of how fluids and structures interact.

The fluid pressure load may be large enough to cause the structure deformation, and in the meantime,

the structure deformation can be significant enough to change the fluid flow itself as well. Failing to

consider the FSI problems of some of the structures may leave out fundamental issues in modeling

and lead to serious problems. For example, the Tacoma Narrows Bridge collapsed only four months

later due to aeroelastic flutter [72, 73], shown in Figure 3.3. The blades of the airplanes and turbines

can break due to FSI oscillations [74, 75]. The hemodynamical flow of blood in the heart is not

a fixed geometry; the forces on the vessel walls can widen and stretch the tissue that changes the

overall shape [76]. Thus, the coupling of the two subjects can provide us a deeper understanding

of the psychics and guide our design and analysis structures. Currently, the research on FSI is

still ongoing, and the problem, in general, is often too complex to solve analytically, and they

are normally studied by experiments and numerical simulation [77]. This chapter develops an

approach to simulate the tensegrity dynamics incorporated with fluid forces.

There are a few studies have been conducted on tensegrity dynamics. For example, Sulton

et al. derived linearized equations of motion for tensegrity models around arbitrary equilibrium

configurations [78]. In 2005, Skelton presented one of the simplest dynamics forms for class-1

structure by using non-minimal coordinates and assumed the compressive elements to have no

inertia about the longitudinal axis [79]. Later, Wroldsen added wave forces to the dynamics

of class-1 tensegrity structures [80]. Nagase et al. wrote the equations of motion in vector

form for any class-k tensegrity system dynamics [81]. Cheong et al. extended the non-minimal

dynamics to class-k tensegrity systems in a second-order matrix form [82]. Goyal et al. presented

a compact matrix form of tensegrity dynamics by including massive strings, an analytical solution

of Lagrange multipliers for class-k tensegrity structures, and bar length correction algorithms

[83], a corresponding general software for modeling of any tensegrity structures can be found

in [47]. Recently, Goyal et al. extended the model of the nonlinear dynamics to modulate the

torque produced by the network of spatially distributed gyroscopes [84]. However, in all these
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dynamics models, none of them considered fluid forces for class-k tensegrity systems, which

limited our ability in analyzing fluid-based tensegrity structures, applications include aquaculture,

robotic fish, airplanes, etc. Fluid-structure interaction (FSI) simulation by numerical computational

fluid dynamics (CFD) software is an option to do the analysis, but this approach requires skillful

modeling experience in fluid dynamics and a lot of computational resources. This study contains

two contributions: Structure interfaces the fluid directly or via the membrane on the structure.

For the first one, this study implements a simplified analytical fluid force model, which has been

successfully applied and validated in the studies of aquatic animal swimming [85, 86, 87]. Then,

we integrate the fluid model with the tensegrity network and provide a dynamics model to investigate

the behaviors of tensegrity structure in the presence of fluid. For the second one, we study the fluid

forces on an airfoil and hydrofoil based on the panel method. Then, the fluid forces are integrated

into the structure nodes by force and moment equilibrium equations. The obtained fluid force is

external forces that will be applied to the tensegrity dynamics. The approaches to these two cases

can be used for analyzing tensegrity structures w/o skin that is operating in the fluids.

This chapter is structured as follows: Section 3.2 derives the translation and rotation equation

of motion of one single rod. Section 3.3 models the fluid particles interacting with the rod and the

corresponding fluid force expressions on the rod. Section 3.4 stacks all the equation of motion for

each rod to form the tensegrity network and develops a compact vector form of class-1 and class-k

structures. Section 3.5 presents a compact matrix form of class-1 and class-k structures. Section

3.6 discusses and compares the results of the dynamics by a 3D prism example by these cases: a

free oscillation in the fluid w/o an inlet velocity, and landing w/o fluid. Section 3.7 described how

we get the fluid forces on the skin of the structure. Section 3.8 discusses the error bound method

for continuous airfoil shape discretization and the design of tensegrity airfoils. Section 3.9 presents

how the fluid forces on the skin of the airfoil are transferred to the tensegrity structure. Section

3.10 gives the conclusions.
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Figure 3.4: Tensegrity bar member vector with fluid force nomenclature.

3.2 Dynamics of A Single Rod

3.2.1 Rotational Dynamics

Let us consider a single rod immersed in an infinite volume of fluid field. The length of the rod

is ||b|| = l, where b is a vector along the rod, shown in Figure 3.4. Vector r gives the position of

the rod center of mass O. We separate the forces on the rod into two parts: fluid force (f0 and τ0)

and other external forces (f1 and f2 applied at the two nodes of the rod).

To describe the position of a rigid body, vectors are usually coordinatized in two different

reference frames: inertia frame and body frame. Let the vectrices E =

[
e1 e2 e3

]
and B =[

b1 b2 b3

]
denote the dextral set of unit vectors ei which are inertially fixed and the body-fixed

dextral set of bi fixed in the coordinates of the rigid body [83]. The angular velocities of frame B

relative to frame E is ω = EωE = BωB, where ωB =

[
ωB

1 ωB
2 ωB

3

]T

. Coordinate transformation

by a unitary direction cosine matrix Θ satisfies:

B = EΘ, ΘTΘ = I. (3.1)
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Take the first time derivative of ΘTΘ = I , one can get:

ΘTΘ̇ = ω̃B =


0 −ωB

3 ωB
2

ωB
3 0 −ωB

1

−ωB
2 ωB

1 0

 , (3.2)

which is skew-symmetric matrix. Then, the time derivative of B can be obtained,

Ḃ = EΘ̇ = BΘTΘ̇ = Bω̃B. (3.3)

Since the bar vector b described in body frame B is b = BbB, where bB represents the

components of the vector b as viewed in coordinate frame B. With b3 along the rod, we have

bB =

[
0 0 l

]T

and ḃB = 0. The time derivative of vector b is:

ḃ = ḂbB + BḃB = ḂbB = Bω̃BbB. (3.4)

Then, since we have ω̃b = −b̃ω and b̃b̃ = −l2I + bbT, one can obtain:

b× ḃ = (BbB)× (Bω̃BbB) = Bb̃Bω̃BbB (3.5)

= −Bb̃B b̃BωB = −B(b̃B)2ωB (3.6)

= B(bB
T
bBI − bBbBT

)ωB (3.7)

= B(‖bB‖2I − bBbBT
)ωB (3.8)

= B

l2I −


0 0 0

0 0 0

0 0 l2


ωB (3.9)

= B

I2 0

0 0

 l2ωB = Bl2


ωB

1

ωB
2

0

 = l2ωb. (3.10)
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The angular momentum of bar b about its mass center O is:

h = Jb× ḃ =
mb

12
b× ḃ, (3.11)

where J is moment of inertia of the rod J = 1
12
mbl

2, mb is bar mass. Take the first time derivative

of Eq. (3.11), we obtain:

ḣ = J ḃ× ḃ+ Jb× b̈ = Jb× b̈. (3.12)

The time derivative of the angular momentum vectorh equals to the sum of torques τ = τe+τ0

acting on the bar member about its center of mass, where τ0 is the torque generated by the fluid

force, τe = 1
2
b× (f2 − f1) is torque given by the force at the two nodes of the bar. Then we have

the following:

ḣ = Jb× b̈ = τ , (3.13)

τ = τe + τ0 =
1

2
b× (f2 − f1) + τ0. (3.14)

Eq. (3.13) can be written in any coordinates, but we choose inertial coordinates for simpler

forms of final equations. To simplify notation hereafter, we define b = bE where b = BbB = EbE

[83]. Using inertial coordinates, Eq. (3.13) can be written as:

Jb̃b̈ =
1

2
b̃(f2 − f1) + τ0. (3.15)

Since bar length is a constant, we have ||b|| = l or bTb = l2. Take the first and second derivative

of the bar length constraint, we get:

ḃTb+ bTḃ = 2bTḃ = 0, (3.16)

ḃTḃ+ bTb̈ = 0, bTb̈ = −ḃTḃ = −||ḃ||2. (3.17)
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Write Eq. (3.15) and Eq. (3.17) together in matrix form as:

 b̃
bT

 b̈ =

 1
2J
b̃(f2 − f1)

−ḃTḃ

+

 τ0J
0

 . (3.18)

One can solve this linear algebra problem for b̈. Notice that

 b̃
bT

 has full column rank, the

unique solution for b̈ is:

b̈ =

 b̃
bT


†  1

2J
b̃(f2 − f1)

−ḃTḃ

+

 b̃
bT


†  τ0J

0

 (3.19)

=
1

l2

[
−b̃ b

] 1
2J
b̃(f2 − f1)

−ḃTḃ

+
1

l2

[
−b̃ b

] τ0J
0

 (3.20)

=
1

l2
(− 1

2J
b̃b̃(f2 − f1)− bḃTḃ)− 1

l2
b̃
τ0

J
(3.21)

= − 1

2Jl2
(−l2I + bbT)(f2 − f1)− 1

l2
bḃTḃ− 1

Jl2
b̃τ0, (3.22)

where superscript “†”denotes a matrix pseudo inverse. Rearranging equations gives the final vector

form of the single rod rotational dynamics:

Jb̈ =
1

2
(f2 − f1)− 1

2l2
bbT(f2 − f1)− J

l2
bḃTḃ− 1

l2
b̃τ0 (3.23)

=
1

2
(I − bbT

||b||2
)(f2 − f1)− J

l2
bḃTḃ− 1

l2
b̃τ0. (3.24)

3.2.2 Translational Dynamics

The position of center of mass of the bar is given by vector r. The fluid force working at the

center of mass of the bar is f0 and the sum of the internal forces from the strings and the external

forces, acting on the two ends of the bar, is described by f1 and f2, where r = ErE, fi = EfE
i .

From Newton’s second law, we have r = rE and fi = fE
i . mbr̈ = f1 + f2 + f0, which can be
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written in the inertial coordinates as:

mbr̈ = f0 + f1 + f2. (3.25)

3.3 Modeling of Fluid Forces on the Rod

The fluid force contributions are only considered on bar members due to their relatively bigger

diameter than the strings [80]. The continuously distributed fluid forces along the bar can be

represented by a single force f0 at the geometrical center O and torque τ0, which are functions of

velocities and angular velocities of the bar. Both vicious and fluid inertia forces are considered.

The fluid force on the geometrical center of the bar f0 (a sum of tangent force ft and normal force

fn) and torque (τ0) are given by [88]:

f0 = ft + fn, (3.26)

−ft = 2.7ctl
√
ρµd||vn||vt, (3.27)

−fn = sgn(vn)cp(ρv
2
n/2)ld+ caρπ(d/2)2l(an − 2vtθ̇), (3.28)

−τ0 =
1

12
sgn(vn)cpρdl

3vnθ̇ +
1

12
caρπ(d/2)2l3θ̈, (3.29)

where

θ̇ =
b̃ḃ

||b||2
, θ̈ =

b̃b̈

||b||2
, (3.30)

vt =
bbT

||b||2
ṙ, vn = (I − bbT

||b||2
)ṙ, (3.31)

at =
bbT

||b||2
r̈, an = (I − bbT

||b||2
)r̈, (3.32)

where ρ and µ are the fluid density and viscosity, d is the diameter of the rod, ct = 1 and cp =

0.9 ∼ 1.1 are the drag coefficients on a smooth circular cylinder in the range of Reynolds number

20 < Re < 105 from experiments [87], ca is the dimensionless coefficient to account for different

object shape (for cylinder, ca = 1). vt, vn are velocities and at, an are accelerations of the center of
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mass of the bar in tangential and normal direction, θ̇ and θ̈ are the angular velocity and acceleration

of the rod about e3 axis (the axis along the bar direction), sgn(•) takes the sign of the variable in

the parentheses.

In order to write the dynamic equations in a standard second order form, we separate fluid

force and torque into two parts, acceleration dependent one (with subscript A) and the rest (with

subscript R), and move the acceleration dependent parts to the left hand side of Eq. (3.24). Let us

first define:

f0 = fR + fA, τ0 = τR + τA, (3.33)

− fR := sgn(vn)cp(ρv
2
n/2)ld− 2mAvtθ̇

+ 2.7ctl
√
ρµd||vn||vt, (3.34)

− fA := mAan, (3.35)

− τR := sgn(vn)
1

12
cpρdl

3vnθ̇,−τA :=
1

12
mAl

2θ̈, (3.36)

wheremA = caρπ(d/2)2l is the mass of fluid being accelerated by the bar, usually called the added

mass of fluid. The moment of inertia of a rod is J = 1
12
mb||b||2, replace τ0 in Eq. (3.24) by Eq.

(3.33), we have:

[
mb

12
+
mA

12

(
I − bbT

||b||2

)]
b̈+

mb

12

||ḃ||2

||b||2
b =

1

2

(
I − bbT

||b||2

)
(f2 − f1)− b̃

||b||2
τR, (3.37)[

mb +mA

(
I − bbT

||b||2

)]
r̈ = f2 + f1 + fR. (3.38)
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3.4 Vector Form of Tensegrity System Dynamics with Fluid Forces Incorporated

3.4.1 Class-1 Tensegrity with Fluid Incorporated

Let the connectivity matrices of class-1 structure be Cb =

[
−Iβ Iβ

]
for bars, where β is the

number of bars in the system, and Cs for strings, and Cr =
1

2

[
Iβ Iβ

]
[39]. Let us define:

Hi := I3 −
bib

T
i

||bi||2
, mi := mbiI3 +mAiHi, (3.39)

gi :=
mbi

12

||ḃi||2

||bi||2
, κi := − b̃i

||bi||2
. (3.40)

Then, Eq. (3.37) and Eq. (3.38) can be written into a compact form:

m̂
1
12
m̂


 r̈
b̈

+

0 0

0 ĝ ⊗ I3


r
b

 =

 2Cr ⊗ I3

1
2
Ĥ(Cb ⊗ I3)

 f +

 fR

κ̂τR

 , (3.41)

where •̂ is a diagonal operator that converts a vector into a diagonal matrix, f =

[
f T

1 f T
2 · · · f T

2β

]T

is the vector of nodal forces, n =

[
nT

1 nT
2 · · · nT

2β

]T

is the vector of node coordinates.

The nodal force f is then given by:

f = w + fs + fd + (P T
c ⊗ I3)tc, (3.42)

where w is the external forces applied at each node, fs is the string forces, fd is the string damping

force, tc is the internal force between joints.

If the tensegrity system is subject to m constraints, we have:

(Pc ⊗ I3)n = dc, (3.43)

where Pc ∈ Rm×2β is the constraint matrix, and dc ∈ R3m is a constant vector. Eq. (3.43) describes

two types of constraint: Pcij = 1, Pcik = −1 and dci = 0 when nodes j and k are connected by a
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universal joint, where the subscript i is the ith constraint, and j, k are the nodes index; Pci,j = 1

and dci ∈ R3 when the jth node is fixed to the ground.

The forces in the strings fs can be written as:

fs = −(CT
s γ̂Cs ⊗ I3)n, (3.44)

γi :=

 ki(1− l0i/li), li > l0i

0, else
, (3.45)

where ki, li and l0i are the string stiffness, length and rest length. Since we have l2i = sT
isi ⇒ l̇i =

sT
i ṡi/li for each string, the damping force in each string is calculated by:

fdi := −µil̇i
si
li

= −µi
sT
i ṡi
l2i
si, (3.46)

written in a vector form, we have:

fd = −(CT
s ζ̂Cs ⊗ I3)n, (3.47)

ζi : =


µi
sT
i ṡi
l2i
, li > l0i

0, else

, (3.48)

where µi (N·s/m) is the damping coefficient.

The angular displacement between the contact surface, as described by the constraint Eq.

(3.43), introduces resistive torques to bars. The resistive torque on bar i by bar k due to angular

velocities ωi and ωk is given by:

τdik = −ηik(ωi − ωk), ωi =
b̃iḃi
||bi||2

, (3.49)

where ηik (N·m·s) is the damping coefficient between bar i and bar k. The vector form of resistive
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torque is given by:

τd = −2CrP
T
c η̂Pc2C

T
rω = 4CrP

T
c η̂PcC

T
r κ̂ḃ. (3.50)

τd is added to Eq. (3.41) by replacing τR by τR + τd.

Replace r, b, f and τR in Eq. (3.41) by r = (Cr⊗ I3)n, b = (Cb⊗ I3)n, Eq. (3.42) and τR+ τd,

where τd is given by Eq. (3.50), and also left multiply
[
CT
r CT

b

]
⊗ I3 to Eq. (3.41) to make the

mass matrix symmetric, we have:

Mn̈+ Cṅ+Kn = D(w + P Ttc) + z, (3.51)

where:

M := (CT
r ⊗ I3)m̂(Cr ⊗ I3) +

1

12
(CT

b ⊗ I3)m̂(Cb ⊗ I3), (3.52)

C := 4(CT
b ⊗ I3)κ̂T(CrP

T
c η̂PcC

T
r ⊗ I3)κ̂(Cb ⊗ I3), (3.53)

D := I − 1

2
(CT

b ⊗ I3)∆(Cb ⊗ I3), (3.54)

∆ := block diagonal

(
bib

T
i

||bi||2

)
, (3.55)

K := D(CT
s(γ̂ + ζ̂)Cs ⊗ I3) + (CT

b ⊗ I3)ĝ(Cb ⊗ I3), (3.56)

z := (CT
r ⊗ I3)fR + (CT

b ⊗ I3)κ̂τR, (3.57)

P := Pc ⊗ I3. (3.58)

The vector z is how we add the fluid force, which is composed of a force vector fR at location r

and a torque τR both of which are acceleration independent, and mi is how we add the added mass

effect of fluid (the fluid being accelerated by the bar) into the equation of motion. Note that Eq.

(3.52) is the equation of motion for class-1 tensegrity with P = 0.
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Suppose the constraints are linearly independent, we can write:

(Pc ⊗ I3)n = dc ⇒ n = P †dc + P⊥nc, (3.59)

P † = P †c ⊗ I3, P
⊥ = P⊥c ⊗ I3, (3.60)

where † means moore-penrose inverse, P⊥ is the right null space of P . Replace n in Eq. (3.51) by

above expression, we get:

[
MP⊥ −DP T

]n̈c
tc

 = −CP⊥ṅc −K(P †dc + P⊥nc) +Dw + z. (3.61)

Rewrite the above equation in a compact form, we have the equation of motion for class-k

tensegrity: n̈c
tc

 =

(MP⊥
)T

− (DP T)T

Π−1ϕ, (3.62)

where:

Π := MP⊥(MP⊥)T +DP T (DP T)
T
, (3.63)

ϕ := −CP⊥ṅc −K(P †dc + P⊥nc) +Dw + z. (3.64)

3.4.2 Normalization on P⊥ to Reduce Numerical Error

The condition number of Π is in order of 106 when the unit mass is in order of 10−1 [88]. If

99% of unit mass is on bar 1, the condition number of Π will be in order of 1010. Note that the term

DP T in Π has entries close to 1 when entries of P is so (the case of nodal constraint). To reduce
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numerical error, P⊥ term in Π can be normalized as below:

[
M(P⊥/δ) −DP T

] ¨̄nc

tc

 = −C(P⊥/δ) ˙̄nc −K(P †dc + (P⊥/δ)n̄c) +Dw + z, n̄c := ncδ,

(3.65)

where δ is a scalar such that the entries ofM/δ is close to 1. After such normalization, the condition

number of Π can be reduced from 1010 to 108.

3.4.3 Computational Effort and Numerical Error Reduction

From the structure of the matrices, we know that there are many repeated block entries in Eq.

(3.62) resulted from the structure of Cr := 1
2

[
I I

]
and Cb :=

[
−I I

]
. We expand Eq. (3.62) to

identify those repeated blocks to allow the computer to compute them only once. This also reduces

the order of matrices by half in arithmetic operations. Furthermore, most matrices in Eq. (3.62)

are block diagonal, and the matrices P , P †, and P⊥ are sparse, the functions for sparse matrix

in matlab help to reduce the computation effort and possible numerical errors. For example, the

command sparse creates a sparse matrix by saving only the nonzero entries and their indices, and

the arithmetic operators operate, for example, when we multiply two matrices, only on nonzero

entries, which avoid unnecessary computation and numerical error from those zero entries.
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By expanding, matrices in Eq. (3.62) can be rewritten as:

M =

1
3
m̂ 1

6
m̂

1
6
m̂ 1

3
m̂

 , C =

 C11 −C11

−C11 C11

 , (3.66)

C11 := κ̂T ((P T
1 + P T

2 )η̂(P1 + P2)⊗ I3) κ̂, (3.67)

P =:

[
P1 P2

]
, D = I − 1

2

 ∆ −∆

−∆ ∆

 , (3.68)

K =

K11 K12

KT
12 K22

⊗ I3 +

 ĝ −ĝ

−ĝ ĝ

⊗ I3−

1

2

∆ ((K11 −KT
12)⊗ I3) ∆ ((K12 −KT

22)⊗ I3)

	 	

 , (3.69)

K11 := CT
s1

(γ̂ + ζ̂)Cs1 , K12 := CT
s1

(γ̂ + ζ̂)Cs2 , (3.70)

K22 := CT
s2

(γ̂ + ζ̂)Cs2 , Cs =:

[
Cs1 Cs2

]
, (3.71)

where 	 means the negative of the first row of the 2 by 1 block matrix. With above definition, the

terms in ϕ in Eq. (3.62) were written as:

CP⊥ṅc =

C11(P⊥1 − P⊥2)ṅc

	

 , P⊥ =:

P⊥1

P⊥2

 , (3.72)

P †dc + P⊥nc =

pc1 + P⊥1nc

pc2 + P⊥2nc

 , P †dc =:

pc1
pc2

 , (3.73)

Dw =

w1

w2

− 1

2

∆(w1 − w2)

	

 , w =:

w1

w2

 , (3.74)
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The terms in Π matrix in Eq. (3.62) are written as:

MP⊥ =

m̂(1
3
P⊥1 + 1

6
P⊥2)

m̂(1
6
P⊥1 + 1

3
P⊥2)

 , (3.75)

DP T =

P T
1

P T
2

− 1

2

∆(P T
1 − P T

2 )

	

 , (3.76)

Π := MP⊥(P⊥)TM +DP TPD =:

Π11 Π12

ΠT
12 Π22

 . (3.77)

Using block matrix inverse formula:

A B

C D


−1

=

Θ11 Θ12

Θ21 Θ22

 , (3.78)

where:

Θ11 = (A−BD−1C)−1, (3.79)

Θ12 = −A−1B(D − CA−1B)−1, (3.80)

Θ21 = −D−1C(A−BD−1C)−1, (3.81)

Θ22 = (D − CA−1B)−1. (3.82)

The inverse of Π is then given by:

Π−1 =

Λ11 Λ12

Λ21 Λ22

 , (3.83)
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where:

Λ11 = (Π11 − Π12Π−1
22 ΠT

12)−1, (3.84)

Λ12 = −Π−1
11 Π12(Π22 − ΠT

12Π−1
11 Π12)−1, (3.85)

Λ21 = −Π−1
22 ΠT

12(Π11 − Π12Π−1
22 ΠT

12)−1, (3.86)

Λ22 = (Π22 − ΠT
12Π−1

11 Π12)−1. (3.87)

For class-1 tensegrity, we still need to inverse M directly, which is given by:

M−1 =

 4m̂−1 −2m̂−1

−2m̂−1 4m̂−1

 . (3.88)

3.4.4 Calculate Initial Values of nc from n

In simulation, we set the initial conditions of the structure, and then check the time response.

n is chosen to satisfy the constraints, the initial values of nc for ode solvers (ode45 is usually used)

can be calculated from:

P⊥nc = (n− P †dc), (3.89)

we have:

nc = (P⊥)†(n− P †dc). (3.90)

3.5 Matrix Formulation of Tensegrity Dynamics with Fluid Force Incorporated

The dynamics of any given rod member in a tensegrity structure in the presence of fluid force

are given by Eq. (3.37) and Eq. (3.38). To describe a full tensegrity structure, it basically stacks

2β vector equations for a system containing β rod members. In order to simplify the equation

structure, one can assemble them in a matrix form.
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We name nodes at the base of bar vectors as N :=

[
n1 · · · n2β

]
, for a network of β

bars, define the 3 × β matrix B :=

[
b1 · · · bβ

]
. The mass centers of the bars is defined as

R :=

[
r1 · · · rβ

]
, where ri is the ith column of matrix R. The internal forces acting on

nodes caused by string tensions is NCT
sγCs, the full force matrix expression can then be written

as F := W − NCT
s γ̂Cs. Fluid forces can be assembled as FR :=

[
fn11

+ ft1 · · · fn1β
+ ftβ

]
,

∆R :=

[
τR1 · · · τRβ

]
. Let us also define B̃ :=

[
b̃1 · · · b̃β

]
and e :=

[
1 · · · 1

]T

, we

have the following expression:

B̈m̂
1

12
+B

(⌊
ḂTḂ

⌋
m̂l̂−2 1

12
+ bBTFCT

bc l̂−2 1

2

)
= FCT

b

1

2
+ eT ⊗ I3

⌊
B̃T∆R

⌋
l̂−2, (3.91)

R̈m̂ = 2FCT
r + FR, (3.92)

where FR, τ̂R and m are how we add the acceleration-independent and dependent fluid forces and

torques into the equation, and li := ||bi||. Define [83]:

− λ̂ :=
⌊
ḂTḂ

⌋
m̂l̂−2 1

12
+ bBTFCT

bc l̂−2 1

2
, (3.93)

M :=
1

12
CT
bm̂Cb + CT

rm̂Cr, (3.94)

K := CT
s γ̂Cs − CT

b λ̂Cb, (3.95)

with the following formula:

1

2
CT
bCb + 2CT

rCr = I,

Cb
Cr

 =

[
1
2
CT
b 2CT

r

]−1

, (3.96)

Eq. (3.91) and Eq. (3.92) can be written into:

N̈M +NK = W + eT ⊗ I3

⌊
B̃T∆R

⌋
l̂−2Cb + FRCr. (3.97)
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When the system is subject to constraint of form [83]:

NP = D, P ∈ Rβ×m. (3.98)

The constraint force T is given by:

T = ΩP T, (3.99)

and W in Eq. (3.97) is replaced by W + ΩP T. A analytical solution for Ω can be found in [83].

We can also add an additional constraint that the e2 coordinate of n1 remains constant dy, i.e.:

eT
2Ne1 = dy, e2 =

[
0 1 0

]T

∈ R3, (3.100)

e1 =

[
1 0

]T

∈ R3β. (3.101)

The total constraint is
[
NP eT

2Ne1

]
=

[
D dy

]
which can not be written in the form of

Eq. (3.98). So Eq. (3.98) is only applicable to constraints on vectors ni, i = 1, · · · , 2β, but not on

individual entries nix , niy , niz . The vector form equation of motion in section 3.4 is more suitable

for compact expression:

eT
2(eT

1 ⊗ I3)n = dy, Pn = d, (3.102)

where:

P :=

 P

((e1 ⊗ I3)e2)T

 , d :=

 d
dy

 . (3.103)

3.6 Numerical Study of the Tensegrity Interfaces the Fluid Directly

It has been observed that DNA has a similar structure as tensegrity prism, where rigid bundles

of DNA double helices resist compressive forces exerted by segments of singles tranded DNA
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Figure 3.5: A 3D three-bar prism, thick black lines are bars and thin red lines are strings, prism
height is 0.5 m, and bar length is 0.6952 m.

that acts as tension-bearing cables [2]. Many research on tensegrity prism has been conducted to

study its properties in lightweight [39], configuration method for connecting [89], deployability by

stimulus-responsive polymers [90], stiffness of the prism towers [62], etc.

Thus, 3D three-bar prism example, shown in Figure 3.5, is chosen to verify the derived tensegrity

dynamics. In the absence of external forces, the prism unit structure has a known equilibrium

solution, if the top and bottom string members have force density value γtop = γbtm, the vertical

string members must have force density value γvtc =
√

3γtop =
√

3γbtm [39].

For convenience in subsequent comparison, the radii for all the bars are set to be 0.02 m,

radius of the top and bottom triangle circumscribed circles are rtop = 0.25 m and rbtm = 0.25 m,

and prism height is h = 0.5 m. To demonstrate the dynamic response of the tensegrity structure,

bar masses are specified as 0.5 kg. Initial force density values are specified as λ = 15 N/m,

γtop = γbtm = γvtc = 5
√

3 N/m to induce motion. Bar lengths, based on specified initial node

positions, are 0.6952 m long and all string members are given stiffness values of ks = 2,000 N/m,

string damping coefficient µi = 0.1 N·s/m, friction coefficient between joints, bar i and bar k,

ηik = 0 N·m·s. We choose the added mass coefficient ca = 1, friction coefficient ct = 1, pressure

coefficient cp = 1. We point out here that to achieve accurate results, these coefficients should be

obtained by physical experiments. Fluid density ρ = 1,000 kg/m3, fluid viscosity µ = 1.0 × 10−3
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Figure 3.6: Bar length errors of the prism.

Pa·s, and simulation time tf = 5 s. The x, y, and z coordinates of nodes 1, 2, and 3 are fixed to the

ground.

3.6.1 Example 1: Free Oscillation in the Static Fluid

For this case, we compare the motion of the flexible structure dynamic simulation with and

without fluid. The three-figure time-lapse plots are given in Figures 3.8 and 3.9. The coordinate

and velocity time history of nodes 4, 5, and 6 of the prism unit without fluid are given in Figures

3.10 and 3.11. From these two figures, we can see that the prism is experiencing a free periodical

oscillation. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in the

presence of fluid are given in Figures 3.12 and 3.13. It is shown that the structure quickly damped

to its equilibrium. Comparing the results with no fluid results, we can see that the water provides

large damping to the dynamics response of the structure, which agrees with the physics. The bar

length and fixed node errors of the prism is shown in Figures 3.6 and 3.7.

3.6.2 Example 2: Free Oscillation in the Fluid with an Inlet Velocity

For this case, we compare the motion of the flexible structure dynamic with a fluid inlet velocity

of 0 m/s and 3 m/s in the x-direction. The three-figure time-lapse plots are given in Figures 3.9 and
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Figure 3.7: X-, Y-, and Z-coordinate errors of the fixed nodes of the prism.

Figure 3.8: Free oscillation of the prism (no fluid) at T = 0s, 1s, and 2s.

Figure 3.9: Free oscillation of the prism (immersed in the fluid) at T = 0s, 1s, and 2s.

80



Figure 3.10: Coordinate time history of node 4, 5 and 6 from the free oscillation of the prism (no
fluid).

Figure 3.11: Velocity time history of node 4, 5 and 6 from the free oscillation of the prism (no
fluid).
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Figure 3.12: Coordinate time history of node 4, 5 and 6 from the free oscillation of the prism
(immersed in the fluid).

Figure 3.13: Velocity time history of node 4, 5 and 6 from the free oscillation of the prism unit
(immersed in the fluid).
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Figure 3.14: Dynamics simulation of the prism (fluid inlet velocity 3 m/s in x-direction) at T = 0s,
1s, and 2s.

3.14. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in the presence

of static fluid are given in Figures 3.12 and 3.13. It is shown that the structure quickly damped to

its equilibrium. The coordinate and velocity time history of nodes 4, 5, and 6 of the prism unit in

the presence of fluid with 3 m/s velocity in the x-direction are given in Figures 3.15 and 3.16. The

result shows that the structure quickly damped to its equilibrium and the whole structure moves

towards the x-direction, shown in Figure 3.14. Comparing the results for fluid with and without

velocity, we can conclude that the fluid provides large damping to the dynamics response of the

structure and a pushing force to the whole structure in the fluid velocity direction, which matches

well with the physics.

3.6.3 Example 3: Landing in the Presence of Fluid

Landing problem has attracted a lot attentions from various researchers [91, 92, 93]. All these

simulations are assuming a non-fluid environment. This is true for lunar or asteroid landing, but

for other scenarios, the influence of fluid should be considered. For example, landing on the

ocean floor, Earth, Mars, and Titan would require the consideration of fluid. The example is to

demonstrate the capability of the formulation to perform the dynamic simulation with inputs from

the external environment (gravity and fluid). A dynamic simulation result was shown when the

prism lander was dropped from a height of 1 m (distance between the bottom nodes of the prism
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Figure 3.15: Coordinate time history of node 4, 5 and 6 from the dynamics simulation of the prism
unit (fluid inlet velocity 3 m/s in x-direction).

Figure 3.16: Velocity time history of node 4, 5 and 6 from the dynamics simulation of the prism
unit (fluid inlet velocity 3 m/s in x-direction).
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and the ground). For this simulation, the frictionless ground was modeled as a spring-damper

system of stiffness kg = 3,000 N/m and damping cg = 3 N·s/m. An initial prestress value of all

the bars and vertical strings λ = λv = 15 N/m, force densities in the top and bottom strings are

γt = γb = λ/
√

3 = 5
√

3 N/m, which result in self-equilibrium for the structure without gravity

force [39]. We should point out that adding gravity in landing to the structure will slightly change

the equilibrium configuration, and one can observe this phenomenon before the structure hitting

the ground, shown in the x and y coordinates and velocities at 0 s ∼ 0.52 s in Figure 3.19 and 0 s

∼ 0.84 s in Figure 3.21.

For this case, we compare the motion of the flexible structure landing simulation with and

without fluid. The three-figure time-lapse plots are given in Figures 3.17 and 3.18. The coordinate

and velocity time history of nodes 4, 5, and 6 of the prism unit without fluid are given in Figures

3.19 and 3.20. From these two figures, we can see that it takes about 0.52 s for the prism to hit

the ground. After hitting the ground, the prism is experiencing a big bouncing up and down with

small damping from the ground. The coordinate and velocity time history of nodes 4, 5, and 6 of

the prism unit in the presence of fluid are given in Figures 3.21 and 3.22. It is shown that it takes

a little longer, 0.84 s, for the prism to hit the ground because of the fluid damping influence. After

hitting the ground, the structure quickly damped to its equilibrium. Comparing the results with no

fluid results, we can see that the water provides large damping to the landing process, which takes

a longer time to land on the floor but damped quicker to its equilibrium.
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Figure 3.17: Landing simulation of the prism (no fluid) at T = 0s, 1s, and 2s.

Figure 3.18: Landing simulation of the prism unit (immersed in the fluid) at T = 0s, 1s, and 2s.

Figure 3.19: Coordinate time history of node 4, 5 and 6 from the landing simulation of the prism
unit (no fluid).
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Figure 3.20: Velocity time history of node 4, 5 and 6 from the landing simulation of the prism unit
(no fluid).

Figure 3.21: Coordinate time history of node 4, 5 and 6 from the landing simulation of the prism
unit (with fluid).

87



Figure 3.22: Velocity time history of node 4, 5 and 6 from the landing simulation of the prism unit
(with fluid).
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Figure 3.23: Schematic diagram of a uniform fluid with velocity U flows over an airfoil.

3.7 Fluid Forces on the Skin of the Structure

For many fluid-based structure applications, the overall structure is covered with skin to achieve

desired aerodynamics/hydrodynamics performances. The skin works as an interface, can transfer

the forces between the fluid and inner supporting structure. As we know, fluid forces can be very

complicated when dealing with turbulence, supersonic flows, and complex geometric models. And

there are still many opening research problems in these topics. To simplify the problem, in this

section, we implemented the most common structure in aerospace/ocean engineering, airfoil, to

demonstrate 1). obtain fluid forces on the skin of the structure by the panel method, 2). integrate

the continuously distributed fluid forces on the skin to the forces on the structure nodes with force

and moment equilibrium satisfied. For the first problem, we adopted the panel method to obtain the

fluid forces. The Panel method, specially designed for analysis of foil structures, is an approach

developed by a group led by Hess and Smith at Douglas Aircraft in the late 1950s and early 1960s

[94], and was adopted to solve lifting flows at Boeing by Rubbert [95]. This method is widely

adopted by researchers due to its accuracy and time-saving in computations [96, 97]. Under the

following assumptions, the fluid forces on the foils are obtained by the panel method.

Assumption 3.7.1. The fluid is assumed to be:

1. Ideal fluids: incompressible, irrotational, steady, and in-viscid.

2. The overall structure is immersed in an infinite volume of fluid field.
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Figure 3.24: In-viscid velocity distribution along the foil chord, the comparison between
simulation and experiment data of NACA 0009 at 0◦ attack of angle. The experimental data
(Reprinted from [6].) is in black and simulation result is in red.

3. The flow has a uniform velocity at the inlet.

Let an airfoil immersed in a large enough volume of fluid. The uniform flow has a velocity of

U . By implementing the panel method described in [98], we first verify the accuracy of the method

by comparing the simulation and experimental data of a NACA 0009. The experimental data is

in-viscid velocity distribution obtained from [6]. The comparison is shown in Figure 3.24, and the

result shows that the experimental and simulation plots match well.

We choose Reynolds number Re = 106, the pressure distribution and pressure coefficient of

NACA 0012 and NACA 2412 at different attack angles (0◦ and 8◦) can be obtained, as shown in

Figures 3.25 - 3.28. The airfoil is in green, high pressure (pressure arrow is pointing to the surface

of the foil) in red and low pressure (pressure arrow is away from the surface of the foil) in blue.
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Figure 3.25: The pressure distribution NACA 0012, AOA 0◦.

Figure 3.26: The pressure coefficients of NACA 0012, AOA 0◦. Since the foil is symmetric, the
pressure coefficient curves of the upper and lower surfaces are coincide with one another.
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Figure 3.27: The pressure distribution of NACA 2412, AOA 0◦. The red, blue, and green area are
high pressure, low pressure, and the foil shape, respectively.

Figure 3.28: The pressure coefficients of NACA 0012, AOA 0◦. The upper and bottom curves are
for the lower and upper surfaces, respectively.
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Figure 3.29: Illustration of error bound spacing method by NACA0012 with error bound δ = 0.008
m. The red dotted curve and the blue solid line are the continuous and discrete airfoil shape. Error
bound δ is the maximum distance between the continuous shape and discrete line segment in the
discrete section. Reprinted with permission from [7].

3.8 Tensegrity Airfoil Design

This section focuses on an error bound method for the discretization of continuous airfoils and

a representation of the tensegrity airfoil topology based on matrix notations.

3.8.1 Error Bound Method

Let us assume the chord length of an airfoil is 1, the number of discrete points is p. There

are two widely used spacing methods (evenly and cosine spacing) for discretizing an airfoil in the

computational fluid dynamics (CFD) field [99, 100]. The definition of evenly and cosine spacing

is the x-coordinates of the discrete points on the airfoil satisfy a linear function xi = i
p
, (i =

1, 2, 3, . . . , p) or a cosine function xi = 0.5[1 − cos(π
p
i)], (i = 1, 2, 3, . . . , p). However, these two

methods could not quantify the shape accuracy of the discretized shape compared to a continuous

shape. In other words, one cannot specify how big the shape error is merely by the control points

one uses. It might not bother much when one is allowed to have a sufficient number of discrete

points, but when it comes to describing an airfoil with limited points, it reveals the importance

to obtain a better discrete shape. In consequence, this chapter proposes an error bound spacing

method, see Figure 3.29, which discretizes an airfoil and provides a quantitative representation of

airfoil shape accuracy. This may improve the performance prediction of airfoil designs.

Error Bound Method: Given the exact airfoil shape, approximate the shape with straight-line

segments. Choose the location of the nodes of the straight-line segments such that the maximum
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error between the defined shape and each straight-line segment is less than a specified value δ.

Algorithm 4: Error Bound Spacing Algorithm
1) Let y = f(x), x ∈ [0, 1] be the function of a continuous airfoil shape, an error bound
value be δ.
2) Let x0 ∈ x be the start point of discretization, then x ∈ [0, x0] is the continuous part
(called the “D-Section”) and x ∈ [x0, 1] is the discrete part.
3) Let (x2, y2) be the next discrete point, the line function of segment (x0, y0) and (x2, y2)
is:

Ax+By + C = 0, (3.104)

where A = (y2 − y0)/(x2 − x0), B = −1, and C = y0 − Ax0.
4)The point (x1, y1), x1 ∈ (x0, x2) has the largest distance with the line segment:

d =
|Ax1 +By1 + C|√

A2 +B2
. (3.105)

5) Obtain all the discrete points:
while x ≤ 1 do {

f ′(x)|x=x1 = y2−y0
x2−x0

||Ax1+By1+C||√
A2+B2 = δ

, solve for x2

Store (x2, y2) and update x0 ← x2.

end while

Following the definition, an algorithm can be formulated to obtain the coordinates of the

discrete points, shown in Algorithm 4. Let an example to illustrate the advantage of the error

bound method comparing with evenly and cosine spacing ones, shown in Figure 3.30. It is clear

that the error bound method has better accuracy for the same number of discrete points, and the

error bound δ also provides a quantitative sense of the accuracy of the discrete airfoil.

3.8.2 Topology of Tensegrity Airfoil

Having located the nodes of the straight-line approximation of the desired shape, we now must

show the interior tensegrity structure of the airfoil. Inspired by the structure of vertebra, we connect

the discrete points in a similar pattern, as shown in Figure 3.31. The blue area in Figure 3.31 is the

94



Figure 3.30: Comparison of cosine spacing, evenly spacing, and error bound spacing methods by
NACA 0012 with same amount of discrete points. Reprinted with permission from [7].

Figure 3.31: Tensegrity airfoil configuration, blue shaded area is the rigid body (normally called
the D-Section), black and red lines are bars and strings.

D-section, also called D-box, is a structure in a letter D form in the front of the airfoil widely used

in wing structure construction.

The notation of nodes, bars, and strings of a tensegrity airfoil with any complexity q is given

in Fig. 3.32, where q is the number of horizontal bars in the tensegrity structure. The discrete

points on the surface of the airfoil (nodes nq+1,nq+2, · · · ,n3q+1) are determined by error bound

spacing method developed in [7], which is defined as the maximum error between the continuous

surface shape and each straight-line segment is less than a specified value δ. The coordinate of

node ni (i = 1, 2, · · · , q) is determined by the nodes above and below this point with a same ratio

µ ∈ (0, 1), which satisfies ni = µnq+1+i + (1− µ)n2q+1+i.
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Figure 3.32: Node, bar, and string notations of a tensegrity airfoil with complexity q.

3.8.3 General Modeling of Tensegrity Airfoil

We define nodal, bar, string, bar connectivity, and string connectivity matrices: N , B, S, Cb,

andCs to describe a tensegrity airfoil with any complexity q. The nodal matrixN = [n1,n2, · · · ,n3q+1],

its each column represents the x-, y-, and z-coordinate of each node (ni =

[
xi yi zi

]T
). CS and

CB are connectivity matrices (with 0, -1, and 1 contained in each column) of strings and bars. The

bar and string matrices B = [b1, b2, · · · , b3q] = NCT
b , S = [s1, s2, · · · , s6q−4] = NCT

s , where

bj (j = 1, 2, · · · , 3q) and sk (k = 1, 2, · · · , 6q − 4) are the jth bar and kth string. Cbin and Csin
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whose two elements in each row denotes the start and end node of one bar or string:

Cbin =


[i, i+ 1], 1 ≤ i ≤ q

[i− q, i+ 1], q + 1 ≤ i ≤ 2q

[i− 2q, i+ 1], 2q + 1 ≤ i ≤ 3q

, (3.106)

Csin =



[i+ 1 + q, i+ 2 + q], 1 ≤ i ≤ q − 1

[q + i, i], 2 ≤ i ≤ q

[i, q + 2 + i], 1 ≤ i ≤ q − 1

[i, 2q + 2 + i], 1 ≤ i ≤ q − 1

[2q + i, i], 2 ≤ i ≤ q

[i+ 1 + 2q, i+ 2 + 2q], 1 ≤ i ≤ q − 1

[2q + 1, q + 1], [3q + 1, q + 1]

. (3.107)

Then, a function can be written to convert Cbin and Csin to Cb and Cs [47]. A set of tensegrity

airfoils with different structure complexities are shown in Figure 3.33.

3.9 Transfer the Skin Forces to the Tensegrity Airfoil

The airfoil is normally separated into two parts: 1). D-section, the front head of the foil,

usually called D-section; 2). The rest part, where we put tensegrity structure and a membrane skin

on it, as shown in Figure 3.23. From Figures 3.25 and 3.27 we know, the fluid has a non-uniform,

continuous fluid pressure on the foils. The tensegrity structure is discrete on the skin. We are

interested in the forces on the structure nodes which is transferred by the membrane skin. Since

the membrane can not take bending, so it can not tolerate any moment. That is, the discrete nodes
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Figure 3.33: Discretize the airfoil by error bound method. The structure complexity is the number
of T-Bars in the tail structure.

Figure 3.34: The continuous pressure distribution on the airfoil, which can be transferred to the
supporting nodes of the structure.
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of the structure must balance the forces and moments:

F =

∫
P dx, (3.108)

M =

∫
r × F dx, (3.109)

where F and P are denoted in the FBD (free body diagram), as shown in Figure 3.34. We also

define δy = yi − yi+1, δx = xi+1 − xi, and discrete pressure pj on the foil (∆x is the gradient of

the discrete pressure distribution of the foil in the x-direction), we have:



1 1 0 0

0 0 1 1

δy 0 δx 0

0 −δy 0 −δx





Fx,i

Fx,i+1

Fy,i

Fy,i+1


=



−
∑
pj sin θj∆x

−
∑
pj cos θj∆x

−
∑
pj sin θj∆x(yi − yj) +

∑
pj cos θj∆x(xj − xi)

−
∑
pj sin θj∆x(yj − yi+1) +

∑
pj cos θj∆x(xi+1 − xj)


.

(3.110)

Now, let us illustrate the algorithm by two tensegrity based on NACA 0012 and NACA 2412

foils (δ = 0.001). The fluid forces of the tensegrity foils in Figures 3.35 and 3.36 on the discrete

nodes are given in Tables 3.1 and 3.2. As we can see, since the NACA 0012 is symmetric, the

forces in the X-direction at the upper surface and the lower surface are the same, the forces in the

X-direction at the upper surface and the lower surface are of the same value but in the opposite

direction, which agrees with the physics. Similarly, NACA 2412 is an asymmetric airfoil. The

unevenly distributed fluid forces are given in Table 3.2. Then, the dynamics of the tensegrity can

be modeled by adding these fluid forces into the external force matrixW of the tensegrity dynamics

equation in Eq. (3.97).
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Figure 3.35: The continuous pressure distribution on a tensegrity NACA 0012 airfoil, which can
be transferred to the supporting nodes ( 1© - 11©) of the structure. Black lines and red lines in the
foil structure are bars and strings.

Table 3.1: Fluid force at the discrete points of the tensegrity NACA 0012 @ 0◦ AOA. The first
value in the parentheses

Upper Surface Lower Surface

Rigid Head (0.0092,-0.1242) (0.0092, 0.1242)

2© 8© (-0.0011, -0.0342) (-0.0011, 0.0342)

3© 9© (-0.0021, -0.0356) (-0.0021, 0.0356)

4© 10© (-0.0016, -0.0204) (-0.0016, 0.0204)

5© 11© (0.0005, 0.0053) (0.0005, -0.0053)

6© (0.0012,0.0000)
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Figure 3.36: The continuous pressure distribution on a tensegrity NACA 2412 airfoil, which can
be transferred to the D-section and supporting nodes ( 1© - 11©) of the structure.

Table 3.2: Fluid Force at the discrete points of the tensegrity NACA 2412 @ 0◦ AOA.

Upper Surface Lower Surface

Rigid Head (0.0191,-0.1766) (0.0035, 0.0770)

2© 8© (-0.0024, -0.0700) (-0.0005, 0.0139)

3© 9© (-0.0052, -0.0604) (-0.0002, 0.0064)

4© 10© (-0.0044, -0.0383) (0.0005, -0.0060)

5© 11© (0.0010, -0.0042) (0.0010,-0.0015)

6© (0.0009,-0.0026)

3.10 Conclusion

This chapter contains two parts. For the first part, we formulated the dynamics of tensegrity

structures that interface the fluid directly. Firstly, we derived the dynamics of one single rod.

The continuously distributed fluid forces along the bar are represented by a single force at the

geometrical center and a torque. Then, the fluid forces are added to the derived dynamics of
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equations. By stacking all the equations of motion for each rod, compact vector and matrix forms

of class-1 and class-k tensegrity dynamics are formulated. Finally, based on a three-dimensional

prism model, we simulate and compared results without considering fluid forces, fluid velocity,

and gravity forces. Results show that fluid forces and velocity can give the structure damping

and pushing force to the dynamics response of the structure, which agrees with the physics. This

study gives an analytical dynamics formulation of fluid-structure interaction of any class-1 and

class-k tensegrity structures. For the second part, we presented structures interfaces fluid by a

skin(membrane) on the tensegrity structure by two tensegrity foils. The approach is achieved

by using the panel method to compute the fluid pressure on the foil, integrating the fluid forces

on the structure nodes with force and moment equilibrium satisfied. Results show that the fluid

model is accurate for foil analysis compared with experimental data of NACA 0009. An airfoil

discretization method to bound the local error of each node is introduced and combined with

the design of tensegrity airfoils. Finally, we showed the normalized fluid forces transferred to

tensegrity airfoils NACA 0012 and NACA 2412. The principles developed in this chapter enable

our ability to study various kinds of fluid-based tensegrity structures.
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4. INTEGRATING STRUCTURE DYNAMICS AND MATERIALS: TENSEGRITY

SYSTEM DYNAMICS BASED ON FINITE ELEMENT METHOD

This chapter presents a finite element analysis approach to nonlinear and linearized tensegrity

dynamics based on the Lagrangian method with nodal coordinate vectors as the generalized coordinates.

In this chapter, nonlinear tensegrity dynamics with and without constraints are first derived. The

equilibrium equations in three standard forms (in terms of nodal coordinate, force density, and

force vectors) and the compatibility equation are also given. Then, we present the linearized

dynamics and modal analysis equations with and without constraints. The developed approach is

capable of conducting the following comprehensive dynamics studies for any tensegrity structures

accurately: 1. Performing rigid body dynamics with acceptable errors, which is achieved by setting

relatively high stiffness for bars in the simulation. 2. Simulating FEM dynamics accurately, where

bars and strings can have elastic or plastic deformations. 3. Dealing with various kinds of boundary

conditions, for example, fixing or applying static/dynamic loads at any nodes in any direction (i.e.,

gravitational force, some specified forces, or arbitrary seismic vibrations). 4. Conducting accurate

modal analysis, including natural frequency and corresponding modes. Three examples, a double

pendulum, a cantilever truss with external force, and a T2D1 tensegrity tower, are carefully selected

and studied. The results are compared with rigid body dynamics and FEM software ANSYS.

This study provides a deep insight into structures, materials, performances, as well as an interface

towards integrating control theories.

4.1 Introduction

Tensegrity has shown its great attraction to both artists and engineers, a few research on

tensegrity dynamics has been conducted. The existing tensegrity dynamics can be classified into

two categories based on the assumptions of whether the bars are rigid or not [101]. The first

category belongs to rigid body dynamics derived by Newton-Euler’s principle or analytical dynamics

with assumptions that bars are rigid and strings are linear elastic. For example, Sultan et al. derived
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linearized equations of motion for tensegrity models around arbitrary equilibrium configurations

[78]. Skelton presented one of the simplest dynamics forms for class-1 structure by using non-minimal

coordinates and assuming the compressive elements to have no inertia about the longitudinal axis

[79]. Kan et al. presented a sliding cable element for multibody dynamics with an application to

the deployment of clustered tensegrity [102]. Cefalo and Mirats-Tur proposed a dynamic model

based on the Lagrangian method for class-1 tensegrity systems with quaternions as the variables

[103]. Goyal et al. presented a compact matrix form of tensegrity dynamics by including massive

strings [83], a corresponding general software for modeling of any tensegrity structures can be

found in [47]. Recently, Goyal et al. extended the model of the nonlinear dynamics to modulate

the torque produced by the network of spatially distributed gyroscopes [84]. The second one

is non-rigid body dynamics formulated by the FEM by assuming that all structure members are

elastic/plastic. For example, Murakami studied the static and dynamic equations of tensegrity with

large deformation in Eulerian and Lagrangian formulations [104]. Faroughi et al. presented a

nonlinear dynamic analysis of space truss structures based on the dynamics of 3D co-rotational

(CR) rods [105]. Rimoli developed a physics-based reduced-order model to capture the buckling

and post-buckling behavior of bars [106]. Kan et al. derived the dynamic analysis of clustered

tensegrity structures via the framework of the positional formulation FEM [101]. However, most

of these dynamics equations are achieved by deriving the dynamics of one element and stacking

all the structural elements into an assembled matrix or vector form. For the insight knowledge

of the nonlinear tensegrity dynamics and future convenience for the field of structural control, a

closed-form of dynamics derived from a system-level is needed, which is presented in this chapter.

This chapter is organized as follows: Section 4.2 describes bar and string assumptions, nodal

coordinates and connectivity matrices notations, and geometric and physical properties of the

tensegrity system in compact vector forms. Section 4.3 formulates the shape function of an

element, kinetic energy, strain, and gravitational potential energy of the whole structure. Then,

tensegrity dynamics with and without boundary constraints are derived by the Lagrangian method.

By neglecting the time derivative terms in the dynamics equation, we also give the equilibrium
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equations in three standard equivalent forms (in terms of nodal vector, force density, and force

vector). Section 4.4 derives the linearized tensegrity dynamics and modal analysis equations with

and without boundary constraints. Section 4.5 demonstrates three examples (dynamic response of

a double pendulum, dynamics response and modal analysis of a cantilever truss with an external

force, and seismic analysis of a tensegrity tower) and compares results with rigid body dynamics

and FEM software ANSYS. Section 4.6 summarises the conclusions.

4.2 Assumptions and Notations of the Tensegrity System

4.2.1 Assumptions of Structural Members

Under the following assumptions of structural members (bars and strings), the mathematical

formulation of any tensegrity systems is established.

Assumption 4.2.1. The structural members (bars and strings) in the tensegrity system have these

properties:

1). The structural members are axially loaded, all structural members are connected by frictionless

pin-joints.

2). The structural members are not rigid, and they are allowed to have elastic or plastic deformation.

3). The structural members have negligible inertia about their longitudinal axes.

4). Each structural member is homogeneous along its length and of an equal cross-section. Thus,

the mass of each structural member is distributed uniformly along its length.

5). If ||si0|| > ||si||, where the rest length and actual length of the ith string are denoted by ||si0||

and ||si||, and ‖v‖ is the Euclidean norm of vector v, since a string can never push along its

length, tension in the string should be substituted to zero.

4.2.2 Geometric Properties of Structural Elements

The position of each node in the structure can be expressed in any frame, we choose to label

them with Cartesian coordinates in an inertially fixed frame. Assume the tensegrity structure has

nn number of nodes, the X-, Y-, and Z-coordinates of the ith node ni (i = 1, 2, · · · , nn) can be
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labeled as xi, yi, and zi. One can also write ni ∈ R3 in a vector form:

ni =

[
xi yi zi

]T
. (4.1)

By stacking ni for i = 1, 2, · · · , nn together, we can obtain the nodal coordinate vector n ∈ R3nn

for the whole structure:

n =

[
nT1 nT2 · · · nTnn

]T
, (4.2)

or in a matrix form, which is called nodal coordinate matrixN ∈ R3×nn:

N =

[
n1 n2 · · · nnn

]
. (4.3)

Connectivity matrices denote the topology of the structure or, in other words, how the structural

members (bars and strings) are connected at each node. Conventionally, the connectivity matrices

contain two types: string connectivity and bar connectivity, labeled as Cs ∈ Rα×nn and Cb ∈

Rβ×nn , where α and β are the number of strings and bars in the structure [47].

Since both bars and strings are allowed to have elastic or plastic deformation, we do not need

to distinguish the connectivity by the types of structural members in this FEM formulation. Thus,

we use a matrix C ∈ Rne×nn to represent the topology of the whole structure, where ne is the

number of all the structural elements, which satisfies ne = α + β. The ith row of C, denoted as

Ci = [C](i,:) ∈ R1×nn , represents the ith structural element, starting form node j (j = 1, 2, · · · , nn)

to node k (k = 1, 2, · · · , nn), shown in Figure 4.1. The mth (m = 1, 2, · · · , nn) entry ofCi satisfies:

[C]im =


−1, m = j

1, m = k

0, m = else

. (4.4)

For ne number of structural elements, the overall structure connectivity matrixC ∈ Rne×nn can be
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Figure 4.1: Structure member vector hi, determined by node nj and node nk in the Cartesian
coordinates, has a length of li = ||hi|| = l0i + ∆li, where l0i is the rest length and ∆li is the
displacement.

written as:

C =

[
CT

1 CT
2 · · · CT

ne

]T
. (4.5)

Define the nodal coordinate vector of the ith element nei ∈ R6 as:

nei =

nj
nk

 =

[
xj yj zj xk yk zk

]T
. (4.6)

One can also abstract nei from the structure nodal coordinate vector n:

nei = C̄i ⊗ I3n, (4.7)

where I3 ∈ R3×3 is a identity matrix, C̄i is a self-defined transformation matrix, whose pth column

satisfies:

[C̄i](:,p) =



[
1 0

]T
, p = j[

0 1

]T
, p = k[

0 0

]T
, p = else

. (4.8)

Let us look at the ith structure element hi, its geometry properties is shown in Figure 4.1, the
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element vector is given by:

hi = nk − nj = Ci ⊗ I3n. (4.9)

Stack all the structure elements in a matrix form, one can obtain:

H =

[
h1 h2 · · · hne

]
= NCT . (4.10)

The length of the ith structure element li satisfies:

li = ‖hi‖ = (nT (CT
i Ci)⊗ I3n)

1
2 . (4.11)

Then, the overall structure element length vector l ∈ Rne is:

l =

[
l1 l2 · · · lne

]T
. (4.12)

The rest length vector l0 ∈ Rne of the whole structure is:

l0 =

[
l01 l02 · · · l0ne

]T
, (4.13)

where rest length is defined as the length of an structure element with no tension or compression.

4.2.3 Physical Properties of Structural Elements

A typical stress-strain curve of an element is given in Figure 4.2. The stress in the element

satisfies:

σ = Eε, (4.14)

108



Figure 4.2: A typical stress-strain curve of structure elements, where E and Et are called secant
modulus and tangent modulus of the material. The curve includes elastic or plastic deformation
phases. The dotted lines indicate stress-strain levels for unloading cases at certain points of the
stress-strain curve.

where E is the secant modulus and ε is the strain, and this equation can represent the stress of any

material including linear elastic, multi-linear elastic, plastic, etc. The derivative of Eq. (4.14) is:

dσ = Etdε, (4.15)

where Et is tangent modulus. For elastic material, the secant modulus is identical to its tangent

modulus. We discuss the elastic and plastic properties of materials here because later we will show

that the developed dynamics are capable of doing analysis of both kinds of materials.

Suppose material density is ρ, the cross section area, secant modulus, tangent modulus of the

ith element are respectively Ai, Ei Eti, the element mass mi satisfies mi = ρAil0i. Denote the

cross section area vector, mass vector, secant modulus and tangent modulus vector of the structure

asA,m, E and Et ∈ Rne , one can write:

A =

[
A1 A2 · · · Ane

]T
, (4.16)

m =

[
m1 m2 · · · mne

]T
= ρÂl0, (4.17)

E =

[
E1 E2 · · · Ene

]T
, (4.18)

Et =

[
Et1 Et2 · · · Etne

]T
, (4.19)
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where v̂ transforms vector v into a diagonal matrix, whose diagonal entries are the elements of

vector v and elsewhere are zeros.

The internal force of the ith element is ti = Aiσi = EiAi(li − l0i)/l0i, the internal force vector

of the structure t ∈ Rne can be written as:

t =

[
t1 t2 · · · tne

]T
= ÊÂl̂−1

0 (l− l0). (4.20)

Force density of the ith element is given by xi = ti/li, the force density vector of all the structure

elements is:

x = l̂−1t = ÊÂ(l−1
0 − l−1), (4.21)

where v−1 represents a vector whose entry is the reciprocal of its corresponding entry in v. The

force density vector x is normally defined in the from of x =

[
λT γT

]T
with the information

of λ and γ are force density vectors of bars and strings [5]. We should point out that Eqs. (4.20)

and (4.21) can be used to compute force vector and force density vector for either elastic or plastic

materials by using different secant modulus E of the materials.

4.3 Nonlinear Tensegrity Dynamics Formulation

4.3.1 Energy Equation Formulation

4.3.1.1 Shape Function of the Structure Element

Since the structure member is axially loaded, the displacement of the material particles are

along the bar/string vectors. We assume the displacements of material particles on the structure

member are in a uniform manner [107]. Here, we introduce a scalar µ to help expressing the

coordinates of point pi on the ith member between node nj and node nk in the ith structure

element, shown in Figure 4.3. Thus, the location of a point pi on the structure member can be
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Figure 4.3: Shape function of an element, scalar µ helps to locate the position of point pi on the
ith structure element in between node nj and node nk in the Cartesian coordinates.

computed as a linear function in terms of µ:

pi =

[
1 µ

]
⊗ I3

a0

a1

 , (4.22)

where a0 and a1 ∈ R3 are unknowns. Substitute the nodal coordinate of nj , nk with µ = 0 and 1

into Eq. (4.22), we have:

1 0

1 1

⊗ I3

a0

a1

 =

nj
nk

 . (4.23)

Then, the solution of Eq. (4.23) is:

a0

a1

 =

 1 0

−1 1

⊗ I3

nj
nk

 . (4.24)

Substitute Eq. (4.24) into Eq. (4.22), we have:

pi =

[
1− µ µ

]
⊗ I3

nj
nk

 = N enei , (4.25)

N e =

[
1− µ µ

]
⊗ I3, (4.26)
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whereN e ∈ R3×6 is usually called the shape function of a structure element.

4.3.1.2 Kinetic Energy

The kinetic energy T for the whole structure equals the sum of kinetic energy of material

particles in all the structure elements, which can be written as a function of particle velocity ṗi:

T =
ne∑
i=1

1

2

1∫
0

mi‖ṗi‖2dµ. (4.27)

Substitute Eq. (4.7) and Eq. (4.25) into Eq. (4.27), we have:

T =
ne∑
i=1

1

2

1∫
0

mi(N
eC̄i ⊗ I3ṅ)2dµ (4.28)

=
ne∑
i=1

mi

12
ṅT (C̄T

i

2 1

1 2

 C̄i)⊗ I3ṅ (4.29)

=
ne∑
i=1

mi

12
ṅT (C̄T

i (

1

1

 [1 1] + b

1

1

 [1 1]c)C̄i)⊗ I3ṅ (4.30)

=
ne∑
i=1

1

12
ṅT (|C|Ti mi|C|i + b|C|Ti mi|C|ic)⊗ I3ṅ (4.31)

=
1

12
ṅT (|C|T m̂|C|+ b|C|T m̂|C|c)⊗ I3ṅ (4.32)

=
1

2
ṅTMṅ, (4.33)

where |V | is an operator getting the absolute value of each element for a given matrix, and the

operator bV c sets every off-diagonal element of the square matrix to zero. M ∈ R3nn×3nn is

called the mass matrix of the structure:

M =
1

6
(|C|Tm̂|C|+ b|C|Tm̂|C|c)⊗ I3. (4.34)
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Since the matrixM is symmetric, we can have the following equation:

d

dt

∂T

∂ṅ
= Mn̈. (4.35)

Note that we use denominator layout notation in matrix calculus, which means the derivative of a

scalar by a column vector is still a column vector.

4.3.1.3 Strain Potential Energy for Elastic/Plastic Deformation

We consider elastic and plastic deformation of structure members. To unify the two cases, the

strain potential energy Ve of the whole structure caused by elements’ internal force can be written

into an integral form:

Ve =
ne∑
i

Vei (4.36)

=
ne∑
i

∫ li

l0i

tidu (4.37)

=
ne∑
i

∫ li

l0i

EiAi(u− l0i)
l0i

du, (4.38)

where du is the differential of the structure member length. The derivative of strain potential

energy Ve with respect to nodal coordinate vector n is:

∂Ve
∂n

=
ne∑
i

∂Vei
∂li

∂li
∂n

(4.39)

=
ne∑
i

EiAi(li − l0i)
l0i

∂li
∂n

(4.40)

=
ne∑
i

ti
∂li
∂n

. (4.41)
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The derivative of element’s length li with respect to nodal coordinate vector n can be obtained

from Eq. (4.11):

∂li
∂n

=
(CT

i Ci)⊗ I3n

li
. (4.42)

Substitute Eq. (4.42) into Eq. (4.41), and use the definition of force density xi = fi/li in the ith

structure element, we have:

∂Ve
∂n

=
ne∑
i

xi(C
T
i Ci)⊗ I3n (4.43)

= (CT x̂C)⊗ I3n (4.44)

= Kn, (4.45)

whereK ∈ R3nn×3nn is the stiffness matrix of the tensegrity structure:

K = (CT x̂C)⊗ I3. (4.46)

4.3.1.4 Gravitational Potential Energy

In many cases that the tensegrity structures are in the presence of a gravity field. Suppose the

gravity force is exerted towards the negative direction of the Z-axis, the acceleration of gravity is

g, for example, on earth g = 9.8m/s2. The gravitational potential energy Vg can be written as:

Vg =
ne∑
i

mig

2
(zij + zik) (4.47)

=
ne∑
i

mig

2
|Ci| ⊗

[
0 0 1

]
n (4.48)

=
g

2
mT |C| ⊗

[
0 0 1

]
n, (4.49)

where zij and zik are Z-coordinates of node nj and node nk of the ith structure element. (zij +zik)/2

is the Z-coordinate of mass center of the ith element. Then, the partial derivative of Vg with respect
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to n is:

∂Vg
∂n

=
g

2
(|C|Tm)⊗

[
0 0 1

]T
= g, (4.50)

where g ∈ R3nn is the gravitational force vector in all nodes. For structure analysis without gravity,

one can just set g = 0.

4.3.2 Tensegrity Dynamics Based on the Lagrangian Method

For general cases, the position, velocity, or acceleration of some nodes in the structure are

usually fixed or given. Adding these constraints to the dynamics will restrict the motion in certain

dimensions. Thus the dynamics can be reduced into a smaller space. Thus, to compute the

reduced-order dynamics, free nodes and fix nodes must be separated.

Let us define vector a =

[
a1 a2 · · · ana

]T
∈ Rna and vector b =

[
b1 b2 · · · bnb

]T
∈

Rnb , in which the element values of a and b are the indices of free and constrained entries in the

nodal coordinate vector n. na and nb is the number of free and constrained nodal coordinates,

and they satisfy na + nb = 3nn. We use na and nb to represent the free and constrained nodal

coordinate vector. Ea ∈ R3nn×na and Eb ∈ R3nn×nb are the matrix to abstract na and nb from n:

Ea(:, i) = I3n (:, ai) , Eb(:, i) = I3n (:, bi) . (4.51)

The relation between na, nb, and n is:

na = ET
a n, nb = ET

b n. (4.52)

Note that
[
Ea Eb

]
is an orthonormal matrix, so given na and nb, the nodal coordinate vector n
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can be obtained by:

n =

ET
a

ET
b


−1 na

nb

 =

[
Ea Eb

]na
nb

 . (4.53)

The nonlinear tensegrity dynamics in the presence of constraints and gravity is given and

proved by the Lagrangian Method as follows:

Theorem 4.3.1. The finite element formulation for nonlinear tensegrity dynamics in the presence

of constraints and gravity is given by the two equivalent forms in terms of entire coordinate vector

n and free node vector na:

ET
a (Mn̈+Dṅ+Kn) = ET

a (fex − g) , (4.54)

Maan̈a +Daaṅa +Kaana = ET
a fex −Mabn̈b −Dabṅb −Kabnb −ET

a g, (4.55)

where Maa and Mab are mass matrices. Daa and Dab are damping matrices. Kaa and Kab are

stiffness matrices. fex is external forces on the structure nodes, and g is gravity vector, which

satisfy:

Maa = ET
aMEa, Mab = ET

aMEb, (4.56)

Daa = ET
aDEa, Dab = ET

aDEb, (4.57)

Kaa = ET
aKEa, Kab = ET

aKEb, (4.58)

andM ,D,K, and g are given in Eqs. (4.34), (4.62), (4.46), and (4.50).

Proof. If the tensegrity structure has boundary constraints, the degree of freedom reduces to na,

thus the free nodal coordinate vector na is the generalized coordinate. Then, the Lagrange’s
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equation is:

d

dt

(
∂L

∂ṅa

)
− ∂L

∂na
= fnpa, (4.59)

where L = T − V is the Lagrangian function, and T and V are the kinetic energy and potential

energy of the system, fnpa is the non-potential force exerted on free nodal coordinate, and its

relation with fnp is:

fnpa = ET
a fnp, (4.60)

where fnp is the non-potential force vector on the nodes of the tensegrity structures in our derivation.

The non-potential force fnp is the sum of damping force fd and external force fex:

fnp = fd + fex. (4.61)

The damping force is assumed to be linear in terms of ṅ as:

fd = −Dṅ, (4.62)

whereD ∈ R3nn×3nn is the damping matrix of the structure.

The potential energy of the whole structure is the sum of strain energy Ve and gravitational

potential energy Vg:

V = Ve + Vg. (4.63)

Then, the Lagrangian’s function can be written as:

L = T − (Ve + Vg). (4.64)
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The left hand side of Eq. (4.59) is:

d

dt

(
∂L

∂ṅa

)
− ∂L

∂na
=

∂n

∂na

[
d

dt

(
∂L

∂ṅ

)
− ∂L

∂n

]
(4.65)

= ET
a

[
d

dt

(
∂L

∂ṅ

)
− ∂L

∂n

]
. (4.66)

Substitute Eqs. (4.60), (4.66) into Eq. (4.59), we have the dynamics of tensegrity for the free nodal

coordinates:

ET
a (Mn̈+Dṅ+Kn) = ET

a (fex − g) . (4.67)

From the above equation, we can see that the dynamic equation Eq. (4.67) with constraints is just

the a rows of Eq. (4.71). Substitute Eq. (4.53) into Eq. (4.67) and arrange terms related to na in

left side, we obtain Eq. (4.55). We can also have the following form in term of n̈a for programming

convenience:

n̈a = M−1
aa E

T
a (fex − g −MEbn̈b −Dṅ−Kn) . (4.68)

For dynamics without constraints, all the structure nodes are free nodes. We have na = nn,

Ea ∈ R3nn×na = I3nn , and Eqs. (4.67) and (4.68) reduce into:

Mn̈+Dṅ+Kn = fnp − g, (4.69)

n̈ = M−1 (fex − g −Dṅ−Kn) . (4.70)

Thus, with Eq. (4.69) and Theorem 4.3.1, we have the following theorem for nonlinear

tensegrity dynamics without constraints:

Theorem 4.3.2. The finite element formulation for nonlinear tensegrity dynamics in the presence
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of gravity is given by:

Mn̈+Dṅ+Kn = fex − g, (4.71)

where M , D, and K are mass, damping, and stiffness matrices given in Eqs. (4.34), (4.62), and

(4.46), fex is external forces on the structure nodes, and g is gravity vector show in Eq. (4.50).

Since we have derived the dynamics, we want to discuss a little bit more about statics, which

can be easily obtained by substitute acceleration and velocity terms to zero (n̈ = ṅ = 0). Here,

we give the equilibrium equation in three standard forms in terms of nodal vector, force density

vector, and force vector as the following theorem.

Theorem 4.3.3. The three following tensegrity static equilibrium equations are equivalent:

1). Tensegrity statics in terms of nodal coordinate vector n:

ET
aKn = ET

a (fex − g), K = (CT x̂C)⊗ I3. (4.72)

2). Tensegrity statics in terms of force density vector x:

ET
aA1x = ET

a (fex − g), A1 =
(
CT ⊗ I3

)
b.d.(H). (4.73)

3). Tensegrity statics in terms of force vector t:

ET
aA2t = ET

a (fex − g), A2 =
(
CT ⊗ I3

)
b.d.(H)l̂−1. (4.74)

Proof. Let the acceleration part n̈ and velocity part ṅ in Eq. (4.67) be zeros, the dynamics equation

will be reduced into a static equilibrium equation in terms of nodal coordinate vector n:

ET
aKn = ET

a (fex − g). (4.75)

This proofs the first statement of Theorem 4.3.3.

SinceK, given in Eq. (4.46), is a function of n, the productKn is nonlinear in n. Eq. (4.75)
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is a nonlinear equilibrium equation. However, the term Kn can be also written linearly in terms

of force density vector x:

Kn =
(
CT ⊗ I3

)
(x̂⊗ I3) (C ⊗ I3)n (4.76)

=
(
CT ⊗ I3

)∧
(Ine ⊗ I3,1x) (C ⊗ I3)n (4.77)

=
(
CT ⊗ I3

)∧
((C ⊗ I3)n)Ine ⊗ I3,1x (4.78)

=
(
CT ⊗ I3

)
b.d.(H)x. (4.79)

Substitute Eq. (4.79) into Eq. (4.75), we have a linear form of equilibrium equation:

ET
aA1x = ET

a (fex − g), (4.80)

whereA1 ∈ R3nn×ne is the equilibrium matrix with force density x as variable:

A1 =
(
CT ⊗ I3

)
b.d.(H), (4.81)

where b.d.(V ) is the block diagonal matrix of V . This proofs the first and second statements of

Theorem 4.3.3 are equivalent.

The equilibrium equation can also be written linearly in terms of force vector t by substitute

Eq. (4.21) into Eq. (4.80):

ET
aA2t = ET

a (fex − g), (4.82)
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whereA2 ∈ R3nn×ne is the equilibrium matrix with force vector t as variable:

A2 = A1l̂
−1 =

(
CT ⊗ I3

)
b.d.(H)l̂−1. (4.83)

This proves the second and third statements of Theorem 4.3.3 are equivalent.

Similarly, for statics without constraints, we have na = nn, Ea ∈ R3nn×na = I3nn , and Eqs.

(4.75), (4.80), and (4.82) reduce into:

Kn = fex − g, A1x = fex − g, A2t = fex − g. (4.84)

4.4 Linearized Tensegrity Dynamics and Modal Analysis

4.4.1 Linearized Tensegrity Dynamics

Theorem 4.4.1. The finite element linearized tensegrity dynamics with constraints has the following

two equivalent analytical forms:

ET
a (Mdn̈+Ddṅ+KTdn) = ET

a dfex, (4.85)

Maadn̈a +Daadṅa +KTaadna = ET
a dfex −Mabdn̈b −Dabdṅb −KTabdnb, (4.86)

where the tangent stiffness matrixKTaa ,KTab is:

KTaa = ET
aKTEa, KTab = ET

aKTEb, (4.87)

KT =
(
CT x̂C

)
⊗ I3 +A1ÊtÂl̂

−3AT
1 , (4.88)

Maa,Mab,Daa,Dab are given in Eqs. (4.56) - (4.58).

Proof. Since the stiffness matrix K is a function of nodal coordinate vector n, the dynamics Eq.

(4.71) is nonlinear. The mass matrix M and damping matrix D are constant. To linearize the

dynamic equation considering constraints, we can take the total derivative of Eq. (4.67) and keep
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the linear terms:

ET
a (Mdn̈+Ddṅ+KTdn) = ET

a dfex. (4.89)

The tangent stiffness matrixKT can be calculated as:

KT =

[
∂(Kn)

∂n

]T
= K +

[
∂x

∂n

∂(Kn)

∂x

]T
. (4.90)

The partial derivative of force density vector x to nodal coordinate vector n can be obtained from

Eq. (4.21):

∂x

∂n
=
∂
[
ÊtÂ

(
l−1
0 − l−1

)]
∂n

(4.91)

=
∂l

∂n

∂ (−l−1)

∂l
ÂÊt (4.92)

= BT
l l̂
−2ÂÊt (4.93)

= A1l̂
−3ÂÊt. (4.94)

The derivative ofKn with respect to force density x is derived from Eq. (4.81), then we have:

∂(Kn)

∂x
=
∂ (A1x)

∂x
= AT

1 . (4.95)

Substitute Eqs. (4.94) and (4.95) into Eq. (4.90), one can obtain the tangent stiffness matrixKT :

KT =
(
CT x̂C

)
⊗ I3 +A1ÊtÂl̂

−3AT
1 . (4.96)

The first part of Eq. (4.96) is usually called the geometry stiffness matrix KG =
(
CT x̂C

)
⊗ I3,

which is determined by structure topology and force density. The second part is called the material

stiffness KE = A1ÊtÂl̂
−3AT

1 , which is governed by structure configuration and elements’ axial

stiffness.
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Substitute Eq.(4.53) into Eq. (4.89), we have:

Maadn̈a +Daadṅa +KTaadna = ET
a dfex −Mabdn̈b −Dabdṅb −KTabdnb, (4.97)

in whichKTaa andKTab are given by:

KTaa = ET
aKTEa, KTab = ET

aKTEb. (4.98)

The linearized dynamics equation can also be written into a standard state space form:

d

dt

dna

dṅa

 =

 0 I

−M−1
aa KTaa −M−1

aa Daa


dna

dṅa


+

 0

ET
a dfex −Mabdn̈b −Dabdṅb −KTabdnb

 , (4.99)

as an interface to integrate structure and control designs.

For dynamics without constraints, all the structure nodes are free nodes. We have na = nn,

Ea ∈ R3nn×na = I3nn , and Theorem 4.4.1 can be written as the following statement.

Theorem 4.4.2. The finite element linearized tensegrity dynamics with no constraints has the

following analytical form:

Mdn̈+Ddṅ+KTdn = dfex, (4.100)

where the tangent stiffness matrixKT satisfies:

KT =
(
CT x̂C

)
⊗ I3 +A1ÊtÂl̂

−3AT
1 , (4.101)

and M is given in Eq. (4.34), D is damping matrix, and fex is external forces on the structure
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nodes.

Similarly, one can write the linearized dynamics equation with constraints into a state space

form:

d

dt

dn

dṅ

 =

 0 I

−M−1KT −M−1D


dn

dṅ

+

 0

dfex

 , (4.102)

which can be used to integrate structure and control designs.

4.4.2 Modal Analysis of Linearized Model

By setting damping matrixD = 0 and external force fex = 0 in Eq. (4.100), the free vibration

response can be obtained from Eq. (4.97) by neglecting damping and external force:

Maadn̈a +KTaadna = 0. (4.103)

The solution to the homogeneous Eq. (4.103) have the following form:

dn = ϕ sin(ωt− θ), (4.104)

which represents a periodic response with a typical frequency ω. Substitute Eq. (4.104) into Eq.

(4.107), we have:

(
KTaa − ω2Maa

)
ϕ sin(ωt− θ) = 0, (4.105)

and since sin(ωt− θ) 6= 0 for most times, we have:

KTaaϕ = ω2Maaϕ, (4.106)

which is a standard eigenvalue problem. The ω is known as the natural frequency of the system

and ϕ is the corresponding mode.
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For dynamics without constraints, all the structure nodes are free nodes. We have na = nn,

Ea ∈ R3nn×na = I3nn . Eqs. (4.103) and (4.106) reduces into:

Mdn̈+KTdn = 0, KTϕ = ω2Mϕ. (4.107)

4.5 Numerical Examples

We believe a general dynamics should be capable of conducting these kinds of studies for any

tensegrity structures: 1. Rigid body dynamics with acceptable errors (by setting relatively high

stiffness for bars in the FEM simulation). 2. Finite element method (FEM) dynamics that allow

bars and strings to have elastic or plastic deformations. 3. The dynamics should allow various

kinds of boundary conditions, for example, nodes are fixed or in the presence of static or dynamic

external forces (i.e., gravitational force, some specified forces, or arbitrary seismic vibrations, etc.).

4. Accurate modal analysis, including natural frequency and corresponding modes.

Thus, three dynamic examples (a double pendulum, a cantilever truss with external force, and

seismic analysis of a tensegrity tower) are carefully selected and studied to verify the proposed

nonlinear tensegrity FEM dynamics (we call it TsgFEM). The obtained results are compared with

other dynamics simulation methods, including analytical results and commercial FEM software

ANSYS.

4.5.1 Example 1: Dynamics of A Double Pendulum

Let the mass of the two bars in the double pendulum be m1 = m2 = m with a length of

l1 = l2 = l, from geometric properties shown in Figure 4.4, one can write,

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1, (4.108)

x2 = l(sin θ1 +
1

2
sin θ2), (4.109)

y2 = −l(cos θ1 +
1

2
cos θ2). (4.110)
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Define L = T− V, where T and V are kinetic energy and potential energy of the system, then:

L =
m

2

(
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2

)
+

1

2
I
(
θ̇2

1 + θ̇2
2

)
−mg (y1 + y2) , (4.111)

where I = 1
12
ml2 is moment of inertia about the center of mass of the bar. Using Lagrangian

method, and m = 1 kg and l = 1 m, we get:

8θ̈1 + 3θ̈2 cos (θ1 − θ2) +3θ̇2
2 sin (θ1 − θ2) + 9

g

l
sin (θ1) = 0, (4.112)

2θ̈2 + 3θ̈1 cos (θ1 − θ2)−3θ̇2
1 sin (θ1 − θ2) + 3

g

l
sin (θ2) = 0. (4.113)

This example is chosen to check if the structure behaves close to rigid body dynamics with an

acceptable error if we use high stiffness materials for bars. The time history of nodal positions

will be compared with analytical results from rigid body dynamics. The initial configuration of a

double pendulum is shown in Figure 4.4, and node 1 is fixed to the wall. The two bars have same

length l = 1 m, same mass m = 1 kg, and same hanging angle θ1 = θ2 = 45◦. The cross-sectional

area and Young’s modulus are A = 10−4 m2 and E = 2.06× 1011 Pa, respectively. In the analysis

of the dynamics, the time step and total simulation time are chosen to be ∆t = 5 × 10−5 s and

t = 5 s. There is no damping, and only gravitational force is considered as the external force.

Figure 4.5 shows the time history of nodal position by TsgFEM. Figure 4.6 gives the error of the

nodal position between TsgFEM and the analytical solution obtained from rigid body dynamics.

Figure 4.7 is the error of bar length between TsgFEM and rigid body dynamics. From these

figures, we can see that the error of bar length (10−7 ∼ 10−6 m) and error of nodal coordinates

(10−5 ∼ 10−4 m) are relatively small and oscillate periodically with high frequency. This is

reasonable because the strain is allowed in TsgFEM, and the high-frequency oscillation is caused

by the high axial stiffness of the bar. The TsgFEM can capture the periodic elongation of bars if the

time step is properly chosen. In signal processing of Nyquist rate, the sampling frequency should

be at least two times of signal frequency, and normally engineers use 5 ~ 10 times, we choose a

time step of ∆t = Tmin/8 = π/4ωmax, where Tmin is the shortest period corresponding to the
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Figure 4.4: Schematic diagram of a double pendulum in the presence of gravity. The two bars have
same mass and length.

Figure 4.5: X- and Y -coordinate time histories of node 1, 2, and 3 of the double pendulum.

highest natural frequency calculated by Eq. (4.106) to capture the highest vibration mode of the

bar as well as guarantee the convergence in solving the dynamics equation.

4.5.2 Example 2: Cantilever Truss in External Force

This example is selected to verify the proposed dynamics method is capable of doing modal

analysis as well as conducting time history analysis of structures with linear-elastic, multilinear

elastic, and plastic materials. The natural frequency, mode shapes, and time history information of

the structure obtained by TsgFEM will be compared with commercial FEM software ANSYS.
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Figure 4.6: X- and Y -coordinate error time histories of node 2 and 3 between the TsgFEM
dynamics and rigid body dynamics .

Figure 4.7: Bar length errors of the two bars in the double pendulum by TsgFEM simulation.

Figure 4.8: Configuration of a planer truss in the presence of a step load P with the left two nodes
fixed to a wall in the given direction. The aspect ratio (length over width) of the truss is 10:1. We
examine the strain-stress time histories of the purple, yellow, and blue elements marked by square
blocks as well the Y-coordinate time history of the green dot.
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Figure 4.9: The Y-coordinate time history of the green dot in Figure 4.8 by using three kinds
of materials: linear elastic, multilinear elastic, and elasto plastic. And a comparison of nodal
coordinate time histories between TsgFEM and ANSYS.

Figure 4.8 shows a 10 m × 1 m planer truss. The left two nodes at the wall are fixed. A

step load P = 1 × 105 N in the downward direction of the Y-axis is exerted on the green dot

at time t = 0 s. Cross-section area of each element is A = 0.0025 m2. Young’s modulus of

linear elastic material is E = 2.0604× 1011 Pa. The multilinear elastic material is defined by two

points (1.456 × 10−6, 300 MPa), (2.333 × 10−6, 435 MPa) in the piece-wise stress-strain curve.

The elastoplastic material uses a bi-linear kinematic hardening plasticity model, in which Young’s

modulus is E = 2.0604× 1011 Pa, the yield stress is 300 MPa, and the tangent modulus in plastic

is Et = 6.1799× 109 Pa. Damping and gravitational force is not considered in this example. Time

step is ∆t = 10−4 s, and total analysis time is t = 1 s.

The dynamic response of the Y-coordinate of the green node for different materials and comparison

with ANSYS in Figure 4.8 are compared and given in Figure 4.9. In ANSYS, the transient analysis

is used with a consistent mass matrix. The average errors of y-coordinate of node H between

TsgFeM and ANSYS with linear elastic, multilinear elastic, and elastoplastic material are 0.09%,

0.53%, and 0.06%, respectively. For the three kinds of materials, the stress-strain of the purple,

yellow,and blue blocks and corresponding structure deformation in Figure 4.8 at at t = 0.5 s and t
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Figure 4.10: For linear elastic material of structure members, (a) and (b) are stress-strain of the
purple, yellow, and blue blocks at t = 0.5 s and t = 1 s. (c) and (d) are corresponding structure
deformation at t = 0.5 s and t = 1 s.

Figure 4.11: For multilinear elastic material of structure members, (a) and (b) are stress-strain of
the purple, yellow, and blue blocks at t = 0.5 s and t = 1 s. (c) and (d) are corresponding structure
deformation at t = 0.5 s and t = 1 s.
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Figure 4.12: For plastic material of structure members, (a) and (b) are stress-strain of the purple,
yellow, and blue blocks at t = 0.5 s and t = 1 s. (c) and (d) are corresponding structure deformation
at t = 0.5 s and t = 1 s.

= 1 s are given in Figures 4.10-4.12.

The natural frequency and first four modes of the cantilever truss calculated by TsgFEM are

compared with ANSYS, as shown in Figures 4.13-4.15. The comparative error of frequency by the

two methods is 3.6640× 10−13.

4.5.3 Example 3: Seismic Simulation of a Tensegrity Tower

A T2D1 tensegrity tower is picked as an example to verify the proposed dynamics approach

has the ability to do modal analysis and seismic simulation of tensegrity structures with pinned

node constraints. The tensegrity tower is 10 m high, and the angles of the T-Bar and D-Bar units

are αT = αD = π
18

. The payload on top node of the tower is 60 kg, we use aluminum bars (OD

4”or 101.6 mm, wall thickness 0.035”or 0.889 mm) and UHMWPE strings (OD 4 mm) to build

the structure, as shown in Figure 4.16. The Young’s modulus, density, and yield strength of the

aluminum bars and UHMWPE strings are 60 Gpa, 2,700 kg/m3, 78 Mpa, and 120 Gpa, 970 kg/m3,

2.7 Gpa, respectively. Figure 4.17 shows the first four mode shapes of the tensegrity tower obtained

by TsgFEM. Figure 4.18 gives all the natural frequencies of the tower. Since the bottom five nodes
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Figure 4.13: Natural frequencies of the planer truss with respect to the order of vibration mode by
TsgFEM and ANSYS. Since the left two nodes of the planar truss is fixed, there are 20 free nodes
(40 DOF) in the structure. The number of order of vibration modes is 40.

Figure 4.14: The first four mode shapes of the truss obtained by TsgFEM. The solid line sub-figures
from top to bottom are: mode 1, f = 8.9734 Hz; mode 2, f = 45.6159 Hz; mode 3, f = 86.3678 Hz;
and mode 4, f = 106.0784 Hz. The dotted lines under the solid lines are shapes of the original truss
structure.
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Figure 4.15: The first four mode shapes of the truss obtained by ANSYS. The colorful sub-figures
from left to right are: mode 1, f = 8.9734 Hz; mode 2, f = 45.6159 Hz; mode 3, f = 86.3678 Hz;
and mode 4, f = 106.0784 Hz. The light grey lines attached with each colorful mode shapes are the
original truss structures. One can also see the natural frequencies obtained from ANSYS on the
left side of this plot.

Figure 4.16: Configuration of the 10m tall 3D T2D1 tensegrity tower with four sides, the angles
of the T-Bar and D-Bar units are αT = αD = π

18
. Thus, the bottom base radius of the tower is

10× tan( π
18

) = 1.7633 m.
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Figure 4.17: The first four mode shapes of the tensegrity tower obtained by TsgFEM. The solid
line sub-figures from left to right are: mode 1, f = 5.6597 Hz; mode 2, f = 9.8929 Hz; mode 3, f =
10.7745 Hz; and mode 4, f = 10.7745 Hz. The dotted lines under the solid lines are shapes of the
original tower structure.

Figure 4.18: Natural frequencies of the tower with respect to the order of vibration mode by
TsgFEM. Since the bottom five nodes of the tower is fixed, there are 14 free nodes (42 DOF) in
the structure. The number of order of vibration modes is 42.
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Figure 4.19: Earthquake signal which is the acceleration time history of the free nodes in
X-direction, with an amplitude of 20 m/s2 and 2 Hz frequency.

of the tower on the ground are fixed, there are 13 free nodes. Each free node has 3 DOF, the overall

structure has 42 DOF.

To simulate the seismic dynamics, we give a sine wave acceleration signal in X-direction to

all the 13 free nodes of the tower. ẍ = 20 sin(2πfst), where fs is frequency of the seismic wave.

To stabilize the tower, one also needs to prestress the strings to achieve certain stiffness of the

tower. We assign the force densities in the bars and compute all the string force densities by the

static equilibrium equation. Since the structure is axially symmetric, the force densities in the four

bars at the same height (we call it a 4-bar group, in this tower, there are five 4-bar groups) should

have the same force densities. That is, force densities in the five 4-bar groups from top to bottom

are 4,900 N, 4,900 N, 490 N, 9,800 N, and 4,900 N. We simulate two cases to demonstrate the

seismic analysis, fs = 2 Hz and fs = 10.7745 Hz, the seismic signals are shown in Figure 4.19 and

Figure 4.20, the total simulation time is 2s, damping matrix D = 0, and the time step is 0.001s.

The corresponding dynamic response of the top node is shown in Figure 4.21 and Figure 4.22.

As we can see for fs = 2 Hz, we can see the maximum vibration value of the top node in the

X-direction is 7.5mm. However, for fs = 10.7745 Hz, the vibration of the top node in x-direction

begins to diverge (vibration of the top node goes up to 0.44 m in 2s). The physical meaning is that

the seismic signal triggers the 3rd vibration mode of the tower since the frequency of the seismic

signal and the 3rd mode frequency is the same.

135



Figure 4.20: Earthquake signal which is the acceleration time history of the free nodes in
X-direction, with an amplitude of 20 m/s2 and 10.7745 Hz frequency.

Figure 4.21: Time history of the top node of the tower in X- and Y-direction for the fs = 2 Hz
earthquake signal case.
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Figure 4.22: Time history of the top node of the tower in X- and Y-direction for the fs = 10.7745
Hz earthquake signal case.

4.6 Conclusion

A finite element analysis approach to nonlinear tensegrity dynamics based on the Lagrangian

method with a nodal coordinate vector as the variable is given in this chapter. This approach

allows one to conduct comprehensive studies on any tensegrity systems with any node constraints

and various load conditions (i.e., gravitational force, some specified forces, and arbitrary seismic

vibrations). Results show that this method is very accurate compared with analytical solutions of

rigid body dynamics and FEM software ANSYS. For example, in the double pendulum simulation,

the bar length error is 10−7 ∼ 10−6 m. In the truss example, comparative frequency errors are

3.6640× 10−13, the average comparative error of node coordinates in the linear elastic, multilinear

elastic, and elastoplastic material simulation is 0.09%, 0.53%, and 0.06% compared with ANSYS.

In the seismic simulation, for fs = 2 Hz seismic signal in X-direction, the vibration of the top node

of the 10 m high tensegrity T2D1 tower is 7.5 mm. However, for fs = 10.7745 Hz seismic signal in

X-direction, it triggers the 3rd vibration mode of the tower (vibration of the top node goes up to 0.44

m in 2s), which agrees well with physics. The accurate linearized model in the state space form
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can be an interface to integrate other disciplines, such as control and signal processing. This study

paves a way to perform accurate tensegrity simulations as well as comprehensive understandings

of the performance of both structures and materials.
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5. INTEGRATING STRUCTURE AND CONTROL DESIGN: THE SHAPE CONTROL OF

TENSEGRITY STRUCTURES*

In this chapter, a general control approach for tensegrity structures is presented. The approach

is demonstrated by the design and control of morphing airfoils. Firstly, based on reduced order

Class-k tensegrity dynamics, a shape control law for tensegrity systems is derived. A morphing

tensegrity airfoil example is given to demonstrate successful shape control. This work paves a road

towards integrating structure and control design, the principles developed here can also be used for

3D morphing airfoil design and control of various kinds of tensegrity structures.

5.1 Introduction

The Wright Brothers made the first sustainable, controllable, powered, heavier than air manned

flight in 1903. The fundamental breakthrough was their invention of a three-axis control method

for improving fly control stability of the wing box structure by morphing the shape of the wing

during flight [108].

Morphing airfoil is gaining significant attention by researchers with the thriving prosperity of

the aerospace industry. Compared to a fixed-wing, a flexible profile is more adjustable to various

flight conditions. The fundamental concept of achieving certain aerodynamic performance by

means of changing the shape of a wing motivates us to solve the following problems: find an

efficient airfoil structure and control laws to adjust various flight regimes. The existing morphing

technologies (wing slats, flaps, spoiler, aileron, winglet, and trims) can achieve some desired

performance. And many researchers have pointed out the challenges of this area. Sofla [109],

Lachenal [110], Kuribayashi [111], and Liu [90] summarized shape morphing status and challenges,

mainly focusing on the direction of shape memory alloys (SMA), piezoelectric actuators (PZT),

shape memory polymers (SMP), and stimulus-responsive polymers (SRP). Valasek [112], Barbarino

*Part of this chapter is reprinted with permission from “Design and control of tensegrity morphing airfoils” by
Muhao Chen, Jiacheng Liu, and Robert E. Skelton, 2020. Mechanics Research Communications, Volume 103, 103480,
Copyright [2020] by Elsevier Ltd.
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[113], and Reich [114] addressed important issues on morphing aircraft, bio-inspiration, smart

structures, power requirements and smart actuators. Santer showed load-path-based topology

optimization for adaptive wing structures [115, 116]. However, few of them start with a system

point of view to solve the structure and control problem in an integrative manner. This study

presents our system which integrates structure and control designs using a novel tensegrity morphing

airfoil.

The conceptual design and physical model of the tensegrity wing are presented in the book

Tensegrity System by Skelton and Mauricio 2009, which was a DARPA sponsored smart structures

research program. The design in their book is a light weight fixed wing, composed of 2D airfoil

solid pieces connected with tensegrity T-Bar topology [39]. Henrickson et al. [117] presents a 2D

cross-bar topology airfoil (a class-1 tensegrity structure) design and demonstrate the morphing

ability. These design shows the tensegrity system brings more functionalities to wing design

such as minimum mass, deployability, and shape control. In a similar way to a bird’s wing, the

strings in the tensegrity wing are functioning as muscles to warp the whole wing to achieve various

aerodynamic performance requirements. Some researchers have discussed their ideas in morphing

wing design, for example, Moored studies the deflection [118] and shape optimization [119] of

the wing in span-wise direction by tensegrity beams and plates, Jones shows his idea in fuzzy

control strategy for morphing [120]. James presented a control theory to formulate computationally

feasible procedures for aerodynamic design [121]. However, we argue that control design after

wing design destroys the flying efficiency that is so carefully treated in the structure design in the

first place [39]. Instead of using control systems to push the structure away from its equilibrium,

we propose to simply modify the equilibrium of tensegrity structures to achieve the new desired

shape with little control effort. As feedback, less control power also exerts less stress on structural

components to accomplish the same objectives. Thus, the best performance cannot be achieved

by separating structure and control designs. This chapter starts from airfoil shape discretization

methods, presents a practical airfoil topology design, and a nonlinear control law for any Class-k

structures.
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This chapter is structured as follows: Section 5.2 introduces tensegrity principles, nonlinear

Class-k dynamics, reduced-order form, and nonlinear shape control laws. Section 5.3 gives a case

study and results of an tensegrity airfoil. Section 5.4 presents the conclusions.

5.2 Tensegrity Dynamics and Control

5.2.1 Class-k Tensegrity Dynamics

The accurate quantitative knowledge of structural behavior should be given in a simple, compact

form. Tensegrity dynamics were first analytically studied by Motro, Najari, and Jouanna in 1987

[122], since then many kinds of research followed. Skelton et al. (2001) introduced a non-minimal

coordinates method without using the conventional angular velocities for rigid bodies [123] simplified

the math a lot. Recent work by Goyal et al. give a complete description of tensegrity dynamics by

including string mass, class-k bar-length correction, and analytic solutions of Lagrange multiplier

Ω [83]:

N̈Ms +NKs = W + ΩP T , (5.1)

Ms =

[
CT
nb(C

T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]
, (5.2)

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
, (5.3)

where λ̂ is:

λ̂ =− Ĵ l̂−2bḂT Ḃc − 1

2
l̂−2bBT (W + ΩP T (5.4)

− Sγ̂Cs)CT
nbC

T
b c,

and the operator b•c sets every off-diagonal element of the square matrix operand to zero, N ∈

R3×n (n is the total number of nodes) is the nodal matrix with each column denotes x, y, and z

coordinates of each node, Ms ∈ Rn×n is mass matrix of all the bars and strings, Ks ∈ Rn×n is

the stiffness matrix, W ∈ R3×n contains the external force at each node, Ω ∈ R3×c (c is number
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of constraints NP = D), the Lagrange multipliers required to maintain these constraints can be

thought of as contact forces at the Class-k nodes [82]. Ω is the matrix of Lagrange multipliers

associated with the constraint NP = D, P ∈ Rc×n is the constraint matrix, denoting which

nodes are the Class-k nodes and which nodes are grounded. B =

[
b1 b2 · · · bβ

]
∈ R3×β

and S =

[
s1 s2 · · · sα

]
∈ R3×σ (bi and si are bar and string vectors, β and σ represent the

number of bars and number of string) are bar and string matrices whose columns are bar or string

vectors, Cb and Cs are the connectivity matrix of bars and strings (consists of a "−1" at the ith

column, a "+1" at the jth column, and zeros elsewhere to define a structure member connecting

from ni to nj .), they satisfy B = NCT
b and S = NCT

s . The nodes have two types: bar nodes

Nb ∈ R3×2β , which are the endpoints of bars, and string nodes Ns ∈ R3×σ, which are the locations

of string-to-string connections that have a point mass associated with them, N =

[
Nb Ns

]
.

Then, the bar and string nodes can be extracted from the node matrix N with the definition of

two connectivity matrices, Cnb and Cns. Cs is divided into two parts: the first, Csb, describing

bar-to-string joints and the second, Css, describing string-to-string joints. •̂ is an operator that

converts a vector into a diagonal matrix. m̂b, m̂s, γ̂, λ̂ are bar mass, string mass, string force

density, and bar force density matrices respectively. Ĵ is the bar moment of inertia matrix, which

satisfies Ji = mbi
12

+
mbir

2
bi

4l2i
, and rbi and li are the radius and length of the ith bar.

Adding the linear constraints to the dynamics will restrict the motion in certain dimensions.

We separate the moving and stationary nodes by performing a Singular Value Decomposition of

the matrix P to eliminate unnecessary computations of stationary nodes, the order of dynamics

equation can be reduced into [83]:

η̈2M2 + η2K2 = W̃ , (5.5)

where η = [η1 η2] , NU = [NU1 NU2], M2 = UT
2 MsU2, K2 = UT

2 KsU2, W̃ = WU2 −

η1U
T
1 KsU2, η1 = DV Σ−1

1 , NP = D, P = UΣV T =

[
U1 U2

]Σ1

0

V T .
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5.2.2 Coordinate Transformation

5.2.2.1 X Matrix Definition

From the above, the reduced order dynamics can be written in a standard second order differential

equation form. Let X matrix be the product of the η2 and M2 matrices. Since M2 is the mass

matrix for the tensegrity system and it is non-singular, an expression for η2 in terms of X can then

be written as:

X = η2M2 → η2 = XM−1
2 (5.6)

Ẋ = η̇2M2 → η̇2 = ẊM−1
2 (5.7)

Ẍ = η̈2M2 → η̈2 = ẌM−1
2 . (5.8)

5.2.2.2 Conversion of Matrix Dynamics

Substitute equations (5.6) - (5.8) into equation (5.1), one can get:

Ẍ +XM−1
2 K2 = W̃ . (5.9)

Take the ith element of the first and second terms of the equation (5.4) and use the fact x̂y =

ŷx, where x and y are vectors, equation (5.4) can be written as:

− λi =
Ji||ḃi||2

l2i
+

1

2l2i
bTi WCT

nbC
T
b ei+

1

2l2i
bTi ΩP TCT

nbC
T
b ei −

1

2l2i
bTi S

∧

CsC
T
nbC

T
b eiγ, (5.10)

where bi is the vector of each bar, ei is a vector with 1 in the ith elements and zeros else where.
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Stack all the elements of vector λ we get:

−λ =



J1||ḃ1||2
l21

+ 1
2l21
bT1WCT

nbC
T
b e1 + 1

2l21
bT1 ΩPTCT

nbC
T
b e1

...

Ji||ḃi||2
l2i

+ 1
2l2i
bTi WCT

nbC
T
b ei + 1

2l2i
bTi ΩPTCT

nbC
T
b ei

...
Jβ ||ḃβ ||2

l2β
+ 1

2l2β
bTβWCT

nbC
T
b eβ + 1

2l2β
bTβΩPTCT

nbC
T
b eβ


︸ ︷︷ ︸

τ

−



1
2l21
bT1 S

∧

CsC
T
nbC

T
b e1

...

1
2l2i
bTi S

∧

CsC
T
nbC

T
b ei

...

1
2l2β
bTβS

∧

CsC
T
nbC

T
b eβ


︸ ︷︷ ︸

Λ

γ. (5.11)

We can express in a compact matrix form,

−λ = Λγ + τ. (5.12)
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5.2.3 Shape Control Law

5.2.3.1 Shape Objectives

L specifies the axes of interest for the system nodes, R denotes which of those system nodes

are nodes of interest. By multiplying Yc = Lη2R, one can, therefore, extract the current values of

the node coordinates of interest for the node configuration N :

Yc = LNU2R = Lη2R = LXM−1
2 R. (5.13)

Ȳ is a matrix containing the desired values for the node coordinates of interest. The error

matrix E between the current and desired node coordinates of interest can then be written:

E = Yc − Ȳ . (5.14)

5.2.3.2 Error Dynamics

To achieve the desired shape control, the error matrixE and its first and second-time derivatives

should all go to zero. This goal is expressed as follows. Let Ψ and Φ be chosen matrices such that:

Ë + ΨĖ + ΦE = 0 (5.15)

is a stable equation about the value E = 0. Using equations (5.9), (5.13), and (5.14), the equation

(5.15) becomes:

L(W̃ −XM−1
2 K2)M−1

2 R + ΨLẊM−1
2 R + ΦLXM−1

2 R− ΦȲ = 0. (5.16)

This can be expanded and rearranged:

LXM−1
2 K2M

−1
2 R = LW̃M−1

2 R + ΨLẊM−1
2 R + ΦLXM−1

2 R− ΦȲ (5.17)
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Substitute K2 = UT
2 KsU2 and Ks from equation (5.3) into the left hand side of this equation:

LXM−1
2 K2M

−1
2 R = LXM−1

2 UT
2 KsU2M

−1
2 R

= LXM−1
2 UT

2

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
U2M

−1
2 R. (5.18)

Let us take a look at the mass matrix again,

M2 = UT
2 MsU2 (5.19)

Ms =

[
CT
nb(C

T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]

=

CT
b CT

r 0

0 0 I



Ĵ 0 0

0 m̂b 0

0 0 m̂s



Cb 0

Cr 0

0 I



Using
[

1
2
CT
b 2CT

r

]−1

=

[
CT
b CT

r

]T
, it can also be shown that:

1
2
CT
b 2CT

r 0

0 0 I


−1

=


Cb 0

Cr 0

0 I

 . (5.20)
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Then, M−1
s can be obtained,

M−1
s =

1
2
CT
b 2CT

r 0

0 0 I



Ĵ 0 0

0 m̂b 0

0 0 m̂s


−1 

1
2
Cb 0

2Cr 0

0 I



=

1
2
CT
b 2CT

r 0

0 0 I



Ĵ 0 0

0 m̂b 0

0 0 m̂s


−1 

1
2
CbCnb

2CrCnb

Cns


=

1
4
CT
b Ĵ
−1CbCnb + 4CT

r m̂
−1
b CrCnb

m̂−1
s Cns

 . (5.21)

Let Ms1 = 1
4
CT
b Ĵ
−1CbCnb + 4CT

r m̂
−1
b CrCnb and Ms2 = m̂−1

s Cns, Ms can be simply written as

Ms =

Ms1

Ms2

. Then, M−1
2 = UT

2

Ms1

Ms2

U2.

Equation (5.18) can be written as:

LXM−1
2 K2M

−1
2 R = LXM−1

2 UT
2 (CT

s γ̂CsbMs1

−CT
nbC

T
b λ̂CbMs1 + CT

s γ̂CssMs2)U2R. (5.22)

Take the ith column on both sides,

LXM−1
2 K2M

−1
2 Rei = LXM−1

2 UT
2 (CT

s γ̂CsbMs1U2Rei

− CT
nbC

T
b λ̂CbMs1U2Rei + CT

s γ̂CssMs2U2Rei). (5.23)

Using the fact x̂y = ŷx, we have:
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LXM−1
2 K2M

−1
2 Rei = LXM−1

2 UT
2 (CT

s

∧

CsbMs1U2Reiγ

+ CT
s

∧

CssMs2U2Reiγ − C
T
nbC

T
b

∧

CbMs1U2Reiλ). (5.24)

Recalling that −λ = Λγ + τ ,

LXM−1
2 K2M

−1
2 Rei = LXM−1

2 UT
2 [(CT

s

∧

CsbMs1U2Rei

+ CT
s

∧

CssMs2U2Rei + CT
nbC

T
b

∧

CbMs1U2ReiΛ)γ

+ CT
nbC

T
b

∧

CbMs1U2Reiτ ]. (5.25)

5.2.3.3 Control Law

From equations (5.17) and (5.25), one can simplify this into a compact matrix form µ = Γγ

with definitions of µi and Γi, in which µ is the stack of each µi matrix and Γ is similarly a stack of
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each Γi matrix:

µ = Γγ, (5.26)

µi = (LW̃M−1
2 R + ΨLẊM−1

2 R + ΦLXM−1
2 R− ΦȲ )ei

− LXM−1
2 UT

2 C
T
nbC

T
b

∧

CbMs1U2Reiτ, (5.27)

Γi = LXM−1
2 UT

2 (CT
s

∧

CsbMs1U2Rei + CT
s

∧

CssMs2U2Rei

+ CT
nbC

T
b

∧

CbMs1U2ReiΛ). (5.28)

Since control variable γ is composed of force densities of the strings, it also satisfies γ ≥ 0

(strings are always in tension), the least square problem we choose to solve at each increment of

real time ∆t, is min ||µ − Γγ||2, γ ≥ 0. Let the rest length of the ith string be denoted by si0,

extensional stiffness by ki, damping constant by ci, and string vector by si. Assuming that strings

follow Hooke’s law and the viscous friction damping model, the tension in a string is:

γi =
||ti||
||si||

=


ki(1−

si0
||si||

) + ci
sTi ṡi
||si||2

if ||si|| ≥ si0

0 if ||si|| < si0
. (5.29)

Then, we have rest length si0:

si0 = ||si||[1−
1

ki
(γi − ci

sTi ṡi
||si||2

)]. (5.30)

We can also write the string tension (a product of string length and string force density) in a matrix
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Figure 5.1: Close loop system, where u is control input and ui is the rest length of the ith string,
given by equation (5.30). Reprinted with permission from [7].

form:

T = Sγ̂ = (S − S0)k̂ + SbST ṠcbSTSc−1ĉ, (5.31)

where S0 = SbSTSc− 1
2 ŝ0 represents the matrix containing the rest length vectors. The overall

control system is shown in Figure 5.1.

5.3 Control of Morphing Airfoils

Figure 5.2: Initial and morphing configuration of the tensegrity NACA 2412 airfoil, top one (bars
in black, strings in red, and nodes in black) is the initial state, and the bottom one (bars in grey,
strings in pink, and nodes in blue) is the morphing target.

We choose NACA 2412 airfoil, with a chord length c = 1 m, 0∼ 0.3 m as the rigid part, vertical

bar length ratio µ = 1/3, and error bound δ = 0.001 m to generate the initial configuration of the

tensegrity foil by the error bound method described in Section 3.8. In this example, there are five

horizontal bars (q = 5). The morphing targets are generated by the rotation of the horizontal bars
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Figure 5.3: Time history of the tensegrity morphing airfoil at T = 0s, 0.5s, and 1s.

(bars b1, b2, · · · , b5) in the tensegrity structure in a linear manner while keeping the length of every

bar unchanged during deformation. That is, bar b1 rotates θ1 = π
72

, bar b2 rotates θ2 = π
36

, and up

to bar b5 rotates θ5 = 5π
72

, the vertical bars remain the same angle with the horizontal bars as the

initial configuration. The final morphing target is shown in Fig. 5.2. Then, based on the morphing

target, coordinates of control targets Ȳ can be calculated. In the control simulation, we choose

time step dt = 0.001s, stability coefficients Ψ = 2.5 and Φ = 4, mass of the longest bar and string

are 1 kg and 0.01 kg, and the masses of the shorter bars and strings are scaled accordingly. Nodes

n1, nq+2, and n2q+2 in Figure 3.32 are fixed with the D-Section, in our case structure complexity

q = 5, n1, n7, and n12 are not controlled. Since we are controlling x and y coordinates, matrix

L = [1 0 0; 0 1 0; 0 0 0], matrix R16×13 (generated by I16×16 with columns 1, 7 and 12 being

deleted). Fig. 5.3 shows a time history of airfoil configuration while tracking a trajectory at time

T = 0s, 0.5s, and 1s which demonstrates the successful shape control at a final time. For the above

simulation, Figure 5.4 is the length change of each string.
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Figure 5.4: String length time history, string current length minus string initial length v.s. time.

5.4 Conclusion

This chapter offers an approach to integrate structure and control design. Based on the non-linear

reduced-order class-k tensegrity dynamics, a non-linear control law is derived. The control variables

(force densities in strings) appear linearly in the non-linear dynamics. A NACA 2412 airfoil with

specified morphing targets is chosen to verify the developed design. The approach can also be used

for design and shape control of other tensegrity structures.
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6. INTEGRATING CONTROL AND SIGNAL PROCESSING: SENSOR/ACTUATOR

SELECTION FOR TENSEGRITY ROBOTS

This chapter presents a systematic design approach to integrate the economic sensor/actuator

selection and covariance control design for tensegrity robots. The objective is to minimize the

output covariance of the tensegrity robots subject to the specified sensor/actuator budget and

control covariance upper bounds by solving the precision of sensor/actuator and output feedback

control law problems simultaneously. To achieve this goal, we first present the linearized tensegrity

dynamics with any constraints in a standard state-space form. Followed by an uncertainty study of

joints in the tensegrity structures with no control. Then, together with a linear dynamic output-feedback

controller, we give the closed-loop system formulation. The economic sensor/actuator selection

method and the feedback control law problem are converted into an equivalent convex problem,

given by a set of LMIs (linear matrix inequalities). To verify the proposed algorithms, the error of

the nonlinear and linearized dynamics are first compared and checked. A 2D tensegrity morphing

airfoil is then implemented to examine the integrated algorithm. The principles developed in this

chapter can be used to analyze the performance of various types of structures as well as an interface

to integrate structure, control, and signal processing designs. These methods include but are not

limited to tensegrity structures.

6.1 Introduction

Traditionally, structure design, sensor/actuator selection, and control algorithm are isolated

disciplines. Each of these disciplines is quite sophisticated and mature. Structure engineers first

design the structure, signal processing guys select the sensor/actuator and then control people

write an algorithm to achieve the morphing objective. This is certainly not a good way to reduce

the required control energy and instrument cost as well as guarantee the system performance [124].

The sensor/actuator should be selected based on the budget for the control. However, the control

may be limited by the precision of some of the sensors and actuators. Then, the sensors and
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actuators need to be reselected, and the control law has to be redesigned. Thus, the sensor/actuator

selection and control problems are not independent [125, 126].

In fact, few attempts have been made to integrate sensor and actuator selection and control

design. For example, Singh et al. demonstrated a combined H∞ feedback control design for

both LTI (linear time invariant) and LPV (linear parameter varying) systems and optimal sensors

and actuator selection, and the problem yields to a mixed Boolean semi-definite programming

optimization problem [127]. Argha et al. formulated and analyzed a framework for a multi-channel

H2 dynamic output feedback controller and also incorporated the penalizing the number of actuators

and sensors [128]. Güney and Eskinat introduced a closed-loop optimal location selection method

for actuators and sensors in flexible structures based on a H∞ controller and a gradient-based

unconstrained minimization approach [129]. Fahroo and Demetriou investigated the optimization

of a quadratic performance criterion with respect to the location of the actuators and/or the sensors

for active noise regulator and reference tracking control problems [130]. Westermayer et al.

proposed an optimal placement approach that exploits the flexible structure and incorporates controllability

and observability-based measures, as well as knowledge on actuator and sensor properties [131].

However, few of them start from a covariance point of view, integrate the structure dynamics,

signal processing, and control design. This chapter determines the precision of sensor/actuator

and output feedback control law simultaneously such that the output covariance of the system is

minimized, subject to the specified sensor/actuator budget and control covariance upper bounds.

This chapter is organized as follows: Section 6.2 formulates the linearized tensegrity dynamics

in a state-space form. Section 6.3 presents the joint uncertainty analysis of tensegrity structures.

Section 6.4 derives the economic sensor/actuator selection methods and covariance control law, and

the problem turns out to be a convex problem expressed by a set of LMIs. Section 6.5 first checks

the accuracy of the linearized tensegrity dynamics and then verifies the developed algorithm by the

two tensegrity robots, a 2D tensegrity morphing airfoil. Section 6.6 summarises the conclusions.
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6.2 Linearized Tensegrity Dynamics

Then, one can write the linearized dynamics equation with constraints Eq. (4.99) into a

compact state space form:

d

dt

dna

dṅa


︸ ︷︷ ︸
xp∈R2na

=

 0 I

−M−1
aa KTaa −M−1

aa Daa


︸ ︷︷ ︸

Ap∈R2na×2na

dna

dṅa


︸ ︷︷ ︸
xp∈R2na

+

 0

M−1
aa −M−1

aa Kl0a


︸ ︷︷ ︸

Bp∈R2na×(na+ne)

dfexa

dl0


︸ ︷︷ ︸
u∈R(na+ne)

+

 0

M−1
aa (−Mabdn̈b −Dabdṅb −KTabdnb)


︸ ︷︷ ︸

J∈R2na

, (6.1)

for the fixed pinned nodes we have dnb = dṅb = dn̈b = 0, which gives J = 0, and the equation

can be simply expressed as ẋp = Apxp + Bpu.

6.3 Uncertainty Analysis of Tensegrity Structures

6.3.1 Uncertainty Analysis

For a output feedback problem of a tensegrity structure at an equilibrium state with plant noise

wp, the linear system is given as the following:

Plant: ẋp = Apxp + Bpu+ Dpwp, (6.2)

Output: y = Cpxp, (6.3)

where xp, u, and y are state, control input, and output vectors of the plant. Cp, Dp are matrices

with proper dimensions. wp is the plant noise vector, which is normally modeled as independent

zero mean Gaussian white noises with covariances Wp:

E∞(wp) = 0, E∞(wpw
T
p ) = Wp, (6.4)
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where E∞(•) = lim
t→∞

E(•) is the asymptotic expected value of the certain variable. Since the noise

sources ws, x, u are mutually independent (uncorrelated), the following is true E∞(wp · xT ) = 0,

E∞(wp ·uT ) = 0, andE∞(x·uT ) = 0. For a stable system we have Ẋ = 0, and the state covariance

matrix can be obtained by solving the following equation:

0 = ApXAT
p + BpUB

T
p + DpWpD

T
p , (6.5)

where X , U are defined as X = E∞(xpx
T
p ) and U = E∞(uuT ). Then, solve Eq. (6.5) for X , we

can compute the output covariance:

Y = CpXCT
p . (6.6)

Then, for the given covariance of plant noise, we can compute the output covariance of the system

to predict the performance of the designed tensegrity structure.

6.3.2 Numerical Examples

We are interested in knowing the value of position variance of one subset of nodes, given the

fact that some other subsets of nodes are inaccurate with given variance. For this joint uncertainty

problem, we choose a T2D1 tensegrity tower to demonstrate the algorithm, the model is shown in

Figure 6.1, a same tower as described in Section 4.5.3.

The tower is 10 m high with a 60 kg payload on the top node. The bars are aluminum hollow

pipe (OD 4”or 101.6 mm, wall thickness 0.035”or 0.889 mm), and strings are UHMWPE (OD 4

mm). The Young’s modulus, density, and yield strength of the aluminum and UHMWPE are 60

Gpa, 2,700 kg/m3, 78 Mpa, and 120 Gpa, 970 kg/m3, 2.7 Gpa. To stabilize the tower, we choose

damping to be d = 0.5, and the damping matrix D = 2dmax
√
MEAl−1

0 )I3×nn is from the critical

damping ratio formula. the force densities in the five 4-bar groups from top to bottom are designed

to be 4,900 N, 4,900 N, 490 N, 9,800 N, and 4,900 N. By computing the equilibrium equation,

and we can get force densities in all the strings. The bottom five nodes of the tower on the ground
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Figure 6.1: Node notation of the 10m tall 3D T2D1 tensegrity tower with four sides, the angles of
the T-Bar and D-Bar units are αT = αD = π

18
.

are fixed. Nodes 7 and 13 are plotted to show the middle plane of the D-Bar units, and they are

not computed in the dynamics. Thus, there are 14 free nodes (nodes 1, 2, 3, 4, 5, 8, 9, 10, 11, 12,

14, 15, 16, 17), and each free node has 3 DOF, the overall structure has 42 DOF. That is, we have

84 states (positions and velocities) of the model. First, we check the eigenvalues of the linearized

tensegrity tower model, as given in Table 6.1. As we can see, all the eigenvalues are negative,

which means the initial tower structure is stable.

The inaccurate node positions can be modeled as plant noises, described by the state noise

vector wp. The relatively small uncertainties of nodes in states will be transferred to the dynamics

of the system, which can be modeled by Dp = Ap. In this problem, we only care about the

influence of node uncertainties, and the control input is set to be u = 0. Now, by giving some

subset of inaccurate nodes with given variance Wp, and if the structure is stable (by checking the

stability of the structure), we can compute the value of position variance of nodes of interest. Let

us consider the following cases.

Case 1: The uncertainty of node 15 is shown in Figure 6.2, which means the position of node
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Table 6.1: Eigenvalues of linearized model of the tensegrity tower, values ×103.

-4.1951 + 7.0895i -0.7617 + 2.3536i -1.5039 - 3.1354i -1.7498 + 0.0000i
-4.1951 - 7.0895i -0.7617 - 2.3536i -1.3302 + 3.5365i -1.7498 + 0.0000i
-3.9639 + 6.9113i -3.3838 + 0.0000i -1.3302 - 3.5365i -2.6501 + 0.0000i
-3.9639 - 6.9113i -3.3838 + 0.0000i -1.3285 + 3.0920i -2.6501 + 0.0000i
-4.1934 + 5.2617i -1.5192 + 3.1388i -1.3285 - 3.0920i -1.2302 + 0.0000i
-4.1934 - 5.2617i -1.5192 - 3.1388i -1.3065 + 1.2999i -0.1374 + 0.0000i
-8.3905 + 0.0000i -1.3399 + 3.0939i -1.3065 - 1.2999i -0.1218 + 0.0000i
-6.7249 + 0.0000i -1.3399 - 3.0939i -1.3430 + 3.5796i -2.6550 + 0.0000i
-7.0408 + 0.0000i -1.2070 + 0.5237i -1.3430 - 3.5796i -2.6531 + 0.0000i
-6.0368 + 0.0000i -1.2070 - 0.5237i -1.3386 + 3.5790i -0.0811 + 0.0000i
-3.9639 + 6.9113i -2.4590 + 0.0000i -1.3386 - 3.5790i -0.0811 + 0.0000i
-3.9639 - 6.9113i -2.5192 + 0.0000i -1.3386 + 3.5790i -1.2302 + 0.0000i
-1.6208 + 5.4008i -0.8396 + 0.0000i -1.3386 - 3.5790i -0.0182 + 0.0000i
-1.6208 - 5.4008i -1.7948 + 0.0000i -1.3430 + 3.5796i -0.0182 + 0.0000i
-7.0408 + 0.0000i -1.3285 + 3.0920i -1.3430 - 3.5796i -0.1307 + 0.0000i
-6.2761 + 0.0000i -1.3285 - 3.0920i -1.3065 + 1.2999i -0.1307 + 0.0000i
-6.2761 + 0.0000i -1.3323 + 3.5921i -1.3065 - 1.2999i -0.0031 + 0.0000i
-1.1016 + 3.8929i -1.3323 - 3.5921i -1.3283 + 3.5389i -0.0031 - 0.0000i
-1.1016 - 3.8929i -1.5039 + 3.1354i -1.3283 - 3.5389i -0.0013 + 0.0000i
-4.1948 + 2.2322i -1.5039 - 3.1354i -1.3285 + 3.5367i -0.0003 + 0.0000i
-4.1948 - 2.2322i -1.5039 + 3.1354i -1.3285 - 3.5367i -0.0030 + 0.0000i
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Figure 6.2: The position uncertainty of node 15, radius of the sphere is 0.0176 m, which is 2% of
length of the bar starting from node 15 to node 5 (bar length is l = 0.8816 m).

15 is located in the sphere, and the center of the sphere is the ideal design. The radius of the

sphere is 2% of length of the bar starting from node 15 to node 5 (bar length is l = 0.8816 m),

2%l = 0.0176 m. The influence to node 12 by the uncertainty of node 15 is given in Figure 6.3.

The radius of the ellipsoid is 0.0078 m, 0.0177 m, and 0.0338 m. As we can see, for the same

uncertainty 0.0176 m of node 15 in X- and Y-direction. The influence on the uncertainty of node

12 in the Y-direction (0.0176 m) is larger than in the X-direction (0.0078 m). This agrees with

physics because X-direction is along the bar vector (from node 5 to node 15), and Y-direction

is perpendicular to the bar vector. The geometric uncertainty of node 15 in X-direction mainly

influences the T-Bar unit (by node 5, 14, 15, 16, 17), but the uncertainty of node 15 in Y-direction

will influence both the T-Bar unit and the axial symmetric property (about the node6 - node 12

axis). Similarly, the uncertainty in the Z-direction has the largest impact on node 12 than in the

X- and Y-direction because it changes the T-bar unit, symmetric properties in the axial (about the

node6 - node 12 axis), and bilateral (about the T-Bar unit plane) directions.

Case 2: Let the uncertainty sphere of node 2 or node 9 or node 15 varies from 0% to 3% (of
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Figure 6.3: The position uncertainty of node 12, radius of the ellipsoid is 0.0078 m, 0.0177 m, and
0.0338 m.

length of the bar starting from node 15 to node 5, bar length is l = 0.8816 m). The L2 norm of

the node 12 is shown in Figure 6.4. Results show that as the uncertainty percentages increase,

the L2 norm of the uncertainty of node 12 increases. Node 9 in the upper D-Bar unit has a larger

impact on node 12 than node 2 in the lower D-Bar unit. And node 15 in the T-Bar unit has the least

influence on node 12. The results make sense because node 9 is closer to node 12, and D-Bar units

are critical to the symmetric properties in the axial (about the node6 - node 12 axis) and bilateral

(about the T-Bar unit plane) directions.

Case 3: We are also interested in the combinations of uncertainties of a set of nodes. Let us

take the combination of uncertainty spheres of node 2, node 9, node 15 varies from 0% to 3% (of

the length of the bar starting from node 15 to node 5, bar length is l = 0.8816 m) as an example. The

L2 norm of the node 12 is shown in Figure 6.5. Results show that as the uncertainty percentages

increase, the L2 norm of the uncertainty of node 12 increases. Comparing the results in Figure

6.4, the more nodes have uncertainties, the bigger the L2 norm of the uncertainty of node 12 is.

The lower node combinations (node 2 and node 15) have a lower impact on node 12 than the
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Figure 6.4: The position uncertainty of node 12 by the influence of node 2, node 9, and node 15
with a uncertainty of varies from 0-3% of the length of the bar (starting from node 15 to node 5,
bar length is l = 0.8816 m).

upper combinations (node 9 and node 15). The L2 norm of node 12 by the combination of node

2 and node 9 is greater than the combination of nodes 2&15 and nodes 9&15, which is saying the

precision of D-Bar units is more important in this T2D1 structure.

6.4 Integrated sensor/actuator selection and covariance control design

To control a real plant, we usually deal with three noises: sensor noise, actuator noise and noise

from the plant itself. A linear description of such as system is given as the following:

Plant: ẋp = Apxp + Bpu+ Dpwp + Dawa, (6.7)

Output: y = Cpxp, (6.8)

Measurement: z = Mpxp + Ews, (6.9)

where xp, u, y, and z are state, control input, output, and measurement vectors of the plant. Cp,

Dp, Da, Mp, and E are matrices with proper dimensions. wp, wa, and ws are plant, actuator, and
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Figure 6.5: The position uncertainty of node 12 by the influence of node 2, node 9, and node 15
with a uncertainty of varies from 0-3% of the length of the bar (starting from node 15 to node 5,
bar length is l = 0.8816 m).

sensor noise vectors, which are modeled as independent zero mean Gaussian white noises with

covariances Wp, Wa, and Ws:

E∞(wp) = 0, E∞(wpw
T
p ) = Wpδ(t− τ), (6.10)

E∞(wa) = 0, E∞(waw
T
a ) = Waδ(t− τ), (6.11)

E∞(ws) = 0, E∞(wsw
T
s ) = Wsδ(t− τ). (6.12)

Since the noise sources ws, wp, wa are mutually independent (uncorrelated), the following is true

E∞(ws · wTp ) = 0, E∞(ws · wTa ) = 0, and E∞(wa · wTp ) = 0.

For a given plant, the covariance matrix Wp is assumed to be known. Although sensors or

actuators may produce noises at different levels, for given actuators and sensors, Wa and Ws are

also known. A plant may have various sensors or actuators of different importance; some are

more sensitive to noise that requires higher precisions, some don’t. In this chapter, we propose
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a SAS method that would guide us on selections of sensors and actuators while satisfying three

pre-specified conditions: performance requirements (Ȳ ), budget constraints ($̄), and control energy

constraint (Ū ) [132]. Specifically, this method determines the importance of all sensors and

actuators and allocates a given limited budget on them as precision accordingly. Hence, Wa and

Ws associated with actuators and sensors are initially treated as unknown matrices, which will be

computed by the SAS method. In addition, the SAS further produces a closed-loop controller that

achieves such goals.

For the simplicity and practical considerations, we propose these notations and assumptions:

1). Noises from sensors and actuators entering the dynamical system are uncorrelated, so sensor

and actuator covariance matrices Wa and Ws are diagonal. 2). Precisions of all the sensors and

actuators are grouped into two vectors γs and γa. 3). The sensor/actuator noise is inversely

proportional to the sensor/actuator precision, that is, W−1
a = diag(γa) and W−1

s = diag(γs), where

diag(•) is an operator that converts a vector into a diagonal matrix. 4). The sensor/actuator price

is proportional to its precision. The price vectors associated to sensors and actuators per unit

precision are denoted as pa and ps. The total money spent on the sensors and actuators is denoted

as: $ = pTs γs + pTa γa.

Denote a linear dynamic output feedback controller of the following form:

Controller dynamics: ẋc = Acxc + Bcz, (6.13)

Control: u = Ccxc + Dcz, (6.14)

where xc is the controller state vector, Ac, Bc, Cc, and Dc are matrices associated with the

controller in proper dimensions.

We define the closed-loop state x̃ and the noise vector w as the following:

x̃ :=

[
xTp xTc

]T
, w :=

[
wTp wTa wTs

]T
. (6.15)
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From Eqs. (6.7) - (6.9) and (6.13) - (6.15), the closed-loop system can be written as:

Closed-loop system: ˙̃x = Aclx̃+ Bclw, (6.16)

System Output: y = Cclx̃, (6.17)

Control: u = Eclx̃+ Fclw, (6.18)

where:

Acl = A + BGM, Bcl = D + BGE, Ccl = C, (6.19)

Ecl = HGM, Fcl = HGE, (6.20)

and

A =

Ap 0

0 0

 , B =

Bp 0

0 I

 , E =

0 0 E

0 0 0

 ,
M =

Mp 0

0 I

 , G =

Dc Cc

Bc Ac

 ,
D =

Dp Da 0

0 0 0

 , C =

[
Cp 0

]
, H =

[
I 0

]
.

For later convenience, we also define the covariances of closed-loop state, output, and control as:

X̃ = E∞(x̃x̃T ), Y = E∞(yyT ), and U = E∞(uuT ). The objective of the SAS is to find how to

allocate the money on the sensors and actuators under the constraints of control covariance bound

Ū , sensor and actuator budget bound $̄, measured output covariance bound Ȳ , and the limited

precision of the sensors and actuators available in the market γ̄s and γ̄a. The problem can be

described concisely by the Theorem 6.4.1.

Theorem 6.4.1. Let positive definite matrices Ū , Ȳ , a positive scalar $̄ and positive vectors γ̄s,

γ̄a be given. Consider a plant (6.7) - (6.9), find a closed-loop controller (6.13) and precision
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allocation of sensors (γs) and actuators (γa) such that the closed-loop system (6.16) is asymptotically

stable, its output covariance Y , input covariance U , money spent on sensors and actuators $

are bounded above by Ȳ , Ū , and $̄, while γa < γ̄a and γs < γ̄s are satisfied. The mathematical

description is given as follows:



Given: Ū , Ȳ , $̄, γ̄s, γ̄a,

Find: γs, γa, {Ac,Bc,Cc,Dc},

s.t. Y < Ȳ , U < Ū, $ < $̄,

γs < γ̄s, γa < γ̄a.

(6.21)

A solution exists if and only if there are vectors γs, γa and matrices X , Y, L, F, and Q such that

the following linear matrix inequalities are satisfied:



Given: Ū , Ȳ , $̄, γ̄s, γ̄a,

Find: γs, γa, X, Y, L, F, Q,

s.t. pTs γs + pTa γa < $̄, γs < γ̄s, γa < γ̄a,
Ȳ CX C

(•)T X I

(•)T (•)T Y

 > 0,


Ū L 0

(•)T X I

(•)T (•)T Y

 > 0,

Sym(Φ11) Φ12

(•)T Φ22

 < 0,

, (6.22)
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where:

Φ11 =

ApX + BpL Ap

Q YAp + FMp

 , (6.23)

Φ21 =

 Dp Da 0

YDa YDa FE

 , (6.24)

Φ11 =


−W−1

p 0 0

0 −Γa 0

0 0 −Γs

 , (6.25)

and Sym(•) = (•) + (•)T . Under these conditions, all closed-loop controllers can be found as:

Ac Bc

Cc Dc

 =

V−1 −V−1YBp

0 I


Q −YApX F

L 0


 U−1 0

−MpXU−1 I

 , (6.26)

where V and U are nonsingular square matrices satisfying YX + VU = I .

Proof. To reach the conditions in Eq. (6.21), the following inequalities shall be satisfied.

1). Total money spent on sensors and actuators should be limited by the budget constraint:

pTa γa + pTs γs < $̄, (6.27)

γa < γ̄a, (6.28)

γs < γ̄s, (6.29)
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2). Take the covariance of Eq. (6.16), the asymptotically stable system should satisfy:

AclX̃ + X̃AT
cl Bcl

BT
cl −W−1

 < 0. (6.30)

3). Take the covariance of Eqs. (6.17) and (6.18) and using Schur’s complement:

 Ȳ CclX̃

X̃CT
cl X̃

 > 0, (6.31)

 Ū EclX̃

X̃ETcl X̃

 > 0. (6.32)

Since AclX̃ and EclX̃ are the product of unknown variables G, Acl and Ecl, Eqs. (6.30) and

(6.32) are non-convex matrices. Due to the many nice properties of LMI, such as get a global

optimization solution and fast in computation, we would like to convert Eqs. (6.30) and (6.32) into

LMIs.

Denote the state covariance matrix X̃ from Eq. (6.15) and its inverse as the following:

X̃ =

X UT

U Xc

 , X̃−1 =

Y V

VT Yc

 . (6.33)

Define the following transformation [133]:

T =

I Y

0 VT

 . (6.34)
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Eqs. (6.30), (6.31), and (6.32) are equivalent to the following inequalities by a congruence transformation:

T T 0

0 I


AclX̃ + X̃AT

cl Bcl

BT
cl −W−1


T 0

0 I

 < 0, (6.35)

I 0

0 T T


 Ȳ CclX̃

X̃CT
cl X̃


I 0

0 T

 > 0, (6.36)

I 0

0 T T


 Ū EclX̃

X̃ETcl X̃


I 0

0 T

 > 0, (6.37)

we get:

T T (AclX̃ + X̃AT
cl)T T TBcl

BT
clT −W−1

 < 0, (6.38)

 Ȳ CclX̃T

T T X̃CT
cl T T X̃T

 > 0, (6.39)

 Ū EclX̃T

T T X̃ETcl T T X̃T

 > 0. (6.40)

Eqs. (6.38), (6.39), (6.40) and become LMIs if the following matrices are affine for some

transformation T :

T TAclX̃T, T
TBcl,CclX̃T, T

T X̃T,EclX̃T. (6.41)
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Substitute the transformation matrix T defined in Eq. (6.34), these matrices are found as:

T TAclX̃T =

Θ11 Ap

Θ21 Θ22

 , (6.42)

T TBcl =

 Dp Da 0

YDp YDa VBcE

 , (6.43)

CclX̃T =

[
CpX Cp

]
, (6.44)

T T X̃T =

X I

I Y

 , (6.45)

EclX̃T =

[
DcMpX 0

]
, (6.46)

where Θ11 = ApX + BpDcMpX + BpCcU, Θ21 = VAcU + YApX + VBcMpX , Θ22 =

YAp + VBcMp.

Denote the change of variables as the following:

L = DcMpX, (6.47)

F = VBc, (6.48)

Q = VAcU + YApX + VBcMpX. (6.49)

Matrices (6.46) - (6.42) now can be written as:

EclX̃T =

[
L 0

]
, (6.50)

T TAclX̃T =

ApX + BpL Ap

Q YAp + FMp

 , (6.51)

T TBcl =

 Dp Da 0

YDp YDa FE

 . (6.52)
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Figure 6.6: Configuration of a planer truss in the presence of a step load at the node H with the left
two nodes fixed to a wall in the given direction. The aspect ratio (length over width) of the truss is
10:1.

Eqs. (6.31) - (6.30) are now transformed into the LMIs in (6.22), whcih can be solved by MATLAB

CVX toolbox.

6.5 Numerical examples

6.5.1 Comparison between nonlinear and linearized models

Before using the linearized tensegrity dynamics, we have to verify the linearized dynamics Eq.

(6.1) is accurate enough compared with nonlinear dynamics Eq. (4.67) for analysis. Here, we

take a planer cantilever truss (22 nodes, including the two fixed ones to the vertical wall) with a

vertical force at the end node for the nonlinear and linearized models to see the coordinate errors,

as shown in Fig. 6.6. The cantilever truss is 10 m long and 1 m wide. The black lines are steel

bars. The radius, density, and Young’s modulus of the bars are 0.0282 m, 7,870 kg/m3, 206.04 GPa,

respectively. We choose time step 1.0× 10−4 s and vertical force F = −1.0× 106 N to perform the

simulation.

The error time history of the X- and Y-coordinates of all the nodes between the nonlinear and

linearized dynamics are shown in Figs. 6.8 and 6.9. The configuration of the two models at t = 0.5

s, 1 s, and 5 s are shown in Fig. 6.7. It is clear that as the deformation increase, the non-linearity

becomes larger, which brings more errors between the linear and nonlinear models. For relative

large deformations, i.e., t = 5 s, the coordinate of the node at the bottom right obtained by the
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nonlinear model is (9.805,-1.351) and by the linear model is (9.913,-1.37). The maximum error in

X-direction and Y-direction is 0.108 m and 0.019 m, which is 1.08% and 1.9% with respect to the

horizontal length 10 m and vertical length 1 m of the truss. For small deformations, i.e., t = 0.5

s, the coordinate of the node at the bottom right obtained by the nonlinear model is (9.93,-0.6323)

and by the linear model is (9.955,-0.6326). The maximum error in X-direction and Y-direction

is 0.025 m and 0.0003 m, which is 0.25% and 0.03% with respect to the horizontal and vertical

length of the truss. That is, the linearized dynamics model is accurate.

6.5.2 Case 1: Economic sensor/actuator selection for tensegrity airfoils

The sensor/actuator selection algorithm is applied to the tensegrity airfoil structure presented

in section 6.2. A complexity of q = 5 has been chosen to demonstrate the algorithm, as shown

in Figure 6.10. For this example, sensors are selected to measure the positions in X− and Y−

directions of the 13 nodes, while actuators are selected to control the 26 strings. Other parameters

are chosen as: sensor/actuator budget $̄ = 50, actuator precision limit γ̄a = 16, sensor precision

limit γ̄s = 16, actuator precision unit price pa = 1, sensor precision unit price ps = 1, control upper

bound Ū = 0.1I , plant noise Wp = 0.01I . The specific distribution of how precision is allocated

on each actuator and sensor under the limit of the budget is listed in Tables 6.2 and 6.3. It can be

seen that among the 26 actuators, the indices of the top eight actuators are 14, 5, 10, 15, 11, 16,

1, and 6, which are mainly concentrated close to the trailing edge sections of the tensegrity airfoil.

While, among the 26 sensors, the indices of the top eight sensors are 10, 26, 24, 22, 4, 14, 6, 16

are mainly locates below the middle horizontal bar of the tensegrity airfoil. The results agree with

intuitive is that: 1). The trailing edge of the foil is more flexible, which requires more sensors close

to the end of the tail. 2). The strings below the middle horizontal bars have bigger lever arms than

the upper side, which makes the structure bend downward more easily. In other words, the lower

side strings are more efficient in control, which are suitable to be selected as actuators. The list of

allocations of precision can also help guide the selection of actuators and sensors.
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Figure 6.7: Comparison between the nonlinear and linear dynamics models. Sub-figures from top
to bottom are dynamics response of the two models at t = 0.5 s, t = 1 s, and t = 5s.
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Table 6.2: Precision allocation results for actuators.

Precision Rank Precision Allocation Actuator Index
1 3.3270 14
2 3.0800 5
3 2.2628 10
4 2.0854 15
5 2.0018 11
6 1.9177 16
7 1.9134 1
8 1.9013 6
9 1.8601 12

10 1.8269 2
11 1.8133 17
12 1.7854 20
13 1.7829 13
14 1.7440 22
15 1.7362 24
16 1.7189 3
17 1.7169 26
18 1.7109 18
19 1.6657 7
20 1.6582 4
21 1.5349 8
22 1.5132 21
23 1.4898 23
24 1.4760 25
25 1.4139 9
26 1.2124 19
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Table 6.3: Precision allocation results for sensors.

Precision Rank Precision Allocation Sensor Index
1 0.5833 10
2 0.3477 26
3 0.2942 24
4 0.1301 22
5 0.1158 4
6 0.1093 14
7 0.1030 6
8 0.0778 16
9 0.0413 8
10 0.0273 18
11 0.0033 2
12 0.0033 12
13 0.0032 20
14 0.0012 11
15 0.0012 19
16 0.0012 17
17 0.0012 13
18 0.0012 21
19 0.0012 15
20 0.0011 23
21 0.0011 25
22 0.0010 9
23 0.0010 7
24 0.0010 5
25 0.0009 3
26 0.0009 1

174



Figure 6.8: The coordinate error between the nonlinear and linear dynamics model of all the nodes
in X-direction.

6.5.3 Case 2: Sensitive study of the budget, control, and performance

In this section we conduct different cases of control energy Ū and budget constraints $̄, and

solve the problem given by Eq. (6.22) while optimizing a scalar of tr(Ȳ ). The tensegrity morphing

airfoil example in section 6.5.2 has been employed, while Ū = [1.0×10−6, 1.0×10−5, 1.0×10−4,

1.0 × 10−3, 1.0 × 10−2, 1.0 × 10−1, 1.0] and $̄ = [10, 20, 40, 80, 160, 320, 640, 1,280] are

investigated. The result is shown in in Figure 6.11.

Let us have a close look at the surface plot and analyze the plot in two aspects. 1). The influence

of Sensor/Actuator Cost. For Control Energy vector Ū1 = 1.0× 10−6 and all the Sensor/Actuator

Cost $̄, the output covariance is ȲŪ1,$̄
= [14.41, 7.246, 3.648, 1.852, 0.9587, 0.512, 0.4206, 0.4205].

For Control Energy vector Ū7 = 1.0 and all the Sensor/Actuator Cost $̄, the output covariance is

ȲŪ7,$̄
= [13.54, 6.798, 3.42, 1.735, 0.8915, 0.4747, 0.3227, 0.3102]. One may notice that the

enhancement of performance due to budget increase is huge at the beginning but would diminish
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Figure 6.9: The coordinate error between the nonlinear and linear dynamics model of all the nodes
in Y-direction.

Figure 6.10: Node and string notations of the tensegrity NACA 2412 airfoil.
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Figure 6.11: Sensitive Study of the control energy, sensor/actuator cost, and output covariance.
The x-axis is the sensor/actuator cost $̄ = [10, 20, 40, 80, 160, 320, 640, 1,280]. The y-axis is the
control energy Ū = [1.0× 10−6, 1.0× 10−5, 1.0× 10−4, 1.0× 10−3, 1.0× 10−2, 1.0× 10−1, 1.0].

as more funds are added. When budget is insufficient, adding funds would allow more precision

allocation on sensitive actuators and sensors that would impact performance more than others.

With more funds available, eventually, there will be no more improvement when all sensors and

actuators are saturated with the highest possible precision in the market. 2.) The influence of

Control Energy. For Sensor/Actuator Cost $̄1 = 10 and Control Energy vector Ū , the output

covariance is ȲŪ ,$̄1 = [14.41, 14.39, 14.34, 14.17, 13.85, 13.61, 13.54]. For Sensor/Actuator Cost

$̄8 = 1, 280 and Control Energy vector Ū , the output covariance is ȲŪ ,$̄8 = [0.4205, 0.4114, 0.3908,

0.3632, 0.3305, 0.3269, 0.3102]. It can be observed that as control energy increases, the output

covariance decreases, which means the system performance is becoming better. But the slope

is relatively small. Comparing the Sensor/Actuator Cost and Control Energy influence, we can

see that cost is a more important parameter than control energy. That is to say, when the cost is

bounded, one can increase the system performance, but not as obvious as increasing the budget.

This result will be instructive for early-stage structure and control system design.
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6.6 Conclusion

This chapter presents a method for integrating the economic sensor/actuator selection and

covariance control design for tensegrity robots. We first derived the linearized tensegrity dynamics

and formulated it as a standard state-space form. The accuracy of the linear model is tested by a

truss example subject to a downward vertical force at the end to simulate its bending. The node

coordinate errors by the nonlinear and linear tensegrity model are compared. Results show that as

the deformation of the truss increase, the node coordinate errors becomes bigger. For a relatively

large deformation, the maximum error between the nonlinear and linear model in x- and y-direction

are 1.08% and 1.9%. Then, using the linear dynamic model, we first studied the uncertainty of

joints by a T2D1 tower example. Results show that as the uncertainty increases in one node or a

combination of several nodes, the impact on the top node of the tower increases. The L2 norm of

the top node is more influenced by the uncertainty of the D-bar units in the T2D1 tower than the

T-Bar unit. Then, we give the algorithm for minimizing the output covariance of the tensegrity

robots subject to the specified sensor/actuator budget and control covariance upper bounds by

solving the precision of the sensor/actuator. The problem is converted into an equivalent convex

problem, given by LMIs. The approach is demonstrated by a 2D tensegrity morphing airfoil.

Results show that sensors (obtain node positions) at the trailing edge and the actuators (change the

string length) at the bottom of the structure are more important. In the sensitive study, results show

that sensor/actuator budgets are critical than control energy to promote the output performance.

The approaches developed in this chapter paves the way to the economic sensor/actuator selection

for integrating structure and control designs.
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7. CONCLUSIONS

Universities have compartmentalized science into small packages for easy management. But as

students learn the individual component technologies, they are required to integrate these disciplines

in ways that they had no theory for in their education. So, the traditional approach to design

systems is making a structure first, then performing material studies and fluid analysis, and then

adding control. Of course, this is not the best way to do the system design, i.e., one can make a

structure very hard to control. Indeed, engineering has left us with many components technologies

without rules how we could component together to make systems. And the purpose of this research

is to show how we can integrate structure, materials, fluids, and control designs. Due to the many

benefits of tensegrity structures, the tensegrity paradigm is chosen to demonstrate the fundamental

integration ideas. The major conclusions of this work are as follows.

A general framework of the minimal mass design for any solid or hollow bar tensegrity structures

with and without gravity is derived. Results show that if yielding is the mode of failure for a solid

and hollow bar (with the same inner cross-section area), one cannot save mass. If buckling is the

mode of failure, one can use a solid or hollow triangular cross-section shape to save 9.06% or

17.3% mass compared with a circular one. A family of deployable lunar towers and deployment

methods are presented and studied, including mass, tower height, prestress, payload, disturbances,

and packaging plan. This minimal mass design framework can be used for the static design of any

truss or tensegrity structures.

The dynamics of class-1 and class-k structures with fluid forces incorporated are formulated.

Results show that fluid forces and velocity can give the structure damping and pushing force to the

dynamics response of the structure. Then, we also presented structures interfaces fluid by a skin

(membrane) on the tensegrity structure. We also present an approach to airfoil discretization and

tensegrity airfoil design. The fluid forces are obtained by the panel method and then integrated into

the structure nodes with force and moment equilibrium satisfied. The developed principles enable

our ability to study various kinds of fluid-based tensegrity structures.
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A finite element analysis approach to nonlinear tensegrity dynamics based on the Lagrangian

method with a nodal coordinate vector as the variable is derived. This approach allows comprehensive

studies on any tensegrity systems accurately: 1. Performing rigid body dynamics with acceptable

errors is achieved by setting relatively high stiffness for bars in the simulation. 2. Simulating FEM

dynamics accurately, where bars and strings can have elastic or plastic deformations. 3. Dealing

with various kinds of boundary conditions, for example, fixing or applying static/dynamic loads at

any nodes in any direction (i.e., gravity, specified forces, or arbitrary vibrations). 4. Conducting

accurate modal analysis, including natural frequency and corresponding modes. The method is

compared with analytical solutions of rigid body dynamics and FEM software ANSYS. This study

provides a very accurate tensegrity dynamics simulation method. The results allow one to have a

more comprehensive understanding of the performance of both structures and materials.

Based on the class-k tensegrity dynamics, a nonlinear shape control law for tensegrity structures

is derived. The control variables, force densities in strings, turn out to be linearly in the nonlinear

control law. The shape control law demonstrated the successful control of the morphing airfoils.

The approach can also be used to design tensegrity wings and shape control of other general

tensegrity structures.

A method for integrating the economic sensor/actuator selection and covariance control design

for tensegrity robots is given. A linearized tensegrity dynamics model is formulated, and the

accuracy is tested. Using the linearized tensegrity dynamic model, we present the algorithm for

minimizing the output covariance of the tensegrity robots subject to the specified sensor/actuator

budget and control covariance upper bounds by solving the precision of the sensor/actuator. The

problem is converted into several LMIs. The approach is demonstrated by a 2D tensegrity morphing

airfoil. The approach allows one to select sensors and actuators with certain performance, control

energy, and budget limitations satisfied.

The contribution of the system design approaches would allow us to have a better understating

of physics, more efficient use of materials, more cost-effective design, less control energy, and

better performance of engineering systems.
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[129] M. Güney and E. Eşkinat, “Optimal actuator and sensor placement in flexible structures

using closed-loop criteria,” Journal of Sound and Vibration, vol. 312, no. 1-2, pp. 210–233,

2008.

[130] F. Fahroo and M. A. Demetriou, “Optimal actuator/sensor location for active noise regulator

and tracking control problems,” Journal of Computational and Applied Mathematics,

vol. 114, no. 1, pp. 137–158, 2000.

[131] C. Westermayer, A. Schirrer, M. Hemedi, and M. Kozek, “An advanced criterion for optimal

actuator and sensor placement on complex flexible structures,” IFAC Proceedings Volumes,

vol. 42, no. 2, pp. 114–119, 2009.

[132] F. Li, M. C. de Oliveira, and R. E. Skelton, “Integrating information architecture and control

or estimation design,” SICE Journal of Control, Measurement, and System Integration,

vol. 1, no. 2, pp. 120–128, 2008.

[133] F. Li, Economic resource allocation in system simulation and control design. PhD thesis,

UC San Diego, 2006.

192


