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ABSTRACT

Video understanding aims to automatically detect objects of interest from videos and recognize

the scene, actions, content, or attributes. Some well-known tasks defined on videos include human

action recognition, human action spatio-temporal localization (a.k.a, action detection), and text

spotting. We improve the existing performance-driven approaches for video understanding tasks

in three aspects: privacy in data sharing, simplicity in model design, and efficiency in hardware de-

ployment. For privacy-aware data sharing, we formulate a novel adversarial training framework to

learn an anonymization transform for input videos such that the trade-off between target utility task

performance and the associated privacy budgets is explicitly optimized on the anonymized videos.

Given few public datasets available with both utility and privacy labels, we constructed a new

dataset, termed PA-HMDB51, with both target task labels (action) and selected privacy attributes

(skin color, face, gender, nudity, and relationship) annotated on a per-frame basis. For efficiency-

driven hardware deployment, we propose a multi-stage image processor that takes videos’ re-

dundancy, continuity, and mixed degradation into account. The model is pruned and quantized

in a hardware-friendly way to save energy consumption further. Our proposed energy-efficient

video text spotting solution outperforms all previous methods by achieving a competitive trade-off

between energy efficiency and performance. For simplicity-guided model design, we develop a

new paradigm for video action detection using Transformers, which effectively removes the need

for such specialized components and achieves superior performance. Without using pre-trained

person/object detectors, RPN, or memory bank, our Transformer-based Video Action Detector

(TxVAD) utilizes two types of Transformers to capture scene context information and long-range

spatio-temporal context information, for person localization and action classification, respectively.
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1. INTRODUCTION∗

1.1 Background and Motivation

Video understanding, a key functionality of intelligent video systems, automatically detects ob-

jects of interest from videos and recognizes the scene, actions, content, or attributes. For example,

in video action detection, where the objects of interest are persons, the goal is to localize persons

and recognize their actions in space and time. Likewise, in video text spotting, where the objects

of interest are texts, the goal is to localize texts and recognize their content in space and time.

We improve the existing performance-driven approaches for video action detection or video

text spotting in three aspects: data sharing privacy, model design simplicity, and hardware deploy-

ment efficiency.

1.1.1 Privacy

Due to the computationally demanding nature of video-based recognition tasks, only some of

the tasks can run on the resource-limited local devices, which makes transmitting (part of) data to

the cloud necessary. Such a data sharing scenario has raised growing concern about the potential

privacy risk caused by malicious third parties’ misusing the data. Therefore, the objective of

privacy-aware data sharing is to alleviate privacy concerns without compromising data utility.

1.1.2 Simplicity

Video action detection solutions are growing to be more and more sophisticated by adopting

many specialized components, e.g., pretrained person/object detectors, region proposal network,

memory bank, and so on. The adoption of many specialized components has made video ac-

∗Part of this chapter is reprinted with permission from “Privacy-Preserving Deep Action Recognition:
An Adversarial Learning Framework and A New Dataset” [1] by Z. Wu, H. Wang, Z. Wang, H. Jin, and
Z. Wang, IEEE Transactions on PatternAnalysis and Machine Intelligence, Copyright 2020 by IEEE. DOI:
https://doi.org/10.1109/TPAMI.2020.3026709. And part of this chapter is reprinted with permission from “Towards
Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study” [3] by Z. Wu, Z. Wang, Z. Wang, and
H. Jin, Proceedings of the European Conference on Computer Vision, Pages 605-624, Copyright 2018 by Springer.
And part of this chapter is reprinted with permission from “E2VTS: Energy-Efficient Video Text Spotting From Un-
manned Aerial Vehicles” [2] by Z. Hu, P. Pi, Z. Wu, Y. Xue, J. Shen, J. Tan, X. Lian, Z. Wang, and J. Liu, Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Pages 905-913, 2021.
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Figure 1.1: Overview of video understanding steps (problem definition, dataset selection, data
preparation, and model design) and underlying principles (computational performance, data pri-
vacy, model simplicity, and energy efficiency.

tion detection model gigantic and conceptually highly sophisticated. The objective of simplified

model design is to pursue a general, conceptually simple, and sufficiently versatile architecture and

achieve even better performance.

1.1.3 Efficiency

Video text spotting system is usually deployed on edge devices, e.g., mobile phones or un-

manned aerial vehicles. Existing solutions are solely performance-driven and fail to take energy

consumption into account. A standard pipeline for video text spotting has four stages: text de-

tector, text recognizer, text tracker, and post-processing. The energy-efficient model design aims

to design a data processor that utilizes video redundancy, continuity, and mixed degradation for

energy-saving purposes.
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1.2 Thesis Contributions

1.2.1 Privacy

We take one of the first steps towards addressing this challenge of privacy-preserving, video-

based action recognition, via the following contributions:

• A General Adversarial Training and Evaluation Framework. We address the privacy-

preserving action recognition problem with a novel adversarial training framework. The

framework explicitly optimizes the trade-off between target utility task performance and

the associated privacy budgets by learning to anonymize the original videos. To reduce

the training instability, we design and compare three different optimization strategies. We

empirically find that one strategy generally outperforms the others under our framework and

provide intuitive explanations.

• Practical Approximations of “Universal” Privacy Protection. The privacy budget in our

framework cannot be defined w.r.t. one model that predicts privacy attributes. Instead, the

ideal privacy protection must be universal and model-agnostic, i.e., preventing every possible

attacker model from predicting private information. To resolve this so-called “∀ challenge”,

we propose two effective strategies, i.e., restarting and ensembling, to enhance the general-

ization capability of the learned anonymization to defend against unseen models. We leave

it as our future work to find better methods for this challenge.

• A New Dataset with Action and Privacy Annotations. When evaluating privacy pro-

tection on complicated privacy attributes, there is no off-the-shelf video dataset with both

action (utility) and privacy attributes annotated, either for training or testing. Such a dataset

challenge is circumvented in our previous work [3] by using the VISPR [4] dataset as an

auxiliary dataset to provide privacy annotations for cross-dataset evaluation (details in Sec-

tion 3.6). However, this protocol inevitably suffers from the domain gap between the two

datasets: while the utility was evaluated on one dataset, the privacy was measured on a dif-

ferent dataset. The incoherence in utility and privacy evaluation datasets makes the obtained
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utility-privacy trade-off less convincing. To reduce this gap, in this paper, we construct the

very first testing benchmark dataset, dubbed Privacy-Annotated HMDB51 (PA-HMDB51),

to evaluate privacy protection and action recognition on the same videos simultaneously.

The new dataset consists of 515 videos originally from HMDB51. For each video, privacy

labels (five attributes: skin color, face, gender, nudity, and relationship) are annotated on a

per-frame basis. We benchmark our proposed framework on the new dataset and justify its

effectiveness.

1.2.2 Efficiency

We propose an Energy-Efficient Video Text Spotting solution, dubbed as E2VTS. The contri-

butions of E2VTS are summarized as follows:

• Novel Training & Inference Strategies. To obtain better text spotting performance, we re-

visit RCNN and empirically find that crop and resize outperforms aligned RoI Pooling when

connecting the text recognizer with the text detector. To further save energy consumption, we

propose a multi-stage image processor to select the highest-quality frame in a sliding win-

dow, reject text-free frames as well as crop non-text regions, and reject out-of-distribution

frames.

• Practical Evaluation. Given a real-world video text spotting dataset for evaluation and a

Raspberry Pi for model deployment, we conducted thorough ablation studies on the proposed

training and inference strategies. The evaluation metric takes both energy consumption and

text spotting performance into consideration. Models are pruned and quantized before being

deployed on Pi.

1.2.3 Simplicity

We present a new paradigm for video action detection using a Transformer based architecture.

Our proposed Transformer-based Video Action Detector (TxVAD) simplifies the video action de-

tection pipeline, which drops multiple specialized components, including pretrained person/object
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detectors, RPN, and memory bank. It requires no customized layer beyond existing standard li-

braries. The contributions of TxVAD are outlined below:

• Framework. TxVAD carries out an ambitious attempt to solve video action detection using

a Transformer based paradigm. Notably, it relies purely on two spatio-temporal Transform-

ers of encoder-decoder architecture for person localization and action classification, respec-

tively. TxVAD fully relies on the self-attentions and cross-attentions to explicitly model all

pairwise interactions between spatio-temporal elements in videos.

• Training. We find training such an end-to-end Transformer architecture on the giant video

datasets highly challenging, similarly as reported. To remove that hurdle, we first design

a hardness-aware curriculum training strategy leveraging the naturally different “semantic

difficulty levels” of video action categories (person pose, person-person interactions, and

person-object interactions). That strategy substantially stabilizes TxVAD’s training.
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1.3 Related Work

1.3.1 Videos Understanding Related Tasks

1.3.1.1 Action Recognition

Action recognition is a fundamental task in video understanding that recognizes human ac-

tions based on the complete action execution in trimmed videos. Many datasets [5–12] have been

released to promote research in video action recognition. Temporal Modeling is the key factor

in designing deep networks. There are roughly three type of architectures in temporal model-

ing: ConvNet+LSTM [13–15], 3D ConvNets [16–19], and Two-Stream Networks [20,21]. Action

recognition has focused on trimmed video clips, i.e., classifying a short clip into action classes.

However, most videos involve multiple people performing multiple actions across different space

and time.

1.3.1.2 Action Detection

Spatio-temporal video action detection requires localizing persons and recognizing their ac-

tions in space and time from video sequences, including person pose actions, person-object inter-

action actions, and person-person interaction actions. Below we briefly review a few representative

approaches.

STEP [22] is a progressive learning framework that consists of spatial refinement and temporal

extension, which iteratively refines the coarse cuboid proposals towards action locations and in-

corporates longer-range temporal information to improve action classification. STAGE [23] learns

relations between actors and objects by self-attention operations over a spatiotemporal graph rep-

resentation of the video. VideoCapsuleNet is a simple end-to-end 3D capsule network that jointly

performs pixel-wise segmentations of actions and action classification. HISAN [24] combines the

two-stream CNN with a hierarchical bidirectional self-attention mechanism that captures long-term

temporal dependency and spatial context information to improve action localization. In addition,

motion saliency captured by optical flow is fused to enhance the motion information. LFB [25]

introduces a long-term feature bank that stores long-term supportive memory extracted over the
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entire video. SlowFast Networks [18] involve a slow pathway operating at low frame rates to cap-

ture spatial semantic information, and a lightweight fast pathway operating at high frame rates

to capture rapid motion better. Recently, Context-Aware RCNN [26] enlarges the resolution of

small actor boxes by cropping and resizing instead of RoI-Pooling, also extracting scene con-

text information aided by LFB. AIA [27] leverages an interaction aggregation structure and an

asynchronous memory update algorithm to efficiently model very long-term interaction dynamics.

ACAR-Net [28] learns to reason high-order relations actor-context-actor relations using relational

feature bank to preserve spatial contexts. All above methods, albeit effective, heavily hinge on var-

ious specially crafted components such as region proposals, memory banks, or relation reasoning.

1.3.1.3 Text Reading in Images

Scene Text Detection. 1. Object Detection-based Methods: Inspired by SSD, TextBoxes [29]

and TextBoxes++ [30] detected text by directly predicting word bounding boxes with quadrilat-

erals via multiple Text-box layers at different scales. TextBoxes, a horizontal text detector, was

extended to handle arbitrary-oriented text in TextBoxes++. EAST [31] followed DenseBox [32] to

generate multiple channels of pixel-level text score maps and geometry and adopted the U-shaped

design [33] to integrate features from different levels. RRPN and RRoI pooling [34] were pro-

posed to generate rotated region proposals and project the proposals to feature maps. LOMO [35]

came with an iterative refinement module to revise the predicted position of text instances and a

shape expression module to obtain tight representation for irregular text by considering its geome-

try properties. Similarly, Wang et al. [36] proposed an arbitrary shape scene text detection method

using RNN-based adaptive text region representation. 2. Sub-Text Components-based Methods:

Text detection is different from generic object detection in the homogeneity and locality of text

instances; i.e., any part of a text instance is still text.

• Pixel-level Methods. PixelLink [37] predicted whether two adjacent pixels belong to the

same text instance by adding extra output channels to indicate links between adjacent pixels.

Border learning [38] casted each pixel into three classes: text, border, and non-text, under

the assumption that the border can well separate text instances. Shape-Aware Loss [39] was
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proposed to ease the separation of adjacent instances and detection of long or large instances,

based on the scales and adjacency of text instances. PSENet [40] adopted a progressive

scale expansion algorithm to gradually expand the detected instances from small to large

and complete instances via multiple semantic segmentation maps.

• Component-level Methods. CTPN [41] developed a vertical anchor mechanism to jointly

predict the location and text/non-text score of each fixed-width proposal, and a recurrence

mechanism to connect sequential text proposals in the convolutional feature maps. SegLink [42]

first decomposed text into two locally detectable elements: segment (i.e., an oriented box

covering partial word or text line) and link (i.e., an indication of two adjacent segments’

belong to the same word or text line), and then detected these two elements densely at mul-

tiple scales. CRAFT [43] localized the individual character regions and linked the detected

characters to text instances. However, CRAFT required character-level annotations that were

mostly unavailable in real-world datasets.

Scene Text Recognition. There are two major strategies in decoding text content from image

encoded features from CNN, Connectionist Temporal Classification (CTC) [44] and the encoder-

decoder framework [45]. 1. CTC-based Methods: CRNN [46] stacked multiple bidirectional

LSTMs on top of convolutional layers and used CTC for training and inference. Yin et al. [47]

simultaneously detected and recognized characters by sliding the text line image with character

models learned end-to-end on text line images labeled with text transcripts. 2. Encoder-Decoder

Methods: R2AM [48] was a sequential attention-based modeling mechanism that performs “soft”

deterministic image feature selection as the character sequence being decoded from RNNs for

language modeling. Edit Probability (EP) [49] handled the misalignment between the ground-

truth string and the attention’s output sequence of the probability distribution, by considering the

possible occurrences of missing/superfluous characters.

Scene Text Spotting. 1. Regular-shaped Text: Li et al. [50, 51] proposed the first deep learning-

based end-to-end trainable scene text spotting method by incorporating RoI Pooling [52] to join the

detection and recognition stage, but it could only spot horizontal text. Deep TextSpotter [53] could
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handle multi-orientation text instances, but it didn’t have a sharable feature. Thus, minimizing the

recognition loss would have no influence on the former detection stage. End-to-End TextSpot-

ter [54] and FOTS [55] adopted an anchor-free mechanism to improve both the training and in-

ference speed. They use two similar sampling strategies, i.e., Text-Alignment and RoI-Rotate, to

extract features from arbitrary-oriented quadrilateral detection results. 2. Arbitrary-shaped Text:

Mask TextSpotter [56–58] used character-level supervision to simultaneously detect and recog-

nize characters and instance masks. Nonetheless, the character-level ground truths are expensive,

thus mostly unavailable for real data. RoI Masking [59] cropped out the features from the pre-

dicted axis-aligned rectangular bounding boxes and multiplied the features with the corresponding

instance segmentation mask. TextDragon [60] proposed RoISlide to transform the whole text fea-

tures into axis-aligned features indirectly by transforming each local quadrangle sequentially. As

the first one-stage text spotting method, CharNet [61] directly outputted bounding boxes of words,

with corresponding character labels. An iterative character detection was proposed to transfer the

character detection capability learned from synthetic data to real-world images. ABCNet [62]

adaptively fitted arbitrarily-shaped text by a parameterized Bezier curve and used BezierAlign

layer to extract accurate convolution features. CRAFTS [63] used the character region feature

from the detector as input character attention to the recognizer.

1.3.1.4 Text Reading in Videos

Text Detection & Tracking. Wang et al. [64] proposed a multi-scale feature sampling and warping

network on adjacent frames, and an attention-based multi-frame feature aggregation mechanism

to fuse the complementary text features from related frames. Wu et al. [65] explored Delaunay

triangulation to detect and track texts. The triangular mesh pattern reflects text properties, such

as regular spacing between characters and constant stroke width, thus distinguishable from non-

text. Yang et al. [66] combined single-frame detection with cross-frame motion-based tracking.

The text association was formulated into a cost-flow network. Tian et al. [67] located character

candidates locally and searched text regions globally. Specifically, a multi-strategy tracking-based

text detection approach [68] was used to globally search and select the best text region with dy-
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namic programming. Wang et al. [69] proposed a fully convolutional model based on a novel

refine block structure, which refines the low-resolution semantic features with the high-resolution

low-level features.

End-to-End Text Spotting. Wang et al. [70] proposed a multi-frame tracking-based method,

where text detection and recognition are done on each frame before recognized texts are tracked

over the video sequence. FREE [71,72] proposed a text recommender to select the highest-quality

text from text streams for recognizing and released a large-scale video text spotting dataset.

1.3.2 Data Privacy

1.3.2.1 Privacy-Related Machine Learning Problems

According to a survey by Liu et al. [73], privacy-related machine learning problems could be

categorized by the roles of machine learning: protection target, attack tool, and protection tool.

i) ML as protection target: the privacy concerns include the model parameters and structures that

serve as commercial and intellectual property. When the machine learning model is protected,

the adversary can only query the model on the inputs through an interface. ii) ML as attack tool:

the attack models include re-identification attacks and inference attacks on target users’ private

information. iii) ML as a protection tool: ML has been used for privacy risk assessment and

private data release.

1.3.2.2 Data Privacy Protection in Computer Vision

With pervasive cameras for surveillance or smart home devices, visual data privacy has drawn

increasing interest from industry and academia.

Differential Privacy Differential privacy [74–78] gives a rigorous cryptographically-motivated

privacy guarantee for statistical databases that allows users to query statistical aggregates without

leak of any individual record. Specifically, two datasets x and x′ are neighbors if they have dif-

ference only in one element. Given a privacy loss budget ε > 0 and a probability δ ∈ [0, 1], a

randomized function Ã : X → Z guarantees (ε, δ)-approximate differential privacy, if ∀Z ⊂ Z
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and ∀ paired x, x′ that are neighbors of each other:

P(Ã(x) ∈ Z) ≤ eεP(Ã(x′ ∈ Z)) + δ. (1.1)

If δ = 0, (ε, 0)-approximate differential privacy is shortened to ε-differential privacy. δ is inter-

preted as the probability of ε-differential privacy guarantee’s failing. Intuitively speaking, differ-

ential privacy guarantees that even though some adversary knows the whole dataset x except for a

single item, no more information could be obtained from the unknown item from the output of Ã,

thus making two datasets different in only one element statistically indistinguishable. A practice

for turning a non-private function A into a private function Ã is perturbation by additive noise.

Differential privacy can also be defined for function valued data [79] as output and possibly in-

put. However, differential privacy is not resistant to inference attacks, as differential privacy only

prevents any adversary from acquiring extra knowledge by adding or removing some individual

record, and not from gaining knowledge from the released data itself. Preventing inference attacks

is task-dependent and is given in expectation rather than in a deterministic way. Therefore its

privacy guarantee is weaker than differential privacy [80].

Forgetting / Unlearning. Cao & Yang [81] introduced the problem of forgetting/unlearning as a

remedy that restores the machine learning model’s privacy, security, and usability with a minimum

amount of effort. Ginart et al. [82] proposed two efficient data deletion solutions for k-means

clustering with solid theoretical guarantees. DeltaGrad [83] was proposed for rapid and efficient

retraining when training data has slight changes (e.g., deletion or addition of samples) by differenti-

ating the optimization path with the Quasi-Newton method, based on cached model parameters and

gradients. Inspired from distributed training and ensemble learning, SISA (short for Sharded, Iso-

lated, Sliced, and Aggregated training) [84] replaced the model to be learned several times where

each replica (a.k.a. constituent model) was fed with a disjoint shard of the dataset, and there was no

information flow between constituent models, i.e. no shared gradient. Influence function [85, 86]

in robust statistics was an analytical tool that measured the effect (or “influence”) of upweighting
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a training point by an infinitesimal amount on the value of a statistic without recalculation. Un-

der the assumption of twice-differentiability and strictly convexity, Koh & Liang [87] scaled-up

influence function to modern machine settings as an asymptotic approximation of leave-one-out

retraining. Influence function estimated the effect of upweighting or perturbing a training sample

in a closed-form. Linear filtration [88] sanitized classification models by hiding the information

related to some classes for unlearning from the output logits, without removing the information in

the full model weights.

Transmitting Feature Descriptors. A seemingly reasonable and computationally cheaper option

is to extract feature descriptors from raw images and transmit those features only. Unfortunately,

previous studies [89–93] revealed that considerable details of original images could still be recov-

ered from standard HOG, SIFT, LBP, 3D point clouds, Bag-of-Visual-Words or neural network

activations (even if they look visually distinctive from natural images).

Homomorphic Cryptographic Solutions. Most classical cryptographic solutions secure commu-

nication against unauthorized access from attackers. However, they are not immediately applicable

to preventing authorized agents (such as the back-end analytics) from the unauthorized abuse of

information, causing privacy breach concerns. A few encryption-based solutions, such as Ho-

momorphic Encryption (HE) [94, 95], were developed to locally encrypt visual information. The

server can only get access to the encrypted data and conduct a utility task on it. However, many

encryption-based solutions will incur high computational costs at local platforms. It is also chal-

lenging to generalize the cryptosystems to more complicated classifiers. Chattopadhyay et al. [96]

combined the detection of regions of interest and the real encryption techniques to improve privacy

while allowing general surveillance to continue.

Anonymization by Empirical Obfuscations. An alternative approach towards a privacy-preserving

vision system is based on the concept of anonymized videos. Such videos are intentionally cap-

tured or processed by empirical obfuscations to be in special low-quality conditions, which only

allow for recognizing some target events or activities while avoiding the unwanted leak of the

identity information for the human subjects in the video.
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Ryoo et al. [97] showed that even at the extremely low resolutions, reliable action recogni-

tion could be achieved by learning appropriate downsampling transforms, with neither unrealis-

tic activity-location assumptions nor extra specific hardware resources. The authors empirically

verified that conventional face recognition easily failed on the generated low-resolution videos.

Butler et al. [98] used image operations like blurring and superpixel clustering to get anonymized

videos, while Dai et al. [99] used extremely low resolution (e.g., 16 × 12) camera hardware to

get anonymized videos. Winkler et al. [100] used cartoon-like effects with a customized ver-

sion of mean shift filtering. Wang et al. [101] proposed a lens-free coded aperture (CA) camera

system, producing visually unrecognizable and unrestorable image encodings. Pittaluga & Kop-

pal [102, 103] proposed to use privacy-preserving optics to filter sensitive information from the

incident light-field before sensor measurements are made, by k-anonymity and defocus blur. Ear-

lier work of Jia et al. [104] explored privacy-preserving tracking and coarse pose estimation using

a network of ceiling-mounted time-of-flight low-resolution sensors. Tao et al. [105] adopted a net-

work of ceiling-mounted binary passive infrared sensors. However, both works [104,105] handled

only a limited set of activities performed at specific constrained areas in the room.

The usage of low-quality anonymized videos by obfuscations was computationally cheap and

compatible with sensor’s bandwidth constraints. However, the proposed obfuscations were not

learned towards protecting any visual privacy, thus having limited effects. In other words, pri-

vacy protection came as a “side product” of obfuscation, and was not a result of any optimization,

making the privacy protection capability very limited. What is more, the privacy-preserving effects

were not carefully analyzed and evaluated by human study or deep learning-based privacy recogni-

tion approaches. Lastly, none of the aforementioned empirical obfuscations extended their efforts

to study deep learning-based action recognition, making their task performance less competitive.

Similarly, the recent progress of low-resolution object recognition [106–108] also put their privacy

protection effects in jeopardy.

Learning-based Solutions. Very recently, a few learning-based approaches have been proposed

to address privacy protection or fairness problems in vision-related tasks [3, 109–117]. Many
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of them exploited ideas from adversarial learning. They addressed this problem by learning data

representations that simultaneously reduce the budget cost of privacy or fairness while maintaining

the utility task performance.

Wu et al. [109] proposed an adversarial training framework dubbed Nuisance Disentangled

Feature Transform (NDFT) to utilize the free meta-data (i.e., altitudes, weather conditions, and

viewing angles) in conjunction with associated UAV images to learn domain-robust features for

object detection. Pittaluga et al. [111] preserved the utility by maintaining the variance of the

encoding or favoring a second classifier for a different attribute in training. Bertran et al. [112]

motivated the adversarial learning framework as a distribution matching problem and defined the

objective and the constraints in mutual information. Roy & Boddeti [113] measured the uncertainty

in the privacy-related attributes by the entropy of the discriminator’s prediction. Oleszkiewicz et

al. [118] proposed an empirical data-driven privacy metric based on mutual information to quantify

the privatization effects on biometric images. Zhang et al. [114] presented an adversarial debiasing

framework to mitigate the biases concerning demographic groups. Ren et al. [115] learned a

face anonymizer in video frames while maintaining the action detection performance. Shetty et

al. [116] presented an automatic object removal model that learns how to find and remove objects

from general scene images via a generative adversarial network (GAN) framework.

1.3.2.3 Data Privacy Protection in Social Media/Photo Sharing

User privacy protection is also a topic of extensive interest in social media, especially for photo

sharing. The most common means to protect user privacy in an uploaded photo is to add empirical

obfuscations, such as blurring, mosaicing, or cropping out certain regions (usually faces) [119].

However, extensive research showed that such an empirical approach could be easily hacked [120,

121].

Adversarial Examples. Human-imperceptible privacy protection against machines [122,123] de-

scribed a game-theoretical system where the photo owner and the privacy attributes recognition

model as attacker strived for antagonistic goals of disabling the inference attack, and impercepti-

ble obfuscation could be learned from their competition. Shen et al. [123] proposed the “human
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sensitivity map” that visually encoded different levels of human sensitivity to visual changes within

an image. The proposed sensitivity-aware perturbation on the image could prevent machines from

predicting the suppressed attributes while preserving the targeted attributes (e.g., “contain focused

object”, “aesthetic”, and “pleasant”). However, their system was limited in three aspects. Firstly,

the obfuscation was designed to confuse one specific recognition model via finding its adversarial

perturbations. Fooling only one recognition model can cause obvious overfitting as merely chang-

ing to another recognition model will likely put the learning efforts in vain. Secondly, although

the obfuscator can generate adversarial examples to confuse the attacker, the attacker can use

the adversarial training to increase the robustness of the learned recognition model. Lastly, such

model-specific perturbations cannot even protect privacy from human eyes. Thus, the problem

setting in [122] differs from our target problem. Specifically, in social photo sharing, the privacy

protection mechanism was expected to generate minimum perceptual quality loss to photos, so

that the changes are imperceptible to humans. In comparison, there is no such constraint in our

scenario. We can apply a more flexible and aggressive transformation (even degradation) to the

image to achieve universal and model-agnostic privacy protection.

Privacy-Annotated Benchmarks. The visual privacy issues faced by blind people were revealed

in VizWiz-Priv [124] that included images taken by blind people. PicAlert [125] was a privacy-

aware image tool with privacy-oriented image search functionality. The privacy level was judged

by the title, tags, and visual features. The associated dataset had 26, 458 images, among which

22, 807 were labeled as public and 3, 651 were private. YourAlert proposed a personalized privacy

classification model, together with a dataset containing 1, 511 images. Concrete privacy attributes

were defined in [4] with their correlation with image content. The authors categorized possible

private information in images, and they ran a user study to understand privacy preferences. They

then provided a sizable set of 22k images, dubbed as Visual Privacy (VISPR). VISPR is annotated

with 68 privacy attributes, on which they trained privacy attributes predictors. Orekondy et al. [126]

further curated VISPR to include 8.5k images and annotated them with pixel and instance level

labels over 24 privacy attributes. The proposed approach of redaction by segmentation enabled
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users to selectively sanitize images of private content.

1.3.3 Implementation Efficiency

1.3.3.1 Compact Model Design

Deep Convolutional Neural Networks are often over-parameterized. Many works aim to reduce

the model size and computational complexity, such as SqueezeNet [127], MobileNet [128, 129],

ShuffleNet [130, 131], EfficientNet [132], and FBNet [133]. SqueezeNet proposed a fire module

that first “squeezes” the network with 1 × 1 convolution filters and then expanded it with multi-

ple 1 × 1 and 3 × 3 convolution filters. MobileNet V1 factorized the standard convolution into

a depthwise convolution (i.e., applied only on one of the input channels) followed by a pointwise

convolution (i.e., 1×1 filters). MobileNet V2 presented a inverted residual module with linear bot-

tleneck block operator that is composed of three operators: a linear transformation for upsampling,

a non-linear per-channel transformation, and a linear transformation for downsampling. Shuf-

fleNet V1 utilized pointwise group convolution and channel shuffle to reduce computation cost

while maintaining performance. ShuffleNet V2 derived multiple practical guidelines for efficient

network design, which includes using balanced convolution, reducing group convolution, mitigat-

ing network fragmentation, and reducing element-wise operations. Unlike ResNet’s scalablity in

depth and MobileNet’s scalability in width, EfficientNet [132] uniformly scaled all dimensions of

depth/width/resolution using a compound coefficient. FBNet was discovered by a differentiable

neural architecture search framework for ConvNet design.

1.3.3.2 Model Compression

Parameter Pruning Deep Compression [134] was a three-stage pipeline that prune the network

by removing the redundant connections, quantize the weights by clustering for weight sharing,

and apply Huffman coding to encode the code book. For pruning, there are five different levels of

granularity: element-wise, channel-wise, shape-wise, filter-wise and layer-wise. Pruning has three

steps: selecting parameters, pruning the neurons, and fine-tuning or retraining. Based on the obser-

vation that weights with higher magnitude have larger influence on the model’s output compared
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with weights with smaller magnitude, magnitude-based pruning methods seek to identify unnec-

essary weights or features to remove them from runtime inference. Very early attempt of Optimal

Brain Damage [135] and Optimal Brain Surgeon [136] reduced the number of connections based

on the Hessian of the loss function. Although methods based on Hessian pruning deliver better per-

formance than those pruned with only magnitude-based methods, computing the Hessian matrix

during training for large models is infeasible as it has the complexity of O(W 2). Besides mag-

nitude of weights, Average Percentage of Zeros (APoZ) [137] could be an indicator to prune the

corresponding weights. In penalty-based pruning, a penalty value is used to update the weights to

zero or near zero values. LASSO shrinks the least absolute valued feature’s corresponding weights,

thus increasing sparsity. Group LASSO [138] used a structured pruning method to remove entire

groups of neurons while maintaining network structure. Structured Sparsity Learning [139] split

weights into multiple groups based on geometry, computational complexity, and group sparsity.

Network slimming [140] applied LASSO on the scaling factor of BN, so that setting the scaler

by zero enabled channel-wise pruning. Sparse structure selection [141] applied LASSO to sparse

scaling factors in neurons, groups, or residual blocks with an improved gradient descent method,

dubbed as Accelerated Proximal Gradient (APG).

Quantization Quantization is known as the process of approximating a continuous signal distri-

bution by a set of discrete values. Clustering and parameter sharing in Deep Compression [134]

is a typical example of quantization. If categorized by whether considering quantization during

training, quantization could be categorized into two areas: quantization-aware training and post-

training quantization (PTQ). Moreover, quantization could be categorized by the granularity of

data being grouped: layer-wise and channel-wise. Quantization could further be categorized based

on bit-width.

1.3.3.3 Dynamic Inference

Dynamic neural networks [142], as opposed to static ones, can adapt the structures or compu-

tational graph to the input data during inference. The major advantage of a dynamic network is

the capability of allocating computation on demand by selectively activating model components
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conditioned on the input. As a result, less computation cost is put on easy samples, and more cost

is put on hard ones. Besides efficiency, dynamic networks are known for adaptiveness by achieving

the desired trade-off between accuracy and efficiency in response to the different hardware plat-

forms and application scenarios. Last but not least, making a neural network dynamic improves its

interpretability. Specifically, it is possible to figure out the data-dependent activated components

and observe what specific parts of the input are accountable for certain predictions.

1.3.4 Pipeline Simplicity

1.3.4.1 Transformers for Computer Vision

The Transformer architecture has become the de-facto standard for natural language processing

tasks [143, 144] . Its end-to-end philosophy has led to significant advances in complex structured

prediction tasks such as machine translation or speech recognition. Nevertheless, its popularity

among computer vision tasks does not rise until recently [145–150]. The core of the Transformer

is the self-attention mechanism, which characterizes the dependencies between any two distant to-

kens. It could be viewed as a special case of non-local operations in the embedded Gaussian [151],

that captures long-range dependencies of pixels in image/video.

The recent work DETR [149] treats object detection as a direct set prediction problem. DETR

is built upon the Transformer in an encoder-decoder structure, whose self-attention mechanism

removes duplicate predictions by explicitly modeling all pairwise interactions between elements

in a sequence. As a brand new paradigm for object detection, DETR simplifies the traditional

object detector pipeline by removing handcrafted components, including anchor generation and

non-maximum suppression.

Visual Transformers [150] represent images as a compact set of visual semantic tokens and

apply Transformers to densely model relations between semantic concepts. Transformers’ token-

based image representation and processing outperform its convolutional counterparts on image

classification and semantic segmentation tasks. Vision Transformer [152] directly applies a pure

Transformer to a sequence of image patches for classification. Without any image-specific in-

18



ductive biases (e.g. translation equivariance and locality), ViT approaches or beats state-of-the-art

CNN models on the dataset at a larger scale than ImageNet [153]. For high-resolution image syn-

thesis, Patrick et al. [154] uses CNN to learn a context-rich vocabulary of image constituents and

Transformers to model their composition. The long-range dependencies within the compositions

are captured by the expressive Transformer architecture.

TimeSformer [155] is a convolution-free video classification model that adapts the self-attention

module in Transformer to enable spatiotemporal feature learning from a sequence of frame-level

patches. The closest existing work to ours is the Video Action Transformer (VATN) [148]. VATN

uses a Transformer-style architecture to aggregate features from the spatio-temporal context around

the persons of interest as queries. However, it still relies on RPN to do person localization, and it

does not use the Transformer decoder. In contrast, TxVAD exploits the Transformer’s full encoder-

decoder structure purely to do person localization and action classification, where the bounding

boxes and labels are all organically decoded. Besides, VATN’s person query is a RoI-Pooled

feature over the center frame using a single bounding box, while TxVAD uses a spatio-temporal

RoI-pooled feature over the entire video trunk (see Sec. 3).
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2. DATA PRIVACY∗

2.1 Motivation

Smart surveillance or smart home cameras, such as Amazon Echo and Nest Cam, are now

found in millions of locations to link users to their homes or offices remotely. They provide the

users with a monitoring service by notifying environment changes, a lifelogging service, and intel-

ligent assistance. However, the benefits come at the heavy price of privacy intrusion from time to

time. Due to the computationally demanding nature of visual recognition tasks, only some of the

tasks can run on the resource-limited local devices, which makes transmitting (part of) data to the

cloud necessary. Growing concerns have been raised [156–160] towards personal data uploaded

to the cloud, which could be potentially misused or stolen by malicious third parties. Many laws

and regulations in the United States and the European Union [161–164] also bring up guidelines

for handling Personally Identifiable Information. This new privacy risk is fundamentally differ-

ent from traditional concerns over unsecured transmission channels (e.g., malicious third-party

eavesdropping), and therefore requires new solutions to address it.

The goal is to alleviate privacy concerns without compromising user convenience. The dilemma

is that we would like a camera system to assist daily human life by understanding its videos while

preventing it from obtaining sensitive visual information (such as faces, gender, skin color, etc.)

that can intrude individual privacy. Thus, it is a new problem to find a desired transform to ob-

fuscate the captured raw visual data at the local end so that the transformed data will only enable

specific target utility tasks while obstructing undesired privacy-related budget tasks. Recent ap-

proaches [97–99] intentionally captures or processes videos in extremely low-resolution to create

privacy-preserving “anonymized” videos and showed promising empirical results.

∗Part of this chapter is reprinted with permission from “Privacy-Preserving Deep Action Recognition:
An Adversarial Learning Framework and A New Dataset” [1] by Z. Wu, H. Wang, Z. Wang, H. Jin, and
Z. Wang, IEEE Transactions on PatternAnalysis and Machine Intelligence, Copyright 2020 by IEEE. DOI:
https://doi.org/10.1109/TPAMI.2020.3026709. And part of this chapter is reprinted with permission from “Towards
Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study” [3] by Z. Wu, Z. Wang, Z. Wang, and
H. Jin, Proceedings of the European Conference on Computer Vision, Pages 605-624, Copyright 2018 by Springer.
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2.2 Method

2.2.1 Problem Definition

Objective. Assume our training data X (raw visual data captured by camera) are associated with

a target utility task T and a privacy budget B. Since T is usually a supervised task, e.g., action

recognition or visual tracking, a label set YT is provided on X , and a standard cost function LT

(e.g., cross-entropy) is defined to evaluate the task performance on T . Usually, there is a state-of-

the-art deep neural network fT , which takes X as input and predicts the target labels. On the other

hand, we need to define a budget cost function JB to evaluate its input data’s privacy leakage: the

smaller JB(·) is, the less private information its input contains.

We seek an optimal anonymization function f ∗A to transform the original X to anonymized

visual data f ∗A(X), and an optimal target model f ∗T such that:

• f ∗A has filtered out the private information in X , i.e.,

JB(f ∗A(X))� JB(X);

• the performance of fT is minimally affected when using the anonymized visual data f ∗A(X)

compared to when using the original data X , i.e.,

LT (f ∗T (f ∗A(X)), YT ) ≈ min
fT

LT (fT (X), YT ).

To achieve these two goals, we mathematically formulate the problem as solving the following

optimization problem:

f ∗A, f
∗
T = argmin

fA,fT

[LT (fT (fA(X)), YT ) + γJB(fA(X))]. (2.1)

Definition of JB and LT . The definition of the privacy budget cost JB is not straightforward.

Practically, it needs to be placed in concrete application contexts, often in a task-driven way. For
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example, in smart workplaces or smart homes with video surveillance, one might often want to

avoid disclosure of the face or identity of persons. Therefore, reducing JB could be interpreted as

suppressing the success rate of identity recognition or verification. Other privacy-related attributes,

such as race, gender, or age, can be similarly defined too. We denote the privacy-related annotations

(such as identity label) as YB, and rewrite JB(fA(X)) as JB(fB(fA(X)), YB), where fB denotes

the privacy budget model which takes (anonymized or original) visual data as input and predicts the

corresponding private information. Different from LT , minimizing JB will encourage fB(fA(X))

to diverge from YB. Without loss of generality, we assume both fT and fB to be classification

models and output class labels. Under this assumption, we choose both LT and LB as the cross-

entropy function, and JB as the negative cross-entropy function:

JB , −H(YB, fB(fA(X))),

where H(·, ·) is the cross-entropy function.

Two Challenges. Such a supervised, task-driven definition of JB poses at least two challenges:

(1) Dataset challenge: The privacy budget-related annotations, denoted as YB, often have less

availability than target utility task labels. Specifically, it is often challenging to have both YT and

YB available on the same X; (2) ∀ challenge: Considering the nature of privacy protection, it is

not sufficient to merely suppress the success rate of one fB model. Instead, we define a privacy

prediction function family

P : fA(X) 7→ YB,

so that the ideal privacy protection by fA should be reflected as suppressing every possible model

fB from P . That differs from the common supervised training goal, where only one model needs

to be found to fulfill the target utility task successfully.

We address the dataset challenge by two ways: (1) cross dataset training and evaluation (Sec-

tion 2.2.4); and more importantly (2) building a new dataset annotated with both utility and privacy

labels (Section 2.2.5). We defer their discussion to respective experimental paragraphs.
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Handling the ∀ challenge is more challenging. Firstly, we re-write the general form in Eq. (2.1)

with the task-driven definition of JB as follows:

f ∗A, f
∗
T = argmin

(fA,fT )

[LT (fT (fA(X)), YT ) + γ sup
fB∈P

JB(fB(fA(X)), YB)]. (2.2)

The ∀ challenge is the infeasibility to directly solve Eq. (2.2), due to the infinite search space of fB

in P . Secondly, we propose to solve the following approximate problem by setting fB as a neural

network with a fixed structure:

f ∗A, f
∗
T = argmin

(fA,fT )

[LT (fT (fA(X)), YT ) + γmax
fB

JB(fB(fA(X)), YB)]. (2.3)

Lastly, we propose “model ensemble” and “model restarting” (Section 2.2.6) to handle the ∀ chal-

lenge better and boost the experimental results further.

Considering the ∀ challenge, the evaluation protocol for privacy-preserving action recognition

is more intricate than traditional action recognition task. We propose a two-step protocol (as de-

scribed in Section 2.2.7) to evaluate f ∗A and f ∗T on the trade-off they have achieved between target

task utility and privacy protection budget.

Solving the Minimax. Solving Eq. (2.4) is still challenging because the minimax problem is hard

by its nature. Traditional minimax optimization algorithms based on alternating gradient descent

can only find minimax points for convex-concave problems, and they achieve sub-optimal solutions

on deep neural networks since they are neither convex nor concave. Some very recent minimax

algorithms, such as K-Beam [165], have been shown to be promising in none convex-concave and

deep neural network applications. However, these methods rely on heavy parameter tuning and

are effective only in limited situations. Besides, our optimization goal in Eq. (2.4) is even harder

than common minimax objectives like those in GANs, which are often interpreted as a two-party

competition game. In contrast, our Eq. (2.4) is more “hybrid” and can be interpreted as a more

complicated three-party competition, where (adopting machine learning security terms) fA is an

obfuscator, fT is a utilizer collaborating with the obfuscator, and fB is an attacker trying to breach
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the obfuscator. Specifically,

min
(fA,fT )

max
fB

[LT (fT (fA(X)), YT ) + γJB(fB(fA(X)), YB)]. (2.4)

Therefore, we see no obvious best choice from the off-the-shelf minimax algorithms to achieve

our objective.

We are thus motivated to try different state-of-the-art minimax optimization algorithms on our

framework. We tested two state-of-the-art minimax optimization algorithms, namely GRL [166]

and K-Beam [165], on our framework and proposed an innovative entropy maximization method

to solve Eq. (2.4). We empirically show our entropy maximization algorithm outperforms both

state-of-the-art minimax optimization algorithms and discuss its advantages. In Section 2.2.3,

we present the comparison of three methods and hope it will benefit future research on similar

problems.

2.2.2 Basic Framework

Pipeline. Our framework is a privacy-preserving action recognition pipeline that uses video data as

input. It is a prototype of the in-demand privacy protection in smart camera applications. Figure 2.1

depicts the basic framework implementing the proposed formulation in Eq. (2.4). The framework

consists of three parts: the anonymization model fA, the target utility model fT , and the privacy

budget model fB. fA takes raw video X as input, filters out private information in X , and outputs

the anonymized video fA(X). fT takes fA(X) as input and carries out the target utility task. fB

also take fA(X) as input and try to predict the private information from fA(X). All three models

are implemented with deep neural networks, and their parameters are learnable during the training

procedure. The entire pipeline is trained under the guidance of the hybrid loss of LT and JB. The

training procedure has two goals. The first goal is to find an optimal anonymization model f ∗A that

can filter out the private information in the original video while keeping useful information for the

target utility task. The second goal is to find a target model that can achieve good performance

on the target utility task using anonymized videos f ∗A(X). Similar frameworks have been used
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Figure 2.1: Basic adversarial training framework for privacy-preserving action recognition. Modi-
fied from [1].

in feature disentanglement [167–170]. After training, the learned anonymization model can be

applied on a local device (e.g., smart camera), by designing an embedded chipset responsible for

the anonymization at the hardware-level [115]. We can convert raw video to anonymized video

locally and only transfer the anonymized video through the Internet to the backend (e.g., cloud)

for target utility task analysis. The private information in the raw videos will be unavailable on the

backend.

Implementation. Specifically, fA is implemented using the model in [171], which can be taken

as a 2D convolution-based frame-level filter. In other words, fA converts each frame in X into

a feature map of the same shape as the original frame. We use state-of-the-art human action

recognition model C3D [16] as fT and state-of-the-art image classification models, such as ResNet

[172] and MobileNet [128], as fB. Since the action recognition model we use is C3D, we need to

split the videos into clips with a fixed frame number. Each clip is a 4D tensor of shape [T,W,H,C],

where T is the number of frames in each clip and W , H , C are the width, height, and the number

of color channels in each frame respectively. Unlike fT , which takes a 4D tensor as an input data

sample, fB takes a 3D tensor (i.e., a frame) as input. We average1 the logits over the temporal

1AVERAGING the logits temporally gave a better performance in privacy budget prediction of JB , compared with
MAXING the logits.
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dimension of each video clip to calculate JB and predict the budget task label.

2.2.3 Optimization Strategies

In the following algorithms, we denote θB as the parameters of fB. Similarly, fA and fT are

parameterized by θA and θT respectively. αA, αB, αT are learning rates used to update θA, θB, θT .

thB and thT are accuracy thresholds for the target utility task and the privacy budget predic-

tion. max_iter is the maximum number of iterations. For simplicity concern, we abbreviate

LT (fT (fA(X)), YT ), LB(fB(fA(X)), YB), and JB(fB(fA(X)), YB) as LT (θA, θT ), LB(θA, θB),

and JB(θA, θB)2 respectively. Acc is a function to compute accuracy on the privacy budget and the

target utility tasks, given training data (X t, Y t
B and Y t

T ) or validation data (Xv, Y v
B and Y v

T ).

2.2.3.1 Gradient reverse layer (GRL)

We consider Eq. (2.4) as a minimax problem [173]:

θ∗A, θ
∗
T = argmin

(θA,θT )

L(θA, θT , θ
∗
B),

θ∗B = argmax
θB

L(θ∗A, θ
∗
T , θB),

where L(θA, θT , θB) = LT (θA, θT ) + γJB(θA, θB) = LT (θA, θT )− γLB(θA, θB).

GRL [166] is a state-of-the-art algorithm to solve such a minimax problem. The underlying

mathematical gist is to solve the problem by alternating minimization:

θA ← θA − αA∇θA(LT (θA, θT )− γLB(θA, θB)), (2.5a)

θT ← θT − αT∇θTLT (θA, θT ), (2.5b)

θB ← θB − αB∇θBLB(θA, θB). (2.5c)

We denote this method as GRL in the following parts and give the details in Algorithm 1.

2Remember that JB is the negative cross-entropy by definition.

26



Algorithm 1: GRL Algorithm
1 Initialize θA, θT and θB;
2 for t0 ← 1 to max_iter do
3 Update θA using Eq. (2.5a)
4 while Acc(fT (fA(Xv)), Y v

T ) ≤ thT do
5 Update θT using Eq. (2.5b)
6 end
7 while Acc(fB(fA(X t)), Y t

B) ≤ thB do
8 Update θB using Eq. (2.5c)
9 end

10 end

2.2.3.2 Alternating optimization of two loss functions

The goal in Eq. (2.4) can also be formulated as alternatingly solving the following two opti-

mization problems:

θ∗A, θ
∗
T = argmin

(θA,θT )

LT (θA, θT ), (2.6a)

θ∗B, θ
∗
A = argmin

θB

argmax
θA

LB(θA, θB). (2.6b)

Eq. (2.6a) is a standard minimization problem which can be solved by end-to-end training fA and

fT . Eq. (2.6b) is a minimax problem which we solve by state-of-the-art minimax optimization

method “K-Beam” [165]. K-Beam method keeps track of K different sets of budget model pa-

rameters (denoted as {θiB}Ki=1) during training time, and alternatingly updates θA and {θiB}Ki=1.

Inspired by K-Beam method, we present the following parameter update rules to alternatingly
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solve the two loss functions in Eq. (2.6):

θA, θT ← θA, θT − αT∇(θT ,θA)LT (θA, θT ), (2.7a)

j ← argmin
i∈{1,...,K}

LB(θA, θ
i
B), (6b-i)

θA ← θA + αA∇θALB(θA, θ
j
B), (6b-ii)

θiB ← θiB − αB∇θiB
LB(θA, θ

i
B), ∀i ∈ {1, . . . , K}. (6c)

We denote this method as Ours-K-Beam in the following parts and give the details in Algo-

rithm 2, where d_iter is the number of iterations used in the step of maximizing LB.

Algorithm 2: Ours-K-Beam Algorithm
1 Initialize θA, θT and {θiB}Ki=1;
2 for t0 ← 1 to max_iter do
3 /*LT step:*/
4 while Acc(fT (fA(Xv)), Y v

T ) ≤ thT do
5 Update θT , θA using Eq. (2.7a)
6 end
7 /*LB Max step:*/
8 Update j using Eq. (6b-i)
9 for t1 ← 1 to d_iter do

10 Update θA using Eq. (6b-ii)
11 end
12 /*LB Min step:*/
13 for i← 1 to K do
14 while Acc(f iB(fA(X t)), Y t

B) ≤ thB do
15 Update θiB using Eq. (6c)
16 end
17 end
18 end
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2.2.3.3 Maximize entropy

We empirically find that minimizing negative cross-entropy JB, which is a concave function,

causes numerical instabilities in Eq. (2.5a). So, we replace JB with −HB, the negative entropy of

fB(fA(X)), which is a convex function3:

HB(fB(fA(X))) , H(fB(fA(X))),

where H(·) is the entropy function. Minimizing −HB is equivalent to maximizing entropy, which

will encourage “uncertain” predictions. We replace JB in Eq. (2.5a) by−HB, abbreviateHB(fB(fA(X)))

as HB(θA, θB), and propose the following new update scheme:

θA ← θA − αA∇θA(LT (θA, θT )− γHB(θA, θB)), (2.8a)

θT , θA ← θT , θA − αT∇θT ,θALT (θA, θT ), (2.8b)

θB ← θB − αB∇θBLB(θA, θB), (2.8c)

where LT and LB are still cross-entropy loss functions as in Eq. (2.5). Unlike in Eq. (2.5b), where

we only update θT when minimizing LT , we train θT and θA in an end-to-end manner as shown in

Eq. (2.8b), since we find it achieves better performance in practice.

We denote this method as Ours-Entropy in the following parts and give the details in Algo-

rithm 3.

2.2.4 Addressing the Dataset Challenge by Cross-Dataset Training and Evaluation: An Ini-

tial Attempt

An ideal dataset to train and evaluate our framework would be a set of human action videos

with both action labels and privacy attributes provided. On the SBU dataset, we can use the actor

pair as a simple privacy attribute. But when we want to evaluate our method on more complex

3This point discusses the convexity or concavity of different loss functions when viewing them as the outermost
function in the composite function. Both loss functions are neither convex nor concave w.r.t. model weights.
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Algorithm 3: Ours-Entropy Algorithm
1 Initialize θA, θT and θB;
2 for t0 ← 1 to max_iter do
3 Update θA using Eq. (2.8a)
4 while Acc(fT (fA(Xv)), Y v

T ) ≤ thT do
5 Update θT , θA using Eq. (2.8b)
6 end
7 while Acc(fB(fA(X t)), Y t

B) ≤ thB do
8 Update θB using Eq. (2.8c)
9 end

10 end

privacy attributes, we run into the dataset challenge: in the literature, no existing datasets have

both human action labels and privacy attributes provided on the same videos.

Given the observation that a privacy attributes predictor trained on VISPR can correctly identify

privacy attributes occurring in UCF101 and HMDB51 videos (examples in the Appendix C), we

hypothesize that the privacy attributes have good “transferability” across UCF101/HMDB51 and

VISPR. Therefore, we can use a privacy prediction model trained on VISPR to assess the privacy

leak risk on UCF101/HMDB51.

In view of that, we propose to use cross-dataset training and evaluation as a workaround

method. In brief, we train action recognition (target utility task) on human action datasets, such as

UCF101 [11] and HMDB51 [7], and train privacy protection (budget task) on visual privacy dataset

VISPR [4], while letting the two interact via their shared component - the learned anonymization

model. More specifically, during training, we have two pipelines: one is fA and fT trained on

UCF101 or HMDB51 for action recognition; the other is fA and fB trained on VISPR to suppress

multiple privacy attribute prediction. The two pipelines share the same parameters for fA. During

the evaluation, we evaluate model utility (i.e., action recognition) on the testing set of UCF101

or HMDB51 and privacy protection performance on the testing set of VISPR. Such cross-dataset

training and evaluation shed new possibilities on training privacy-preserving recognition models,

even under the practical shortages of datasets that have been annotated for both tasks. Notably,
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“cross-dataset training” and “cross-dataset testing (or evaluation)” are two independent strategies

used in this paper; they can be used either together or separately. Details of our three experiments

(SBU, UCF-101, and HMDB51) are explained as follows:

• SBU (Section 4.1): we train and evaluate our framework on the same video set by consider-

ing actor identity as a simple privacy attribute. Neither cross-training nor cross-evaluation

is involved.

• UCF101 (Section 4.2): we perform both cross-training and cross-evaluation, on UCF-

101 + VISPR. Such a method provides an alternative to flexibly train and test privacy-

preserving video recognition for different utility/privacy combinations, without annotating

specific datasets.

• HMDB51 (Section 5.5), we use cross-training on HMDB51 + VISPR datasets similarly to

the UCF-101 experiment; but for testing, we evaluate both utility and privacy performance

on the same, newly-annotated PA-HMDB51 testing set. Therefore, it involves cross-training,

but no cross-evaluation.

Beyond the above initial attempt, we further construct a new dataset dedicated to the privacy-

preserving action recognition task, which will be presented in Section 2.2.5.

2.2.5 Addressing the Dataset Challenge by PA-HMDB51: A New Benchmark

2.2.5.1 Motivation

There is no public dataset containing both human action and privacy attribute labels on the

same videos in the literature. This poses two challenges. Firstly, the lack of available datasets

has increased the difficulty in employing a data-driven joint training method. Secondly, this com-

plication has made it impossible to directly evaluate the trade-off between privacy budget and

action utility achieved by a learned anonymization model f ∗A. To solve this problem, we annotate

and present the very first human action video dataset with privacy attributes labeled, named PA-

HMDB51 (Privacy-Annotated HMDB51). We evaluate our method on this newly built dataset and
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Figure 2.2: Left: action distribution of PA-HMDB51. Each bar shows the number of videos with a
certain action. E.g., the last bar shows there are 25 “brush hair” videos in the PA-HMDB51 dataset;
Right: action-attribute correlation in the PA-HMDB51 dataset. The x-axis are all possible values
grouped by bracket for each privacy attribute. The y-axis are different action types. The color
represents ratio of the number of frames of some action annotated with a specific privacy attribute
value w.r.t. the total number of frames of the action. Reprinted from [1].

further demonstrate our method’s effectiveness.

2.2.5.2 Selecting and Labeling Privacy Attributes

A recent work [4] has defined 68 privacy attributes that could be disclosed by images. However,

most of them seldom make any appearance in public human action datasets. We carefully select 5

privacy attributes that are most relevant to our smart home settings out of the 68 attributes from [4]:
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Figure 2.3: Label distribution per privacy attribute in the PA-HMDB51. SC, RL, FC, ND, and GR
stand for skin color, relationship, face, nudity, and gender, respectively. The rounded ratio numbers
are shown as white text (in % scale). Definitions of label values (0, 1, 2, 3, 4) for each attribute are
described in Table 2.1. Reprinted from [1].

skin color, gender, face, nudity, and personal relationship (only intimate relationships such as

friends, couples, or family members are considered in our setting). The detailed description of

each attribute, their possible ground truth values, and their corresponding meanings are listed in

Table 2.1. Some annotated frames in our PA-HMDB51 dataset are shown in Table 2.2 as examples.

Privacy attributes may vary during the video clip. For example, in some frames, we may see

a person’s full face, while in the next frames, the person may turn around, and his/her face is no

longer visible. Therefore, we decide to label all the privacy attributes on each frame 4.

The annotation of privacy labels was manually performed by a group of students at the CSE

department of Texas A&M University. Each video was annotated by at least three individuals and

then cross-checked.

2.2.5.3 HMBD51 as the Data Source

Now that we have defined the 5 privacy attributes, we need to identify a source of human

action videos for annotation. There are a number of choices available, such as [6, 7, 11, 174,

175]. We choose HMDB51 [7] to label privacy attributes since it consists of more diverse private

information, especially nudity/semi-nudity and relationship.

4A tiny portion of frames in some HMDB51 videos do not contain any person. No privacy attributes are annotated
on those frames.
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We provide a per-frame annotation of the selected 5 privacy attributes on 515 videos selected

from HMDB51. In this paper, we treat all 515 videos as testing samples5. Our ultimate goal

would be to create a larger-scale version of PA-HMDB51 that allows for both training and testing

coherently on the same benchmark. For now, we use PA-HMDB51 to facilitate better testing, while

still considering cross-dataset training as a rough yet useful option to train privacy-preserving video

recognition (before the larger dataset becomes available).

2.2.5.4 Dataset Statistics

Action Distribution. When selecting videos from the HMDB51 dataset, we consider two criteria

on action labels. First, the action labels should be balanced. Second (and more implicitly), we

select more videos with non-trivial privacy labels. For example, “brush hair” action contains many

videos with a “semi-nudity” attribute, and “pull-up” action contains many videos with a “partially

visible face” attribute. Despite their practical importance, these privacy attributes are relatively

less seen in the entire HMDB51 dataset, so we tend to select more videos with these attributes,

regardless of their action classes. The resultant distribution of action labels is depicted in Figure 2.2

(left panel), showing a relative class balance.

Privacy Attribute Distribution. We try to make the label distribution for each privacy attribute

as balanced as possible by manually selecting those videos containing uncommon privacy attribute

values in original HMDB51 to label. For instance, videos with semi-nudity are overall uncommon,

so we deliberately select those videos containing semi-nudity into our PA-HMDB51 dataset. Natu-

rally, people are reluctant to release data that contains privacy concerns to the public, so the privacy

attributes are highly unbalanced in any public video datasets. Although we have used this method

to reduce the data imbalance, the PA-HMDB51 is still unbalanced. Frame-level label distributions

of all 5 privacy attributes are shown in Figure 2.3.

Action-Attribute Correlation. If there was a strong correlation between a privacy attribute and an

5Labeling per-frame privacy attributes on a video dataset is extremely labor-consuming and subjective (needing
individual labeling then cross-checking). As a result, the current size of PA-HMDB51 is limited. So far, we have
only used PA-HMDB51 as the testing set, and we seek to annotate more data and hopefully expand PA-HMDB51 for
training as future work.
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Table 2.1: Attribute definition in the PA-HMDB51 dataset

Attribute Possible Values & Meaning

Skin Color

0: Skin color of the person(s) is/are unidentifiable.
1: Skin color of the person(s) is/are white.
2: Skin color of the person(s) is/are brown/yellow.
3: Skin color of the person(s) is/are black.
4: Persons with different skin colors are coexisting.6

Face
0: Invisible (< 10% area is visible).
1: Partially visible (≥ 10% and ≤ 70% area is visible).
2: Completely visible (> 70% area is visible).

Gender

0: The gender(s) of the person(s) is/are unidentifiable.
1: The person(s) is/are male.
2: The person(s) is/are female.
3: Persons with different genders are coexisting.

Nudity
0: No-nudity with long sleeves and pants.
1: Partial-nudity with short sleeves, skirts, or shorts.
2: Semi-nudity with half-naked body.

Relationship
0: Personal relationship is unidentifiable.
1: Personal relationship is identifiable.

action, it would be harder to remove the private information from the videos without much harm to

the action recognition task. For example, we would expect a high correlation between the attribute

“gender” and the action “brush hair” since this action is carried out much more often by females

than by males. We show the correlation between privacy attributes and actions in Figure 2.2 (right

panel) and more details in Appendix D.

2.2.6 Addressing the ∀ Challenge by Privacy Budget Model Restarting and Ensemble

To improve the generalization ability of learned fA over all possible fB ∈ P (i.e., privacy

cannot be reliably predicted by any model), we hereby discuss two simple and easy-to-implement

options. Other more sophisticated model re-sampling or model search approaches, such as [176],

6For “skin color” and “gender,” we allow multiple labels to coexist. For example, if a frame showed a black
person’s shaking hands with a white person, we would label “black” and “white” for the “skin color” attribute. In
the visualization, we use “coexisting” to represent the multi-label coexistence and we don’t show in detail whether it
is “white and black coexisting” or “black and yellow coexisting.” For the remaining three attributes, we label each
attribute using the highest privacy-leakage risk among all persons in the frame. E.g., given a frame where a group of
people are hugging, if there is at least one complete face visible, we would label the “face” attribute as “completely
visible.”
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Table 2.2: Examples of the annotated frames in the PA-HMDB51 dataset. Reprinted from [1].

Frame Action Privacy Attributes

Brush
hair

• skin color: white
• face: invisible
• gender: female
• nudity: semi-nudity
• relationship: unrevealed

Situp

• skin color: black
• face: completely visible
• gender: male
• nudity: semi-nudity
• relationship: unrevealed

will be explored in future work.

2.2.6.1 Privacy Budget Model Restarting

Motivation. The max step over JB(fB(fA(X)), YB) in Eq. (2.4) leads to the optimizer being stuck

in bad local solutions (similar to “mode collapse” in GANs), that will hurdle the entire minimax

optimization. Model restarting provides a mechanism to “bypass” the bad solution when it occurs,

thus enabling the minimax optimizer to explore a better solution.

Approach. At a certain point of training (e.g., when the privacy budget LB(fB(fA(X)), YB) stops

decreasing any further), we re-initialize fB with random weights. Such a random restarting aims

to avoid trivial overfitting between fB and fA (i.e., fA is only specialized at confusing the current

fB), without requiring more parameters. We then start to train the new model fB to be a strong

competitor, w.r.t. the current fA(X): specifically, we freeze the training of fA and fT , and change

to minimizing LB(fB(fA(X)), YB), until the new fB has been trained from scratch to become

a strong privacy prediction model over current fA(X). We then resume adversarial training by

unfreezing fA and fT , as well as switching the loss for fB back to the adversarial loss (negative
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entropy or negative cross-entropy). Such a random restarting can repeat multiple times.

2.2.6.2 Privacy Budget Model Ensemble

Motivation. Ideally in Eq. (2.4) we should maximize the error over the “current strongest pos-

sible” attacker fA from P (a large and continuous fB family), over which searching/sampling is

impractical. Therefore we propose a privacy budget model ensemble as an approximation strategy,

where we approximate the continuous P with a discrete set ofM sample functions. Such a strategy

is empirically verified in Section 4 and 5 to address the critical “∀ Challenge” in privacy protec-

tion, i.e., enhancing the defense against unseen attacker models (compared to the clear “attacker

overfitting” phenomenon when sticking to one fA during training).

Approach. Given the budget model ensemble P̄t , {f iB}Mi=1, where M is the number of fBs in

the ensemble during training, we turn to minimize the following discretized surrogate of Eq. (2.2):

f ∗A, f
∗
T = argmin

fA,fT

[LT (fT (fA(X)), YT )+

γ max
f iB∈P̄t

JB(f iB(fA(X)), YB)].

(2.9)

The previous basic framework is a special case of Eq. (2.9) with M = 1. The ensemble strategy

can be easily incorporated with restarting.

2.2.6.3 Incorporate Budget Model Restarting and Budget Model Ensemble with Ours-Entropy

Budget Model Restarting and Budget Model Ensemble can be easily incorporated with all three

optimization schemes described in Section 2.2.3. We take Ours-Entropy as an example here. When

model ensemble is used, we abbreviate LB(f iB(fA(X)), YB) and HB(f iB(fA(X))) as LB(θA, θ
i
B)

and HB(θA, θ
i
B) respectively. The new parameter updating scheme is:

θA ← θA − αA∇θA(LT + γ max
θiB∈P̄t

−HB(θA, θ
i
B)), (2.10a)

θA, θT ← θA, θT − αT∇(θA,θT )LT (θA, θT ), (2.10b)

θiB ← θiB − αB∇θiB
LB(θA, θ

i
B), ∀i ∈ {1, . . . ,M}. (2.10c)
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We only suppress the model f iB with the largest privacy leakage−HB, i.e., the “most confident”

one about its current privacy prediction, when updating the anonymization model fA. But we

still update all M budget models on the budget task. The formal description of Ours-Entropy

with model restarting and ensemble is given in Algorithm 4, where {θiB}Mi=1 is reinitialized every

rstrt_iter iterations. Likewise, GRL and Our-K-Beam can also be incorporated with restarting

and ensemble.

Algorithm 4: Ours-Entropy Algorithm (with Model Restarting and Model Ensemble)
1 Initialize θA, θT and {θiB}Mi=1;
2 for t0 ← 1 to max_iter do
3 if t ≡ 0 (mod rstrt_iter) then
4 Reinitialize {θiB}Mi=1

5 end
6 Update θA using Eq. (2.10a)
7 while Acc(fT (fA(Xv)), Y v

T ) ≤ thT do
8 Update θT , θA using Eq. (2.10b)
9 end

10 for i← 1 to M do
11 while Acc(f iB(fA(X t)), Y t

B) ≤ thB do
12 Update θiB using Eq. (2.10c)
13 end
14 end
15 end

2.2.7 Two-Step Evaluation Protocol

The solution to Eq. (2.2) gives an anonymization model f ∗A and a target utility task model f ∗T .

We need to evaluate f ∗A and f ∗T on the trade-off they have achieved between target task utility and

privacy protection in two steps: (1) whether the learned target utility task model maintains satis-

factory performance on anonymized videos; (2) whether the performance of an arbitrary privacy

prediction model on anonymized videos will deteriorate.

Suppose we have a training dataset X t with target and budget task ground truth labels Y t
T and
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Y t
B, and an evaluation dataset Xe with target and budget task ground truth labels Y e

T and Y e
B. In the

first step, when evaluating the target task utility, we should follow the traditional routine: compare

f ∗T (f ∗A(Xe)) with Y e
T to get the evaluation accuracy on the target utility task, denoted as AT , which

we expect to be as high as possible. In the second step, when evaluating the privacy protection, it

is insufficient if we only observe that the learned f ∗A and f ∗B lead to poor classification accuracy on

Xe, because of the ∀ challenge: the attacker can select any privacy budget model to steal private

information from anonymized videos f ∗A(Xe). To empirically verify that f ∗A prohibits reliable

privacy prediction for other possible budget models, we propose a novel procedure:

• We randomly re-sample N privacy budget prediction models P̄e , {f iB}Ni=1 from P for

evaluation. Note that these N models used in evaluation P̄e have no overlap with the M

privacy budget model ensemble P̄t used in training, i.e., P̄e ∩ P̄t = ∅.

• We train these N models P̄e on anonymized training videos f ∗A(X t) to make correct predic-

tions on private information, i.e., minf iB LB(f iB(f ∗A(X t)), Y t
B),∀f iB ∈ P̄e. Note that f ∗A is

fixed during this training procedure.

• After that, we apply each f iB on anonymized evaluation videos f ∗A(Xe) and compare the

outputs f iB(f ∗A(Xe)) with Y e
B to get privacy budget accuracy of the i-th budget model, i.e.,

Acc(f iB(f ∗A(Xe)), Y e
B).

• We select the highest accuracy among all N privacy budget models and use it as the final

privacy budget accuracyANB , which we expect to be as low as possible. Specifically, we have

ANB = max
f iB∈P̄e

Acc(f iB(f ∗A(Xe)), Y e
B). (2.11)
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2.3 Experiments

We show the effectiveness of our proposed adversarial training framework on privacy-preserving

action recognition on existing human action datasets.
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Figure 2.4: The trade-off between privacy budget and
action utility on SBU dataset. For Naive Downsample
method, a larger marker means a larger adopted down-
sampling rate. For Ours-K-Beam method, a larger marker
means a larger K (number of beams) in Algorithm 2.
For Ours-Entropy and Ours-Entropy (restarting), a larger
marker means a larger M (number of ensemble models) in
Algorithm 4. Methods with “+” superscript are incorpo-
rated with model restarting. Vertical and horizontal pur-
ple dashed lines indicate ANB and AT on the original non-
anonymized videos, respectively. The black dashed line
indicates where ANB = AT . Reprinted from [1].

Overview of Experiment Settings.

The target utility task is human ac-

tion recognition, since it is a highly

demanded feature in smart home and

smart workplace applications. Ex-

periments are carried out on three

widely used human action recogni-

tion datasets: SBU Kinect Interac-

tion Dataset [177], UCF101 [11] and

HMDB51 [7]. The privacy budget

task varies in different settings. In the

SBU dataset experiments, the privacy

budget is to prevent the videos from

leaking human identity information.

In the experiments on UCF101 and

HMDB51, the privacy budget is to

protect visual privacy attributes as

defined in [4]. We emphasize that the

general framework proposed in Sec-

tion 2.2.2 can be used for a large variety of target utility tasks and privacy budget task combina-

tions, not only limited to the aforementioned settings.

Following the notations in Section 2.2.2, on all the video action recognition datasets including

SBU, UCF101 and HMDB51, we set W = 112, H = 112, C = 3, and T = 16 (C3D’s required

temporal length and spatial resolution). Note that the original resolution for SBU, UCF101 and
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HDMB51 are 640 × 480, 320 × 240 and 320 × 240, respectively. We downsample video frames

to resolution 160 × 120. To reduce the spatial resolution to 112 × 112, we use random-crop and

center-crop in training and evaluation, respectively.

Baseline Approaches. We consistently use two groups of approaches as baselines across the three

action recognition datasets. These two groups of baselines are naive downsamples and empirical

obfuscations. The group of naive downsamples chooses downsample rates from {1, 2, 4, 8, 16},

where 1 stands for no down-sampling. The group of empirical obfuscations includes approaches

selected from different combinations in {box, segmentation} × {blurring, blackening} × {face,

human body}. Details are listed below:

• Naive Downsamle: Spatially downsample each frame.

• Box-Black-Face: Boxing and blackening faces.

• Box-Black-Body: Boxing and blackening bodies.

• Seg-Black-Face: Segmenting and blackening faces.

• Seg-Black-Body: Segmenting and blackening bodies.

• Box-Blur-Face: Boxing and blurring faces.

• Box-Blur-Body: Boxing and blurring bodies.

• Seg-Blur-Face: Segmenting and blurring faces.

• Seg-Blur-Body: Segmenting and blurring bodies.

Our Proposed Approaches. The previous two groups of baselines are compared with our pro-

posed three approaches:

• GRL: as described in Section 2.2.3.1.

• Ours-K-Beam: as described in Section 2.2.3.2. We have tried K = 1, 2, 4, 8.

• Ours-Entropy: as described in Section 2.2.3.3. In the privacy budget model ensemble P̄t,

the M models are chosen from MobileNet-V2 [129] family with different width multipliers.

We have tried M = 1, 2, 4, 8.

All three approaches are evaluated with and without privacy budget model restarting.
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Evaluation. In the two-step evaluation (as described in Section 2.2.7), we have used N = 10

different state-of-the-art classification networks, namely ResNet-V1-{50,101} [172], ResNet-V2-

{50,101} [178], Inception-V1 [179], Inception-V2 [180], and MobileNet-V1-{0.25,0.5,0.75,1} [128],

as P̄e. Note that P̄e ∩ P̄t = ∅.

2.3.1 Identity-Preserving Action Recognition on SBU: Single-Dataset Training

We compare our proposed approaches with the groups of baseline approaches to show our

methods’ significant superiority in balancing privacy protection and model utility. We use three

different optimization schemes described in Section 2.2.3 on our framework and empirically show

all three largely outperform the baseline methods. We also show that adding the model ensem-

ble and model restarting, as described in Section 2.2.6, to the optimization procedure can further

improve the performance of our method.

2.3.1.1 Experiment Setting

SBU Kinect Interaction Dataset [177] is a two-person interaction dataset for video-based action

recognition. 7 participants performed actions, and the dataset is composed of 21 sets. Each set uses

different pairs of actors to perform all 8 interactions. However, some sets use the same two actors

but with different actors acting and reacting. For example, in set 1, actor 1 is acting, and actor 2

is reacting; in set 4, actor 2 is acting, and actor 1 is reacting. These two sets have the same actors,

so we combine them as one class to better fit our experimental setting. In this way, we combine

all sets with the same actors and finally get 13 different actor pairs. This dataset’s target utility

task is action recognition, which could be taken as a classification task with 8 different classes.

The privacy budget task is to recognize the actor pairs of the videos, which could be taken as a

classification task with 13 different classes.

2.3.1.2 Implementation Details

In Algorithms 1-3, we set step sizes αT = 10−5, αB = 10−2, αA = 10−4, accuracy thresholds

thT = 85%, thB = 99% and max_iter = 800. In Algorithm 2, we set d_iter to be 30. In

Algorithm 4, we set rstrt_iter to be 100. Other hyper-parameters of Algorithm 4 are identical
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with those in Algorithm 3. We set γ=2 in Eq. (2.4) and use Adam optimizer [181] to update all

parameters.

2.3.1.3 Results and Analyses

We present the experimental results of our proposed methods and other baseline methods in

Figure 2.4, which shows the trade-off between the action recognition accuracy AT , and the actor

pair recognition accuracy ANB . In order to interpret this figure, we should note that a desirable

trade-off should incur maximal target accuracy AT (y-axis) and minimal privacy budget accuracy

ANB (x-axis). Therefore, a point closer to the top-left corner represents an anonymization model

f ∗A with a more desirable performance. The magenta dotted line suggests the target accuracy AT

on original unprotected videos. This can be roughly considered as the AT upper bound for all

privacy protection methods, under the assumption that f ∗A will unavoidably filter out some useful

information for the target utility task.

As we can see, Ours-K-Beams, Ours-Entropy, and GRL all largely outperform the two groups

of naive baselines. {box, segmentation}× {blurring, blackening}× {face} and naive downsample

with a low rate (e.g., 2 and 4) can lead to decent action accuracy, but the privacy budget accuracy

ANB is still very high, meaning these methods fail to protect privacy. On the other hand, {box,

segmentation} × {blurring, blackening} × {body} and naive downsample with a high rate (e.g.,

8 and 16) can effectively suppress ANB to a low level, but AT also suffers a huge negative impact,

which means the anonymized videos are of little practical utility. Our methods, in contrast, achieve

a great balance between utility and privacy protection. Ours-Entropy can decrease ANB by around

30% with nearly no harm on AT .

Comparison of three methods. K-Beam is a state-of-the-art minimax optimization problem, and

we apply it to solve a sub-problem (i.e., Eq. (2.6b)) of our more complex three-party competition

game. Unfortunately, we empirically find the K-Beam algorithm becomes more unstable when

we introduce a new competing party to the minimax optimization problem. GRL is originally

proposed for domain adaptation. On our new visual privacy protection task, we find it unstable and

sensitive to model initialization. By replacing the concave negative cross-entropy loss function
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with the convex negative entropy, Ours-Entropy empirically stabilizes the optimization and gives

the best performance among all three methods.

The results also show the effectiveness of model restarting and model ensemble: model restart-

ing can further suppress ANB with little harm on AT , and model ensemble with larger M can im-

prove the trade-off even more.

2.3.2 Action Recognition on UCF101 with Multiple Privacy Attributes Protected: Cross-

Dataset Training and Evaluation

2.3.2.1 Experiment Setting

25 30 35 40 45

Privacy Attributes cMAP ANB (%)

30

35

40

45

50

55

60

65

70
A

ct
io

n
ac

cu
ra

cy
A
T

(%
)

Naive Downsample

Empirical Obfuscation

GRL

GRL+

Ours-K-Beam

Ours-K-Beam+

Ours-Entropy

Ours-Entropy+

Figure 2.5: The trade-off between privacy budget and ac-
tion utility on UCF-101/VISPR Dataset. For Naive Down-
sample method, a larger marker means a larger down sam-
pling rate is adopted. For Ours-K-Beam method, a larger
marker means a larger K (number of beams) in Algo-
rithm 2. For Ours-Entropy and Ours-Entropy (restarting),
a larger marker means a larger M (number of ensemble
models) in Algorithm 4. Methods with “+” superscript are
incorporated with model restarting. Vertical and horizon-
tal purple dashed lines indicate ANB and AT on the original
non-anonymized videos, respectively. The black dashed
line indicates where ANB = AT . Reprinted from [1].

UCF101 is an action recogni-

tion dataset with 13,320 real-life hu-

man action videos collected from

YouTube. It contains videos of 101

different actions. We use the official

train-test split for this dataset.

The target utility task T is to

do human action recognition on

UCF101, which can be taken as a

video classification task with 101

classes.

VISPR is a dataset with 22, 167

images annotated with 68 privacy at-

tributes, e.g., semi-nudity, hobbies,

face, race, gender, skin color, and so

on. Each attribute of an image is la-

beled as “present” or “non-present”

depending on whether the specific
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privacy attribute information is contained in the image. Among the 68 attributes, there are 7 at-

tributes that frequently appear in both UCF101 datasets and the smart home videos. Therefore

we select these 7 attributes for protection in our experiments. These 7 attributes are semi-nudity,

occupation, hobbies, sports, personal relationship, social relationship, and safe.

The privacy budget task B is to predict privacy attributes on the VISPR dataset, which can be

taken as a multi-label image classification task (7 labels, each is a binary classification task). We

adopt the class-based mean average precision (cMAP) [4] as ANB to measure the performance of

the privacy budget task. The official train-test split is used on the VISPR dataset.

2.3.2.2 Experiment Setting
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Figure 2.6: The trade-off between privacy budget and ac-
tion utility on PA-HMDB51 Dataset. For Naive Down-
sample method, a larger marker means a larger downsam-
pling rate is adopted. For Ours-K-Beam method, a larger
marker means a larger K (number of beams) in Algo-
rithm 2. For Ours-Entropy and Ours-Entropy (restarting),
a larger marker means a larger M (number of ensemble
models) in Algorithm 4. Methods with “+” superscript are
incorporated with model restarting. Vertical and horizon-
tal purple dashed lines indicate ANB and AT on the original
non-anonymized videos, respectively. The black dashed
line indicates where ANB = AT . Reprinted from [1].

We train our models using cross-

dataset training on HMDB51 and

VISPR datasets as we did in Sec-

tion 2.3.2, except that we use the

5 attributes defined in Table 2.1 on

VISPR instead of the 7 used in Sec-

tion 2.3.2. The trained models are di-

rectly evaluated on the PA-HMDB51

dataset7 for both target utility task T

and privacy budget task B, without

any re-training or adaptation. We ex-

clude the videos in the PA-HMDB51

from the HMDB51 to get the training

set. Similar to the UCF101 experi-

ments, the target utility task T (i.e.,

action recognition) can be taken as a

video classification problem with 51

7We only use PA-HMDB51 as the testing set so far, since the current size of PA-HMDB51 is limited for training.
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classes, and the privacy budget task B (i.e., privacy attribute prediction) can be taken as a multi-

label image classification task with two classes for each privacy attribute label. Notably, although

PA-HMDB51 has provided concrete multi-class labels with specific privacy attribute classes, we

convert them into binary labels during testing. For example, for “gender” attribute, we have pro-

vided ground truth labels “male,” “female,” “coexisting,” and “cannot tell,” but we only use “can

tell” and “cannot tell” in our experiments, via combining “male,” “female” and “coexisting” into

the one class of “can tell.” This is because we must keep the testing protocol on PA-HMDB51

consistent with the training protocol on VISPR (a multi-label, “either-or” type binary classifica-

tion task, so that our models cross-trained on UCF101-VISPR can be evaluated directly. We hope

to extend training to PA-HMDB51 in the future so that the privacy budget task can be formulated

and evaluated as a multi-label classification problem.

All implementation details are identical with the UCF101 case, except that we adjust thT = 0.7

and thB = 0.95.

2.3.2.3 Implementation Details

In Algorithm 4, we set step sizes αT = 10−5, αB = 10−2, αA = 10−4, accuracy thresholds

thT = 70%, thB = 99%, max_iter = 800 and rstrt_iter = 100. We set γ = 0.5 in Eq. (2.4) and

use Adam optimizer to update all parameters. Values of K and M are identical to those in SBU

experiments.

2.3.2.4 Results and Analyses

We present the experimental results in Figure 2.5. All naive downsample and empirical ob-

fuscation methods cause AT to drop dramatically while ANB only drops a little bit, which means

the utility of videos is greatly reduced while the private information is hardly filtered out. In con-

trast, with the help of model restarting and model ensemble, Ours-Entropy can decrease ANB by 7%

while keeping AT as high as that on the original raw videos, meaning the privacy is protected at al-

most no cost on the utility. Hence, Ours-Entropy outperforms all naive downsample and empirical

obfuscation baselines in this experiment. It also shows an advantage over GRL and Ours-K-Beam.

46



2.3.3 Benchmark Results on PA-HMDB51: Cross-Dataset Training

2.3.3.1 Results and Analysis

The results on PA-HMDB51 are shown in Figure 2.6. Our methods achieve much better trade-

off between privacy budget and action utility compared with baseline methods. When M = 4, our

methods can decrease privacy cMAP by around 8% with little harm to utility accuracy. Overall, the

privacy gains are more limited compared to the previous two experiments, because no (re-)training

is performed; but the overall comparison trends show the same consistency.

Asymmetrical Privacy Attributes Protection Cost. Different privacy attributes have different

protection costs. After applying the learned anonymization optimized by Ours-Entropy (restarting,

M=4) on PA-HMDB51, the drop in AP of “face” is much more significant than “gender,” which

indicates that the “gender” attribute is much harder to suppress than “face.” Such observation

agrees that the gender attribute can be revealed by face, body, clothing, and even hairstyle. In

future work, we will take such cost asymmetry into account by using a weighted loss combination

of different privacy attributes or training a dedicated privacy protector for the most informative

private attribute.

Human Study on the Privacy Protection of Our Learned Anonymization. We use a human

study to evaluate the trade-off between privacy budget and action utility achieved by our learned

anonymization transform. We take both privacy protection and action recognition into account in

the study. We emphasize here that both privacy protection and action recognition are evaluated on

the video level. There are 515 videos distributed on 51 actions in the PA-HMDB51. For each action

in the PA-HMDB51, we randomly pick one video for the human study. Among the 51 selected

videos, we only keep 30 videos to reduce the human evaluation cost. There were 40 volunteers

involved in the human study. In the study, they were asked to label all the privacy attributes and the

action type on the raw videos and the anonymized videos. According to the experimental results

the actions in the anonymized videos are still distinguishable to humans, but the privacy attributes

are not recognizable at all. This human study further justifies that our learned anonymization
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Original M=1 M=1+ M=4+

Figure 2.7: The center frame of example videos before (column 1) and after (columns 2-4) ap-
plying the anonymization transform learned by Ours-Entropy. The first row shows a frame from
a “pushing” video in the SBU dataset; the second row shows a frame from a “handstand” video
in the UCF101 dataset; the third row shows a frame from a “push-up” video in the PA-HMDB51
dataset. Privacy attributes in the last two rows include semi-nudity, face, gender, and skin color.
Model restarting and ensemble settings are indicated below each anonymized image. M is the
number of ensemble models. Methods with a “+” superscript are incorporated with model restart-
ing. Reprinted from [1].

transform can protect privacy and maintain target utility task performance simultaneously.

2.3.4 Anonymized Video Visualization

We provide the visualization of the anonymized videos on SBU, UCF101, and our new dataset

PA-HMDB51 (see Section 2.2.5) in Figure 2.7. To save space, we only show the center frame

of each anonymized video. The visualization shows that the privacy attributes in the anonymized

videos are filtered out, but it is still possible to recognize the actions.
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3. IMPLEMENTATION EFFICIENCY∗

3.1 Motivation

UAV-based video text spotting is broadly applied in assistive navigation, automatic translation,

road sign recognition, industrial monitoring, and disaster response, etc. A standard video text spot-

ting model has four components: text detector, text recognizer, text tracker, and post-processing.

Existing video text spotting solutions are purely performance-driven and fail to take energy

consumption into account. Multi-frame-related features are first obtained in frame-wise detection

or tracking. Then, they are aggregated for enhancement in a cross-frame and a multi-scale way for

text recognition. Therefore, existing performance-driven solutions are high in energy consumption

and unsuitable for resource-constrained UAV platforms.

∗Part of this chapter is reprinted with permission from “E2VTS: Energy-Efficient Video Text Spotting From
Unmanned Aerial Vehicles” [2] by Z. Hu, P. Pi, Z. Wu, Y. Xue, J. Shen, J. Tan, X. Lian, Z. Wang, and J. Liu,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Pages
905-913, 2021.

49



3.2 E2VTS: An Energy-Efficient Video Text Spotting Solution

Overview. The E2VTS two-step text spotting system adopts Efficient and Accurate Scene Text

Detector (EAST) as the text detector, and Convolutional Recurrent Neural Network (CRNN) as

the text recognizer. The recognizer is connected with the detector via crop & resize. A multi-stage

image processor is proposed to further save energy consumption. It has three stages, selecting

the highest-quality frame in a sliding window, rejecting text-free images and cropping non-text

regions, and rejecting out-of-distribution images. The pipeline is shown in Figure 3.1,

3.2.1 Revisiting RCNN: Crop & Resize vs. Aligned RoI Pooling

We compare two connection mechanisms for the detector and the recognizer: crop+resize ver-

sus aligned RoI pooling. Examples of aligned RoI pooling include BezierAlign [62] for arbitrary-

shaped text and RoIRotate [55] for rotated text.

Given the predicted bounding box from the detector, in crop+resize, the input to the recognizer

is the cropped box area affinely transformed from the original image and resized to a fixed resolu-

tion. The detector and the recognizer are trained independently. In aligned RoI pooling, the input

to the recognizer is the cropped box area affinely transformed from the feature map. The detector

and the recognizer are trained jointly. Note that the text recognition loss uses the ground truth text

regions instead of predicted text regions.

Unlike the benchmarks in image-based text spotting, real-world videos for text spotting are

full of small size and poor-quality text boxes. Consequently, crop+resize outperforms aligned RoI

pooling for two reasons. First, aligned RoI pooling losses the discriminative details for small size

text boxes due to the deep convolutions in the detector. In contrast, crop+resize enlarges the input

resolution of small size text boxes and preserves their discriminative spatial details [26]. Second,

text recognition (i.e., knowing what the text is) is intrinsically more difficult than text detection

(i.e., knowing where the text is). Thus, feature sharing and joint training will lead to sub-optimal

performance for both tasks [182, 183].
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Figure 3.1: Overview: E2VTS consists of two components. Component one is a multi-stage im-
age processor which selects the best frame within a window size and crops out the background.
Component two is a two-step crop & resize text spotting system including an EAST detector and
a CRNN recognizer. The EAST detector is based on ResNet34 backbone and outputs confidence,
angle, and distance. Out-of-distribution frames are rejected at ResNet Layer3. Reprinted from [2].

3.2.2 Multi-Stage Image Processor

Different from a single image, video frames are redundant and continuous in the temporal do-

main. Comparing one frame with its precedents and successors over certain metrics is a natural

filtering process to select the most suitable frame for the later detection task. We also leverage

sharp transitions of text regions to remove non-text background preliminarily to further boost ef-
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ficiency. All these implementations are based on simple signal processing algorithms, which are

significantly faster than neural network models.

3.2.2.1 Stage I: Selecting the Highest-Quality Frame in a Sliding Window

Figure 3.2: Sliding window for highest-quality frame selection. A window iterator is sliding over
the temporally sub-sampled frames and quality scoring is conducted on the frames via the proposed
measure. The highest ranked frame is selected. Reprinted from [2].

Problem Definition. Blur is the major artifact in UAV captured videos due to camera shake, depth

variation, object motion or a combination of them [184, 185]. Among all the frames describing

the same visual scene, the clearest image gives the least amount of detector or recognition error.

Since blurred frames contain less energy in the high-frequency components, in their associated

power spectrum [186], the power tends to fall much faster with increasing frequency, compared

with clear frames. Therefore, the average of the power spectra of clear frames is higher than these

degraded ones, as degraded ones have a steeper slope on their power spectrum.

Implementation. In Fig. 3.2, we propose a sliding window mechanism and select the highest-

quality frame in each window. Given a video containing L frames, the i-th windowWi is obtained

via:

Wi = S(i,N)(I1, ..., IL), (3.1)

where S represents the sliding rule and N is the window size. The selected highest-quality frame

inWi is:

IHQ = argmax
I∈Wi

G(I), (3.2)

where G is the quality measure. We propose two measures in this work: variance of Laplacian [187]
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and average fast Fourier transform (FFT) magnitude defined as:

GFFT =
1

hw
‖FFT(I0)‖,

GLV = Var(kL ∗ I0),

(3.3)

where I0 is a given frame with height h and width w. FFT magnitude measure is an approxima-

tion of power spectrum density in the frequency domain. The variance of Laplacian stresses spatial

information by counting sharp transitions in the frame. These two measure works in a complemen-

tary way. Therefore, we integrate the two methods by taking a weighted average of two measures’

scores ranking over a certain window. Let rank(I,W,G) denotes a function that returns the rank

of frame I among all the frames in the window W scored by the quality measure G in ascending

order. The selected highest-quality frame is:

IHQ = argmax
I∈Wi

[λ · rank(I,Wi,GFFT ) + (1− λ) · rank(I,Wi,GLV )], (3.4)

where λ is the relative weight parameter.

In practice, the video sequence is sub-sampled at rate r to further boost efficiency before ap-

plying the sliding window filter. As a hyper-parameter, the sub-sample rate r has a great impact

on the tradeoff between energy efficiency and performance. Although setting a higher sub-sample

rate could save more energy, it has a higher chance of missing scenes for text spotting.

3.2.2.2 Stage II: Rejecting Text-free Images and Cropping Non-Text Regions

Problem Definition. Known for high time complexity and energy consumption, connected component-

based text detection depends on maximally stable extremal region (MSER) as character candidates,

and stroke width transform (SWT) for filtering and pairing of connected components. Given the

observation that cohesive characters compose a word or sentence sharing similar properties such

as spatial location, size, and stroke width, we turn to Canny edge detector [?] to locate the edge

pixels that build the text’s structure (a.k.a. contour).

Implementation. In Fig. 3.3, we further reject text-free images and crop non-text regions. First,
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Figure 3.3: Cropping text foreground: we use the histogram to analyze the edge information of the
selected frame. If the number of peaks and the mean of intensity satisfies predefined thresholds,
text bounding coordinates will be selected from peaks info. Otherwise, the frame will be discarded.
Reprinted from [2].

Canny edge detector is applied on the three channels of the input image Iyuv represented in YUV

color space, and the three channels (Yc, Uc, Vc) are merged by bitwise OR (denoted as “|”) operation

to obtain the edge map Ie. Then, morphological closing is applied on the Ie to remove small holes

and merge connected components. If any text region is present in the image, a binary image with

continued text characters will be returned. Next, the histogram map is obtained by summing up

pixels along the x and y axis 1:

Hx[i] =
h∑
k=1

Ic[i, k], Hy[j] =
w∑
k=1

Ic[k, j], (3.5)

where w and h are the width and height of the image. After that, all the peaks 2 for these two his-

togram maps, i.e., Px and Py, are found. Text regions are assumed to fall within the peaks. Finally,

Text-free images are rejected based on two preset thresholds (θ, α) on the peak intensities and num-

bers, respectively. Note that the second-stage selector cannot deal with images with complicated

backgrounds, since the peaks value varies along both axes without any identifiable pattern. There-

fore, images with complicated backgrounds whose peaks are consistently high along the entire x

and y axis are accepted.

1With the origin in the lower-left corner, the x-axis is running from left to right, and the y-axis is running from
bottom to up.

2Peaks are all local maxima by comparing neighboring values in the histogram.
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Cropping text regions improves the SNR 3 in the image. On images with simple background,

the text regions are assumed to lie between (xl, yb) and (xr, yt). The coordinates of the text region

are obtained from the peaks via

xl, xr, yb, yt = Px[1], Px[−1], Py[1], Py[−1]. (3.6)

The details of the second-stage selector is shown in Algorithm 5.

Algorithm 5: Rejecting Text-free Images or Cropping Text Regions
1 Initialization: θ, α: predefined thresholds
2 Iyuv ← RGB2YUV(I)
3 Yc, Uc, Vc ← CannyEdge(Iyuv)
4 Ie ← Yc | Uc | Vc
5 Ic ← MorphClose(Ie)
6 Hx, Hy ← Histogram(Ic) // sum up pixels among axis
7 Px, Py ← FindPeaks(Hx, Hy)
8 µx, µy ← Mean(Px),Mean(Py)
// Whether the number of peaks or the mean of intensity is

less than preset thresholds
9 if Count(Px) ≤ θ or Count(Py) ≤ θ or µx ≤ α or µy ≤ α then

10 REJECT
11 end
12 else
13 ACCEPT
14 xl, xr, yb, yt ← Px[1], Px[−1], Py[1], Py[−1]
15 return I[xl : xr, yb : yt]

16 end

3.2.2.3 Stage III: Rejecting Out-of-Distribution Images

Problem Definition. A “trained” E2VTS model f with fixed parameters is able to fit a distribution

Xf defined on the image space. During inference, rejecting the out-of-distribution images in an

early-exit way could greatly reduce energy consumption. The out-of-distribution rejection prob-

3We treat text related pixels as signal and all other pixels as noise.
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lem [188] can be formulated as a binary classification. Examples of the positive cases and negative

cases used to train the rejector are shown in Fig. 3.4.

Implementation. Grad-CAM [189], a visual explanations technique via gradient-based localiza-

tion, is deployed to locate the first text semantic-aware layer l for our model. The outputs of the

text semantic-aware layer Hl serve as the high-level features to distinguish the out-of-distribution

images from the in-distribution ones. Support Vector Machines (SVM) is used for binary clas-

sification on Hl. SVM is preferred over the deep model due to its small size in the number of

parameters and low latency.

Figure 3.4: The negative samples in the first row and positive samples in the second row are
used to train the out-of-distribution rejector. Heavily-blurred, text-free, and truncated-text are all
considered as negative cases to be rejected. Reprinted from [2].
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3.3 Experiments

3.3.1 Experiment Settings

Figure 3.5: Sample Images from the LPCVC-20 Video Text Spotting Dataset. Reprinted from [2].

3.3.1.1 Datasets and Evaluation Protocols

We evaluate the proposed E2VTS approach on the LPCVC-20 video text spotting dataset, ab-

breviated as LPCVC-20. The videos are captured by UAVs flying indoors on the corridors, where

tons of posters and board signs with rotated text are presented. Five videos were used for train-

ing, and one video was reserved for testing. After converting videos into frames, we handpick

text-related images to form a collection that includes 7, 886 for training and 2, 033 for testing.

Furthermore, the text was annotated using the Auto Labeling algorithm described in the coming

subsection. LPCVC-20 consists of images of resolution 3840×2160, 1920×1080, and 1280×720.

IoU, IoP, IoG 4 are used for detection and edit-distance is used for recognition. The predicted

bounding box with the maximum IoU is selected for each ground truth, and the edit distance is

calculated between the ground truth text label and the predicted text.

Image Registration-Aided Annotation for Video Text Spotting by Auto Labeling. Given the

observation that temporally consecutive frames are describing the same scene, we propose Auto-
4Given a ground truth bounding box area G and predicted bounding box area P the IoU is (P ∩G)/(P ∪G), IoP

(a.k.a precision) is (P ∩G)/P , and IoG (a.k.a recall) is (P ∩G)/G.
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Labelling in Algorithm 6 to aid the video annotation, which utilizes the videos’ temporal redun-

dancy and continuity. It takes advantage of feature matching and perspective transformation to

transfer the annotated bounding box from the source frame to the target frame. Figure 3.6 shows

the annotation results produced by Algorithm 6.

Figure 3.6: Qualitative Results of Auto Labeling: extract features from the source frame and
the target frame. Conduct feature matching and perspective transform to update bounding boxes
annotation. Repeat the process until the end of the scene. Reprinted from [2].

Energy Consumption Measurement. A USB power meter 5 is used to measure energy consump-

tion. We connect the USB power meter in series to the power supply of the Raspberry Pi. With this

setup, the power meter can real-time measure the current through the Raspberry Pi. Since the volt-

age for Raspberry Pi is constantly 5V, we can calculate the energy consumption by recording the

current values. The power meter is connected with a computer through Bluetooth, and the energy

measurements of the Raspberry Pi are recorded using [190]. The timestamps for model inference

are written down to measure the latency for the model.

3.3.1.2 Model Compression

Pruning. The pruning algorithm compresses the neural network by removing redundant weights

or channels of layers. For a Raspberry Pi, structured pruning is preferred over unstructured prun-

ing, since structured pruning does not require specific hardware support for deployment. For our

5MakerHawk UM34C USB 3.0 Multimeter Bluetooth USB Voltmeter Ammeter
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Algorithm 6: Auto-Labeling
// Annotate the 1st frame

1 bs ← Annotate(V [1]) // Number of frames describing the same scene
2 N ← Size(V )
3 for i← 2 to N do

// Next Adjacent frame
4 It ← V [i] // Feature Matching
5 k1, d1 ← SIFT(Is); k2, d2 ← SIFT(It)
6 m← LoweRatioTest(BFMatcher(d1, d2))
7 ps, pt ← FilterKeyPts(m, k1), FilterKeyPts(m, k2)

// Perspective Transformation
8 bt ← Perspective(bs,HomographyMatrix(ps, pt))
9 Is ← It; bs ← bt

10 end

experiment, we applied `1 filter Pruner with a one-shot pruning strategy and a sparsity rate of 0.7,

which allowed our model to achieve the best trade-off between accuracy and energy efficiency.

Quantization. Quantization refers to techniques for using a reduced precision integer representa-

tion for weights and activations. For Raspberry Pi, Pytorch provides QNNPACK backends which

supports running quantized operators efficiently on ARMS CPU. For our experiment, we applied

static post quantization on all convolutional and fully connected layers; and applied dynamic post

quantization on the LSTM modules in the CRNN model.

3.3.2 Ablation Studies

3.3.2.1 Crop & Resize vs. Aligned RoI Pooling

In this section, we conduct ablation studies for the two-step Crop and Resize E2VTS text spot-

ting model and the two-stage Aligned RoIPool text spotting model. From Table 3.1 it can be seen

that the E2VTS model performs better than the Aligned RoIPool model at all resolutions. The

different factors that influence the performance of the model are also measured. From Tables 3.1

it can be concluded that the greater bounding box to character count ratio and the lesser character

count improves the recognition performance. Table 3.2 shows the deployment results of E2VTS

on Raspberry Pi.
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Table 3.1: E2VTS and FOTS results on LPCVC-20. Reprinted from [2].

E2VTS FOTS
EditDistance \ Resolution 1200 600 300 1200 600 300

BBox Area/Char Count
<=20 - 6.86 3.69 - 6.84 4.19
<=60 5.25 2.12 3.60 4.56 2.84 5.19
>60 1.93 2.00 2.92 2.62 3.48 5.97

Char Count
<=4 1.08 1.31 2.21 1.83 2.38 3.28
<=8 1.86 2.08 3.56 2.98 4.21 6.12
>8 4.20 3.79 5.32 3.95 4.92 8.61

Total 1.93 2.04 3.26 2.65 3.48 5.25

Table 3.2: Performance, Latency, and Energy Measurement of E2VTS on Raspberry Pi. Reprinted
from [2].

Model IoU IoP IoG EditDistance Latency Avg Energy

E2VTS 72.21 76.24 93.94 1.39 12.90 31.77

3.3.2.2 Multi-Stage Image Processor

We compare the overall performance of our method after incorporating different data level

efficiency techniques. As shown in Table. 3.3, incorporating data level efficiency results in a better

performance in both accuracy and efficiency.

Table 3.3: Ablation studies on the multi-stage image processor. Performance, latency, and energy
consumption are evaluated. Reprinted from [2].

Stage I Stage II Stage III Latency Energy EditDistance

X 627.43 1841.49 0.78
X 545.20 1349.23 1.14

X 571.48 1482.31 1.05
X X X 528.12 1267.2 0.96

Based on the results in Table 3.3, Stage I data pre-processing improves the accuracy of the
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model by selecting the best quality frame within a window size as the model’s input. The latency

and energy decrease slightly due to the extra cost introduced by quality scoring and the decrease

of the video’s sub-sample rate. Stage II data pre-processing decreases the latency and average

energy consumption of the model by improving the SNR in the image and rejecting low-quality

and non-text frames. Stage III data pre-processing also decreases latency and energy consumption

by rejecting out-of-distribution frames at an early stage of the detection model. The integration of

Stage I, II, and III as pre-processing benefits the model from the perspective of speed and energy

consumption.

3.3.2.3 Deployment on Raspberry Pi

In this section, we evaluate the overall performance of our method after incorporating different

model-level efficiency techniques, which include pruning and quantization.

Table 3.4: Ablation studies on pruning (P) and quantization (Q). Reprinted from [2].

P Q Latency Energy EditDistance

X 76.48 195.25 1.09
X 56.67 164.73 1.12
X X 12.90 39.23 1.14

Based on the results in Table 3.4, model pruning and quantization significantly decrease latency

and average energy consumption, respectively. Although implementing model compression results

in a sightly drop in accuracy, the tradeoff between energy efficiency and accuracy shows that

incorporating model level efficiency notably boosts overall performance.
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4. PIPELINE SIMPLICITY

4.1 Motivation

A common paradigm of video action detection is inspired by the two-stage paradigm of Faster

R-CNN in object detection, i.e., firstly generating person proposals and then classifying their ac-

tions. Specifically, these prior works usually combine a “backbone” 3D CNN (e.g., C3D, I3D,

SlowFast) with a region-based person detector. However, the growing adoption of many spe-

cialized components has made video action detection models gigantic and conceptually highly

sophisticated.

Initially, a video is split into short clips of 2-5 seconds, independently forwarded through the

3D CNN to compute a feature map. On the center frames of the raw short clips, action proposals are

then generated by a region proposal algorithm or densely sampled anchors. The region proposals

together with the feature map next go through the region of interest (RoI) pooling to compute

RoI features for each candidate anchor, and subsequently, for action classification and localization

refinement.

Later on, non-local (NL) blocks are incorporated to better capture the long-range dependencies

in both space and time to classify more complicated actions, e.g., person-person interactions and

person-object interactions.

Recently, memory bank-based methods, e.g., long-term Feature Bank (LFB) was proposed to

encode and store the rich, time-indexed information over the entire span of a video, providing a

supportive context that allows a video model to understand the present better.

4.1.1 Why Transformers for Video Action Detection?

There is an emerging trend of using Transformer architectures for computer vision tasks [147–

149,152]. Transformer is designed to learn long-range relations on sequential data. In comparison,

Transformer has no inductive biases that are inherent to CNN, such as locality and spatial invari-

ance. Therefore, when understanding the visual data, CNN is complementary to Transformer so
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that CNN can model the low-level structure of images/videos, and Transformer can capture the

high-level semantics.

Without denying all those specialized models’ success, we pose a reflection: can we alterna-

tively pursue a general, conceptually simple, and sufficiently versatile architecture and achieve

even better performance for video action detection using the Transfomer architecture?

VATN [148] made the first attempt at introducing Transformers to video action detection. It

used a modified Transformer-style architecture to classify the action of a person of interest, yield-

ing a decent performance on the Atomic Visual Actions (AVA) dataset [175]. However, the Trans-

former part in VATN is only “half-baked”, since it leverages merely the Transformer encoder for

action classification, but not using its decoder, while instead still using region proposal network

(RPN) as the sampling mechanism for person localization. Starting from the milestone of VATN,

the next question is: can we take further steps, utilizing less or even nearly no specialized compo-

nents, while obtaining more competitive performance?
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4.2 Proposed Approach: TxVAD

3D-CNN 
Backbone

ATx

PTx

PTx

Video Trunk

PTx

ST-RoI-Pool

ST-RoI-Pool

T-Pool

T-Pool

T-Pool

C C

CLASSES

ST-RoI-Pool

BOXES

BOXES

BOXES

T-Pool ST-RoI-PoolTemporal Pooling Spatio-temporal RoI-Pooling Action Query Person QueryC Concat

Figure 4.1: TxVAD uses a 3D-CNN backbone to learn a 5D representation of an input video trunk,
which is composed of multiple consecutive clips. We use two Transformer architectures: person
Transformers (PTx) for localization and an action Transformer (ATx) for classification. PTx works
on separate video clips and produces bounding boxes on persons at the central frame for each clip.
ATx works on the temporally concatenated feature maps and predicts the final action classes for
each box. Note that all person Transformers (PTx) share parameters. According to the bounding
box obtained from Qp, Spatio-temporal RoI-Pooling (ST-RoI-Pool) is used to extract the feature
map of the persons of interest to produce the action queries Qa. Temporal-Pooling (T-Pool) is
used to average the temporal channels in the 4D feature map for each clip. Please refer to section
3.2.1 and 3.2.2 for details of MC ,MS,ML,Tp,Ta,Qa,Qp. MC is the transformed tokens by the
encoder on Tp. MS is the transformed tokens by the encoder on Ta.

Using 3D CNNs to model low-level structures and Transformers to capture high-level seman-

tics, TxVAD is designed to localize all persons and classify all their actions. It ingests a video

trunk composed of consecutive clips centered on their corresponding annotated “keyframes”, and

generates a set of human bounding boxes for all the people on the temporal center frame, where

each box is labeled with the predicted action category.
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Figure 4.2: A detailed look into the Person Transformer (PTx) for localization and the Action
Transformer(ATx) for classification in TxVAD. In PTx, Tx-Encoder encodes the spatial informa-
tion at a temporal center slice from the video clip and Tx-Decoder decodes person queries into
box coordinates with MC . In ATx, Tx-Encoder encodes the spatio-temporal information from the
whole video trunk and Tx-Decoder decodes action queries into action classes with Ms and ML.

4.2.1 TxVAD Architecture

As shown in Figure 4.1, our TxVAD has three components: a 3D-CNN backbone to extract a

video trunk-level feature representation, a Transformer for person localization by modeling spatial

relations, and another Transformer for action classification by modeling spatio-temporal relations.

4.2.2 Detecting Actions by Two Transformers

3D-CNN Backbone. Given a video trunk v ∈ R(2L+1)×T0×C0×H0×W0 containing (2L+ 1) consec-

utive video clips, a 3D-CNN backbone [17,18] produces a feature map f(v) ∈ R(2L+1)×T×C×H×W

where T,C,H,W stands for temporal, channel, height, and width dimensions, respectively.

A 3D convolution with 1× 1× 1 kernel is used to reduce the number of channels of f(v) from

C to a smaller number dm, i.e., Transformer’s model dimension. The trunk-level feature map is

represented as w ∈ R(2L+1)×T×dm×H×W .
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Revisiting Transformer. The core of a Transformer is the attention module, which aggregate the

values in a weighted sum according to the attention weights measured by the compatibility of all

the query-key pairs for each query. Given the set of Nq queries packed into a matrix Xq and the set

of Nkv keys/values packed into a matrix Xkv, each single-head attention feature is obtained by

Attn(Xq, Xkv) = softmax(
X ′qX

′ᵀ
k )√
d′m

)(X ′v), (4.1)

where X ′q = XqWq, X ′k = XkvWk, and X ′v = XkvWv. Wq,Wk and Wv are embedding matrices of

size dm × d′m with learnable weights.

4.2.2.1 Person Transformer (PTx) for Localization.

Overall, PTx produces person bounding boxes on the temporal center frame for each clip in

the video trunk. Since we segment the untrimmed video into clips by centering on the annotated

“keyframes”, the temporal center slice in the 4D tensor naturally corresponds to the feature map of

the annotated “keyframes”. As shown in Figures 4.1 and 4.2, for each consecutive clip, PTx takes

the temporally sliced central frame of their corresponding 4D feature map as input and produces

bounding boxes on detected persons.

Tokenization. For the i-th clip, the spatial H,W dimensions of frame-level feature w(i, bT/2c , ::

) are collapsed into one dimension, resulting in a sequence of frame-level visual tokens Tp ∈

Rdm×HW . Since Transformer has neither recurrence nor convolution, fixed Sinusoidal “positional

encoding” [191] is added to the visual tokens Tp. In the cross-attention of decoder, Tp updated

by the encoder serves as context memory, denoted as MC in Figure 4.2. A fixed number of person

queries Qp are initialized as all 0 vectors and supplemented with learnable “positional encoding”

as anchors.

Transformer. Following [149], we adopt the standard Transformer [191] encoder-decoder archi-

tecture to transform the frame-level visual tokens Tp to a set of person queries Qp. Using self-

attention on the frame-level visual tokens Tp, the encoder reasons in the spatial scene to roughly

disentangles different persons. The decoder uses self-attention on the person queries Qp to capture
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their relations and cross-attention on MC to attend to person extremities such as heads or legs.

Finally, an FFN is used to decode the updated person queries Qp into bounding box coordinates.

4.2.2.2 Action Transformer (ATx) for Classification.

As shown in Figures 4.1 and 4.2, ATx also adopts the Transformer encoder-decoder architec-

ture, with “positional encoding” and parallel decoding. Given temporally discrete bounding boxes

predicted by PTx on multiple “keyframes” from each consecutive clip, we extend them by repeat-

ing the boxes in time to form action tubes that surround the persons of interest in each clip. Unlike

the person queries Qp initialized as all zeros to decode person bounding box coordinates in PTx,

here action queries Qa are initialized as feature maps of the action tubes on the center clip of the

video trunk. ST-RoI-Pooling is adopted to reduce the size of Qa to dm, which is 1024 if SlowFast

backbone is used.

Tokenization. The H,W dimensions of the 5D feature map from the trunk are collapsed into

one dimension and the T dimension is averaged, giving a sequence of trunk-level visual tokens

Ta ∈ Rdm×(HW×(2L+1)). To make up for the missing spatio-temporal information, fixed spatial

“positional encoding” for the HW dimension and learnable temporal “positional encoding” for

the (2L + 1) dimension are added to the visual tokens Ta. In the first cross-attention of decoder,

Ta updated by the encoder serves as scene context memory, denoted as MS in Figure 4.1 and 4.2.

In the second cross-attention of decoder, the feature maps of the action tubes not on the center clip

of the video trunk serve as long-term context memory, denoted as ML in Figure 4.1 and 4.2.

Transformer. Likewise, we use the standard Transformer to transform the video-level visual to-

kens Ta to a set of action queries Qa that are supplemented with spatio-temporal “positional en-

coding” (the coordinates of the bounding boxes) and “group encoding” (person’s identity tags).

Using self-attention on the visual Tokens Ta, the encoder reasons in the spatio-temporal scene to

roughly associate interaction information from different persons and objects. The decoder uses

self-attention on the action queries Qa to capture their relations (e.g., person-person interaction)

and two cross-attentions on the scene context memory MS and long-term context memory ML

respectively, to aggregate context information from other persons and objects (e.g., person pose
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action, person-object and person-person interactions). Finally, an FFN is used to decode the up-

dated action queries Qa into action classes.

4.2.3 Training Details

Training such Transformer-based architectures from end to end is time-costly and often un-

stable [149], especially now on video data. After presenting the loss functions, a hardness-aware

curriculum training strategy is proposed to stabilize the TxVAD training.

Loss Functions. We use a multi-task loss to jointly train TxVAD, with two loss terms for PTx and

ATx respectively (λ is the weight to control their relative importance):

LTxVAD = LPTx + λLATx. (4.2)

We next detail the design of each loss term.

Following [149], we use a set prediction loss to train the PTx. Binary classification loss is

adopted since there is only two classes of foreground (person) and background (non-person). Given

the set of predicted person boxes ŷp = {(b̂i, p̂i)}Ni=1 and the ground truth set of action boxes ygt =

{(bi, ci)}N
′

i=1, the bipartite matching between ygt and ŷp is obtained by finding a permutation σ̂ as

assignment via Hungarian algorithm that minimizes the matching cost [149]. Using the optimal

assignment σ̂, the person localization loss is defined as:

LPTx(ygt, ŷp) =
N ′∑
i=1

[
− log p̂σ̂(i) + Lbox(bi, b̂σ̂(i))

]
, (4.3)

where p̂σ̂(i) is the predicted probability of person, b̂σ̂(i) is the predicted bounding box, and Lbox is a

linear combination of the `1 loss and the generalized IoU loss in [149].

Given the set of predicted action boxes ŷa = {(b̂i, p̂ci)}Ni=1 and the ground truth set of action

boxes ygt = {(bi, ci)}N
′

i=1, we use a multi-label classification loss in the form of binary cross-

entropy for training ATx:

LATx(ygt, ŷa) =
N ′∑
i=1

−log cip̂
c
i . (4.4)
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Hardness-Aware Curriculum Learning. Similar to as found in DETR [149], our proposed Tx-

VAD also suffers from a long and unstable training schedule. We locate one crucial cause: at

initialization, the attention modules cast nearly uniform attention weights to all the cells in the

feature maps.

Our solution refers to curriculum training [192], which first focuses on learning from a subset

of simple training examples that requires localized attention for classification, and gradually in-

cludes the remaining more complex samples that require longer-range spatio-temporal modeling

by attention. Such a curriculum learning strategy gives a localize attention as initialization for the

Transformer and gradually increases the “receptive field” of Transformer as harder samples are

included in the training.

The core question here is how to design the “curriculum”. Human actions are naturally grouped

in three categories: person pose, person-person interactions, and person-object interactions1. Those

three categories intuitively have different “semantic difficulty levels”, e.g.,

• Single person poses are most “standalone”, have the least interventions with surroundings,

and do not rely much on temporal information to recognize correctly;

• Classifying person-person interactions needs to capture multiple person subjects’ appearance

features, and may suffer from body occlusions;

• Person-object interactions can be more challenging, since the objects are smaller and actions’

spatial ranges often become smaller too, compared to person-person.

Our hardness-aware curriculum training strategy hence has three stages. In the first stage, we

only train with the subset of videos with class labels belong to the person pose category, and

detect/classify those person poses only. The second stage extends to training with classes from

both person pose and person-person interactions categories. Finally, the third stage trains with all

three categories. We find the strategy to improve TxVAD’s training substantially.

1As actions of different types can coexist in videos, e.g., talk to (person-person) and stand (person pose), the three
categories are NOT disjoint.

69



4.3 Experiments

4.3.1 Datasets and Implementation Details

Datasets. We train and test our model on the Atomic Visual Actions (AVA) version 2.1 bench-

mark [175] dataset, which contains 211K training clips and 57K validation clips segmented from

235 training movie videos and 64 validation movie videos, respectively. AVA is annotated on

“keyframes” sparsely sampled at 1 frame per second (FPS). Each person at the keyframe is labeled

with one bounding box and labels from 80 atomic visual actions, broadly covering person-person

interactions, person-object interactions, and person pose actions. As the most challenging and

comprehensive benchmark, AVA is used as the main benchmark to conduct ablation studies and

demonstrate the effectiveness of our approach.

Besides AVA, we also report the performance of TxVAD on JHMDB-21 [8] and UCF101-

24 [11]. JHMDB-21 contains 928 temporally trimmed short video clips with 21 action classes.

Every frame in JHMDB-21 is annotated with one actor bounding box and a single action label. As

a subset of UCF101 with 24 action classes, UCF101-24 has 3, 207 videos provided with framewise

spatio-temporal annotations for action detection.

The proposed curriculum learning approach can be applied to other video action detection

datasets such as JHMDB-21, since the proposed different difficulty levels of action categories

(single person pose, person-person interactions, and person-object interactions) are general across

datasets. Note that JHMDB-21 has excluded action classes belonging to person-person interaction.

Therefore, to apply curriculum training, we have two stages, first on single-person pose actions

then on person-object interactions.

Evaluation Metrics. Frame-level mean average precision (frame-mAP) at an IoU threshold of

0.5 is reported. To compare with previous works [22, 26–28, 148] on AVA v2.1, our proposed

TxVAD is evaluated on the subset of 60 classes that have at least 25 validation examples. On AVA,

both the action agnostic person localization and action classification are evaluated on the annotated

“keyframes” using mAP at IoU threshold of 0.5. On JHMDB-21, frame-mAP averaged over three
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Figure 4.3: Ablation studies on action detection with different architectures. f(Vk) is generated by
I3D-base which includes all the layers up to “Mixed_4f” in the I3D. I3D-head is the “Mixed_5b”
and “Mixed_5c” layers in the I3D network. ST-RoI-Pool is an abbreviation of Spatio-Temporal
RoI-Pool, which extracts feature maps guided by action tubes, which is formed by repeating the
box in time. Tx stands for Transformer. For simplicity, only one clip is contained in the video
trunk, i.e., n = 1.

training/validation splits is reported. On UCF101-24, frame-mAP is reported on the first split.

Implementation Details. We experiment with two families of backbones: I3D [17] and Slow-

Fast [18]. I3D is inflated from 2D Inception architecture. SlowFast is modified from 3D ResNet

architecture and involves two pathways fused by lateral connection. The slow pathway captures

spatial semantics, and the fast pathway captures motion. The 3D ResNet can be augmented with

non-local (NL) blocks2. Both I3D and SlowFast are pretrained on the video classification task on

Kinetics [6, 193, 194].

If I3D is used as the backbone, all frames are resized toH0×W0 = 400×400 and the video clip

length is set to T0 = 64. The 3D backbone, and the output of “Mixed_4f” is used as f(v). f(v) is of

size n×T ×C×H×W , where n is the number of clips in a video trunk, T = T0/4 is the temporal

length of each video clip, C = 832 is number of channels, H,W = H0/16,W0/16 are the spatial

dimensions. If SlowFast is used, the short side is resized to be 256 and C = 2048 + 256 = 2304.

τ = 16, α = 8, and β = 1/8.

Training Strategies. The Adam optimizer with decoupled weight decay (AdamW) [195] is adopted

with a mini-batch size of 32 on 8 GPUs. Batch normalization layers in 3D-CNNs are frozen. There

are two pathways in TxVAD: Person Transformer for localization (PTx) and Action Transformer

for classification (ATx). Firstly, PTx is self-supervised pretrained using the pretext task of “ran-

2In experiments, R50-NL and R101-NL are the backbones using SlowFast based on 3D ResNet-50 and ResNet-101
with NL blocks, respectively.
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dom query patch detection” [196] and finetuned on AVA using action-agnostic bounding boxes

adopting LPTx in Eq. 4.3. Secondly, with PTx’s parameters being fixed, ATx is trained using ac-

tion queries Qa obtained from RoI-Pooled features extract from ground-truth action boxes using

LATx in Eq. 4.4. Lastly, PTx and ATx are connected and trained in an end-to-end way using the

multi-task loss in Eq. 4.2.

4.3.2 Ablation Study

We conduct comprehensive ablation studies on the AVA dataset to investigate the effects of

different components in our proposed TxVAD, to show the superiority.

Table 4.1: Ablation studies on action detection with different architectures. The structures of type
(a), (b) (c), and (d) are shown in Figure 4.3. We set n = 1 in this study.

Type Loc Arc Cls Arc Loc (mAP) Cls (mAP)

a RPN I3D-head 92.8 20.8
b RPN Tx 92.4 24.2
c Tx I3D-Head 95.2 22.4
d Tx Tx 95.4 26.1

Different Architectures. As illustrated in Figure 4.3, to show the advantages of TxVAD with

two Transformers (Tx), we come up with 4 different architectures with different localization ar-

chitectures (Loc Arc) and classification architectures (Cls Arc). Type (a) is based on RPN [52]

and I3D-head, where RPN is used for action agnostic person localization and I3D-head is used for

action classification. Type (d) is our proposed TxVAD with n = 1. As shown in Table 4.1, Trans-

former outperforms I3D-head in action classification since Transformer’s attention mechanism can

capture the scene and long-range temporal context information simultaneously, especially in AVA,

where actors interact with other actors or objects.

Temporal Length of Video Chunk. The input video trunk has n video clips. The larger n means

that the longer-range temporal information is included. We have tried n = 1, 3, 5, and the perfor-
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mance is shown in Table 4.2, where n = 3 gives us the best result. We investigate those action

types whose classification require long temporal information as context, including “put down”,

“lift (a person)”, “enter”, “close (e.g., a door)”, “give/serve (an object) to (a person)”, “open (e.g.,

a window)”, “fight/hit (a person)”, and so on. There is a clear trend that the numbers reported on

these actions get higher when longer-range temporal information is included.

Table 4.2: Ablation studies on the temporal length of the video trunk.

n = 1 n = 3 n = 5

Loc (mAP) 95.4 95.6 95.6
Cls (mAP) 26.1 26.8 26.2

Number of Encoders and Decoders. We conduct ablation studies on the number of encoders and

decoders and show the results in Table 4.3. Using M = 5 and M = 3 encoders and decoders gives

us the best performance for person localization and action classification, respectively.

Table 4.3: Ablation studies on the- number of encoders and decoders used in TxVAD. To save the
hyperparameter search space, we set the number of encoders, M , to be the same as the number of
decoders. We set n = 1 in this study.

M = 1 M = 2 M = 3 M = 4 M = 5

Loc (mAP) 94.6 94.9 95.2 95.4 95.5
Cls (mAP) 24.9 25.5 26.1 26.1 25.8

Hardness-aware Curriculum Learning. TxVAD’s long and unstable training schedule motivates

us to try the proposed hardness-aware curriculum learning. Our proposed hardness-aware curricu-

lum learning has 3 stages. The first stage only focuses on detecting the person pose actions. The

second stage focuses on person pose and person-object interaction actions. The last stage sees
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all three types of actions together. We proceed to the next stage when the performance on the

validation set got saturated.

The performance of different action categories at each stage is shown in Table 4.4. We can

observe that incrementally adding harder action classes requiring longer-range temporal and more

complicated scene context information gives us better performance on each action category. Using

the proposed curriculum training improves the mAP from 26.1 to 26.7 on the validation set of AVA

v2.1.

Table 4.4: Hardness-aware curriculum learning. The accuracy (mAP IoU@0.5) of different action
categories at different stages in the curriculum learning is reported.

Person-Pose Person-Object Person-Person Overall

Stage 1 44.5 - - -
Stage 2 46.8 29.5 - -
Stage 3 49.4 31.4 22.1 26.7

4.3.3 Competing Results on AVA, JHMDB-21, and UCF101-24 by Adding Things Together

We compare our proposed TxVAD with the state-of-the-art methods on AVA v2.1 by adding

hardness-aware curriculum training, adopting a better backbone, and using data augmentation. We

only consider methods that use a single model and single crop for evaluation for a fair comparison

with our proposed TxVAD. As shown in Table 4.5, compared with the approaches based on the

I3D backbone [22,23,148,197] and SlowFast [18,26,27], our proposed TxVAD is able to achieve

the state-of-the-art performance on AVA in Table 4.5.

TxVAD is further evaluated on JHMDB-21 and UCF101-24. As shown in Table 4.6 and Ta-

ble 4.7, TxVAD also achieves the state-of-the-art performance on both datasets.

Even without using any hand-crafted module (e.g., anchors, or RPN module), long-term mem-

ory banks, or pre-trained off-the-shelf person/object detectors as used in existing methods [23,

25–27, 148], our method has shown the state-of-the-art performance on AVA, JHMDB-21, and
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UCF101-24, which suggests that the proposed non-specific, general versatile architecture based on

Transformers can be applied to build strong video action detector.

Table 4.5: Comparison with the state-of-the-art methods on the AVA v2.1 dataset. Our proposed
TxVAD achieves the best performance on both I3D and SlowFast backbones. Approaches marked
with (*) and (+) are incorporated with the hardness-aware curriculum training and the long-term
feature bank (LFB), respectively.

Method Optical Flow Pretrain Backbone mAP

Relation Graph [198] Kinetics-400 R50-NL 22.2
LFB [25] Kinetics-400 R101-NL 27.1

Context-Aware RCNN [26] Kinetics-400 R50-NL 28.0
SlowFast [18] Kinetics-600 R101-NL 28.2

AIA [27] Kinetics-700 R101-NL 31.2

AVA baseline [175] X Kinetics-400 I3D 15.6
ACRN [197] X Kinetics-400 I3D 17.4
STEP [22] Kinetics-400 I3D 20.2

STAGE [23] Kinetics-400 I3D 23.0
VAT [148] Kinetics-400 I3D 25.0

TxVAD Kinetics-400 I3D 26.8
TxVAD Kinetics-700 R101-NL 31.5
TxVAD* Kinetics-700 R101-NL 31.9
TxVAD+ Kinetics-700 R101-NL 31.8
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Table 4.6: Comparison with the state-of-the-art methods on the JHMDB-21 dataset. Approaches
marked with (*) are incorporated with hardness-aware curriculum training.

Method Optical Flow Pretrain Backbone mAP

Two-stream RCNN [199] X ImageNet VGG 58.5
T-CNN [200] X Sports-1M C3D 61.3

ACT [201] X ImageNet VGG 65.7
Context-Aware RCNN [26] Kinetics-400 R50-NL 79.2

AVA baseline [175] X Kinetics-400 I3D 73.3
ACRN [197] X Kinetics-400 I3D 77.9

TxVAD Kinetics-400 I3D 78.4
TxVAD Kinetics-400 R50-NL 79.4
TxVAD* Kinetics-400 R50-NL 79.8

Table 4.7: Comparison with the state-of-the-art methods on the UCF101-24 dataset. Approaches
marked with (*) are incorporated with hardness-aware curriculum training.

Method Optical Flow Pretrain Backbone mAP

Two-stream RCNN [199] X ImageNet VGG 65.7
T-CNN [200] Sports-1M C3D 67.3

ACT [201] X ImageNet VGG 69.5
STEP [22] Kinetics-400 I3D 75.0

AVA baseline [175] X Kinetics-400 I3D 76.3
Relation Graph [198] Kinetics-400 I3D 77.9

AIA [27] Kinetics-400 R50-NL 78.8

TxVAD Kinetics-400 I3D 78.2
TxVAD Kinetics-400 R50-NL 79.1
TxVAD* Kinetics-400 R50-NL 79.5
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5. CONCLUSION

In this dissertation, we improve the existing performance-driven approaches for video action

detection or video text spotting in three aspects: data sharing privacy, model design simplicity, and

hardware deployment efficiency.

First, to approach privacy-preserving video data sharing, we propose an innovative framework

to address the newly-established problem of privacy-preserving action recognition. To tackle the

challenging adversarial learning process, we investigate three different optimization schemes. To

further tackle the ∀ challenge of universal privacy protection, we propose the privacy budget model

restarting and ensemble strategies. Both are shown to improve the privacy-utility trade-off further.

Various simulations verified the effectiveness of the proposed framework. More importantly, we

collect the first dataset for privacy-preserving video action recognition, an effort that we hope could

engage a broader community into this research field. We note that there is much room to improve

the proposed framework before it can be used in practice. For example, the definition of privacy

leakage risk is core to the framework. Considering the ∀ challenge, current LB defined with any

specific fB is insufficient; the privacy budget model ensemble could only be viewed as a rough

discretized approximation of P . More elaborated ways to approach this ∀ challenge may lead to a

further breakthrough in achieving the optimization goal.

Second, to save energy in video text spotting, we present an energy-efficient video text spotting

solution, dubbed as E2VTS, for Unmanned Aerial Vehicles. E2VTS is an energy-efficiency driven

model without compromising text spotting performance. The proposed system utilizes data level

efficiency enhancement techniques and uses model level efficiency-boosting methods such as prun-

ing and quantization. Specifically, a sliding window is used to select scene-wise highest quality

frame; a Canny edge-based algorithm is proposed to reject text-free images and non-text frames;

a dynamic routing mechanism emphasizes the in-distribution inputs. Far from the application on

UAV devices, our video text spotting system is competent for any energy-constrained scenario.

Finally, to design a simple model for video action detection, we come up with TxVAD, a
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new paradigm based on Transformer architecture for video action detection. TxVAD has achieved

state-of-the-art results on AVA, JHMDB-21, and UCF101-24 datasets. We show that the traditional

reliance on many specialized modules and tricks may not be necessary for video action detection,

and Transformer-based architecture can build a strong approach for video understanding tasks.

Such a Transformer-based architecture brings versatility to TxVAD. For turning from specialized

to general-purpose architectures, one strong motivation is to simplify and unify the different task

pipelines, so one general suite of models, and all their associated techniques, could be extensively

reused by many applications without re-inventing wheels everywhere. Transformers have already

demonstrated superb powers in NLP, speech processing, computer vision, biological sequence

analysis [202], and even chess gaming [203], making them one ideal model candidate for that

convergence.

78



REFERENCES

[1] Z. Wu, H. Wang, Z. Wang, H. Jin, and Z. Wang, “Privacy-preserving deep action recogni-

tion: An adversarial learning framework and a new dataset,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2020.

[2] Z. Hu, P. Pi, Z. Wu, Y. Xue, J. Shen, J. Tan, X. Lian, Z. Wang, and J. Liu, “E2vts:

Energy-efficient video text spotting from unmanned aerial vehicles,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 905–913, 2021.

[3] Z. Wu, Z. Wang, Z. Wang, and H. Jin, “Towards privacy-preserving visual recognition via

adversarial training: A pilot study,” in ECCV, 2018.

[4] T. Orekondy, B. Schiele, and M. Fritz, “Towards a visual privacy advisor: Understanding

and predicting privacy risks in images,” in ICCV, 2017.

[5] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijaya-

narasimhan, “Youtube-8m: A large-scale video classification benchmark,” arXiv, 2016.

[6] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola,

T. Green, T. Back, P. Natsev, et al., “The kinetics human action video dataset,” arXiv, 2017.

[7] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large video database

for human motion recognition,” in ICCV, 2011.

[8] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards understanding action

recognition,” in ICCV, 2013.

[9] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown,

Q. Fan, D. Gutfreund, C. Vondrick, et al., “Moments in time dataset: one million videos for

event understanding,” TPAMI, 2019.

79



[10] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta, “Hollywood

in homes: Crowdsourcing data collection for activity understanding,” in ECCV, Springer,

2016.

[11] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes

from videos in the wild,” arXiv, 2012.

[12] H. Zhao, A. Torralba, L. Torresani, and Z. Yan, “Hacs: Human action clips and segments

dataset for recognition and temporal localization,” in ICCV, 2019.

[13] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,

and T. Darrell, “Long-term recurrent convolutional networks for visual recognition and de-

scription,” in CVPR, 2015.

[14] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and

G. Toderici, “Beyond short snippets: Deep networks for video classification,” in CVPR,

2015.

[15] L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B. E. Shi, and S. Savarese, “Lattice long short-term

memory for human action recognition,” in ICCV, 2017.

[16] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal fea-

tures with 3d convolutional networks,” in ICCV, 2015.

[17] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the kinetics

dataset,” in CVPR, 2017.

[18] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recognition,”

in ICCV, 2019.

[19] C. Feichtenhofer, “X3d: Expanding architectures for efficient video recognition,” in CVPR,

2020.

[20] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition

in videos,” in NeurIPS, 2014.

80



[21] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream network fusion for

video action recognition,” in CVPR, 2016.

[22] X. Yang, X. Yang, M.-Y. Liu, F. Xiao, L. S. Davis, and J. Kautz, “Step: Spatio-temporal

progressive learning for video action detection,” in CVPR, 2019.

[23] M. Tomei, L. Baraldi, S. Calderara, S. Bronzin, and R. Cucchiara, “Stage: Spatio-temporal

attention on graph entities for video action detection,” arXiv, 2019.

[24] R. R. A. Pramono, Y.-T. Chen, and W.-H. Fang, “Hierarchical self-attention network for

action localization in videos,” in ICCV, 2019.

[25] C.-Y. Wu, C. Feichtenhofer, H. Fan, K. He, P. Krahenbuhl, and R. Girshick, “Long-term

feature banks for detailed video understanding,” in CVPR, 2019.

[26] J. Wu, Z. Kuang, L. Wang, W. Zhang, and G. Wu, “Context-aware rcnn: A baseline for

action detection in videos,” in ECCV, Springer, 2020.

[27] J. Tang, J. Xia, X. Mu, B. Pang, and C. Lu, “Asynchronous interaction aggregation for action

detection,” arXiv, 2020.

[28] J. Pan, S. Chen, Z. Shou, J. Shao, and H. Li, “Actor-context-actor relation network for

spatio-temporal action localization,” arXiv, 2020.

[29] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “Textboxes: A fast text detector with a single

deep neural network,” arXiv, 2016.

[30] M. Liao, B. Shi, and X. Bai, “Textboxes++: A single-shot oriented scene text detector,” TIP,

2018.

[31] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “East: an efficient and

accurate scene text detector,” in CVPR, 2017.

[32] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying landmark localization with

end to end object detection,” arXiv, 2015.

81



[33] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-

age segmentation,” in International Conference on Medical image computing and computer-

assisted intervention, Springer, 2015.

[34] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue, “Arbitrary-oriented scene

text detection via rotation proposals,” TMM.

[35] C. Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and X. Ding, “Look more than once:

An accurate detector for text of arbitrary shapes,” in CVPR, 2019.

[36] X. Wang, Y. Jiang, Z. Luo, C.-L. Liu, H. Choi, and S. Kim, “Arbitrary shape scene text

detection with adaptive text region representation,” in CVPR, 2019.

[37] D. Deng, H. Liu, X. Li, and D. Cai, “Pixellink: Detecting scene text via instance segmenta-

tion,” arXiv, 2018.

[38] Y. Wu and P. Natarajan, “Self-organized text detection with minimal post-processing via

border learning,” in ICCV, 2017.

[39] Z. Tian, M. Shu, P. Lyu, R. Li, C. Zhou, X. Shen, and J. Jia, “Learning shape-aware embed-

ding for scene text detection,” in CVPR, 2019.

[40] W. Wang, E. Xie, X. Li, W. Hou, T. Lu, G. Yu, and S. Shao, “Shape robust text detection

with progressive scale expansion network,” in CVPR, 2019.

[41] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “Detecting text in natural image with connec-

tionist text proposal network,” in ECCV, 2016.

[42] B. Shi, X. Bai, and S. Belongie, “Detecting oriented text in natural images by linking seg-

ments,” in CVPR, 2017.

[43] Y. Baek, B. Lee, D. Han, S. Yun, and H. Lee, “Character region awareness for text detec-

tion,” in CVPR, 2019.

82



[44] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classi-

fication: labelling unsegmented sequence data with recurrent neural networks,” in ICML,

2006.

[45] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-

works,” NeurIPS, 2014.

[46] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based se-

quence recognition and its application to scene text recognition,” TPAMI, 2016.

[47] F. Yin, Y.-C. Wu, X.-Y. Zhang, and C.-L. Liu, “Scene text recognition with sliding convolu-

tional character models,” arXiv, 2017.

[48] C.-Y. Lee and S. Osindero, “Recursive recurrent nets with attention modeling for ocr in the

wild,” in CVPR, 2016.

[49] F. Bai, Z. Cheng, Y. Niu, S. Pu, and S. Zhou, “Edit probability for scene text recognition,”

in CVPR, 2018.

[50] H. Li, P. Wang, and C. Shen, “Towards end-to-end text spotting with convolutional recurrent

neural networks,” in ICCV, 2017.

[51] P. Wang, H. Li, and C. Shen, “Towards end-to-end text spotting in natural scenes,” arXiv,

2019.

[52] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks,” TPAMI, 2016.

[53] M. Busta, L. Neumann, and J. Matas, “Deep textspotter: An end-to-end trainable scene text

localization and recognition framework,” in ICCV, 2017.

[54] T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, and C. Sun, “An end-to-end textspotter with

explicit alignment and attention,” in CVPR, 2018.

[55] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “Fots: Fast oriented text spotting

with a unified network,” in CVPR, 2018.

83



[56] P. Lyu, M. Liao, C. Yao, W. Wu, and X. Bai, “Mask textspotter: An end-to-end trainable

neural network for spotting text with arbitrary shapes,” in ECCV, 2018.

[57] M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask textspotter: An end-to-end

trainable neural network for spotting text with arbitrary shapes,” PAMI, 2019.

[58] M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask textspotter v3: Segmentation

proposal network for robust scene text spotting,” in ECCV, 2020.

[59] S. Qin, A. Bissacco, M. Raptis, Y. Fujii, and Y. Xiao, “Towards unconstrained end-to-end

text spotting,” in ICCV, 2019.

[60] W. Feng, W. He, F. Yin, X.-Y. Zhang, and C.-L. Liu, “Textdragon: An end-to-end framework

for arbitrary shaped text spotting,” in ICCV, 2019.

[61] L. Xing, Z. Tian, W. Huang, and M. R. Scott, “Convolutional character networks,” in ICCV,

2019.

[62] Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “Abcnet: Real-time scene text spotting

with adaptive bezier-curve network,” in CVPR, 2020.

[63] Y. Baek, S. Shin, J. Baek, S. Park, J. Lee, D. Nam, and H. Lee, “Character region attention

for text spotting,” in ECCV, 2020.

[64] L. Wang, J. Shi, Y. Wang, and F. Su, “Video text detection by attentive spatiotemporal fusion

of deep convolutional features,” in Proceedings of the 27th ACM International Conference

on Multimedia, pp. 66–74, 2019.

[65] L. Wu, P. Shivakumara, T. Lu, and C. L. Tan, “A new technique for multi-oriented scene

text line detection and tracking in video,” TMM, 2015.

[66] X.-H. Yang, W. He, F. Yin, and C.-L. Liu, “A unified video text detection method with

network flow,” in ICDAR, 2017.

[67] S. Tian, W.-Y. Pei, Z.-Y. Zuo, and X.-C. Yin, “Scene text detection in video by learning

locally and globally.,” in IJCAI, 2016.

84



[68] Z.-Y. Zuo, S. Tian, W.-y. Pei, and X.-C. Yin, “Multi-strategy tracking based text detection

in scene videos,” in ICDAR, IEEE, 2015.

[69] Y. Wang, L. Wang, F. Su, and J. Shi, “Video text detection with fully convolutional network

and tracking,” in 2019 IEEE International Conference on Multimedia and Expo (ICME),

pp. 1738–1743, IEEE, 2019.

[70] X. Wang, Y. Jiang, S. Yang, X. Zhu, W. Li, P. Fu, H. Wang, and Z. Luo, “End-to-end scene

text recognition in videos based on multi frame tracking,” in ICDAR, 2017.

[71] Z. Cheng, J. Lu, B. Zou, L. Qiao, Y. Xu, S. Pu, Y. Niu, F. Wu, and S. Zhou, “Free: A fast

and robust end-to-end video text spotter,” TIP, 2020.

[72] Z. Cheng, J. Lu, Y. Niu, S. Pu, F. Wu, and S. Zhou, “You only recognize once: Towards fast

video text spotting,” in ACMMM, 2019.

[73] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When machine learning

meets privacy: A survey and outlook,” ACM Computing Surveys (CSUR), 2021.

[74] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves:

Privacy via distributed noise generation,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2006.

[75] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private

data analysis,” in Theory of cryptography conference, Springer, 2006.

[76] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Proceedings of

the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, 2003.

[77] I. Mironov, “On significance of the least significant bits for differential privacy,” in Proceed-

ings of the 2012 ACM conference on Computer and communications security, 2012.

[78] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer Security Foundations

Symposium (CSF), IEEE, 2017.

85



[79] R. Hall, A. Rinaldo, and L. Wasserman, “Differential privacy for functions and functional

data,” The Journal of Machine Learning Research, 2013.

[80] J. Hamm, “Minimax filter: Learning to preserve privacy from inference attacks,” The Jour-

nal of Machine Learning Research, 2017.

[81] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in 2015

IEEE Symposium on Security and Privacy, IEEE, 2015.

[82] T. GINART, M. GUAN, G. VALIANT, and J. ZOU, “Making ai forget you: Data deletion

in machine learning,” Advances in Neural Information Processing Systems, 2019.

[83] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining of machine learning

models,” in International Conference on Machine Learning, pp. 10355–10366, PMLR,

2020.

[84] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang,

D. Lie, and N. Papernot, “Machine unlearning,” arXiv preprint arXiv:1912.03817, 2019.

[85] R. D. Cook and S. Weisberg, “Characterizations of an empirical influence function for de-

tecting influential cases in regression,” Technometrics, 1980.

[86] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust statistics: the

approach based on influence functions. John Wiley & Sons, 2011.

[87] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in

ICML, PMLR, 2017.

[88] T. Baumhauer, P. Schöttle, and M. Zeppelzauer, “Machine unlearning: Linear filtration for

logit-based classifiers,” arXiv preprint arXiv:2002.02730, 2020.

[89] F. Pittaluga, S. J. Koppal, S. B. Kang, and S. N. Sinha, “Revealing scenes by inverting

structure from motion reconstructions,” in CVPR, 2019.

[90] A. Dosovitskiy and T. Brox, “Inverting visual representations with convolutional networks,”

in CVPR, 2016.

86



[91] H. Kato and T. Harada, “Image reconstruction from bag-of-visual-words,” in CVPR, 2014.

[92] P. Weinzaepfel, H. Jégou, and P. Pérez, “Reconstructing an image from its local descriptors,”

in CVPR, 2011.

[93] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural networks using nat-

ural pre-images,” IJCV, 2016.

[94] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.,” in STOC, 2009.

[95] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and M. Naehrig, “Crypto-nets:

Neural networks over encrypted data,” arXiv, 2014.

[96] A. Chattopadhyay and T. E. Boult, “Privacycam: a privacy preserving camera using uclinux

on the blackfin dsp,” in CVPR, 2007.

[97] M. S. Ryoo, B. Rothrock, C. Fleming, and H. J. Yang, “Privacy-preserving human activity

recognition from extreme low resolution,” in AAAI, 2017.

[98] D. J. Butler, J. Huang, F. Roesner, and M. Cakmak, “The privacy-utility tradeoff for remotely

teleoperated robots,” in HRI, 2015.

[99] J. Dai, B. Saghafi, J. Wu, J. Konrad, and P. Ishwar, “Towards privacy-preserving recognition

of human activities,” in ICIP, 2015.

[100] T. Winkler, A. Erdélyi, and B. Rinner, “Trusteye. m4: protecting the sensor—not the cam-

era,” in AVSS, 2014.

[101] Z. W. Wang, V. Vineet, F. Pittaluga, S. N. Sinha, O. Cossairt, and S. Bing Kang, “Privacy-

preserving action recognition using coded aperture videos,” in CVPRW, 2019.

[102] F. Pittaluga and S. J. Koppal, “Privacy preserving optics for miniature vision sensors,” in

CVPR, 2015.

[103] F. Pittaluga and S. J. Koppal, “Pre-capture privacy for small vision sensors,” TPAMI, 2017.

[104] L. Jia and R. J. Radke, “Using time-of-flight measurements for privacy-preserving tracking

in a smart room,” IINF, 2014.

87



[105] S. Tao, M. Kudo, and H. Nonaka, “Privacy-preserved behavior analysis and fall detection

by an infrared ceiling sensor network,” Sensors, 2012.

[106] Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang, “Studying very low resolution recog-

nition using deep networks,” CVPR, 2016.

[107] B. Cheng, Z. Wang, Z. Zhang, Z. Li, D. Liu, J. Yang, S. Huang, and T. S. Huang, “Robust

emotion recognition from low quality and low bit rate video: A deep learning approach,” in

ACII, 2017.

[108] M. Xu, A. Sharghi, X. Chen, and D. J. Crandall, “Fully-coupled two-stream spatiotemporal

networks for extremely low resolution action recognition,” in WACV, 2018.

[109] Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon, and Z. Wang, “Delving into robust object

detection from unmanned aerial vehicles: A deep nuisance disentanglement approach,” in

ICCV, 2019.

[110] P. M Uplavikar, Z. Wu, and Z. Wang, “All-in-one underwater image enhancement using

domain-adversarial learning,” in CVPRW, 2019.

[111] F. Pittaluga, S. Koppal, and A. Chakrabarti, “Learning privacy preserving encodings through

adversarial training,” in WACV, 2019.

[112] M. Bertran, N. Martinez, A. Papadaki, Q. Qiu, M. Rodrigues, G. Reeves, and G. Sapiro,

“Adversarially learned representations for information obfuscation and inference,” in ICML,

2019.

[113] P. C. Roy and V. N. Boddeti, “Mitigating information leakage in image representations: A

maximum entropy approach,” in CVPR, 2019.

[114] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with adversarial

learning,” in AIES, 2018.

[115] Z. Ren, Y. Jae Lee, and M. S. Ryoo, “Learning to anonymize faces for privacy preserving

action detection,” in ECCV, 2018.

88



[116] R. R. Shetty, M. Fritz, and B. Schiele, “Adversarial scene editing: Automatic object removal

from weak supervision,” in NeurIPS, 2018.

[117] T. Wang, J. Zhao, M. Yatskar, K.-W. Chang, and V. Ordonez, “Balanced datasets are not

enough: Estimating and mitigating gender bias in deep image representations,” in ICCV,

2019.

[118] W. Oleszkiewicz, P. Kairouz, K. Piczak, R. Rajagopal, and T. Trzciński, “Siamese generative
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