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ABSTRACT 

 

The Reservoir GeoMechanics Simulator (RGMS), a geomechanics simulator 

based on the finite element method and parallelized using the Message Passing Interface 

(MPI), is developed in this work to model the stresses and deformations in subsurface 

systems. RGMS can be used stand-alone, or coupled with flow and transport models. 

pT+H V1.5, a parallel MPI-based version of the serial T+H V1.5 code that describes mass 

and heat flow in hydrate-bearing porous media, is also developed. Using the fixed-stress 

split iterative scheme, RGMS is coupled with the pT+H V1.5 to investigate the 

geomechanical responses associated with gas production from hydrate accumulations. The 

code development and testing process involve evaluation of the parallelization and of the 

coupling method, as well as verification and validation of the results.  

The parallel performance of the codes is tested on the Texas A&M University Ada 

Linux cluster using up to 512 processors, and on a Mac Pro computer with 12 processors. 

The investigated problems are:  

Group 1: Geomechanical problems solved by RGMS in 2D Cartesian and cylindrical 

domains and a 3D problem, involving 4×106 and 3.375×106 elements, 

respectively;  

Group 2: Realistic problems of gas production from hydrates using pT+H V1.5 in 2D 

and 3D systems with 2.45×105 and 3.6×106 elements, respectively;  

Group 3: The problems in Group 2 solved with the coupled RGMS-pT+H V1.5 

simulator, fully accounting for geomechanics.  
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Two domain partitioning options are investigated on the Ada Linux cluster, and 

the code parallel performance is monitored. Using 512 processors, the simulation 

speedups (a) of RGMS are 218.89, 188.13, and 284.70 in the Group 1 problems, (b) of 

pT+H V1.5 are 174.25 and 341.67 in the Group 2 cases, and (c) of the coupled simulators 

are 134.97 and 331.80 in the Group 3 cases.  

The results produced in this work show (a) the necessity of using full 

geomechanics simulators in marine hydrate-related studies because of the associated 

pronounced geomechanical effects on production and displacements, (b) the importance 

of fine discretization, and (c) the effectiveness of the parallel simulators developed in this 

study, which can be the only realistic option in these complex simulations of large 

multidimensional domains. 

  



 

iv 

 

DEDICATION 

 

This dissertation is dedicated to my parents, Shimin Zhang and Xingmei Chen, 

and my wife, Dier Liu. 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. George J. Moridis, my committee 

co-chair, Dr. Thomas A. Blasingame, and my committee members, Dr. Jihoon Kim, Dr. 

Theofanis Strouboulis, for their guidance and support throughout the course of this 

research.  

I would also like to thank my friends, colleagues, and the department faculty and 

staff for making my time at Texas A&M University a great experience.  

Finally, I would like to thank my parents, Shimin Zhang and Xingmei Chen, and 

my wife, Dier Liu, for their love, support, patience, and encouragement. 

 

  



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a dissertation committee consisting of Professor Dr. 

George J. Moridis [advisor], Dr. Thomas A. Blasingame [co- advisor], and Dr. Jihoon Kim 

of the Department of Petroleum Engineering, and Professor Dr. Theofanis Strouboulis of 

the Department of Aerospace Engineering. 

The general parallel geomechanics simulator RGMS was developed based on the 

serial geomechanics simulator ROCMECH studying the problems in two- and three-

dimensional Cartesian coordinate systems provided by Professor Dr. Jihoon Kim of the 

Department of Petroleum Engineering. The parallel flow and transport simulator for 

hydrate-bearing geologic media pT+H V1.5 was developed based on the serial flow and 

transport simulator for hydrate-bearing geologic media T+H V1.5 provided by Professor 

Dr. George J. Moridis of the Department of Petroleum Engineering. 

All other work conducted for the thesis dissertation was completed by the student 

independently.  

 

Funding Sources 

Graduate study was supported by the Research Assistantship funded by a start-up 

research project under Dr. George J. Moridis from Texas A&M University. 

 



 

vii 

 

NOMENCLATURE 

 

()   Change 

0H   Specific enthalpy of hydrate dissociation/formation [J∙kg-1] 

  Del operator 

A Aqueous phase 

CR Heat capacity of the dry rock [J∙kg-1∙K-1] 

dA Differential surface [m2] 

dV Differential volume [m3] 

E  Young’s modulus [Pa] 

f Radiance emittance factor 

G Shear modulus [Pa] or gaseous phase 

G0 Shear modulus when the hydrate saturation is zero [Pa] 

G1 Shear modulus when the hydrate saturation is one [Pa] 

H Solid hydrate phase 

hβ Specific enthalpy of phase   [J∙kg-1] 

I  Solid ice phase 

i Inhibitor component 

k  Rock intrinsic permeability [m2] 

Kdr Drained bulk modulus [Pa] 

Kdr0 Drained modulus when the hydrate saturation is zero [Pa] 

Kdr1 Drained modulus when the hydrate saturation is one [Pa] 
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sK  Skeletal grain modulus [Pa] 

kh Horizontal permeability [m2] 

kr Radial permeability [m2] 

rk    Relative permeability of phase   

kz Vertical permeability [m2] 

k  Composite thermal conductivity of the medium/fluid ensemble [W∙m-1∙K-1] 

dk  Formation thermal conductivity under desaturated conditions [W∙m-1∙K-1] 

wk  Formation thermal conductivity under fully liquid-saturated conditions  

[W∙m-1∙K-1] 

Ik  Thermal conductivity of ice phase [W∙m-1∙K-1] 

m  Methane component 

MW Cumulative mass of produced water 

M Heat accumulation term 

Mκ Mass accumulation of component κ [kg∙m-3] 

N Shape function 

P Pressure [Pa] 

PA Pressure of the aqueous phase [Pa] 

PcGW Gas-water capillary pressure [Pa] 

PG Pressure of the gaseous phase [Pa] 

m

GP  Methane vapor partial pressure in the gas phase [Pa] 



 

ix 

 

w

GP  Water vapor partial pressure in the gas phase [Pa] 

Pt Average mobile fluid pressure [Pa] 

Pt,0 Initial equivalent pore pressure [Pa] 

P  Pressure of phase   [Pa] 

QA Aqueous phase mass rate 

QG Gaseous phase mass rate 

QgA Volumetric rate of CH4 well production from the aqueous phase 

QgG Volumetric rate of CH4 well production from the gaseous phase 

QgT Volumetric rate of CH4 well production from both the gaseous the aqueous 

phases 

QR Volumetric rate of CH4 released from dissociation 

QW Water mass production rate 

qβ Production rate of phase   [kg∙s-1] 

qκ Source/sink term of component κ [kg∙m-3∙s-1] 

r Radial direction 

RWG Instantaneous water-to-gas ratio 

RWGT Cumulative water-to-gas ratio 

S  Saturation of phase   

T  Temperature [K or °C] 

t Time [s] 

U  Specific internal energy of phase   [J∙kg-1] 
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VF Cumulative volume of CH4 remaining in the deposit as free gas 

VgA Cumulative volume of CH4 produced at the well in the aqueous phase 

VgG Cumulative volume of CH4 produced at the well in the gaseous phase 

VgT Cumulative volume of CH4 produced at the well in both the gas and the 

aqueous phase 

Vn Volume of the subdomain [m3] 

VR Cumulative volume of CH4 released from dissociation 

w Water component 

x Direction along the x-axis 

XsA Mass fraction of salt in the produced aqueous phase 

X 
  Mass fraction of component κ in phase   

y Direction along the y-axis 

z Direction along the z-axis 

  Biot's coefficient 

P  Pore compressibility 

β  Phase β  

Γn Surface of subdomain n [m2] 

 Shear strain or empirical permeability reduction factor 

εv Current volumetric strain 

εv,0 Initial volumetric strain 

 Circumferential direction 

κ  Component κ 
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A  Viscosity of the aqueous phase [Pa∙s] 

 Poisson’s ratio 

b  Bulk density [kg∙m-3] 

f  Fluid density [kg∙m-3] 

R  Rock density [kg∙m-3] 

  Density of phase   [kg∙m-3] 

𝜎0 Stefan-Boltzmann constant [5.6687×10-8 J∙m-2∙K-4] 

𝜎1
′ Maximum principal effective stress 

 Shear stress [Pa] 

  Porosity 

0  Initial porosity 

B Deformation matrix 

C Elasticity tensor [Pa] 

D Elasticity matrix of moduli [Pa] 

F Force vector 

Fκ Flux vector of component κ [kg∙m-2∙s-1] 

g Gravitational acceleration vector [m∙s-2] 

I Identity matrix 

J Jacobian matrix 

K Stiffness matrix 

N Shape function matrix 
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n Inward unit normal vector 

R Residual vector 

t External traction vector [Pa] 

u Displacement vector [m] 

u  Nodal displacement vector [m] 

x Unknown vector 

ε  Strain tensor 

σ  Total stress tensor [Pa] 

σ  Effective stress tensor [Pa] 
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1. INTRODUCTION AND RESEARCH OBJECTIVES 

 

 This chapter introduces geomechanics, hydrates, and the coupled flow, thermal, 

thermodynamic, chemical, and geomechanical processes involved in hydrate dissociation 

for gas production. It also introduces parallel computing, discusses the studies in the 

literature, and presents the research objectives. 

 

1.1. Introduction 

1.1.1. Geomechanics 

Geomechanics plays an essential part in the response of the reservoir to oil 

production, water injection, and depletion (McPhee et al. 2015). In the recovery process 

of oil and gas, the pore pressure reduction increases the effective stress that compacts or 

consolidates the reservoir. These reservoir deformations affect the production 

performance as a result of the associated permeability and porosity changes, which can be 

significant in low-permeability and low-porosity unconventional reservoirs such as shale 

oil and shale gas systems (Zhao 2012).  

A conventional reservoir simulator lacking a robust geomechanical component 

(i.e., relying on a simplified approach that involves constant pore compressibility or 

empirical models to adjust porosity and permeability) can lead to erroneous results (almost 

certain when the fluid pressure changes are large). This is because the simplified methods 

it invokes can adjust the formation porosity and permeability as simple functions of 

pressure and temperature, but is unable to account for the effects of media deformations 
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and of the changes in the stress fields. This can only be accomplished by the use of a full 

geomechanical model that can accurately capture the mechanical behavior of the 

subsurface rocks, specifically (a) the deformation and (possible) failure of the reservoir 

media and the well assembly and (b) the effect of changes in the stresses, fluid pressures 

and temperatures on the associated flow properties (porosity and permeability) that control 

production, as well as (c) the interdependence of the system flow, thermal and 

geomechanical properties and conditions. 

The finite element method (FEM) is a sophisticated numerical method that is 

widely used in the solution of problems of structural mechanics and has found significant 

applications in the solution of geomechanical problems. After discretizing the domain 

continuum into appropriate spatial subdivisions, the FEM forms finite elements with 

unknown nodal values and assembles equations of appropriate independent variables that 

are solved simultaneously to describe the status of the problem in space and time. Because 

accuracy is determined by both the number of elements and the order of the elements, the 

computational cost is very high in the solution of problems involving large domains, fine 

discretizations, and a high precision requirement. In such cases, a parallel geomechanics 

simulator based on the FEM is necessity, and possibly the only realistic option. 

 

1.1.2. Hydrate 

Gas hydrates are solid crystalline compounds in which the lattices of ice-like 

crystal structures are occupied by gas molecules. Hydrate formation or dissociation is 

described by the following general equation:  
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 0

2 2G+ H O=G H O+H HN N H   (1.1) 

where G is the hydrate-forming gas, HN  is the hydration number, 2G H OHN  is the 

hydrate, and 0H  is the enthalpy of hydrate formation/dissociation (Moridis et al. 2019). 

The gas molecules in the hydrate crystals are called guests, and the lattice is called the 

host. CH4-hydrates are the overwhelming majority of natural gas hydrates. Securing the 

trapped gas in the lattice (i.e., hydrate stability) requires low-temperature and high-

pressure conditions. In nature, such conditions are encountered in the vicinity of the 

permafrost and in deep oceanic environments. Although there is significant uncertainty 

regarding the occurrence and abundance of these natural hydrate accumulations, the 

scientific consensus is that the amount of CH4 trapped in natural hydrate deposits is 

nothing short of vast, thus representing a potentially important energy resource if the 

associated CH4 can be technically and economically recovered (Moridis et al. 2008, 2009).  

 

1.1.3. Coupled Simulation 

There are three main methods to induce dissociation in order to recover the 

hydrocarbon from hydrate deposits: (a) depressurization, (b) thermal stimulation, and (c) 

the use of inhibitors (Makogon 1997). All dissociation methods involve state and phase 

changes, and are often associated with significant geomechanical responses of the 

geologic system where the hydrates occur (Moridis et al. 2013). 

Because of their interdependence, the coupling of the flow, thermal, and chemical 

processes with the associated geomechanical system response in numerical simulators 

becomes very important in the effort to accurately predict the fluid recovery and the 
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overall behavior of the hydrate-bearing geologic media under production. Some gas-

hydrate reservoirs (especially those in marine settings) involve mechanically weak (soft) 

media (such as silts, clays, and muds) that exhibit significant deformation and 

displacement (mainly subsidence) during production. Such behavior may lead to 

substantial reductions in porosity and permeability, which in turn have a considerable 

impact on production and on the reservoir and well stability. 

 

1.1.4. Parallel Computing 

Most computational problems comprise two components: (a) the serial component, 

which is executed sequentially on a single processor and (b) the parallel component, in 

which multiple operations are executed simultaneously on different processors. The larger 

the second component in a problem, the better the parallel performance that can be 

achieved. Thus, achieving high parallel performance requires the minimization of the 

serial component.  

The idea behind parallel computing is to break a problem into smaller problems 

that can be solved simultaneously and independently. The resulting individual problems 

need to be communicated at a certain point by parallel libraries, the most important of 

which are (a) the Message Passing Interface (MPI), designed for distributed memory 

systems and (b) OpenMP, designed for shared memory systems. Both libraries are 

available in programming languages C, C++, and FORTRAN. Figure 1.1 shows that 

CPUs (or processors) can only access their assigned memory in the distributed memory 

system, requiring an interconnection network to share data. This parallel architecture is 
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implemented in large clusters and supercomputers, so that thousands of CPUs can be 

installed as long as they are connected by interconnection networks. Figure 1.2 shows a 

shared memory system (used mainly small on multi-processor systems such as personal 

computers and workstations), in which all the CPUs access all the entire (same) memory.  

 

 

Figure 1.1 Illustration of distributed memory systems. 

 

 

 

Figure 1.2 Illustration of shared memory systems. 

 

 

Although MPI works with processes having individual resources and creates the 

multiprocessing environment, users often use processors instead of processes. In an MPI-

based application/program, a process is typically assigned to a core for optimum 

performance, resulting in a number of processes (or processors) equal to the number of 
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the cores used for the task. MPI supports point-to-point and collective communications 

between processors. The common point-to-point communication involves sending data to 

a processor and receiving data from a processor, which is useful when exchanging 

boundary values. These operations can be accomplished via either blocking or non-

blocking communications. A program will halt its operation until a blocking 

communication is completed. On the contrary, a non-blocking communication allows the 

program to perform computations even if the destination processor does not receive the 

sent data. The summation or maximum/minimum values among processors can be found 

by collective communications. OpenMP works with threads, which are the subset of 

processes, and creates a multithreading environment with shared resources. In other 

words, OpenMP can run multiple threads concurrently on a single process. 

Compared to MPI, OpenMP is easier to implement and does not require substantial 

modifications of a program under parallelization. MPI is more flexible on parallelization 

but requires an extensive programming effort in addition to the original code 

modifications. MPI is applied in this study because of (a) the large-scale problems that are 

solved, involving millions of elements and (b) the large number of mass and heat balance 

equations per element. The size of the problems, the number of operations, and the very 

large memory requirement make their solution intractable for single-processor systems, 

making parallel solutions based on distributed memory systems the only practical (and 

possible) option. 

  



 

7 

 

1.2. Literature Review 

Lei et al. (2015) developed a mechanical simulation module based on the FEM and 

the 3D extended Biot consolidation model and coupled it with the TOUGH2 family of 

codes (Pruess et al. 1999); the resulting serial simulator was TOUGH2Biot for thermal-

hydrodynamic-mechanical (THM) simulations, in which the geomechanics simulation 

used 8-noded hexahedron elements. Although 3D prism elements can approximate the 

domain of 2D cylindrical problems (axisymmetric systems) by using wedge-shaped 

domains, the computational effort is still larger than for pure 2D simulations. Jin et al. 

(2018) integrated the mechanical module in TOUGH2Biot into T+H (Moridis et al. 2008) 

and developed a THM simulator hydrateBiot specific for gas hydrate production. 

However, parallelization was not introduced into the simulator to improve performance.  

De La Fuente et al. (2019) used the FEM to develop a serial geomechanics 

simulator Hydrate-CASM. There were other powerful geomechanics simulators 

ROCMECH (Kim and Moridis 2013) and Millstone (Queiruga et al. 2019), but only serial 

versions were created. The commercial finite-difference simulator FLAC3D (Itasca 

Consulting Group 2002) can also be used to consider the reservoir deformation during 

production. However, its applicability was negatively affected by two serious 

shortcomings that stemmed from the inability to access the source code of the commercial 

FLAC3D simulator: (a) the need to exchange data between the flow simulator and the 

FLAC3D simulators through external files (i.e., a process over 1,000 times slower than 

using shared memory), and (b) the reliance on serial or the very low-level standard 

parallelization of the FLAC3D simulations because the lack of access to the source code 
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precluded domain decomposition and MPI-based parallelization—and the consequent 

significant execution speed improvement—for the solution of large problems. 

TOUGH+HYDRATE V1.5 (Moridis 2014; hereafter referred to as T+H) is a 

widely used simulator for the study of the system behavior in hydrate-bearing geologic 

media in settings that range from laboratory experiments to field studies, in which all the 

hydrate types are covered, e.g., Class 1 (Moridis et al. 2007a, 2007b), Class 2 (Moridis 

and Reagan 2007b, 2011a, 2011b), Class 3 (Moridis and Reagan 2007a; Moridis et al. 

2011b), and Class 4 (Moridis and Sloan 2007; Li et al. 2010; Moridis et al. 2011c). The 

T+H V1.5 code is the flow, thermal, and chemical simulator used in this study. Note that 

T+H V1.5 is a serial simulator.  

Zhang et al. (2008) parallelized an earlier version of the T+H code by using the 

METIS (Karypis and Kumar 1999) partitioning software and the Aztec linear-equation 

solver (Tuminaro et al. 1999), but this earlier parallel code lacks the significant advances 

and enhancements of T+H V1.5. Guo et al. (2016) also applied METIS to partition the 

domain to reduce the load imbalance in the parallel reservoir simulation. Guo et al. (2017) 

conducted parallelization for the coupled non-isothermal fluid-heat flow and elastoplastic 

geomechanics by using MPI and OpenMP, tested the parallel performance with only up 

to 64 processors, and achieved the optimum overall speedup exceeding 14. Pan (2009) 

implemented MPI parallelization on the coupled geomechanics and compositional 

simulator based on the domain decomposition method and tested the parallel performance 

with up to 64 processors. Wang (2014) applied the generalized minimal residual method 

(GMRES) with the BoomerAMG preconditioner available in the hypre package (Falgout 
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and Yang 2002) and the geometric multigrid (GMG) solver from the UG4 software 

toolbox (Heppner et al. 2013) to solve the geomechanics linear equations and multilevel 

k-way mesh partitioning algorithm in METIS for parallel simulations of coupled flow and 

geomechanics in porous media. 

 

1.3. Research Objectives 

This study aims to address the limited capabilities of currently-available serial or 

parallel codes for the solution of large problems. The main objectives of this work are: 

• To develop the Reservoir GeoMechanics Simulator (hereafter referred to as RGMS or 

RGM simulator), a new general, MPI-based parallel geomechanics simulator that 

closely follows the ROCMECH (Kim and Moridis 2013) approach and configuration 

for the solution of complex, large-scale problems. RGMS can be used as a stand-alone 

application or coupled with appropriate flow and transport simulators for the solution 

of both Cartesian (2D and 3D) and cylindrical coordinate (i.e., single-well) systems. 

RGMS can describe the evolution of stresses, displacements, and of the resulting (a) 

reservoir deformation and (b) changes in the reservoir properties that are caused by 

the complex rock mechanics associated with the production operations. 

• To parallelize the fully-implicit T+H V1.5 simulator describing the coupled flow, 

thermal, and chemical processes in hydrate-bearing geologic media; the resulting MPI-

based parallel code is named pT+H V1.5 and can simulate complex, large-scale, CH4-

hydrate-related problems that are virtually intractable within any reasonable time 
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frame by the current serial version of the T+H V1.5 code even if computer memory is 

not a limitation. 

• To seamlessly couple the RGMS and the pT+H V1.5 parallel codes, and use the 

coupled code for the solution of large-scale 2D and 3D problems that are either 

currently intractable by the serial codes or require inordinately long execution times 

(weeks to months) to completion.  
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2. PARALLEL GEOMECHANICS SIMULATION 

 

This chapter presents detailed information on the RGMS code for the study of 

geomechanical problems, including the governing equations, the numerical method for 

their solution, the parallelization strategy, appropriate flow charts, and validations of the 

code (in terms of both the underlying numerical methods and of the implementation of the 

MPI-based parallelization) against solutions of standard geomechanical problems 

obtained from widely-used commercial simulators. 

 

2.1. Governing Equations 

The geomechanics problem is treated as a quasi-static problem, assuming that the 

fluid and the rock are in equilibrium all the time. The associated equation of conservation 

of momentum (Hughes 1987) is 

 b + =σ g 0 , (2.1) 

where σ  is the total stress tensor [Pa] and b  is the bulk density [kg∙m-3]. 

The bulk density is calculated by 

 ( )1b R f   = − + , (2.2) 

where ϕ is the porosity, ρR is the rock density [kg∙m-3], and ρf is the fluid density [kg∙m-3]. 

For a multiphase flow system, the fluid density is the saturation weighted fluid density 

that is 

 
f S 



 =  , (2.3) 
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where Sβ and ρβ are the saturation and density of phase β [kg∙m-3], respectively,. 

Based on the infinitesimal deformation assumption, the strain tensor is calculated 

as 

 ( )
1

2

=  +ε u u , (2.4) 

where u  is the displacement vector [m]. 

 

2.2. Constitutive Relationships 

By convention, tensile stress is always taken to be positive in the following 

equations. Then, the constitutive relationship describing the stresses associated with the 

rock skeleton can be described as  

 :t tP P = − = −σ σ I C ε I , (2.5) 

where σ  is the effective stress tensor [Pa], α is the Biot’s coefficient (Biot 1941), which 

is defined as  

 1 dr

s

K

K
 = − , (2.6) 

where Kdr is the drained bulk modulus [Pa] and Ks is the skeletal grain modulus [Pa], I is 

the identity matrix, C  is the elasticity tensor [Pa], and Pt is the average mobile fluid 

pressure [Pa], which is computed as  

 t

S P

P
S

 





=




, (2.7) 

where the phase β denotes only the mobile fluid phase. 



 

13 

 

In two-dimensional (2D) Cartesian problems involving plane strain conditions 

(based on the assumption of zero strain in the direction normal to the plane), the elasticity 

tensor is defined as  

 

4 2
0

3 3

2 4
0

3 3

0 0

dr dr

dr dr

K G K G

K G K G

G

 
+ − 

 
 = − +
 
 
 
  

C , (2.8) 

where G is the shear modulus [Pa]. Kdr and G are described by the equations 

 
3(1 2 )

dr

E
K


=

−
 (2.9) 

and 

 
2(1 )

E
G


=

+
, (2.10) 

in which E is the Young’s modulus and  is the Poisson’s ratio. 

There is a particular 2D case that involves axisymmetric elements in cylindrical 

coordinate (r, z) systems. In this case, only displacements in these two directions are 

considered (i.e., radial displacement and axial displacement). Since 2D cylindrical 

coordinate systems are commonly used in reservoir simulations involving single-well 

problems, it is vital to include such axisymmetric elements in geomechanical simulation 

for the coupled problem. When using axisymmetric elements, the elasticity tensor is  
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C , (2.11) 

For three-dimensional (3D) Cartesian problems, the elasticity tensor is defined as 
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=  − − +
 
 
 
 
 
 

C . (2.12) 

If a geomechanical simulation is coupled with a hydrate simulation, the hydrate 

phase can affect the mechanical properties because hydrates very often occur in 

unconsolidated media, providing the bulk of the mechanical strength of the latter. This is 

especially true when the hydrate saturation SH is large, and there is an interdependence of 

flow and geomechanical properties and conditions as dissociation advances and SH 

decreases. The dependence of the geomechanical properties on SH has yet to be studied in 

depth, and is a subject of active research. Currently, the standard approach involves the 

following linear interpolation equations: 

 ( )0 11dr dr H dr HK K S K S= − +  (2.13) 

and 
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 ( )0 11 H HG G S G S= − + , (2.14) 

where 0drK  and 1drK  are the drained moduli [Pa] when SH = 0 and 1, respectively, and 0G  

and 1G  are the drained moduli [Pa] when SH = 0 and 1, respectively (Rutqvist and Moridis 

2009). 

 

2.3. Numerical Method 

The geomechanics simulator RGMS uses the finite element method (FEM) for 

space discretization with standard linear elements. The weak form of Eq. (2.1) is derived 

based on virtual work theory as 

 : d d db   
  

 =  +    ε σ u g u t , (2.15) 

where Ω is the matrix domain, Γ is the traction boundary, and t is the prescribed traction 

on Γ [Pa].  

The FEM approximates the displacements u in the nodal displacement continuum 

of the discretized domain by the following equation 

 a a

a

 u Ν u , (2.16) 

where Na is the shape function that interpolates the solution based on the displacements 

au  of node a. Obviously, Na is defined as 

 a aN=Ν Ι , (2.17) 

in which the value of aN  is always 1 at node a but 0 at the other nodes. 
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After estimating the displacements, the stress and strain tensors can be computed. 

Because the stress tensor and the strain tensor are symmetric, they can be written in Voigt 

notation as simplified vectors by merging the symmetric off-diagonal parts. 

For a 2D system, the displacements at node a are 

 
a

a

a

u

v

 
=  

 
u . (2.18) 

Considering a plane strain problem ( 0y = ), the independent components of the 

strain ε (Zienkiewicz et al. 2005) are 
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   

 ε B u , (2.19) 

and the independent components of the stress σ  are 
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σ . (2.20) 

Note that y is nonzero only if  is nonzero because of the following equation 

 
2

3 (1 )(1 2 )
dr

E
K G



 
− =

+ −
. (2.21) 



 

17 

 

For axisymmetric elements in cylindrical coordinate systems, the independent 

components of strain ε are  
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 ε B u , (2.22) 

in which the radius is computed by 

 '

b b

b

r N r=  , (2.23) 

and br are the locations of the nodal points that define the '

bN  functions. The independent 

components of strain σ  are 
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σ  (2.24) 

 For a 3D cartesian system, the displacements at node a are 

 

a
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 
 

=  
 
 

u , (2.25) 

the independent components of strain ε are 
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 ε B u , (2.26) 

and the independent components of stress σ  are 
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σ  (2.27) 

Accounting for Eq. (2.5), the general matrix-vector form of Eq. (2.15) can be 

written as 

 +Ku = f Q , (2.28) 

where the stiffness matrix K, coupling matrix Q, and external force vector f are 

 T d


= K B DB , (2.29) 

 T dtP


= Q B m , (2.30) 
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and 

 T Td db
 

= +  f N t N g . (2.31) 

D in Eq. (2.29) is the elasticity matrix of moduli and m in Eq. (2.30) is a vector whose 

components are 1 in the normal direction to the element’s surface but 0 otherwise.  

Combing the two terms on the right-hand-side of Eq. (2.28) gives 

 Ku = F , (2.32) 

where F is the force vector. 

To Assemble the stiffness matrix K, the stiffness matrix Ke for an element e 

consisting of m nodes is constructed first in the form 
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 (2.33) 

in which e

abK  accounts for the contributions of nodes a and b within element e and is a 

square submatrix with the size of l×l, where l is the number of the degrees of freedom at 

each node. 

Similarly, the force vector Fe is 
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 (2.34) 

in which 
e

aF  denotes the force at node a within element e and is a vector with the size of 

l. The displacement vector eu  is  
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 (2.35) 

in which e

au  denotes the displacement at node a within element e and is a vector of size l. 

Because the nodal displacements are common, for simplicity the superscript e of 
eu  can 

be omitted. 

Counting the components of all the elements contributing to node a yields 

 1 1 2 2

e e e e

a a am m a

e e e e

     
+ + + =     

     
   K u K u K u F . (2.36) 

Repeating this process over all nodes assembles (a) the K matrix, in which abK  is a square 

submatrix with the size of l×l associated with nodes a and b, and (b) the F vector, in which 

aF  is a vector with the size of l related to node a. The mathematical expressions for this 

assembly are 
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m
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ab ab
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= K K  (2.37) 

and 
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= F F . (2.38) 

In general, the stiffness matrix is  
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where n is the number of unknowns that reflects the total number of degrees of freedom 

of all nodes in the system, and the force vector is  
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F . (2.40) 

The displacements are then obtained from 

 -1u = K F . (2.41) 

 

2.4. Parallelization 

Solving the equations of the geomechanics problem is very time-consuming and 

needs a sufficiently large computer memory for large-scale studies. The problem is 

alleviated through parallelization, which involves the use of multiple processors and the 

introduction of a domain decomposition method that subdivides the entire domain into a 

number of subdomains. This process distributes (a) the computational workload of setting 

up and solving the matrix equations and (b) the corresponding memory requirement for 

data storage among the multiple processors of a multi-processor environment. The 

equations allocated to each processor are assembled and solved using a parallel solver 



 

22 

 

package based on the parallel operations provided by the Message Passing Interface (MPI) 

communication protocol that supports point-to-point and collective communications 

between processors, and which enables domain decomposition.  

 

2.4.1. Domain Decomposition Method 

The domain decomposition method involves partitioning either the elements or the 

nodes in a domain into many different groups, so that the associated workload can be 

subdivided and assigned to multiple processors. First, it needs to be determined whether 

the elements or nodes should be partitioned. Although the FEM divides the continuum 

into finite elements, the equations are assembled based on nodes (element vertices) to 

solve the nodal displacements. It is straightforward to partition the nodes in geomechanical 

simulations, and successful partitioning leads to computational efficiency because of the 

issue of workload balance that is discussed later in this section.  

There are two schemes of domain decomposition: non-overlapped and overlapped. 

In the non-overlapped method, the various subdomains are in contact with each other only 

at interface boundaries, while in the overlapped method, the subdomains overlap (i.e., 

some nodes belong to more than one subdomain and are thus handled by more than one 

processor). This study uses the overlapped method, in which the subdomains overlap by a 

single line/layer of nodes, called the “ghost” line/layer. Inclusion of the ghost lines/layers 

in subdomains of overlapped domain decomposition schemes is necessary to accurately 

account for the influence of displacements at neighboring nodes (and computed by 
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neighboring processors) along the perimeter/edges of the domain decomposition 

subdomain.  

The degrees of freedom of the nodes on the ghost lines/layers are received from its 

neighboring processors utilizing MPI. In the MPI communication, each processor has a 

unique rank for identification purposes. For example, the rank can be used to identify the 

source processor and the destination processor when sending or receiving messages. 

Usually, the processor with the rank of 0 is the master processor.  

Figure 2.1 illustrates a 2D domain decomposed into 9 subdomains, each one 

handled by a different processor. Each box in Figure 2.1 represents a node and the 

associated number denotes the processor to which this node is assigned for the assembly 

of geomechanics equations. The subdomain enclosed by the red polygon defines the 

subdomain for the 5th processor and is representative of the non-overlapped method. 

Figure 2.1 also includes two examples/stencils of overlapped domain decomposition 

methods: as well the elements assigned to the same processor in two types of overlapped 

method stencils: a star-type stencil and a box-type stencil, in which the nodes that the 

process are enclosed by the corresponding red polygons. As it is indicated by Eq. (2.36), 

the linear equation for a node involves the contribution from all its surrounding nodes in 

the FEM. Thus, Figure 2.1 shows that there are 8 and 12 ghost nodes in addition to the 4 

nodes in the subdomain assigned to the 5th processor in the star- and boxed-type stencils 

of the overlapped method, respectively. 
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Figure 2.1 The subdomain for the fifth processor using the non-overlapped method, 

overlapped method in the star-type stencil, and overlapped method in the box-type 

stencil using 9 processors. 

 

 

At particular points in the parallel simulation process, it may be necessary to ensure 

that all the processors complete their current tasks before proceeding further. If a processor 

has a significantly larger computational load, all other processors have to wait for it even 

after the completion of their computations. Thus, the performance of a parallel system is 

controlled and determined by the slowest processor. This makes it imperative that the 

workload be distributed among the processors as evenly as possible because the imbalance 

in the assignment of the workload can cause the parallel performance scalability to 

deteriorate. To minimize (and possibly alleviate) such imbalances, METIS (Karypis and 

Kumar 1999), a program for partitioning graphs and finite element meshes, is used to 

decompose the entire computational domain into non-overlapped subdomains (this is the 

only option for METIS), from which the overlapped subdomains can be derived. METIS 

can partition graphs or meshes using either the multilevel recursive bisection or the 

multilevel k-way partitioning paradigms, with the latter one providing more flexibility and 

Non-overlapped Overlapped star type Overlapped box type 
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capabilities. In this work, the multilevel k-way partitioning is selected, and the selected 

objective option aims to minimize either the number of edge-cuts or the total 

communication volume. 

METIS uses the data on the element-node array of the mesh (i.e., elements and 

their vertices) as the input to create the connectivity list of the nodes for the partition. In 

RGMS, the master processor reads the mesh first, processes the data that yield the element-

node array, and finally partitions the nodes using METIS. 

The application of METIS does not lead to the inclusion of ghost elements, so the 

overlapped elements need to be added manually to the relevant subdomains. For each 

processor, the nodes for the geomechanical simulation are then reordered locally for the 

equation assembly. The nodes are classified into three sets: internal, border, and external. 

Internal nodes do not require any information outside of their processor in order to 

assemble the system of the associated equations, and thus do not create a need for 

processor-to-processor communication. Conversely, border and external nodes necessitate 

information from their neighboring processors for the assembly of their respective 

geomechanical equations. For border nodes, the processor sets up and solves the equations 

using information from both internal and external nodes. The external nodes are only 

reserved to store the information received from neighboring processors. 

The system of equations is assembled locally on each processor, necessitating the 

local renumbering of all the node numbers. The internal nodes are numbered first, 

followed by the border nodes, and finally by the external nodes. An example is shown in 

Figure 2.2, in which each box can represent a node for the geomechanics simulation. The 
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number in the box is the node number before domain decomposition. Table 2.1 lists the 

local numbers after renumbering using the box-type stencil of the overlapped method.  

 

 

Figure 2.2 A domain partitioning of 16 elements or nodes using 4 processors. 

 

 

This approach renumbers not only the node numbers, but also the degrees of 

freedom (more specifically, the displacements). The number of displacements at each 

node is equal to the number of dimensions in multi-dimensional geomechanics simulation, 

and their local numbers after renumbering are designated according to the node numbers. 

This numbering sequence reduces the processing time spent on sending and receiving 

information, and also makes it easier to assemble the global equations. 

  

Processor 1 

Processor 3 Processor 4 

Processor 2 
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Table 2.1 Renumbering after the domain partitioning using the overlapped method 

in the box-type stencil for a domain shown in Figure 2.2. 
 

  Internal Border External 

Processor 1 

Original number 1 2, 5, 6 3, 7, 9, 10, 11 

Local number 1 2, 3, 4 5, 6, 7, 8, 9 

Global number 1 2, 3, 4 6, 7, 10, 11, 14 

Processor 2 

Original number 4 3, 7, 9 2, 6, 10, 11, 12 

Local number 1 2, 3, 4 5, 6, 7, 8, 9 

Global number 5 6, 7, 8 2, 4, 11, 14, 15 

Processor 3 

Original number 13 9, 10, 14 5, 6, 7, 11, 15 

Local number 1 2, 3, 4 5, 6, 7, 8, 9 

Global number 9 10, 11, 12 3, 4, 7, 14, 16 

Processor 4 

Original number 16 11, 12, 15 6, 7, 9, 10, 14 

Local number 1 2, 3, 4 5, 6, 7, 8, 9 

Global number 13 14, 15, 16 4, 7, 8, 11, 12 

 

 

After the processes and activities discussed above, the local stiffness matrix and 

force vector are constructed on each processor. Before moving to parallel iterative solvers, 

the local indices of these matrices and vectors need to be mapped to the global indices for 

the purpose of assembling the global matrices and vectors. The original numbers cannot 

be adopted because parallel iterative solvers require that the global matrix and vector be 

integrated on each processor after mapping. As a result, the global numbers are specified 

according to the processor rank. The global numbers for the external nodes are received 

from the neighboring processors, which have already established global numbers for 

internal and border nodes. The global numbers for the example of domain partitioning in 
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Figure 2.2 are listed in Table 2.1. Note that these global numbers reflect only node 

numbers, so the associated degrees of freedom need to be updated accordingly. After the 

local and global numbering is completed, the local matrices and vectors with the 

appropriate global indices are assembled and are ready to solve.  

 

2.4.2. Parallel Solver 

The matrix equations are solved using parallel iterative solvers executing on 

multiple processors. Each processor is assigned a part of the global matrix equation, as the 

very large memory requirements would render impractical (if not impossible) the storage 

of the global and local matrices and vectors on all processors. The iterative solvers 

converge toward the correct solution by computing a large number of dot products and 

matrix-vector products. Eq. (2.42) demonstrates the computational process of a dot 

product across multiple processors in a parallel environment.  

 

1 1

2 2

1

n

i i

i

n n

a b

a b
a b

a b

=

   
   
   

 =   
   
      

 , (2.42) 

in which the subscript number denotes the processor number and n  is the total number of 

processors. In this case, 1a  is the partial vector owned by processor 1, 2a  is the partial 

vector owned by processor 2, and so forth. This arrangement/assignment also applies to 

vector b in Eq. (2.42), and to matrix M and vector v in Eq. (2.43). Thus, each processor 

computes the dot product of locally partial vectors, and then the partial dot products are 
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summed to provide the final result. Eq. (2.43) shows the process of matrix-vector 

multiplication across multiple processors.  

 

1 1

2 2

2n

   
   
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M M v
v

M M v

, (2.43) 

where the vector v is  

 

1

2

n

v

v

v

 
 
 

=  
 
  

v
. (2.44) 

The result of a matrix-vector multiplication is a vector; a locally partial vector is stored on 

each processor, and the entire vector can be accessed between processors. Parallel iterative 

solvers only exchange partial sums and partial vectors between processors instead of 

storing all the data/information required for the computation of the solution. These 

communications in the multiprocessing environment are also based on the MPI protocol. 

For optimum performance, the PETSc library (Balay et al. 2014) of parallel solvers 

is implemented in RGMS simulations. This package provides numerous MPI-based 

preconditioning and parallel solver options. Based on several scoping calculations, the 

generalized minimal residual method (GMRES) with a geometric algebraic multigrid 

(GAMG) preconditioner was chosen to provide the best performance in the geomechanics 

code and was used in all RGMS simulations. 

  



 

30 

 

2.5. Flow Chart 

The flow chart of the parallel RGMS code, involving the domain decomposition 

methods and parallel iterative solver discussed earlier, is shown in Figure 2.3.  

Read the general information in the input file

Find the node connections

Read and store the mesh only for this subdomain

Renumber the node and equation numbers

Assemble the local stiffness matrix and force vector

Solve the problem by a parallel iterative solver

Map the indices of the matrix and vector from local to global

Find the local to global number mapping

Simulation ends

Simulation starts

Partition the domain using METIS

 

Figure 2.3 The flow chart of RGMS. 
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2.6. Validation 

RGMS was validated by comparing its numerical results (the total displacement 

and the maximum principal effective stress) to those obtained from the Ansys Mechanical 

simulator (a commercial FEM-based software package) in the solution of 2D Cartesian, 

2D cylindrical, and 3D Cartesian coordinate problems. The total displacement is the 

positive magnitude of the components of the displacement vector on the axes of the 

coordinate system of the investigated problem. The comparison of the maximum principal 

effective stresses was included to validate the stress computations for the prediction of 

possible material failure. Because a Cauchy stress tensor consists of normal and shear 

stresses, it is easier to compare the principal stresses (the eigenvalues of a Cauchy stress 

tensor that only has normal stresses) against material failure criteria. As the principal 

stresses are computed through complex processes, the analytical solution is limited, 

resulting in only the numerical result from the ANSYS Mechanical simulator used for 

validation. The RGMS results were obtained using (a) a single processor and (b) four 

processors in order to confirm the parallelization process by the coincidence of the two 

solutions. The parameters used in all the validation cases are summarized in Table 2.2. 

 

Table 2.2 Parameters of the validation problems for RGMS. 
 

Young’s modulus  2.0 × 108 Pa 

Poisson’s ratio 0.3 

Biot’s coefficient 1 

Initial pressure 1.0 × 107 Pa 
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Table 2.2 Continued 

Bulk density 2.6 × 103 kg/m-3 

Gravitational acceleration 9.81 m/s-2 

Traction 1 (T1) 2.0 × 107 Pa 

Traction 2 (T2) 1.0 × 107 Pa 

 

 

2.6.1. Two-Dimensional Problems 

The side lengths (x, z) and (r, z) of the domains of the 2D validation problems were 

all equal to 200 m (as shown in Figure 2.4), and were discretized into 200 subdivisions of 

uniform size (4-noded rectangular elements) in both directions by MeshGenerator V1.0 

developed in this study based on MeshMaker V1.5 (Moridis 2016). The left, right, and 

bottom boundaries were supported by the rollers (i.e., ensuring that the normal 

displacements be 0), and traction was applied to the top boundary. 

 

 
Figure 2.4 The geometry of the 2D Cartesian and cylindrical validation problems. 

 

T1 
T2 

2
0

0
 m

 

200 m 

80 m 120 m 

x or r 

z 



 

33 

 

2.6.1.1. Cartesian Coordinate System 

The total displacement at z = 0 m and the maximum principal effective stress at z 

= -20.5 m in this 2D Cartesian problem are shown in Figures 2.5 and 2.6, respectively. 

The numerical results from RGMS using 1 and 4 processors practically coincide with 

those from the Ansys Mechanical package, providing evidence of the validity of the 

equation assembly, the matrix solving process, and the implementation of parallelization 

in the RGMS simulator for 2D Cartesian problems. 

 

 

Figure 2.5 Total displacements at the top boundary obtained from the Ansys 

Mechanical and RGMS solutions (using 1 and 4 processors) of the 2D Cartesian 

problem of Figure 2.4. 
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Figure 2.6 The maximum principal effective stress at z = -20.5 m obtained from the 

Ansys Mechanical and RGMS solutions (using 1 and 4 processors) of the 2D 

Cartesian problem of Figure 2.4. 

 

 

2.6.1.2. Cylindrical Coordinate System 

For the 2D cylindrical validation problem of Figure 2.4, Figure 2.7 shows the 

total displacement at the top boundary, and Figure 2.8 shows the maximum principal 

effective stress at z = -20.5 m. The RGMS solutions using different numbers of processors 

capture all the displacement and stress changes, and both the serial and the parallel 

simulation results are virtually identical with those obtained from the Ansys Mechanical 

simulator.  
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Figure 2.7 Total displacements at the top boundary obtained from the Ansys 

Mechanical and RGMS solutions (using 1 and 4 processors) of the 2D cylindrical 

problem of Figure 2.4. 

 

 

 

 
Figure 2.8 The maximum principal effective stress at z = -20.5 m obtained from the 

Ansys Mechanical and RGMS solutions (using 1 and 4 processors) of the 2D 

cylindrical problem of Figure 2.4. 
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2.6.2. Three-Dimensional Cartesian Coordinate Problem 

The domain for this validation was a box with the dimensions indicated in Figure 

2.9. The dimensions of the domain were subdivided into 30 equally-sized elements (8-

noded hexahedron elements) in the x-, y-, and z-directions by MeshGenerator V1.0, 

resulting in a total of 27,000 uniform elements. The rollers supported all the system 

boundaries except the top one, where traction was applied. 

The total displacements along the line defined by (y, z) = (0 m, 0 m) are plotted in 

Figure 2.10, which includes the Ansys Mechanical results and the RGMS solutions from 

the serial (single-processor) and parallel (4-processor) simulations. The three sets of 

results coincide, all showing a continuous decrease in displacements along the x-direction. 

The same near-perfect agreement of the three solutions of the maximum principal effective 

stress along x at (y, z) = (0.25 m, -2.25 m) in Figure 2.11 provides further evidence of the 

validity and reliability of the physics and mathematics in RGMS, and of the 

implementation of its parallelization. 
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Figure 2.9. Geometry of the 3D Cartesian validation problem. 

 

 

 
Figure 2.10  Total displacements along the x-coordinate at (y, z) = (0 m, 0 m) obtained 

from the Ansys Mechanical and the RGMS simulations (using 1 and 4 processors) of 

the 3D Cartesian problem of Figure 2.9. 
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Figure 2.11 The maximum principal effective stress along the x-coordinate at (y, z) = 

(0.25 m, -2.25 m) obtained from the Ansys Mechanical and the RGMS simulations 

(using 1 and 4 processors) of the 3D Cartesian problem of Figure 2.9.  
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3. PARALLEL FLUID AND THERMAL SIMULATION 

 

This chapter presents detailed information on the pT+H V1.5 simulator describing 

the system behavior (involving coupled flow, thermal, thermodynamic and chemical 

processes) in hydrate-bearing geologic media, including the governing equations, the 

porosity-permeability relationship, a simplified geomechanical model, the underlying 

numerical method, the MPI-based parallelization method, a flow chart, and validation of 

the implementation of parallelization. 

 

3.1. Governing Equations for Fluid and Thermal Flow 

Following Moridis and Pruess (2014), the mass and energy balance equation 

associated with the accumulation and flow/transport through a control volume in a porous 

medium is given by 

 d d d
n n nV V

d
M V A q V

dt

  


=  +  F n , (3.1) 

where nV  is the volume of subdomain n with differential dV  [m3], M   is the mass 

accumulation of component   [kg∙m-3], n  is the surface area of subdomain n with 

differential dA  [m2], F  is the flux vector of component   [kg∙m-2∙s-1], n  is the inward 

unit normal vector, q
 is the source/sink term of component   [kg∙m-3∙s-1], and t  is the 

time [s]. 
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3.1.1. Mass Accumulation Terms 

The mass accumulation M   for each component   in Eq. (3.1) are given by 

 
, , ,

,  , ,
A G I H

M S X w m i 
  



  
=

= = ,  (3.2) 

where   is the porosity, S  is the saturation of phase  ,   is the density of phase   

[kg∙m-3], X 
  is the mass fraction of component   in phase  , A is the aqueous phase, G 

is the gaseous phase, I is the solid ice phase, H is the solid hydrate phase, and w, m and i 

denote the H2O, CH4 and inhibitor mass components, respectively. 

 

3.1.2. Heat Accumulation Terms 

The heat accumulation term M  includes contributions from the rock matrix and 

from all the phases, and is given by the equation 

 
, , ,

(1 ) R R diss

A G I H

M C T S U Q
  



   
=

= − + + , (3.3) 

where 

 
( )0

0

 for equilibrium dissociation

          for kinetic dissociation

H H

diss

H

S H
Q

Q H

 
= 



, (3.4) 

R  is the rock density [kg∙m-3], RC  is the heat capacity of the dry rock [J∙kg-1∙K-1], T is 

the temperature [K],U  is the specific internal energy of phase   [J∙kg-1], ()  denotes 

the change of the quantity within the parentheses during a given timestep, and 0H  is the 

specific enthalpy of hydrate dissociation/formation [J∙kg-1]. 
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3.1.3. Mass Flux Terms 

The mass flux terms of H2O, CH4, and inhibitor include contributions from the 

aqueous and gaseous phases and are given by 

 
,

,  , ,
A G

w m i 





=

= =F F . (3.5) 

The mass flux term AF  is described by Darcy’s law as 

 ( )rA A
A A A

A

k
k P





= −  −F g , (3.6) 

where k  is the rock intrinsic permeability [m2], rAk  is the relative permeability of the 

aqueous phase, A  is the viscosity of the aqueous phase [Pa∙s], AP  is the pressure of the 

aqueous phase [Pa], and g  is the gravitational acceleration vector [m∙s-2]. 

The pressure of the aqueous phase AP  is calculated by  

 A G cGWP P P= +  (3.7) 

 
m w

G G GP P P= + , (3.8) 

where GP  is the pressure of the gaseous phase [Pa], cGWP  is the gas-water capillary 

pressure [Pa], m

GP  and w

GP  are the CH4 and H2O vapor partial pressures in the gas phase 

[Pa], respectively. 

 

3.1.4. Heat Flux Term 

The heat flux term F  is computed by 

 
4

0

,A G

k T f T h
   




=

= −  +  + F F , (3.9) 
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where k  is the composite thermal conductivity of the medium/fluid composite system 

[W∙m-1∙K-1], h  is the specific enthalpy of phase   [J∙kg-1], f  is the radiance emittance 

factor, 0  is the Stefan-Boltzmann constant [5.6687×10-8 J∙m-2∙K-4]. 

 

3.1.5. Source and Sink Terms 

For sources (production), the mass production rate of component κ is given by  

 
,

,  ,
A G

q X q w m 
 




=

= = , (3.10) 

where q  is the production rate of phase   [kg∙s-1]. For sinks (injection), the mass 

injection rate q of the component κ is known/specified.  

 

3.2. Porosity-Permeability Relationship 

The permeability is updated using the general expression of Rutqvist and Tsang 

(2003) as 

 
0 0

exp 1
k

k






  
= −  

  
, (3.11) 

where   is an empirical permeability reduction factor that ranges between 5 (for soft 

unconsolidated media) and 29 (for lithified, highly consolidated media) and 0 denotes an 

initial or reference state.  
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3.3. Simplified Geomechanical Model 

The simplified geomechanical model can be a constant pore compressibility αP 

depending on pressure and temperature, resulting in the porosity change as 

 ( ) ( )0 0 0exp P TP P T T   = − + −    (3.12) 

where the subscript 0 denotes a reference state, αP is the pore compressibility [Pa-1], and 

αT is the thermal expansivity of the porous medium [K-1].  

In the hydrate simulation, a constant pore compressibility αP (commonly used in 

conventional reservoir simulators) is not adequate to describe porosity changes because of 

cementing solid phases (ice and/or hydrate) affecting the stiffness of media. The effect of 

cementing solid phases on the pore compressibility is predicted by an empirical model 

(Moridis and Pruess 2014) that is: 

 ( ) ( ) *exp ln ln ln 1 2.25,2.25,P PL PU PL x SB S     = + − −
 

, (3.13) 

where 

 min

max min

*

2

S S

S

S S

S S
S

S S





− +
=

− +
, (3.14) 

in which αPL is the lower limit of the medium compressibility considering the full 

stiffening effect caused by the presence of cementing solid phases, αPU is the upper limit 

of the medium compressibility not considering the presence of cementing solid phases, Bx 

is the incomplete beta function, SSmin
 is the lowest SS at which αP = αPU, SSmax

 is the largest 

SS at which αP = αPL, and δ is a smoothing factor. 
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3.4. Numerical Method 

The non-isothermal flow and transport simulator T+H discretizes the continuum 

in space using the integral finite difference method (IFDM) (Edwards 1972; Narasimhan 

and Witherspoon 1976; Narasimhan et al. 1978), uses a single-point backward 

approximation of the time derivatives, and provides a fully implicit solution based on the 

Newton-Raphson (NR) iteration and the solution of the Jacobian. To simulate multi-phase 

multi-component flow, there are several primary variables that need to be solved in each 

element of the discretized domain. The total number of unknowns is the product of the 

number of active elements and the number of primary variables for each element.  

 

3.4.1. Space Discretization 

T+H uses the IFDM (Edwards 1972; Narasimhan and Witherspoon 1976; 

Narasimhan et al. 1978) to discretize the continuum in space. Using IFDM, the integral of 

the mass accumulation of a component is replaced by the simple algebraic expression 

 

n

n n

V

MdV V M= , (3.15) 

where M is a volume-normalized extensive quantity, and Mn is the average value of M 

over Vm. The IFDM concepts allow the approximation of the surface integral in Eq. (3.1)

by the discrete sum of the fluxes over the surface segments Anm according to 

 

n

nm nm

m

d A F



  =  F n , (3.16) 
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where Fnm is the average value of the inward-pointing normal component of F over the 

surface segment Anm between volume elements Vn and Vm. The discretization approach 

used in the IFDM and the definition of the geometric data are shown in Figure 3.1. 

 The discretized flux can be written in terms of averages of the parameters in 

elements Vm and Vm. The Darcy term in Eq. (3.6) becomes 

 
, ,

, ,

r n m

nm nm nm nm

nmnm

k P P
F k g

D

   

 








  − 
= − −   

    
, (3.17) 

where the subscript nm indicates a suitable averaging at the interface between the elements 

n and m (e.g., interpolation, harmonic weighting, or upstream weighting). Dnm = Dn + Dm 

is the distance between the nodal points n and m shown in Figure 3.1, and gnm is the 

component of the gravitational acceleration in the direction from the nodal point m to n.  

 

 

Figure 3.1 Space discretization and geometry parameters in the integral finite 

difference method. 
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 Substituting Eqs. (3.15) and (3.16) into Eq. (3.1) yields 

 
1n

nm nm n

mn

dM
A F q

dt V


 = + , (3.18) 

which results in a set of first-order ordinary differential equations valid in each element.  

 

3.4.2. Time Discretization 

For the time discretization, T+H V1.5 employs a fully implicit scheme, in which 

the thermodynamic parameters are evaluated at the current/new time level, tk+1 = tk + Δt, 

and the unknowns are implicitly defined in the resulting equations (Peaceman 1977). 

Because flow/thermal (FT) simulations solve strongly nonlinear problems involving 

multiphase flow and phase changes, the fully implicit scheme in T+H V1.5 evaluates the 

flux and sink and source terms on the right-hand side of Eq. (3.18) at the new time level 

tk+1, thus ensuring numerical stability. The resulting equation is 

 
, 1 , 1 , , 1 , 1 0k k k k k

n n n nm nm n n

mn

t
R M M A F V q

V

    + + + +  
= − − + = 

 
  (3.19) 

where 
, 1k

nR +
 is the residual. In a problem involving Nκ components and NE elements, the 

total number of simultaneous equations to be solved (and the associated number of 

unknowns) is NE × Nκ. 
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3.4.3. The Newton-Raphson Method 

The NE × Nκ unknowns are the independent primary variables x that define the 

state of the flow system at the new time level tk+1. Expanding the residual , 1k

nR +  in Eq. 

(3.19) at the iteration step (p+1) in a Taylor series in terms of the iteration step p yields 

 ( ) ( ) ( )
, 1

, 1 , 1

, 1 , , 1 , 0
k

k k n
n i p n i p i p i p

i i p

R
R x R x x x

x


 

+
+ +

+ +


= + − + =


 . (3.20) 

Considering only the first order term of the series results in the equation 

 ( ) ( )
, 1

, 1

, 1 , ,

k
kn

i p i p n i p

i i p

R
x x R x

x




+
+

+


− − =


 , (3.21) 

the left-hand side of which is the Jacobian and the right-hand side is the residual vector. 

The derivatives in the Jacobian matrix of Eq. (3.21) are computed by numerical 

differentiation. Eq. (3.21) can be written in the matrix-vector form as 

 ( )1 1 1 1

1

k k k k

p p p p

+ + + +

+− − =J x x R  (3.22) 

in which the expanded form of the Jacobian matrix is 

 

1 1 1 1

1 2 1

2 2 2 2

1 2 1

1 1 1 1

1 2 1

1 2 1

n n

n n

n n n n

n n

n n n n

n n

R R R R

x x x x

R R R R

x x x x

R R R R

x x x x

R R R R

x x x x

−

−

− − − −

−

−

    
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     

J , (3.23) 

the vector of the unknowns is 
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x , (3.24) 

and the vector of the residuals is 
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 
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R . (3.25) 

The solution is updated at every iteration of the Newton-Raphson method as 

 ( )
1

1 1 1 1

1

k k k k

p p p p

−
+ + + +

+ = +x x J R . (3.26) 

The Newton-Rapson iteration continues until it meets the following conditions: 

 

, 1

, 1

1, 1

, 1
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n p
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n p

R

M






+

+

+

+

  (3.27) 

where 1  (usually 10-5) is the relative tolerance defined in the input file. 

 

3.5. Parallelization 

The development of the pT+H V1.5 in this study involved appropriate 

modification of the pre-existing serial T+H V1.5 simulator (Moridis and Pruess, 2014; 

Moridis, 2014) to ensure maximum (and effective) MPI-based parallelization. The 

equilibrium reaction of hydrate dissociation/formation results in up to 4 mass and heat 
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balance equations in each element into which the domain is subdivided; the kinetic 

reaction results in up to 5 equations per element. 

The problem size (as quantified by the order of the Jacobian matrix to be solved) 

increases dramatically in systems with large, multi-dimensional domain in which fine 

discretization is required to accurately describe the strongly non-linear processes 

associated with hydrate association and the related sharp fronts. In the pT+H V1.5 code, 

a domain decomposition method (see discussion in Section 2.4.1) is necessary in order to 

distribute the workload among the various processors and run the simulation in parallel. 

The domain decomposition scheme in pT+H uses overlapped subdomains and the 

corresponding ghost elements to appropriately evaluate the flux terms in the governing 

equations at neighboring processors. Note that these ghost elements are different from 

those for the geomechanical problems because of the different numerical methods 

employed by the two simulators. The pT+H simulator only needs the elements with which 

a given element is connected in order to predict the associated flux terms, so the 

overlapped method involves 8 ghost elements arranged in the star-type stencil depicted in 

the example of Figure 2.1, in which each box represents an element in the discretized 

domain of the pT+H problem, and the associated number is the assigned processor rank 

needed to renumber the FT equation numbers later. 

Before partitioning the mesh by METIS, the master processor reads the mesh file 

to construct the connectivity information required during the partitioning process. The 

partitioned results from METIS do not consider ghost elements, and these need to be added 

manually to each processor-assigned subdomain. 
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Recalling Section 2.4.1, the node numbers need to be renumbered in each 

subdomain for optimal performance in geomechanics simulations. In FT simulations, the 

pT+H code processes the element numbers in the same manner and numbers them in the 

following order: internal, border, and external elements. Table 3.1 shows the original, 

local, and global element numbers for the discretized domain shown in Figure 2.2 using 

the star-type stencil of the overlapped method. Because each element involves multiple 

equations, the primary variables are also renumbered according to their element numbers. 

The local Jacobian matrix and residual vector are assembled using the new local numbers, 

the corresponding global indices are mapped accordingly, and the associated equations are 

prepared for the solution by the parallel solver.  

 

Table 3.1 Renumbering after the domain partitioning using the overlapped method 

in the star-type stencil for a domain shown in Figure 2.2. 

  Internal Border External 

Processor 1 

Original number 1 2, 5, 6 3, 7, 9, 10 

Local number 1 2, 3, 4 5, 6, 7, 8 

Global number 1 2, 3, 4 6, 7, 10, 11 

Processor 2 

Original number 4 3, 7, 9 2, 6, 11, 12 

Local number 1 2, 3, 4 5, 6, 7, 8 

Global number 5 6, 7, 8 2, 4, 14, 15 

Processor 3 

Original number 13 9, 10, 14 5, 6, 11, 15 

Local number 1 2, 3, 4 5, 6, 7, 8 

Global number 9 10, 11, 12 3, 4, 14, 16 

Processor 4 

Original number 16 11, 12, 15 7, 9, 10, 14 

Local number 1 2, 3, 4 5, 6, 7, 8 

Global number 13 14, 15, 16 7, 8, 11, 12 
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The Jacobian matrix in the pT+H simulations of hydrate reactions (formation or 

dissociation) is non-symmetric and ill-conditioned because of the strong non-linearities 

imposed by the coupled processes and the need for upstream weighting (without which 

mathematically correct but non-physical solutions are often obtained in multi-phase 

problems). Conversely, the matrix associated with the geomechanical response of a 

hydrate-bearing system undergoing pressure- and/or temperature-induced changes is 

positive definite. Different solver configurations are expected for these two matrix 

equation systems. Thus, the Jacobian matrix equation obtained from the hydrate 

simulation using pT+H V1.5 is solved using the generalized minimal residual method 

(GMRES) with a block Jacobi preconditioner (BJACOBI) that are available in the PETSc 

package (Balay et al. 2014).  

The parallelization of the pT+H simulation must ensure that the results are 

monitored correctly in addition to partitioning domain and PETSc implementation. The 

T+H V1.5 code can monitor the evolution of (a) the pore volume-averaged properties and 

conditions in user-defined subdomains, (b) the flow through user-defined interfaces, (c) 

the flow through user-defined groups of sources and sinks, and (d) the gas hydrate mass 

and its formation/dissociation reaction in the entire domain. The domain is not partitioned 

and distributed to multiple processors in the serial simulation, so monitoring these results 

does not pose any difficulties; however, this activity requires significant effort in the 

development of the MPI-based environment of pT+H V1.5. The subdomains, interfaces, 

and sources/sinks defined by users are unlikely to be constrained to a single processor 

when multiple processors are involved, necessitating extensive MPI communications to 
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determine the elements and components of a monitored subdomain when these are 

assigned to different processors. Both point-to-point and collective communications are 

applied during this process.  

 

3.6. Flow Chart 

Figure 3.2 presents the flow chart of pT+H V1.5. 

 

Read the general information in the input file

Find the element connections

Read and store the mesh only for this subdomain

Is it converged?

Renumber the element and equation numbers

Assemble the local Jacobian matrix and residual vector

Solve the problem by a parallel iterative solver

Map the indices of the matrix and vector from local to global

Find the local to global number mapping

New time step

No

Find the maximum relative error across processors

Is ending condition satisfied?

Yes

Simulation ends

Simulation starts

No

Partition the domain using METIS

 

Figure 3.2 The flow chart of pT+H V1.5.  
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3.7. Parallelization Validation 

The validation process was based on comparisons of the pT+H V1.5 results for 

various numbers of processors to the corresponding solutions obtained from the serial T+H 

V1.5 version. The problem in the validation study involved different production scenarios 

from a 2D cylindrical domain (i.e., a single-well problem) and explored different porosity-

permeability dependency options.  

 

3.7.1. Problem Description 

Two production scenarios were investigated: reservoir fluids produced at (a) a 

constant bottomhole pressure Pbh = 3 MPa and (b) a constant mass flow rate Qm = 18.955 

kg∙s-1. Both Cases S1 and S1P involved production at the constant Pbh and accounted for 

the porosity-permeability relationship of Eq. (3.11), differing only the empirical 

permeability reduction factor  , which was zero in Case S1 and nonzero in Case S1P. 

Cases S2 and S2P involved production at the constant Qm, and differed only the treatment 

of  , which was the same as in Cases S1 and S1P, respectively. 

 

3.7.1.1. System Description and Geometry 

Reagan et al. (2019) firstly studied this 2D cylindrical problem depicting a real-

life oceanic hydrate accumulation, in which the geologic model and the associated 

computational domain involved three major layers: the overburden layer (OB), the hydrate 

accumulation/production target, comprising hydrate-bearing layers and hydrate-free 

interlayer units, and the underburden layer (UB). More specifically, the production target 
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consisted of three layers of hydrate-bearing sandy sediments (H1, H2, and H3), two 

hydrate-free interlayers of soft oceanic muds (M1 and M2), and an aquifer layer (A1). For 

brevity, HBL stands for the hydrate-bearing layer, ML stands for the mud layer, and AL 

stands for the aquifer layer. The simple sketch of the geologic model of this deposit in 

Figure 3.3 shows the system geometry and the thickness of all relevant layers/units. The 

overburden and underburden were accurate representations of the geometry of this real-

life system, and were sufficiently large to provide the necessary heat and water exchange 

with the reservoir. The top and bottom boundaries were represented in the simulation 

domain by very thin layers with time-invariant conditions and properties.  

 

 

Figure 3.3 The geological model with layered geometries of the 2D cylindrical 

problem. 
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3.7.1.2. Well Description 

Reservoir fluids were produced through a vertical well perforated from the top of 

the H1 layer to the bottom of the H3 layer. The well was located at the center of the 

cylindrical domain that extends to an outer boundary at rmax = 2000 m, where conditions 

and properties were constant (time-invariant) at their initial level. The right boundary was 

located at a sufficiently large distance to mimic an infinite-acting boundary behavior 

within the time frame of the simulations.  

The flow in the wellbore was approximated by a Darcy flow through a pseudo-

porous medium representing the interior (annulus/tubing) of the well, in an approach 

validated in earlier studies (Moridis and Reagan 2007a). This pseudo-medium had a  = 

1, a very high vertical permeability (kz = 5×10-9 m2), a capillary pressure of zero, and phase 

relative permeabilities that were linear functions of the phase saturations in the wellbore. 

The well had a very small irreducible gas saturation, set at 0.005, to allow the emergence 

of a free gas phase in the well. 

 

3.7.1.3. Domain Discretization 

For reliable/accurate predictions, the 2D domain was finely discretized into 342 

subdivisions in the radial direction and 354 subdivisions in the vertical direction, resulting 

in a total of 121,068 elements (gridblocks). Along the radial direction, the r subdivisions 

were increased logarithmically from the well radius rw = 0.05 m to rmax. The vertical 

discretization was also very fine, with 0.15 ≤ z ≤ 0.4 m in the reservoir, but with larger 
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z’s in the hydrate-free overburden and underburden because of the diffusive behavior of 

pressure at these locations. 

Assuming that hydrate dissociation/formation can be accurately described by an 

equilibrium reaction, the presence of salt in this oceanic system led to (a) a system 

involving 3 mass components (H2O, CH4, and NaCl) and heat and, consequently, (b) 4 

equations per element, resulting in about 480,000 simultaneous equations and unknowns.  

 

3.7.1.4. System Properties 

The hydraulic and thermal properties for this 2D problem are summarized in Table 

3.2. The parameters used for the simplified geomechanical model are shown in Table 3.3.  

 

 

Table 3.2 Properties of the hydrate deposit in Cases S1, S1P, S2, and S2P. 
 

Initial pressure at top boundary (𝑷𝑻) 23.0 MPa 

Pressure distribution Hydrostatic 

Initial temperature at top boundary (𝑻𝑻) 4.35 °C 

Initial temperature at bottom boundary 

(𝑻𝑩) 
38.335 °C 

Gas composition 100% CH4 

Initial saturations of HBLs H1 and H2  SH = 0.47 

Initial saturation of HBL H3  SH = 0.73 

Intrinsic permeabilities of HBLs 
 

kr = 1.0 × 10-12 m2; kz = 0.01kr 

Porosity 𝝓 of HBLs 0.37 
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Table 3.2 Continued. 
 

Intrinsic permeabilities of MLs kr = 1.0 × 10-14 m2; kz = 0.1kr 

Porosity 𝝓 of MLs 0.37 

Intrinsic permeabilities of ALs kr = 1.0 × 10-14 m2; kz = 0.1kr 

Porosity 𝝓 of ALs 0.37 

Intrinsic permeabilities of OB kr = 5.0 × 10-19 m2; kz = 0.2kr 

Porosity 𝝓 of OB 0.44 

Intrinsic permeabilities of UB kr = 5.0 × 10-19 m2; kz = 0.2kr 

Porosity 𝝓 of UB 0.43 

Dry thermal conductivity (all layers) kθd = 0.50 W∙m-1∙K-1 

Wet thermal conductivity (all layers) kθw = 1.16 W∙m-1∙K-1 

Specific heat 𝑪𝑹 (all layers) 1000
1 1J kg  K− −

 

Grain density 𝝆𝑹 (all layers) 2650
1 3kg  m− −

 

Composite thermal conductivity model 
( )( )d A H w d

I I

k k S S k k

S k

   



= + + −

+
 

Relative permeability model 

max 0,min ,1
1

n

A irA
rA

irA

S S
k

S

   −  
=    

−     

; 

max 0,min ,1
1

Gn

G irG
rG

irA

S S
k

S

   −  
=    

−     

; 

0rHk =  

SirA, SirG, n, nG of HBLs 0.15; 0.01; 4.30; 3.20 

SirA, SirG, n, nG of MLs 0.55; 0.03; 3.50; 2.50 

SirA, SirG, n, nG of AL 0.55; 0.03; 3.50; 2.50 



 

58 

 

Table 3.2 Continued. 
 

SirA, SirG, n, nG of OB 0.65; 0.05; 5.50; 4.50 

SirA, SirG, n, nG of UB 0.65; 0.05; 5.50; 4.50 

Capillary pressure model 

( )
1

1
*

0 1capP P S





−
− 

= − − 
 

 

* A irA

mxA irA

S S
S

S S

−
=

−
 

λ, P0, SirA, SmxA of HBLs 0.45; 1 × 104 Pa; 0.14; 1.0 

λ, P0, SirA, SmxA of MLs 0.45; 1 × 105 Pa; 0.54; 1.0 

λ, P0, SirA, SmxA of AL 0.45; 1 × 105 Pa; 0.54; 1.0 

λ, P0, SirA, SmxA of OB 0.45; 5 × 105 Pa; 0.64; 1.0 

λ, P0, SirA, SmxA of UB 0.45; 5 × 105 Pa; 0.64; 1.0 

Empirical permeability reduction factor γ 8.0 (HBLs); 6.0 (MLs, AL, OB, UB) 

 

 

 

Table 3.3 Geomechanical parameters using the simplified geomechanical model of 

the hydrate deposit in the 2D cylindrical problem. 
 

αPL 2.0 × 10-9 Pa-1 

SSmax 0.40 

αPU 1.0 × 10-8 Pa-1 

SSmin 0.15 

δ 0.015 
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3.7.1.5. Initial Conditions 

The initial conditions in the reservoir were determined by the initialization process 

described by Moridis and Reagan (2007b). To obtain the initial temperature distribution, 

the temperatures at the top and bottom boundaries were set to the values listed in Table 

3.2. To obtain the initial pressure distribution in the reservoir profile, the pressure at the 

top boundary was set to the value listed in Table 3.2 and the bottom boundary was made 

impermeable. After defining these boundary conditions, an initialization simulation was 

conducted using a single column of the domain until thermal, hydrostatic, and chemical 

equilibria (i.e., steady-state conditions) were reached. The pressure and temperature 

profiles resulting from the initial equilibration simulations were applied to the entire 

domain and used as the initial conditions for the subsequent production simulations. 

A gridblock above the uppermost well gridblock was used as the internal boundary 

for the constant-pressure production, or the element where the constant mass flow rate of 

fluid production was assigned. Note that the well was treated as a pseudo-porous medium 

mentioned in Section 3.7.1.4, so the well gridblocks were included in the computational 

domain and the conditions therein were continuously monitored. 

 

3.7.2. Validation Results 

All the cases were simulated by both the serial T+H V1.5 and the parallel pT+H 

V1.5 codes in order to compare their simulation results: the production rates and 

cumulative production of the gaseous and aqueous phases in all cases. The pT+H 

simulations of Cases S1, S2, S1P, and S2P used 64 processors in the parallel environment. 
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The production period in all cases lasted 540 days, i.e., a time frame sufficiently long to 

allow even small computational error caused by the parallelization to be amplified by the 

end of production.  

In Case S1, the production rate and cumulative production of the gaseous phase 

are presented in Figure 3.4, and those of the aqueous phase are in Figure 3.5. The serial 

and parallel results are identical in this long-term production test. The same near-perfect 

agreement is observed in Figures 3.6 and 3.7 related to Case S1P, Figures 3.8 and 3.9 

related to Case S2, and Figures 3.10 and 3.11 related to Case S2P. The coincidence of the 

serial T+H V1.5 and the parallel pT+H V1.5 results in the solution of these large and 

complex problems provided strong evidence of the validity of the parallel code. 

 

 

Figure 3.4 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S1. 
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Figure 3.5 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S1. 

 

 

 

 

Figure 3.6 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S1P. 



 

62 

 

 

Figure 3.7 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S1P. 

 

 

 

 

Figure 3.8 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S2. 
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Figure 3.9 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S2. 

 

 

 

 

Figure 3.10 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S2P. 
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Figure 3.11 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S2P.  
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4. PARALLEL COUPLED FLUID FLOW/GEOMECHANICS SIMULATION 

 

This chapter presents detailed information on the coupling pT+H V1.5 and RGMS 

codes, including details on the coupling method, on the respective parallelization 

approaches, flow charts, and examples involving problems of hydrate dissociation-related 

coupled processes computed in a parallel simulation environment.  

 

4.1. Coupling Method 

The coupling of the flow, thermal, chemical, and geomechanical processes 

describes the interdependence of the associated properties and involves the updating of (a) 

pressure, temperature, and flow properties (porosity and permeability) in response to 

geomechanical changes and of (b) stresses, strains, and displacements in response to 

changes in the fluid pressure, temperature, and flow properties. The porosity mentioned 

in the previous sections is the reservoir porosity, which is the ratio of the pore volume in 

the deformed system to the total volume in the original (non-deformed) configuration. In 

addition to the reservoir porosity, the true porosity is defined as the ratio of the pore 

volume to the total volume when both are in the deformed configuration. The relation 

between the reservoir porosity and the true porosity is 

 
*(1 )v  = + , (4.1) 

where 
*  is the true porosity and v  is the volumetric strain.  

In a deformed porous medium, the true porosity variation is computed by 

(Geertsma 1957) 
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( ) ( )* *

* *

1 1 1 1 1 1
v t v t

dr s dr dr dr
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 

    
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    
, (4.2) 

where v  is the total mean stress. 

There are two major methods to account for the above porosity change: the fully 

coupled method and the sequentially coupled method. The sequential method includes the 

following options: fixed-strain split, fixed-stress split, drained split, and undrained split. 

Under conditions of isothermal single-phase flow of a slightly compressible fluid in 

isotropic geological media, (a) the undrained and fixed-stress splits are unconditionally 

stable, and (b) the fixed-stress split is more accurate than the undrained split (Kim et al. 

2011a, 2011b). When the geomechanics simulation is coupled with the hydrate 

simulations, the Young’s modulus is a function of the hydrate saturation SH, and the 

associated non-linearity adversely affects the accuracy and efficiency of the sequentially 

coupled method. 

Compared to the sequentially coupled method, the fully coupled method requires 

unifying the two simulations, assembling the flow, thermal, and geomechanical equations 

in a single matrix, and solving all equations simultaneously. The equations associated with 

the mass and heat balance are already ill-conditioned; the equations of the fully-coupled 

system become much more ill-conditioned because the entries of the stiffness matrix that 

originate from the geomechanics simulation are usually very large in magnitude, thus 

significantly increasing the condition number of the fully coupled matrix and making its 

solution much more difficult. Additionally, the solution of the augmented fully-coupled 

matrix is more time-consuming than the solution of the two separate matrices in the 
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sequential approach even when the conditioning of the matrix is unaffected. Therefore, 

the fixed-stress split with an iterative scheme is implemented in the coupled RGMS and 

pT+H V1.5 codes in order to maximize the execution speed while maintaining as high a 

level of accuracy of the numerical solution as that of the fully-coupled method.  

The fixed-stress split iterative scheme is an iterative coupling method that solves 

the flow problem and the geomechanics problems sequentially at each time step, but it 

only proceeds to the next time step when the coupled solution converges within a 

predetermined tolerance. The FT simulation is conducted first by freezing the total mean 

stress ( )0v = , so the true porosity variation computed from the FT simulation becomes  

 
*

*

t

dr

P
K

 
 

−
= . (4.3) 

Because the flow problem is non-linear and it is solved using the NR iteration 

method and the Jacobian, the true porosity change can be written as  

 

1

1
*

* * 1

k

k k k

t

dr

P
K

 
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−

− −−
= + ,  (4.4) 

where k  is the NR iteration count. Combining Eq. (4.1) and Eq. (4.4) yields 

 
( ) 1

1 11 k

vk k k

t

dr

P
K

  
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−

− −+ −
= + .  (4.5) 

The above equation shows that the reservoir porosity is a function of (a) the pore 

pressure and (b) the volumetric strain. Of those, the first is computed from the FT 

simulation, and the second is estimated from the geomechanical simulation.  
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Following the update in the porosity, the equations in the geomechanical 

simulation are assembled using the equivalent pore pressure that has been updated from 

the results of the FT simulation. The total mean stress can be written in terms of the 

volumetric strain (Biot 1941) as 

 v dr v tK P  = − ,  (4.6) 

and substitution in Eq. (4.2) leads to 

 ( )
( )( )*

* *
1

v t

dr

P
K

  
    

− −
= − + . (4.7) 

 Following Coussy (2004), the terms ( )* −  and 
( )( )* 1

drK

  − −
 can be treated 

as constants when linear poroelasticity is assumed. Although the drained bulk modulus 

varies with SH, the iterative scheme ensures that the solutions converge rapidly toward the 

fully coupled solutions. Thus, the true porosity can be found by integrating Eq. (4.7), 

leading to  

 ( )( )
( )( )

( )
*

0* * *

0 0 0 0

1
v v t t

dr

P P
K

  
     

− −
− = − − + − , (4.8) 

where 
*

0  is the initial true porosity, 0v  is the initial volumetric strain, and 0tP  is the 

initial equivalent pore pressure.  

Combining Eq. (4.1) and Eq. (4.8) results in 

 ( )
( )( )

( ) ( )
*

0* 2

0 0 0

1
n

v v t t v

dr

P P O
K

  
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− −
= + − + − + . (4.9) 
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Accepting as valid the assumption of infinitesimal deformation (Dana et al. 2018), Eq. 

(4.9) can be approximated as  

 ( )
( )( )

( )
*

0*

0 0 0

1
n

v v t t

dr

P P
K

  
    

− −
= + − + − . (4.10) 

If 0 = 0, the initial true porosity and the initial reservoir porosity are the same, so Eq. 

(4.10) can be further reduced to  

 
( )( )
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0

0 0

1
n

v t t
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P P
K

  
  

− −
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The flow chart of the coupled simulation is shown in Figure 4.1. The coupling 

convergence criterion is that the maximum value of 
n k

n

 



−
 be smaller than a given 

tolerance that is provided as an input. Additionally, the maximum numbers of the fixed-

stress iteration and of the NR iteration are also provided as inputs to control the time step, 

which is reduced if either of these two maximum numbers is reached. To speed up the 

coupled simulation, the time step can be increased when meeting some criteria (e.g., for a 

specific time step, the convergence of the fixed-stress is attained in 4 or fewer iterations,  

and convergence of the NR solution of the FT equation is attained within 5 iterations). 

When RGMS is coupled with pT+H in order to investigate the geomechanical 

response to hydrate dissociation and/or formation, the bulk density in Eq. (2.2) is 

expanded to  

 ( )
, , ,

1b s

A G I H

S 

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=

= + − , (4.12) 

and the average mobile fluid pressure in Eq. (2.7) is written as  
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New time step

New fixed-stress iteration n

New flow problem iteration k

Solve for primary variables by freezing the stress field 

Is the flow problem converged?
No

Compute new porosities using Eq. (4.11)

Is the coupled problem converged?

Solve the geomechanics problem for displacements with 

updated equivalent pore pressures

Update porosities using Eq. (4.5)

Yes

Yes

Reduce the time step and 

reset n and k

No
Does n equal nmax?

Does k equal kmax?

Yes

Yes

No

No

Does it meet the criterion for

 increasing the time step?

Increase the time step

Yes

No

 
Figure 4.1 The flow chart of the coupled simulation based on the fixed-stress split 

iterative scheme.   
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4.2. Parallelization 

The computational domains are the same in both the pT+H and the RGMS 

simulators, and the two simulators use the exact same discretization. This may increase 

the pT+H computational load because the domain for the hydrate simulations needs to be 

expanded by including significant parts of the overburden and underburden that do not 

contribute to hydrate, but which is necessary in the geomechanical computations. 

However, this is not necessarily a significant problem because the discretizations in the 

expended domain (overburden and underburden) can be coarse in the absence of hydrate 

and, additionally, this approach eliminates the need to interpolate between different grids 

used for the pT+H flow simulation and the RGMS geomechanical simulation, a process 

that is cumbersome, time-consuming and can lead to errors. However, unique treatments 

are necessary for parallelizing the two constituent codes of the coupled simulator because 

different numerical methods are used in the geomechanics and FT simulations.  

The partitioned domain resulting from the application of METIS cannot be 

assigned directly to a processor without some additional manipulation that is needed for 

the coupled simulation. The FT simulator assembles the equations based on elements, but 

the geomechanics simulator assembles the equations based on nodes. If METIS is used to 

partition the elements and the nodes separately, it is possible that the partitioned element 

subdomains may not coincide with partitioned node subdomains, leading to situations of 

nodes being handled by a different processor that of the element with which they are 

associated. This can lead to additional communications between processors and 

performance deterioration if the nodes are assigned to processors handling distant 
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elements. To maintain the one-to-one coupling scheme that eliminates the need for 

interpolation, the partition of the domain is based on the elements involved in the FT 

problem, and is the same for the geomechanics problem. That is, the same group of 

elements is assigned to the same processor for both simulations, i.e., the partitioned 

subdomains are the same for both simulations. 

In addition to the partition of elements, it is necessary to partition the nodes in the 

geomechanics simulation. METIS partitioning assigns a processor rank to every element, 

and the processor only processes the elements that have its own processor rank. An 

element involves 4 nodes in 2D problems and 8 nodes in 3D problems, which means that 

a node can belong to several elements. To eliminate possible conflicts, this node is 

assigned to the highest processor rank of the elements with which the node is associated. 

Following this rule, all the nodes can be partitioned without ruining the one-to-one 

coupling scheme. 

 

4.3. Flow Chart 

The flow chart of the coupled pT+H V1.5 and RGM simulator is presented in 

Figure 4.2. 
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Read the general information in the input file

Find the flow element connections

Read and store the mesh only for this subdomain

Is it converged?

Renumber the element/node and equation numbers

Assemble the local matrix and vector

Solve the problem by a parallel iterative solver

Map the indices of the matrix and vector from local to global

Find the local to global number mapping

New time step

No

Find the maximum relative error across processors

Is ending condition satisfied?

Yes

Simulation ends

Simulation starts

No

Partition the flow domain using METIS

Derive the partitioned results for the geomechanics domain

 

Figure 4.2 The flow chart of the coupled pT+H V1.5 and RGM simulator.  
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4.4. Coupling Validation 

The coupling method used in the coupled pT+H V1.5 and RGMS codes was 

validated through comparison to the analytical solutions of the Terzaghi problem 

(Terzaghi and Peck 1948) and McNamee-Gibson problem (McNamee and Gibson 1960a, 

1960b) in serial simulations.  

 

4.4.1.1. The Terzaghi Problem 

This problem, often referred to as the Terzaghi problem, is a classical poroelastic 

problem of consolidation in response to draining of the pore fluid. The fluid pressure is 

expected to increase immediately after traction is applied to the top boundary when the 

rollers support the left, right, and bottom boundaries (thus preventing normal 

displacements at these locations). The parameters used for this problem are summarized 

in Table 4.1, and the discretized computational domain, comprising 18 uniform elements, 

is shown in Figure 4.3. The analytical solution and the numerical prediction from the 

coupled simulator at an observation point located at (x, z) = (0.5 m, -17.5 m) are compared 

in Figure 4.4, which shows an excellent agreement of the two estimates of the relative 

pore pressure and provides additional evidence in support of the validation of both the 

constituent codes and of the underlying fixed-stress split iterative scheme in the coupled 

simulator. 

 

Table 4.1 Parameters of the Terzaghi validation problem. 
 

Width (W) 1 m 

Height (H) 18 m 



 

75 

 

Table 4.1 Continued. 
 

Mesh number 1 ×18 

Porosity 0.25 

Permeability 50 mD 

Young’s modulus 450 MPa 

Poisson’s ratio 0 

Biot’s coefficient 1 

Fluid compressibility 4 ×10-10 Pa-1 

Fluid viscosity 1 ×10-3 Pa∙s 

Traction (T) 13.25 Mpa 

Initial pressure (Pi) 10 Mpa 

Consolidation coefficient (c) 0.0213 m2∙s-1 

 

 
Figure 4.3 The computational domain and boundary conditions for the Terzaghi 

problem. 
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Figure 4.4 Evolution of the relative pore pressure vs. dimensionless time at the 

observation point for the Terzaghi problem. 

 

 

4.4.1.2. The McNamee-Gibson Problem 

This problem involves constant loads applied to the top boundary of a poroelastic 

medium, while the normal displacements are fixed at the left, right, and bottom 

boundaries. The fluid pressure is expected to increase instantaneously with the loading of 

the medium. The parameters used for this problem are listed in Table 4.2. The discretized 

computational domain is shown in Figure 4.5, in which traction is applied to the top, and 

the left, right, and bottom boundaries that are supported by the rollers and eliminate 

displacements there. The lengths of subdivisions increase along the positive x-direction 

and negative z-direction: (a) 0.0001 ≤ x ≤ 16 m and (b) 0.0001 ≤ x ≤ 16 m. The 

numerical results at the centroid of the fifth element on the left boundary located at (x, z) 
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= (0.00005 m, -3.5 m) are compared to the analytical solution in Figure 4.6, which shows 

the evolution of the relative pore pressure over the dimensionless time at that observation 

point. The excellent agreement of the two solutions, as well as the capture of the Mandel-

Cryer effect, further validates the coupled simulator. 

 

Table 4.2 Parameters of the McNamee-Gibson validation problem. 
 

Model dimension 110 ×110 m 

Mesh number 21 ×21 

Porosity 0.25 

Permeability 50 mD 

Young’s modulus 450 MPa 

Poisson’s ratio 0 

Biot’s coefficient 1 

Fluid compressibility 4 ×10-10 Pa-1 

Fluid viscosity 1 ×10-3 Pa∙s 

Traction 1 (T1), applied range (a1) 20 MPa, 0 – 4 m 

Traction 2 (T2), applied range (a2) 10 MPa, 4 – 110 m 

Initial pressure (Pi) 10 MPa 

Consolidation coefficient (c) 0.0213 m2∙s-1 
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Figure 4.5 The computational domain and boundary conditions for the McNamee-

Gibson problem. 

 

 

 

 

Figure 4.6 Evolution of the relative pore pressure vs. dimensionless time at the 

observation point for the McNamee-Gibson problem.  
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4.5. Parallelization Validation 

This section describes work that was undertaken to validate the MPI-based 

parallelization in the coupled pT+H V1.5 and RGM simulator by comparing the estimates, 

obtained from a single and multiple processors, of the phase production rate and of the 

corresponding cumulative production mass in the analogous Cases S1G, S1PG, S2G, and 

S2PG, which involve the same systems and conditions in Cases S1, S1P, S2, and S2P but 

involve the full geomechanical model RGMS.  

 

4.5.1. Problem Description 

4.5.1.1. Flow-Related Description and Parameters 

The flow-related problem description and parameters are in Section 3.7.1.  

 

4.5.1.2. Geomechanics-Related Description and Properties 

In the geomechanics simulation, the left, right, and bottom boundaries are 

supported by rollers so the displacements in the normal direction to these boundaries are 

fixed to zero. When coupling the flow and the geomechanics simulations, the initial 

effective stress field is forced to be zero, so that the initial total stress field can be 

determined without modifications of the initial conditions generated from the T+H 

simulation. Consequently, there was no need to apply normal traction to the top boundary 

of the domain. The geomechanical properties of the various geologic layers are listed in 

Table 4.3, and are obtained from Reagan et al. (2019). A total of about 720,000 
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simultaneous equations are solved in this problem: about 480,000 FT equations and about 

240,000 geomechanics equations. 

 

Table 4.3 Geomechanical properties of the hydrate deposit in Cases S1G, S1PG, S2G, 

and S2PG. 
 

Young’s modulus in H1, H2, H3 
E = 500 MPa at SH = 0; 

E = 1990 MPa at SH = 1 

Young’s modulus in OB, UB, M1, M2, A1 E = 1096 MPa 

Poisson’s ratio in H1, H2, H3 ν = 0.4 

Poisson’s ratio in OB, UB, M1, M2, A1 ν = 0.3 

Biot’s coefficient α = 0.99 

 

 

4.5.2. Validation Results 

All the cases were simulated by the coupled pT+H V1.5 and RGMS codes using a 

single processor in the serial simulations, and multiple processors in the parallel 

simulations. In the parallel simulations, Cases S1G and S2G were simulated using 16 

processors, and Cases S1PG and S2PG were simulated using 128 processors. The duration 

of the production tests was set at 60 days, i.e., a time that is deemed sufficiently long to 

enlarge/accentuate possible small errors introduced by the parallelization.  

The production rates and cumulative production (a) of the gaseous phase in Cases 

S1G, S1PG, S2G, and S2GP are shown in Figures 4.7, 4.9, 4.11, and 4.13, respectively, 

and (b) of the aqueous phase in Cases S1G, S1PG, S2G, and S2GP are presented in 

Figures 4.8, 4.10, 4.12, and 4.14, respectively. The virtual coincidence of the serial and 
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parallel results during this 60-day production test provides additional confirmation of the 

validity of the MPI-based parallelization of the coupled pT+H V1.5 and RGMS codes. 

 

 

Figure 4.7 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S1G. 
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Figure 4.8 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S1G. 

 

 

 

 

Figure 4.9 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S1PG. 
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Figure 4.10 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S1PG. 

 

 

 

 

Figure 4.11 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S2G. 
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Figure 4.12 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S2G. 

 

 

 

 

Figure 4.13 The parallelization validation on the production rate and cumulative 

production of the gaseous phase in Case S2PG. 
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Figure 4.14 The parallelization validation on the production rate and cumulative 

production of the aqueous phase in Case S2PG. 
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5. PARALLEL PERFORMANCE 

 

The parallel performance of RGMS, pT+H V1.5, and the coupled pT+H V1.5 and 

RGM simulator was tested on two platforms: (a) the Mac Pro had an Intel Xeon E5-2697 

v2 2.7 GHz processor with 12 cores and 64 GB 1,866 MHz memory, and (b) the Texas 

A&M University Ada Linux cluster equipped with 856 compute nodes in various 

configurations using FDR-10 InfiniBand as the interconnect; each computer node used for 

the simulations in this study comprised 2 Intel Xeon E5-2670 v2 2.5 GHz processors with 

10 cores per processor and 64 GB 1,866 MHz memory. Although the processor in the Mac 

Pro (shared memory system) runs faster than that in the Ada Linux cluster (distributed 

memory system), the latter has much more processors available for parallel computing. 

As multiple processors are installed in the Ada Linux cluster, data is transmitted between 

processors via the interconnect. In addition to different architectures, different compilers 

and MPI libraries were used as shown in Table 5.1. 

 

Table 5.1 Compilers and MPI libraries used on the Ada Linux cluster and Mac Pro. 
 

Programming Language Mac Pro Ada Linux Cluster 

FORTRAN  GCC 10.2.0 Intel Fortran Compiler 19.0.5.281 

C/ C++ Clang 12.0.0 Intel C++ Compiler 19.0.5.281 

MPI OpenMPI 4.0.5 
Intel(R) MPI Library, Version 

2018 Update 5 
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A detailed wall-clock time profile is generated for performance comparisons, 

including the elapsed time spent on (a) reading the input files tinp, (b) partitioning the 

domain tpar, (c) the simulation cycle computations tsim, (d) estimating the coefficients of 

the equations tequ, (e) the solution of the matrix equations tsol, (f) updating the unknowns 

of external elements/nodes tupd, and (g) preparing the output results tout. Thus, the total 

elapsed time (total simulation time) ttot is 

 tot inp par sim outt t t t t= + + + , (5.1) 

in which 

 sim equ sol updt t t t= + + . (5.2) 

Usually, tupd is negligible compared to all the other elapsed times. 

The speedup associated with parallel codes is a metric used to evaluate the 

performance of parallel codes, and is defined as  

 s

p

t
s

t
= , (5.3) 

where ts is the elapsed time in the serial simulation and tp is the elapsed time in the parallel 

simulation. The greater the speedup, the better the parallel performance. Correspondingly, 

7 types of speedups can be computed: sinp, spar, ssim, sequ, ssol, supd, and tout. If the problem 

is so massive that a single processor cannot solve it, the serial elapsed time is approximated 

by the product of the smallest number of working processors and its elapsed time. 

To evaluate the effects of different partitioning methods in METIS, the parallel 

performance tests are divided into two groups: (a) a first group with case names ending in 

“C,” denoting a partitioning objective of minimization of the number of edge-cuts (MEC), 
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and (b) a second group with case names ending with “V,” in which the partitioning 

objective was to minimize the total communication volume (MCV). Note that the 

speedups of both groups are computed based on the same serial elapsed times because 

METIS is not involved in the serial simulation. For larger problems that cannot be 

simulated in serial mode, the serial elapsed time is inferred from the parallel result 

obtained for the minimum possible number of processors. Additionally, the faster result 

from two groups (reflecting the two partitioning objectives) is used for computing the 

estimated elapsed time in the serial simulation.  

 

5.1. Parallel Performance of RGMS 

The RGMS tests were limited to a single simulation cycle without continuously 

updating flow properties either from a flow simulator or the input files. The time for 

reading files and for writing result outputs can be significant in geomechanics-only 

simulations. The parallelization mainly improves the performance of the simulation 

processes, so only tsim including teqn and tsol are evaluated in RGMS runs. When RGMS is 

coupled with a flow simulator, the number of simulation cycles is sufficiently large to 

make tsim dominate. 

 

5.1.1. Problem Description 

The validation problems in Section 2.6 were used for testing the parallel 

performance of RGMS. The initial discretization discussed in that section was 

substantially refined in order to create relatively large problems. Using uniformly-sized 
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subdivisions, the number of elements in each direction in the 2D problems (Cartesian and 

cylindrical) was increased to 2,000, and to 150 in the 3D problem. This resulted in 

4,000,000 elements in the 2D problems (Cases G1 and G2 of the 2D Cartesian and 

cylindrical problems, respectively), and in 3,375,000 elements in the 3D Cartesian 

problem (Case G3). All the boundary conditions of the validation problems were 

preserved.  

 

5.1.2. Results 

The elapsed times and speedups of Cases G1, G2, and G3 running on the Ada 

Linux cluster and on the Mac Pro with different numbers of processors Np are reported. 

 

5.1.2.1. Ada Linux Cluster 

Cases G1C, G1V, G2C, G2V, G3C, and G3V were tested on the Ada Linux cluster 

using Np = 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512. As shown in Figure 5.1, teqn in Cases 

G1C and G1V decreases faster than tsol with an increasing number of processors, so the 

latter takes a larger and larger portion of tsim. Interestingly, the simulation cycle time in 

Case G1V becomes larger than that in Case G1C using 512 processors. Figure 5.2 proves 

the scalability of the equation assembly in both cases, and shows that ssol has a noticeable 

difference with the partitioning objective in METIS when Np ≥ 64, in which case the MEC 

option is better than MCV when Np = 512. The detailed simulation cycle times and 

speedups in Cases G2C and G2V are summarized in Figures 5.3 and 5.4, exhibiting the 

same trends identified in Cases G1C and G1V. 
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Figure 5.1 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Cases G1C and G1V on the Ada Linux cluster. 

 

 

 

 

Figure 5.2 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Cases G1C and G1V on the Ada Linux cluster. 
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Figure 5.3 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Cases G2C and G2V on the Ada Linux cluster. 

 

 

 

 

Figure 5.4 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Cases G2C and G2V on the Ada Linux cluster. 
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Figure 5.5 compares the simulation cycle time (setting up equations and matrix 

solving) in the 3D problems of Cases G3C and G3V. tsim is 1,355.89 seconds in the serial 

simulation; it is reduced to 5.02 seconds in Case G3C and 7.53 seconds in Case G3V when 

using 512 processors, in which tsol is 1.89 seconds in Case G3C and 5.39 seconds in Case 

G3V. Figure 5.6 shows that sequ is very significant and matches the conclusions drawn in 

the 2D studies. ssim increases significantly when using a large number of processors, and 

reaches 284.70 in Case G3C and 189.83 in Case G3V when 512 processors are involved, 

which indicates the MEC option should be used in Case G3 to obtain the optimal ssim. 

 

 

Figure 5.5 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Cases G3C and G3V on the Ada Linux cluster. 
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Figure 5.6 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Cases G3C and G3V on the Ada Linux cluster. 

 

 

5.1.2.2. Mac Pro 

Because the tests on the Ada Linux cluster showed that the partitioning objectives 

in METIS affect the parallel performance mainly when hundreds of processors are used, 

it is unnecessary to study their influences on the parallel performance on a Mac Pro with 

12 processors. Only Cases G1C, G2C, and G3C were tested on the Mac Pro using Np = 1, 

2, 4, 6, 8, 10, and 12. Figures 5.7 and 5.8 show the detailed calculation times and 

corresponding speedups in Case G1C with different numbers of processors. tsim decreases 

monotonically as the number of processors increases, and tsol is less than teqn when using 

no more than 4 processors. As for the speedups, the equation assembly is always more 
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sensitive to the number of processors than the solving process. When Np = 12, ssim is 6.19, 

seqn is 9.26, and ssol is 4.08.  

The detailed simulation cycle times and speedups in Case G2C are presented in 

Figures 5.9 and 5.10. When up to 4 processors are used, the performance is similar to that 

discussed in Case G1C, with teqn exceeding tsol. Generally, an improvement in performance 

is observed when the number of processors increases, although this is not consistent in the 

case of matrix solving, which shows anomalous and contrary behavior when Np increases 

from 6 to 8 and from 10 to 12. This is attributed to the different memory management and 

processor communication methods between the Ada cluster the Mac Pro desktop system. 

The maximum ssim is 6.09, which is practically the same as the speedup in Case G1C. 

 

 

Figure 5.7 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Case G1C on the Mac Pro. 
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Figure 5.8 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Case G1C on the Mac Pro. 

 

 

 

Figure 5.9 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Case G2C on the Mac Pro. 
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Figure 5.10 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Case G2C on the Mac Pro. 

 

 

Figure 5.11 provides the detailed information on the calculation time in the 3D 

simulation of Case G3C on the Mac Pro. Unlike the 2D results, setting up the equations is 

consistently the most time-consuming part of the simulation. Compared to the matrix 

solving process, assembly of the equations can concentrate in the processor and requires 

less communication between processors, resulting in the higher speedups in Figure 5.12. 

Using 12 processors, the speedups of calculation, setting up equations, and matrix solving 

are 7.19, 9.11, and 4.56, respectively. Again, as in all Mac Pro cases discussed up to now, 

tsim decreases monotonically with an increasing number of processors. This was to be 

expected, given the indications provided by the parallelization performance on the Ada 

cluster from tests with a much larger number of processors. 
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Figure 5.11 The elapsed times of the detailed simulation cycle (setting up equations 

and matrix solving) in Case G3C on the Mac Pro. 

 

 

  

Figure 5.12 The speedups of the detailed simulation cycle (setting up equations and 

matrix solving) in Case G3C on the Mac Pro. 
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5.1.3. Summary 

The parallel performance of RGMS is satisfactory on the Ada Linux cluster and 

the Mac Pro. The parallel performance is unaffected by the METIS partitioning objectives 

when using 64 or fewer processors, but minimization of the number of edge cuts in METIS 

leads to (a) a consistently better performance for more than 64 processors and (b) the 

performance continues to improve as the number of processors increases. Note that the 

elements in the above tests are uniform in size; it is possible that different conclusions can 

be derived with non-uniform-sized elements, and this issue needs to be further studied. 

 

5.2. Parallel Performance of pT+H V1.5 

The parallel performance of pT+H V1.5 was evaluated in the solution of two large-

scale problems: (a) Case U1, which was based on the study of a 2D cylindrical (single-

well) system in a hydrate deposit at the UBGH2-6 site in the Ulleung basin but involving 

a finer mesh than that used in the original study of the problem (Moridis et al. 2013), and 

(b) a 3D Cartesian problem of gas production from an offshore hydrate deposit in the 

Krishna-Godawari Basin of India that involved over 3.6 million elements (Boswell et al. 

2019; Moridis et al. 2019). Both cases were simulated on the Ada Linux cluster using up 

to 512 processors and on the Mac Pro using up to 12 processors. The same nomenclature 

and naming conventions that were introduced in the earlier studies applies here.  

The abbreviations stated for the geologic system in Section 3.7.1.1 are used in the 

problem descriptions of Cases U1 and T1. In these simulations, hydrate 

dissociation/formation was described as an equilibrium reaction, in line with the findings 



 

99 

 

of Kowalski and Moridis (2007), resulting in 4 equations (3 mass components and heat) 

per element. In addition, both cases used the pseudo-porous medium mentioned in Section 

3.7.1.2 to approximate the flow in the wellbore. The initialization processes for both cases 

were the same as discussed in Section 3.7.1.5.  

 

5.2.1. Description of the Two-Dimensional Cylindrical Problem in Case U1 

5.2.1.1. System Description and Geometry 

The geologic model and the associated computational domain in Case U1 

comprised three major units (OB, the hydrate deposit unit, and UB). The hydrate deposit 

unit consisted of five layers of hydrate-bearing sandy sediments and four hydrate-free 

interlayers of soft oceanic muds.  Figure 5.13 shows the thickness of each layer. 

 

 

 Figure 5.13 The geological model with layered geometries of Case U1.  
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5.2.1.2. Well Description 

The vertical production well at the center of the cylindrical domain of this problem 

was perforated from the top of the H1 layer to the bottom of the H5 layer. The well was 

produced at a constant bottomhole pressure of Pbh = 9 MPa, which was attained by 

lowering the pressure at the well from its initial/discovery level at a rate of 0.5 MPa/hr. 

 

5.2.1.3. Domain Discretization 

The 2D domain was finely discretized into 752 subdivisions in the radial direction 

and 322 subdivisions in the vertical direction, resulting in a total of 242,144 elements. The 

r subdivisions were very fine along the radial direction (0.10 m for rw < r  15 m, 0.20 

m for 15 m  r   30 m), increased logarithmically from r = 30 m to rmax = 600 m. The z 

subdivisions were between 0.05 and 0.1 m within the hydrate deposit, and larger (but not 

exceeding 0.5 m) in the hydrate-free (and more forgiving) OB and UB. Figure 5.14 

presents the mesh used in Case U1 and Figure 5.15 presents the mesh in the hydrate 

accumulation near the wellbore. The treatment of the hydrate dissociation/formation as an 

equilibrium reaction involved 4 equations per element, resulting on a total of about 

960,000 simultaneous equations. 

 

5.2.1.4. System Properties 

Table 5.2 presents the hydraulic and thermal properties in Case U1. Table 5.3 

shows the parameters used for the simplified geomechanical model. 
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Figure 5.14 Mesh used in the problem of Case U1. 

 

 

 

Figure 5.15 Mesh in the hydrate accumulation near the well used in the problem of 

Case U1. 
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Table 5.2 Properties of the hydrate deposit in Case U1. 
 

Initial pressure at top boundary (𝑷𝑻) 22.261 MPa 

Pressure distribution Hydrostatic 

Initial temperature at top boundary (𝑻𝑻) 0.482 °C 

Initial temperature at bottom boundary 

(𝑻𝑩) 
60.0 °C 

Gas composition 100% CH4 

Initial saturations of HBLs SH = 0.65 

Intrinsic permeabilities of HBLs kr = 1.78 × 10-13 m2; kz = kr  

Porosity 𝝓 of HBLs 0.45 

Intrinsic permeabilities of MLs kr = 2.0 × 10-16 m2; kz = kr 

Porosity 𝝓 of MLs 0.67 

Intrinsic permeabilities of OB kr = 2.0 × 10-16 m2; kz = kr 

Porosity 𝝓 of OB 0.65 

Intrinsic permeabilities of UB kr = 2.0 × 10-16 m2; kz = kr 

Porosity 𝝓 of UB 0.50 

Dry thermal conductivity (all layers) kθd = 1 W∙m-1∙K-1 

Wet thermal conductivity of HBLs kθw = 1.45 W∙m-1∙K-1 

Wet thermal conductivity of MLs, OB, UB kθw = 1.00 W∙m-1∙K-1 

Specific heat CR (all layers) 800 J kg-1∙K-1 

Grain density 𝛒R of HBLs 2650 kg∙m-3 

Grain density 𝛒R of MLs 2630 kg∙m-3 

Grain density 𝛒R of OB 2620 kg∙m-3 
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Table 5.2 Continued. 
 

Grain density 𝛒R of UB 2660 kg∙m-3 

Composite thermal conductivity model 
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0rHk =  

SirA, SirG, n, nG of HBLs 0.25; 0.01; 3.50; 2.50 

SirA, SirG, n, nG of MLs, OB, UB 0.55; 0.05; 5.00; 3.00 
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λ , 0P , SirA, mxAS  of HBLs 0.45; 104 Pa; 0.19; 1.0 

λ , P0, SirA, SmxA of MLs, OB, UB 0.15; 105 Pa; 0.49; 1.0 

Empirical permeability reduction factor γ 

(all layers) 
5.0 

 

 

 

Table 5.3 Geomechanical parameters using the simplified geomechanical model of 

the hydrate deposit in Case U1. 
 

αPL 2.0 × 10-9 Pa-1 

SSmax 0.40 

αPU 1.0 × 10-8 Pa-1 
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Table 5.3 Continued. 
 

SSmin 0.15 

δ 0.015 

 

 

 

5.2.2. Case U1: Results and Discussion 

The simulations were run for a total of 100 time steps, and all the simulations 

covered the same length of the production period. The elapsed times of the entire 

simulation and of the various components/activities in the simulation were recorded and 

the corresponding speedups were calculated.  

 

5.2.2.1. Ada Linux Cluster 

Cases U1C and U1V were tested on the Ada Linux cluster using Np = 1, 2, 4, 8, 

16, 32, 64, 128, 256, and 512. The elapsed times of the total simulation and simulation 

cycles in Cases U1C and U1V are shown in Figure 5.16. The elapsed time expended on 

the simulation cycles tsim (see Eqs. [5.1] and [5.2]) always comprises the majority of the 

total execution time ttot regardless of the partitioning option in METIS. Some oscillations 

about the clear trends notwithstanding, tsim in both Cases U1C and U1V are very similar. 

Additionally, ttot in Case U1C appears to decrease in a more consistent manner and at a 

relatively stable rate compared to that in Case U1V. A significant observation from Figure 

5.16 is that ttot appears to be a monotonic function of the number of processors, decreasing 

at a consistently steep rate with an increasing Np. Figure 5.17 compares the elapsed time 
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spent on setting up equations tequ and matrix solving tsol in Cases U1C and U1V, and shows 

that the partitioning option mainly influences the matrix-solving time tsol.  

The total and simulation cycling speedups (stot and ssim, respectively) are presented 

in Figure 5.18, and the computed speedups of setting up equations and matrix solving 

(sequ and ssol, respectively) are shown in Figure 5.19. When 512 processors are used, stot 

are 162.81 in Case U1C and 174.25 in Case U1V, i.e., the option of MCV in METIS 

appears to confer a modest speed advantage in parallel simulations; ssim are 204.72 in Case 

U1C and 218.59 in Case U1V; sequ are 490.08 in Case U1C and 602.46 in Case U1V, 

indicating that the associated operations are highly parallelizable; and the speedups of 

matrix solving are 191.30 in Case U1C and 202.99 in Case U1V. Because of the proximity 

in the values of ttot and tsim (tsim being by far the dominant component of ttot), the total 

speedups approach the simulation cycling speedups. The general conclusion from these 

results is the consistent and monotonic improvement in the parallel performance (as 

quantified by the reduction in the execution times and the increase in the speedups) as Np 

increases. 
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Figure 5.16 The elapsed times of the total simulation and simulation cycles in Cases 

U1C and U1V on the Ada Linux cluster. 

 

 

 

 

Figure 5.17 The elapsed times of setting up equations and matrix solving in Cases 

U1C and U1V on the Ada Linux cluster. 
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Figure 5.18 The speedups of the total simulation and simulation cycles in Cases U1C 

and U1V on the Ada Linux cluster. 

 

 

 

 

Figure 5.19 The speedups of setting up equations and matrix solving in Cases U1C 

and U1V on the Ada Linux cluster. 
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5.2.2.2. Mac Pro 

For the reason discussed in Section 5.1.2.2, the testing of the parallel performance 

of the pT+H V1.5 on a Mac Pro was limited to Case U1C, and involved Np = 1, 2, 4, 6, 8, 

10, and 12. Figure 5.20 shows that ttot and tsim decrease consistently with an increasing Np 

to a maximum of 8; the trend is interrupted for Np > 8, and the worst performance occurs 

when Np =10. This is further demonstrated in Figure 5.21, which shows deterioration of 

the parallel performance, as quantified by the time tsol expended in the solution of the 

matrix equation for Np > 6. This is attributed to the memory management and processor 

communications in the shared memory system of the Mac Pro, in addition to the nature of 

matrix solving that is not amenable to easy parallelization (already observed in the Ada 

simulations); conversely, setting up the equations is an eminently parallelizable operation, 

and this reflected in the continuous decline of tequ with an increasing Np in Figure 5.21. 

Of particular interest is the observation that tsol is always dominant in the Ada Linux cluster 

simulations, but not on the Mac Pro when  Np is low. In addition to potential reasons that 

have already been discussed, different compilers and MPI libraries used in these two 

systems can be the potential reason leading to the above results. As expected from the 

results in Figure 5.20, the total and simulation cycling speedups in Figure 5.22 reach 

peaks when Np = 8, and the speedup of matrix solving in Figure 5.23 peaks for Np = 6 (as 

Figure 5.21 suggests). These results indicate that the excellent parallel performance of 

setting up the equations can help improve the overall parallel performance even when the 

speedup of the matrix solving process no longer increases.  
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Figure 5.20 The elapsed times of the total simulation and simulation cycles in Case 

U1C on the Mac Pro. 

 

 

 

  

Figure 5.21 The elapsed times of setting up equations and matrix solving in Case U1C 

on the Mac Pro. 
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Figure 5.22 The speedups of the total simulation and simulation cycles in Case U1C 

on the Mac Pro. 

 

 

 

 

Figure 5.23 The speedups of setting up equations and matrix solving in Case U1C on 

the Mac Pro. 
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5.2.3. Description of the Three-Dimensional Cartesian Problem in Case T1 

5.2.3.1. System Description and Geometry 

The 3D domain in the T1 study comprises the 3 major units (OB, the hydrate 

accumulation, and UB) shown in the geologic model of Figure 5.24, which also shows 

the unit thicknesses and provides a detailed description of the layering within the hydrate 

accumulation. Thus, the hydrate accumulation is composed of 25 layers of hydrate-bearing 

sandy sediments, 14 hydrate-free interlayers of soft oceanic muds, and 10 hydrate-free 

(sandy) aquifer layers. The overall dimensions of this study were 425 m in the x-direction, 

200 m in the y-direction, and 600 m in the z-direction. The same nomenclature and name 

convention discussed in earlier sections apply here. 

 

Figure 5.24 The geological model with layered geometries of Case T1. 
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Moridis et al. (2019) first investigated the gas production potential of this hydrate 

accumulation during (a) a long-term production test involving a single vertical well in a 

cylindrical 2D domain and (b) a long-term full production (basin-wide) system involving 

a large number of vertical wells. Case T1 differs from the earlier Moridis et al. (2019) 

study in that 

(a) it investigates the gas production potential of this hydrate deposit using a vertical two-

well system, of which one is used for fluid production and the second for warm water 

injection, in an effort to augment the depressurization-induced dissociation at the 

production well by thermal dissociation at the injection well, further enhanced by the 

presence of salt (a known inhibitor) in the injected water, and  

(b) the two-well configuration in Case T1 necessitates the use of a 3D Cartesian system 

that describes half the domain involved in the production study because of symmetry 

about the vertical plane passing by the center axes of the two vertical wells. 

 

5.2.3.2. Well Description 

The two vertical wells were perforated from the top to the bottom of the reservoir: 

(a) the first well (production well) produced reservoir fluids at a constant bottomhole 

pressure Pbh = 3 MPa located at (x, y) = (200 m, 0.025 m), and (b) the second well 

(injection well) injected 60 °C pure H2O at a constant mass flow rate Qw,inj = 1.93 kg∙s-1 

and NaCl (the inhibitor) at a constant mass flow rate Qi,inj = 0.07 kg∙s-1 located at (x, y) = 

(225 m, 0.025 m), with the combination of the two injectates representing ocean water 

with a typical salinity of 3.5%. 
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5.2.3.3. Domain Discretization 

The 3D domain in this study was finely discretized into 224 subdivisions in the x-

direction, 70 subdivisions in the y-direction, and 231 subdivisions in the z-direction, 

leading to a total of 3,622,080 elements. Figure 5.25 shows the discretized domain and 

the higher resolutions at the locations of expected intense/active processes: the two wells 

and the hydrate-accumulations. The lengths of subdivisions in all directions in the vicinity 

of the two wellbores were very small: (a) 0.1 ≤ x ≤ 0.25 m, (b) 0.1 ≤ y ≤ 0.25 m, and 

(c) 0.15 ≤  z ≤  0.45 m. This discretization, and the assumption of equilibrium 

dissociation in the presence of salt, resulted in about 14,480,000 simultaneous equations. 

 

 

Figure 5.25 Mesh used in the problem of Case T1. 
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5.2.3.4. System Properties 

Table 5.4 summarizes the hydraulic and thermal properties in Case T1. Table 5.5 

presents the parameters used for the simplified geomechanical model. 

 

Table 5.4 Properties of the hydrate deposit in Case T1. 
 

Initial pressure at top boundary (𝑷𝑻) 25.45 MPa 

Pressure distribution Hydrostatic 

Initial temperature at top boundary (𝑻𝑻) 3.46 °C 

Initial temperature at bottom boundary 

(𝑻𝑩) 
38.42 °C 

Gas composition 100% CH4 

Initial saturations of HBLs SH = 0.75 

Intrinsic permeabilities of HBLs kh = 1.0 × 10-11 m2; kz = kh 

Porosity 𝝓 of HBLs 0.45 

Intrinsic permeabilities of MLs kh = 1.0 × 10-17 m2; kz = kh 

Porosity 𝝓 of MLs 0.45 

Intrinsic permeabilities of ALs kh = 1.0 × 10-11 m2; kz = kh 

Porosity 𝝓 of ALs 0.45 

Intrinsic permeabilities of OB kh = 1.0 × 10-17 m2; kz = kh 

Porosity 𝝓 of OB 0.44 

Intrinsic permeabilities of UB kh = 1.0 × 10-17 m2; kz = kh 

Porosity 𝝓 of UB 0.45 

Dry thermal conductivity (all layers) kθd = 0.3 W∙m-1∙K-1 
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Table 5.4 Continued.  
 

Wet thermal conductivity (all layers) kθw = 1.76 W∙m-1∙K-1 

Specific heat CR (all layers) 1000 J kg-1∙K-1 

Grain density 𝛒R 2700 – 2750 kg∙m-3 

Composite thermal conductivity model 
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SirA, SirG, n, nG of HBLs 0.10; 0.01; 3.855; 3.855 

SirA, SirG, n, nG of MLs 0.90; 0.03; 3.500; 2.500 

SirA, SirG, n, nG of ALs 0.10; 0.03; 3.855; 3.855 

SirA, SirG, n, nG of OB 0.90; 0.05; 3.500; 2.500 

SirA, SirG, n, nG of UB 0.90; 0.05; 5.500; 4.500 

Capillary pressure model 
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λ, P0, SirA, SmxA of HBLs 0.45; 1 × 104 Pa;0.099; 1.000 

λ, P0, SirA, SmxA of MLs 0.45; 1 × 105 Pa;0.899; 1.000 

λ, P0, SirA, SmxA of ALs 0.45; 1 × 105 Pa;0.099; 1.000 

λ, P0, SirA, SmxA of OB 0.45; 5 × 105 Pa;0.899; 1.000 
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Table 5.4 Continued.  
 

λ, P0, SirA, SmxA of UB 0.45; 5 × 105 Pa;0.899; 1.000 

Empirical permeability reduction factor γ  
8.0 (HBLs); 

6.0 (MLs, ALs, OB, UB) 

 

 

 

Table 5.5 Geomechanical parameters using the simplified geomechanical model of 

the hydrate deposit in Case T1. 
 

αPL 5.0 × 10-9 Pa-1 

SSmax 0.40 

αPU 1.0 × 10-8 Pa-1 

SSmin 0.15 

δ 0.015 

 

 

5.2.4. Case T1: Results and Discussion 

The parallel performance in the solution of Case T1 was tested in simulations 

limited to 50 timesteps that all covered the same production period. The associated ttot and 

tsim (which include tequ and tsol, see Eqs. [5.1] and [5.2]) were recorded, and the related 

speedups were computed and compared. The size of the problem in Case T1 was too large 

to be solved in a serial simulation, so the serial elapsed time could not be recorded and 

had to be estimated by other means: it was based on results from simulation conducted 

with the smallest possible number of processors, namely 16 on the Ada Linux cluster and 

2 on the Mac Pro. Thus, the serial elapsed times were estimated as 16tp,16 on the Ada Linux 

cluster and 2tp,2 on the Mac Pro, where tp,j were the recorded times of parallel execution 



 

117 

 

with Np = j. Tests with the two different METIS partitioning options were simulated on 

the Ada Linux cluster, and the shortest tp,16 of the two (corresponding to Case T1C) was 

used to approximate the serial elapsed times.  

 

5.2.4.1. Ada Linux Cluster 

Cases T1C and T1V were tested on the Ada Linux cluster using Np = 16, 32, 64, 

128, 256, and 512. When Np = 128, the ttot and tsim times corresponding to Case T1V in 

Figure 5.26 are obviously smaller than those in Case T1C because its major two 

constituents (i.e., tequ and tsol, see Eqs. [5.1] and [5.2]) that are shown in Figure 5.27 are 

accordingly smaller. When Np = 512, tsol in Case T1C is almost half of that in Case T1V. 

These results, and those from the variants in Case U1, indicate that the MEC option in the 

METIS domain decomposition process appears to be the best option in most cases. As can 

be seen in Figure 5.28, (a) the maximum total speedups in Cases T1C and T1V are 341.67 

and 229.93, respectively, and (b) the maximum speedups of simulation cycles in Case T1C 

and T1V are 601.96 and 347.39, respectively. In Figure 5.29, the maximum speedup of 

setting up equations in Cases T1C and T1V are 538.37 and 468.43, respectively, and the 

maximum speedups of matrix solving in Cases T1C and T1V are 632.72 and 315.34, 

respectively. 
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Figure 5.26 The elapsed times of the total simulation and simulation cycles in Cases 

T1C and T1V on the Ada Linux cluster. 

 

 

 

 

Figure 5.27 The elapsed times of setting up equations and matrix solving in Cases 

T1C and T1V on the Ada Linux cluster. 
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Figure 5.28 The speedups of the total simulation and simulation cycles in Cases T1C 

and T1V on the Ada Linux cluster. 

 

 

 

 

Figure 5.29 The speedups of setting up equations and matrix solving in Cases T1C 

and T1V on the Ada Linux cluster.  
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5.2.4.2. Mac Pro 

Only Case T1C was tested on the Mac Pro using Np = 2, 4, 6, 8, 10, and 12. Figure 

5.30 shows that there is a distinctly downward trend of the ttot and tsim times with an 

increasing Np, but there is an anomaly for Np = 8 that is attributed to the particularities of 

the memory and communication handling in the shared memory system of the Mac Pro. 

In Figure 5.31, tsol exhibits optimal performance (indicated by its lowest value) for Np = 

6, which is consistent with the observations in Case U1 (see Figure 5.21). This means that 

the best overall parallel performance that is observed for Np = 12 (see Figure 5.30), i.e., 

past that for the dominant tsol that peaks at Np = 6, is made possible because of the 

continuing improvement in tequ, which continues to decline monotonically with an 

increasing Np because it is more amenable to parallelization. Accordingly, the speedups 

of the total simulation and simulation cycles in Figure 5.32 increase with an increasing 

Np, but (a) there is still a performance anomaly for Np = 8 (associated with the worst 

parallel performance observed in Figure 5.30), and (b) the improvement in performance 

with an increasing Np is much more modest for Np > 8. The maximum total speedup 

observed for Np = 12 is 4.21. Figure 5.33 shows that the speedup of the equation set-up 

operations improves steadily with an increasing Np. 
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Figure 5.30 The elapsed times of the total simulation and simulation cycles in Case 

T1V on the Mac Pro. 

 

 

 

 

Figure 5.31 The elapsed times of setting up equations and matrix solving in Case T1V 

on the Mac Pro. 
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Figure 5.32 The speedups of the total simulation and simulation cycles in Case T1V 

on the Mac Pro. 

 

 

 

 

Figure 5.33 The speedups of setting up equations and matrix solving in Case T1V on 

the Mac Pro. 
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5.2.5. Summary 

The parallel performance tests of the pT+H V1.5 simulator indicate that maximum 

total speedups on the Ada Linux cluster are obtained for Np = 512. The maximum speedup 

of 174.24 in the 2D Case U1 is recorded when the METIS option of MCV is invoked; the 

maximum speedup of 341.67 in the 3D Case T1 is recorded when the METIS option of 

MEC is invoked and indicates a much improved parallel performance than in the 2D Case 

U1. On the Mac Pro, the maximum total speedups are (a) 4.44 in Case U1 with Np = 8 and 

(b) 4.21 in Case T1 with Np = 12, respectively. On current evidence, the partitioning option 

of choice appears to be MEC, which always results in reliably consistent parallel 

performance even when it does not lead to optimal (fastest) execution. There appears to 

be no a-priori information on what can lead to the anomalous parallel behavior on the Mac 

Pro for a certain Np, and, consequently, no way (other than trial and error) to effectively 

prevent the deterioration of the parallel performance by selecting the appropriate Np. 

However, it is generally safe to assume that (a) a consistent improvement in the parallel 

performance is expected on a Mac Pro for an increasing Np   6 and (b) the parallel 

performance is generally inconsistent for Np  > 6. 

 

5.3. Parallel Performance of the Coupled pT+H V1.5 and RGM Simulator 

The parallel performance of the coupled pT+H V1.5 and RGMS codes was 

evaluated by Cases U1G and T1G, which differ from Cases U1 and T1 in that their 

consideration of the full geomechanical model implemented in RGMS. 
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5.3.1. Description of the Two-Dimensional Cylindrical Problem in Case U1G 

5.3.1.1. Flow-Related Description and Parameters 

The description and parameters of the flow-related aspects of the problem are 

stated in Section 5.2.1.  

 

5.3.1.2. Geomechanics-Related Description and Properties 

This initialization method to obtain the initial total stress field and boundary 

conditions in this problem were the same with those described in Section 4.5.1.2. The 

geomechanical properties of the various geologic layers are summarized in Table 5.6. 

Solution of this 2D cylindrical problem required solving (a) about 480,000 geomechanics 

equations, in addition to (b) 960,000 FT simultaneous equations, for a total of about 

1,440,000 equations.  

 

5.3.2. Case U1G: Results and Discussion 

For consistent comparisons, the coupled simulations were run for a total of 100 

time steps on both the Ada Linux cluster and Mac Pro, covering the same production 

period in all the investigated cases. The standard nomenclature and naming conventions 

discussed earlier are applies here.  

 

Table 5.6 Geomechanical properties of the hydrate deposit in Case U1G. 
 

Young’s modulus of HBLs 
E = 40 MPa at SH = 0; 

E = 1.4 GPa at SH = 1 

Young’s modulus of MLs E = 18 MPa 
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Table 5.6 Continued. 
 

Young’s modulus of OB E = 14 MPa 

Young’s modulus of UB E = 20 MPa 

Poisson’s ratio of HBLs ν = 0.25 

Poisson’s ratio of MLs ν = 0.35 

Poisson’s ratio of OB ν = 0.35 

Poisson’s ratio of UB ν = 0.35 

Biot’s coefficient α = 0.99 

 

 

5.3.2.1. Ada Linux Cluster 

Cases U1GC and U1GV were tested on the Ada Linux cluster using Np = 1, 2, 4, 

8, 16, 32, 64, 128, 256, and 512. 

Figures 5.34, 5.35, 5.36, and 5.37 show the elapsed times ttot, tsim, tequ, and tsol in 

Cases U1GC and U1GV. In Figure 5.34, the ttot of the coupled simulation decreases 

monotonically with an increasing Np in Case U1GV, and the same behavior is observed in 

Case U1GC except for Np = 512. Increasing Np from 128 to 512 does not lead to a decrease 

of the RGMS-associated ttot in Case U1GC (actually, quite the opposite: ttot increases for 

Np > 128); conversely, the RGMS-associated ttot in Case U1GV continues to decrease 

consistently for an increasing Np, and this holds true for the entire range of Np values 

investigated in this study. This being the case, the communication-volume minimizing 

option of METIS appears to be the better domain decomposition choice for more 

predictable, consistent, and scalable parallel performance of the coupled codes. 
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The tsim results in Figure 5.35 are consistent with the observations in Figure 5.34 

for reasons already discussed. The tequ results in Cases U1GC and U1GV in Figure 5.36 

show that (a) the parallel performance of the equation set-up operation is practically 

insensitive to the METIS partitioning option, (b) tequ decreases consistently and 

monotonically with an increasing Np for reasons already discussed, and (c) the tequ 

associated with RGMS component of the coupled code is much lower than that related to 

the pT+H component (as expected, given the smaller number of the geomechanical 

equations). On the other hand, the computationally-intensive matrix solving operations 

(which constitute a major fraction of the overall operations) result in the tsol behavior 

shown in Figure 5.37, and its pattern is replicated in the ttot and tsim behavior in Figures 

5.34 and 5.35 that tsol constitutes a large (if not dominant) part of them (See Eqs. [5.1] and 

[5.2]).  

Figures 5.38, 5.39, 5.40, and 5.41 compare the speedups stot, ssim, sequ, and ssol in 

Cases U1GC and U1GV. Figure 5.38 provides the most direct evidence of the importance 

of the METIS partitioning option on the parallel performance, which is shown to have a 

very significant impact on the performance of the RGMS component of the coupled 

simulation. The parallel performance in Case U1GC appears to be better than that in Case 

U1GC for Np  128 in all the components of the coupled simulation, i.e., the pT+H V1.5 

simulation, the RGMS computations, and their coupling. However, the stot (and its 

constituents) associated with Case U1GC deteriorates rapidly for Np > 128, and its decline 

is largely (if not exclusively) associated with an unsatisfactory parallel performance of 

RGMS when the option of MEC is invoked. Thus, MCV invoked in Case U1GV leads to 
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better parallel performance for Np > 128; when Np = 512, the maximum stot levels are 

attained in Case U1GV, and are 134.97, 142.60, and 109.07 for the coupled simulation, 

the pT+H operations, and the RGMS computations, respectively. As shown in Figure 

5.39, the maximum ssim of the coupled simulation, pT+H, and RGMS are 182.01, 193.01, 

and 145.20, respectively, and they are observed in Case U1GV when Np = 512. These 

speedups can be even higher if the times expended on reading input files and printing 

results are excluded from the total. As has already been observed in all previous cases, the 

sequ in Figure 5.40 is nearly proportional to Np because these computations are particularly 

well-suited to parallelization. This is clearly demonstrated not only by the consistent and 

monotonic increase in the sequ components that is evident in Figure 5.40, but also by the 

coincidence of the sequ for the RGMS and pT+H computations, and by the sequ magnitudes: 

for Np = 512 processors, the sequ in best-performing Case U1GV are 529.49, 544.01, and 

434.36 in the couped simulation, the pT+H simulation, and the RGMS computations, 

respectively. Unfortunately, the equation set-up does not constitute a significant 

component of the overall computational load (and consequently does not significantly 

influence stot), the latter being dominated by matrix solving operations. The results in 

Figure 5.37 lead to the ssol shown in Figure 5.41, in which the difference between the 

performance of Cases U1GC and U1GV is considerable and mirrors the patterns of the stot 

and ssim, being the dominant contributor to both of them. The ssol in Case U1GC appears 

superior to those in Case U1GV for Np  128, but deteriorates rapidly when Np > 128 and 

leads to the behavior shown in Figures 5.38 and 5.39 because matrix solving is probably 

the most computationally intensive part of all components of the coupled simulation. The 
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ssol in Case U1GV are consistently higher when Np > 128, and for Np = 512, they reach 

their highest levels at 142.68, 147.66, and 127.00 in the coupled simulation, the pT+H 

computations, and the RGMS calculations, respectively.  

 

 

Figure 5.34 The total elapsed times in Cases U1GC and U1GV on the Ada Linux 

cluster. 
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Figure 5.35 The elapsed times of simulation cycles in Cases U1GC and U1GV on the 

Ada Linux cluster. 

 

 

 

 

Figure 5.36 The elapsed times of setting up equations in Cases U1GC and U1GV on 

the Ada Linux cluster. 
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Figure 5.37 The elapsed times of matrix solving in Cases U1GC and U1GV on the 

Ada Linux cluster. 

 

 

 

 

Figure 5.38 The total speedups in Cases U1GC and U1GV on the Ada Linux cluster. 
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Figure 5.39 The speedups of simulation cycles in Cases U1GC and U1GV on the Ada 

Linux cluster. 

 

 

 

 

Figure 5.40 The speedups of setting up equations in Cases U1GC and U1GV on the 

Ada Linux cluster. 
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Figure 5.41 The speedups of matrix solving in Cases U1GC and U1GV on the Ada 

Linux cluster. 

 

 

5.3.2.2. Mac Pro 

For reasons discussed earlier, only Case U1GC was tested on the Mac Pro using 

Np = 1, 2, 4, 6, 8, 10, and 12.  

Figures 5.42, 5.43, 5.44, and 5.45 present the elapsed times ttot, tsim, teq, and tsol in 

Case U1GC. Figure 5.42 shows a complicated ttot pattern but with a general declining 

trend, interrupted by strongly anomalous behavior for Np = 4 and less so for Np = 10. The 

reason for this behavior is unknown, and is ascribed to the peculiarities of the memory 

management and processor communication in the architecture of the Mac Pro processors. 

The RGMS parallel computations appear to be the reason for the deterioration in 

performance when Np = 4. The parallel performance of the pT+H V1.5 code appears to 
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initially improve with an increasing Np, but seems insensitive to Np and stagnates for Np > 

4. Thus, the worst parallel performance of the coupled simulation occurs for Np = 4, for 

which ttot is almost the same as that for Np = 1; the best ttot performance occurs when Np = 

12. Unfortunately, there appears to be no way to determine the Np that can cause such 

problematic parallel performance of the coupled code on a Mac Pro prior to the initiation 

of a simulation; testing the simulator performance for a limited number of timesteps in 

initial scoping/exploratory simulations appears to be the only possible strategy to identify 

both problematic and optimal Np values. The tsim pattern and magnitude in Figure 5.43 are 

almost identical to those of ttot in Figure 5.42, as was expected because tsim represents the 

overwhelmingly dominant part of ttot. Because of the scalability and ease of parallelization 

of the equation set-up process, tequ in Figure 5.44 decreases continuously with an 

increasing Np, following the same tequ pattern identified in all previous cases. Additionally, 

the tequ associated with the RGMS parallel computations is much lower than that for the 

pT+H calculations because of the fewer geomechanical equations. For reasons already 

explained (and related to its oversized presence in ttot and tsim), the tsol pattern and its 

relationship to Np in Figure 5.45 are practically the same as those of ttot and tsim observed 

in Figures 5.42 and 5.43.  

Figures 5.46, 5.47, 5.48, and 5.49 present the speedups stot, ssim, sequ and ssol, 

respectively, in Case U1GC. The stot, ssim, and ssol relationships to Np in Figure 5.46 and 

the practically identical Figures 5.47 and 5.48 (for reasons already discussed) are direct 

consequences of the ttot, tsim, and tsol behavior (from which they are derived) in Figures 

5.42, 5.43, and 5.45. Thus, stot, ssim, and ssol generally increase with Np, but (a) they all 
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exhibit the same very anomalous parallel behavior associated with the RGMS component 

of the coupled code for Np = 4 and the less pronounced one for Np = 10, and (b) their 

parallel performance associated with the pT+H component is characterized by stagnation 

and shows no improvement for Np > 4, and (c) the highest stot, ssim, and ssol generally are 

attained for Np = 12. Thus, for Np = 12, the overall stot values of the coupled simulation, 

pT+H, and RGMS are 4.10, 3.88, and 5.03, respectively; the corresponding ssim values are 

very similar, which are 4.14, 3.93, and 5.04, as are the associated ssol values. Because of 

the scalability of the equation set-up operations (already discussed), the sequ of the coupled 

simulation, RGMS, and pT+H in Figure 5.48 increase continuously with an increasing 

Np, they practically coincide for Np  4; the parallel RGMS computations exhibit a higher 

sequ for Np > 4. Although the sequ values here are higher than the stot, ssim, and ssol ones, they 

do not affect them significantly because equation set-up is not a computationally intensive 

component of the coupled computations.  
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Figure 5.42 The total elapsed times in Case U1GC on the Mac Pro. 

 

 

 

 

Figure 5.43 The elapsed times of simulation cycles in Case U1GC on the Mac Pro. 
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Figure 5.44 The elapsed times of setting up equations in Case U1GC on the Mac Pro. 

 

 

 

 

Figure 5.45 The elapsed times of matrix solving in Case U1GC on the Mac Pro. 

 



 

137 

 

 

Figure 5.46 The total speedups in Case U1GC on the Mac Pro. 

 

 

 

 

Figure 5.47 The speedups of simulation cycles in Case U1GC on the Mac Pro. 
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Figure 5.48 The speedups of setting up equations in Case U1GC on the Mac Pro. 

 

 

 

 

Figure 5.49 The speedups of matrix solving in Case U1GC on the Mac Pro. 
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5.3.3. Description of the Three-Dimensional Cartesian Problem in Case T1G 

5.3.3.1. Flow-Related Description and Parameters 

The flow-related problem description and parameters are discussed in Section 

5.2.3.  

 

5.3.3.2. Geomechanics-Related Description and Properties 

All the boundaries except the top boundary are supported by rollers, thus 

preventing displacements at these locations. The initialization method used to determine 

the initial total stress field is as described in Section 4.5.1.2. Table 5.7 presents the 

geomechanical properties used in this study, taken from Reagan et al. (2019). In the 

geomechanics simulation, displacements are obtained in three directions (= the number of 

coordinates) at each node, resulting in about 11,120,000 equations covering the entire 

domain. Adding the 14,480,000 equations in the FT simulation, the coupled simulator has 

to solve a total of about 25,600,000 equations. 

 

 

Table 5.7 Geomechanical properties of the hydrate deposit in Case T1G. 
 

Young’s modulus in HBLs 
E = 500 MPa at SH = 0; 

E = 1990 MPa at SH = 1 

Young’s modulus in OB, UB, MLs, ALs E = 1096 MPa 

Poisson’s ratio in HBLs  ν = 0.4 

Poisson’s ratio in OB, UB, MLs, ALs  ν = 0.3 

Biot’s coefficient α = 0.99 
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5.3.4. Case T1G: Results and Discussion 

These 3D simulations were run for (a) 50 timesteps on the Ada Linux cluster and 

(b) 25 timesteps on the Mac Pro. Because it was not possible to solve this problem using 

the serial version of the simulators and record the elapsed time, the latter was estimated 

by following the approach described in Section 5.2.4 that was based on the timing 

information obtained from runs involving the minimum number of processors used for the 

solution of this problem: namely, 32 processors on the Ada Linux cluster, and 2 processors 

on the Mac Pro. The nomenclature and naming conventions introduced earlier apply also 

to this case. 

 

5.3.4.1. Ada Linux Cluster 

Cases T1GC and T1GV were simulated for a total of 50 time steps (covering the 

same production period) on the Ada Linux cluster using Np = 32, 64, 128, 256, 512. 

Figures 5.50, 5.51, 5.52, and 5.53 show the elapsed times ttot, tsim, tequ, and tsol in 

Cases T1GC and T1GV.  

In Figure 5.50, the ttot of the coupled simulation decreases monotonically with an 

increasing Np in Case T1GV; the ttot behavior in Case T1GC is far less consistent, 

exhibiting anomalous behavior for Np = 128 (when its performance is worse than that for 

Np = 32) and for Np = 512 processors. This is caused by deterioration in the RGMS-

associated ttot performance in Case T1GC at these Np levels for reasons that are not 

obvious. Conversely, the RGMS-associated ttot in Case T1GV continues to decrease 

consistently for an increasing Np, and this holds true for the entire range of Np values 
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investigated in this study. Based on these results, the obvious conclusion is that the MCV 

option of METIS is the desirable choice for domain decomposition because it delivers a 

more consistent, predictable, and scalable parallel performance of the coupled simulators. 

The tsim and tsol results in Figures 5.51 and 5.53 follow the same patterns and have 

similar values because of the reasons discussed in detail previously (e.g., see Section 

5.3.2.1). As in Cases U1GC and U1GV, the tequ results in Cases T1GC and T1GV in 

Figure 5.52 show that (a) the parallel performance of the equation set-up operation is 

practically insensitive to the METIS partitioning option in the RGMS computations and 

slightly so in the pT+H computations, (b) tequ decreases consistently and monotonically 

with an increasing Np for reasons already discussed, (c) the tequ associated with RGMS 

component of the coupled code is not very different from that related to the pT+H 

component (not unexpected, given the similarity of the numbers of the FT and 

geomechanical equations), and (d) the tequ for the coupled simulations are similar in both 

METIS partitioning option.  

Figures 5.54, 5.55, 5.56, and 5.57 compare the speedups stot, ssim, sequ, and ssol in 

Cases T1GC and T1GV, respectively. Figure 5.54 provides the most direct evidence of 

the importance of the METIS partitioning option on the parallel performance, which is 

shown to have a very significant impact on the performance of the RGMS component of 

the coupled simulation (even more so than in Cases U1GC and U1GV). Given the 

unpredictability of the MEC option of the METIS-based domain decomposition in Case 

T1GC, the MCV option invoked in Case T1GV leads to consistently better, more 

predictable, and more scalable parallel performance for any Np level; when Np = 512, the 
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maximum stot level attained in Case T1GV is 331.80 for the coupled simulation, 

significantly larger than the 208.26 attained in the best performance of Case T1GC for Np 

= 256. The corresponding ssim numbers in Figure 5.55 are 235.14 in Case T1GC with Np 

= 256 and 422.40 in Case T1GV with Np = 512, and these numbers are expected to tend 

toward the stot ones as the number of time steps increases. 

As has already been observed in all previous cases, the sequ in Figure 5.56 is nearly 

proportional to Np because these computations are particularly well-suited to 

parallelization. This is clearly demonstrated not only by the consistent and monotonic 

increase in the sequ components that is evident in Figure 5.56, but also by the proximity of 

the sequ for the RGMS and pT+H computations, and by the sequ magnitudes. Unfortunately, 

the equation set-up does not constitute a significant component of the overall 

computational load—the latter being dominated by matrix solving operations—and cannot 

materially affect the stot in Case T1GC. The results in Figure 5.53 lead to the ssol shown 

in Figure 5.57, in which the difference between the performance of Cases T1GC and 

T1GV is considerable and follows closely the patterns of stot and ssim in Figures 5.54 and 

5.55, being the dominant contributor to both of them. The ssol in Case T1GV is consistently 

higher than that in Case T1GV, confirming the superiority of the MCV option of METIS 

as the most desirable domain decomposition method for optimal (reliable, predictable, 

consistent, and scalable) parallel performance of the coupled RGMS and pT+H V1.5 codes.  
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Figure 5.50 The total elapsed times in Cases T1GC and T1GV on the Ada Linux 

cluster. 

 

 

 

 

Figure 5.51 The elapsed times of simulation cycles in Cases T1GC and T1GV on the 

Ada Linux cluster. 
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Figure 5.52 The elapsed times of setting up equations in Cases T1GC and T1GV on 

the Ada Linux cluster. 

 

 

 

 

Figure 5.53 The elapsed times of matrix solving in Cases T1GC and T1GV on the 

Ada Linux cluster. 
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Figure 5.54 The total speedups in Cases T1GC and T1GV on the Ada Linux cluster. 

 

 

 

 

Figure 5.55 The speedups of simulation cycles in Cases T1GC and T1GV on the Ada 

Linux cluster. 
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Figure 5.56 The speedups of setting up equations in Cases T1GC and T1GV on the 

Ada Linux cluster. 

 

 

 

 

Figure 5.57 The speedups of matrix solving in Cases T1GC and T1GV on the Ada 

Linux cluster.  
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5.3.4.2. Mac Pro 

Case T1GC was tested on Mac Pro with 2, 4, 6, 8, 10, 12 processors. 

Figures 5.58, 5.59, 5.60, and 5.61 present the elapsed times ttot, tsim, tequ, and tsol, 

respectively, in Case T1GC. Figure 5.58 shows a complicated ttot pattern but with a 

declining trend for Np   6, but an unpredictable and deteriorating parallel performance for 

Np > 6 that is worse than that for Np = 2. The unsatisfactory performance for Np > 6 applies 

to both the RGMS and the pT+H computations. As in Case U1GC on the Mac Pro, the 

reason for this behavior is unknown, and is attributed to the memory management and 

processor communication in the architecture of the Mac Pro processors. Thus, the best 

parallel performance of the coupled simulation occurs when Np = 6. Because of the 

inability to determine a-priori the Np that can cause an unsatisfactory parallel performance 

of the coupled code on a Mac Pro, testing the simulator performance for a limited number 

of timesteps in initial scoping/exploratory simulations in order to determine optimal Np 

values is highly recommended. The tsim pattern and magnitude in Figure 5.59 are almost 

identical to those of ttot in Figure 5.58, as was expected because tsim represents the 

overwhelmingly dominant part of ttot.  

This is the first case in which the general scalability and ease of parallelization of 

the equation set-up process fail to yield a tequ in Figure 5.60 that decreases continuously 

with an increasing Np for the entire range of processors available in the Mac Pro: tequ 

exhibit anomalous behavior when Np = 8 and 12 in the pT+H calculations. Because the 

matrix solving portion requires the most computational effort, the tsol pattern and its 
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relationship to Np in Figure 5.61 are practically the same as those of ttot and tsim observed 

in Figures 5.58 and 5.59.  

Figures 5.62, 5.63, 5.64, and 5.65 present the speedups stot, ssim, sequ, and ssol, 

respectively, in Case T1GC. Figures 5.62 and 5.63 show that the maximum attainable stot 

and ssim is 3.93 and occurs when Np = 6. Comparing the sequ components in Figure 5.64 

leads to the conclusion that the RGMS and the pT+H contributions are about the same 

until Np = 6, beyond which no pattern is evident. In Figure 5.65, ssol follows the same 

pattern as, and very similar values to, those of stot and ssim in Figures 5.62 and 5.63 for 

previously explained reasons. 

 

 

Figure 5.58 The total elapsed times in Case T1GC on the Mac Pro. 
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Figure 5.59 The elapsed times of simulation cycles in Case T1GC on the Mac Pro. 

 

 

 

 

Figure 5.60 The elapsed times of setting up equations in Case T1GC on the Mac Pro. 
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Figure 5.61 The elapsed times of matrix solving in Case T1GC on the Mac Pro. 

 

 

 

 

Figure 5.62 The total speedups in Case T1GC on the Mac Pro. 
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Figure 5.63 The speedups of simulation cycles in Case T1GC on the Mac Pro. 

 

 

 

 

Figure 5.64 The speedups of setting up equations in Case T1GC on the Mac Pro. 
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Figure 5.65 The speedups of matrix solving in Case T1GC on the Mac Pro. 

 

 

 

5.3.5. Summary 

For the coupled pT+H V1.5 and RGM simulations, the execution time associated 

with the pT+H computations is longer than that related to the RGMS calculations in Case 

U1G, but this is reversed in Case T1G. On the Ada Linux cluster, the maximum overall 

speedups in Cases U1G and T1G are 134.97 and 331.80, respectively, when Np = 512 and 

the METIS partitions the domain based on the option of MCV. On the Mac Pro, the 

maximum overall speedups in Cases U1G and T1G are 4.10 when Np = 12 and 3.93 when 

Np = 6, respectively. Based on the results of the parallel performance study, to achieve the 

maximum total speedup, the METIS-based domain partitioning needs to be based on the 

MCV option, and optimal results are obtained for Np = 256 and 512 in Case U1G, and 128 

and 512 in Case T1G.  
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6. CASE STUDIES OF TWO- AND THREE-DIMENSIONAL PROBLEMS 

 

These realistic problems (involving 2D cylindrical and 3D Cartesian domains) are 

simulated by two methods: (a) using only the pT+H V1.5 simulator with its simplified 

geomechanical model of hydrate-dependent pore compressibility (Moridis 2014), and (b) 

the coupled pT+H V1.5 and RGM simulator that involves a full geomechanical model. 

 

6.1. The Two-Dimensional Cylindrical Cases U1 and U1G 

These two cases are mainly used to analyze the impact of considering a full 

geomechanical model in the solution of these 2D cylindrical problems when soft hydrate-

free mud interlayers are interlaced with hydrate-bearing sandy media within the hydrate 

deposit. 

 

6.1.1. Problem Description 

Complete problem descriptions of Cases U1 and U1G are provided in Sections 

5.2.1 and 5.3.1, respectively. 

 

6.1.2. Results 

In the analysis of the system behavior, the following flow-related conditions and 

parameters were monitored: the spatial distributions of pressure (P), temperature (T), gas 

saturation (SG), and hydrate saturation (SH); the mass rates of the gaseous and aqueous 

phases production (QG and QA, respectively); the cumulative masses of the produced 
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gaseous and aqueous phases (MG and MA, respectively); the volumetric rates of CH4 

released from dissociation, the CH4 production in the gaseous phase, the CH4 production 

in the aqueous phase, and total CH4 production in both the gaseous and aqueous phases 

(QR, QgG, QgA, and QgT, respectively); the cumulative volumes of CH4 released from 

dissociation, produced at the well in the gaseous phase, produced at the well in the aqueous 

phase, produced at the well in both the gaseous and aqueous phases, and remaining in the 

deposit as free gas (VR, VgG, VgA, VgT, and VF, respectively); the water mass production rate 

at the well (QW) and cumulative mass of produced water (MW); the instantaneous and 

cumulative water-to-gas ratio (RWG = QW/QgT and RWGT = MW/VgT, respectively); the mass 

fraction XsA of salt in the produced aqueous phase; and the water flows across key 

boundaries and interfaces. The following geomechanics-related conditions and para-

meters were also monitored: the spatial distributions of displacements (u), of the 

maximum principal effective stress (𝜎1
′), of the volumetric strain (εv); and the vertical 

displacements at key locations. Note that compressive stress and strain are positive in the 

following results. 

 

6.1.2.1. Gas Production and Water Production in Cases U1 and U1G 

Figure 6.1 shows the evolution of QG and QA from the single vertical well at the 

center of the cylindrical reservoir in Cases U1 and U1G. Both QG and QA in Case U1 

increase monotonically, but those in Case U1G fluctuate at the beginning of production 

and stabilize later. Because the reservoir is under compression, QG and QA in Case U1G 
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are lower than those in Case U1, leading to the correspondingly lower MG and MA shown 

in Figure 6.2.  

Figure 6.3 shows the evolution of QR, QgG, QgA, and QgT in Cases U1 and U1G. 

Critical conclusions from this figure are that: (a) all the rates listed above increase 

monotonically in Case U1 and are larger than those in Case U1G; (b) QgG is the main 

contributor to QgT in both Cases U1 and U1G; and (c) QgT is higher than QR in Cases U1 

and U1G, indicating a significant contribution of exsolution-originating gas to the gas 

production, in addition to hydrate dissociation. The cumulative volumes VR, VgG, VgA, VgT, 

and VF over the testing period that are shown in Figure 6.4 are consistent with the results 

shown in Figure 6.3. The relatively low VF in Cases U1 and U1G indicates a limited 

volume of gas accumulating in the reservoir.  

Figures 6.5 and 6.6 present the evolution of QW and MW produced from the single 

vertical well in Cases U1 and U1G. Because water is by far the dominant component of 

the aqueous phase, the trends of QW and MW in Figures 6.5 and 6.6 are similar to those of 

QA and MA in Figures 6.1 and 6.2, respectively. 

Figure 6.7 compares the evolution of RWG and RWGT in Cases U1 and U1G. 

Because of continuing (and advancing) depressurization-induced dissociation and the 

associated increasing gas production at the well, RWG and RWGT decrease rapidly at the 

beginning of production. After t = 5 days of production, RWG in Case U1 remains stable, 

but increases in Case U1G, thereby indicating continuous water inflows through the 

boundaries. 
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Figure 6.8 shows the evolution of XsA in the production stream at the well in Cases 

U1 and U1G. A lower XsA is caused by the dilution effect of the fresh water released from 

dissociation; an elevated XsA can be the result of hydrate formation and/or the inflow of 

saline water from the boundary. Consequently, the initial XsA decline in Cases U1 and U1G 

indicates fast hydrate dissociation, and the subsequent (slow) upward trends indicate saline 

water inflows from the boundary (and possibly localized secondary hydrate formation). 

Note that the results in Figure 6.8 indicate the larger difference between water inflows 

and hydrate dissociation in Case U1G than in Case U1.  

Figures 6.9 and 6.10 show the evolution of water inflows through key boundaries 

in Cases U1 and U1G, respectively. Water inflows from the ocean floor and from the 

bottom of the domain are zero in Cases U1 and U1G during the time covered by the 

simulation, which means that the size of the domain is sufficiently large enough to prevent 

the pressure disturbance caused by the production at the well from reaching these 

boundaries. Because of the larger amounts of water produced at the well in Case U1, water 

inflows from the boundaries into the reservoir are higher in this case than in Case U1G. 

Water inflows through the top boundary of the hydrate accumulation are always larger 

than the inflow through the bottom in Case U1; this is also observed initially in Case U1G, 

but the relative magnitude of the inflows is reversed after about 19 days of production. 
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Figure 6.1 Evolution of QG and QA in Cases U1 and U1G. 

 

 

 

 

Figure 6.2 Evolution of MG and MA in Cases U1 and U1G. 

 



 

158 

 

 

Figure 6.3 Evolution of QR, QgG, QgA, and QgT in Cases U1 and U1G.  

 

 

 

 

Figure 6.4 Evolution of VR, VgG, VgA, VgT, and VF in Cases U1 and U1G.  
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Figure 6.5 Evolution of QW in Cases U1 and U1G.  

 

 

 

 

Figure 6.6 Evolution of MW in Cases U1 and U1G.  
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Figure 6.7 Evolution of RWG and RWGT in Cases U1 and U1G.  

 

 

 

 

Figure 6.8 Evolution of XsA in Cases U1 and U1G.  
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Figure 6.9 Evolution of water flows across key boundaries and interfaces, compared 

to QW in Case U1.  

 

 

 

 

Figure 6.10 Evolution of water flows across key boundaries and interfaces, compared 

to QW in Case U1G.   
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6.1.2.2. Spatial Distributions of P, T, SH, and SG in Cases U1 and U1G 

The spatial evolution of P, T, SH, and SG in Case U1 (with the simplified 

geomechanical model) are shown in Figures 6.11, 6.12, 6.13, and 6.14, respectively. In 

Figure 6.11, the front of the pressure drop propagates outward from the well along the 

radial direction over time. The largest pressure drop is observed close to the vertical well 

where hydrate dissociation occurs in the HBLs. As can be seen in Figure 6.12, the low-

temperature area indicates hydrate dissociation and is caused by the endothermic nature 

of the hydrate dissociation process. Figure 6.13 shows that SH decreasing near the well, 

with hydrate dissociation concentrating mainly near the upper and boundaries of each 

HBL. What is striking about the H5 layer is that a wormhole grows in the middle section. 

High SG occurrence in Figure 6.14 is observed where SH is low in the HBLs because of 

active dissociation at these locations. The highest SG is observed near the top of the H4 

layer. 

The spatial evolution of P, T, SH, and SG in Case U1G (with the full geomechanical 

model) are shown in Figures 6.15, 6.16, 6.17, and 6.18, respectively. The pressure drop 

front in Case U1G (shown in Figure 6.15) does not advance very far into the formation 

and, compared to the pressure profile in Case U1, it exhibits a heterogeneous/uneven 

vertical distribution within each HBL that is attributed to geomechanically induced 

changes in the porosity and permeability of these layers and the mud interlayers. In the 

MLs, the media are so soft that the decreased porosity causes a lower effective 

permeability and the smaller pressure drop. Figure 6.16 shows a low-temperature area 

(indicative of active hydrate dissociation) that is less extensive in Case U1G than in Case 
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U1. In Figure 6.17, the spatial distribution of SH in Case U1G shows that the hydrate 

dissociates in the lower section of the H1 and H2 layers, and no wormhole growth in the 

H5 layer, which is different from the dissociation pattern in Case U1. The spatial 

distribution of SG shown in Figure 6.18 confirms the observation from Figure 6.17 that 

active hydrate dissociation mainly occurs in the lower section of the H1 and H2 layers in 

the full-geomechanics Case U1G. 
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Figure 6.11 Evolution of the spatial distribution of pressure (Pa) in the reservoir of 

Case U1. 

 



 

165 

 

 

 

Figure 6.12 Evolution of the spatial distribution of temperature (°C) in the reservoir 

of Case U1. 
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Figure 6.13 Evolution of the spatial distribution of hydrate saturation in the reservoir 

of Case U1. 
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Figure 6.14 Evolution of the spatial distribution of gas saturation in the reservoir of 

Case U1. 
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Figure 6.15 Evolution of the spatial distribution of pressure (Pa) in the reservoir of 

Case U1G. 
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Figure 6.16 Evolution of the spatial distribution of temperature (°C) in the reservoir 

of Case U1G. 
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Figure 6.17 Evolution of the spatial distribution of hydrate saturation in the reservoir 

of Case U1G. 
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Figure 6.18 Evolution of the spatial distribution of gas saturation in the reservoir of 

Case U1G. 
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6.1.2.3. Evolution of Displacement in Case U1G 

Figure 6.19 shows the evolution of the vertical displacements uz at the wellbore (r 

= 0 m) and at (a) the top of the reservoir (z = -140 m) and (b) the bottom of the reservoir 

(z = -152.67 m). The largest subsidence occurs at (r, z) = (0 m, -140 m) and reaches 0.78 

m at t = 30 days because of the pore pressure continues to drop in the reservoir, which 

causes compaction of the formation near the wellbore. Because of this reason, the bottom 

of the reservoir at the wellbore is uplifted by 0.78 m at t = 30 days. The displacement 

difference is 1.56 m, which is more than 10% of the reservoir thickness. A higher 

bottomhole location should be considered if such large displacements and reservoir 

compaction near the well are to be avoided. 

 

 

Figure 6.19 Evolution of uz at (r, z) = (0 m, -140 m) and (r, z) = (0 m, -152.67 m) in 

Case U1G. 
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6.1.2.4. Spatial Distributions of u, 𝝈𝟏
′ , and εv in Case U1G 

Figures 6.20, 6.21, and 6.22 present the spatial evolution of u, 𝜎1
′ , and εv, 

respectively, in Case U1G. In Figure 6.20, the contour plot depicts the vertical 

displacements, and the arrows denote the direction of the displacement vector. The 

formation is so soft that the upper and lower bounds of the contour plot differ significantly, 

leading to large displacement changes as early as at t = 10 days. At t = 10 days, the vertical 

displacement at (r, z) = (5 m, -140 m) is -0.11 m and at (r, z) = (5 m, -152.67 m) is 0.01 

m. Along the radial direction, the formation moves toward the wellbore, and a measurable 

deformation can be identified at a radius r = 7 m away from the production wellbore at t 

= 30 days. The maximum principal effective stress in Figure 6.21 becomes substantially 

large in the vicinity of the hydrate dissociation location. The volumetric strain in Figure 

6.22 is significant because of the large deformation depicted in Figure 6.20. The hydrate 

in the HBLs makes these sandy layers much stiffer than the hydrate-free MLs, and is the 

reason for the smaller changes in the volumetric strain of the HBLs compared to those in 

the MLs, as shown in Figure 6.22. 
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Figure 6.20 Evolution of the spatial distribution of displacements (m) in the reservoir 

of Case U1G. 
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Figure 6.21 Evolution of the spatial distribution of maximum principal effective 

stress (Pa) in the reservoir of Case U1G. 
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Figure 6.22 Evolution of the spatial distribution of volumetric strain in the reservoir 

of Case U1G.  
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6.2. The Two-Dimensional Cylindrical Cases U2 and U2G 

These two cases were investigated in order to evaluate the influence of the mesh 

size on the flow and geomechanical results using the simplified and full geomechanical 

models. 

 

6.2.1. Problem Description 

Cases U2 and U2G are the same as Cases U1 and U1G but with a coarser 

discretization involving fewer gridblocks in both the r- and z-directions. The system radius 

rmax was shortened from 600 to 250 m, and the thickness of the underburden was reduced 

from 347.43 to 300 m. Although the corresponding domain was smaller than that of Cases 

U1 and U1G, the domain size was still sufficient to evaluate the geomechanics effect and 

the heat and water exchange with the reservoir during the 30 days of the production test. 

 

6.2.1.1. Domain Discretization 

The 2D domain discretized into 170 × 149 subdivisions in (r, z), resulting in 25,330 

gridblocks. Along the radial direction, the r subdivisions increased in size 

logarithmically from an initial r = 0.05 m at the well to reach rmax = 250 m. The z 

subdivisions varied between 0.09 and 0.26 m within the hydrate accumulation and 

increased to larger values in the OB and the UB. The mesh used in Cases U2 and U2G is 

shown in Figure 6.23. The mesh in the hydrate accumulation near the well is shown in 

Figure 6.24. The FT problem in Case U2 involved about 101,300 equations, and the 

geomechanical problem in Case U2G involved another 51,300 simultaneous equations. 
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Figure 6.23 Mesh used in the problems of Cases U2 and U2G. 

 

 

Figure 6.24 Mesh in the hydrate accumulation near the well in the problems of Cases 

U2 and U2G.  
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6.2.2. Results 

The flow- and geomechanics-related conditions and parameters that were 

monitored in cases U2 and U2G were the same as those discussed in Cases U1 and U1G 

(see Section 6.1.2) and will not be listed here again.  

 

6.2.2.1. Gas Production and Water Production in Cases U1 and U2 

Figure 6.25 shows the evolution of QG and QA from the single vertical well at the 

center of the cylindrical reservoir in Cases U1 and U2. Compared to Case U1, the constant 

bottomhole pressure regime at the well yields lower QG and QA in Case U2, resulting in 

the lower MG and MA shown in Figure 6.26. For obvious reasons (already discussed), a 

lower CH4 and H2O production is expected in Case U2.  

Figure 6.27 shows the evolution of QR, QgG, QgA, and QgT from the single vertical 

well in Cases U1 and U2. As indicated in the discussion of Figures 6.25 and 6.26, the QR, 

QgG, QgA, and QgT in Case U2 are all lower than those in case U1. Furthermore, the relative 

magnitudes of QR and QgT are switched in Case U2 from those in Case U1, indicating that, 

unlike Case U1, the majority of the produced gas originated from hydrate dissociation 

rather than from exsolution of gas dissolved in the water. As expected from the enhanced 

dissociation in this case, the amount of free gas VF is larger in Case U2 (see Figure 6.28). 

It is obvious that the different meshes in Cases U1 and U2 result in pronounced differences 

in production and the overall system response during production.  
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The evolution of QW and MW in Figures 6.29 and 6.30 are nearly identical to the 

evolution of QA in and MA in Figures 6.25 and 6.26, respectively, because H2O is the 

overwhelmingly dominant species in the aqueous phase.  

Figure 6.31 compares the evolution of RWG and RWGT in Cases U1 and U2. Both 

RWG and RWGT are higher in Case U2, indicating that the reduction in gas production is 

larger than that in water production. The higher XsA in Case U2 after the initial drop in 

Figure 6.32, and the subsequent steeper increase, indicate either relatively larger water 

inflows from the boundaries (as confirmed by the results in Figure 6.33) or less active 

hydrate dissociation or both than the corresponding response in Case U1.  

Figure 6.33 shows the evolution of water inflows across key boundaries in Case 

U2. The zero water inflows from the ocean floor and through the base of the domain prove 

that the domain is sufficiently large for the boundaries to behave as infinite-acting. 

  

Figure 6.25 Evolution of QG and QA in Cases U1 and U2. 
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Figure 6.26 Evolution of MG and MA in Cases U1 and U2. 

 

 

 

 

Figure 6.27 Evolution of QR, QgG, QgA, and QgT in Cases U1 and U2.  
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Figure 6.28 Evolution of VR, VgG, VgA, VgT, and VF in Cases U1 and U2.  

 

 

 

 

Figure 6.29 Evolution of QW in Cases U1 and U2.  
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Figure 6.30 Evolution of MW in Cases U1 and U2.  

 

 

 

 

Figure 6.31 Evolution of RWG and RWGT in Cases U1 and U2.  
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Figure 6.32 Evolution of XsA in Cases U1 and U2.  

 

 

 

 

Figure 6.33 Evolution of water flows across key boundaries and interfaces, compared 

to QW in Case U2.  
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6.2.2.2. Spatial Distributions of P, T, SH, and SG in Case U2 

The spatial evolution of P, T, SH, and SG in Case U2 (with the simplified 

geomechanical model) are shown in Figures 6.34, 6.35, 6.36, and 6.37, respectively. 

Figure 6.34 shows that the pressure drop near the wellbore is larger than that in Case U1 

and extends over a smaller distance from the well, thus affecting a smaller reservoir 

volume. In addition, the pressure difference between the M4 and H5 layers is minimal 

compared to that in Case U1. In Figure 6.35, active dissociation causes lower 

temperatures in the HBLs and even affects the M1 layer. The wormhole initiated in the 

H5 layer in Case U1 is missing from the SH distribution in Case U2 that is shown in Figure 

6.36. Unlike the observations in Case U1, gas released from the hydrate dissociation in 

the HBLs in Case U2 is not trapped within these layers but migrates to the MLs, as shown 

in Figure 6.37.   
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Figure 6.34 Evolution of the spatial distribution of pressure (Pa) in the reservoir of 

Case U2. 
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Figure 6.35 Evolution of the spatial distribution of temperature (°C) in the reservoir 

of Case U2. 
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Figure 6.36 Evolution of the spatial distribution of hydrate saturation in the reservoir 

of Case U2. 
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Figure 6.37 Evolution of the spatial distribution of gas saturation in the reservoir of 

Case U2. 
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6.2.2.3. Gas Production and Water Production in Cases U1G and U2G 

Figure 6.38 shows the evolution of QG and QA from the single vertical well at the 

center of the cylindrical reservoir in Cases U1G and U2G. The QG and QA are lower in 

Case U2G, as was the case of the same observations in Cases U1 and U2, and lead to the 

correspondingly lower MG and MA in Case U2G that is shown in Figure 6.39. The coarser 

mesh in Case U2G could be a reason for the fluctuation in the results. Figure 6.40 shows 

the evolution of QR, QgG, QgA, and QgT in Cases U1G and U2G. Under the same production 

conditions, QgT in Case U2G is less than half of QgT in Case U1G during most of the 30 

days of the production test simulated in this study. It appears that the oscillations of QR, 

QgG, and QgT are related to the coarse discretization because discretization is the only 

difference between Cases U1G and U2G. The oscillation of QgT appears to be caused by 

that of QgG because QgA is stable. 

Figure 6.41 shows the evolution of VR, VgG, VgA, VgT, and VF in Cases U1G and 

U2G. With the full geomechanical model, all the results associated with Case U1G are 

larger than those in Case U2G. Thus, VgT in Case U2G is only about 28.6 % of that in Case 

U1G at t = 30 days. 

Figures 6.42 and 6.43 compare the evolution of QW and MW in Cases U1G and 

U2G, which are consistent with those of QA and MA for reasons already explained. Figure 

6.44 compares the evolution of RWG and RWGT in Cases U1G and U2G. RWGT in Case U2G 

is higher than that in Case U1G; the RWG in Case U2G exhibits significantly larger 

fluctuations than that in Case U1G, but they both seem to be about the same (or a 

sufficiently similar) mean. The evolution of XsA in Case U1G in Figure 6.45 does not allow 
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the identification of a clear upward trend like the one observed in Case U1G because of 

significant oscillations. 

Figure 6.46 shows the evolution of water inflows across key boundaries in Case 

U2G. Compared to the inflow estimates in Case U1G that are shown in Figure 6.10, the 

water inflows across the top and bottom boundaries of the hydrate deposit (i.e., from the 

OB and the UB) are lower.  

 

 

Figure 6.38 Evolution of QG and QA in Cases U1G and U2G. 
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Figure 6.39 Evolution of MG and MA in Cases U1G and U2G. 

 

 

 

 

 Figure 6.40 Evolution of QR, QgG, QgA, and QgT in Cases U1G and U2G.  
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Figure 6.41 Evolution of VR, VgG, VgA, VgT, and VF in Cases U1G and U2G.  

 

 

 

 

Figure 6.42 Evolution of QW in Cases U1G and U2G.  
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Figure 6.43 Evolution of MW in Cases U1G and U2G.  

 

 

 

 

Figure 6.44 Evolution of RWG and RWGT in Cases U1G and U2G.  
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Figure 6.45 Evolution of XsA in Cases U1G and U2G.  

 

 

 

 

Figure 6.46 Evolution of water flows across key boundaries and interfaces, compared 

to QW in Case U2G.  
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6.2.2.4. Spatial Distributions of P, T, SH, and SG in Case U2G 

The spatial evolution of P, T, SH, and SG in Case U2G (involving the full 

geomechanical model) are shown in Figures 6.47, 6.48, 6.49, and 6.50, respectively. In 

Figures 6.47 and 6.48, the coarse mesh in Case U2G results in pressure and temperature 

distributions that are not as smooth as those in Case U1G (Figures 6.15 and 6.16). 

Additionally, these changes only occur within a short distance from the production 

wellbore in the HBLs and advance deeper into the formation only in the upper section of 

the H1 layer and the lower section of the H5 layer where significant hydrate dissociation 

is observed, as shown in Figure 6.49. Figure 6.50 shows more gas in the reservoir 

migrating upward in Case U2G than in Case U1G.   
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Figure 6.47 Evolution of the spatial distribution of pressure (Pa) in the reservoir of 

Case U2G. 
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Figure 6.48 Evolution of the spatial distribution of temperature (°C) in the reservoir 

of Case U2G. 
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Figure 6.49 Evolution of the spatial distribution of hydrate saturation in the reservoir 

of Case U2G. 
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Figure 6.50 Evolution of the spatial distribution of gas saturation in the reservoir of 

Case U2G. 
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6.2.2.5. Evolution of Displacement in Cases U1G and U2G 

Figure 6.51 compares the evolution of uz in Cases U1G and U2G at the wellbore 

(r = 0 m) and at (a) the top of the reservoir (z = -140 m) and (b) the bottom of the reservoir 

(z = -152.67 m). Compared to Case U1G, Case U2G predicts similar deformations for 

uplift and subsidence until t = 4 and 5 days, respectively, but then the predictions diverge 

with the U2G-associated displacements being substantially smaller. At t = 30 days, in Case 

U2G the vertical displacements at (r, z) = (0 m, -140 m) and (r, z) = (0 m, -152.67 m) are 

-0.33 and 0.34 m, respectively, i.e., slightly less than half those observed in Case U1G.  

 

 

Figure 6.51 Evolution of uz at (r, z) = (0 m, -140 m) and (r, z) = (0 m, -152.67 m) in 

Cases U1G and U2G. 
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6.2.2.6. Spatial Distributions of u, 𝝈𝟏
′ , and εv in Case U2G 

Figures 6.52, 6.53, and 6.54 present the spatial evolution of u, 𝜎1
′ , and εv, 

respectively, in Case U2G. Note that the extent of the radial dimension in all the three 

figures are reduced to 10 m in order to better capture the evolution of the associated 

changes. Unlike the image in Figure 6.20, the upper and lower bound values in the contour 

plot of Figure 6.52 range from 0.35 and -0.35 m, respectively. In Case U2G, significant 

vertical displacements only occur in the H1 and H5 layers, but they are still lower in 

magnitude than those in Case U1G. Note that the coarse discretization in Case U2G cannot 

adequately resolve the details near the wellbore, where the high compression area in the 

H1 and H5 layers (shown in Figure 6.53) and the high volumetric strain in the M3 and 

M4 layers (shown in Figure 6.54) are encountered. 
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Figure 6.52 Evolution of the spatial distribution of displacements (m) in the reservoir 

of Case U2G. 

 



 

204 

 

 

 

Figure 6.53 Evolution of the spatial distribution of maximum principal effective 

stress (Pa) in the reservoir of Case U2G. 
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Figure 6.54 Evolution of the spatial distribution of volumetric strain in the reservoir 

of Case U2G. 
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6.3. The Three-Dimensional Cartesian Cases T1 and T1G 

These two cases were investigated in order to evaluate the effect of considering a 

full geomechanical model in the analysis of production from this 3D oceanic hydrate 

deposit. 

 

6.3.1. Problem Description 

The problem descriptions of Cases T1 and T1G are provided in Sections 5.2.3 and 

5.3.3, respectively. 

 

6.3.2. Results 

The flow- and geomechanics-related conditions and parameters that were 

monitored in Cases T1 and T1G were the same as those discussed in Cases U1, U1G, U2, 

and U2G (see Sections 6.1.2 and 6.2.2), excluding (a) the water flows across key 

boundaries and interfaces and (b) the vertical displacements at key locations. Additionally, 

the spatial distribution of the mass fraction of salt in the produced aqueous phase (XsA) 

was monitored. 

 

6.3.2.1. Gas Production and Water Production in Cases T1 and T1G 

Figures 6.55 and 6.56 show the evolution of QG and QA from the vertical 

production well located at (x, y) = (200 m, 0.025 m) in Cases T1 and T1G. QG in Cases 

T1 and T1G fluctuates during production. Four different stages are evident: (a) an initial 

stage in which QG reaches a high level within the first 2-3 days of production because of 
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the significant initial pressure drop at the production well, (b) a rapidly decline until t = 8 

– 10 days when the near-well hydrate has dissociated and the initial maximum pressure 

drop at the well has been attenuated, (c) an increase in the next 20 days of production as 

the depressurization-affected volume of the deposit expands and hydrate dissociation 

increases, and (d) a final stage of general downward trend because of the weakening of 

depressurization as more water moves toward the well from the boundaries and the aquifer 

interlayers. QG in Case T1G reaches zero at t = 73 days, but appears to increase after t = 

89 days from the onset of production. QA in Cases T1 and T1G increase monotonically 

with time, and appear to approach a steady state near the end of the t = 90 day production 

period. QA in Case T1G is consistently higher than that in Case T1. Figures 6.57 and 6.58 

show the corresponding MG and MA. MG in Case T1 is larger than that in Case T1G because 

of the larger QG in Case T1. MG in Case T1G is consistently lower than MG in Case T1 

and reaches a plateau later in the production test as the result of the zero QG at that time.  

Figure 6.59 shows the evolution of QR, QgG, QgA, and QgT in Cases T1 and T1G. 

Two important conclusions can be drawn from Figure 6.59: (a) QgA is the major 

contributor to QgT in Cases T1 and T1G because of a substantially large amount of QA, 

and (b) QgT is smaller than QR in the first 30 days of production, after which time it 

becomes larger in Cases T1 and T1G as exsolution of dissolved gas from the water 

becomes a significant contributor to production. Figure 6.60 compares the cumulative 

volumes VR, VgG, VgA, VgT, and VF over the testing period in Cases T1 and T1G. VR, VgA, 

and VgT are all larger in Case T1G than in Case T1, which involves a larger VgG. In Cases 
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T1 and T1G, VF is nearly zero, indicating the high overall effective permeability of the 

system. 

The evolution of QW and MW from the production well in Cases T1 and T1G are 

shown in Figures 6.61 and 6.62, respectively, and are very similar to those of the aqueous 

phase in Figures 6.56 and 6.58. 

Figure 6.63 presents the evolution of RWG and RWGT in Cases T1 and T1G. Both 

RWG and RWGT are larger in Case T1G than in Case T1. Hydrate dissociation near the 

production well increases gas production, leading to the fast decline of RWG and RWGT after 

the onset of production. The downward trends are altered to upward ones which last for 

several days by the water inflow.  

Figure 6.64 shows the evolution of XsA in Cases T1 and T1G. The pure water 

released from the hydrate dissociation dilutes the XsA of the produced water, causing XsA 

to reach its minimum value of 0.03478 kg/kg in Case T1, and of 0.03479 kg/kg in Case 

T1G. However, the very mild initial drop in salinity and the subsequent upward trend after 

the minimum values are reached are indicators of limited hydrate dissociation and of early 

(and substantial) water inflows through the boundaries and the water-bearing interlayers.  
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Figure 6.55 Evolution of QG in Cases T1 and T1G. 

 

 

 

 

Figure 6.56 Evolution of QA in Cases T1 and T1G. 
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Figure 6.57 Evolution of MG in Cases T1 and T1G. 

 

 

 

 

Figure 6.58 Evolution of MA in Cases T1 and T1G. 

 



 

211 

 

 

Figure 6.59 Evolution of QR, QgG, QgA, and QgT in Cases T1 and T1G.  

 

 

 

 

 

Figure 6.60 Evolution of VR, VgG, VgA, VgT, and VF in Cases T1 and T1G.  
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Figure 6.61 Evolution of QW in Cases T1 and T1G.  

 

 

 

 

Figure 6.62 Evolution of MW in Cases T1 and T1G.  
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Figure 6.63 Evolution of RWG and RWGT in Cases T1 and T1G.  

 

 

 

 

Figure 6.64 Evolution of XsA in Cases T1 and T1G.  
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6.3.2.2. Spatial Distributions of P, T, SH, and SG in Cases T1 and T1G 

The evolutions of the spatial distributions of P, T, SH, and SG on three planes are 

presented in this section: (a) Plane P1 that is the (x, z) vertical plane at y = 0.025 m (i.e., 

the vertical plane that passes by the center axes of the production and injection wells); (b) 

Plane P2 that is the (y, z) vertical plane at x = 200 m (i.e., the vertical plane that passes by 

the production well); and (c) Plane P3 that is the (y, z) vertical plane at x = 225 m (i.e., the 

vertical plane that passes by the injection wells). For reference, the initial pressure and 

temperature at the top boundary of the reservoir are 2.77 MPa and 16.15 °C, respectively. 

 

6.3.2.2.1. Results on Plane P1 

Figures 6.65 to 6.70 present the spatial evolution of P, T, SH, SG, and XsA on Plane 

P1 in Case T1 (involving the simplified geomechanical model). The pressure distribution 

in Figure 6.65 indicates (a) a significant pressure drop caused by the producing well in 

the upper part of the hydrate deposit (from layer H1 to H5) that (b) advances laterally over 

a significant distance from the production well within a short time (as early as a day) but 

(c) does not penetrate deeper into the lower parts of the deposit because of the presence of 

a very-low permeability mud layer below the H5 HBL (see Figure 5.24) and the very high 

permeability of aquifers in the deposit profile (especially the thick A10 aquifer) that short-

circuit the depressurization process by making large amounts of water available to the 

well. This results in the very stratified pressure distribution observed in Figure 6.65, 

which indicates that depressurization is prevented in the lower parts of the hydrate deposit, 

with the consequent adverse effects on hydrate dissociation and gas production. The 
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operation of the injection well increases the pressure locally (especially at later times) but 

does not seem to significantly counter the pressure drop because of the low injection rate. 

The temperature distribution in Figures 6.66 and 6.67 shows the expected higher 

temperature in the vicinity of the injection well, but also the limited penetration of the 

injected warm water into the main body of the hydrate deposit. The temperature scale in 

Figure 6.66 has to accommodate the 60 oC of the injected water. A pathway from the 

injection to the production well is established very early, and most of the injected water 

follows it, bypassing the bulk of the hydrate. This is further facilitated by the thermal 

dissociation of the hydrate along this pathway, which increases its effective permeability 

of an ever expanding, hydrate-free “corridor” between the 2 wells (clearly shown in 

Figure 6.66), where most of the warm water flow is concentrated, thus minimizing its 

impact. Figure 6.67 (differing from Figure 6.66 in that it involves a low upper bound of 

the temperature scale to allow demonstration of thermal effects at lower temperatures) 

shows limited mixing of native and injected warm water near the injection well, and 

depressurization-induced cooling in the vicinity of the production well. A very important 

contribution of Figure 6.66 is that the demonstration (denoted by the lower temperatures) 

occurs over a much larger scale than that indicated by Figure 6.65. Additional discussion 

on the subject is provided in the analysis of the SH and XsA results on this plane and on 

Plane P2. 

Figure 6.68 shows both the heterogeneous hydrate saturation and the effect of 

dissociation on its spatial distribution near the wells. Two areas of hydrate destruction are 

evident. The first is associated with the production well, where hydrate dissociation is 
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induced mainly by depressurization and, to a lesser extent, by the thermal effects of 

injected warm water arriving at the production well (see Figure 6.66); the second is 

associated with the injection well, and is caused by the thermal dissociation of the hydrates 

in response to the injected warm water. The footprint of the two (hydrate-free) dissociated 

regions in the vicinity of the wells continues to expand as time advances. After 90 days of 

production, a large fraction of the hydrates around and between the two wellbores above 

the A10 aquifer layer (identified in Figure 6.68 by the thick band of hydrate-free layer, 

below which no sign of dissociation is evident) have been dissociated. Of particular 

interest is the relatively good correlation of the SH-distribution with the T-distribution in 

Figure 6.66. 

The spatial distribution of free gas saturation SG in Figure 6.69 shows reasonably 

high SG (the maximum value is around 0.1) only in the top few HBLs between two wells 

and on the first day of operation, i.e., immediately after the application of the low 

bottomhole pressure at the well. Very little free gas is evident for t > 1 day, which, 

combined with the QgG results of Figure 6.59, indicates very low SG levels as time 

advances. This is an indication of ineffective depressurization—which is by far the most 

effective of the two dissociation mechanisms involved in this study, as indicated by 

Moridis and Reagan (2007a)—because of (a) the presence of highly permeable aquifer 

layers within the hydrate deposit and of (b) the warm water injection. These results 

indicate that, while dissociation occurs over a relatively large volume of the deposit, the 

released gas does not survive as a substantial free phase, and appears to either exist at 

levels near the irreducible gas saturation (and thus unable to migrate toward the well) or 
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to dissolve again in the water because of increased solubility caused by the lower 

temperature (the result of dissociation). 

The spatial distribution of XsA in Figure 6.70 shows lower XsA in the pathway 

observed in Figure 6.66 in the top few HBLs at t = 1 day where the pure water release 

from the hydrate dissociation dilutes the initial XsA. The upward movement of the saline 

ocean water from the aquifer layers toward the production well is evident (and more so at 

later times). Although water at its normal ocean salinity is injected at the injection well, 

the salinity in its vicinity declines because of the dissociation caused by the higher 

temperature (60 °C) of the injected water. What is notable is that the reservoir volume in 

which XsA declines (indicative of hydrate dissociation) is even larger than those indicated 

by the T-distribution of Figure 6.67 and the SH-distribution of Figure 6.68. This indicates 

that dissociation does occur over a large volume of the hydrate deposit but it does not 

reach a sufficiently high level to allow accumulation of gas and large production because 

of the limited effectiveness of depressurization in the presence of highly-permeable 

aquifer layers that short-circuit the process.  

Figures 6.71 to 6.76 present the spatial evolution of P, T, SH, SG, and XsA on Plane 

P1 in Case T1G (involving the full geomechanical model). Compared to the pressure 

distribution in Case T1, the inclusion of full geomechanical effects leads to (a) an 

expanded volume of more intense pressure disturbance caused by the production well in 

the early stages of production, (b) a larger reservoir volume affected by lower pressure 

during the entire 90-day period of production, (c) a progressively smaller zone of intense 

depressurization in the immediate vicinity of the well as time advances and the initially-
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applied maximum pressure drop (when the pressure at the well is instantaneously lowered 

to the Pbh level) is attenuated, and (d) a reduced pressure impact of the injection well 

(Figure 6.71). The thermal behavior of the system is not significantly affected by 

geomechanics, because (a) the temperature field with the high upper bound of the color 

scale in Figure 6.72 appears to be very similar to that in Figure 6.66, and (b) the 

temperature fields with the low upper bound in Figures 6.67 and 6.73 show only a slight 

difference. Although the differences from Figure 6.68 for Case T1 are subtle, careful 

inspection of Figure 6.74 indicates a larger volume of hydrate-free regions around the 

wells, pointing to enhanced hydrate dissociation when full geomechanics are considered 

in Case T1G. This is not accompanied by evidence of more extensive occurrences of larger 

SG in the domain, because differences between the SG distributions in Figures 6.69 and 

6.75 are very limited. In Figure 6.76, the salinity of water flows in the high-k ALs is not 

affected by geomechanics, but XsA in the low-k M5 mud layer is affected, leading to a 

larger XsA (than that in Figure 6.70 of Case T1) in the vicinity of the production well at t 

= 90 days that is attributed to a lower permeability in the geomechanically active Case 

T1G because of compaction. 
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Figure 6.65 Evolution of the spatial distribution of pressure (Pa) on Plane P1 in the 

reservoir of Case T1. 
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Figure 6.66 Evolution of the spatial distribution of temperature (°C) with a high 

upper bound of color scale on Plane P1 in the reservoir of Case T1. 
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Figure 6.67 Evolution of the spatial distribution of temperature (°C) with a low upper 

bound of color scale on Plane P1 in the reservoir of Case T1. 
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Figure 6.68 Evolution of the spatial distribution of hydrate saturation on Plane P1 in 

the reservoir of Case T1. 
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Figure 6.69 Evolution of the spatial distribution of gas saturation on Plane P1 in the 

reservoir of Case T1. 
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Figure 6.70 Evolution of the spatial distribution of salt mass fraction on Plane P1 in 

the reservoir of Case T1. 
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Figure 6.71 Evolution of the spatial distribution of pressure (Pa) on Plane P1 in the 

reservoir of Case T1G. 
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Figure 6.72 Evolution of the spatial distribution of temperature (°C) with a high 

upper bound of color scale on Plane P1 in the reservoir of Case T1G. 

 



 

227 

 

 

 

Figure 6.73 Evolution of the spatial distribution of temperature (°C) with a low upper 

bound of color scale on Plane P1 in the reservoir of Case T1G. 
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Figure 6.74 Evolution of the spatial distribution of hydrate saturation on Plane P1 in 

the reservoir of Case T1G. 
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Figure 6.75 Evolution of the spatial distribution of gas saturation on Plane P1 in the 

reservoir of Case T1G. 
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Figure 6.76 Evolution of the spatial distribution of salt mass fraction on Plane P1 in 

the reservoir of Case T1. 
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6.3.2.2.2. Results on Plane P2 

Figures 6.77, 6.78, 6.79, 6.80, and 6.81 present the spatial evolution of P, T, SH, 

SG, and XsA, respectively, on Plane P2 in Case T1. These results were obtained using the 

simplified geomechanical model. The evolution of the P-distribution close to the 

production wellbore in Figure 6.77 is consistent with that on Plane P1 shown in Figure 

6.65. The zone of maximum depressurization (caused by the pressure drop that is applied 

instantaneously to the well by the Pbh) initially expands, but later shrinks as the near-well 

effective permeability increases in response to the hydrate dissociation. Figure 6.78 

describes the T-distribution in the y-direction near the production well. The low-T areas 

are indicative of active hydrate dissociation (a result of the endothermic nature of the 

reaction) and expand radially and downward over time as dissociation continues. Note  

(a) the increasing temperatures over time at the top of the hydrate deposit as (i) the hydrate 

is exhausted and the cooling dissociation reactions there cease and (ii) the injected 

warm water reaches the production well even at early times,  

(b) the very large extent of lower temperatures in the hydrate, indicating active 

dissociation even at low levels (as will be shown in the SH- and SG-distribution of the 

ensuing Figures 6.79 and 6.80), and  

(c) the inability of the hydrate dissociation front to reach below the A10 aquifer layer. 

The spatial evolution of SH shown in Figure 6.79 is not complementary of the T-

distribution in Figure 6.78 because it does not show significant hydrate degradation where 

lower temperatures are observed, probably because dissociation occurs at very low rates 

there that are too low to lead to measurable reductions in SH. However, Figure 6.79 does 
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show significant hydrate dissociation (signified by the SH reduction) near the well, which 

was expected because this is the location of maximum depressurization. Note the 

coincidence of the “warming” regions in the vicinity of the well in Figure 6.78 with the 

corresponding absence of hydrate at these locations in Figure 6.79. The SG-distribution in 

Figure 6.80 shows very little evidence of gas presence on Plane P2 and is an insufficient 

base for conclusions on this matter. 

The spatial distribution of XsA close to the production wellbore in Figure 6.81 is 

in accordance with that on Plane P1 in Figure 6.70 and shows active hydrate dissociation 

over large distances from the well (even at y = 200 m) even from the earliest times of 

production. The footprint of dissociation is much larger than that suggested by the SH 

distribution in Figure 6.79 but in agreement with the T-distribution of Figure 6.78, 

indicating the importance of monitoring these two properties in the analysis of the system 

behavior. 

Figures 6.82, 6.83, 6.84, and 6.85 present the spatial evolution of P, T, SH, and 

XsA, respectively, on Plane P2 in Case T1G, which involves a full geomechanical model. 

The conclusions drawn from the P-distribution shown in Figure 6.82 are in agreement 

with those drawn from the P-distribution on Plane P1 (Figure 6.71) and will not be 

repeated here. Compared to Figure 6.78, Figure 6.83 shows a more extensive higher-T 

region around the well in the upper part of the formation (above the A10 layer) and at later 

times, which is indicative of more intense dissociation activity and exhaustion of hydrate 

at these locations. This is confirmed by the evolution of SH distribution in Figure 6.84, 

which indicates more intense dissociation associated with the complex geomechanics in 
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Case T1G. The SG-distributions over time in Case T1G are not provided because they are 

practically indiscernible from those in Case T1 (see Figure 6.80). 

Figure 6.85 shows that the XsA along the y-direction in the M5 layer is barely 

reduced below its original level as hydrate, indicating a less active hydrate dissociation at 

this location, in agreement with the XsA observations on Plane P1 in Figure 6.76 and 

attributable to the reduced  and k because of compaction in the geomechanically active 

Case T1G. 
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Figure 6.77 Evolution of the spatial distribution of pressure (Pa) at on Plane P2 in 

the reservoir of Case T1. 
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Figure 6.78 Evolution of the spatial distribution of temperature (°C) on Plane P2 in 

the reservoir of Case T1. 
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Figure 6.79 Evolution of the spatial distribution of hydrate saturation on Plane P2 in 

the reservoir of Case T1. 
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Figure 6.80 Evolution of the spatial distribution of gas saturation on Plane P2 in the 

reservoir of Case T1. 
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Figure 6.81 Evolution of the spatial distribution of salt mass fraction on Plane P2 in 

the reservoir of Case T1. 

 



 

239 

 

 

 

Figure 6.82 Evolution of the spatial distribution of pressure (Pa) on Plane P2 in the 

reservoir of Case T1G. 
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Figure 6.83 Evolution of the spatial distribution of temperature (°C) on Plane P2 in 

the reservoir of Case T1G. 
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Figure 6.84 Evolution of the spatial distribution of hydrate saturation on Plane P2 in 

the reservoir of Case T1G. 
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Figure 6.85 Evolution of the spatial distribution of salt mass fraction on Plane P2 in 

the reservoir of Case T1G. 
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6.3.2.2.3. Results on Plane P3 

Figures 6.86 to 6.91 present the spatial evolution of P, T, SH, SG, and XsA on Plane 

P3 in Case T1. Despite the continuous injection of warm water, evolution of the spatial 

discretization of P in Figure 6.86 shows a pressure drop, as the injection rate is insufficient 

to counter the effects of the more substantial fluid withdrawal from the production well. 

As in all other previous related figures, the limit of depressurized zone is clearly marked 

by a sharp interface at the base of the H5 layer, and the pressure disturbance barely 

advances beyond that level even at later times for reasons already discussed: the low 

permeability of the underlying mud layer, and the high permeability of the aquifer 

interlayers in the hydrate deposit that supply large amounts of replenishable water to the 

production well, thus preventing effective depressurization. 

Figure 6.87 (obtained with a high upper limit in the temperature color scale) shows 

that the injected warm water substantially raises the temperature only in a limited volume 

of the reservoir around the injection wellbore even after 90 days of injection. Additionally, 

the high-T region is confined to the uppermost part of the hydrate deposit and does not 

affect the bulk of the reservoir volume, thus severely limiting the effectiveness of the 

intended (and hoped for) thermal- and salt-induced hydrate dissociation of the injected 

saline ocean water. Of interest is the observation that the extent/reach of the high-T zone 

is at a maximum at t = 1 day, after which it shrinks (t = 10 days) before stabilizing for t ≥ 

30 days—a behavior attributed to continuous mixing with the native reservoir waters. 

The temperature field in Figure 6.88 (obtained with a low upper limit in the 

temperature color scale) shows a very different distribution than that in Figure 6.87, with 
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the volume of the reservoir affected by the higher temperature of the injected water 

expanding consequently but with lower temperatures because of mixing with the colder 

native water, in addition to the heat consumed to support dissociation. In this figure, the 

presence of the lower-k layers (i.e., HBLs with high SH, or low-k muds) is identified by 

the limited penetration of higher temperature in the bulk of their bodies.  

Early hydrate dissociation (denoted by the SH distribution) in Figure 6.89 appears 

minor because of (a) the low effectiveness of thermal dissociation compared to the one 

induced by depressurization (Moridis and Reagan 2007a), combined with (b) the higher 

pressure associated with the water injection that only partly counters the effect of 

depressurization at the production well. This being the case, it is possible that, in addition 

to the thermal dissociation, a significant part of hydrate dissociation at this location is 

attributable to the depressurization shown in Figure 6.89. What is very interesting is that 

some substantial hydrate destruction is evident at t = 90 days, but that does not correspond 

to the high-T region shown in Figure 6.87, thus further reinforcing the thesis that this is 

caused by the unavoidable depressurization. Note that here, as in all other similar cases, 

dissociation never advances past the A10 aquifer layer. Figure 6.90 reveals a limited 

occurrence of free gas only at t = 1 day in the vicinity of the injection well on this plane. 

Figure 6.91 shows that (a) the injected warm water causes some thermal dissociation in 

the H5 layer as XsA decreases near the injection wellbore, and (b) as in all other cases of 

XsA-distribution, the reservoir volume exhibiting some degree of hydrate dissociation 

(even minor) is much larger than that suggested by the distribution of any other property 

of the system, with the possible exception of that of the temperature (Figure 6.88). 
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Figures 6.92 to 6.96 present the spatial evolution of P, T, SH, and XsA, on Plane P3 

in Case T1G, with the results obtained using a full geomechanical model. The difference 

of SG-distributions over time between Cases T1 and T1G is visually imperceptible so the 

distribution in Case T1G is not provided. Compared to the results in Case T1, the only 

(minor) differences are the slightly larger extent of the zone of reduced pressure (Figure 

6.92), a reduced extent of the high-T zone (Figure 6.93), attributable to the lower  and k 

of the geomechanically-induced compaction of the depressurized region, lower T observed 

in some HBLs (Figure 6.94), a somewhat larger (dissociation-caused) hydrate-free zone 

at t = 90 days (Figure 6.95), and a smaller low-XsA zone (Figure 6.96) because of lower 

hydrate dissociation for reasons already discussed. 
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Figure 6.86 Evolution of the spatial distribution of pressure (Pa) on Plane P3 in the 

reservoir of Case T1. 
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Figure 6.87 Evolution of the spatial distribution of temperature (°C) with a high 

upper bound of color scale on Plane P3 in the reservoir of Case T1. 
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Figure 6.88 Evolution of the spatial distribution of temperature (°C) with a low upper 

bound of color scale on Plane P3 in the reservoir of Case T1. 
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Figure 6.89 Evolution of the spatial distribution of hydrate saturation on Plane P3 in 

the reservoir of Case T1. 
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Figure 6.90 Evolution of the spatial distribution of gas saturation on Plane P3 in the 

reservoir of Case T1. 
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Figure 6.91 Evolution of the spatial distribution of salt mass fraction with a high 

upper bound of color scale on Plane P3 in the reservoir of Case T1. 
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Figure 6.92 Evolution of the spatial distribution of pressure (Pa) on Plane P3 in the 

reservoir of Case T1G. 
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Figure 6.93 Evolution of the spatial distribution of temperature (°C) with a high 

upper bound of color scale on Plane P3 in the reservoir of Case T1G. 
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Figure 6.94 Evolution of the spatial distribution of temperature (°C) with a low upper 

bound of color scale on Plane P3 in the reservoir of Case T1G. 
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Figure 6.95 Evolution of the spatial distribution of hydrate saturation on Plane P3 in 

the reservoir of Case T1G. 

 



 

256 

 

 

 

Figure 6.96 Evolution of the spatial distribution of salt mass fraction with a high 

upper bound of color scale on Plane P3 in the reservoir of Case T1G. 
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6.3.2.3. Spatial Distributions of u, 𝝈𝟏
′ , and εv in Case T1G 

This section analyzes the spatial evolution of uz, 𝜎1
′, and εv on the three planes (P1, 

P2, and P3) defined previously. In the visualization of the spatial evolution of u, the 

contour plot indicates uz (vertical displacement), and the arrow denotes the displacement 

vector on this plane. 

 

6.3.2.3.1. Results on Plane P1 

Figures 6.97, 6.98, and 6.99 present the spatial evolution of u, 𝜎1
′ , and εv, 

respectively, on Plane P1 in Case T1G. As shown in Figure 6.97, the lower section of the 

OB layer and the upper section of the hydrate deposit subside, while the lower section of 

the hydrate deposit experiences an uplift. This is caused by the effects of the producing 

well, which lowers the fluid pressure in the pores and transfers stresses to the skeleton of 

the hydrate deposit: the constant weight of the OB causes subsidence, and the higher 

pressure in the UB (unaffected by production, the pressure disturbance of which barely 

reaches the UB) displaces that boundary upward. The combined result is the continuous 

compaction (“squeeze”) of the hydrate deposit that advances with time and is at a 

maximum at any time in the vicinity of the production well. Furthermore, the reservoir in 

the y plane moves toward the production wellbore.  

In Figure 6.98, 𝜎1
′ is at its maximum value at any time at the upper parts of the 

production well (i.e., in the H1 layer) because this where the constant bottomhole pressure 

Pbh is applied, thus being the location of the lowest pressure in the hydrate deposit. Note 

that the maximum attained value of 𝜎1
′ is observed only at the beginning of production 
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when the bottomhole pressure (and the maximum pressure drop P) is first applied at the 

well, and then it continuously decreases because of the influence of the injected warm 

water and the decline in the P. The warm water injection counters only partially the 

effective stresses, and this clearly identifiable in Figure 6.98 as a thin vertical zone at the 

location of the injection well. The elevated stresses squeeze the formation and lead to the 

continuously expanding volumetric strain distribution in Figure 6.99, the footprint of 

which corresponds to a subdomain of decreasing porosity and permeability. The affected 

area includes the top few layers of the hydrate deposit and coincides roughly with the 

footprint of the hydrate dissociation in the HBLs. Note that, as expected, the stress and 

strain changes are confined to the characteristic limited upper zone of the hydrate deposit 

that has been clearly evident in all the P-distributions discussed up to now.  
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Figure 6.97 Evolution of the spatial distribution of displacements (m) on Plane P1 in 

the reservoir of Case T1G. 
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Figure 6.98 Evolution of the spatial distribution of maximum principal effective 

stress (Pa) on Plane P1 in the reservoir of Case T1G. 
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Figure 6.99 Evolution of the spatial distribution of volumetric strain on Plane P1 in 

the reservoir of Case T1G. 
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6.3.2.3.2. Results on Plane P2 

Figures 6.100, 6.101, and 6.102 present the spatial evolution of u, 𝜎1
′ , and εv, 

respectively, on the P2 plane in Case T1G. Figure 6.100 shows that (a) the subsidence 

and uplift (and the resulting squeeze of the hydrate deposit) progress continuously with 

time and (b) that they extend to significant distances from the wellbore along the y-

direction. Of interest is the observation that the maximum displacements are observed at t 

= 30 days and appear slightly reduced at t = 90 days, possibly because of the enhanced 

late-time effect of the warm water injection (when the P and the related production rate 

at the constant Pbh well are reduced). From Figure 6.101, the warm water injection appears 

(a) to continuously reduce 𝜎1
′  from its maximum level at t = 1 day (when P and the 

production rate are at their maximum) in the vicinity of the well in the upper part of the 

hydrate deposit, but also (b) to expand the extent of its impact over an increasing volume 

of the hydrate deposit. This is evident in the distribution of the volumetric strain shown in 

Figure 6.102 which, although exhibiting a continuous decline of its maximum value for 

the reasons already discussed, continuously increases the size of the volume it affects (and 

causes a corresponding reduction in its  and k), reaching (and extending past) y = 50 m 

after 90 days of production. 
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Figure 6.100 Evolution of the spatial distribution of displacements (m) on Plane P2 

in the reservoir of Case T1G. 
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Figure 6.101 Evolution of the spatial distribution of maximum principal effective 

stress (Pa) on Plane P2 in the reservoir of Case T1G. 
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Figure 6.102 Evolution of the spatial distribution of volumetric strain on Plane P2 in 

the reservoir of Case T1G. 
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6.3.2.3.3. Results on Plane P3 

Figures 6.103, 6.104, and 6.105 present the spatial evolution of u, 𝜎1
′ , and εv, 

respectively, on Plane P3 in Case T1G. As shown in Figure 6.103, (a) the subsidence and 

uplift (and the resulting squeeze of the hydrate deposit) progress continuously with time 

because of the continuing depressurization even in the face of continuous (low-rate) warm 

water injection, (b) they extend to significant distances from the wellbore along the y-

direction, but (c) their magnitude (and the resulting squeeze of the deposit) are lower than 

those observed on Planes P1 and P2 because of the alleviating effect of injection. Because 

of the higher pressures and their continuous decline in the vicinity of the injection well on 

this plane, unlike the observations on Planes P1 and P2, the principal effective stress 

continues to increase in magnitude and expand its footprint over time (Figure 6.104).  

This is reflected in the distribution of the volumetric strain shown in Figure 6.105 

which exhibits a continuous increase of both its maximum value (for the reasons already 

discussed) and of the size of the volume it affects, reaching (and comfortably extending 

past) y = 50 m after 90 days of production. The subdomain affected by these changes in 

the volumetric strain is characterized by a corresponding reduction in its  and k. 
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Figure 6.103 Evolution of the spatial distribution of displacements (m) on Plane P3 

in the reservoir of Case T1G. 
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Figure 6.104 Evolution of the spatial distribution of maximum principal effective 

stress (Pa) on Plane P3 in the reservoir of Case T1G. 
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Figure 6.105 Evolution of the spatial distribution of volumetric strain on Plane P3 in 

the reservoir of Case T1G. 
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

7.1. Summary  

Chapter 2 provides a detailed discussion on the Reservoir GeoMechanics 

Simulator (RGMS or RGM simulator) developed in this study for the investigation and 

analysis of the geomechanical behavior of subsurface systems to external stimuli, 

including the governing equations, the numerical method, the parallelization strategy, a 

flow chart, and validations of the numerical method and of the parallelization process. The 

governing equations describe the underlying physics and their mathematical 

representation in the modeling of the geomechanics problem. The finite element method 

(FEM) is the numerical method used in the solution of the geomechanical problem in 

RGMS, and is chosen because of its power and flexibility in the spatial discretization of 

complex multi-dimensional domains. To improve performance, a parallelization strategy 

designed for the FEM is introduced into RGMS, based on the Message-Passing-Interface 

(MPI) approach and involving a domain decomposition method. The domain is partitioned 

using the overlapped method with the box-type stencil illustrated in Figure 2.1 to account 

for the influence of displacement at neighboring nodes, served by different processors. All 

these processes are summarized in the flow chart shown in Figure 2.3.  

Two 2D problems (in Cartesian and radial-cylindrical coordinates) and a 3D 

Cartesian coordinate problem are created to validate the FEM and the parallelization 

method in RGMS. The total displacements and the maximum principal effective stresses 
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obtained from the RGMS solution of these three problems are compared to those from the 

commercial software Ansys Mechanical, and are shown to practically coincide.  

Chapter 3 provides all the details on the development of the pTOUGH+ 

HYDRATE V1.5 (pT+H V1.5) simulator that is based on the MPI-based parallelization 

of the pre-existing serial TOUGH+HYDRATE V1.5 (Moridis 2014) code. pT+H V1.5 is 

used for the study of the system behavior in hydrate-bearing geologic media, and the 

discussion (a) covers the governing equations, the porosity-permeability relationships, a 

simplified geomechanical model, the underlying numerical method, and the MPI-based 

parallelization method, and (b) includes a flow chart and validation of the parallelization 

through comparisons of the serial and parallel versions of the code. The numerical method 

used for the space discretization in pT+H V1.5 is the integral finite difference method 

(IFDM), which necessitates the star-type stencil of the overlapped method in the domain 

partitioning process presented in Figure 2.1 for the parallel simulations of the code. The 

Jacobian-based Newton-Raphson method that is used for the solution of the non-linear 

problems of mass and heat balances in pT+H requires MPI communications for the 

necessary convergence checks. Figure 3.2 presents the flow chart of pT+H V1.5. The 

parallelization of pT+H V1.5 is validated by comparing its results to those from the serial 

T+H V1.5 code in a study that involves (a) fluid production from a large-scale 2D 

cylindrical system describing a real-life oceanic hydrate deposit, (b) different production 

scenarios and porosity-permeability relationships, and (c) a simplified geomechanical 

model based on hydrate-dependent pore compressibility. 
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Chapter 4 provides all the details in the coupled pT+H V1.5 and RGM simulator 

for the study of the system behavior in hydrate-bearing geologic media in response to 

external stimuli (such as fluid and/or heat withdrawal and/or injection), fully accounting 

for the relationship and interdependence of flow, thermal, thermodynamic, chemical and 

geomechanical processes. The discussion (a) covers the coupling method and the 

parallelization process, and (b) includes a flow chart and validations of the code coupling 

and of the parallelization. As shown in Figure 4.1, the coupling method is based on the 

fixed-stress split iterative scheme that provides significant flexibility in the coupling of 

the two constituent simulators, solves their respective equations separately, and ensures 

accuracy of the solutions through an iterative process. 

A new domain decomposition method is introduced to account for the different 

numerical methods involved in the RGMS and the pT+H V1.5 codes. The flow chart of 

the coupled pT+H V1.5 and RGM simulator is shown in Figure 4.2. The coupling method 

is validated by comparing the numerical results to the analytical solutions of the Terzaghi 

and the McNamee-Gibson problems. The parallelization validation of the coupled 

simulator is achieved by comparing the results obtained for different numbers of 

processors in the solution of the problems used for the pT+H V1.5 parallelization 

validation with the full geomechanical model.  

Chapter 5 presents the results from the parallel performance (a) of the individual 

RGMS code, (b) of the individual pT+H V 1.5 simulator, and (c) of the coupled pT+H 

V1.5 and RGM codes. The RGMS test problems for the parallelization validation involve 

domains with different discretizations. They include 2D Cartesian, 2D cylindrical, and 3D 
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Cartesian coordinate problems (Cases G1, G2, and G3, respectively) discretized into 

4×106, 4×106, and 3.365×106 elements, respectively.  

The problems used for testing the pT+H V1.5 code involve a simplified 

geomechanical model based on SH-dependent pore compressibility, and include a 2D 

cylindrical problem (Case U1) involving 2.4×105 elements and a 3D Cartesian problem 

(Case T1) involving 3.6×106 elements. Both problems describe actual (real-life) oceanic 

hydrate deposits. The test problems for the coupled pT+H V1.5 and RGM simulator are 

Cases U1G and T1G, in which the addition of the “G” to the names of Cases U1 and T1 

denotes the application of the full geomechanical model. All the cases mentioned above 

are tested on the Ada Linux cluster using up to 512 processors and on a Mac Pro desktop 

computer using up to 12 processors. The two options available in the METIS partitioning 

software that were tested in the Ada Linux cluster runs are based on objectives that seek 

to (a) minimize the number of edge-cuts or (b) minimize the communication volume. Only 

the former option is used in the Mac Pro simulations.  

On the Ada Linux cluster, the maximum simulation cycling speedups in Cases G1, 

G2, and G3 are 218.89, 188.13, and 284.70, respectively; the maximum total speedups in 

Cases U1 and T1 are 174.25 and 341.67, respectively; and the maximum total speedups 

in Cases U1G and T1G are 134.97 and 331.80, respectively. Note that all the maximum 

speedups were achieved when running 512 processors. 

On the Mac Pro, the maximum simulation cycling speedups in Cases G1, G2, and 

G3 are 6.19 (with 12 processors), 6.09 (with 12 processors), and 7.19 (with 12 processors), 

respectively; the maximum total speedups in Cases U1 and T1 are 4.44 (with 8 processors) 
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and 4.21 (with 12 processors), respectively; and the maximum total speedups in Cases 

U1G and T1G are 4.10 (with 12 processors) and 3.93 (with 6 processors), respectively. 

The partitioning options in METIS should be selected to minimize the number of 

edge-cuts in Cases G1, G2, and G3 with 128 or more processors in pure RGMS studies. 

Despite occasional deviations in simulations involving relatively few processors, the 

communication volume option appears to have a clear advantage in large simulations.  

Chapter 6 (a) compares the simulation results with the simplified and full 

geomechanical models in Cases U1, U1G, T1, and T1G, (b) investigates the effects of 

discretization on solutions with simplified geomechanical and full geomechanical models 

in Cases U1, U2, U1G, and U2G, and (c) discusses in detail observations from the study 

of 3D problem involving combined depressurization and thermal stimulation for gas 

production from a real-life oceanic hydrate deposit. The following flow-related results are 

monitored: spatial distributions of pressure, temperature, gas saturation, hydrate 

saturation, and salinity (mass fraction) of salt; water and gas production, and the 

corresponding cumulative productions; instantaneous and cumulative water-to-gas ratio; 

and salinity of salt in the production stream at the well. The following geomechanics-

related results are monitored: spatial distributions of displacements, maximum principal 

effective stress, and volumetric strain.  

 

7.2. Conclusions 

The following conclusions are reached from this study: 
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• Work in this project included (a) the development of the RGMS parallel geomechanics 

simulator, (b) the development of pT+H V1.5 code by parallelizing the pre-existing 

T+H V1.5 serial code for the description of system behavior during hydrate 

dissociation or formation in porous/fractured media, and (c) the coupling of the RGMS 

and pT+H V1.5 code. The validity and reliability of the parallel codes (a) RGMS, (b) 

pT+H V1.5, and the (c) coupled pT+H V1.5 and RGM simulators—in terms of their 

ability to solve the physics of complex problems—are proved by the excellent 

agreement of their results to existing (known) analytical and numerical solutions.  

• As indicated by the execution times and the associated speedups, the parallel 

performances of the RGMS, the pT+H V1.5, and the coupled pT+H V1.5 and RGM 

simulators on both the Ada Linux cluster and the Mac Pro are very satisfactory. 

• On the Ada Linux cluster, the simulation cycling speedups of RGMS are 218.89, 

188.13, and 284.70 in Cases G1 (2D Cartesian problem), G2 (2D cylindrical problem), 

and G3 (3D Cartesian problem), respectively, when the number of processors Np = 

512. For the same Np,  

— The total speedups of pT+H V1.5 are 174.25 and 341.67 in Cases U1 (2D 

cylindrical problem) and T1 (3D Cartesian problem), respectively, and  

— The total speedups of the coupled pT+H V1.5 and RGM simulators are 134.97 

and 331.80 in Cases U1G (2D cylindrical problem) and T1G (3D Cartesian 

problem), respectively. 

• On the Mac Pro, the maximum speedups are not always achieved using 12 processors 

because of different architecture and memory management. Actually, it is possible that 
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the parallel performance with multiple processors could be worse than that for a single 

processor. The maximum simulation cycling speedups of RGMS are achieved with Np 

= 12 processors and are 6.19, 6.09, and 7.19 in Cases G1, G2, and G3, respectively. 

This is attributed to the fact that RGMS solves the numerically less demanding quasi-

static geomechanics problem that does not require significant processor 

communications, thus enabling continuously improving performance with an 

increasing Np in the limited number of processors available in the Mac Pro. The 

maximum total speedups of pT+H V1.5 in Cases U1 and T1 are 4.44 and 4.21, and are 

obtained with Np = 8 and 12, respectively. The maximum total speedups of the coupled 

pT+H V1.5 and RGM simulator in Cases U1G and T1G are 4.10 and 3.93, and are 

obtained Np = 12 and 6, respectively. In all parallel simulations, and especially on 

desktop systems such as a Mac Pro, it is highly advisable to conduct preliminary tests 

of the problem under investigation (involving different Np and a limited number of 

time steps) in order to determine whether the maximum available number of 

processors will provide the highest performance. 

• The partitioning options in the domain decomposition package METIS are crucial in 

the speedup of parallelization, especially when running with hundreds of processors. 

In Cases G1, G2, and G3 (geomechanics-only problems with uniform discretization), 

the option of minimizing the number of edge-cuts provides the best performance when 

used with 512 processors. Despite occasional deviations in pT+H V1.5 and coupled 

RGMS-pT+HV1.5 simulations involving relatively few processors, the option that 
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minimizes the communication volume appears to have a clear advantage in the 

solution of large-scale problems. 

• In Cases U1 and U1G, the inclusion of the full geomechanical model leads to localized 

decreases in porosity and permeability because of compaction that confines the 

pressure drops in a smaller volume of the hydrate deposit, inhibits wormhole formation 

and growth, changes the locations of active hydrate dissociation, and results in lowers 

gas and water production.  

• In Case U1G, the geomechanical analysis shows large deformations in the reservoir, 

including (a) subsidence of the top of the hydrate deposit (because of the continuing 

unchanged vertical stresses caused by the weight of the overburden, the pressure of 

which is practically unaffected by the producing well), (b) uplift of the base of the 

deposit because of the higher pressure in the very-low permeability underburden, and 

(c) the resulting “squeeze” of the reservoir thickness in the vicinity of the well. These 

changes cannot be captured without a full geomechanical model and indicate the 

importance of coupling pT+H V1.5 with RGMS for realistic predictions of the 

behavior of the entire system. 

• Comparison of the results from Cases U1 and U2 to those from Cases U1G and U2G 

indicates that discretization influences the solutions with either the simplified or full 

geomechanical model, and coarse grids are unable to capture some critical processes. 

The reasons are that (a) coarse discretization averages the system thermal behavior 

over larger volumes, thus attenuating the expected sharp pressure and temperature 

changes associated with hydrate dissociation, and (b) hydrate dissociation is not a 
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process that becomes more diffusive with time, but is characterized by sharp fronts 

that persist for very long time. This means that not only fine discretizations are needed, 

but also that these cannot be confined to the vicinity of the well and need to be applied 

to the entire domain if reliably representative solutions are to be obtained. The 

resulting computational effort is substantial and exceeds the capabilities of most 

single-processor systems if realistic problems are to be investigated, making the use 

of efficient and powerful parallel simulators (such as pT+H V1.5 and the coupled 

pT+H V1.5 and RGMS codes) a necessity. 

• The comparison of the results in Cases T1 and T1G shows that the full geomechanical 

model shows complex effects on the spatial distributions and predicts less gas 

production and more water production. 

• In all cases, a large volumetric strain is observed in the hydrate-bearing layers (usually 

unconsolidated sandy units, in which most of the mechanical strength is provided by 

the hydrate, and which respond rapidly to its dissociation by deforming), and mud 

layers (soft, easily deformable units, in which the presence of hydrates is minimal, and 

which respond rapidly to depressurization by deforming). 

• The study of coupled depressurization and thermal stimulation for gas production from 

hydrate deposits in Cases T1 and T1G using a combination of two vertical wells 

(production and injection) does not appear very promising at a particular site in the 

Krishna-Godawari basin, as gas production and free gas saturation in the reservoir 

appear to decline rapidly with time, while water production increases and tends toward 

a constant level. Of particular interest is that the volumetric extend of dissociation, as 
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denoted by changes in temperature and the salinity in the reservoir, is much larger than 

that described by the reduction in the hydrate saturation, indicating a low-level 

dissociation that is insufficient to lead to significant gas releases. These observations 

apply to both Cases T1 and T1G. 

 

7.3. Recommendations 

The following recommendations are made: 

• The study of partitioning objectives in the application of METIS needs more problems 

of various complexity and size in order to generate some general rules. 

• Different solvers with various preconditioners need to be tested in order to obtain a 

more thorough understanding of the performance of RGMS, pT+H V1.5, and the 

coupled pT+H V1.5 and RGM simulator and to identify optimal options in their 

application. 

• In the production of methane from hydrates in situations such as those in Cases U1 

and U1G, the effect of varying bottomhole pressures needs to be investigated in an 

effort to determine the highest permissible pressure that can affect economically viable 

gas production without causing unacceptable deformation of the reservoir and well 

stability problems. 

• In the study of coupled depressurization and thermal stimulation in Cases T1 and T1G, 

a thorough sensitivity analysis (involving different well configurations, injection and 

production schedules and rates, and temperature and salinity of the injected water) is 
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needed to determine the technical feasibility and economic viability of gas production 

from the hydrate reservoir at this site.  

• More studies of problems with varying discretizations in each case are necessary to 

better understand the mesh influence on the production prediction and the overall 

system response. This is an issue that has barely been addressed in the study of 

hydrates. 
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E. Nägel, D. H. Kr öner, and M. M. Resch, High Performance Computing in Science 

and Engineering ’12, 435–449. Springer Berlin Heidelberg. 

Hughes, T. J. R. 1987. The Finite Element Method: Linear Static And Dynamic Finite 

Element Analysis. Englewood Cliffs: Prentice-Hall. 

Jin, G., Lei, H., Xu, T., Xin, X., Yuan, Y., Xia, Y., and Juo, J. 2018. Multiscale Fixed 

Stress Split Iterative Scheme for Coupled Flow and Poromechanics in Deep 

Subsurface Reservoirs. Marine and Petroleum Geology 92: 424–436. 

https://doi.org/10.1016/j.marpetgeo.2017.11.007. 

Karypis, G. and Kumar, V. 1998. Multilevelk-way Partitioning Scheme for Irregular 

Graphs. Journal of Parallel and Distributed Computing 48 (1): 96–129. 

https://doi.org/10.1006/jpdc.1997.1404. 

Karypis, G. and Kumar, V. 1999. Parallel Multilevel Series k-way Partitioning Scheme 

for Irregular Graphs. SIAM Review 41 (2): 278–300. 

https://doi.org/10.1137/S0036144598334138. 

Kim, J. and Moridis, G. J. 2012. Modeling And Numerical Simulation For Coupled Flow 

And Geomechanics In Composite Gas Hydrate Deposits. Paper presented at the 46th 

US Rock Mechanics/Geomechanics Symposium, Chicago, Illinois, USA. ARMA-

2012–297. 

Kim, J. and Moridis, G. J. 2013. Development of the T+M coupled flow-geomechanical 

simulator to describe fracture propagation and coupled flow-thermal-geomechanical 

processes in tight/shale gas systems. Computers & Geosciences 60: 184–198. 

https://doi.org/10.1016/j.cageo.2013.04.023. 

Kim, J. and Moridis, G. J. 2013. Gas Flow Tightly Coupled to Elastoplastic 

Geomechanics for Tight and Shale Gas Reservoirs: Material Failure and Enhanced 

Permeability. Paper presented at the SPE Americas Unconventional Resources 

Conference, Pittsburgh, Pennsylvania, USA. SPE-155640-MS. 

https://doi.org/10.2118/155640-MS. 

Kim, J., Tchelepi, H. A., and Juanes, R. 2011a. Stability, Accuracy, and Efficiency of 

Sequential Methods for Coupled Flow and Geomechanics. SPE Journal 16 (02): 

249–262. SPE-119084-PA. https://doi.org/10.2118/119084-PA. 

Kim, J., Tchelepi, H. A., and Juanes, R. 2011b.  Stability and Convergence of 

Sequential Methods for Coupled Flow and Geomechanics: Fixed-Stress and Fixed-

https://doi.org/10.1016/j.jngse.2015.12.030
https://doi.org/10.1016/j.marpetgeo.2017.11.007
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1137/S0036144598334138
https://doi.org/10.1016/j.cageo.2013.04.023
https://doi.org/10.2118/155640-MS
https://doi.org/10.2118/119084-PA


 

283 

 

Strain Splits. Computer Methods in Applied Mechanics and Engineering 200 (13–

16): 1591–1606. https://doi.org/10.1016/j.cma.2010.12.022. 

Kowalsky, M. B. and Moridis, G. J. 2007. Comparison of Kinetic and Equilibrium 

Reaction Models in Simulating the Behavior of Gas Hydrates in Porous Media, 

Journal of Energy Conversion and Management 48 (6): 1850–1863. 

https://doi.org/10.1016/j.enconman.2007.01.017. 

Lei, H., Xu, T., and Jin, G. 2015. TOUGH2Biot – A Simulator for Coupled Thermal-

Hydrodynamic-Mechanical Processes in Subsurface Flow Systems: Application to 

CO2 Geological Storage and Geothermal Development. Computers & Geosciences 

77: 8–19. https://doi.org/10.1016/j.cageo.2015.01.003. 

Li, G., Moridis, G. J., Zhang, K., and Li, X.-S. 2010. Evaluation of Gas Production 

Potential from Marine Gas Hydrate Deposits in Shenhu Area of the South China Sea. 

Energy & Fuels 24: 6018–6033. https://doi.org/10.1021/ef100930m. 

Liu, Y. Z., Liu, L. J., Leung, J. Y., and Moridis, G. J. 2020. Sequentially Coupled Flow 

and Geomechanical Simulation With a Discrete Fracture Model for Analyzing 

Fracturing Fluid Recovery and Distribution in Fractured Ultra-Low Permeability 

Gas Reservoirs. Journal of Petroleum Science and Engineering 189: 107042. 

https://doi.org/10.1016/j.petrol.2020.107042. 

Makogon, Y. 1997. Hydrates of Hydrocarbons. PennWell Publishing Company.  

McNamee, J. and Gibson, R. E. 1960a. Displacement Functions and Linear Transforms 

Applied to Diffusion through Porous Elastic Media. The Quarterly Journal of 

Mechanics and Applied Mathematics 13 (1): 98–111. 

https://doi.org/10.1093/qjmam/13.1.98. 

McNamee, J. and Gibson, R. E. 1960b. Plane Strain and Axially Symmetric Problems 

of the Consolidation of a Semi-Infinite Clay Stratum. The Quarterly Journal of 

Mechanics and Applied Mathematics 13 (2): 210–227. 

https://doi.org/10.1093/qjmam/13.2.210. 

McPhee, C., Reed, J., and Zubizarreta, I. 2015. Chapter 12 – Geomechanics Tests. In 

Developments in Petroleum Science, Vol. 64, 671–779. Elsevier. 

https://doi.org/10.1016/B978-0-444-63533-4.00012-3. 

Message Passing Interface Forum 2008. MPI: A Message-Passing Interface Standard, 

Version 2.2. International Journal of Supercomputer Applications 8.  

Moridis, G. J. 2003. Numerical Studies of Gas Production From Methane Hydrates. SPE 

Journal 8 (4): 359–370. SPE-87330-PA. https://doi.org/10.2118/87330-PA. 

Moridis, G. J. 2014. User's Manual for the Hydrate v1.5 Option of TOUGH+ v1.5: A 

Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. 

Lawrence Berkeley National Laboratory, Berkeley, California, USA. 

https://doi.org/10.1016/j.cma.2010.12.022
https://doi.org/10.1016/j.enconman.2007.01.017
https://doi.org/10.1016/j.cageo.2015.01.003
https://doi.org/10.1021/ef100930m
https://doi.org/10.1016/j.petrol.2020.107042
https://doi.org/10.1093/qjmam/13.1.98
https://doi.org/10.1093/qjmam/13.2.210
https://doi.org/10.1016/B978-0-444-63533-4.00012-3
https://doi.org/10.2118/87330-PA


 

284 

 

Moridis, G. J. 2016. User’s Manual of the Meshmaker v1.5 Code: A Mesh Generator 

for Domain Discretization in Simulations of the TOUGH+ and TOUGH2 Families 

of Codes. Lawrence Berkeley National Laboratory, Berkeley, California, USA. 

Moridis, G. J. and Pruess K. 2014. User's Manual for the TOUGH+ Core Code v1.5: A 

General-Purpose Simulator of Non-Isothermal Flow and Transport Through Porous 

and Fractured Media. Lawrence Berkeley National Laboratory, Berkeley, California, 

USA. 

Moridis, G. J. and Reagan, M. T. 2007a. Strategies for Gas Production From Oceanic 

Class 3 Hydrate Accumulations. Paper presented at the Offshore Technology 

Conference, Houston, Texas, USA, 30 April–3 May. OTC-18865-MS. 

https://doi.org/10.4043/18865-MS. 

Moridis, G. J. and Reagan, M. T. 2007b. Gas Production From Oceanic Class 2 Hydrate 

Accumulations. Paper presented at the Offshore Technology Conference, Houston, 

Texas, USA, 30 April–3 May. OTC-18866-MS. https://doi.org/10.4043/18866-MS. 

Moridis, G. J. and Reagan, M. T. 2011a. Estimating the Upper Limit of Gas Production 

From Class 2 Hydrate Accumulations in the Permafrost, 1: Concepts, System 

Description and the Production Base Case, Journal of Petroleum Science and 

Engineering 76: 194–201. https://doi.org/10.1016/j.petrol.2010.11.023. 

Moridis, G. J. and Reagan, M. T. 2011b. Estimating the Upper Limit of Gas Production 

From Class 2 Hydrate Accumulations in the Permafrost, 2: Alternative Well Designs 

and Sensitivity Analysis, Journal of Petroleum Science and Engineering 76: 124–

137. https://doi.org/10.1016/j.petrol.2010.12.001. 

Moridis, G. J. and Sloan, E. D. 2007a. Gas Production Potential of Disperse Low-

Saturation Hydrate Accumulations in Oceanic Sediments. Energy Conversion and 

Management 48 (6): 1834–1849. https://doi.org/10.1016/j.enconman.2007.01.023. 

Moridis, G. J., Collett, T. S., Boswell R., Kurihara M., Reagan M. T., Koh C., and Sloan 

E. D. 2009. Toward Production From Gas Hydrates: Current Status, Assessment of 

Resources, and Simulation-Based Evaluation of Technology and Potential, SPE 

Reservoir Evaluation & Engineering 12 (5): 745–771. SPE-114163-PA. 

https://doi.org/10.2118/114163-PA. 

Moridis, G. J., Kim, J., Reagan, M. T., and Kim, S. J. 2013. Feasibility of gas production 

from a gas hydrate accumulation at the UBGH2-6 site of the Ulleung basin in the 

Korean East Sea. Journal of Petroleum Science and Engineering 108: 180–210. 

https://doi.org/10.1016/j.petrol.2013.03.002. 

Moridis, G. J., Kowalsky, M. B., and Pruess, K. 2007b. Depressurization-Induced Gas 

Production From Class 1 Hydrate Deposits. SPE Reservoir Evaluation and 

Engineering 10 (5): 458–481. SPE-97266-PA. https://doi.org/10.2118/97266-PA. 

Moridis, G. J., Queiruga, A. F., and Reagan, M. T. 2019. Simulation of Gas Production 

from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, 

https://doi.org/10.4043/18865-MS
https://doi.org/10.4043/18866-MS
https://doi.org/10.1016/j.petrol.2010.11.023
https://doi.org/10.1016/j.petrol.2010.12.001
https://doi.org/10.1016/j.enconman.2007.01.023
https://doi.org/10.2118/114163-PA
https://doi.org/10.1016/j.petrol.2013.03.002
https://doi.org/10.2118/97266-PA


 

285 

 

Chemical and Geomechanical Processes Using TOUGH plus Millstone. Part 1: 

Numerical Modeling of Hydrates. Transport in Porous Media 128 (2): 405–430. 

https://doi.org/10.1007/s11242-019-01254-6. 

Moridis, G. J., Reagan M. T., Boyle, K. L., and Zhang, K. 2011a. Evaluation of the Gas 

Production Potential of Challenging Hydrate Deposits. Transport in Porous Media 

90: 269–299. https://doi.org/10.1007/s11242-011-9762-5.  

Moridis, G. J., Reagan, M. T., Queiruga, A.F., and Boswell, R. 2019. Evaluation of the 

Performance of the Oceanic Hydrate Accumulation at Site NGHP-02-09 in the 

Krishna-Godavari Basin During a Production Test and During Single and Multi-

Well Production Scenarios. Journal of Marine and Petroleum Geology 108: 660–

696. https://doi.org/10.1016/j.marpetgeo.2018.12.001. 

Moridis, G. J., Silpngarmlert, S., Reagan, M. T., Collett, T., and Zhang, K. 2011b. 

 Gas Production From a Cold, Stratigraphically-Bounded Gas Hydrate Deposit at 

the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: 

Implications of Uncertainties. Marine and Petroleum Geology 28: 517–534. 

https://doi.org/10.1016/j.marpetgeo.2010.01.005. 

Narasimhan, T. N. and Witherspoon, P. A. 1976. An Integrated Finite Difference 

Method for Analyzing Fluid Flow in Porous Media. Water Resources Research 12 

(1): 57–64. https://doi.org/10.1029/WR012i001p00057. 

Narasimhan, T. N., Witherspoon, P. A., and Edwards, A. L. 1978. Numerical Model for 

Saturated-Unsaturated Flow in Deformable Porous Media, part 2: The Algorithm. 

Water Resources Research 14 (2): 255–261. 

https://doi.org/10.1029/WR014i002p00255. 

Pan, F. 2009. Development and Application of a Coupled Geomechanics Model for a 

Parallel Compositional Reservoir Simulator. PhD dissertation, The University of 

Texas at Austin, Austin, Texas (Decemeber 2009). 

Peaceman, D.W. 1977. Fundamentals of Numerical Reservoir Simulation, Elsevier, 

Amsterdam, The Netherlands. 

Queiruga, A. F., Moridis, G. J., and Reagan, M. T. 2019. Simulation of Gas Production 

from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, 

Chemical and Geomechanical Processes Using TOUGH plus Millstone. Part 2: 

Geomechanical Formulation and Numerical Coupling. Transport in Porous Media 

128 (1): 221–241. https://doi.org/10.1007/s11242-019-01242-w. 

Reagan, M. T., Moridis, G. J., Freeman, C. M., Boyle, K. L, and Keen, N. D. 2013. 

Massively Parallel Simulation of Production from Oceanic Gas Hydrate Deposits. 

Paper presented at the International Petroleum Technology Conference, 26–28 

March, Beijing, China. IPTC-17026-MS. https://doi.org/10.2523/IPTC-17026-MS. 

Reagan, M. T., Queiruga, A. F., and Moridis, G. J. 2019. Simulation of Gas Production 

from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, 

https://doi.org/10.1007/s11242-019-01254-6
https://doi.org/10.1007/s11242-011-9762-5
https://doi.org/10.1016/j.marpetgeo.2018.12.001
https://doi.org/10.1016/j.marpetgeo.2010.01.005
https://doi.org/10.1029/WR012i001p00057
https://doi.org/10.1029/WR014i002p00255
https://doi.org/10.1007/s11242-019-01242-w
https://doi.org/10.2523/IPTC-17026-MS


 

286 

 

Chemical and Geomechanical Processes Using TOUGH plus Millstone. Part 3: 

Production Simulation Results. Transport in Porous Media 129 (1): 179–202. 

https://doi.org/10.1007/s11242-019-01283-1. 

Rutqvist, J. 2017. An Overview of TOUGH-based Geomechanics Models. Computers 

& Geosciences 108: 56–63. https://doi.org/10.1016/j.cageo.2016.09.007. 

Rutqvist, J. and Moridis, G. J. 2009. Numerical Studies on the Geomechanical Stability 

of Hydrate-Bearing Sediments. SPE Journal 14 (2): 267–282. SPE-126129-PA. 

https://doi.org/10.2118/126129-PA. 

Rutqvist, J. and Tsang, C.-F. 2002. A Study of Caprock Hydromechanical Changes 

Associated with CO2 Injection into a Brine Aquifer. Environmental Geology 42: 

296–305. https://doi.org/10.1007/s00254-001-0499-2. 

Rutqvist, J., Wu, Y.-S., Tsang, C.-F., and Bodvarsson G. 2002. A Modeling Approach 

for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in 

Fractured Porous Rock. International Journal of Rock Mechanics and Mining 

Sciences 39 (4): 429–442. https://doi.org/10.1016/S1365-1609(02)00022-9. 

Terzaghi,  K. and Peck R. B. 1948. Soil Mechanics in Engineering Practice, second 

edition. New York: John Wiley and Sons. 

Tuminaro, R. S., Heroux, M., Hutchinson, S. A., and Shadid J. N. 1999. Official Aztec 

User’s Guide, Ver 2.1, Massively Parallel Computing Research Laboratory, Sandia 

National Laboratories, Albuquerque, New Mexico, USA. 

Wang, B. 2014. Parallel Simulation of Coupled Flow and Geomechanics in Porous 

Media. PhD dissertation, The University of Texas at Austin, Austin, Texas 

(Decemeber 2014). 

Zhang, K., Wu, Y.-S., and Pruess, K. 2008. User's Guide for TOUGH2-MP – A 

Massively Parallel Version of the TOUGH2 Code. Lawrence Berkeley National 

Laboratory, Berkeley, California, USA. 

Zhao, N. 2012. Integration of Reservoir Simulation and Geomechanics. PhD 

dissertation, The University of Utah, Salt Lake City, Utah, (May 2008). 

Zienkiewicz O. C., Taylor R. L., and Zhu J. Z. 2005. The Finite Element Method: Its 

Basis and Fundamentals, sixth edition. Elsevier Butterworth-Heinemann. 

https://doi.org/10.1007/s11242-019-01283-1
https://doi.org/10.1016/j.cageo.2016.09.007
https://doi.org/10.2118/126129-PA
https://doi.org/10.1007/s00254-001-0499-2
https://doi.org/10.1016/S1365-1609(02)00022-9

