
COMMUTATIVITY-AWARE RUNTIME VERIFICATION FOR CONCURRENT

PROGRAMS

A Thesis

by

YAHUI SUN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jeff Huang
Committee Members, Jennifer L. Welch

Paul V. Gratz

Head of Department, Duncan M. (Hank) Walker

May 2021

Major Subject: Computer Science

Copyright 2021 Yahui Sun



ABSTRACT

Concurrent programs are notoriously difficult to write correctly, as scheduling nondeter-

minism can introduce subtle errors that are hard to detect and debug. Data races and order

violations are two most common types of concurrency errors, which can lead to crashes, data

corruptions, and other unexpected errors in shared-memory programs.

Considerable effort has been made towards developing effective program analysis and

verification techniques for concurrency bug detection. Most notably, runtime verification

aims to infer the presence of concurrency bugs from the execution traces and has been

shown very effective in practice.

This thesis first develops an efficient runtime verification technique to detect unseen order

violations from the observed execution. Our technique novelly extends existing predictive

analyses that construct partial ordering over trace events in a streaming fashion, reporting

unordered pairs of conflicting events as potential order violations. Unlike existing predic-

tive analyses, our technique aims to detect a wider class of concurrency bugs beyond the

traditional races. We introduce the notion of commutativity order violations. A commu-

tativity order violation occurs in the input trace σ if there is a witness σ∗ in which two

non-commutative actions appear in the reversed order. This broad definition captures both

racy and non-racy interaction at the library interface and thus strictly subsumes the stan-

dard definition of predictable races. For example, an order violation involving two conflicting

actions on the same lock is not a race due to the lock synchronization.

We implemented our algorithm into a tool called OVPredict. To address the performance

bottleneck of existing predictive analyses, we further propose a space-efficient shadow word

representation for tracking the ordering between conflicting critical sections. Our experi-

ments on several real-world large Go and C++ applications show that our analysis detects

more order violations than ThreadSanitizer, an industrial-strength race detector, and scales

to traces with billions of events. OVPredict revealed several previously unknown order vio-

ii



lations in Kubernetes and CockroachDB.

The second focus of this thesis is to develop an efficient stateless model checking algo-

rithm for concurrent programs that use linearizable commutative data structures. We present

NCMC, a new stateless model checking algorithm that exploits semantic commutativity be-

tween method invocations in concurrent programs. Unlike most previous approaches that

capture independence at the instruction level, our approach reasons about independence at

both instruction and semantics levels. We introduce the notion of semantic commutativity

equivalence (SC-equivalence), a coarser equivalence than the ones characterized by partial

orders over events at the instruction level. Underpinned by SC-equivalence, our algorithm

uses a commutativity specification to identify noncommutative operations in each explo-

ration, and avoids exploring executions that do not cover any new abstract state of the

program. Our algorithm is sound and complete at the semantics level with respect to a

given commutativity specification.

Our work addresses real-world challenges in runtime verification of concurrent programs

by incorporating commutativity reasoning in both predictive analysis and model checking to

improve coverage and scalability. The insights of this thesis are also potentially applicable to

the development of predictive analysis techniques that target a broader class of concurrency

bugs such as deadlocks.

iii



DEDICATION

To my family.

iv



ACKNOWLEDGMENTS

Throughout my graduate study at Texas A&M, my advisor Dr. Jeff Huang consistently

and tirelessly believed in me, mentored me, and advocated me. I’m eternally grateful for his

guidance and support.

Together with my advisor, Dr. Jennifer Welch and Dr. Paul Gratz served on my thesis

committee and provided valuable help and feedback. Dr. Jennifer Welch also helped me

in several other ways; her class on distributed computing broadened my horizon and her

support has been crucial to my professional success.

I learned a lot about teaching, life and how to be a good person from Dr. Aakash Tyagi.

It was a true pleasure working with him as a teaching assistant for his class.

It has been a great journey to work with all the fantastic lab mates (too numerous to

list) in the Origin Oriented Programming Lab at Texas A&M.

José Calderón mentored me and helped me tremendously in COVID lockdowns. I’m

grateful to Dale and Merit Weeks for all the meals, love and support. Many thanks also to

my roommate and study partner Daochen for having fun and discussing new research ideas

together.

I thank my parents for their love and support throughout my life. Last but not least, I

would like to thank my girlfriend Hanzi for accompanying me through the ups and downs in

my graduate school.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors Jeff Huang,

Jennifer Welch of the Department of Computer Science and Engineering, and Professor Paul

Gratz of the Department of Electrical and Computer Engineering.

Funding Sources

This work is funded by an NSF award.

vi



NOMENCLATURE

COV Commutativity order violation

PEG Plain execution graphs

SEG Semantic execution graphs

SC-equivalence Semantic commutativity equivalence

SMC Stateless Model Checking

SMT Satisfiability Modulo Theories

TSAN ThreadSanitizer

VC Vector clocks

CCS Conflicting critical section order

COMM Communication order

DC Doesn’t-commute relation

EDC Extended-doesn’t-commute relation

HB Happens-before relation

IO Invocation order

NC Non-commutative causal order

PO Program order

RB Reads-before relation

RF Reads-from relation

SSH Semantic-happens-before relation

WCP Weak-causal-precedence relation

WDC Weak-doesn’t-commute relation

WO Write order

vii



TABLE OF CONTENTS

Page

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

NOMENCLATURE .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Commutativity Order Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Efficient Commutativity Library Interface Handling Stateless Model

Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions and Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Existing Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Commutativity Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 OVPREDICT: EFFICIENT COMMUTATIVITY ORDER VIOLATION PREDIC-
TION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Commutativity Order Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Generalized Correct Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Commutativity Order Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Common Order Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

viii



3.4 OVPredict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Extended Doesn’t-Commute Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Optimizing CCS Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Mutex-access Metadata Optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 OVPredict on Open-source Go Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.3 Concurrent UAF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.4 Case Studies: Small Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.5 Case Studies: Chromium Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 NCMC: EXPLOITING SEMANTIC COMMUTATIVITY IN STATELESSMODEL
CHECKING .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Extending Plain Executions with Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Online Construction of Semantic Execution Graphs . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Handling Events at Both Instruction Level and Semantics Level . . . . . . . . 48

4.3 The Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Labels, Events and Plain Executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Invocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Commutativity via Effects of Invocations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Commutativity Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.5 The Semantic-Happens-Before SSH Relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 NCMC: Commutativity-aware Stateless Model Checking. . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Maximal Causality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 The NCMC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Soundness and Semantic Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Standard Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.3 Data Structure Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 RELATED WORK .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 CONCLUSION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



LIST OF FIGURES

FIGURE Page

3.1 The execution in (a) has a predictable UAF as (b) demonstrates. . . . . . . . . . . . . . . 17

3.2 Commutativity specifications for common order violations. . . . . . . . . . . . . . . . . . . . . . . 20

3.3 An example for vindicating non-racy UAF candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 A non-racy COV in CockroachDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 UAF case studies on Chromium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 A UAF race in Chromium Blink garbage collector [1].. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Two plain execution graph (PEG)s of N-counter-inc with N = 2. . . . . . . . . . . . 44

4.2 A plain execution and its semantic execution of N-counter-inc with N = 2. 46

4.3 Key steps for constructing the semantic execution graph (SEG). . . . . . . . . . . . . . . . . 48

4.4 Key steps in exploring Counter-2inc-cf, with invocation graphs shown on
the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 The logic L1 to express commutativity conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Constraints encoding for ΦG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Key exploration steps Counter-shb2, with NC edges omitted for brevity. . . . . 67

x



LIST OF TABLES

TABLE Page

2.1 Methods for a set s and their effects.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Comparing OVPredict and SmartTrack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Go projects results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 UAF Benchmarks. LOC: lines of code for the non-Chromium programs and
for the tests in Chromium bugs. "#Thr": Total number of threads created
(with total number of processes created in the parentheses). "#Acc": number
of memory accesses. "#Lock": number of mutex lock events. "#Free": number
of memory free events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Results for UAF races. The "Time" columns are the average running time in
seconds. The "UAF" columns show the number of UAF races detected. Each
UAF race is uniquely identified by a pair of static program locations. The
"%UAF" columns show the rates of successful detection of the known UAF
race. We report both online and offline analysis time for UFO. OVPredict
and TSAN only use online analysis. Each non-Chromium test is run 10 times
and each Chromium test is run 1000 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 A commutativity specification of the set data structure. . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 A commutativity specification of the hashtable data structure, expressible in
the L2 logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Benchmarks from SV-COMP [2]. The LB column specifies the loop bound used. 73

4.4 Data structure benchmarks with coarse-grained (NCMCc) and fine-grained (NCMCf)
commutativity specifications (seekers workload). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Data structure benchmarks with coarse-grained (NCMCc) and fine-grained (NCMCf)
commutativity specifications (mixed workload). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



1. INTRODUCTION

Concurrent programs are prevalent in modern software systems. However, writing cor-

rect concurrent programs has remained a huge challenge, as scheduling nondeterminism

introduces subtle errors that are hard to detect and debug. Concurrency bugs can cause

data corruption, hangs, and crashes [3, 4, 5, 6, 7], incurring significant cost [8] in software

development and maintenance.

A large portion of concurrency bugs are due to order violations [3], in which the expected

ordering between two actions is not enforced in the execution. Order violations can be seen

as a generalization of data races. It is not uncommon for a simple order violation error to

escape rigorous testing and manifest in production.

Detecting concurrency bugs has received great attention in recent years [7, 9, 10, 11,

12, 13, 14, 15]. The major challenge of concurrency bug detection is the huge number of

interleavings of concurrent programs (typically exponential in the program size). Subtle

concurrency errors can hide in rare thread interleavings.

One effective approach to mitigate this is predictive analysis. Predictive analysis aims

to infer potential concurrency errors from the observed execution [16, 17, 18, 10, 19, 20,

21, 22, 23, 24, 25]. Intuitively, predictive analysis considers an equivalent class of correct

reorderings of the observed execution. Thus it is capable of predicting unseen concurrency

errors knowable from the input trace and achieves higher coverage than purely evidence

based methods.

1.1 Motivation and Problem Statement

Existing predictive analyses have limited coverage because they reason about dependency

of events in an execution at the level of instructions, and miss the opportunity to capture a

larger equivalent class of traces at the library interface level. As modern software increasingly

embraces libraries as its building blocks, capturing dependency between library method

1



invocations can significantly improve the power of predictive analyses.

1.1.1 Problem Statement.

To efficiently detect order violations in large shared-memory multi-threaded programs re-

quires robust on-the-fly dynamic analyses that infer unseen order violation from the observed

trace. Furthermore, to cover the entire state space of the program without redundancy, each

semantically equivalent class of executions should be visited at most once. Existing predictive

analyses and stateless model checking approaches miss the opportunity to consider a larger

equivalent class of executions characterized by dependency at the level of library interface.

Efficient dynamic program analysis and stateless model checking approach that is able to

exploit commutativity of method invocations beyond basic read-write conflict are yet to be

developed.

1.1.2 Commutativity Order Violations

First, this work specifically deals with a class of concurrency errors that we call commu-

tativity order violations. Libraries and classes specify an informal contract on the expected

ordering between method invocations. A commutativity order violation occurs when such a

contract is violated. To illustrate the concept, consider the following concurrent program:

lock(m)

∗x = 1

unlock(m)

lock(m)

delete x

unlock(m)

(Example 1)

wherem is a lock and x is a pointer to an integer allocated in the heap. There are two possible

interleavings. First, if the right thread is executed before the left thread, we have a use-after-

free (UAF) error in which a write to x happens after it is freed. Second, if the left thread is

first executed, we have a commutativity order violation between *x = 1 and delete x: the

two operations do not commute and their order can be reversed in an alternative execution.

Such concurrent UAF errors are typically severe security vulnerabilities and are very common

in web browsers. Existing evidence-based memory checkers [26, 27, 28] are effective in finding

2



the UAF in the first interleaving, but fail to infer the existence of the error when observing

the second interleaving.

Missing Order Violations. Existing dynamic race detection techniques have limited

capability in detecting such commutativity order violations. Race detection based techniques

that model library operations as read-write accesses [29, 30, 31, 32] inherently miss the error

in Example 1, since the two operations are (ill-) protected by the same lock. For example,

in happens-before (HB) analysis, the two critical sections will always be ordered by an HB

edge (regardless of which thread is first executed), and thus hiding the UAF. We refer to

such order violations where the two operations are protected by the same lock as non-racy

bugs in this thesis.

Active delay-injection approaches [15, 33, 14, 34, 35, 13] also fail to effectively expose such

non-racy commutativity order violations. To see why, consider a tool that injects delay upon

*x = 1 in Example 1 in hope of letting a delete x happen first. However, delaying *x

= 1 blocks the other thread from acquiring lock m and prevents delete x from happening.

Even in the racy case where the two operations are not protected by the same lock, delay-

injection techniques have high overhead in practice, since the number of memory accesses is

typically much larger than free operations.

Static analysis has been used to target order violation errors such as concurrent UAF

errors, but typically reports a large number of false positives and is not scalable to large

real-world applications [36]. SMT-based predictive analyses [7, 16, 10, 37] can potentially

detect all knowable commutativity order violations from a trace by encoding the feasibility

constraints of order violations into SMT formulas, but require expensive offline analysis on

the logged trace and cannot scale to full execution traces.

Of course, not all commutativity order violations are harmful, however the presence of a

commutativity order violation may indicate undesirable interference.

Commutativity Order Violation Prediction. In this work, we introduce the concept of

a commutativity order violation (COV) and present an efficient algorithm that predicts COV

3



bugs in the observed execution with appropriate formal guarantees. Our approach is based

on a novel combination of recent partial order based race prediction techniques [17, 20, 22,

21, 38, 23] and a structural representation obtained from a commutativity specification [39].

Conceptually, the notion of COV can be seen as a generalization of both predictive race

detection and commutativity race detection [39] to deal with order violations in the library

interface level that do not appear as read-write races.

The de facto standard notion of correct reorderings is based on low-level reads and writes

— it captures feasible reorderings of a trace that satisfies the thread order and same last

writer for all reads (or lack of such a writer) [24, 23, 40]. This misses opportunities for

capturing a larger set of feasible reorderings based on semantics. We introduce the notion

of extended correct reorderings to capture conflicting operations at the library API level.

This allows us to capture a richer and abstract notion of conflict beyond basic reads and

writes. We further extend an existing partial order to track conflicting critical sections on

the same lock that contain a pair of non-commutative operations. This extension also applies

to all existing predictive analyses that track conflicting critical sections (CCS) and thus is

of interest beyond commutativity race prediction. To avoid reporting false non-racy order

violations, our analysis OVPredict defers reporting non-racy order violations until the end

of critical sections.

1.1.3 Efficient Commutativity Library Interface Handling Stateless Model Check-

ing

Our second contribution is a stateless model checking tool that systematically enumerates

non-redundant interleavings based on the notion of dependency at the library interface level.

Stateless model checking (SMC) is an effective way of checking whether assertions in a mul-

tithreaded program are always satisfied, which systematically enumerates all nonequivalent

executions of the program and checks each of them individually. SMC performed naively

does not scale due to the combinatorial explosion of the number of thread interleavings.

4



Redundant Executions at the Semantic Level. Dynamic partial order reduction (DPOR)

techniques cut down some of the redundant explorations by partitioning executions into

equivalent classes and exploring exactly one execution per equivalent class [41]. [42] pro-

poses an optimal method for DPOR, and it has also been extended to the settings of weak

memory consistency [43, 44]. To further reduce the number of explored executions, [45] pro-

pose a combination of unfoldings and DPOR, which achieves optimal reduction under some

cases. [46, 47] propose maximal causality reduction (MCR), another SMC technique that

can in principle explore many fewer states than DPOR. To make SMC faster for memory

models with declarative semantics such as C++ concurrency, [48] propose execution graph-

based approaches that are shown to be more scalable than prior approaches that explore

interleavings.

Despite recent advances in SMC, most approaches are only able to exploit the indepen-

dence at the instruction level, but not at the semantics level. For example, consider the

following program where N threads concurrently add distinct elements to a set object s

implemented with a linked list. Suppose that the add() operation on s is atomic.

s.add(1); . . . s.add(N);

assert(s.size() = N);
(N-set-add)

At the semantics level, the execution order of these add() invocations does not matter; all

orders yield the same return values for each invocation and produce the same set (albeit not

the same linked list). Therefore, exploring only one execution suffices to check the assertion

at the end. However, these add() invocations do not commute at the instruction level: there

exists memory dependence between reads and writes (a.k.a. reads-from relation) within these

invocations, and their different orders produce different linked lists. Any DPOR algorithms

that exploit independence at the instruction level would therefore conservatively conclude

that these invocations do not commute. As such, they explore N ! possible executions to cover

the full state space. These executions may differ in the concrete states of the set s. However,

5



these differences are not observable by the client of the set data structure. Considering all

of them is therefore unnecessary.

Existing SMC approaches have not exploited such semantic commutativity between

method invocations on data structures. The only SMC algorithm that is able to exploit

independence of critical sections at the semantics level is CDPOR [49]. Their approach,

however, can only utilize independence at the level of concrete states rather than the ab-

stract states. More discussion of their work can be found in Chapter 5. Furthermore, in

the face of the growing complexity of software, exhaustively searching all the concrete states

of a program naively is not scalable. It is often more desirable and even necessary to only

reason about program behaviors based on the interactions among operations on the library

interface. Indeed, as observed in [39], concurrent threads can invoke operations in a way that

causes undesirable interference at the library interface level, leading to incorrect program

behaviors.

Commutativity-aware Stateless Model Checking. As the second contribution of this

work, we introduce the notion of semantic commutativity equivalence (SC-equivalence), which

is coarser than the ones characterized by partial orders over events at the instruction level.

Intuitively, two executions are SC-equivalent if one can be obtained from the other by swap-

ping adjacent commutative operations. Based on this notion, we present NCMC (non-

commutativity model checking), a new SMC algorithm that is able to effectively exploit

semantic commutativity. Our approach uses a commutativity specification1 on concurrent

objects to identify commutative operations in each exploration of the program, and avoids

exploring executions that do not cover a new abstract state. One key difference from previ-

ous approaches is that our approach covers all abstract states rather than concrete states of

the program. This weaker completeness property, called semantic completeness, enables our

algorithm to achieve significant reduction on the number of explored executions, while still

ensuring that all behaviors of the program at the semantic level are covered.
1We assume the commutativity specifications are given by the user. Automatic generation of commuta-

tivity specifications has also been studied in the literature [50, 51].

6



1.2 Contributions and Thesis Organization

The thesis presents the following work divided into chapters:

• We introduce the preliminaries on execution models, existing predictive analyses and

corresponding relations, and closely related work is discussed in Chapter 2.

• We present our work OVPredict, a predictive analysis that novelly extends existing

race prediction techniques to order violation prediction. OVPredict specifically deals

with a generalized form of order violations that we call commutative order violations.

OVPredict is underpinned by a new partial order called extended doesn’t-commute

(EDC) that generalizes existing partial order based predictive analysis by incorporating

dependency between library method invocations. To make OVPredict practical, we

further present an optimization for tracking conflicting critical sections (CCS) that

enables our tool to be competitive with highly optimized happens-before (HB) analysis

(Chapter 3).

• We present a stateless model checking algorithm that can exploit semantically equiv-

alent traces and explores exponentially fewer interleavings on programs that use com-

mutative data structures, provided with a correct commutativity specification of the

data structure (Chapter 4).

• We discuss related work in Chapter 5.

• We summarize the impact of this work and conclude this thesis in Chapter 6.

7



2. PRELIMINARIES

This chapter introduces basic notation useful throughout the thesis. The exposition

follows other related works in the literature.

2.1 Execution model

Actions. We consider concurrent programs consisting of threads that communicate via

shared objects. Each object o ∈ Obj can be in a set of abstract states. That is, we are

interested in the abstract states of the object as described by its specification and not in the

actual implementation details of the object. For example, the actual state of a set object is

the set of values it holds.

We assume that object methods are given by specifying their effects on the shared state.

For example, Table 2.1 describes the method effects of a set object. We refer to method

invocations as actions.

An action a ∈ Act is denoted by an expression of the form o.m(~u)/~v where o ∈ Obj is an

object, m is a method of o, and ~u and ~v are tuples of concrete arguments and return values

that match the signature of m. The effect on the abstract state of every a ∈ Act is given by

a partial map LaM ∈ H ⇀ H. For example, for a set object o, the map Lo.size()/nM is identity

on all states in which the set o has size n and undefined otherwise. We regard reads and

writes as actions on registers, e.g., rd(x) is a read on register x.

Commutativity. We say that two invocations commute when independent of their appli-

cation order, their composed effects are the same. Formally, two actions a, b ∈ Act commute,

denoted by a 1 b, if and only if LaM ◦ LbM = LbM ◦ LaM.

For example, following Table 2.1, two add actions commute when they add different

values, as the two actions modify disjoint parts of the (abstract) state of the object. We

assume that actions of different objects always commute. That is, a method invocation on

one object does not affect the state of another object.

8



Method Effect on the set s
add(v)/r s −→ s′ iff s′ = s ∪ {v} and r = [v ∈ s]
contains(v)/r s −→ s′ iff s′ = s and r = [v ∈ s]
size()/r s −→ s′ iff s′ = s and r = |s|

Table 2.1: Methods for a set s and their effects.

Traces and Events. We work on (execution) traces of concurrent programs and assume

the sequential consistency memory model. In this setting, a trace σ is a totally ordered list

of events. Each event e of σ, written as 〈t, a〉, denotes that the action a is performed by

thread t ∈ Tid, where Tid denotes the set of thread identifiers. We denote by Eventσ the set

of events in σ; we also denote events simply by their operation (e.g., rd(x), wr(x), acq(m),

and rel(m)). We use the helper function act(e) to denote the action of event e.

We require that traces obey lock semantics, e.g., every lock is released by a thread t only

if there is an earlier matching acquire event by the t, and a lock is held by at most one thread

at a time.

Orders on Traces. We define the trace order ≺σtr as the total order on events of σ, i.e.,

e1 ≺σtr e2 iff e1 occurs before e2 in σ. We define program order (or thread order) (PO) as a

strict partial order that orders events in the same thread. Given two events a, b, we write

a ≺σPO b if a occurs before b in σ and a, b are in the same thread.

Given a trace σ and designated sets of read (R) and write (W) events, we define the

reads-from relation RF ⊆ (Eventσ ∩ W) × (Eventσ ∩ R) to be total and functional on its

second argument: every read event reads from exactly one write event1. Under sequential

consistency, a read event e observes the last write event (according to the trace order ≺σtr)

e′ such that e and e′ access the same variable and e′ ≺σtr e.

Correct Reorderings. A fundamental challenge in concurrency bug detection is the large

number of thread interleavings (typically exponential in the program size). The notion of
1In the case where no such write exists in the trace, we let the read event read from the initialization

write for convenience.

9



correct reorderings attempts to alleviate this problem by capturing a more coarse equivalent

class of traces other than the input trace. The idea here is to infer order violations that

might occur in alternate reorderings of an observed trace, thereby detecting order violations

beyond those in just the execution that was observed. The set of allowable reorderings of

an observed trace σ is defined in a manner that ensures that races or order violations can

be detected agnostic of the program that generated σ in the first place. Such a notion

is captured by a correct reordering in the literature [23, 24, 40, 20], which we refer to as

PORF-reorderings in this work.

Given a relation r, we write r+ for the transitive closure of r. For a partial order P over

σ, a set of events S ⊆ Eventsρ is said to be downward-closed with respect to Pσ if for every

e, e′ ∈ Events, if e ≺σP e′ and e′ ∈ S, then e ∈ S.

A trace ρ is said to be a PORF-reordering of trace σ if

(1) Eventsρ ⊆ Eventsσ, and

(2) Eventsρ is downward-closed with respect to (POσ ∪ RFσ)+, and further POρ ⊆ POσ,

RFρ ⊆ RFσ.

Soundness and Completeness. A predictive race detection algorithm is sound if given

any input trace tr, every reported race is a predictable race of tr (i.e., absence of false

positives). The algorithm is called complete if it reports all predictable races of tr (i.e.,

absence of false negatives) 2.

2.2 Existing Partial Orders

We briefly describe the happens-before (HB) and the weak-doesn’t-commute (WDC) partial

orders.

Definition 2.2.1 (The HB partial order). Given a trace σ, HB is the smallest partial order

satisfying the following properties:
2We note that these notions are often used in reverse in static analysis and program verification. However,

here we align with the terminology used in predictive analyses.

10



(1) (Synchronization order) Release and acquire events on the same lock are ordered by

HB.

(2) (Program order) PO ⊆ HB.

The HB relation is sound but incomplete; it has no false positives but misses predictable

races knowable from the input trace. HB analysis can be implemented efficiently using

vector clocks [52] and it is one of the most widely used dynamic race detection techniques

in practice.

Definition 2.2.2 (The WDC partial order). Given a trace σ, WDC is the smallest partial order

satisfying the following properties:

(1) (CCS order) If two critical sections on the same lock contain two conflicting events, then

the unlock of the first critical section is ordered by WDC before the second conflicting

event.

(2) (Program order) PO ⊆ WDC.

The first rule of WDC is commonly referred to as conflicting critical section (CCS) order in

the literature. WDC is unsound; it may report false races. In practice, almost all WDC races

are true races [23].

WDC Analysis Details. Algorithm 1 shows the details of an unoptimized algorithm for WDC

analysis [23]. The algorithm computes WDC using vector clocks that represent logical time.

A vector clock C : Tid 7→ Val maps each thread to a nonnegative integer [52]. Operations on

vector clocks are pointwise comparison (v) and pointwise join (t):

C1 v C2 ⇐⇒ ∀t.C1(t) ≤ C2(t)

C1 t C2 ≡ λt.max(C1 (t), C2 (t))

The algorithm maintains the following analysis state:

11



Algorithm 1 Unoptimized WDC analysis
1: procedure Release(t,m)
2: foreach x ∈ Rm do Lrm,x ← Lrm,x t Ct
3: foreach x ∈ Wm do Lwm,x ← Lwm,x t Ct

 . WDC rule (a)
4: Rm ← Wm ← ∅ (CCS ordering)
5: Ct(t)← Ct(t) + 1 . WDC rule (b)
6: procedure Write(t, x) (PO ordering)
7: foreach m ∈ HeldLocks(t) do
8: Ct ← Ct t

(
Lrm,x t Lwm,x

)  . WDC rule (a)
9: Wm ← Wm ∪ {x} (CCS ordering)

10: check Wx v Ct
11: check Rx v Ct
12: Wx(t)← Ct(t)
13: procedure Read(t, x)
14: foreach m ∈ HeldLocks(t) do
15: Ct ← Ct t Lwm,x

 . WDC rule (a)
16: Rm ← Rm ∪ {x} (CCS ordering)

17: check Wx v Ct
18: Rx(t)← Ct(t)

• a vector clock Ct for each thread t that represents t’s current time;

• vector clocks Rx and Wx for each program variable x that represent times of reads and

writes, respectively, to x;

• vector clocks Lrm,x and Lwm,x that represent the times of critical sections on lock m con-

taining reads and writes, respectively, to x;

• sets Rm and Wm of variables read and written, respectively, by each lock m’s ongoing

critical section (if any).

The algorithm checks for WDC-races by checking for WDC ordering with prior conflicting

accesses to x; a failed check indicates a WDC-race (lines 10, 11, and 17). The algorithm

updates the logical time of the current thread’s last write or read to x (lines 12 and 18).

Performance Cost for Computing CCS. Computing CCS order is one major performance

cost in predictive analysis [23]. Chiefly, each access with L locks may acquire L T -dimension

12



vector clocks in the worst case.

OVPredict employs the same epoch optimizations as SmartTrack [23], in which vector

clocks that store last-access times for writes and most reads can be replaced with a lightweight

representation called epochs. To mitigate CCS tracking cost, OVPredict uses a space-efficient

algorithm similar to the SmartTrack Optimizations (§3.5).

2.3 Commutativity Specifications

The conditions under which two actions commute are often conveniently specified in the

form of logical formulas. This allows formal treatment of various types of conditions.

Commutativity Specifications. Given a suitable logic, a logical commutativity specifi-

cation for a pair of methods m1,m2 of the same object is given by a logical predicate ϕm1
m2

with its free variables collected into the list ( ~x1; ~x2) so the variables ~xi match the arguments

and returns of mi. A logical commutativity specification Φ for an object with methods M is

a set of method specifications ϕm1
m2( ~x1; ~x2) for each {m1,m2} ⊆ M.

For a pair of methods m1,m2 of the same object, the logical predicate ϕm1
m2 is sound if

ϕm1
m2(a, b) implies that a and b commute for a pair of actions a, b ∈ Act. A commutativity

specification Φ is sound if every predicate in Φ is sound. In this work, we only consider

sound commutativity specifications.

Note that sound commutativity specifications are not necessarily precise. Even though

the actions commute, the specification is allowed to say that they do not. Our algorithms

require sound commutativity specifications.

Access Point Representation. We next introduce a structure which is useful for captur-

ing commutativity specifications in a way that can be used by a dynamic program analyzer.

We refer to these structures as access point representations (of the object’s commutativity

properties).

Definition 2.3.1 (Access point representation). An access point representation for an object

o ∈ Obj is a tuple 〈Xo, ηo, Co〉, where

13



1. Xo is a set of access points. Intuitively, access points capture the micro-action under-

lying a method invocation.

2. ηo ∈ Acto → P(Xo) indicates the finite set of access points touched by each action of

the object (Acto stands for the set of all actions of object o).

3. Co ⊆ Xo ×Xo is a symmetric binary relation describing which access points conflict.

We now define what it means for an access point representation to precisely match a

logical specification. Automatic translation from a logical formula to an equivalent access

point representation is studied in [39].

We say that 〈Xo, ηo, Co〉 represents a logical commutativity specification Φ of o iff for all

ϕm1
m2 ∈ Φ and all actions a of m1 and b of m2, we have:

(ηo(a)× ηo(b)) ∩ Co = ∅ iff ϕm1
m2(a, b)

Therefore, we can now work with an access point representation 〈Xo, ηo, Co〉 instead of

an equivalent commutativity specification Φ. We utilize access point representations in our

commutativity order violation detector (§3.4).

14



3. OVPREDICT: EFFICIENT COMMUTATIVITY ORDER VIOLATION

PREDICTION

3.1 Introduction

First, in this work, we introduce the concept of a commutativity order violation (COV)

and present an efficient algorithm that predicts COV bugs in the observed execution with

appropriate formal guarantees. COV is a sound notion of order violations that captures

both racy and non-racy order violations, and it strictly subsumes the standard notion of

predictable races.

Next, we introduce the notion of extended correct reorderings (EDC) to capture conflicting

operations at the library API level. This allows us to capture a richer and abstract notion

of conflict beyond basic reads and writes. We further extend an existing partial order to

track conflicting critical sections on the same lock that contain a pair of non-commutative

operations. EDC is a generalization of the traditional notion of correct reorderings (a.k.a. pre-

dictable traces) by considering conflicting operations in the library interface rather than the

basic reads and writes. This extension also applies to all existing predictive analyses that

track conflicting critical sections (CCS) and thus is of interest beyond commutativity race

prediction. To avoid reporting false non-racy order violations, our analysis OVPredict defers

reporting non-racy order violations until the end of critical sections.

We develop an efficient single-pass algorithm OVPredict that, given an input trace σ,

detects whether σ contains a commutativity order violation. OVPredict can be based on

existing (not necessarily sound) partial orders such as WDC. Moreover, OVPredict reports no

false non-racy order violations even if the underlying partial order is unsound.

Although the underlying predictive analysis of OVPredict performs a single pass on

the input trace, it is not suitable for online deployment due to its complexity. One major

performance bottleneck is conflicting critical section (CCS) tracking [23]. To mitigate this, we

15



further propose a space-efficient algorithm that stores only compact mutex-access metadata

per memory location.

We implemented OVPredict and evaluated it on a number of large Go and C/C++ code-

bases, including Kubernetes and Chromium. OVPredict targets concurrent UAF errors in

C/C++ and API order violations in Go. OVPredict found 5 previously unknown order viola-

tions in the Go projects. 3 of them have already been confirmed and fixed by the developers.

On the Chromium UAF benchmarks, OVPredict has 33% higher rates of detecting the UAF

compared to ThreadSanitizer, an industrial-strength race detector.

3.2 Overview

In this section we give an overview of our approach as well as the underlying motivation.

Full formal details are presented in later sections.

Consider the following program with a set s and a pointer x to an integer:

a = ∗x

lock(m)

s.put(1)

unlock(m)

lock(m)

if s.get(42) then

delete x

unlock(m)

(Example 2)

Suppose initially s contains the value 42. The left thread reads the integer pointed by x

and then puts the value 1 into the set s. The right thread tests whether s contains 42, and

if it is the case, it proceeds to delete x.

Figure 3.1a shows the execution trace where the left thread is executed before the other

thread. Here, we use acq(m) and rel(m) to denote acquire and release lock m respectively.

The trace has a predicable COV as Fig. 3.1b demonstrates. The happens-before (HB) analysis

clearly misses the predictable COV because of the HB edge between the release-acquire events.

Predictive analysis is a promising candidate for detecting predictable COV. We next describe

the limitations of existing race prediction techniques and our motivation for our approach.

16



Thread 1 Thread 2
rd(x)
acq(m)
s.add(1)
rel(m)

acq(m)
s.get(42)
free(x)
rel(m)

HB

CCS

(a) An execution trace with a
predictable non-racy UAF.

Thread 1 Thread 2
acq(m)
s.get(42)
free(x)
rel(m)

rd(x)
acq(m)
s.add(1)
rel(m)

(b) The reordered trace revealing
the UAF error.

Figure 3.1: The execution in (a) has a predictable UAF as (b) demonstrates.

Existing Predictive Analyses Miss COV. Existing predictive analyses model conflicts

at the read-write level. The recently introduced partial orders such as weak-causally-precedes

(WCP), doesn’t-commute (DC) and weak-doesn’t-commute (WDC) all track dependency between

critical sections on the same lock with a pair of conflicting memory accesses. Specifically,

if two critical sections on the same lock contain conflicting events, e.g., read-write or write-

write conflict, the analyses will order the release event of the first critical section before the

second conflicting event in the trace. This is referred to as the conflicting critical sections

(CCS) rule in prior work [20, 21, 23, 22].

As depicted in Fig. 3.1a, we have a CCS edge between rel(m) and s.get(1). For brevity,

we lift the CCS ordering from a release-access edge to a release-invocation edge. Intuitively,

the add and get operations on the same set contain low-level conflicting accesses that read

and update the internal state of the set.

Due to CCS ordering and its composition with the program order which orders events

in the same thread, the rd(x) event is ordered before free(x). Thus existing partial order

based analysis misses the predictable UAF as depicted in Fig. 3.1b.

Exploiting Commutativity Specifications. To exploit commutativity between s.add(1)

and s.contains(42) in the semantics level, we leverage a commutativity specification for the

set interface. For example, the following formula describes when add and get operations

17



commute:

v1 6= v2 ∨ (r1 = true ∧ r2 = true)

This formula evaluates to true since the two operations operate on different values. Thus

the two invocations are not treated as conflicting events by our approach. Our extended CCS

rule will keep the two operations unordered, enabling the predictable UAF in Fig. 3.1b to

be detected. If the commutativity specification evaluates to false, the two operations will

be treated as conflicting events and the same CCS rule from prior work applies.

3.3 Commutativity Order Violations

In this section we generalize the definition of correct reordering to capture interaction

in the library interface. We will then introduce commutativity order violations, the central

concept of this thesis.

3.3.1 Generalized Correct Reordering

Rather than considering conflicting events between basic reads and writes, we characterize

the correct trace reorderings based on interaction in the library interface. This allows us to

exploit the abstract semantics of library interaction and capture a coarser class of correct

reorderings. Our characterization is inspired by recent work on declarative specification for

concurrent libraries [53].

Given a trace σ, we require that the concurrent library specifies the communication

order (COMM). Intuitively, COMM relates those actions in σ that exchange information. For

example, in terms of basic reads and writes, the COMM relation is equivalent to the reads-

from (RF) relation, where (w, r) ∈ COMM denotes that event r reads from the value written

by event w. In case of a set library, COMM relates matching update and query operations;

e.g., (s.add(v)/true, s.get(v)/true) ∈ COMM since the add and get actions ‘communicate’

through the value v.

We say that the COMM order is consistent with the commutativity specification Φ if the

actions of every pair of events related by COMM do not commute. Formally, COMM is consistent

18



with Φ if for every (e1, e2) ∈ COMM, act(e1) and act(e1) do not commute according to Φ.

Intuitively, if two events in σ exchange information, they should not be allowed to commute;

COMM captures a form of causality between events. Our analysis require that COMM is defined

to be consistent with the given commutativity specification.

We next define our generalized trace reordering which we call POCOMM-reordering. POCOMM-

reordering is similar to PORF-reordering except it is based on COMM rather than RF.

A trace ρ is said to be a POCOMM-reordering of trace σ if

(1) Eventsρ ⊆ Eventsσ, and

(2) Eventsρ is downward-closed with respect to (POσ ∪ COMMσ)+, and further POρ ⊆ POσ,

COMMρ ⊆ COMMσ.

For example, Fig. 3.1b is a correct reordering of Fig. 3.1a.

3.3.2 Commutativity Order Violation

Armed with the generalized notion of correct reorderings, we can now define the notion of

communicatively order violations, a central concept of our thesis. Intuitively, a commutativity

order violation (COV) occurs in the input trace σ if there is a POCOMM-reordering of σ in

which two non-commutative actions appear in the reversed order.

Definition 3.3.1 (Commutativity order violation). For a trace σ, a pair of events e1, e2 ∈

Eventσ with e1 ≺σtr e2 form a commutativity order violation if their corresponding actions

a, b do not commute and there exists a POCOMM-reordering σ∗ such that e2 ≺σ
∗

tr e1 (the trace

order between e1, e2 is flipped).

Our notion of commutativity order violations can be seen as a generalization of both

predictable races and commutativity races [39].

3.3.3 Common Order Violations

In this section we present several common types of commutativity order violations that

tend to be harmful in practice. Figure 3.2 lists the commutativity specification of 4 types

19



ϕread
free , ϕ

write
free := false

ϕsend
close, ϕ

send
send := false

ϕwait
signal, ϕ

wait
broadcast := false

ϕsignal
signal, ϕ

signal
broadcast, ϕ

broadcast
broadcast := true

ϕErr
cancel := false

ϕErr
Err, ϕ

cancel
cancel := true

ϕWrite
Close , ϕ

Read
Close, ϕ

Read
Write, ϕ

Write
Write := true

Figure 3.2: Commutativity specifications for common order violations.

of COV that OVPredict targets. These include (1) use-free interaction in C/C++, and (2)

the condition variable, context library and channel operations in Go. Besides UAF which

is introduced in §4.1, we aim to detect COV in the following Go libraries based on the

survey [4]:

(1) Sending to a closed Go channel: Channel send and close operations do not com-

mute.Sending a value to a closed channel causes the program to panic.

(2) Incorrect usage of condition variables: Broadcast (or signal) and wait operations on

a condition variable do not commute. Broadcast operations that occur before wait

events will be lost, potentially causing the Goroutine that waits to starve.

(3) Incorrect usage of context objects: Reading the error message of a context object

through the Err method does not commute with the cancelling of the context object.

If the reading of the error occur before it is set by cancel, nil is returned.

3.4 OVPredict

This section introduces OVPredict, a dynamic analysis that detects both data races and

non-racy order violations.

20



3.4.1 Extended Doesn’t-Commute Analysis

In this section we present our partial order, extended doesn’t-commute (EDC), for commu-

tativity order violation detection. EDC can be seen as a generalization of the existing partial

orders such as WDC. EDC captures non-commutativity ordering at the method invocation level

instead of the classical read-write level. For simplicity we base our partial order on the WDC

partial order. Extending other partial orders for commutativity order violation analysis can

be handled in a similar way.

The EDC order is the smallest partial order that satisfies the following properties.

(1) (Extended CCS) If two critical sections on the same lock contain two actions that don’t

commute, then the first critical section is ordered to the second event.

(2) (Program order) PO ⊆ EDC.

EDC generalizes the WDC relation to capture library method invocations: it considers

method invocations that don’t commute instead of read-write conflict. Moreover, the same

extended CCS order rule applies to any predictive analyses that employ the CCS order. These

include WCP [20] and DC [21].

EDC Analysis. We next present the details of EDC analysis for COV detection, shown in

Algorithm 2. EDC analysis consists of two components: (1) the efficient, streaming main pro-

cedure for computing the EDC partial order on the input trace (procedure Release, Action,

and helper function ConflictingAP), and (2) helper functions for the deferred check for

potential non-racy COV candidates that decide if a pair of EDC-unordered events on the same

lock form a true COV (highlighted procedure CheckCandidate and AddCandidate).

Overview. EDC requires the access point representation 〈Xo, ηo, Co〉 obtained from the com-

mutativity specification for the set of objects O as input. The algorithm maintains the

following analysis states:

• a vector clock Ct for each thread t that represent t’s current time;

21



Algorithm 2 EDC analysis
1: procedure Release(t,m)
2: foreach p ∈ Pm do Lrm,x ← Lm,p t Ct . EDC rule (a)
3: Pm ← ∅ (CCS ordering)
4: Ct(t)← Ct(t) + 1 . EDC rule (b)
5: CheckCandidate(t,m)
6: procedure Action(t, o, a) (PO ordering)
7: AP ← ConflictingAP(o, a)
8: foreach p ∈ AP do
9: AddCandidate(t, p)
10: foreach m ∈ HeldLocks(t) do
11: Pm ← Pm ∪ ηo(a)
12: foreach p ∈ AP do

 . EDC rule (a)
13: Ct ← Ct t Lm,p (CCS ordering)

14: foreach p ∈ ηo(a) do
15: Cp(t)← Ct(t)
16: procedure ConflictingAP(o, a)
17: AP ← ∅
18: foreach p ∈ ηo(a) do
19: foreach p′ ∈ active(o) ∩ Co(p) do
20: AP ← AP ∪ {p′}
21: return AP
22:
23: procedure CheckCandidate(t,m)
24: foreach e@u ∈ Candt,m do
25: check e@u v Ct
26: Candt,m ← ∅
27: procedure AddCandidate(t, p)
28: foreach e@u ∈ Cp do
29: if u 6= t ∧ e@u 6v Ct then
30: M ← MSet(e@u, Ct(u)) ∩ HeldLocks(t)
31: if M = ∅ then
32: Report racy COV
33: else
34: foreach m in M do
35: append(Candt,m, e@u)

22



• vector clocks Cp for each access point p ∈ Xo. This is analogous to the read and write

vector clocks used in classical HB analysis;

• vector clocks Lm,p that represent the release times of critical sections on lock m con-

taining accesses to point p;

• a set Pm for access points accessed by each lock m’s ongoing critical section (if any);

• a candidate list for each pair of thread t and lock m of the form 〈e0@t0, . . . , en@tn〉,

where each ei@ti is an epoch representing an access that happen within critical sections

under m..

Procedure ConflictingAP. The ConflictingAP helper function iterates over each

access point p touched by a and seeks all access points p′ ∈ active(o) which conflict with

p. This is done by computing the intersection of active(o) and Co(p). The conflicting access

points are gathered in set AP , which is the return value.

Procedure Action. Upon each action a on object o ∈ O, the procedure Action is called.

First, it computes the set of access points touched by a using the helper function Con-

flictingAP (line 7). Next, it checks the times for each conflicting access point p ∈ AP for

potential order violations though procedure AddCandidate, which we will describe shortly.

If the last-access time for point p is not comparable to Ct, the access point will go through

a second procedure to check for COV candidates. This is analogous to checking read-write

races in classic HB analysis.

Action proceeds by updating state for CCS order (lines 10-13). For each lock held by

thread t, it adds all touched access points to Pm, and updates thread clock Ct by merging

Lm,p for each p ∈ AP . Essentially, Ct acquires the release times of critical sections on m that

touch conflicting access points to a. The difference from WDC analysis is that here we use

access points here rather than the read and write release times for each variable.

Finally, Action updates the last-access time Cp for each touched access point p (lines

13-14). It suffices to update only the component in Cp that corresponds to thread t.

23



ProcedureRelease. The Release procedure serves two purposes: updating states for

CCS order and determining each non-racy COV candidates in Candt,m. First, it updates Lm,p

for each touched p ∈ Pm, clears Pm, and increments the thread epoch by 1. We next describe

how OVPredict determines non-racy COV candidates.

Predicting Non-racy COV. The key insight for deferred check is that a feasible reorder-

ing of two non-racy but conflicting simulated accesses in an input trace requires their two

entire critical sections be reordered. In other words, there is no causal relation between

the two critical sections. This requires the analysis observe all events from the two critical

sections before it can decide whether a simulated access pair is a true order violation.

When the second critical section under the same lock ends, i.e., when the lock releases,

OVPredict checks if the two entire critical sections are ordered by EDC. If not, OVPredict

reports a potential order violation, which is guaranteed to be a true positive.

Purpose of Candidate List Candt,m. The algorithm uses Candt,m to compare the previous

access’ epoch to the mutex release time of the current thread, in order to determine whether

the two critical sections enclosing the two accesses are ordered.

Procedure CheckCandidate. CheckCandidate adds an epoch to Candt,m when it

encounters an access point that may form a order violation candidate with a previous access

point. The analysis checks two conditions for the current access point: (1) it is EDC-unordered

with a previous simulated access point to the same variable, and (2) it holds the same mutex

m as the previous access point. When both conditions are satisfied, the previous access

point’s epoch is appended to the epoch list Candt,m.

On a release event for mutex m by thread t, the analysis fetches the epoch list of previous

access pointes in Candt usingm. Each epoch in the list is then compared to thread t’s current

time Ct. If a previous epoch is not ordered before Ct, the two critical sections enclosing

the access points must be unordered. OVPredict reports a true OV candidate at this stage.

Otherwise, the OV candidate is deemed infeasible. Finally, the m’s entry in Candt is cleared.

24



T1 T2 C1 C2 CandT2,m CheckCandidate
〈1, 0〉 〈0, 1〉

acq(m) 〈2, 0〉
rd(y) 〈3, 0〉
wr(x) 〈4, 0〉
rel(m) 〈5, 0〉

acq(m) 〈0, 2〉
free(x) 〈0, 3〉 〈4@1〉
wr(y) 〈5, 4〉 〈4@1〉
rel(m) 〈5, 5〉 4@1 ≺ C2

EDC

Figure 3.3: An example for vindicating non-racy UAF candidates.

A Non-racy COV Example. Consider the following UAF-free C++ program with two

threads:

lock(m)

if (y 6= 0)then

*x = 1

unlock(m)

lock(m)

free(x)

y = 0

unlock(m)

(no-uaf-dep)

Figure 3.3 shows OVPredict’s analysis states for an execution where all events from the

left thread finish before the right thread starts. The unlock on m on the left thread is

EDC-ordered to the read of y on the right thread, but not ordered to the free on x. Thus,

OVPredict adds the two racy epochs 〈4@T1, 3@T2〉 along with their mutex set intersection

{m} to the candidate list D2 of thread T2. On the unlock of m from T2, OVPredict compares

the vector clock C2 of T2 with the first racy epoch 4@T1. Since C2 happens before 4@T1, the

candidate is vindicated and removed from D2.

By the EDC rule, the free of x in T2 is unordered to the write to x in T1, leading to a

potential UAF. However, the UAF is not feasible because the deletion of object x cannot

come before the use of object x in an alternative execution. If the critical section on the right

hand side executes first, the use event from the left hand side will be unreachable, hence no

UAF will happen.

25



3.5 Optimizing CCS Tracking

This section introduces a space-efficient shadow word representation for CCS tracking.

The algorithm which we call bounded CCS tracking uses bounded space to store mutex-access

metadata and supports

• Epoch optimizations are optimizations from prior works [54, 23] that replace vector

clocks with epochs for last access metadata. We omit discussion about epoch op-

timizations in this thesis since OVPredict uses the same epoch optimizations from

SmartTrack.

• Mutex-access metadata optimizations are novel optimizations that use more memory-

efficient and cache-friendly data structures compared to SmartTrack for CCS tracking.

3.5.1 Mutex-access Metadata Optimizations

Tracking CCS is one major source of performance overhead compared to HB analysis [23].

It is expensive and frequently invoked. For each non-same-epoch memory access within a

critical section1, previous information that binds an access with its locks held (called mutex-

access information) must be queried to find a conflicting access that holds the same lock.

If found, ordering between the previous mutex release and the current access needs to be

established by expensive vector clock merging operations.

While SmartTrack significantly mitigates the performance penalty from CCS tracking,

further optimizations can be used reduce memory consumption and maximize cache perfor-

mance.

OVPredict is our new algorithm that leverages shadow memory to achieve lower memory

consumption and better cache performance.

Analysis States. OVPredict uses compact data structures called mutex-access shadow

word to represent a mutex-access pair within critical sections, which can be stored in the

same shadow region for each variable.
1We assume the application of FastTrack’s epoch optimizations.

26



Definition 3.5.1 (Mutex-access Shadow Words). A mutex-access shadow word is a tuple

〈t,m, a, w〉, where t is the thread ID, a is the acquiring count of mutex m, and w the write

bit for the access and the mutex, respectively. The acquiring count a is a scalar value that

increases by one on each acquire of m. The write bit w for an access indicates whether the

access belongs to the write set.

A mutex-access shadow word can be squeezed into an 8-byte word, which can be accessed

atomically on a 64-bit processor. More specifically, all elements in a shadow word can be

represented using small bit widths. First, the read bits use two bits in total. Second, the

total numbers of threads and mutexes created are typically bounded to a small number in

practice. Third, by limiting the depth of CCS tracking, the acquiring count of each mutex

is also bounded to a small number.

Algorithm 3 OVPredict optimizations for CCS tracking
1: procedure Acquire(t,m)
2: Nm ← Nm + 1
3: procedure Release(t,m)
4: Hm(Nm)← Ct
5: CheckCandidate(t,m)
6: procedure MemAccess(t, x, w)
7: foreach m in LocksHeld(t) do
8: Wnew ← 〈t,m,Hm, w〉
9: UpdateShadow(x,Wnew)
10: for 〈e@u,w′〉 in LastAccess(x) do
11: check e@u ≺ Ct(t) . Check data race
12: procedure UpdateShadow(x,Wnew)
13: 〈t,m, n, w〉 ← Wnew
14: foreach Wold in Sx do
15: 〈t′,m′, n′, w′〉 ← Wold
16: if IsZero(Wold) then
17: OverwriteOnce(Wold,Wnew)
18: else if (w ∨ w′) ∧ (m = m′) then . Conflicting CS
19: if t 6= t′ then Ct ← Ct tHm′(n′)
20: if w then OverwriteOnce(Wold,Wnew)

27



Algorithm 3 shows the optimized OVPredict analysis. To track CCS, OVPredict main-

tains the following additional states:

• An acquiring count Nm for each mutex m;

• A thread-local mutex map Mt for each thread t that maps each mutex m currently held

by t to m’s acquiring count when t acquires m;

• A vector of vector clocks Hm for each mutex m indexed by the acquiring count. Each

vector clock represents the release time of m at that specific acquiring count;

• A mutex-access shadow word list Sx for each program variable x. Sx is an array of mutex-

access shadow words, which store the information about last access to x within critical

sections.

OVPredict Analysis Overview. OVPredict updates mutex related states Nm and Hm

on mutex acquire and release events. On acquiring mutex m, the algorithm increments

the acquiring count Nm. On releasing mutex m, the algorithm stores the current thread

clock Ct to the Nm-th slot of Hm, and proceeds to check non-racy OV candidates using

CheckCandidate in algorithm 2.

On a read or write access, OVPredict creates a new mutex-access shadow word Wnew for

each mutex currently held. OVPredict then proceeds to query each shadow word to x using

the UpdateShadow procedural.

Maintaining Mutex-access Metadata. The UpdateShadow procedure queries and

updates existing shadow words Wold stored in the shadow region of x, using the current

shadow word Wnew. First, if the fetched Wold is zero, the analysis stores Wnew at the same

location if it has not yet been stored. The OverwriteOnce procedure ensures that Wnew

is only written once over the old shadow word. If Wnew has been written, OverwriteOnce

overwrites Wold with an empty shadow word with value 0. This ensures that no duplicate

28



SmartTrack SwiftTrack
CS list per thread Ht None
Ancillary metadata
per variable Awx , A

r
x None

Mutex-access
metadata structures CS lists Lrx, Lwx Shadow words

Table 3.1: Comparing OVPredict and SmartTrack.

shadow words are written to Sx and that space occupied by stale shadow words can be

reclaimed.

If Wold is not zero, OVPredict checks if the current access conflicts with the previous

access by checking that at least one of w and w′ is set. If the two accesses are both reads,

i.e., not conflicting, no action is needed. Otherwise, OVPredict merges the n′-th vector clock

in Hm′ to the thread clock Ct if the two accesses are from different threads. Next, OVPredict

overwrites Wold if the current access is a write.

Comparing to SmartTrack. Table 3.1 summarizes the key differences between Swift-

Track and SmartTrack. Unlike SmartTrack which stores mutex-access metadata for reads

and writes in separate global-shared linked lists, OVPredict uses mutex-access shadow words

to capture both reads or writes within a critical section in a unified way, without resorting

to ancillary data structures.

Finally, the OVPredict algorithm is simpler, more understandable and easier to imple-

ment than OVPredict.

3.6 Evaluation

We have implemented the OVPredict on top of ThreadSanitizer (TSAN). Our implemen-

tation consists of (1) the runtime library built on top of TSAN runtime library in C++, and

(2) the static instrumentor that inserts call to the runtime library for Go programs.

29



Runtime Library. The runtime library is shared for both Go and C/C++ programs. The

runtime library implements the optimized version of OVPredict, using shadow memory for

mutex-access metadata. For UAF errors in C/C++, OVPredict reuses TSAN’s interfaces,

but replaces the HB analysis with the new algorithm. OVPredict also reuses TSAN’s imple-

mentation for the epoch optimizations, which uses shadow memory to store at most 4 last

accesses as epochs for each 8-byte application memory.

Static Instrumentor. The static instrumentor is implemented in Go and targets OV bugs

for Go libraries. It inserts calls to the runtime library that generate read or write simulated

accesses at runtime. We specifically target the five types of OV bugs in Fig. 3.2. OVPredict

reuses TSAN’s manual instrumentation to the Go channel implementation and WaitGroup

synchronization library. For the remaining three types, we run the instrumentor with a list

of 16 methods. Among them, 3 are for the condition variable library, 2 are for the context

library, and 11 are for the operations on a file descriptor.

We extensively evaluate OVPredict on industry-sized programs, including Kubernetes

and Chromium. We present the bug detection results for Go OV bugs and C/C++ UAF bugs

in §3.6.2 and §3.6.3. For Go programs, we also compare the effectiveness and performance

between an optimized OVPredict with all optimizations applied (OVb), and an OVPredict

with mutex-access metadata optimizations but no bounded CCS tracking (OVu).

We aim to answer the research questions: (1) How effective is OVPredict in predicting

order violations? (2) How effective are the optimizations in terms of precision and perfor-

mance?

3.6.1 Experimental Setup

We compare OVPredict to TSAN [29], a mature widely used data race detector, on both

Go and C/C++ programs. For UAF errors, we also compare OVPredict with UFO [7]

on several C/C++ concurrent UAF benchmarks. We configured OVPredict and TSAN to

report both data races, OV bugs on Go programs, and concurrent UAF bugs on C/C++

30



Projects Tests Races Order Violations Total Overhead

TS OVb OVu TS OVb OVu TS OVb OVu TS OVb OVu

Kubernetes 500 4 9 9 2 4 4 6 13 13 162% 156% 235%
gRPC 14 0 0 0 1 1 1 1 1 1 74% 79% 89%
Prometheus 185 2 4 4 3 3 3 5 7 7 70% 83% 110%
Go-ethereum 509 3 4 4 2 2 2 5 6 6 213% 315% 402%
Syncthing 93 0 1 1 0 0 0 0 1 1 122% 130% 158%
CockroachDB 51 1 1 1 1 2 2 2 3 3 284% 494% 587%
tidb 18 1 1 1 0 0 0 1 1 1 105% 131% 184%

Total 1319 11 20 20 9 12 12 20 32 32 131% 160% 206%

Table 3.2: Go projects results.

programs. All experiments were performed on Docker containers running Ubuntu 18.04 on

top of a Google Cloud C2 instance [55] with a 16-hyperthread Intel Xeon CPU and 32GB

memory.

Go Benchmarks. Since there are no Go benchmarks for data races and order violations,

we applied OVPredict and TSAN to the tests in 7 open-source Go projects from Github.

Among all the packages that contain concurrent tests, we selected 69 that use at least one

of the annotated libraries as the benchmark. We compare OVPredict and TSAN in terms

of plain and annotated race conditions found in five rounds of runs on all 1319 tests from

these packages.

3.6.2 OVPredict on Open-source Go Projects

We set a 10-second timeout to each test and counted races with the same pairs of static

program locations as one bug. The number of bugs for each tool is accumulated over 10

runs. The results are summarized in Table 3.2.

New OV Bugs Found. OVPredict found 3 new OV bugs on condition variables in Ku-

bernetes, 1 OV bug on condition variables in Cockroach, and 1 OV bug on the context object

in Syncthing. We manually verified that all OV bugs are harmful. Specifically, the 4 OV

bugs on condition variables can lead to blocked goroutines under specific interleavings. All

OV bugs are reported only by OVPredict.

31



1 func (s *server) gossipReceiver(...)
2 {
3 s.mu.Lock()
4 ...
5 if cycler := s.simulationCycler; cycler != nil {
6 cycler.Wait()
7 }
8 s.mu.Unlock()
9 }

13 // Gossip embeds a server, so s and g alias here.
14 func (g *Gossip) SimulationCycle() {
15 g.mu.Lock()
16 defer g.mu.Unlock()
17 if g.simulationCycler != nil {
18 g.simulationCycler.Broadcast()
19 }
20 }

Figure 3.4: A non-racy COV in CockroachDB.

We have reported all the findings to the developers. All 3 bugs in Kubernetes have been

confirmed and fixed. We also checked the commit history of Kubernetes and found the

latent periods (i.e., the time between the finding and introducing the bug) of these bugs

range from 3 months to 4 years and a half, with a medium value being 3 years. Note that all

Go applications we evaluated are mature and actively maintained. Some of the Go projects

in Table 3.2, including Kubernetes and CockroachDb, have automated testing pipelines that

continuously run stress testing. This shows that the bugs detected by OVPredict are deep

and hard-to-find concurrency bugs.

In total, OVPredict found 12 more bugs than TSAN, including 9 more plain races and 3

more annotated race conditions. We manually inspected the reports and confirmed that all

bugs reported by TSAN were also reported by OVPredict. Race conditions over condition

variables account for 15 of all 20 order violations reported by OVPredict. Such races are

not reported by the original TSAN, tend to be highly latent, and the extra delay or leaked

goroutines can be hardly noticeable.

32



Figure 3.4 shows a non-racy COV found in CockroachDB by OVPredict. CockroachDB

is a popular open-source distributed SQL database with over 18k Github stars and stud-

ied in the survey [4]. The COV, between the broadcast and wait on the condition variable

SimulationCycler, leads to potential deadlock of the server thread that waits on cycler.

The purpose of simulation cycles is to make all listening nodes pause and synchronize. How-

ever, there is no guarantee that the gossipReceiver will always be woken up by the broad-

cast in SimulationCycler, which is repeated only bounded number of times. If the broadcast

(line 18) happens before the wait (line 6) on SimulationCycler, the broadcast signal will

be lost, causing the client to be blocked on wait.

Performance Comparison. Table 3.2 shows the average overhead for all three tools,

which is computed as the geometric mean of the additional amount of time relative to the

uninstrumented baseline testing runs. OVPredict on average incurs 160% overhead, about

22.1% slower than TSAN. OVPredict has comparable performance with TSAN on gRPC

and Syncthing, while performing much worse on the Cockroach and Go-ethereum tests, with

a slow down up to 494%.

As discussed in Chapter 2, the additional overhead of OVPredict comes from two main

sources. The CCS tracking in OVPredict incurs additional overhead for each memory access

in the critical section. OVPredict also keeps both the happens-before clock and the weak-

happens-before clock per thread and per synchronization object.

Effectiveness of Bounded CCS Tracking. The bounded CCS tracking optimization,

which trades precision for speed, does not make OVPredict report less races or OV bugs

compared to an OVPredict without this optimization, as shown in Table 3.2. Furthermore,

this optimization significantly improves the performance of OVPredict. OVPredict with

this optimization is on average 22.3% faster compared to OVPredict with unbounded CCS

tracking and mutex-access metadata optimization.

33



Program LOC #Thr #Acc #Lock #Free
Pbzip2 0.9.4 [56, 7] 1.5K 3 (1) 503 9 17
Apache 2.0.48 [56] 170K 2 (1) 7.1M 5.1K 145K
MySQL 4.0.19 [56] 362K 20 (1) 33.6M 250K 766K
Chromium#841280 [1] 200 39 (4) 405M 363K 27M
Chromium#904714 [57] 106 46 (5) 39M 132K 2.7M
Chromium#944424 [58]5.5K 41 (4) 432M 551K 36M
Chromium#945370 [59] 31 42 (5) 209M 1.5M 12M

Table 3.3: UAF Benchmarks. LOC: lines of code for the non-Chromium programs and for
the tests in Chromium bugs. "#Thr": Total number of threads created (with total number
of processes created in the parentheses). "#Acc": number of memory accesses. "#Lock":
number of mutex lock events. "#Free": number of memory free events.

Benign Race Conditions. However, OVPredict can report high-level race conditions

that are benign. We observed several benign races on OV bugs in our evaluation. First,

OVPredict does not distinguish benign benign and harmful race conditions. This leads to

OVPredict reporting several benign races on condition variables and the context objects.

For example, some programs use spinning loops to query if the err field of a context object

is updated. OVPredict does not comprehend such ad hoc synchronizations currently. We

note that by properly annotating library APIs, developers can tune OVPredict to filter out

desirable race conditions.

For plain data races, the soundness of predictive analyses employed by OVPredict comes

with a few caveats in prior work [21, 20], although in practice, predictive race detection rarely

reports false positives. No false positives have been observed in prior work [21, 20, 23]. We

inspected a small subset of all the plain races reported and did not find false positives.

3.6.3 Concurrent UAF Detection

We also evaluated OVPredict on a set of benchmarks listed in Table 3.3 for predicting con-

current UAF errors, including: (1) three C/C++ programs containing known UAFs studied

in prior works [56, 7] and available from [60], and (2) four concurrent UAF bug reproducers

collected from the Chromium issue tracker [61]. The three non-Chromium programs are the

34



only benchmark we can find for concurrent UAF bugs in the literature. The trace statistics

of the benchmarks are also reported.

We used the public available instructions to reproduce the concurrent UAF bugs for each

benchmark. All non-Chromium tests contain more than one concurrent UAF bug and we

ran all three tools 10 times on them. We did not apply UFO to the Chromium tests for

two reasons: (1) the offline SMT solving could not finish in one minute for each run, and

(2) UFO can be unsound because it ignores reader locks, which are prevalent in Chromium.

Each Chromium test contains only one known UAF race and we ran OVPredict and TSAN

1000 times on them to collect the rates for successful detection.

For this evaluation, we used OVPredict to detect concurrent UAF errors only and com-

pared it to a version of TSAN with the same optimization applied. Both tools also employ

a compile-time optimization that removes provably redundant instrumentation for memory

accesses to the same address within the same basic block, which is similar to the work [62].

We used the same parameters for the window size and the solver timeout in [7].

Existing UAF Benchmark. We first evaluate OVPredict on existing benchmarks used

by previous studies. Table 3.4 top shows the results for Pbzip2, Apache and MySQL. All

three tools found the same UAF races in Apache. We focus on discussing the results on the

two other benchmarks below.

Pbzip2. TSAN and OVPredict respectively found 2 and 3 new UAF races involving concurrent

use and destruction of mutexes on Pbzip2, which are missed by UFO. We manually examined

the UFO implementation and found that UFO did not process mutex destroy events as free

events. We speculate that UFO can also detect these new races if the mutex destroy events

are processed.

MySQL. The MySQL benchmark contains one known data race [60] but no previously known

UAF races. Both TSAN and OVPredict detected a previously unknown use-free race between

a free_root call in handle_one_connection and a read from the fputs function, while UFO

35



Program UFO TSAN OVPredict

UAF Online (Offline) UAF Time UAF Time

Pbzip2 4 1.61 (0.15) 6 0.16 7 0.15
Apache 3 112.3 (1.34) 3 1.79 3 1.90
MySQL 0 671.0 (1.93) 1 2.47 2 2.78

Chromium Bug TSAN OVPredict

%UAF Time %UAF Time

Chromium#841280 7.31% 0.14 7.38% 0.15
Chromium#904714 100% 0.29 100% 0.39
Chromium#944424 2.0% 0.11 4.4% 0.13
Chromium#945370 13.6% 0.15 14.4% 0.19

Table 3.4: Results for UAF races. The "Time" columns are the average running time in
seconds. The "UAF" columns show the number of UAF races detected. Each UAF race is
uniquely identified by a pair of static program locations. The "%UAF" columns show the
rates of successful detection of the known UAF race. We report both online and offline
analysis time for UFO. OVPredict and TSAN only use online analysis. Each non-Chromium
test is run 10 times and each Chromium test is run 1000 times.

detected no UAF races. OVPredict also detected a UAF race on a global COND_thread_count

object that is first accessed in a thread that manages client request and then freed in the

main thread.

Historical Chromium UAF. As shown in the bottom of Table 3.4, Both OVPredict and

TSAN find all 4 concurrent UAFs using the public bug reproducers. OVPredict has a geomet-

ric mean of 32.9% higher detection rates relative to TSAN. In Chromium#904714, both tools

find the UAF race in all executions. We inspected the bug reproducer for Chromium#904714

and found that the reproducer is crafted to reliably trigger the UAF in the SwiftShader

component under AddressSanitizer. This causes the use event to always happen before the

free event in all testing runs.

3.6.4 Case Studies: Small Benchmarks

Pbzip2. Pbzip2 is a parallel file compressor frequently studied in prior work [7, 56] with a

number of known use-free races. We use the same input file for all three tools. UFO reported

36



more UAF errors than OVPredict but with less statically distinct free locations, while TSAN

reported the fewest number of errors. The free locations reported by OVPredict but missed

by UFO are in the main function after queueDelete is called (pbzip.cpp line 1917-1925),

where two mutex objects are destroyed then freed while still being held by another thread.

Apache. Apache Httpd contains a known double free error [56] caused by a bogus imple-

mentation of reference counting in mod_mem_cache.c. In each trial, we concurrently send a

number of requests to the server. All three tools can detect this error, despite with different

number of erros reported. OVPredict reported the most number of UAF errors, despite

sharing the same free locations as UFO. TSAN reported the fewest number of errors in this

benchmark.

Mysql. Mysql is a benchmark known to contain a data races [56] but it is not yet known

if it also contains UAF errors. In each trial, we concurrently fire a number of commands

to the mysql client. Both TSAN and OVPredict detected a previously unknown use-free

race between a free_root call in handle_one_connection and a read from the fputs func-

tion. OVPredict also detected a predictive UAF on a global COND_thread_count object first

accessed in a thread that manages client requests then freed in the main thread.

3.6.5 Case Studies: Chromium Bugs

Bug 841280. This bug [1] is showcased in Fig. 3.6, where a global GCInfo table is first

accessed by the main thread then accessed by the shared worker thread. The access to the

table from the main thread is not protected by locks. Both TSAN and OVPredict can detect

this use-free race with a similar but low rate, while UFO only detected this bug in 6 out of

the ten trials we conducted.

Bug 904714. Figure 3.5a shows a code snippet of the bug [57], which is in the SwiftShader

component of Chromium and is caused by the sw::Query objects being freed in glDeleteQueries

while still in use by the renderer. When the renderer shuts down, it dereferences the query

object, leading to an exploitable UAF. Both TSAN and OVPredict can stably report the

37



1 // use location
2 void Renderer::finishRendering(...) {
3 ...
4 for(auto &query : *(draw.queries)) {
5 switch(query->type) {
6 ...
7 ...
8 }
9

10 // free location,
11 void QueryManager::RemoveQuery(...) {
12 ...
13 query->Destroy(...);
14 ...
15 }
16

(a) Bug 904714.
UAF in sw::Renderer::finishRendering.

1 // used by main thread
2 TaskRunner CreateTaskRunner(...) {
3 // check if "impl_" is reset
4 if (!impl_)
5 return ...;
6 // "impl_" is not yet reset
7 return impl_->Create...;
8 }
9

10 // freed by SharedWorker thread
11 void DidRunTask() {
12 ...
13 // Delete all task queues
14 queues_to_delete.clear();
15 }
16

(b) Bug 944424.
UAF in TaskQueueImpl::CreateTaskRunner

1 // use location
2 void DB::DeleteDatabase(...) {
3 ...
4 AppendRequest(this);
5 ...
6 }
7

8 // free location
9 void DB::RequestComplete(...) {

10 ...
11 delete this;
12 }
13

(c) Bug:945370. UAF in IndexedDB.

Figure 3.5: UAF case studies on Chromium.

38



1 // Main thread. No locks held.
2 T GCInfo(int index) {
3 T* table = g_gc_info_table;
4 T info = table[index]; // use
5 return info;
6 }

7 // SharedWorker thread
8 void EnsureGCInfoIndex() {
9 lock(m);

10 gc_info_index++;
11 if (gc_info_index >= gc_info_table_size) {
12 // Capacity reached. Resize g_gc_info_table.
13 free(g_gc_info_table);
14 ...
15 }
16 unlock(m);
17 }

Figure 3.6: A UAF race in Chromium Blink garbage collector [1].

UAF error as a use-free race in all trials, while this UAF is detected 6 times out of 10 trials

for UFO.

Bug 944424. This bug [58], listed at Fig. 3.5b, is caused by a race condition between the

TaskQueue disposal when the worker thread terminates and the GetTaskRunner function

called from the main thread. Using the reproducer provided by the bug reporter, OVPredict

can trigger the error with a higher rate than TSAN, despite the rate being extremely low.

We speculate that such a low rate is caused by the narrow race window in the interaction

between the main thread and the worker thread.

Bug 945370. This UAF [59], illustrated in Fig. 3.5c, is in the IndexedDB module, caused

by a queued active request being destroyed in the RequestComplete function called upon

the closing of the database. The request is later dereferenced in DeleteDatabase. The

reproducer triggers the bug by repeatedly sending a sequence of open and delete requests

to the database. OVPredict detected this bug with a higher rate than TSAN, while this

39



bug did not manifest in our trials of UFO. Nonetheless, the predictive analysis employed by

OVPredict increased the likelihood of detecting the bug.

3.7 Conclusion

We presented OVPredict, an efficient partial-order-based predictive analysis for OV bugs

that scales to long running traces for Go and C/C++ programs. OVPredict extends the

WDC partial order to target order violation bugs as well as data races. OVPredict uses two

new optimizations for tracking CCS ordering, and exploits shadow memory for time and

space efficiency. Compared with SmartTrack, the OVPredict optimizations have simpler

logic and are more understandable. OVPredict uncovers 5 new OV bugs in popular open-

source Go projects, including Kubernetes and CockroachDB, and detects more UAF races

than TSAN in C/C++ benchmarks, with a comparable performance cost.

40



4. NCMC: EXPLOITING SEMANTIC COMMUTATIVITY IN STATELESS MODEL

CHECKING

In this chapter we introduce a stateless model checking algorithm NCMC that systemati-

cally enumerates all non-redundant interleavings characterized by dependency at the library

interface level.

4.1 Introduction

Consider the following program where N threads concurrently add distinct elements to a

set object s implemented with a linked list. Suppose that the add() operation on s is atomic.

s.add(1); . . . s.add(N);

assert(s.size() = N);
(N-set-add)

At the semantics level, the execution order of these add() invocations does not matter; all

orders yield the same return values for each invocation and produce the same set (albeit not

the same linked list). Therefore, exploring only one execution suffices to check the assertion

at the end. However, these add() invocations do not commute at the instruction level: there

exists memory dependence between reads and writes (a.k.a. reads-from relation) within these

invocations, and their different orders produce different linked lists. Any DPOR algorithms

that exploit independence at the instruction level would therefore conservatively conclude

that these invocations do not commute. As such, they explore N ! possible executions to cover

the full state space. These executions may differ in the concrete states of the set s. However,

these differences are not observable by the client of the set data structure. Considering all

of them is therefore unnecessary.

We introduce the notion of semantic commutativity equivalence (SC-equivalence), which

is coarser than the ones characterized by partial orders over events at the instruction level.

Intuitively, two executions are SC-equivalent if one can be obtained from the other by swap-

41



ping adjacent commutative operations. Based on this notion, we present NCMC (non-

commutativity model checking), a new SMC algorithm that is able to effectively exploit

semantic commutativity. Our approach uses a commutativity specification1 on concurrent

objects to identify commutative operations in each exploration of the program, and avoids

exploring executions that do not cover a new abstract state. One key difference from previ-

ous approaches is that our approach covers all abstract states rather than concrete states of

the program. This weaker completeness property, called semantic completeness, enables our

algorithm to achieve significant reduction in the number of explored executions, while still

ensuring that all behaviors of the program at the semantic level are covered.

Our contributions can be summarized as follows:

1. We give an intuitive account of NCMC through a series of examples, and show how

NCMC prunes SC-equivalent executions while remaining semantically complete (§4.2).

2. We present the formal model that underpins NCMC (§4.3). There, we also describe

different logic fragments that can be used in commutativity specifications.

3. We present NCMC in detail, and show that it is sound (produces no false positives)

and semantically complete (explore all possible behaviors at the semantic level) with

respect to a sound (albeit not necessarily precise) commutativity specification (§4.4).

4. We implement NCMC atop the JMCR model checker [46] and evaluate it against two

state-of-the-art model checkers on two collections of benchmarks (§4.5). Our evaluation

shows that NCMC is significantly faster or comparable than JMCR and Yogar-CBMC

on several SV-COMP benchmarks with commutative operations, and achieves expo-

nential reductions for a number of concurrent data structure implementations under

various workloads. We also demonstrate how the precision of commutativity specifica-

tions can affect the performance of NCMC under different workloads.
1We assume the commutativity specifications are given by the user. Automatic generation of commuta-

tivity specifications has also been studied in the literature [50, 51].

42



4.2 Overview

4.2.1 Extending Plain Executions with Semantics

Traditional SMC algorithms typically employ DPOR to reduce the number of interleav-

ings that need to be explored. Given a suitable notion of instruction independence, DPOR

techniques partition all possible interleavings into equivalent classes and explore only one

from each class. Each equivalence class of interleavings has the same partial order, which

can be naturally represented by a plain execution graph or PEG [48, 63]. Nodes in a PEG

represent events that correspond to instructions, e.g., a read or a write, and edges represent

orderings between nodes. At the level of instructions, PEGs can precisely capture sundry

orders among primitive events (e.g., reads and writes). By enumerating all consistent PEGs

of a program, the concrete state space of the program can be efficiently covered. At the level

of semantics, however, two distinct PEGs may be equivalent with respect to the abstract

states of a data structure.

Consider the following program in which N threads concurrently invoke inc() operations

on an atomic counter c:

c.inc(); ... c.inc(); (N-counter-inc)

Let us assume the inc() method is implemented as lock(l); a := x;x := a + 1;unlock(l),

where x is the shared variable that keeps track of the counter state, and a is a local variable.

Since the reads and writes in two consecutive inc() operations are dependent, existing DPOR

algorithms that exploit instruction-level independence will explore N ! executions to cover all

states of the program.

Consider N = 2, DPOR will yield two PEGs as depicted in Fig. 4.1, in which the solid

black edges denote the program order (PO), and the green dashed edges denote the reads-

from relations (RF). The two executions A and B are different in that they have distinct RF

43



A [init]

L(l)

R(x)

W(x, 1)

U(l)

L(l)

R(x)

W(x, 2)

U(l)

RF

RF

B [init]

L(l)

R(x)

W(x, 2)

U(l)

L(l)

R(x)

W(x, 1)

U(l)

RF

RF

Figure 4.1: Two plain execution graph (PEG)s of N-counter-inc with N = 2.

edges. Specifically, assume without loss of generality that the DPOR algorithm first obtains

execution A , where the read in the second thread (the thread on the right) reads from the

write in the first thread (the thread on the left). The algorithm subsequently makes the read

in the second thread to read from the initial value, yielding execution B .

Redundancy at the Semantics Level. The limitation of traditional DPOR algorithms is

that they are oblivious to the program semantics. Indeed, exploring both executions A and

B are necessary to cover the full state space of the program. However, they are redundant

at the semantics level: the two inc() method invocations are commutative. More specifically,

the order of which inc() executes first does not matter; at the end of the execution both

orders yield the same state for counter c. Although their orders affect the values read by

the read events within each inc() invocation, such differences only exist at the concrete

implementation level for the counter object, and are not observable to the clients of the

counter object.

Semantic Execution Graph. To exploit semantic commutativity between method invo-

cations of concurrent data structures, we introduce the notion of semantic execution graph

(SEG)s, an extension to PEGs. SEGs extend PEGs in two ways:

• First, in a SEG, events that happen within the same invocation are replaced with an

invocation node. For example, as illustrated in Fig. 4.2, the events within the two

dashed rectangles in A are replaced with their corresponding invocations in B . This

44



allows us to consider events at the granularity of both instruction and invocation levels.

• Second, at the granularity of invocations, we are interested in their dependence at

the semantics level, and not in the concrete implementation level. That is, we do not

consider the RF relation between reads and writes within these invocations. Instead, we

introduce the NC relation (noncommutative causal order) to capture the dependence

between noncommutative invocations on the same object. This enables us to keep

semantically commutative but implementation-wise dependent invocations unordered.

The NC Relation in Semantic Executions. Intuitively, the NC relation captures de-

pendence between pairs of noncommutative invocations on the same object. Every pair of

noncommutative invocations in one semantic execution is NC-ordered. On the other hand,

two adjacent invocations that are unordered by NC in a linear extension of one execution can

be swapped without making the execution inconsistent. In addition, we make the initial-

ization event for each object NC-ordered before all invocations on it. For example, the two

inc() invocations in the semantic execution B of Fig. 4.2 are not ordered by NC, but they

are both NC-ordered from the initialization event. We will present NC formally in §4.3.

As we will see later, the semantic equivalence underpinned by the NC relation is coarser

than the equivalence relations obtained by instruction independence, which is employed

by existing SMC algorithms. Underpinned by this new notion of semantic equivalence,

NCMC prunes semantically redundant executions while still ensuring all abstract states of

the program are covered. For instance, in the N-counter-inc example with N = 2,

suppose NCMC arrives at the execution A in Fig. 4.2 in the first exploration. Since the

two inc() invocations are not ordered by NC, NCMC will not consider the new reads-from

(RF) option for the read in the second thread, and thus avoids exploring B in Fig. 4.1. In

this case, NCMC explores only one execution and terminates. Similarly, in the general case

with N threads, NCMC explores only one execution rather than N ! executions.

45



A [init]

L(l)

R(x)

W(x, 1)

U(l)

L(l)

R(x)

W(x, 2)

U(l)

RF

RF  
B [init]

c.inc() c.inc()
NC NC

Figure 4.2: A plain execution and its semantic execution of N-counter-inc with N = 2.

4.2.2 Online Construction of Semantic Execution Graphs

The online construction of semantic execution graphs (SEGs) is a significant part of our

contribution. Specifically, NCMC builds a SEG on top of a plain execution incrementally

during each exploration. NCMC detects when an invocation ends by instrumenting the

source program, and adds the invocation node to the SEG at the end of the invocation.

The key part in constructing the SEGs is inferring the NC order, which requires identifying

noncommutative pairs of invocations. Consider the following program where two threads

concurrently invoke operations on a set data structure s:

s.add(1);
s.add(2);

s.contains(1);
(Set-2add+cont)

The add() and contains() methods are provided by the set interface. The return values of

s.contains(1) depend on whether it executes before s.add(1). It returns false if it executes

before s.add(1) and true otherwise. As such, we say that the two invocations are non-

cummutative. To decide whether two invocations commute, we resort to a commutativity

specification, explained next.

Commutativity Specifications. A commutativity specification captures commutativity

conditions between method invocations in a declarative way with logical formulas. Specifi-

cally, for every pair of methods of a given data structure, the specification describes when

46



s.add(v2)\r2 s.contains(v2)\r2

s.add(v1)\r1 v1 6= v2 ∨ (r1 = ⊥ ∧ r2 = ⊥) v1 6= v2 ∨ r1 = ⊥
s.contains(v1)\r1 v1 6= v2 ∨ r2 = ⊥ >

Table 4.1: A commutativity specification of the set data structure.

two methods commute. For example, the commutativity specification of a set data structure

is shown in Table 4.1. For brevity, we only list the commutativity conditions between add()

and contains() methods, and we use > to denote true and use ⊥ to denote false. Each

method invocation is denoted in the form o.m(~x)\~r where o is the object, m is the method,

and ~x and ~r are respectively arguments and return values of the invocation.

In this example, s.add(1) and s.add(2) commute regardless of their return values, while

s.add(2) and s.contains(2) commute only when s.add(2) returns false, meaning the state

of s is not modified.

On-the-fly Construction of SEGs. During each execution of the program, NCMC adds

invocation nodes (along with primitive event nodes) to the SEG one at a time and infers the

NC relation on the fly. Consider the Set-2add+cont example. Starting from an initial

graph (containing initialization events only), NCMC first adds the s.add(1)\> node from

the first thread to the graph, arriving at execution 1 of Fig. 4.3. Next, it adds s.add(2)\>

from the second thread. To obtain the dependence between previous invocations and the

s.add(2)\> node, NCMC evaluates the commutativity condition between s.add(2)\> and all

previous invocations on s. Here, there is only one invocation, s.add(1)\>, before s.add(2)\>.

Since the commutativity condition is evaluated to > for s.add(2)\> and s.add(1)\>, they

are commutative and are not NC-ordered. Instead, NCMC adds an NC edge from the [init]

node to s.add(2)\>, arriving at 2 in Fig. 4.3. Finally, NCMC adds s.contains(1)\> to the

graph, which does not commute with the previous invocation s.add(1)\> according to the

commutativity condition. Consequently, an NC edge is added between them, arriving at 3

in Fig. 4.3.

47



1 init

s.add(2)\>
NC  

2 init

s.add(2)\>s.add(1)\>
NC NC  

3 init

s.add(2)\>s.add(1)\>

s.contains(2)\>

NC NC

NC

4 init

s.add(1)\>

s.contains(2)\⊥

NC
NC

 

5 init

s.add(2)\>s.add(1)\>

s.contains(2)\⊥NC

NC
NC

Figure 4.3: Key steps for constructing the semantic execution graph (SEG).

NCMC proceeds by exploring a new execution for Set-2add+cont. The key steps

for constructing its SEG, depicted by 4 and 5 in Fig. 4.3, are similar to those of the first

execution.

4.2.3 Handling Events at Both Instruction Level and Semantics Level

NCMC is capable of correctly handling events at both the instruction level and the se-

mantics level. Specifically, NCMC partitions the reads in a plain execution into two classes,

scoped reads and unscoped reads, which contain the read events within or without an in-

vocation respectively. NCMC only exploits semantic commutativity for scoped reads, and

handles unscoped reads as its underlying SMC algorithm does. Handling scoped reads is

subtle in the presence of conflicting events between a pair of invocations. Let us illustrate

this via the following program:

c.inc();

a := x;

if a = 0 then x := 2;

x = 1;

c.inc();
(Counter-2inc-cf)

As before, starting from an initial SEG, NCMC incrementally adds all events from the

first thread and then all events from the second thread, arriving at execution A in Fig. 4.4.

48



A init

c.inc()

R(x, 0)

W(x, 2)

W(x, 1)

c.inc()
SSH

RB  

B init

c.inc()

R(x, 1)

W(x, 1)

c.inc()

Figure 4.4: Key steps in exploring Counter-2inc-cf, with invocation graphs shown on
the right.

Here, we also add a RF edge between a pair of invocations if they contain a pair of read and

write linked by RF. Similar to N-counter-inc, the two inc() invocations commute. In

addition, the node R(x, 0) reads from the initial write, implying a reads-before order before

the write W(x, 1). In other words, since R(x, 0) reads from the initial write, it must be ordered

before the write node W(x, 1) to ensure coherence.

Now NCMC partitions reads in the execution A into scoped reads and unscoped reads.

The former consists of the two reads within the two c.inc() invocations, while the latter

consists of the R(x, 0) in the first thread. For the unscoped read R(x, 0), NCMC explores

its reads-from option, W(x, 1) from the second thread as its underlying SMC algorithm does.

Different from N-counter-inc, however, for the scoped read in c.inc() from the second

thread, NCMC needs to explore the reads-from option, i.e., the write in init. This new

exploration, depicted as B , is not redundant because the read a := x in the first thread will

then read from the write x = 1 in the second thread, yielding a different semantic execution

graph.

Let us demonstrate when NCMC deems a reads-from option necessary to explore in Counter-

2inc-cf. In execution A , the union of RB and PO imposes a semantic-happens-before (SSH)

between the R(x, 0) node and the c.inc() from the second thread. NCMC therefore concludes

that this reads-from option will yield a new execution where the SSH edge is not preserved.

That is, by making the read in the highlighted c.inc() read from init, the read a := x will

be ordered after the highlighted c.inc() node (as is shown in B ). NCMC ensures that the

49



execution B , which covers a new semantic state of the program, is explored.

Intuitively, the SSH order captures the causality at both the semantic level and the in-

struction level, and is induced by NC, PO, RB and RF, to be defined at §4.3. When considering

a RF option for a scoped read, NCMC checks if all SSH edges associated with the invocation

that contains the read are preserved in the new exploration. If it is the case, the RF option

will lead to a SC-equivalent execution and can be safely pruned. Otherwise, the reads-from

option may or may not lead to a new semantic state of the program, i.e., not a SC-equivalent

one. As we will demonstrate in §4.4, in such cases, NCMC will use additional constraints

to ensure only semantically new executions are explored. In both cases, NCMC ensures

that all abstract states of the program are eventually covered while no executions that are

SC-equivalent to the current one are explored.

4.3 The Formal Model

This section presents the formal model underpinning NCMC. We first adopt notation and

terminology from the literature of declarative (a.k.a. axiomatic) memory models to define

events and PEGs [48, 53, 63] (Section 4.3.1). We then introduce the notions of invocations

(Section 4.3.2), commutativity (Section 4.3.3), commutativity specifications (Section 4.3.4),

and the semantic-happens-before relation SSH (Section 4.3.5) used by our algorithm.

Notation. Given a relation r, we write r+ for the transitive closure of r. We write r−1

for the inverse of r; r|A for r ∩ (A× A); [A] for the identity relation in A : {〈a, a〉 | a ∈ A}.

Given relations r1 and r2, we write r1 ; r2 for {(a, b) | ∃c.(a, c) ∈ r1 ∧ (c, b) ∈ r2}, i.e., their

relational composition. When r is a strict partial order, we write r|imm for r \ r ; r, i.e., the

immediate edges in r.

4.3.1 Labels, Events and Plain Executions

We represent the traces of a program as a set of execution graphs, where the graph nodes

denote events, and graph edges capture different kinds of relations over these events. Each

event, denoted as a tuple 〈i, l〉, corresponds to the execution of an instruction, where i ∈

50



Tid]{0} is a thread identifier (0 for initialization events) with Tid ⊆ N and l ∈ Lab]{error}

is an event label.

A label maybe either:

1. the error label, denoting assertion violations; or

2. an instruction label l ∈ Lab. For instance, the write event is associated with the label

W(x, 1). We also assume a set of memory locations, Loc, ranged over by x, y, z. We

further assume a set of read labels, RLab ⊆ Lab, a set ofwrite labels, WLab ⊆ Lab, a

set of lock labels, LLab ⊆ Lab, a set of unlock labels, ULab ⊆ Lab, a set of fork labels,

FLab ⊆ Lab, and a set of join labels, JLab ⊆ Lab, associated with read, write, lock,

unlock, fork and join instructions, respectively. For instance, the label W(x, 1) is a

write label.

Definition 4.3.1 (Events). A (primitive) event e ∈ Event is a tuple 〈i, l〉 where i ∈ Tid is a

thread identifier, and l ∈ Lab ] {error} is a label.

We define the functions tid() and lab to project the thread identifier and the label of

a event, respectively; the functions loc(), valr and valw project the location, the read or

the written value of a label respectively, where applicable. For instance, loc(()l) = x and

valr(l) = 1 for l = R(x, 1). We lift the functions loc(), valr and valw to events as well,

e.g., loc(()e) = loc(()lab(e)) for an event e. The functions tid()F and tid()J project the

thread identifier of a fork or join label. For instance, tid()F(l) = 2 for l = F(2). We define

the read events as R , {e ∈ Event | lab(e) ∈ RLab}; the write (W), lock (L), unlock (U),

fork (F), join (J) events are defined analogously. Given a set of events E, we write Ex for

{e ∈ E | loc(()e) = x}. We define initialization events as Event0 , {e ∈ W | tid(()e) = 0}.

We write Val for the set of all possible program arguments and return values.

Definition 4.3.2 (Plain Execution Graphs). A plain execution graph (PEG) is a tuple G =

〈E, PO, RF〉, where E ⊆ Event is a set of events, PO is the program order, and RF : E∩R→ E∩W

51



is the reads-from function. We write G.E, G.PO and G.RF for its components, and write G.R

for G.E∩R; similarly for G.W, G.L, G.U, G.F, G.J and G.I. We also write G.E0 for G.E∩Event0.

Given a PEG G, we define the must-happen-before order (G.MustHappenBefore), the write

order (G.WO), the reads-before order (G.RB), and the happens-before order (G.HB) on G.

The MustHappenBefore Relation. The MustHappenBefore relation is defined to be the

union of PO and the partial order imposed by fork and join events. In particular, (1) a fork

event e must happen before all events in the thread forked by e; (2) a join event e must

happen after all events in the thread to be joined by e. Formally,

G.MustHappenBefore , G.PO∪{〈〈i1, l1〉, 〈i2, l2〉〉 | (l1 ∈ FLab∧tidF(l1) = i2)∨(l2 ∈ JLab∧tidJ(l2) = i1)}

The WO Relation. The WO relation denotes the write order between two writes on the

same location. We define WO to be the disjoint union of the write order for each variable,

i.e., WO ,
⋃
x∈Loc WOx. Given a variable x, its write order WOx is defined to be the total order

of the write operations performed on it.

The RB Relation. Intuitively, RB relates each read r to the writes that are WO-after the

write r reads from. We define G.RB as: G.RB , G.RF−1;G.WO.

The HB Relation. The happens-before relation HB on G is the smallest transitive relation

that contains PO, WO and RB: G.HB , (G.PO ∪G.WO ∪G.RB)+.

4.3.2 Invocations

We represent a data structure interface DS as a set of methods M ⊆ Method. We write

MethodL for the set of linearizable methods, and write DSL to restrict the data structure

interface to linearizable methods, i.e., DSL , {m | m ∈ M ∩MethodL}. Intuitively, lineariz-

ability provides the illusion that any operation performed on a concurrent data structure

takes effect instantaneously at some point between its invocation and its response [64]. Note

that this means we only need to consider interleavings of method invocations on these ob-

52



jects at the granularity of invocations, and there is a total ordering among all invocations for

one object. In other words, we only consider linearizable invocations. For non-linearizable

invocations, we consider their underlying events (e.g., reads and writes) instead.

As discussed in §4.2, an invocation consists of a sequence of events that happen during

the method invocation. As the commutativity conditions may reference the abstract state

just before a method is invoked, we are also interested in the method, arguments and return

value of an invocation, which are associated with the label of an invocation. An invocation

label l ∈ ILab is of the form σo.m(v1, v2, . . . , v), denoting an invocation of method m with

arguments v1, v2, . . . , v on object o ∈ Obj with state σo, wherem ∈ Method is a method name,

vi ∈ Val is an argument and v ∈ Val is the return value of the invocation. The functions obj,

σ, met, valarg and valret respectively project the object, the method, the abstract state, the

arguments and the return value of an invocation label. For instance, obj(l) = s, σ(l) = σs,

met(l) = add, valarg(l) = [1] and valret(l) = false, for l = σs.add(1, false).

Definition 4.3.3 (Invocations). An invocation v ∈ Inv is a tuple 〈E, l〉 where E is a set of

events and l ∈ ILab denotes the invocation label satisfying the condition met(l) ∈ MethodL.

We typically use u, v to range over invocations. Given an invocation v, we write evt(v)

to project its set of events E. Given a method m ∈ MethodL, we write Invm for the set

of invocations on method m. Given a set of methods M ⊆ MethodL, we write InvM for⋃
m∈M Invm. We also define two helper functions, rep and top:

• The function rep chooses some event a from evt(v) as the representative of v. For

concreteness, we let rep return first event in evt(v). We also define rep as the identity

function on events, i.e., rep(a) = a. Given a sequence of invocations I ∈ Inv, we write

u ≺I v if u precedes v in I. We define initialization events for objects as Inv0 , {v ∈

Inv | v.E ⊆ Event0}.

• The partial function top : Event ⇀ Inv maps an event to its corresponding invocation,

i.e., top(e) = v if e ∈ v.E and top(e) = ⊥ otherwise.

53



Given the top function and a PEG G, We say that an event a is scoped if top(a) 6= ⊥, i.e.,

a is not within any invocation; otherwise a is unscoped. We write Eventu to restrict a set of

events E to unscoped events only, and write Events for Event \Eventu. We use Gu to restrict

a PEG G to its unscoped events, i.e., given G = {E, PO, RF}, Gu = {Eu, PO|Eu , RF|Eu}.

4.3.3 Commutativity via Effects of Invocations

Abstract States. We are interested in the abstract states of the objects as described by

its specification and not in the actual implementation details of the object. We write σo for

the abstract state of an object o. For example, σs denotes the set of elements present in the

set s. We assume that object methods are given by specifying the effects on their abstract

states. For example, Table 2.1 describes the method effects of a set object. The shared state

of a program with respect to a set of objects O ⊆ Obj, SO, is defined as SO ,
⊎
o∈O σo. We

write S for the set of all shared states.

Effects of Invocations. The effect on the shared state of an invocation v is given by a

partial map LvM ∈ S ⇀ S. For example, for a set object s, the map Ls.contains(v)\trueM

should be the identity on all states in which the set s contains v and undefined otherwise.

We say that an invocation v is enabled in the shared state σ if the effect of v is defined on

σ. For example, the map Ls.contains(v)\trueM is enabled on all states in which the set s

contains v.

Definition 4.3.4 (Commutativity). Two invocations u, v ∈ Inv commute, denoted by u1 v,

iff LuM ◦ LvM = LvM ◦ LuM.

We say that two invocations commute when independent of their application order, their

composed effects are the same. For example, following Table 2.1, two add invocations com-

mute when they add different elements, as they modify disjoint parts of the object state σs.

We assume that actions of different objects always commute, i.e., invocations of one object

do not interfere with the state of another object. We write LvMσ for the abstract state after

v is invoked on σ.

54



S := σ1 | σ2 Abstract states
V := v1 | v1 | r1 | r2 | Z | B Arguments, return values, constants
F := f(S, V, V, . . . ) (S × V × V × . . . )→ Z ∪ B
O := + | − | ∗ | / | < | > | ∧ | ∨ Arithmetic, boolean connectives and equity
P := V | F Primitive formula
C := P O P | (C) | ¬C | C O C Formula

Figure 4.5: The logic L1 to express commutativity conditions.

put(k2, v2)\p2 get(k2)\v2 size()\r2

put(k1, v1)\p1 k1 6= k2 ∨ (v1 = p1 ∧ v2 = p2) k1 6= k2 ∨ (v1 = p1) (v1 6= nil ∧ p1 6= nil)
get(k1)\v1 k1 6= k2 ∨ (v2 = p2) > >
size()\r1 (v2 6= nil ∧ p2 6= nil) > >

Table 4.2: A commutativity specification of the hashtable data structure, expressible in the
L2 logic.

Note that our definition of commutativity is equivalent to the following observation. At a

given state σ, if the preconditions of the two method invocations are satisfied (i.e., enabled)

in the first execution order, then (1) the preconditions of the invocations are satisfied in the

second execution order; (2) the invocations return the same values in both execution order,

and (3) the abstract final state are the same in both execution orders.

We write u n v if u and v do not commute, i.e., different application order of u and

v yields different shared states of the program. For example, let v = s.add(1)\true and

u = s.contains(1)\false, then v n u because LvM ◦ LuM 6= LuM ◦ LvM. In particular, let σ be

the state of the set s such that 1 /∈ σ, then LvM ◦ LuM is undefined but LuM ◦ L1M = σ ] {1}.

4.3.4 Commutativity Specifications

We next give a formal definition for commutativity specifications containing logical for-

mulas that represent commutativity conditions for each pair of methods in an object. The

commutativity conditions are used by NCMC to identify the NC relations in a semantic

execution.

55



Definition 4.3.5 (Commutativity Conditions). Given a suitable logic, a logical commuta-

tivity specifications for a pair of methods m1,m2 ∈ M of the same object is given by a

logical formula ψm1
m2 with its free variables collected into the list ( ~x1; ~x2) so that ~xi match the

abstract states, return values and arguments of vi ∈ Invmi
.

Commutativity Conditions. We capture commutativity between method invocations

with logical formulas [65, 66]. Specifically, a (sound) logical commutativity condition is

a predicate ψ over pairs of invocations u, v ∈ Inv such that ψ(u, v) implies that u and v

commute. The logic L1 of these formulas is given in Fig. 4.5. The vocabulary of the logic

includes the arguments and return values of method invocations. The specification in L1 can

also use arbitrary functions over the arguments as well as the abstract states in which the

methods are invoked. The logic allows boolean connectives, equality and arithmetic, but no

quantifiers.

[66] introduced the commutativity lattice for reasoning about commutativity conditions.

Specifically, we can build a partially ordered set (poset) P = (Ψ,�) based on logical im-

plication, such that given two commutativity conditions cSpec1, cSpec2 ∈ Ψ, ψ1 � ψ2 iff

ψ2 ⇒ ψ2. P has a natural least element, ⊥ = false, and a greatest element, ψ∗, denoting

the weakest commutativity condition of a pair of methods. In the literature of optimistic

concurrency control, a fine-grained commutativity specification allows more parallelism for

transactions to be committed. Analogously, in the settings of stateless model checking, a

fine-grained commutativity specification can yield a weaker NC relation between invocations

on a semantic execution than a coarse-grained one does. Thus the more precise a commuta-

tivity specification is, the coarser the SC-equivalence is induced.

For many frequently used data structures, e.g., set and hashmaps, we do not need to

capture their abstract states in the commutativity specifications. For such scenarios, we can

drop the S segment in L1 and replace F with f(V, V, . . . ), i.e., functions can be used over

arguments and return values, but not on the abstract states. We refer to this logical fragment

as L2 logic in the remaining of this work. For example, a commutativity specification for

56



hashmaps expressed in the L2 logic is shown in Table 4.2.

Definition 4.3.6 (Commutativity Specifications). Given a set of methods M ⊆ MethodL, a

commutativity specification S is a tuple 〈M,Ψ〉, where Ψ is a set of commutativity conditions

ψm1
m2( ~x1; ~x2) for all m1,m2 ∈M .

We define the logical commutativity specification Ψ for an object with methods M ⊆

Method as the set of commutativity conditions ψm1
m2( ~x1; ~x2) for all m1,m2 ∈ M . We write

S.Ψ for the Ψ component of S. We require the commutativity conditions to represent

symmetric predicates on two invocations of the same method, i.e., ψmm( ~x1; ~x2) ≡ ψmm( ~x2; ~x1)

for all ψmm ∈ S.Ψ. For a commutativity condition ψm1
m2( ~x1; ~x2) and invocations u, v with

met(u) = m1 and met(v) = m2, we write ψm1
m2(v1, v2) for the substitution of the suitable terms

of vi for ~xi into the formula ψm1
m2 . This allows us to evaluate the formula in concrete values

from v1, v2. Given a commutativity specification S, we write S.Ψ(v1, v2) for ψmet(v1)
met(v2)(v1, v2)

where ψmet(v1)
met(v2) ∈ S.Ψ.

Soundness and Completeness. We give a formal definition for the soundness and com-

pleteness of commutativity specifications.

Definition 4.3.7 (Soundness). A logical commutativity specification 〈M,Ψ〉 is sound iff for

every m1,m2 ∈ M and two invocations u, v with met(u) = m1 and met(v) = m2, we have

that Ψ(u, v) implies u 1 v.

Definition 4.3.8 (Completeness). A logical commutativity specification 〈M,Ψ〉 is sound iff

for every m1,m2 ∈M and two invocations u, v with met(u) = m1 and met(v) = m2, we have

that u 1 v implies Ψ(u, v).

Remarks. As we will see in §4.4, the semantic completeness of NCMC requires that

the commutativity specification S provided by the user is sound. On the other hand, the

number of executions explored by NCMC depends on the precision of S. The more precise

S is, the fewer number of executions NCMC in principle will explore. Formally, given two

57



commutativity specifications S1 and S2 with S1 � S2, the number of executions explored by

NCMC under S2 is no greater than that under S1. Our work thus bridges the gap between

the work of two communities, namely commutativity analysis in concurrency control and

stateless model checking.

4.3.5 The Semantic-Happens-Before SSH Relation

Definition 4.3.9 (Semantic Extensions). Given a PEG G and a commutativity specification

S = 〈M,Ψ〉, a semantic extension of G, denoted as ExtG, is a tuple 〈top, S〉, where top :

G.E ⇀ Inv is the partial function that maps each scoped events in G.E to an invocation of

one of the method in M , and maps each unscoped events to ⊥.

Definition 4.3.10 (Semantic Execution Graph). Given a semantic extension ExtG = 〈top, S〉,

the semantic execution graph (SEG) of ExtG, denoted as H, is a tuple 〈E, I, PO, RF, IO, NC〉,

where:

• E is the set of unscoped events of G: E , G.Eu;

• I is a set of invocations over the methods S.M ;

• PO ⊆ (E∪I)×(E∪I) is the program order over both unscoped events and invocations;

• RF ⊆ (E∩R)×(E∩W ) is the reads-from function over unscoped read and write events

in E;

• IO , {〈u, v〉 | u, v ∈ I ∧ (∃a ∈ evt(u), b ∈ evt(v) such that 〈a, b〉 ∈ G.HB)} is the invo-

cation order, capturing the dependence between invocations at the level of instructions;

and

• NC ⊆ IO is the noncommutative causal order, defined as the transitive closure of

{〈u, v〉 | 〈u, v〉 ∈ IO ∧ ¬S.Ψ(u, v)}. Recall from §4.3.4 that the S.Ψ(u, v) function

evaluates the commutativity condition on the arguments, return values and abstract

states two invocations u and v.

58



Given a SEG H, we use the ‘H.’ prefix to project its components (e.g., H.PO). We define

H.I0 , H.I ∩ Inv0 for the invocations of initialization method (constructors). Similar to

PEGs, we define WO for H as the restriction of G.WO to unscoped events: H.WO , G.WO|Eventu ,

and define RB for H as the restriction of G.RB to unscoped events: H.RB , G.RB|Eventu .

The SSH Relation. The SSH relation denotes the semantic-happens-before relation. In-

tuitively, SSH captures causality between an unscoped event and an invocation. Given a

semantic execution H, we define H.SSH as follows:

H.SSH = (H.PO ∪H.RF ∪H.RB ∪H.WO ∪H.NC)+; [H.I]

Constructing Semantic Executions from Plain Executions. Given a PEG G =

〈E, PO, RF〉 and its semantic extension Ext = 〈top, S〉, we can construct the semantic execu-

tion of G, denoted as H, as follows: we first use top to partition G.E into unscoped events

Eu = {a | a ∈ E ∧ top(a) = ⊥} and scoped events Es = E \ Eu, obtaining H.E = Eu. We

then substitute scoped events with its top-level invocation top(a) for each a ∈ Es, obtaining

H.I, i.e., H.I = {v | ∃a ∈ E such that top(a) = v}. Next, H.PO, H.RF are obtained as

follows:
H.PO = {〈e1, e2〉 | e1, e2 ∈ H.E ∪H.I ∧ 〈rep(e1), rep(e2)〉 ∈ PO}

H.RF = RF|H.E

Informally, the SEG H extends PEG G in two aspects. First, given a set of linearizable

methodsML of some data structures, scoped event nodes are merged into a single invocation

node. For PO and RF edges on scoped events, we also merge them in the following way: if

any scoped event a ∈ G.Eu is associated with a PO or RF edge, then its top-level invocation

top(a) is associated with the corresponding H.PO or H.RF edge. Since we assume the client

program uses the data structures properly, the writes in these invocations are not observable

to the client. This implies that no RF edge relates a scoped event with an unscoped event.

Therefore, we can partition G.RF into the unscoped reads-from relation, G.RFu, and the scoped

59



reads-from relation, RFs; similarly for G.RB and G.WO. Second, the noncommutative causal

order NC is introduced to characterize the semantically noncommutative orderings between

invocations. Intuitively, NC is a subset of IO that contributes to the noncommutative causality

between invocations. This implies two invocations not related by IO always commute. In

other words, we require that two invocations that are independent at the instruction level

are also independent at the semantics level.

We write Exttop
S (G) for the semantic execution constructed from G under Ext = 〈top, S〉.

Since given a PEG G and a semantic extension Ext = 〈top, S〉, a SEG can be uniquely

constructed, in the remaining of this work, we use the tuple 〈G, top, S〉 to denote a SEG.

Definition 4.3.11 (Semantic Commutativity Equivalence). Given a PEG G and a semantic

extension Ext = 〈top, S〉 and a PEG G, two PEGs G1 and G2 are semantically-commutative

equivalent (SC-equivalent) under Ext = 〈top, S〉, denoted as G1 ≡Ext G2, if Exttop
S (G1) =

Exttop
S (G2).

Following the above definition, it is easy to see that SC-equivalence is coarser than the

equivalence captured by plain execution graphs, since semantic executions can be viewed as

a partitioning of plain executions.

4.4 NCMC: Commutativity-aware Stateless Model Checking

NCMC can be built as an extension of any existing SMC algorithm that considers (only)

the independence at the instruction level. We assume the user provides a commutativity

specification for data structures in the library code. In this section, we present a version of

NCMC that is built on top of maximal causality reduction (MCR) [46]. Basing our algorithm

on MCR allows us to reason about the soundness and semantic completeness of our algorithm.

Furthermore, MCR exploits noncommutative causality between read and write events at the

instruction level. Combining the semantic pruning of NCMC and the syntactical pruning of

MCR potentially yields more effective reductions in the number of explored executions.

60



4.4.1 Maximal Causality Reduction

Maximal Causality Reduction (MCR) is a stateless model checking algorithm that cov-

ers the full state space of concurrent programs with a provably minimal number of execu-

tions [46]. Each execution corresponds to a maximal causal model [10, 19], which captures

the largest possible set of causally equivalent executions. MCR can in principle achieve a

much coarser partitioning of executions than existing DPOR algorithms. We note that the

MCR proposed in [46] is based on interleaving semantics, where executions are represented

as traces. Here we present it in the declarative semantics, where executions are modeled as

partially ordered graphs.

Intuitively, given one execution of the program, MCR generates a set of constraints, Φ,

that allow a particular read in the execution to read a different value. We write feasible(G)

to denote the equivalent class of executions that contains the trace G. Given an observed

trace G, MCR encodes the constraints of feasible(G) into a logical formula ΦG. In this

paper, we simply write Φ for ΦG when G is clear from the context.

Each variable in Φ, denoted as Oe, corresponds to the serial order of an event e in the

linear extension of an execution G ∈ feasible(G). Φ is represented as a conjunction of

three subformulas, i.e., Φ , Φmhb ∧ Φlock ∧ Φrw, defined in Fig. 4.6.

The Must-happen-before Constraint Φmhb. The must-happen-before constraint en-

codes the MustHappenBefore relation on events. For all pairs of events a, b with 〈a, b〉 ∈

G.MustHappenBefore|imm, we use Oa < Ob to encode the program order between a and b.

The Lock-mutual-exclusion Constraint Φlock. The locking semantics require that two

critical sections protected by the same lock do not overlap. We use the lock-mutual-exclusion

constraint Φlock to capture the mutual exclusion semantics over lock and unlock events. We

assume each unlock event on l is paired with the most recent lock event on l in the same

thread. We define the ‘lock pair on l‘ relation, LPl to capture such pairing between the lock

61



ΦG , Φmhb ∧ Φlock ∧ Φrw
Φmhb ,

∧
(a,b)∈G.MustHappenBefore|imm

Oa < Ob

Φlock ,
∧

(a,b),(c,d)∈G.LPl

Ob < Oc ∨Od < Oa

Φdc ,
∨

e∈G.E
Φrw(e)

Φrw(e) ,
∧

(r,e)∈G.MustHappenBefore∧
r∈G.R

Φval(r, val(r))

Φval(r, v) ,
∨

w∈G.W∩Wloc(r)

(
Φrw(w) ∧Ow < Or

∧
w′ 6=w∧

w′∈G.W∩Wloc(r)

(Ow′ < Ow ∨Or < Ow′)
)

Figure 4.6: Constraints encoding for ΦG.

event and the unlock event on the same critical section. Formally,

G.LPl , {〈a, b〉 | a ∈ G.Ll∧b ∈ G.Ul∧(@e ∈ G.Ll∪G.Ul such that 〈a, e〉 ∈ G.PO∧〈e, b〉 ∈ G.PO)}

where G.Ll and G.Ll denote the set of lock events and unlock events on lock l, respectively.

The Data-validity Constraint Φdc. The data-validity constraints ensure that every event

in the considered execution is feasible. Note that in constructing MCM for an input execution

G, the considered execution does not necessarily contain all the events in G but may contain

a subset of them, so that all the incomplete executions corresponding to partial executions

of the program are considered as well. For an event to be feasible, all the events that must-

happen-before it should also be feasible. Moreover, all read events that must-happen-before

it should read the same value (not necessarily from the same write) as that in the input

execution; otherwise the event might become infeasible due to a different value read by an

event that it depends on.

62



Algorithm 4 NCMC main procedure
1: procedure Verify(P, S)
2: H0 ← 〈G0, top0, S〉
3: 〈Hpre,Γ〉 ← 〈H0,∅〉
4: do
5: H ← ExecuteOne(P,Hpre)
6: GenSeedExec(H,Γ)
7: while 〈Hpre,Γ〉 ← nextExp(Γ)

Algorithm 5 Execute P by extending Gpre, output the semantic execution
1: procedure ExecuteOne(P,Hpre)
2: 〈G, top, S〉 ← Hpre

3: while a← nextEventP(G) do
4: if a ∈ error then exit("Errorneous program.")
5: Add(G, a)
6: if a ∈ R then G.RF[a]← min(G.WOloc(()a)) . Update RF
7: if v ← topEvent(a) then
8: top[a]← v
9: if a ∈ invEnd then . Last event in the current invocation
10: U ← Exttop

S (G).Iobj(v) . Get all invocations on the same object
11: for all u ∈ U do
12: if ¬S.Ψ(u, v) then Exttop

S (G).NC[u]← v . Update NC
13: return Exttop

S (G)

4.4.2 The NCMC Algorithm

The Main VERIFY Procedure Algorithm 4 outlines the main algorithm. Given a

commutativity specification S, NCMC begins exploring the executions of a program P by

calling Verify(P, S). This procedure creates an initial semantic execution prefix H0 =

〈G0, top0, S〉 (H0 consists of an empty seed execution containing only initialization events

and an empty top function) and an empty work set Γ. It then generates executions of P one

at a time by calling ExecuteOne at line 4, which fully explores one execution extending

Hpre, and builds a PEG G and its corresponding SEG H. Then the GenSeedExec(H,Γ)

procedure generates a set of seed executions from H, and pushes them to the work set Γ.

63



Algorithm 6 Generate seed executions from H and add them to Γ.
1: procedure GenSeedExec(H,Γ)
2: 〈G, top, S〉 ← H
3: for all r ∈ H.R do
4: expValsr ← {val(r)}
5: W ← G.Wloc(()r)
6: if top(r) = ⊥ then . Handle unscoped reads
7: for all w ∈ W ∧ val(w) /∈ expValsr do
8: Gpre ←CheckRW(r, w, expValsr)
9: else . Handle scoped reads
10: for all w ∈ W ∧ val(w) /∈ expValsr do
11: E ← H.SSH−1[top(r)] ∩H.PO[top(w)]
12: Gpre ←CheckRWComm(r, w,E, expValsr)
13: if Gpre 6= ⊥ then push(Γ, 〈Gpre, H.top, S〉) . Update the work set

The nextExp procedure pops Hpre, the next seed execution to be explored, from the work

set Γ.

The ExecuteOne Procedure The ExecuteOne procedure in Algorithm 5 explores one

execution at a time and constructs the corresponding semantic execution on the fly. Given

a seed semantic execution Hpre, NCMC first obtains its components Gpre and top, where

Gpre is the prefix of the plain execution. Next, NCMC extends the plain execution graph by

its next event a, given by the nextEventP (G) function. If nextEventP (G) returns ⊥, the

program has either terminated or all threads are blocked. In this case, the ExecuteOne

procedure returns and outputs the semantic execution graph. If the next event is an assertion

violation, then an error is reported and the algorithm terminates. Otherwise, the algorithm

extends G by the next event a, and update G.RF if a is a read event. Next, if a belongs to

some invocation v, the algorithm adds the mapping from a to v to top. If a is also the end

of the invocation v, the algorithm enumerates all previous invocations on the same object

and evaluates the commutativity condition between v and each previous invocation. If the

commutativity condition evaluates to false, the algorithm adds an NC edge between the

noncommutative pair of invocations.

64



The functions topEvent can be implemented by instrumenting the source program. When

a method of interest is invoked, the algorithm attaches additional labels to all events within

the invocation. This can also tell us when a primitive event is the last event of an invocation.

This procedure improves the original online execution procedure of MCR in two aspects.

First, it builds the PEG online in addition to collect a trace, which enables an efficient

algorithm to construct the MCM constraints. Second, a SEG of the current execution is

constructed on the fly. As is discussed earlier, the semantic execution graph is the crux for

exploiting semantic commutativity in the model checking algorithm. The online semantic

execution construction algorithm can be potentially applied to other concurrency analyzers,

e.g., commutativity race detection. Hence, the algorithm presented in this section is of

interest beyond stateless model checking.

The GenSeedExec Procedure The GenSeedExec procedure in Algorithm 6 is the

key to yielding effective reductions in the number of explored executions. Essentially, the

algorithm works by pivoting around the value of reads in the execution; to generate a new

seed execution, we make a read event in the current execution to read a different value from

another write, if feasible. In particular, we encode such feasibility conditions into logical

formulas and query an SMT solver for satisfiability.

This new GenSeedExec procedure is different from the previous algorithm in [46] in

that it can exploit semantic commutativity to avoid constructing redundant seed executions.

Specifically, NCMC handles scoped reads and unscoped reads differently. The handling of

scoped reads carries the crux of pruning SC-equivalence executions, described at line 7-10.

Handle Unscoped Reads. We first describe the handling of unscoped reads (line 1-6).

Given an execution G, our algorithm enumerates each unscoped read r in G, and uses the

set expValsr to record values that have been explored so far, which is initialized to contain

val(r) only. For each write w that writes to the same location as r and whose value is

not in expValsr (i.e., not explored yet), our algorithm proceeds by calling the CheckRW

procedure, which constructs a logical formula Φr,w that constrains r to read from w, defined

65



as follows:

Φr,w , Φmhb ∧ Φlock ∧ Φrw(r) ∧ Φrw(w) ∧ Φval(r, val(w))

where Φval(r, v) denotes the constraint for r to read a value v, as is defined in Section 4.4.1.

The algorithm then invokes an SMT solver for Φr,w. If Φr,w is satisfiable, we extract a new

execution prefix from the solution and pushes it to the work set Γ along with its semantic

extension 〈H.top, H.NC〉. In addition, the value of w is added to the set expValsr to avoid

redundant explorations in the future.

Handle Scoped Reads. We now discuss the handling of scoped reads (line 7-10). Again,

our algorithm enumerates each scoped read r in execution G, and deals with a write w that

writes to the same location as r if r has not read the value of w yet. Our algorithm proceeds

by checking if there is a node that is both PO-ordered after w and SSH-ordered before r.

The set of such events E is captured by H.SSH−1[top(r)] ∩ H.PO[top(w)]. If there is none,

making r read from w, if feasible, results in a seed execution that is SC-equivalent to the

current one’s prefix. In this case, the algorithm skips making r to read from w. Otherwise,

to generate a seed execution that is not SC-equivalent to the current one, we must ensure

that the invocation that contains r, top(r), is invoked before at least one of these primitive

events. Specifically, we capture this constraint with the logical formula Φnc
r,w,E defined as

follows:

Φnc
r,w,E ,

∨
e∈E

(Oe < Or ∧ Φrw(e))

The formula Φnc
r,w,E ensures that at least one event in E needs to happen before r in

the generated seed execution, if feasible. The CheckRWComm procedure is different from

CheckRW in that it builds a formula that is a conjunction of Φrw and Φnc
r,w,E, ensuring the

newly generated seed execution to be semantically different from the correct one.

Example. The idea of using the Φnc
r,w,E constraint to prune redundant executions can be

illustrated in the following example. Consider the following program where c is a counter

66



1 init

c.inc()

R(x, 0)

c.inc()

W(x, 1)

c.inc()
SSH
RB  



2 init

c.inc()

R(x, 0)

c.inc()

W(x, 1)

c.inc()
SSH
RB

3 init

c.inc()

R(x, 1)

W(x, 1)

c.inc()


Figure 4.7: Key exploration steps Counter-shb2, with NC edges omitted for brevity.

object implemented similarly as the previous examples:

c.inc();

a := x;

if a = 0 then c.inc();

x = 1;

c.inc();
(Counter-shb2)

Consider the case when NCMC arrives at execution 1 in Fig. 4.7. For brevity, NC edges

are omitted. The SSH edge is due to the RF between R(x, 0) and the PO between W(x, 1) and

c.inc(). Now NCMC begins exploring reads-from options for the read r in the highlighted

c.inc() node. In particular, suppose the next reads-from option is the write w in the first

c.inc() in the first thread. Without the Φnc
r,w,E constraint, NCMCmay explore both executions

2 and 3 , where the execution 2 is SC-equivalent to 1 and is thus redundant. The Φnc
r,w,E

constraint ensures that r is ordered before the node R(x, 0) in the new seed exploration, if

feasible, resulting in only execution 3 being explored. NCMC guarantees that any generated

seed exploration is not SC-equivalent to the current execution.

4.4.3 Soundness and Semantic Completeness

In the rest of this section, we establish the correctness of NCMC by showing that the

executions explored satisfy two properties: soundness and semantic completeness. Given a

program P , we say that NCMC generates execution G for P if running Verify(P ) outputs

G among other executions. Soundness ensures that if NCMC generates G, then G is fea-

67



sible; semantic completeness ensures that if G is a consistent execution of P , then NCMC

generates at least one execution G′ that is SC-equivalence to G for P with respect to the

given commutativity specification.

Soundness The soundness of NCMC follows immediately from that of MCR. Specifically,

for a given execution G and a particular read r in G, NCMC handles the exploration of a

new value for r in the following three cases:

1. r is an unscoped read, which is explored in the same way as that of MCR;

2. r is a scoped read and H.SSH−1[top(r)] ∩ H.PO[top(w)] is empty, meaning the new

read-from relation to be enforced, if feasible, does not lead to a seed execution that is

SC-equivalent to the current one’s prefix.

3. r is a scoped read and E = H.SSH−1[top(r)] ∩H.PO[top(w)] is not empty. In this case,

NCMC adds additional constraints Φnc
r,w,E, which forces the generated seed execution

to be semantically different than the current one.

In all three cases, since the constraint encoding is sound (following the soundness of MCM

encoding), the seed executions is feasible. Since NCMC extends a seed execution Gpre by

continuing exploring events following Gpre, the resulting G extended from Gpre is feasible.

Semantic Completeness. Establishing the semantic completeness of NCMC, however, is

more involved. Let us first introduce some definitions that will be used for the proof.

Definition 4.4.1 (Configurations of NCMC). A configuration C of NCMC is a tuple 〈H,Γ〉,

where H is the current semantic execution and Γ is the work set from which Hpre is just

popped, i.e., before adding any seed executions to Γ.

Definition 4.4.2 (Post-images of a Seed Execution). The post-image of a seed execution

Gpre, denoted as post(Gpre), is the set of possible executions reachable from Gpre.

We first prove that every execution pruned by NCMC is SC-equivalent to the current

execution explored by NCMC.

68



Theorem 1 (No Redundancy of NCMC). Given a configuration C = 〈H,Γ〉 with H =

〈top, S〉, for any execution prefix Hpre = 〈Gpre, top, S〉 generated at C, Gpre 6≡Ext G.

Proof sketch. Consider two cases for the newly enforced reads-from pair 〈r, w〉 that underpins

Gpre.

Case 1. r is unscoped. By the construction of Φr,w, for all G′ ∈ post(Gpre), 〈r, w〉 ∈

G′.RF. On the other hand, 〈r, w〉 /∈ G.RF. We have G′ 6≡Ext G since H.RF 6= H ′.RF since r, w

are unscoped.

Case 2. r is scoped. Following algorithm 6 and the construction of Φr,w ∧Φnc
r,w,E, there

exists e ∈ H.SSH−1[top(r)] ∩ H.PO[top(w)] such that for all G′ ∈ post(Gpre), e ∈ G′ and

Oe < Or < Ow. If e is unscoped, Exttop
S (G).SSH 6= Exttop

S (G′).SSH and we are done. If

e is scoped, assume in contradiction that G ≡Ext G
′. Let u = top(e), v = top(r). Then

u, v are also in Exttop
S (G).I, and 〈u, v〉 /∈ Exttop

S (G).SSH. However, this contradicts with the

satisfiability of Φnc
r,w,E, which implies that 〈u, v〉 ∈ Exttop

S (G).SSH.

Semantic completeness follows immediately from no-redundancy of NCMC and complete-

ness of MCR. The executions pruned by NCMC at a configuration 〈G,Γ〉 is SC-equivalent

G. This implies that given an execution G′ generated by MCR, NCMC does not generate it

iff G′ is SC-equivalent to G for some configuration 〈G,Γ〉. We summarize the correctness of

NCMC in the following theorem.

Theorem 2 (Correctness). The NCMC algorithm is sound. If the commutativity specification

used is sound, then NCMC is semantically complete, and at any configuration, NCMC

generates no executions that are SC-equivalent.

4.5 Evaluation

We focus on answering the following two questions in our evaluation of NCMC:

1. How is the performance of our approach compared with other state-of-the-art model

checkers?

69



2. How does the precision of commutativity specifications affect the performance of NCMC?

To evaluate the performance of our approach, we have implemented NCMC as a ver-

ification tool for multithreaded Java programs, based on the open-source JMCR model

checker [46], available at https://github.com/parasol-aser/JMCR. In addition to compar-

ing with JMCR as a baseline, we also compare NCMC against Yogar-CBMC, a static model

checker for C programs that has won the first place in the concurrency safety category of

TACAS SV-COMP for the year 2017-2019, available at https://github.com/yinliangze/

yogar-cbmc.

4.5.1 Evaluation Methodology

Standard Benchmarks. We first evaluate NCMC on a set of benchmarks taken from

the TACAS competition on Software Verification [2]. These benchmarks have been used

extensively in the SMC literature by many tools [43, 67, 68].

We use a set of benchmarks under the concurrency safety category that have critical sec-

tions convertible to method invocations on data structures. The purpose of this benchmark

set is to evaluate the overall performance of our algorithm on a standard test suite, and

also to show that the overhead induced by constructing SEGs and evaluating commutativity

conditions between method invocations (where NCMC may not bring much improvement

over the underlying MCR algorithm).

Benchmark Conversion. We convert these C programs into Java, since our tool only

supports Java programs. To keep the semantics of the converted Java programs as close

as possible to the corresponding C programs, we simulate RMW instructions with multiple

read and write instructions protected by locks. For some of these benchmarks, we refactored

the code into object-oriented style so that we can define commutativity conditions on the

methods of these objects. For instance, in the benchmark pthread-demo-datarace-1, we

encapsulate the code lock(l);x = x + 1;unlock(l) into a method, increase(), defined on a

Counter object.

70



We note that our conversion can potentially lead to different behaviors of the bench-

marks used by NCMC and Yogar-CBMC at the instruction level (i.e., their state spaces

are incomparable). However, apart from differences in the language features and nuances,

our conversion is faithful in keeping the semantics of the programs and preserves the inher-

ent state-space complexity of each benchmark. As such, we believe that our comparison of

NCMC and Yogar-CBMC on a set of different but functional equivalent benchmarks still

gives valuable insight in the relative performance of NCMC against other state-of-the-art

model checkers.

Data Structure Benchmarks. We then evaluate NCMC on a collection of data structure

benchmarks, each given a coarse-grained and a fine-grained commutativity specifications, un-

der two different workloads. The data structures used include sets (implemented as a linked

list), hashtables and union-find. A union-find data structure represents a set of disjoint

sets, and supports union and find methods. The find method is implemented with path

compression2. These data structures have frequently appeared in various contests of com-

mutativity, including speculative execution, verification and generation of commutativity

conditions [66, 65, 50, 51]. Our first workload includes only querying, and the second in-

cludes both querying and updating. All data structures use coarse-grained locking for each

method, allowing us to treat them as atomic invocations.

The purpose of this experiment is to provide a more realistic workload for evaluating

the performance of NCMC, under different precisions of commutativity specifications. Our

results show that NCMC achieves exponential reductions not only for the first set of standard

benchmarks, but also for these more realistic workloads, and is able to explore exhaustively

behaviors of client programs of such data structures significantly faster than the techniques

that are oblivious to semantic commutativity. In addition, as we will see in §4.5.3, precision

of the commutativity specifications affects the performance of NCMC, depending on the
2Path compression flattens the structure of the tree by making every node point to the root whenever find

is used on it. The concrete state of the data structure can change due to the side effect of pass compression,
while the abstract state of it does not change.

71



actual workload.

Commutativity Specifications Used. For the benchmarks from [2], we manually in-

spected the code of each benchmark and wrote the commutativity specifications for them.

We note that some of these benchmarks do not define atomic methods but have critical

sections instead. To exploit the commutativity conditions on them, we convert critical sec-

tions that are conditionally commutative to methods where applicable. All commutativity

specifications except the one for workstealqueue_mutex are in L2 logic that only involves

the method call arguments for each pair of methods. For workstealqueue_mutex, the com-

mutativity conditions involve the abstract states of objects.

For the data structure benchmarks, the commutativity specifications are in L1 logic for

sets and hashtables, and are in L2 logic for union-find data structures. For each data struc-

tures, we provide two versions of commutativity specifications, a fine-grained one and a

coarse-grained one. We compare the relative performance on different selections of commu-

tativity specifications in §4.5.3.

Experimental Setup. We conducted all experiments on a 64-bit MacOS with an Intel

Core i7 CPU (dual cores@2.7GHz) and 16GB of RAM. All reported times are in seconds

unless explicitly noted otherwise. We set the timeout limit for each benchmark run to 15

minutes.

4.5.2 Standard Benchmarks

In our first experiment, we compare NCMC with Yogar-CBMC and JMCR on standard

benchmarks from [2], with their results summarized in Table 4.3, where LB denotes the loop

bound. The metrics used in Table 4.3 are the number of executions explored for JMCR and

NCMC, and the time taken for all the three tools (since Yogar-CBMC is a static symbolic

execution-based verifier and does not explore dynamic executions, we only show its time

taken). The ⊗ marks a wrong output from the model checker.

As shown in Table 4.3, in most of these data-intensive benchmarks where complex data

72



Executions Time (s)
LB JMCR NCMC Yogar JMCR NCMC

sigma 16 1 1 17.34 0.12 0.13
workstealqueue_mutex-2 4 768 693 18.89 22.20 21.08
fkp2013-1 50 - 52 149.54 - 4.69
pthread-demo-datarace-1 20 - 1 305.42 - 0.361
qw2004_variant 10 - 23 71.26 - 1.28
ring_2w1r-1 8 - 812 ⊗ - 43.76

Table 4.3: Benchmarks from SV-COMP [2]. The LB column specifies the loop bound used.

structures are involved, the performance of NCMC is better than that of both Yogar-CBMC

and JMCR. In most cases, NCMC takes significantly less time to finish. In other cases,

NCMC achieves comparable performance with the other tools.

Let us first focus on the two benchmarks where JMCR does not timeout. In the bench-

mark sigma, both JMCR and NCMC take significantly less time than Yogar-CBMC. This

is because both JMCR and NCMC are able to hit one assertion error in the benchmark

in the first execution, whereas Yogar-CBMC, a SAT-based static model checker with bit-

vector-level precision, fails to solve the monolithic encoding of the verification constraints

of the program in a short amount of time. Both JMCR and NCMC explore only one exe-

cution, while JMCR takes slightly less time. The difference between JMCR and NCMC in

this case is due to the additional overhead induced by tracking the NC order. In the bench-

mark workstealqueue_mutex, NCMC is slower than Yogar-CBMC but is in the comparable

range. On the other hand, by exploiting commutativity of invocations in this benchmark

to a certain degree, NCMC explores fewer executions than JMCR and is thus faster than

JMCR.

For the rest of the benchmarks, NCMC is able to outperform the other tools by a very

large margin. The reason behind this is that all these benchmarks exhibit intensive conflicting

memory accesses from multiple threads, but at the semantics level the critical sections that

enclose these accesses commute at a very high frequency. In addition, the commutativity

73



conditions on these critical sections can be precisely captured by L2 logic, allowing NCMC

to prune a large amount of seed interleavings to explore with minimal overhead. Finally, in

the ring_2w1r benchmark, Yogar-CBMC outputs a false violation of the assertions, while

NCMC is able to exhaustively explore all the abstract states of the program and terminate

successfully.

In summary, NCMC is able to exploit the commutativity of complex critical sections

on data-intensive programs with simple commutativity conditions, and can therefore be

significantly faster than tools that reason about conflicts at the concrete memory level. In

addition, the overhead for evaluating commutativity conditions is relatively small. We note

that in most of these benchmarks the commutativity conditions on the critical sections

can be captured in relatively simple logic. One exception is workstealqueue_mutex, in

which we used the abstract states. In the same benchmark, we also observed that the

commutativity conditions are not satisfied for most of the method invocations, which may

explain why NCMC only achieves a relatively slight reduction, compared with the results in

other benchmarks. Nevertheless, NCMC still gains benefit from exploiting commutativity

of invocations in this case. As we will see in Section 4.5.3, in data structures with more

complex commutativity specifications, the benefits of leveraging commutativity conditions

become even more prevalent.

4.5.3 Data Structure Benchmarks

In our second experiment, we evaluate the performance of NCMC against JMCR on data

structure benchmarks, and also evaluate how the precision of commutativity specifications

affects the performance of NCMC. The results for querying-only workload are shown in

Table 4.4; the results for mixed (involving both querying and updating) workload are shown

in Table 4.5. Entries with a dash "-" mark that the tool timeout after 15 minutes.

Workload with Query Only. For the querying workload, JMCR and NCMC explore

exactly one execution on the set and hashtable benchmarks, regardless of the precision of

74



Executions Time (s)
JMCR NCMCc NCMCf JMCR NCMCc NCMCf

set(4) 1 1 1 0.04 0.27 0.29
set(5) 1 1 1 0.04 0.29 0.29
set(6) 1 1 1 0.05 0.29 0.30
set(7) 1 1 1 0.09 0.38 0.39
hashtable(4) 1 1 1 0.01 0.08 0.12
hashtable(5) 1 1 1 0.02 0.09 0.12
hashtable(6) 1 1 1 0.02 0.10 0.14
hashtable(7) 1 1 1 0.06 0.16 0.19
union-find(4) 32 4 4 1.67 0.41 0.65
union-find(5) 64 5 5 9.60 0.62 0.98
union-find(6) 256 6 6 36.03 1.08 1.52
union-find(7) 512 7 7 74.43 1.95 2.61

Table 4.4: Data structure benchmarks with coarse-grained (NCMCc) and fine-grained (NCMCf)
commutativity specifications (seekers workload).

the commutativity specifications. The reason is that with no updating in these benchmarks,

all queries are deemed commutative at both the instruction level and the semantics level.

Although these invocations may be potentially protected with the same locks, their order is

not tracked. Thus one execution is sufficient for these benchmarks. One observation here

is that JMCR is slight faster than NCMC due to the absence of constructing SEGs and

evaluating commutativity consitions.

For the union-find benchmark, NCMC is able to outperform JMCR by a large magnitude.

Specifically, NCMC yields exponential reductions on the explored executions. As discussed

earlier, two invocations of find with path compression may be conflicting at the level of

concrete states, but they always commute at the level of semantics. NCMC is able to exploit

such semantics commutativity with both commutativity specifications. Another important

observation here is that due to the complexity of a precise union-find commutativity specifi-

cation, NCMCf is slower than NCMCc even though they explore the same number of executions.

It may seem unnecessary to use a complete commutativity specification for union-find in

75



Executions Time (s)
JMCR NCMCc NCMCf JMCR NCMCc NCMCf

set(4) 306 5 5 19.477 0.26 0.26
set(5) 2809 6 6 181.226 0.27 0.31
set(6) - 7 7 - 0.31 0.38
set(7) - 8 8 - 0.34 0.40
hashtable(4) 76 26 25 4.71 2.80 2.58
hashtable(5) 455 109 85 30.97 12.22 8.87
hashtable(6) - 2476 940 - 422.34 224.75
hashtable(7) - - - - - -
union-find(4) 44 30 26 1.67 0.82 0.70
union-find(5) 119 46 42 4.46 1.86 3.56
union-find(6) 740 234 218 25.93 8.48 10.16
union-find(7) 6400 2466 2228 190.08 86.80 104.43

Table 4.5: Data structure benchmarks with coarse-grained (NCMCc) and fine-grained (NCMCf)
commutativity specifications (mixed workload).

this case, however, as we will see in Table 4.5, the cost introduced by a more complex but

weaker commutativity specification pays off when the workload is mixed with both queried

and updates.

Workload with Both Query and Update. For the mixed workload (Table 4.5) involv-

ing both querying and updating the abstract states of data structures, NCMC with both

the coarse-grained (NCMCc) and fine-grained (NCMCf) commutativity specifications maintains

a very good performance. For most of these benchmarks, NCMC is able to explore far fewer

executions and is thus significantly faster than the commutativity-agnostic JMCR. Similar

to the query-only workload, the precision of commutativity specifications can have a great

impact on the performance of NCMC. For the set benchmarks, both versions of commuta-

tivity specifications yield exponential reduction in the number of executions compared to

JMCR and explore exactly the same number of executions. This is due to the structure of

the programs. Since each thread contends to add different elements to the set, these inser-

tions commute at both the coarse-grained and fine-grained specification. However, NCMCf is

76



slower than NCMCc due to its tracking of more information to utilize a fine-grained commuta-

tivity specification. For the hashtable benchmarks, threads can concurrently add elements

with the same key to the hashmap, resulting in noncommutative orders enforced on these

invocations. Since the fine-grained commutativity specification is weaker and thus allows

more parallelism on these insertions, it leads to better performance than the coarse-grained

one. Similarly, for union-find, the fine-grained commutativity specification yields better re-

duction. One interesting observation here is that the time taken per execution for NCMCf is

longer than NCMCc, owing to additional overhead induced by tracking the states of the union-

find set. The gains earned by weaker commutativity conditions outweighs the overhead for

utilizing these conditions in this case.

Finally, the number of explored executions grows relatively fast even for NCMCf on the

hashtable and union-find benchmarks. This is due to the fact that the number of collisions of

noncommutative invocations grows non-linearly with respect to the number of threads. For

the hashtable benchmark with 7 threads, NCMCf does not terminate within 15 minutes, due

to a dramatic increase in collisions in the hashmap entries, and thus introducing too many

read and write events even for NCMCf to handle. Nevertheless, NCMC still gains significant

improvement in reduction by exploiting commutativity.

4.6 Conclusion

We have presented NCMC, a novel stateless model checking technique that is capable

of exploiting semantic commutativity for verifying concurrent programs. By lifting the ex-

ecution graph defined at concrete events to semantic invocation events, NCMC constructs

the semantic execution graph to capture the dependence between method invocations, and

avoids exploring redundant executions characterized by reads-from relations that lead to

the same abstract states. We have implemented NCMC for verifying multithreaded Java

programs and evaluated its performance on a variaty of standard and data structure bench-

marks. Our evaluation results show that NCMC yields exponential reductions on the number

of executions explored, achieving significantly better or comparable performance than the

77



state-of-the-art SMC algorithms that are oblivous to program semantics including JMCR

and Yogar-CBMC.

78



5. RELATED WORK

There is a large body of work on detecting concurrency related errors. To our knowledge,

OVPredict is the first partial-order-based analysis targeting both races and non-racy order

violations.

Order Violation Detection. There is a large body of work in finding atomicity violation,

order violation, and thread safety violation bugs [69, 70, 71, 34, 72, 73, 74, 15]. These

techniques can detect some OV bugs that OVPredict targets, and work by actively inserting

delay into target programs to expose atomicity violation interleavings. These techniques

typically require multiple runs to profile events, or persist state between runs. In contrast,

OVPredict aims to predict more concurrency bugs in one single execution by extracting

partial orders from execution and does not persists state between runs.

Predictive Analyses. Predictive analyses aim to infer program behaviors in feasible re-

orderings of a given trace, and is primarily applied to race detection. Predictive analysis

for concurrent UAF detection is first employed in UFO [7], which can potentially detect all

concurrent UAF errors knowable from a trace, including non-racy ones. UFO first records

an execution trace of a program and then encodes the feasibility constraints of a concurrent

UAF into SMT formulas for postmortem analysis. As compared in §4.5, UFO cannot ana-

lyze long program traces in reasonable time, and resorts to breaking the traces into bounded

windows of executions, missing predictive UAF races where the use-free pair is long-distance

apart. In contrast, OVPredict can handle executions with billions of events on the fly, and

works well even for long-running programs.

Our approach is largely inspired by the partial order based race detection techniques. The

CP [17] and WCP [20] analyses are sound but miss predictable races. The WDC analysis

can report more data races than CP and WCP analyses but is unsound in general. The

vindication algorithm of WDC analysis can soundly determine if a WDC race is real but is

79



incomplete [21].

Recently, partial orders incorporating control-flow information have been proposed and

can detect races beyond those knowable from the observed trace [22]. M2 [24] proposes a

sound predictive race detection algorithm including a phase similar to the WDC vindication.

M2 achieves a higher degree of completeness without sacrificing soundness, compared with

WCP and WDC analyses, but requires multiple passes of the input trace, which is unsuitable

for online race detection.

SMT-based predictive analyses [10, 11, 18] can also incorporate control-flow information.

However, they are unscalable and miss races when coupled with a windowing strategy.

Stateless Model Checking. Stateless model checking has been an active research area

since the pioneering work of VeriSoft [41]. Since then a large effort has been invested in

reduction techniques to combat the explosion of interleaving space. DPOR algorithms that

use equivalence partitioning have been proposed for sequential consistency [43, 67], weak

momory models [75, 44], and for release-acquire semantics [68]. Different from DPOR,

Maximal Causality Reductions (MCR) [46] uses a maximal causal model to partition the

state space and has been applied to weak memory models as well [47]. Recently, execution

graph-based DROP algorithms [48, 63] have been successfully applied to memory model-

agnostic settings. However, all these approaches rely on independence at the instuction level,

and are not able to exploit commutativity at the semantics level.

Semantic pruning in DPOR have also been investigated in [45], which uses net unfoldings

to achieve reductions on the executions. The most related work to ours is CDPOR [49], a

DROP algorithm that exploits conditional independence between critical sections. CDPOR

uses static analysis to generate independence conditions (ICs), constraints that encode the

independence conditions between critical sections, and evaluates these independence condi-

tions during online exploration. However, CDPOR can only exploit critical sections on the

concrete states. Our utilization of commutativity specifications can capture commutativity

on the abstract states. In addition, our approach exploits commutativity between method

80



invocations, and thus is able to use logic fragments with more expressive power. We note

that the two techniques are complementary and can be combined to potentially achieve even

better reductions.

Commutativity Analysis. Commutativity analysis has been successfully applied to areas

such as optimistic concurrency control [66, 76, 77, 78], code parallelization [79] and proving

concurrent programs [80]. The work of [81] uses commutativity specifications to reduce the

number of executions explopred for testing the atomicity of client code composing scalable

concurrent operations. Their technique is based on modular testing of client code in the

precence of an adversarial environment. In our work, we assume the operations on the

data structures whose commutativity specifications are provided are atomic, and use them

to reduce the number of explored executions for the data structure clients. Therefore our

work and theirs are complementary and can be combined; it is possible to first use their

method for testing the atomicity of the data structure, and then provide the commutativity

specifications on the data structures to NCMC for model checking all possible behaviors of

the client code.

Our approach of decoupling the model checking of data structure clients from the correct-

ness of data structure implementations aligns with the theme in [65]. Their work focuses on

the verification of sound and complete commutativity conditions of linked data structures.

Our work also serves as a motivation for providing correct commutativity specifications.

Commutativity has also been applied to find commutativity races [39], an interfering

phenomenon caused by incorrect usage of library interfaces that can be viewed as a more

general form of data race detection. Similar to their approach, NCMC also analyzes con-

flicting relations (NC) between invocations during online execution of the program. However,

our algorithm focuses on model checking, which is also capable of detecting commutativity

races. Our work can be viewed as a generalization of their work to the settings of stateless

model checking.

Finally, various recent works focus on automatic learning of commutativity specifica-

81



tions [51, 50]. Our work is the combination of commutativity analysis and stateless model

checking. In particular, we introduce the notion of semantic execution graphs, while prior

work in optimistic transaction control only models executions as a sequence of atomic op-

erations. Our work is the first step towards bridging the gap between the two communities

and we plan to investigate this direction further in future work.

We also note that our algorithm can be extended to model checking transactional pro-

grams under the sequential consistency memory model. The principle of using commutativity

conditions to detect conflicts between transactions can be naturally applied to model check-

ing transactional programs. Since serializability requires that concurrent transactions appear

to execute one after the other in a total sequential order, we can model each transaction as

code blocks protected by locks. More specifically, we can replace each transaction of the form

[T ] in the transactional program with lock(l);T ;unlock(l), where T denotes the instructions

to be executed atomically in the transaction. As such, NCMC can expoit commutativity

conditions between transactions to reduce the number of executions to be explored.

UAF Detection A large number of UAF detection tools have been developed in recent

years. Static analysis has been used to detect sequential as well as concurrent UAF errors [36].

Due to undecidability, they are either unsound or incomplete. Evidence-based dynamic UAF

detection techniques have been gaining popularity in recent years [26, 82, 83, 84]. Compared

to these techniques, OVPredict is distinguished by its ability to predict unseen high-level

races from the observed execution.

Schedule Space Exploration. Orthogonal to our work, systematic testing enables more

program states to be covered using either systematically exploration (i.e., model check-

ing) [85, 46, 18, 86] or heuristics [87, 88, 89, 14]. Combining systematic testing with predictive

analyses such as ours is a promising direction to find more bugs.

Static Analysis. One limitation of OVPredict is the reliance on user provided annotations

to detect high-level races in libraries. One possible approach to alleviate the annotation

82



efforts is to automatically discover the invocation order constraints on library APIs using

static analysis [90, 91].

83



6. CONCLUSION

This thesis formalizes the problem of commutativity order violation detection by extend-

ing the traditional notion of predictable races. The notion of commutativity order violation

covers a larger class of concurrency errors that arise in practice. Our technique, OVPredict,

detects both racy and non-racy order violations. The latter case is beyond existing race de-

tection based techniques. In our evaluation, OVPredict uncovers several previously unknown

order violation errors in open-source Go programs, including one non-racy order violation

in CockroachDB. On C and Chromium benchmarks, OVPredict exposes the known UAF

errors with higher frequency compared to ThreadSanitizer. Furthermore, it has comparative

performance overhead compared the highly optimized HB analysis.

Our work advances the state of the art in predictive analysis by incorporating dependency

at the library interface level, which is beyond the basic read-write conflicts that existing race

detectors consider. Inspired by the notion from the axiomatic memory model literature, our

characterization of correct reorderings is general and is applicable to any libraries equipped

with a suitable commutativity specification. The extended-doesn’t-commute (WDC) analysis

is a standalone contribution of this work and is applicable not only concurrency bug detection

but stateless model checking as well.

To combat real world performance challenges of partial order based predictive analysis, we

further address the major performance bottleneck of tracking conflicting critical sections and

proposed efficient data structures to store the mutex-access metadata on shadow memory.

This allows OVPredict to scale to traces with billions of events, which are not uncommon

for large applications such as Chromium.

Inspired by the characterization of generalized correct reorderings, we further investigate

its application in stateless model checking. Specifically, we propose an SMC algorithm that

is able to exploit commutativity specification of library interface. The key challenge in this

work is how to systematically enumerate all sound SC-equivalent interleavings (completeness)

84



without redundancy (optimality). Our algorithm borrows the insight from the EDC analysis

and leverages access point representation to detect conflicts between method invocations in

constant time. On SV-COMP benchmarks, our tool NCMC achieves exponential speedup

on several benchmarks that use commutative data structures.

The body of work presented in this thesis shows our effort to bridging the gap between

the predictive analysis and stateless model checking field. The key insight underlying both

OVPredict and NCMC is that dependency can be reasoned at the library method invocation

level which encapsulates low-level instructions. We believe that developers can benefit from

our tools when developing, testing, and diagnosing concurrent programs. Furthermore, we

believe that our work can serve as a baseline for future program analysis and model checking

techniques that incorporate dependency reasoning at the library interface level.

85



REFERENCES

[1] “Chromium issue 841280: heap-use-after-free in blinkgc.” https://crbug.com/841280,

2018.

[2] SV-COMP, “Sv-comp.” https://sv-comp.sosy-lab.org/2020/, 2019.

[3] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A comprehensive study

on real world concurrency bug characteristics,” in Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS XIII, (New York, NY, USA), pp. 329–339, ACM, 2008.

[4] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world concurrency bugs

in go,” in Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’19), (New York,

NY, USA), 2019.

[5] J. Burnim, K. Sen, and C. Stergiou, “Testing concurrent programs on relaxed memory

models,” in Proceedings of the 2011 International Symposium on Software Testing and

Analysis, ISSTA ’11, (New York, NY, USA), p. 122–132, Association for Computing

Machinery, 2011.

[6] H.-J. Boehm, “How to miscompile programs with “benign” data races,” in Proceedings

of the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar’11, (USA), p. 3,

USENIX Association, 2011.

[7] J. Huang, “Ufo: Predictive concurrency use-after-free detection,” in Proceedings of the

40th International Conference on Software Engineering, ICSE ’18, (New York, NY,

USA), pp. 609–619, ACM, 2018.

[8] M. Zhivich and R. K. Cunningham, “The real cost of software errors,” IEEE Security

Privacy, vol. 7, no. 2, pp. 87–90, 2009.

86



[9] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation,

testing, and data mining for weak memory,” ACM Trans. Program. Lang. Syst., vol. 36,

pp. 7:1–7:74, July 2014.

[10] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predictive race detection with

control flow abstraction,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’14, (New York, NY, USA),

pp. 337–348, ACM, 2014.

[11] J. Huang and A. K. Rajagopalan, “Precise and maximal race detection from incomplete

traces,” in Proceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, (New

York, NY, USA), pp. 462–476, ACM, 2016.

[12] J. Huang and C. Zhang, “Persuasive prediction of concurrency access anomalies,” in

Proceedings of the 2011 International Symposium on Software Testing and Analysis

(ISSTA ’11), (New York, NY, USA), 2011.

[13] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: Efficient detection of data race con-

ditions via adaptive tracking,” in Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles (SOSP ’05), (New York, NY, USA), 2005.

[14] K. Sen, “Race directed random testing of concurrent programs,” in Proceedings of the

29th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’08, (New York, NY, USA), pp. 11–21, ACM, 2008.

[15] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient scalable thread-safety-

violation detection: Finding thousands of concurrency bugs during testing,” in Proceed-

ings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19), (New

York, NY, USA), 2019.

[16] M. Said, C. Wang, Z. Yang, and K. Sakallah, “Generating data race witnesses by an

smt-based analysis,” in Proceedings of the Third International Conference on NASA

87



Formal Methods, NFM’11, (Berlin, Heidelberg), pp. 313–327, Springer-Verlag, 2011.

[17] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound predictive

race detection in polynomial time,” in Proceedings of the 39th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’12, (New York,

NY, USA), pp. 387–400, ACM, 2012.

[18] S. Huang and J. Huang, “Speeding up maximal causality reduction with static de-

pendency analysis,” in 31st European Conference on Object-Oriented Programming

(ECOOP 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[19] T. F. ŞerbănuŢă, F. Chen, and G. Roşu, “Maximal causal models for sequentially

consistent systems,” in Runtime Verification (S. Qadeer and S. Tasiran, eds.), (Berlin,

Heidelberg), pp. 136–150, Springer Berlin Heidelberg, 2013.

[20] D. Kini, U. Mathur, and M. Viswanathan, “Dynamic race prediction in linear time,” in

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2017, (New York, NY, USA), pp. 157–170, ACM, 2017.

[21] J. Roemer, K. Genç, and M. D. Bond, “High-coverage, unbounded sound predictive

race detection,” in Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2018, (New York, NY, USA), pp. 374–389,

ACM, 2018.

[22] K. Genç, J. Roemer, Y. Xu, and M. D. Bond, “Dependence-aware, unbounded sound

predictive race detection,” Proc. ACM Program. Lang., vol. 3, pp. 179:1–179:30, Oct.

2019.

[23] J. Roemer, K. Genç, and M. D. Bond, “Practical predictive race detection,” CoRR,

vol. abs/1905.00494, 2019.

[24] A. Pavlogiannis, “Fast, sound and effectively complete dynamic race prediction,” in

Proceedings of the 47th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’20, ACM, 2020.

88



[25] U. Mathur, M. S.Bauer, and M. Viswanathan, “Sound dynamic deadlock prediction in

linear time.” URL: http://umathur3.web.engr.illinois.edu/papers/dcp.pdf.

[26] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast

address sanity checker,” in Presented as part of the 2012 USENIX Annual Technical

Conference (USENIX ATC 12), (Boston, MA), pp. 309–318, USENIX, 2012.

[27] J. Edge, “The kernel address sanitizer.” https://lwn.net/Articles/612153/, 2014.

[28] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic bi-

nary instrumentation,” in Proceedings of the 28th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’07, (New York, NY, USA),

pp. 89–100, ACM, 2007.

[29] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in practice,”

in Proceedings of the Workshop on Binary Instrumentation and Applications (WBIA

’09), (New York, USA), Dec. 2009.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A dynamic

data race detector for multithreaded programs,” 1997.

[31] J. Roemer and M. D. Bond, “Online set-based dynamic analysis for sound predictive

race detection,” CoRR, vol. abs/1907.08337, 2019.

[32] Intel Corporation, “Intel Inspector,” 2016. https://software.intel.com/en-us/

intel-inspector-xe.

[33] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective data-race detec-

tion for the kernel,” in Proceedings of the 9th USENIX Conference on Operating Systems

Design and Implementation (OSDI ’10), (Berkeley, CA, USA), 2010.

[34] S. Park, S. Lu, and Y. Zhou, “Ctrigger: Exposing atomicity violation bugs from their

hiding places,” SIGARCH Comput. Archit. News, vol. 37, p. 25–36, Mar. 2009.

89



[35] M. Elver, P. E. McKenney, D. Vyukov, A. Konovalov, A. Potapenko, K. Serebryany,

A. Stern, A. Parri, A. Yokosawa, P. Zijlstra, W. Deacon, D. Lustig, B. Feng, J. Fernan-

des, J. Alglave, and L. Maranget, “Kcsan: Concurrency bugs should fear the big bad

data-race detector (part 2).” https://lwn.net/Articles/816854/, 2020.

[36] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static analysis of concurrency

use-after-free bugs in linux device drivers,” in 2019 USENIX Annual Technical Con-

ference (USENIX ATC 19), (Renton, WA), pp. 255–268, USENIX Association, July

2019.

[37] F. Chen, T. F. Serbanuta, and G. Rosu, “jpredictor: A predictive runtime analysis tool

for java,” in Proceedings of the 30th International Conference on Software Engineering,

ICSE ’08, (New York, NY, USA), pp. 221–230, ACM, 2008.

[38] P. Liu, O. Tripp, and X. Zhang, “Ipa: Improving predictive analysis with pointer analy-

sis,” in Proceedings of the 25th International Symposium on Software Testing and Anal-

ysis, ISSTA 2016, (New York, NY, USA), pp. 59–69, ACM, 2016.

[39] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen, “Commutativity race detection,”

in Proceedings of the 35th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’14, (New York, NY, USA), pp. 305–315, ACM, 2014.

[40] U. Mathur, A. Pavlogiannis, and M. Viswanathan, “Optimal prediction of

synchronization-preserving races,” 2020.

[41] P. Godefroid, “Model checking for programming languages using verisoft,” in Proceed-

ings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’97, (New York, NY, USA), pp. 174–186, ACM, 1997.

[42] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic partial order

reduction,” SIGPLAN Not., vol. 49, pp. 373–384, Jan. 2014.

[43] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and K. Sagonas,

“Stateless model checking for tso and pso,” in Tools and Algorithms for the Construction

90



and Analysis of Systems (C. Baier and C. Tinelli, eds.), (Berlin, Heidelberg), pp. 353–

367, Springer Berlin Heidelberg, 2015.

[44] N. Zhang, M. Kusano, and C. Wang, “Dynamic partial order reduction for relaxed mem-

ory models,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’15, (New York, NY, USA), pp. 250–259,

ACM, 2015.

[45] C. Rodríguez, M. Sousa, S. Sharma, and D. Kroening, “Unfolding-based Partial Order

Reduction,” in 26th International Conference on Concurrency Theory (CONCUR 2015)

(L. Aceto and D. de Frutos Escrig, eds.), vol. 42 of Leibniz International Proceedings

in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 456–469, Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2015.

[46] J. Huang, “Stateless model checking concurrent programs with maximal causality reduc-

tion,” in Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’15, (New York, NY, USA), pp. 165–174, ACM, 2015.

[47] S. Huang and J. Huang, “Maximal causality reduction for tso and pso,” in Proceedings of

the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2016, (New York, NY, USA), pp. 447–

461, ACM, 2016.

[48] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective stateless model

checking for c/c++ concurrency,” Proc. ACM Program. Lang., vol. 2, pp. 17:1–17:32,

Dec. 2017.

[49] E. Albert, M. Gómez-Zamalloa, M. Isabel, and A. Rubio, “Constrained dynamic partial

order reduction,” in Computer Aided Verification (H. Chockler and G. Weissenbacher,

eds.), (Cham), pp. 392–410, Springer International Publishing, 2018.

[50] T. Gehr, D. Dimitrov, and M. Vechev, “Learning commutativity specifications,” in

Computer Aided Verification (D. Kroening and C. S. Păsăreanu, eds.), (Cham), pp. 307–

91



323, Springer International Publishing, 2015.

[51] K. Bansal, E. Koskinen, and O. Tripp, “Automatic generation of precise and useful com-

mutativity conditions,” in Tools and Algorithms for the Construction and Analysis of

Systems (D. Beyer and M. Huisman, eds.), (Cham), pp. 115–132, Springer International

Publishing, 2018.

[52] F. Mattern, “Virtual time and global states of distributed systems,” in PARALLEL

AND DISTRIBUTED ALGORITHMS, pp. 215–226, North-Holland, 1988.

[53] A. Raad, M. Doko, L. Rožić, O. Lahav, and V. Vafeiadis, “On library correctness

under weak memory consistency: Specifying and verifying concurrent libraries under

declarative consistency models,” Proc. ACM Program. Lang., vol. 3, pp. 68:1–68:31,

Jan. 2019.

[54] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and precise dynamic race detec-

tion,” in Proceedings of the 30th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’09, (New York, NY, USA), pp. 121–133, ACM, 2009.

[55] “Machine types | compute engine documentation.” URL:

https://cloud.google.com/compute/docs/machine-types.

[56] J. Yu and S. Narayanasamy, “A case for an interleaving constrained shared-memory

multi-processor,” in Proceedings of the 36th Annual International Symposium on Com-

puter Architecture, ISCA ’09, (New York, NY, USA), pp. 325–336, ACM, 2009.

[57] “Chromium issue 904714: heap-use-after-free on sw::renderer::finishrendering.” https:

//crbug.com/904714, 2018.

[58] “Chromium issue 944424: Uaf in taskqueueimpl::createtaskrunner.” https://crbug.

com/944424, 2019.

[59] “Chromium issue 945370: Uaf in indexeddb.” https://crbug.com/945370, 2019.

92



[60] “A collection of concurrency bugs on github.” https://github.com/jieyu/

concurrency-bugs.

[61] “Chromium issue tracker.” https://crbug.com.

[62] D. Rhodes, C. Flanagan, and S. N. Freund, “Bigfoot: Static check placement for dy-

namic race detection,” in Proceedings of the 38th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2017, (New York, NY, USA),

p. 141–156, Association for Computing Machinery, 2017.

[63] M. Kokologiannakis, A. Raad, and V. Vafeiadis, “Model checking for weakly consis-

tent libraries,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2019, (New York, NY, USA), pp. 96–110,

ACM, 2019.

[64] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent

objects,” ACM Trans. Program. Lang. Syst., vol. 12, pp. 463–492, July 1990.

[65] D. Kim and M. C. Rinard, “Verification of semantic commutativity conditions and in-

verse operations on linked data structures,” in Proceedings of the 32Nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’11, (New

York, NY, USA), pp. 528–541, ACM, 2011.

[66] M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali, “Exploiting the com-

mutativity lattice,” in Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’11, (New York, NY, USA),

pp. 542–555, ACM, 2011.

[67] P. A. Abdulla, M. F. Atig, B. Jonsson, and C. Leonardsson, “Stateless model checking

for power,” in Computer Aided Verification (S. Chaudhuri and A. Farzan, eds.), (Cham),

pp. 134–156, Springer International Publishing, 2016.

93



[68] P. A. Abdulla, M. F. Atig, B. Jonsson, and T. P. Ngo, “Optimal stateless model checking

under the release-acquire semantics,” Proc. ACM Program. Lang., vol. 2, pp. 135:1–

135:29, Oct. 2018.

[69] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity violations via access

interleaving invariants,” in Proceedings of the 12th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS ’06),

(New York, NY, USA), 2006.

[70] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, “Atom-aid: Detecting and surviving

atomicity violations,” SIGARCH Comput. Archit. News, vol. 36, p. 277–288, June 2008.

[71] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, “2ndstrike: Toward manifesting

hidden concurrency typestate bugs,” in Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’11), (New York, NY, USA), 2011.

[72] W. Zhang, C. Sun, and S. Lu, “Conmem: Detecting severe concurrency bugs through

an effect-oriented approach,” SIGPLAN Not., vol. 45, p. 179–192, Mar. 2010.

[73] B. Lucia and L. Ceze, “Finding concurrency bugs with context-aware communication

graphs,” in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO), pp. 553–563, 2009.

[74] L. Chew and D. Lie, “Kivati: Fast detection and prevention of atomicity violations,” in

Proceedings of the 5th European Conference on Computer Systems (EuroSys ’10), (New

York, NY, USA), 2010.

[75] B. Norris and B. Demsky, “Cdschecker: Checking concurrent data structures written

with c/c++ atomics,” in Proceedings of the 2013 ACM SIGPLAN International Confer-

ence on Object Oriented Programming Systems Languages &#38; Applications, OOP-

SLA ’13, (New York, NY, USA), pp. 131–150, ACM, 2013.

94



[76] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew, “Op-

timistic parallelism requires abstractions,” in Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’07, (New

York, NY, USA), pp. 211–222, ACM, 2007.

[77] E. Koskinen, M. Parkinson, and M. Herlihy, “Coarse-grained transactions,” in Proceed-

ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’10, (New York, NY, USA), pp. 19–30, ACM, 2010.

[78] M. Herlihy and E. Koskinen, “Transactional boosting: A methodology for highly-

concurrent transactional objects,” in Proceedings of the 13th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’08, (New York,

NY, USA), pp. 207–216, ACM, 2008.

[79] M. C. Rinard and P. C. Diniz, “Commutativity analysis: A new analysis framework

for parallelizing compilers,” in Proceedings of the ACM SIGPLAN 1996 Conference on

Programming Language Design and Implementation, PLDI ’96, (New York, NY, USA),

pp. 54–67, ACM, 1996.

[80] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,” in Proceedings of

the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’09, (New York, NY, USA), pp. 2–15, ACM, 2009.

[81] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and E. Yahav, “Testing

atomicity of composed concurrent operations,” in Proceedings of the 2011 ACM Inter-

national Conference on Object Oriented Programming Systems Languages and Applica-

tions, OOPSLA ’11, (New York, NY, USA), pp. 51–64, ACM, 2011.

[82] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee, “Preventing use-after-

free with dangling pointers nullification,” 02 2015.

[83] E. van der Kouwe, V. Nigade, and C. Giuffrida, “DangSan: Scalable Use-after-free

Detection,” in EuroSys, Apr. 2017.

95



[84] Y. Younan, “Freesentry: Protecting against use-after-free vulnerabilities due to dangling

pointers,” 01 2015.

[85] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A randomized scheduler

with probabilistic guarantees of finding bugs,” in Proceedings of the Fifteenth Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XV, (New York, NY, USA), pp. 167–178, ACM, 2010.

[86] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic testing of

multithreaded programs,” in Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’07, (New York, NY, USA),

pp. 446–455, ACM, 2007.

[87] Y. Cai and L. Cao, “Effective and precise dynamic detection of hidden races for java

programs,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2015, (New York, NY, USA), pp. 450–461, ACM, 2015.

[88] M. Eslamimehr and J. Palsberg, “Race directed scheduling of concurrent programs,”

in Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’14, (New York, NY, USA), pp. 301–314, ACM, 2014.

[89] T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by context inference,” in

Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design

and Implementation, PLDI ’04, (New York, NY, USA), pp. 1–13, ACM, 2004.

[90] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue, “Precise static happens-before analysis for

detecting uaf order violations in android,” in 2019 12th IEEE Conference on Software

Testing, Validation and Verification (ICST), p. 276–287, IEEE, Apr 2019.

[91] A. Singh, R. Pai, D. D’Souza, and M. D’Souza, Static Analysis for Detecting High-Level

Races in RTOS Kernels, vol. 11800, p. 337–353. Springer International Publishing,

2019.

96


