
REINFORCEMENT LEARNING BASED DECISION MAKING FOR SELF DRIVING &

SHARED CONTROL BETWEEN HUMAN DRIVER AND MACHINE

A Dissertation

by

SANGJIN KO

Submitted to the Graduate and Professional School of

DOCTOR OF PHILOSOPHY

Chair of Committee, Reza Langari
Committee Members, Prabhakar R. Pagilla

Srikanth Saripalli
Shankar P. Bhattacharyya

Head of Department, Guillermo Aguilar

August 2021

Major Subject: Mechanical Engineering

Copyright 2021 Sangjin Ko

Texas A&M University
in partial fulfillment of the requirements for the degree of

ABSTRACT

This study presents solutions to decision making for autonomous driving based on reinforce-

ment learning and shared control between human driver and machine. The main objective of this

research is to propose decision making models in highway driving and to study how to share con-

trol authority between two controllers which are human driver and machine in the vehicle control

loop. Therefore, the research consists of two sub-topics 1) shared control between human driver

and machine, and 2) reinforcement learning based decision making model.

First of all, for shared control between human driver and machine, game theoretical model

predictive control (MPC) approach is studied. Four game frameworks - non-cooperative game with

the simultaneous move, non-cooperative game with leader and follower, non-cooperative game

with sequential move, and cooperative game - are investigated, and then several driving situations

are studied under different game frameworks. Shared control strategy for fully mixed driving

authority is proposed considering collision probability based on Time-to-Collision (TTC) and the

weighted square sum of tracking error. Also, game transition between different game frameworks

is studied in consideration of driving situations. Simulations for cooperative driving and inter-

game transition driving were conducted and the simulation results show that the control authority

is shared continuously by the proposed shared control strategy based on collision probability, and

realistic driving with game transition is studied and analyzed from the simulation results.

For decision making models in highway driving, we developed Deep Reinforcement Learning

(DRL) based decision making models. The problem is formulated as a Reinforcement Learning

(RL) problem with three different types of state definitions, and several Deep Q Network (DQN)

based RL approaches are applied to design decision makers for highway driving. The three dif-

ferent types of state definitions are 1) relative maneuvers based state with respect to surrounding

vehicles, 2) surrounding inter-vehicles gap based state, 3) occupied grid based state (image-like

state definition with three channels). For the highway driving decision making problem, designed

DQN based algorithms show similar performances with three different types of state definitions.

ii

To verify the performance of RL based decision model, its performance is compared with the per-

formances of other decision models which are the conventional human driver behavior model, rule

based decision model, and data-driven decision model. The mean velocities and moving distances

from highway driving simulations are compared and analyzed to compare their performances, and

RL based decision model shows the best performance among the decision models.

Finally, RL based decision model is applied as machine’s decision model with game theoretic

MPC based shared controller in several driving situations to evaluate the performance of designed

RL based decision model and shared controller under a hierarchical architecture, and it is found that

the proposed RL based decision model and shared controller are capable of dealing with undesired

driving situations in order to prevent a collision and to guarantee vehicle safety.

iii

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my advisor Professor Langari for the

continuous support of my Ph.D. study and research for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and my research would

not have been possible without his guidance.

I would also like to thank the rest of my committee: Professor Pagilla, Professor Saripalli, and

Professor Bhattacharyya, for their insightful comments and encouragement. Special thank goes to

Mando Corporation for financial support throughout my graduate studies in the United States.

Most importantly, I would like to acknowledge with gratitude, the support, and love of my

family: my parents, sisters, brothers, and my lovely wife and daughter.

Last but not least, I sincerely appreciate the almighty God for His graces, strength, faithfulness,

guidance, and love in my life.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Reza Langari,

Prabhakar R. Pagilla and Srikanth Saripalli of the Department of Mechanical Engineering and

Professor Shankar P. Bhattacharyya of the Department of Electrical and Computer Engineering.

All work for the dissertation was completed by the student, under the advisement of Professor

Reza Langari of the Department of Mechanical Engineering.

Funding Sources

Graduate study was supported by a fellowship from Mando Corporation.

v

NOMENCLATURE

DQN Deep Q Network

RL Reinforcement Learning

LSTM Long Short Term Memory

RNN Recurrent Neural Network

MPC Model Predictive Control

TTC Time-To-Collision

ADAS Advanced Driver Assistance Systems

LDWS Lane Departure Warning Systems

LKAS Lane Keeping Assist Systems

FSM Finite State Machine

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

MOMDP Mixed Observable Markov Decision Process

MLE Maximum Likelihood Estimator

MSM Method of Simulated Moments

RHC Receding Horizon Control

IDM Intelligent Driver Model

MOBIL Minimizing Overall Braking decelerations Induced by Lane
changes

DDPG Deep Deterministic Policy Gradient

DDAC Deep Deterministic Actor-Critic

PDC Parallel Distributed Compensation

vi

DP Dynamic Programming

CNN Convolutional Neural Networks

AC Actor-Critic

GRU Gated Recurrent Unit

CPI Collision Probability Index

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xv

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Background and Objectives. 1
1.2 Literature Review . 3

1.2.1 Decision Making for Self Driving . 3
1.2.1.1 Rule-based approach . 3
1.2.1.2 Markov Decision Process (MDP) based approach. 6
1.2.1.3 Game theory based approach . 8
1.2.1.4 Reinforcement learning based approach . 11

1.2.2 Shared Control Between Human Driver and Machine. 13
1.2.2.1 Cooperative assist approach - direct shared control 14
1.2.2.2 Cooperative assist approach - indirect shared control 17
1.2.2.3 Differential game theory based approach . 19

1.3 Organization of the Dissertation . 20

2. SHARED CONTROL BASED ON GAME THEORETIC MODEL PREDICTIVE CON-
TROL FOR HUMAN DRIVER AND MACHINE . 21

2.1 Theoretical backgrounds and Mathematical Formulation of a Problem 21
2.1.1 Vehicle dynamic model . 21
2.1.2 Formulation of Game Theoretic Model Predictive Control . 26

2.1.2.1 Linear approximation of nonlinear system . 27
2.1.2.2 Discretization of linearized system . 29

2.1.3 Formulation of Model Predictive Control . 31
2.1.3.1 Derivation of matrix form for Model Predictive Control 32
2.1.3.2 Definition of Cost Function . 33

viii

2.1.3.3 Formulation of Quadratic Programming . 36
2.1.4 Solution of Game Theoretic Model Predictive Control . 40

2.1.4.1 Non-cooperative game with simultaneous move. 40
2.1.4.2 Non-cooperative game with leader-and-follower . 43
2.1.4.3 Non-cooperative game with sequential move . 44
2.1.4.4 Cooperative game . 45

2.2 Shared Control Strategy . 45
2.2.1 Shared control strategy for machine . 47
2.2.2 Shared control strategy for human . 52
2.2.3 Game transition . 54

2.3 Simulation studies . 55
2.3.1 Lane change scenario under fixed game. 56
2.3.2 Lane change scenario with game transition . 60
2.3.3 Lane change scenario with an interrupting vehicle . 67

2.4 Conclusions. 69

3. REINFORCEMENT LEARNING BASED DECISION MAKING FOR SELF-DRIVING 71

3.1 Theoretical backgrounds - Reinforcement learning . 71
3.1.1 Markov Decision Process (MDP). 73
3.1.2 Dynamic Programming . 75
3.1.3 Reinforcement Learning . 77

3.2 Design of Decision Making Model Based on RL for Highway Driving 80
3.2.1 Experimental setup . 82
3.2.2 Problem statement . 85

3.2.2.1 State space definitions . 85
3.2.2.2 Action space definition . 88
3.2.2.3 Reward function definition . 90

3.2.3 Learning results . 91
3.2.3.1 Driving scenario . 91
3.2.3.2 Neural networks structures. 91
3.2.3.3 Learning results . 93

3.3 Comparison studies with other decision making models . 94
3.3.1 Human driver model. 94
3.3.2 Rule-based decision model. 95
3.3.3 Data-driven decision model . 95

3.3.3.1 NGSIM dataset . 96
3.3.3.2 Lane change decision model . 97
3.3.3.3 Longitudinal behavior model . 104

3.3.4 Performance comparison . 105
3.4 Conclusions. 108

4. APPLICATION OF REINFORCEMENT LEARNING BASED DECISION MODEL
WITH SHARED CONTROL . 109

4.1 Simulation studies . 110

ix

4.1.1 Lane change scenario with a front stopped vehicle . 110
4.1.1.1 Under cooperative game framework. 110
4.1.1.2 Behavior under the game transition framework . 113

4.1.2 Traffic scenarios in highway driving . 116
4.1.2.1 Traffic scenarios with a careless driver . 116
4.1.2.2 Traffic scenarios with incorrect actions of the driver 121

4.2 Conclusion. 125

5. SUMMARY AND CONCLUSIONS . 126

5.1 Future works. 127

REFERENCES . 129

APPENDIX A. NONLINEAR VEHICLE DYNAMICS . 139

A.1 Nonlinear vehicle dyamics. 139

x

LIST OF FIGURES

FIGURE Page

1.1 Hierarchical Autonomous Driving Tasks . 2

1.2 SAE . 3

1.3 Junior . 4

1.4 MDP . 7

1.5 Reinforcment Learning Framework . 11

1.6 Shared control in vehicle control loop . 14

1.7 DSC . 15

1.8 IDSC . 18

2.1 Vehicle dynamic model . 22

2.2 Game Theoretic conceptual diagram . 27

2.3 Collision probability index(CPI) . 46

2.4 Control activity . 49

2.5 Shared control strategy of machine . 49

2.6 Shared control strategy of machine with human driver’s intention - non-safety critical 50

2.7 Shared control strategy of machine without human driver’s intention - non-safety
critical. 51

2.8 Shared control strategy of machine - safety critical . 51

2.9 Shared control strategy of human driver . 53

2.10 Shared control strategy of human driver - non-safety critical . 53

2.11 Shared control strategy of human driver - non-safety critical . 54

2.12 Game Transition. 55

2.13 Simulation scenario - Lane change under fixed game . 56

xi

2.14 Vehicle trajectory - lane change under fixed game framework. 57

2.15 Steering torque input - lane change under fixed game framework . 58

2.16 Long. acceleration input - lane change under fixed game framework 59

2.17 Vehicle trajectory - lane change with game transition . 61

2.18 Control inputs - lane change with game transition . 61

2.19 Control inputs - lane change with game transition . 62

2.20 Vehicle trajectory - lane change with game transition & cooperative driver 63

2.21 Control inputs - lane change with game transition & cooperative driver 63

2.22 Control inputs - lane change with game transition & cooperative driver 64

2.23 Simulation scenario - Lane change by human driver’s preference. 64

2.24 Vehicle trajectory - lane change by driver’s preference . 65

2.25 Control inputs - lane change by driver’s preference . 65

2.26 Control inputs - lane change by driver’s preference . 65

2.27 Simulation scenario - Lane change with an interrupting vehicle . 67

2.28 Control inputs - lane change with an interrupting vehicle . 68

2.29 Vehicle trajectory - lane change with an interrupting vehicle . 68

2.30 Control inputs - lane change with an interrupting vehicle . 69

3.1 Concept of interaction between agent and environment under RL framework. 72

3.2 Kinematic vehicle model . 83

3.3 Relative maneuver based state definition . 85

3.4 Gap based state definition. 87

3.5 Occupied grid based state definition . 89

3.6 Distance reward function . 90

3.7 Driving scenario . 91

3.8 Learning curves - comparison w.r.t algorithms . 93

xii

3.9 Learning curves - comparison w.r.t state definitions. 94

3.10 Rule-based model by FSM . 96

3.11 NGSIM . 97

3.12 Recurrent neural network architecture . 98

3.13 Internal structure of LSTM/GRU cells . 98

3.14 Produced lane change status information . 99

3.15 Data extraction . 100

3.16 Relative distance and speed based feature definition . 101

3.17 RNN models structure . 102

3.18 Leaning curve - loss vs epoch (NGSIM) . 103

3.19 History of cost during optimization . 106

3.20 Distribution of calibrated IDM parameters . 106

3.21 Performance comparison - mean speed . 107

3.22 Performance comparison - moving distance . 108

4.1 Simulation setup with Hierarchical architecture . 110

4.2 Simulation results - lane change with a stopped vehicle under cooperative game 111

4.3 Simulation results - lane change with a stopped vehicle under cooperative game 111

4.4 Simulation results - lane change with a stopped vehicle under cooperative game 112

4.5 Simulation results - lane change with a stopped vehicle under cooperative game 112

4.6 Simulation results - lane change with a stopped vehicle under game transition 113

4.7 Simulation results - lane change with a stopped vehicle under game transition 114

4.10 Simulation results - lane change with a stopped vehicle under game transition 114

4.8 Simulation results - lane change with a stopped vehicle under game transition 115

4.9 Simulation results - lane change with a stopped vehicle under game transition 115

4.11 Simulation results - lane change with a stopped vehicle under game transition 116

xiii

4.12 Traffic scenario 1 with a careless driver . 117

4.13 Simulation results - Traffic scenario 1 with a careless driver . 117

4.14 Simulation results - Traffic scenario 1 with a careless driver . 118

4.15 Simulation results - Traffic scenario 1 with a careless driver . 118

4.16 Traffic scenario 2 with a careless driver . 119

4.17 Simulation results - Traffic scenario 2 with a careless driver . 120

4.18 Simulation results - Traffic scenario 2 with a careless driver . 120

4.19 Simulation results - Traffic scenario 2 with a careless driver . 121

4.20 Traffic scenario 1 with incorrect actions of a driver . 122

4.21 Simulation results - Traffic scenario 1 with incorrect actions of a driver 122

4.22 Simulation results - Traffic scenario 1 with incorrect actions of a driver 122

4.23 Simulation results - Traffic scenario 1 with incorrect actions of a driver 123

4.24 Traffic scenario 2 with incorrect actions of a driver . 123

4.25 Simulation results - Traffic scenario 2 with incorrect actions of a driver 124

4.26 Simulation results - Traffic scenario 2 with incorrect actions of a driver 124

4.27 Simulation results - Traffic scenario 2 with incorrect actions of a driver 125

xiv

LIST OF TABLES

TABLE Page

2.1 Parameters of vehicle model . 25
2.2 Game Definitions. 37

3.1 IDM parameters . 84

3.2 MOBIL parameters . 85

3.3 Relative maneuver based state definition . 86

3.4 Gap based state definition. 88

3.5 Neural networks structures . 92

3.6 RNNs Model Structure. 103

3.7 Comparison of validation accuracy . 103

3.8 Calibrated IDM parameters . 104

xv

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background and Objectives

Improvement of road safety has been a long-term and significant issue while many advanced

driver assistance systems (ADAS), such as lane departure warning system (LDWS) and lane keep

assist system (LKAS), have been developed and applied as semi-autonomous driving technolo-

gies to address safety as well as to relieve human drivers from the driving task. Recently, fully

autonomous driving has received a great deal of public attention with many researchers actively

working on autonomous driving. A number of companies have invested in the development of

autonomous driving technologies. For instance, Google is investing over one billion dollars in the

research on autonomous driving [1]. GM and Ford have also made significant investments in au-

tonomous driving startup companies [2][3] while other companies, not only traditional automakers

but also IT companies, are pouring money into developing autonomous driving technologies. Full

autonomous driving, once realized, can remove all driving tasks from drivers and contribute to the

reduction of fatal car accidents due to human drivers’ mistakes which lead to nearly 3,700 death

on the world’s roads every day [4].

Autonomous driving consists of several modules that are hierarchically arranged such as sens-

ing, perception, mapping & localization, decision making, path planning, and vehicle control as

shown in Figure 1.1. Sensing processes low-level information while perception, mapping, and lo-

calization produce high-level driving information including position, speed, and acceleration. The

decision making module utilizes this information and produces behavioral level decisions. The

purpose of decision making is to make effective and safe decisions according to the driving situa-

tions. The path planner module generates the desired path to execute the behavioral level decision

produced by the decision making module and finally the vehicle control module controls the vehi-

cle to follow the planned path. Behavioral level decision making is very significant in autonomous

driving and constitutes the primary focus of this research.

1

Figure 1.1: Hierarchical Autonomous Driving Tasks

Figure 1.2 shows the SAE automation levels for self-driving [5]. Human driver has the major

responsibility for driving at level 3 (conditional automation) or less. But the machine (i.e. vehicle

automation) has the responsibility for driving at level 4 (high automation) and level 5 (full automa-

tion), where a machine can perform all driving functions under certain conditions or all conditions.

Self-driving cars have been already successfully developed and tested in some areas, but they still

suffer from several limitations. The automation level for self-driving is generally between levels 3

and 4. In this context, the development of formal shared driving between vehicle control system

(machine) and human driver has advantages. That is, additional information, the better quality

of information, enable direct negotiations about maneuvers, and correction of driver’s behavior in

dangerous situations. Also, human drivers will want to drive a vehicle by their preference, even

though autonomous driving may be fully available. It means that shared control between human

and machine has to be considered not only at level 3 but also at levels 4 and possibly at level 5. In

this research, we study shared control between human and machine to maintain control authority

over the vehicle.

2

Figure 1.2: SAE automation level 1

1.2 Literature Review

1.2.1 Decision Making for Self Driving

The decision making module for self-driving acts as a real driver in the general driving sit-

uations to make behavioral level decisions to control the vehicle. Various information including

the vehicle, namely its position, speed, acceleration and information concerning the surrounding

vehicles and objects is fed into the decision making module. The purpose of the decision making

module is to produce a high-level decision given all the available data. Several previous directions

for decision making for self-driving is summarized below.

1.2.1.1 Rule-based approach

In the early research on decision making for autonomous driving, a rule-based approach was

widely used. In this approach, symbolic states of the driving situations and the corresponding

decision were manually modeled. In the DARPA Urban Challenge in 2007, this was the most

1Modified from “Automated vehicles for safety.” Available at https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety

3

common approach and many of the participant teams used this approach in conjunction with a

finite state machine (FSM) to determine the decision of the autonomous vehicle. Figure 1.3 shows

an example of a FSM based behavioral decision model [6].

Figure 1.3: Example of Finite State Machine (FSM) based decision model 2

The Carnegie Mellon University (CMU) team developed an autonomous vehicle, Boss, with a

pre-encoded rules-based behavioral decision module [7]. At high level, three different contexts are

defined as Road, Intersection and Zone, and the corresponding behaviors are defined as Lane Driv-

ing, Intersection Handling and Achieving a Zone Pose, respectively. Each high-level behavior has

its corresponding sub-behaviors. The high-level behavior, Achieving a Zone Pose, is a behavior

for unstructured or unconstrained environments such as parking lots and traffic jams in intersec-

tion. The high-level behavior, Lane Driving, consists of 5 different sub-behaviors (Vehicle Driver,

Distance Keeper, Merge Planner, Current Scene Reporter, Lane Selector). The high-level behavior,

2Reprinted with permission from “Junior: The stanford entry in the urban challeng” by M. Montemerlo, J. Becker,
S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, et al., 2008. Journal
of field Robotics, vol. 25, no. 9, pp. 569–597, Copyright 2008 by John Wiley and Sons

4

Intersection Handling, have three different sub-behaviors (Pan Head Planner, Precedence Estima-

tor, Transition Manager). Additionally, auxiliary goal selection behavior is defined to deal with

error recovery, and has two corresponding sub-behaviors, i.e. State Estimator and Goal Selector.

Similarly, the Stanford team developed an autonomous vehicle, Junior, with an Finite State

Machin (FSM) based decision module [6]. The FSM uses cost functions which produce the be-

havior and vehicle trajectory deterministically and it is capable of switching among thirteen pre-

defined different driving states. The FSM also has additional exception states in order to overcome

stuck situations. At the high level, the FSM switches between the aforementioned driving states,

and makes a transition to exception states.

Virginia Tech developed an autonomous vehicle named as Odin with a behavioral decision

module involving using seven different behavior models (Route Driver, Passing Driver, Blockage

Driver, Precedence Driver, Merge Driver, Left Turn Driver, Zone Driver) [8]. The decision mod-

ule was developed under a hierarchical FSM and was capable of distinguishing different driving

situations such as intersection, parking lot, and normal road driving. Additionally, a modified

winner-takes-all approach based action selection mechanism was applied to select the most appro-

priate behavior in a given situation.

Team AnnieWAY developed an autonomous vehicle with a Concurrent Hierarchical State Ma-

chine (CHSM) based behavioral decision module [9]. In the hierarchical structure, 7 different

behaviors were modeled. The high-level states were Replan, Drive, Zone, Intersection, Goal, and

Global Recovery. The high level states had their sub-states for specialization and transition from

a parent level states to the corresponding sub-states was modeled explicitly in order to reduce re-

dundant states and total number of transitions. All high-level states had a sub-state for recovery to

deal with a stuck situation. The Global Recovery state is defined to deal with failure of sub-states .

Finally, Team Oshkosh also developed an FSM based behavioral decision module for their

autonomous vehicle, TerraMax [10]. Their decision module consisted of two parts, behavior su-

pervisor and behavior mode & logic. The behavior supervisor module selected and supervised the

appropriate behavior mode given a situation and the behavior mode & logic module had a set of

5

behavior modes, transition conditions between the behavior modes, and execution logic for each

behavior mode. In total seventeen behavior modes were implemented to cover various driving sit-

uations. Team Carolo from TU Braunschweig applied a combinatorial approach of a rule-based

decision and a behavioral model [11].

These rule based approaches were tested and showed successful performance in certain driving

situations but very careful work was required to define the rules reflecting real driving situations.

Hence, it is very hard to cover all driving situations by these rule based approaches and thus the

performance is limited to those situations covered by the rule-base.

1.2.1.2 Markov Decision Process (MDP) based approach

In recent studies, several researchers applied the Markov Decision Process (MDP) approach

for decision making of autonomous vehicles. Indeed, MDP is becoming increasingly popular

in this field. Briefly, MDP is a mathematical tool to formulate decision and control problems

under a potentially stochastic environment. MDP is defined by a tuple consisting of five ele-

ments (S,A, T,R, γ) which are the state space(S), action space(A), transition function(T), reward

function(R) and discount factor(γ). With this in mind a driving environment is defined under an

MDP framework and optimal action is produced to maximize the expected accumulated rewards,

examples of which are given below. Figure 1.3 shows the concept of transition under the MDP

framework [12].

Brechtel et al. [13] developed a probabilistic MDP based behavior planner for self-driving.

They formulated a decision making problem for the traffic environment under a mathematical

framework to obtain abstract symbolic states from complicated continuous temporal models de-

fined by Dynamic Bayesian Networks (DBN). That is, they applied the combinatorial approach

of DBN based continuous world prediction and discrete world MDP planning to derive symbolic

states which can well present the real driving world. For the action space, they divided the spaces

of longitudinal position, lateral position and velocity of the vehicle into equidistant intervals with-

3Reprinted with permission from Reinforcement learning: An introduction, by R. S. Sutton and A. G. Barto, 2018,
MIT press, Massachusetts, USA. Copyright 2018 by MIT press.

6

Figure 1.4: Example of transition graph under Markov Decision Process (MDP) framework 3

out overlap, and the final state space was defined as a power set of states of all vehicles including

the ego-vehicle. The action space was defined as a combination of longitudinal acceleration and

lateral velocity. For approximating continuous probability density functions in discrete form, finite

dirac-mixtures were used. A reward/penalty model was defined considering four different types

of rewards/penalties, which were crash, make way, not rightmost lane, and comport. Their MDP

based decision making model was evaluated on a two-lane highway scenario in simulation.

Ulbrich et al. [14] applied a probabilistic Partially Observable MDP (POMDP) for lane chang-

ing and suggested a two steps algorithm based on POMDP to reduce computational complexity

of the POMDP for online application. In their approach, additional signal processing networks

were applied to produce lane change possibility and lane change benefit considering relative dis-

tances and relative velocities. State space was defined as combinations of lane change possibility,

lane change benefit and lane change progress status. Action space was defined including straight

driving, initiate lane change and lane change abort. Reward function was defined according to

combinations of defined states and actions. Transition probabilities were initialized by fitting with

state transitions obtained from real driving situations and enhanced by expert knowledge.

Wei et al. [15] suggested a point-based MDP algorithms for single-lane autonomous driving

behavior. Behavioral decision making was modeled as MDP and it was extended to a point-based

7

MDP to deal with POMDP in a computational efficient manner. In point-based MDP, uncertainty

is considered in the first planning step and then observation as deterministic in the next step. In

their approach, state space included distance to the leading vehicle, velocity of the leading vehicle,

velocity of ego-vehicle, acceleration of ego-vehicle and jerk of ego-vehicle. Action is defined as

a series of different possible longitudinal accelerations while a vehicle motion model was used to

predict the next driving situation in a pre-defined time horizon. The cost function is calculated as

the weighted sum of four different sub-costs, such as progress cost, comport cost, safety cost and

fuel consumption cost.

Bandyopadhyay et al. [16] used mixed observability MDP (MOMDP) considering intentions

of other road users which were assumed to be uncertain. They defined a set of intentions of others

and made a motion model for each intention. These finite sets of intentions and motion models

were incorporated into a MOMDP framework. The MOMDP was modeled as a tuple composed of

joint state space of ego-vehicle state, state of others and intention of others, action space of ego-

vehicle, observation space, transition probabilities for the ego-vehicle and others, the observation

function, a reward function, and a discount factor. Their approach consisted of two steps. Firstly,

other road user’s intention is recognized, and then optimal action is executed in the second step.

SARSP which is a leading point-based approximation was used to solve the MDMDP.

These MDP based approaches require very delicate works to model the driving environments

under the MDP framework while the decision model is highly dependent on the defined MDP.

Therefore, MDP should be modeled to represent real driving situations well.

1.2.1.3 Game theory based approach

Game theory is a branch of mathematics to deal with the interaction between interdependent

players which can be considered as reasonable decision makers with respect to their preferences or

utilities. Focusing on the capacity of game theory to treat the interaction between decision makers,

some researchers applied game theory to high level decision making for self-driving to consider

the interactions between the ego-vehicle and surrounding vehicles. In game theory based decision

making approach, vehicles are considered as players.

8

Kita [17] proposed a game theory based merging-giveway interaction model under a two person

non-zero sum game. In this study, interaction between the merging vehicle and the closest rear

vehicle approaching the merging vehicle was taken into account. It was assumed that all vehicles

(or drivers) know the strategies of each other and their game was formulated as a non-cooperative

game with perfect information. The pure strategy of the merging vehicle was defined as ’merge’

and ’pass’, and the pure strategy of the approaching vehicle was defined as ’giveway’ and ’do

not giveway’. Payoff matrix was determined considering driving situations. That is, elements of

the payoff matrix are functions of some variables which are defined using time to collision, time

headway, distance to end of the lane. The parameters of linear functions in the payoff matrix

were estimated using real traffic data by a maximum likelihood estimator (MLE). Liu et al. [18]

extended Kita’s works under an enhanced game theoretic framework in which minimum safety

gaps are considered in the payoff functions. In their study, it was assumed that the approaching

vehicle prefers to keep its car-following state and minimize speed variations while the merging

vehicle wants to merge within the minimum possible time with consideration of safety. Parameters

of their model were estimated by a bi-level programming problem using observed data.

Talebpour et al. [19] developed a game theoretic approach to deal with incomplete informa-

tion. They used a two-person nonzero-sum non-cooperative game with incomplete information for

vehicular interaction during lane changing. Harsanyi transformation [20] was used to transform a

game of incomplete information to a game of imperfect information. In the approach, "nature as a

player" was applied as was the case in Harsanyi’s work. The nature moves first to choose a manda-

tory or discretionary lane change. It was assumed that the lane-changing vehicle can observe the

nature’s move but the lag vehicle cannot observe the nature’s move, and the game is formulated in

normal form. The pay-off functions were determined with the assumption that the lane-changing

vehicle compares vehicle accelerations to avoid collision before and after lane change in order to

make a lane change and the lag vehicle compares both acceleration and speed before and after lane

change to avoid collision. The parameters of the defined pay-off functions were calibrated by the

method of simulated moments (MSM) in [21] using real driving data.

9

Yu et al. [22] proposed a decision making model for lane change based on a Stackelberg game,

which is a type of game with a leader and a follower. In this game, the leader acts first and then

the follower reacts. Safety payoff and space payoff were defined and total payoff were calculated

as a linear combination of these payoff with consideration of aggressiveness of the driver. It was

assumed that each vehicle does not know the aggressiveness of the other driver and aggressiveness

estimation algorithms were suggested. Firstly, the ego-vehicle driver assumes the other driver is

a normal driver without aggressiveness and will make a prediction of the other’s action. Then,

the ego-vehicle driver observes the real action of the other driver and updates the estimation of

aggressiveness by difference between real action and predicted action. Their model were validated

in a driving simulator with robot and human drivers.

Wang et al. [23] formulated car-following and lane-changing behavior under differential game

frameworks with a receding horizon. Kinematic vehicle model which has three states (longitudinal

position, longitudinal speed and lateral position) was used to predict vehicle states, and control

inputs were defined as longitudinal acceleration, the time initiating a lane change and direction of

the lane change. The lateral position was determined as a function of control inputs, longitudinal

acceleration and the time initiating a lane change and a trigonometric (cosine) function represented

in [24] was applied. The cost function was defined to deal with interactions between the ego-

vehicle and surrounding vehicles. They formulated a problem for non-cooperative control and

cooperative control, while an extended kinematic vehicle model including two vehicle states was

used while a cost function was defined considering the extended model including joint state and

control spaces. Pontryagin’s Maximum Principle based iterative algorithms were used to solve the

problem and numerical simulation was performed to verify the performance of their controller.

Additionally, other researchers have studied Stackelberg game based decision making for self-

driving [25] [26]. Also, a combination approach of game theory and receding horizon control

(RHC) was presented in [27] for lane change maneuvers with incomplete information. Driver

behavior model was studied based on differential game theory for non-cooperative and cooperative

driving and Markovian game based approach was done in [28].

10

1.2.1.4 Reinforcement learning based approach

Reinforcement learning (RL) is a type of machine learning. RL enables an agent to learn by

interacting with its environment. In other words, RL is an iterative learning process for the agent

to find suitable action in a particular condition to maximize a certain reward. Recently, RL has

received a great deal of attention in behavioral decision making for self-driving due to its learning

abilities and in handling complex real driving situations including uncertainties. Figure 1.5 shows

the concept of RL.

Figure 1.5: Reinforcment Learning Framework

Isele et al. [29] designed an RL based decision maker to negotiate intersections and merges

onto highways. Deep Q-Network (DQN) was applied to learn the state-action value function (Q-

function). The authors defined three different types of state representations, which are 1) time-to-go

2) sequential actions and 3) creep-and-go, and each state representation has a set of action defi-

nitions. In other words, time-to-go has a set of actions consisting of wait and go, and sequential

actions has set of actions with accelerate, decelerate and maintain constant velocity. Similarly,

creep-and-go consists of three actions which are wait, move forward slowly and go. In their re-

11

search, state was defined as a discretized grid in Cartesian coordinates with a binary definition

of grid occupancy. The reward function consists of a reward for successful intersection naviga-

tion, penalty for collision and step penalty. Their research is limited in the specific situation of

intersections and requires further research to address robustness.

Similarly, Wang et al. [30] proposed a DQN based decision making approach for the ramp

merging problem. To deal with historical driving information, a Long Short-Term Memory (LSTM)

based recurrent neural network was applied. To improve convergence rate and to guarantee that

there always exists an optimal action, a quadratic type of Q function which has three separate neu-

ral networks was defined. State space was defined as 9-dimensional space. The state consists of

speed, position, heading angle, and distances to the right and left lane of ego-vehicle, speeds of

surrounding two vehicles and their positions. The action was composed of longitudinal acceler-

ation and steering angle. Reward function has four terms for longitudinal acceleration, steering

angle, speed and distance to the surrounding vehicles. Their research needs additional fine-tuning,

refinement and performance evaluation.

Likewise, Wang and his colleagues [31] designed a DQN based decision maker for lane change

maneuvers. Action space was defined with vehicle yaw acceleration while the state space was for-

mulated with both vehicle driving information and road information. The state space is composed

of ego-vehicle’s speed, longitudinal acceleration, longitudinal position, lateral position, yaw an-

gle, target lane, lane width, and road curvature. The reward function was formulated to include

three terms which were yaw acceleration dependent reward for smoothness of maneuver, yaw rate

dependent reward as additional sub-reward for smoothness of maneuver and lane change time de-

pendent reward for functional efficiency. They used a quadratic type of Q function similar to their

previous research in [30]. In their work, they only focused on lateral control based on DQN and

they used an Intelligent Driver Model (IDM) for longitudinal vehicle control.

An et al. [32] suggested Deep Deterministic Policy Gradient(DDPG) algorithm based decision

maker for lane change maneuvers. In other words, action space is continuous and DDPG based

decision maker directly produces throttle and steering angle outputs. In their work, state space

12

was defined as including position, speed and heading angle information of ego-vehicle and the lag

vehicle which is located in the target lane behind the ego-vehicle. Reward function was constructed

with three terms which were collision, lane change completeness, and others related to driving lane

on the road.

Li et al. [33] designed a Q learning based overtaking decision making model. They used a Q

matrix to store the Q value and also used a vehicle dynamics model with 14 degrees of freedom for

simulation purposes. The four nearest surrounding vehicles are only considered. State variables

consist of the status of the ego-vehicle and four surrounding vehicles. Action was defined with

two discrete actions for lane selection among two lanes. Reward was formulated as a function of

the state variables. Their method was evaluated by comparison with a rule based expert system.

Similarly, Li et al. [34] proposed an RL based decision making model for overtaking maneuvers.

But they used DDPG for their the overtaking decision model. In their work, state variables were

defined as the relative distance, relative angle, velocity of the leader vehicle, velocity of ego-

vehicle, and distance to surrounding obstacles. The action space was formulated as the forward

speed and angular velocity. Reward consists of four sub-rewards which are step reward for time

cost, overtaking reward depending on relative maneuver to the leading vehicle, collision reward

depending on distance to obstacles and navigation reward for reaching the goal position. In their

method based on DDPG, continuous action space is dealt and decision making and control layers

are incorporated.

Finally, some researchers have developed lane keeping assist based on Deep Deterministic

Actor Critic Algorithm (DDAC) which can deal with a continuous action space [35]. Also, some

researchers have studied RL based automatic parking assist in [36] and [37] by end-to-end learning.

1.2.2 Shared Control Between Human Driver and Machine

Shared control is a control strategy to share the control authority between the human driver

and machine. There are two controllers, i.e. the human and the machine in a vehicle control

loop shown in Figure 1.6 and these two controllers interact with each other in the shared control

framework. Because human drivers have a will to drive, and want to enjoy driving and to feel

13

vehicle maneuver to their action, human drivers need to be considered in the vehicle control loop,

even though autonomous driving may be available. Therefore, it is beneficial to take into account

shared control between the human driver and the machine (i.e. the vehicle automation system).

Figure 1.6: Shared control in vehicle control loop

1.2.2.1 Cooperative assist approach - direct shared control

In the direct shared control , the machine functions to assist a human driver for driving tasks.

In other words, the human driver is the main controller and machine is the auxiliary controller to

help the human driver perform the driving tasks such as lane keeping. Human driver holds the final

control authority, and can override the machine’s action. In this approach, a human driver model

is used to take into account the human driver’s behavior. The conceptual structure of the direct

shared control is shown in Fig 1.7 [38].

Sentouh et al. [39] studied shared lateral control between the human and a steering assist

controller. They used a visual angle based cybernetic human driver lane following model which

includes the driver’ arm neuromuscular model as well as their visual and kinesthetic perception.

Steering assist controller was designed using a road-vehicle model augmented with the human

4Modified from “Indirect shared control of highly automated vehicles for cooperative driving between driver and
automation” by R. Li, Y. Li, S. E. Li, E. Burdet, and B. Cheng, 2017. arXiv preprint arXiv:1704.00866

14

Figure 1.7: Structure of direct shared control 4

driver lane following model. To handle conflict between the human and the machine, a control

authority management method was devised via a Gaussian distribution function with lateral devi-

ation and the difference between the human driver torque and steering assist torque. Their method

basically assists the human driver to follow a lane via steering torque, but human driver takes all

control authority when the difference between the driver torque and the steering assist torque is

significant. This means they assume the reliability level of the machine is not sufficient and the

human driver needs to take full-control when the machine action is not matched with the human

driver’s action. Similarly, Nguyen et al. [40] proposed a steering assist controller for lane keeping

assist based on parallel distributed compensation (PDC) via a Takagi-Sugeno (T-S) fuzzy model to

deal with the dependency of the vehicle dynamics on longitudinal velocity. They also used visual

angles based cybernetic human driver lane following model. In their work, driver activity variable

was introduced and defined as a function of the normalized driver torque and continuous driver

monitoring information which has a 0 value when the driver does fails to recognize the driving

situation and 1 when the driver is fully aware of the driving situation. Using the activity variable,

assistance torque is adjusted. In the aforementioned approaches, the driver has the final control

authority and can modulate his/her control action considering torque feedback from the machine.

Soualmi et al. [41] developed a haptic shared control strategy via steering assist torque to help

human drivers to keep lane. They focused on lateral vehicle control while a simplified driver lane

15

keeping model was used. The driver lane keeping model is dependent on the lateral deviation

error at a look ahead distance and the heading error. Lane keeping assist controller was designed

using PDC via a T-S fuzzy model. In their approach, they also assumed that the human driver

can recognize an obstacle which may not be undetected by the machine. Similarly, Inoue et al.

[42] proposed a haptic steering guidance torque with direct yaw control to improve path tracking

performance. The steering guidance torque and direct yaw control moment was obtained using

the desired steering angle which is calculated from a (known) expert driver model. The haptic

steering torque is simply calculated to be proportional to steering angle deviation from the desired

steering angle, and direct yaw control moment is proportional to the desired steering angle. In these

approaches, human driver models were considered in the controller design to deal with human

driver behaviors but management of shared control authority between human and machine was not

explicitly considered.

Guo et al. [43] [44] suggested model predictive control (MPC) based shared steering control

for lane keeping assist. They used the lateral vehicle dynamics model in conjunction with an

averaging road curvature model in [45]. The MPC based controller adjusts the weighting factor

dynamically to allocate the control authority between the human drier and the controller. The

dynamic weight factor has a value between zero to one and is used to scale the weight matrices

in the cost function in MPC. The dynamic weight factor is set as zero when the human driver

intends to control the vehicle and one otherwise. In other words, Human driver has the final

authority to control the vehicle. But available lateral offset of the vehicle to the current lane center

is considered as constraints in MPC to prevent a collision due to infeasible lane change by the

human driver. The lateral offset constraints are determined dynamically by taking into account

time-to-collision (TTC) to vehicles in adjacent lanes. If infeasible, lane change is performed by

the human driver, MPC based controller increase its steering torque output to prevent infeasible

lane change and the human driver can recognize potential hazards via steering torque (haptic)

feedback by the controller.

Saleh et al. [46] proposed an H2 preview control based lateral shared control for lane keep-

16

ing using a vehicle–road model and cybernetic driver model for lane keeping to deal with human

driver-vehicle interactions. Ercan et al. [47] designed an MPC based controller for lane keeping

via steering assist torque. They considered impedance model of the human driver’s arm to inves-

tigate the effect of different mechanical impedances on lane keeping performance. They took into

account human driver behavior as uncertainty and analyzed the robust stability of the system with

respect to uncertain driver behavior. Some researchers [48] studied MPC based shared steering

control for avoiding obstacles and to ensure vehicle stability using two types of safety envelopes

which are side slip and yaw rate dependent stable handling envelope and vehicle position de-

pendent environment envelope. Some researchers have designed steering assistance torque based

shared control for avoiding an emergency obstacle [49] and others have proposed shared control

algorithms for lane departure prevention with consideration of the safe envelope with respect to

steering angle.

1.2.2.2 Cooperative assist approach - indirect shared control

In the indirect shared control approaches, the machine transforms the human driver input and

produces the final control action while the human driver indirectly controls the vehicle. In this

case, the machine can arbitrarily modulate the human driver’s control input. In other words, the

machine has the final control authority and human driver input can in principle be preempted by

the machine’s input transformation, if necessary. The conceptual structure of the indirect shared

control is shown in Fig 1.8 [38].

Li et al. proposed an MPC based indirect shared control which can dynamically allocate con-

trol authority considering the driver’s intention [50][51][38]. They considered linear lateral vehicle

dynamics to follow reference trajectories represented by lateral position and yaw angle while steer-

ing angle was dealt with as a control input. The machine’s control strategy was designed by MPC

while human driver’s control strategy was modeled by MPC with constraints of machine’s input

transformation with respect to the driver’s desired control authority. The human driver’s desired

5Modified from “Indirect shared control of highly automated vehicles for cooperative driving between driver and
automation” by R. Li, Y. Li, S. E. Li, E. Burdet, and B. Cheng, 2017. arXiv preprint arXiv:1704.00866

17

Figure 1.8: Structure of indirect shared control 5

control authority was estimated in real time by a sliding-window least-squares estimator in their

work[50]. The final control input was determined as the weighted summation of human driver’s

control input and machine’s control input, and the weights were defined so as to sum up to one.

The control authority was allocated in accordance with the estimated driver’s desired authority

intention. To make smooth authority allocation and to avoid system instability, a moving average

filter was applied to determine the control authority allocation from the estimated human driver’s

authority intention[50]. The weight matrices in the cost of human driver’s MPC control strategy

was considered as trust level of human driver with respect to the machine[51]. In [38], automatic

authority weight switching method was studied using a cumulative error of human driver input

which is calculated as the difference between the estimated human driver’s input and real human

driver’s input. In their automatic authority weight switching method, control authority weight is

switched by two pre-defined values. One of pre-defined values is for relieving control effort of

human driver and the other is for allocation of more control authority to the human driver. In their

work, authority allocation is dependent on not machine but human driver, even though machine

incorporates the final input transformation function. That means the human driver plays as the

final authority holder in their approach.

Jiang et al. [52][53] proposed a shared control algorithm based on the current relative distance

between the ego vehicle and an obstacle, and applied the shared control law on a kinematic vehicle

18

model. They designed a reference path tracking controller based using a Lyapunov based method.

Human driver was also considered as a controller which can be designed based on the same Lya-

punov based method. They defined shared control input as the weighted summation of human

driver’s input and machine’s input. The weight referred to as shared function represents allocation

of control authority to human driver and machine. The shared function was defined according to

three kinds of regions which are safe, dangerous and hysteresis regions. The shared function is set

to one in a safe region where there is no collision risk but as zero in dangerous region where there

exists a collision risk. In the hysteresis region, the shared function is determined as one or zero

considering the previous region. In their approach, machine is dealt with the final control authority

holder and that means it was assumed that the machine can detect obstacles which may not be

detected by a human driver. They extended their research to vehicle dynamic model in [54]. In

their works, once again, machine was taken as the final authority holder. That means they assumed

machine can detect a obstacle which may not be observed by a human driver.

1.2.2.3 Differential game theory based approach

Differential game is a mathematical tool to formulate a control problem with several controllers

with its own control targets based on system dynamics represented as differential equations. Inter-

action between human driver and machine and their interactive control strategies can be analyzed

in the differential game theory framework. Several previous researches for shared control between

machine and human driver have been studied under differential game theory.

Na et al. [55][56] showed in his researches how the vehicle’s moving trajectory converge to

human driver’s reference or machine’s reference according to different control parameters in a

single lane change situation based on LQ optimization and differential game theory which can be

formulated as model predictive control with receding horizon . But in their works the issue of how

to share the control authority according to a driving condition was not addressed.

Ji et al. [57][58] extended Na’s research in [55] and [56] to add a dynamics of steering system

to consider steering torque interaction between a human driver and machine. In their works the

issue of how to dynamically allocates control authority according to a driving condition was not

19

addressed.

1.3 Organization of the Dissertation

The dissertation will consist of three parts.

Chapter 2 is about shared control based on game theoretic model predictive control (MPC) for

human driver and machine. In Section 2.1, theoretical background and mathematical formulation

of the problem are described. In Section 2.2, shared control strategy is introduced, and in Section

2.3 simulation studies are explained. In Section 2.4, conclusions are drawn.

Chapter 3 is about reinforcement learning (RL) based decision making for autonomous driving.

In Section 3.1, theoretical background of reinforcement learning is described. In Section 3.2, deci-

sion making model based on RL for highway driving is introduce, and in Section 3.3 performance

comparison study is specified. In Section 3.4, conclusions are stated.

Chapter 4 is about study on application reinforcement learning (RL) based decision model with

game theoretic MPC based shared controller. In Section 4.1, simulation studies are described, and

in Section 4.2 conclusions are drawn.

In Chapter 5, final summary and conclusions are described and future works are discussed.

20

2. SHARED CONTROL BASED ON GAME THEORETIC MODEL PREDICTIVE

CONTROL FOR HUMAN DRIVER AND MACHINE

This chapter addresses the shared control strategy between human driver and machine. In this

research, it is understood that human driver and machine are game players to control a vehicle

according to their purposes. Human driver and machine are well-functioning vehicle controllers

and can be considered as model predictive control (MPC) based vehicle controller with certain

periods of receding horizons [55]. Therefore, shared control between them is studied based on

game theoretical model predictive control (MPC) in this research. Four different types of game are

investigated - non-cooperative game with simultaneous move, non-cooperative game with leader-

and-follower, non-cooperative game with sequential move and cooperative game. Shared control

strategy for fully mixed control authority is proposed to be capable of driving safely to deal with

high collision risk. Also, it can be analyzed that human driver and machine can establish and

change a game according to driving situations. Thus, game transition model is studied based on

finite state machine (FSM) to represent dynamic game change between the two players according

to driving situations. This section consists of following subsections. Theoretical backgrounds

and mathematical formulations are stated in Section 2.1, and Section 2.2 provides details of the

proposed shared control stategy and game transition model. Simulation studies are given in Section

2.3 Finally, conclusions are specified in Section 2.4.

2.1 Theoretical backgrounds and Mathematical Formulation of a Problem

2.1.1 Vehicle dynamic model

In this research, 3 degrees of freedom (DOF) nonlinear vehicle dynamics are considered with

nonlinear tire force. Also, 1 DOF steering model is taken into account to deal with steering torque

input. Even though steering system can be modeled by 2 or 3 DOF with consideration of stiffnesses

at steering column or at motor driving shaft, 1 DOF model can be enough for study focusing on

vehicle-level behavior with steering torque input. Therefore, 1 DOF steering model is used in this

21

research. The whole vehicle system including steering system and tire force model is depicted in

Figure 2.1.

Figure 2.1: Vehicle dynamic model

The vehicle model has two control inputs in the perspective of longitudinal and lateral behav-

iors. The longitudinal acceleration can be dealt as an input for longitudinal behavior and steering

torque can be considered as an input for lateral behavior. It can be understood that human driver

and machine are able to control longitudinal acceleration of vehicle fast enough with respect to

their demanded longitudinal acceleration, so that longitudinal acceleration is directly dealt as lon-

gitudinal control input rather than throttle and brake input in order to have a physical meaning in

22

terms of vehicle-level behavior. Therefore, longitudinal acceleration and steering torque inputs are

defined as each player’s control inputs. In regard of tire model, reduced Pacejka tire model is used.

The Pacejka tire model is an empirical model which is formulated as a mathematical curve to match

the measured data. Because the Pacejka tire model well represents tire’s nonlinear characteristics,

it is commonly used for vehicle dynamic studies. The reduced Pacejka tire model is a simplified

model of Pacejka tire model and the reduced Pacejka model well represent tire’s characteristics on

static normal force and road surface with fewer parameters. The normal highway driving situation

can be handled with static normal force and road surface, the reduced Pacejka model is used in this

study. It is more beneficial to reduce complexity of the whole vehicle system without reduction of

the model’s ability of representation under intended conditions. The vehicle system dynamics can

be expressed as below.

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = ω

v̇x = ωvy + ax,m + ax,d

v̇y = −ωvy +
1

m
(Fy,f cos δf + Fy,r)

ω̇ =
1

Iz
(LfFy,f cos δf − LrFy,r)

θ̈s =
1

Js +G2
pMr

(
τd +Ggτm −KrG

2
pθs − (Bc +BrG

2
p)θ̇s −

ηtFy,f
G

)
(2.1)

23

where, Fy,f = Df sin(Cf arctanBfαf)

Fy,r = Dr sin(Cr arctanBrαr)

αf = δf − arctan

(
Lfω + vy

vx

)
αr = − arctan

(
Lrω − vy

vx

)
δf =

θs
G

The states of system and control inputs are defined as X(longitudinal position), Y (lateral po-

sition), ψ(yaw angle), vx(longitudinal velocity), vy(lateral velocity), ω(yaw rate), θs(steering an-

gle) and θ̇s(steering velocity). The control inputs are defined as τd(steering torque input) and

accx,d(acceleration input) for a human driver, and τm (motor torque input) and accx,m (acceleration

input) for a machine. The subscript d and m means "driver" and "machine" respectively. Equation

(2.2) shows the defined states and control inputs.

x =



x1

x2

x3

x4

x5

x6

x7

x8



=



X

Y

ψ

vx

vy

ω

θs

θ̇s



, um =

um,1
um,2

 =

ax,m
τm

 , ud =

ud,1
ud,2

 =

ax,d
τd

 (2.2)

The system outputs for human driver and machine are determined as X(longitudinal position),

Y (lateral position), ψ(yaw angle) and vx(longitudinal velocity) among vehicle states. The over-

all system can be expressed in Equation (2.3) with the defined states and control inputs and its

parameters are summarized in Table 2.1. Details of system dynamics are given in Appendix A.1

24

Table 2.1: Parameters of vehicle model

Parameter Description

m the mass of vehicle
Iz the yaw moment of inertia of vehicle
Lf the distance from the center of gravity of vehicle to the front axle
Lr the distance from the center of gravity of vehicle to the rear axle
G the overall steering gear ratio (steering angle/road wheel angle)
Gg gear ratio between steering column and motor driving shaft
Gp gear ratio of steering rack and column
Mr mass of steering rack
Kr stiffness of steering rack
Br viscous damping of steering rack
Jc equivalent inertia of steering column and steering wheel
Bc viscous damping of steering column
ηt pneumatic trail of front tire

Df , Cf , Bf Pacejka model parameters of front tire
Dr, Cr, Br Pacejka model parameters of rear tire

ẋ = f(x,um,ud)

ym = gm(x,um,ud)

yd = gd(x,um,ud) (2.3)

where, f = [f1, f2, f3, f4, f5, f6, f7, f8]
T

gm = [gm,1, gm,2, gm,3, gm,4]
T

gd = [gd,1, gd,2, gd,3, gd,4]
T

25

2.1.2 Formulation of Game Theoretic Model Predictive Control

The conventional Model Predictive Control (MPC) is based on discrete time linear models.

The MPC problem is formulated as Quadratic Programming (QP) problem with consideration for

prediction and control horizons. In this research, nonlinear vehicle system described in Equation

(2.3) is taken into account and linearization based approach is used to deal with nonlinearity of the

vehicle system [59]. Successively, a continuous linear system is approximated at an operating point

and is discretized, and then linear model based game theoretic MPC is formulated. The algorithm

1 and Figure 2.2 shows the procedure of linear system approximation based MPC.

Algorithm 1 Linear approximation based game theoretic MPC
Input
Initial state x(0), Prediction horizon Np, Control horizon Nc, Sampling step
Ts

Repeat
1. Linearize the system at x(t)
→ At, Bt,m, Bt,d, Ct,m, Ct,d, Dt,m, Dt,d

2. Dicretize the linearized system by Ts
→ Ak, Bk,m, Bk,d, Ck,m, Ck,d, Dk,m, Dk,d

3. Formulate game theoretic MPC with Np and Nc

→ Fk,Φk,mΦk,d, Ek, Kk

4. Formulate QP problem (i = d,m)
→ Ji = 1

2
−→u T

i Gi
−→u i +−→u T

i Wi

s.t. −→u i,l ≤ −→u i ≤ −→u i,u

4−→u i,l ≤ 4−→u i ≤ 4−→u i,u

5. Solve QP problem
→ −→um,

−→u d

6. Take and apply the first elements of the QP solution and go back to 1.

26

Figure 2.2: Game Theoretic conceptual diagram

2.1.2.1 Linear approximation of nonlinear system

The overall system dynamics with two players, human driver and machine, are derived in (2.4).

Consider the nonlinear vehicle system with states x ∈ Rnx , inputs, um ∈ Rnu , and ud ∈ Rnu and

outputs, ym ∈ Rno and yd ∈ Rno .

ẋ = f(x,um,ud)

ym = gm(x,um,ud)

yd = gd(x,um,ud)

where f is a function mapping Rnx × Rnu × Rnu → Rnx and gm and gd are a function mapping

Rnx ×Rnu ×Rnu → Rno .

The nonlinear vehicle system can be linearized at an operating point with Jacobian matrix. Let

the operating point as x, ud and um respectively, and the Jacobian matrices are obtained as

27

At =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xnx

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xnx

...
...

∂fnx

∂x1

∂fnx

∂x2
· · · ∂fnx

∂xnx



Bt,m =



∂f1
∂um,1

∂f1
∂um,2

∂f2
∂um,1

∂f2
∂um,2

...
...

∂fnx

∂um,1

∂fnx

∂um,2


, Bt,d =



∂f1
∂ud,1

∂f1
∂ud,2

∂f2
∂ud,1

∂f2
∂ud,2

...
...

∂fnx

∂ud,1

∂fnx

∂ud,2



Ct,m =



∂gm,1

∂x1

∂gm,1

∂x2
· · · ∂gm,1

∂xnx

∂gm,2

∂x1

∂gm,2

∂x2
· · · ∂gm,2

∂xnx

...
...

∂gm,no

∂x1

∂gm,no

∂x2
· · · ∂gm,no

∂xnx


, Ct,d =



∂gd,1
∂x1

∂gd,1
∂x2

· · · ∂gd,1
∂xnx

∂gd,2
∂x1

∂gd,2
∂x2

· · · ∂gd,2
∂xnx

...
...

∂gd,no

∂x1

∂gd,no

∂x2
· · · ∂gd,no

∂xnx



Dt,mm =



∂gm,1

∂um,1

∂gm,1

∂um,2

∂gm,2

∂um,1

∂gm,2

∂um,2

...
...

∂gm,nx

∂um,1

∂gm,nx

∂um,2


, Dt,md =



∂gm,1

∂ud,1

∂gm,1

∂ud,2

∂gm,2

∂ud,1

∂gm,2

∂ud,2

...
...

∂gm,nx

∂ud,1

∂gm,nx

∂ud,2



Dt,dd =



∂gd,1
∂ud,1

∂gd,1
∂ud,2

∂gd,2
∂ud,1

∂gd,2
∂ud,2

...
...

∂gd,nx

∂ud,1

∂gd,nx

∂ud,2


, Dt,dm =



∂gd,1
∂um,1

∂gd,1
∂um,2

∂gd,2
∂um,1

∂gd,2
∂um,2

...
...

∂gd,nx

∂um,1

∂gd,nx

∂um,2


(2.4)

The linearziaed system can be written as

ẋ− ẋ = At(x− x) +Bt,m(um − um) +Bt,d(ud − ud) (2.5)

28

and the linearized system in (2.5) can be re-written as

ẋ = Atx +Bt,mum +Bt,dud + ẋ− Atx−Bt,mum −Bt,dud (2.6)

Finally, the linearized system can be specified with introduction of new term Kt as below.

ẋ = Atx +Bt,mum +Bt,dud +Kt (2.7)

ym = Ct,mx +Dt,mmum +Dt,mdud (2.8)

yd = Ct,dx +Dt,ddud +Dt,dmudm (2.9)

where, Kt = ẋ− Atx−Bt,mum −Bt,dud

2.1.2.2 Discretization of linearized system

The linearized system in Equation (2.7)-(2.9) is a continuous time system and it needs to be

discretized to design MPC based controller. The solutions of Equation (2.7) for state values x at

time kTs and (k + 1)Ts is given as below.

x((k + 1)Ts) = eAt(k+1)Tsx(0) + eAt(k+1)Ts

∫ (k+1)Ts

0

e−Atτ (Bt,mum(τ) +Bt,dud(τ) +Kt) dτ

(2.10)

x(kTs) = eAtkTsx(0) + eAtkTs

∫ kTs

0

e−Atτ (Bt,mum(τ) +Bt,dud(τ) +Kt) dτ (2.11)

By muliplying Equation (2.11) by eAtTs , the equation below is obtained.

eAt(k+1)Tsx(0) = eAtTsx(kTs)− eAt(k+1)Ts

∫ kTs

0

e−Atτ (Bt,mum(τ) +Bt,dud(τ) +Kt) dτ

(2.12)

29

By substituting Equation (2.12), Equation (2.10) can be rewritten as

x((k + 1)Ts) = eAtTsx(kTs) + eAt(k+1)Ts

∫ (k+1)Ts

kTs

e−Atτ (Bt,mum(τ) +Bt,dud(τ) +Kt) dτ

(2.13)

It is taken into account that Bt,m and Bt,d are constant and um and ud are constant within the

interval from kTs to (k + 1)Ts, and then Equation (2.13) can be reorganized as below.

x((k + 1)Ts) = eAtTsx(kTs) +

∫ (k+1)Ts

kTs

e−At[(k+1)Ts−τ] dτBt,mum(τ) (2.14)

+

∫ (k+1)Ts

kTs

e−At[(k+1)Ts−τ] dτBt,dud(τ)

+

∫ (k+1)Ts

kTs

e−At[(k+1)Ts−τ] dτKt, τ ∈ [kTs, (k + 1)Ts]

Introducing new variable λ = (k + 1)Ts − τ , λ has a range from Ts to 0 and a relationship of

dλ = −dτ . Then, Equation (2.14) is expressed as below with respect to the variable λ.

x((k + 1)Ts) = eAtTsx(kTs) +

∫ Ts

0

eAtλ dλBt,mum(kTs) (2.15)

+

∫ Ts

0

eAtλ dλBt,dud(kTs)

+

∫ Ts

0

eAtλ dλKt, λ ∈ [0, Ts]

Using d
dt
eAtTs = Ate

AtTt = eAtTtAt, the discretized system can be otained as below from Equation

30

(2.15) in consideration of independence of gm and gd on control inputs, um and um.

Ak = eAtTs

Bk,m =

∫ Ts

0

eAtλ dλBt,m = A−1t

∫ Ts

0

AteAtλ dλBt,m = A−1t (eAtTs − I)Bt,m

Bk,d =

∫ Ts

0

eAtλ dλBt,d = A−1t

∫ Ts

0

AteAtλ dλBt,d = A−1t (eAtTs − I)Bt,d

Kk =

∫ Ts

0

eAtλ dλKt = A−1t

∫ Ts

0

AteAtλ dλKt = A−1t (eAtTs − I)Kt

Ck,m = Ct,m

Ck,d = Ct,d

Dk,mm = Dt,mm = 0

Dk,md = Dt,md = 0

Dk,dd = Dt,dd = 0

Dk,dm = Dt,dm = 0 (2.16)

2.1.3 Formulation of Model Predictive Control

Model Predictive Control (MPC) is a kind of optimal control strategy based on mathematical

optimization to predict future system response and future control inputs for finite prediction/control

horizons in consideration of performance index also known as cost function. The conventional

MPC deals with single player control problem in which there exists one controller which have its

own control strategy. But game theory is a mathematical model which is capable of dealing with

interaction among rational players. Human driver and machine recognize the existence of each

other in the vehicle control loop and they can be considered as rational players who want to control

a vehicle based on their own control strategies. In other words, it is a reasonable assumption that

they act as game players to control a vehicle under game frameworks. In this research, interaction

and control behavior between human driver and machine are studied under game theoretic frame-

works, and the conventional MPC based approach is extended to game theoretic problems under

different types of game which are non-cooperative game with simultaneous move, non-cooperative

game with leader-and-follower, non-cooperative game with sequential move and cooperative game.

31

2.1.3.1 Derivation of matrix form for Model Predictive Control

Based on derived linear discrete system model, future system state variables are predicted with

the future control inputs which are optimized variables for prediction horizon. In regards to future

control inputs, control horizon is also used to consider trajectory of future control inputs. The

length of prediction horizon is denoted as Np. Similarly, the length of control horizon is denoted

as Nc and it is defined to be less than or equal to the prediction horizon. With prediction horizon,

Np, and control horizon, Nc, the future system states are predicted and below.

x(k + 1) = Akx(k) +Bk,dud(k) +Bk,mum(k) +Kk

x(k + 2) = A2
kx(k) +AkBk,dud(k) +AkBk,mum(k) +AkKk

+Bk,dud(k + 1) +Bk,mum(k + 1) +Kk

...

x(k +Np) = A
Np

k x(k + 1) +A
Np−1

k Bk,dud(k) +A
Np−1

k Bk,mum(k) +A
Np−1

k Kk + · · ·

+A
Np−Nc

k Bk,dud(k +Nc − 1) +A
Np−Nc

k Bk,mum(k +Nc − 1) +A
Np−Nc

k Kk (2.17)

Then, the future system outputs can be obtained using the predicted future system states as below

with notation, i = {d,m}.

yi(k + 1) = Ck,iAkx(k) + Ck,iBk,dud(k) + Ck,iBk,mum(k) + Ck,iKk

yi(k + 2) = Ck,iA
2
kx(k + 1) + Ck,iAkBk,dud(k) + Ck,iAkBk,mum(k) + Ck,iAkKk

+ Ck,iBk,dud(k + 1) + Ck,iBk,mum(k + 1) + Ck,iKk

...

yi(k +Np) = Ck,iA
Np

k x(k + 1) + Ck,iA
Np−1

k Bk,dud(k) + Ck,iA
Np−1

k Bk,mum(k) + Ck,iA
Np−1

k Kk

+ · · ·+ Ck,iA
Np−Nc

k Bk,dud(k +Nc − 1) + Ck,iA
Np−Nc

k Bk,mum(k +Nc − 1)

+ Ck,iA
Np−Nc

k Kk (2.18)

32

Equation (2.17) and (2.18) can be reorganized as matrix form below.

−→yi = Fix(k) + Φi,d
−→ud + Φi,m

−→um + EiKk (2.19)

where, i = {d,m}, j = {d,m}

−→yi = [yi(k + 1) yi(k + 2) · · ·yi(k +Np)]
T

−→ui = [ui(k) ui(k + 1) · · ·ui(k +Nc − 1)]T

Φi,j =



Ck,iBk,j 0 · · · 0

Ck,iAkBk,j Ck,iBk,j · · · 0

Ck,iA
2
kBk,j Ck,iAkBk,j · · · 0

...
...

Ck,iA
Np−1
k Bk,j Ck,iA

Np−2
k Bk,j · · · Ck,iA

Np−Nc

k Bk,j


, Fi =



Ck,iAk

Ck,iA
2
k

Ck,iA
3
k

...

Ck,iA
Np

k



Ei =



Ck,i

Ck,i(I + Ak)

Ck,i(I + Ak + A2
k)

...

Ck,i(I +
∑Np−Nc

j=1 Ajk)



2.1.3.2 Definition of Cost Function

Let tracking error of each player as ei(k) = yi(k)− ri(k) with respect to its control reference

ri, where, i = d,m. Then, cost function for each player can be determined in terms of the tracking

error ei and control inputs ui as below.

33

Ji =

Np∑
j=1

(ei(k + j))Qi(ei(k + j)) +
Nc−1∑
j=0

ui(k + j)Riui(k + j)

= −→ei
TQi
−→ei +−→ui

TRi
−→ui (2.20)

where,

−→ei = −→yi −−→ri =



yi(k + 1)

yi(k + 2)

...

yi(k +Np)


−



ri(k + 1)

ri(k + 2)

...

ri(k +Np)


=



ei(k + 1)

ei(k + 2)

...

ei(k +Np)



Qi =



Qi 0 · · · 0

0 Qi · · · 0

...
...

0 0 · · · Qi


, Ri =



Ri 0 · · · 0

0 Ri · · · 0

...
...

0 0 · · · Ri


The cost function in Equation (2.20) can be rewritten in terms of control inputs −→ui which is

variable to be optimized by substituting Equation (2.19).

Ji =
1

2
(Fix(k) + Φi,i

−→ui + Φi,−i
−→u−i + EiKk −−→ri)TQi(Fix(k) + Φi,i

−→ui + Φi,−i
−→u−i + EiKk −−→ri)

+−→ui
TRi
−→ui

=
1

2
−→ui

T (ΦT
i,iQiΦi,i +Ri)

−→ui +−→ui
TΦT

i,iQi(Φi,−i
−→u−i + EiKk −−→ri)

+ (Φi,−i
−→u−i + EiKk −−→ri)TQi(Φi,−i

−→u−i + EiKk −−→ri) (2.21)

The notation −i in Equation (2.21) means the other player. Because the third term in Equation

34

(2.21) does not depend on the optimized variable −→ui , the cost function can be simplified as below

in order to express a standard from of QP problem as J = 1
2
−→u TG−→u +−→u TW .

Ji =
1

2
−→ui

T (ΦT
i,iQiΦi,i +Ri)

−→ui +−→ui
TΦT

i,iQi(Fix(k) + Φi,−i
−→u−i + EiKk −−→ri) (2.22)

4−→ui =



4ui(k)

4ui(k + 1)

4ui(k + 2)

...

4ui(k +Nc − 1)


=



I 0 0 · · · 0 0

−I I 0 · · · 0 0

0 −I I · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −I I





ui(k)

ui(k + 1)

ui(k + 2)

...

ui(k +Nc − 1)


−



ui(k − 1)

0

0

...

0


= Θ−→ui −−→ui(k − 1)

The constraints for −→ui and4−→ui can be expressed in terms of −→ui as below.

−I−→ui ≤ −Ui,min

I−→ui ≤ Ui,max

−4−→ui = −Θ−→ui +−→ui(k − 1) ≤ −4Ui,min

4−→ui = Θ−→ui −−→ui(k − 1) ≤ 4Ui,max (2.23)

where,

Ui,max = [uimax uimax · · · uimax]
T

Ui,min = [uimin uimin · · · uimin]T

4Ui,max = [4uimax 4uimax · · · 4uimax]
T

4Ui,min = [4uimin 4uimin · · · 4uimin]T

35

The constraints in Equation (2.23) can be rewritten in terms of −→ui as Equation (2.24) and it can

be reorganized as a matrix form in (2.25).

−I−→ui ≤ −Ui,min

I−→ui ≤ Ui,max

−Θ−→ui ≤ −4Ui,min −−→ui(k − 1)

Θ−→ui ≤ 4Ui,max +−→ui(k − 1) (2.24)

Acons,i
−→ui ≤ Bcons,i (2.25)

where, Acons,i =



−I

I

−Θ

Θ


, Bcons,i =



−Ui,min

Ui,max

−4Ui,min −−→ui(k − 1)

4Ui,max +−→ui(k − 1)



2.1.3.3 Formulation of Quadratic Programming

In this research, four different types of game are studied - non-cooperative game with simulta-

neous move, non-cooperative game with leader-and-follower, non-cooperative game with sequen-

tial move and cooperative game [60][61]. In Table 2.2, four different types of games are sum-

marized. For each game type, quadratic programming problems are formulated using previously

obtained matrix forms of MPC and cost functions.

Non-cooperative game with simultaneous move The non-cooperative game with simultaneous

move is simply called as non-cooperative game. Each player focuses on his own performance

index in order to maximize it under this game, and make a decision simultaneously. Each player

36

Table 2.2: Game Definitions

Non-cooperative game with
simultaneous move

Each player knows the effect of the actions of the other and
compensates the effect of the other’s action by his optimal
action. The players communicate with each other.

Non-cooperative game with
leader-and-follower (Stackel-
berg game)

Similar to non-cooperative game with simultaneous move,
but there exists a leader and a follower. The leader make a
decision at first and then the follower make a decision with
information about the leader’s decision.

Non-cooperative game with
sequential move

Similar to non-cooperative game with simultaneous move,
but there exists sequence of players. Each player makes a
decision at his turn and keep previous decision otherwise.

Cooperative game The players share a common objective. The players com-
municate with each other.

recognizes the other player as a rational player. The quadratic programming problem of non-

cooperative game with simultaneous move can be formulated as below.

−→ui
∗ = min−→ui

Ji = min−→ui

1

2
−→ui
T (ΦTi,iQiΦi,i +Ri)

−→ui +−→ui
TΦTi,iQi(Fix(k) + Φi,−i

−−→u−i∗ + EiKk −−→ri) (2.26)

s.t. Acons,i−→ui ≤ Bcons,i
−−→u−i∗ = min−−→u−i

1

2
−−→u−iT (ΦT−i,−iQ−iΦ−i,−i +R−i)

−−→u−i +−−→u−iTΦT−i,−iQ−i(Fix(k) + Φ−i,i
−→ui
∗ + E−iKk −−→r−i)

s.t. Acons,−i−−→u−i ≤ Bcons,−i

The notation ∗ of in −→ui
∗ and −→u−i∗ in (2.26) means the optimal actions of players. In other

words, the quadratic programming problem for each player is dependent on the other player’s

optimal action which is a solution of the other player’s quadratic programming problem.

Non-cooperative game with leader-and-follower The non-cooperative game with leader-and-

follower is also known as Stackelberg game. Leader plays first with knowledge about the follower

will player as a rational player using observed leader’s action. Firstly, the quadratic programming

problem for a leader can be formulated as below.

37

−→ul
∗ = min−→ul

Jl = min−→ul

1

2
−→ul
T (ΦTl,lQlΦl,l +Rl)

−→ul +−→ul
TΦTl,lQl(Flx(k) + Φl,f

−→uf
∗ + ElKk −−→rl) (2.27)

s.t. Acons,l−→ul ≤ Bcons,l
−→uf
∗ = min−→uf

1

2
−→uf
T (ΦTf,fQfΦf,f +Rf)−→uf +−→uf

TΦTf,fQf (Ffx(k) + Φf,l
−→ul
∗ + EfKk −−→rf)

s.t. Acons,f−→uf ≤ Bcons,f

The notation l and f in (2.27) means "leader" and "follower" respectively. As shown in (2.27),

the leader’s quadratic programming problem is dependent on the follower’s optimal action which

is a solution of the other player’s quadratic programming problem. On the one hand, follower

produces his action with information about observed leader’s action. That is, the follower’s op-

timization problem is a standard quadratic programming problem. The quadratic programming

problem for the follower can be formulated with given −→ul
∗ as below.

−→uf
∗ = min−→uf

Jf = min−→uf

1

2
−→uf
T (Ffx(k) + ΦTf,fQfΦf,f +Rf)−→uf +−→uf

TΦTf,fQf (Φf,l
−→ul
∗ + EfKk −−→rf)

(2.28)

s.t. Acons,f−→uf ≤ Bcons,f

Non-cooperative game with sequential move In non-cooperative game with sequential move,

one player make a decision at his turn with information about the other players’ previous decision

and keep his decision otherwise as shown in (2.29).

−→ui(k) =


min−→ui

Ji, if k is i’s turn

−→ui(k − 1), otherwise
(2.29)

Therefore, players’ optimization problem is a standard quadratic programming problem . The

38

quadratic programming problem can be formulated with given −→u−i∗ as below.

−→ui
∗ = min−→ui

Ji = min−→ui

1

2
−→ui
T (ΦTi,iQiΦi,i +Ri)

−→ui +−→ui
TΦTi,iQi(Fix(k) + Φi,−i

−−→u−i∗ + EiKk −−→ri) (2.30)

s.t. Acons,i−→ui ≤ Bcons,i

Cooperative game In this game, players share a common objective which is defined as weighted

summation of each cost function as follows.

J =
∑
j=d,m

ρjJj (2.31)

The other player’s control action is neglected in the cost function of one player because each player

cannot affect and adjust the other player’s control action directly. Therefore, the cost function for

each player can be expressed as

−→ui
∗ = min−→ui

∑
j=d,m

ρjJj

=

Np∑
j=1

ed(k + j)

em(k + j)


T ρdQd 0

0 ρmQm


ed(k + j)

em(k + j)


+

Nc−1∑
j=1

−→ui(k + j)(ρiRi)
−→ui(k + j)

=

Np∑
j=1

eco(k + j)TQcoeco(k + j) +
Nc−1∑
j=1

−→ui(k + j)TRi,co
−→ui(k + j)

= −→eco
TQco

−→eco +−→ui
TRi,co

−→ui (2.32)

39

where, i = {d,m}

eco(k) =

ed(k)

em(k)

 , Qco =

ρdQh 0

0 ρaQa

 , Ri,co = ρiRi

−→eco =



eco(k + 1)

eco(k + 2)

...

eco(k +Np)


, Qco =



Qco 0 · · · 0

0 Qco · · · 0

...
...

0 0 · · · Qco


The cost function for cooperative game in Equation (2.32) can be converted to standard non-

cooperative game with simultaneous move in regards to the augmented system described below.

x(k + 1)

x(k + 1)

 =

Ak 0

0 Ak


x(k)

x(k)

+

Bk,d

Bk,d

ud(k) +

Bk,m

Bk,m

um(k) +

Kk

Kk

 (2.33)

2.1.4 Solution of Game Theoretic Model Predictive Control

2.1.4.1 Non-cooperative game with simultaneous move

Game theoretic MPC for non-cooperative game with simultaneous move is formulated as

(2.26). Each player’s cost function includes the other player’s action. Without the constraints,

the solution can be obtained as

−→ui
∗ = Kr,i

−→ri −Kx,ix(k)−Ku,i
−→u−i∗ −Kk,i (2.34)

40

where

Kr,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQi

Kx,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiFi

Ku,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiΦi,−i

Kk,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiEiKk

From (2.34), the unconstrained solution can be gotten as

−→ud
∗

−→um
∗

 =

 I Ku,d

Ku,m I


−1 Td 0

0 Tm


zd

zm

+

 I Ku,d

Ku,m I


−1 −Kk,d

−Kk,m

 (2.35)

where,

Td =

[
−Kx,d Kr,d

]
, Tm =

[
−Kx,m Kr,m

]
zd =

[
x(k) −→rd

]T
, zm =

[
x(k) −→rm

]T

The first element of the optimized −→ud
∗ and −→um

∗ is chosen as control input by the receding

horizon concept.

ud(k) = [I 0 0 · · · 0]−→ud
∗ (2.36)

um(k) = [I 0 0 · · · 0]−→um
∗ (2.37)

To consider the constraints in the quadratic programming problem, the iterative approach in

41

[60] based on convexity of the cost functions can be used. The iterative algorithms is described in

Algorithm 2.

Algorithm 2 Iterative Nash solution - convex step [60]
Iteration step i = 0
Initialize −→ud

i and −→um
i

Define ω1 and ω2 satisfying ω1 + ω2 = 1.
while | 4 | ≤ ε do

Solve the quadratic programming problems, (21) and (22) for each player
using −→ud

i and −→um
i and get the solutions as −→ud

0 and −→um
0

Calculate −→ud
i+1,−→um

i+1 as
(−→ud

i+1,−→um
i+1) = ω1(

−→ud
0,−→um

i) + ω2(
−→ud

i,−→um
0)

Calculate4d = Jd(
−→ud

i+1,−→um
i+1)− Jd(−→ud

i,−→um
i)

4m = Jm(−→ud
i+1,−→um

i+1)− Jm(−→ud
i,−→um

i)
4 = max(4d,4m)

Update i← i+ 1
end while

Because the cost decreases on iteration, Jd(−→ud
i+1,−→um

i+1) ≤ Jd(
−→ud

i,−→um
i), the iterative solution

converges [60]. The convergence of the iterative solution can be proved in (2.38).

With ω1 + ω2 = 1 and p = {d,m},

Jp(
−→ud

i+1,−→um
i+1) = Jp(ω1(

−→ud
0,−→um

i) + ω2(
−→ud

i,−→um
0))

≤ Jp(ω1(
−→ud

0,−→um
i)) + Jp(ω2(

−→ud
i,−→um

0))

≤ ω1Jp((
−→ud

i,−→um
i)) + Jp(ω2

−→ud
i,−→um

i))

≤ ω1Jp((
−→ud

i,−→um
i)) + ω2Jp((

−→ud
i,−→um

i))

= Jp((
−→ud

i,−→um
i)) (2.38)

42

2.1.4.2 Non-cooperative game with leader-and-follower

In this game, the leader knows how the follower reacts to his action. Therefore, the leader uses

the expected reaction of the follower to make his decision. On the other hand, the follower makes

a decision with given leader’s decision, and quadratic programming problem of the follower is a

standard form of conventional MPC problem. Without the constraints, leader’s solution can be

obtained as

−→ul
∗ = K

′

r,l
−→rl −K

′

x,lx(k)−K ′r,f
−→rf −K

′

k,l (2.39)

where,

K
′

r,l = (Φ
′

l,l

T
QlΦ

′

l,l +Rl)
−1Φ

′

l,l

T
Ql

K
′

x,l = (Φ
′

l,l

T
QlΦ

′

l,l +Rl)
−1Φ

′

l,l

T
QlF

′

l

K
′

r,f = (Φ
′

l,l

T
QlΦ

′

l,l +Rl)
−1Φ

′

l,l

T
QlΦ

′

l,f

K
′

k,l = Kk,l − Φl,fKk,f

F
′

l = Fl − Φl,fFf

Φ
′

l,l = Φl,l − Φl,fΦl,f

Φ
′

l,f = Φl,fKr,f

Follower’s solution for non-constraint problem can be derived as below.

−→uf
∗ = Kr,f

−→rf −Kx,fx(k)−Ku,f
−→ul
∗ −Kk,f (2.40)

43

where,

Kr,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQf

Kx,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfFf

Ku,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfΦf,l

Kk,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfEfKk

Because constraints of leader are dependent on the follower’s control action, iterative approach

is used for leader’s solution to consider the constraints in the quadratic programming problem sim-

ilar to non-cooperative simultaneous move. Meanwhile, the follower’s solution with constraints

can be obtained by existing algorithms such as active set methods or Hildreth’s quadratic pro-

gramming procedures [62] for standard constraint MPC problem. The solution for non-constraint

problem can be derived as below.

−→uf
∗ = Kr,f

−→rf −Kx,fx(k)−Ku,f
−→ul
∗ −Kk,f (2.41)

where,

Kr,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQf

Kx,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfFf

Ku,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfΦf,l

Kk,f = (ΦT
f,fQfΦf,f +Rf)

−1ΦT
f,fQfEfKk

2.1.4.3 Non-cooperative game with sequential move

In this game, players make their decision sequentially. In other words, they make new decision

at their turn and keep previous decision otherwise. Therefore, their quadratic programming prob-

lems are same as a standard form of conventional MPC problem with given the other’s decision

44

similar to follower’s MPC problem in Stackelberg game. The solution for non-constraint problem

can be derived as below.

−→ui
∗ = Kr,i

−→ri −Kx,ix(k)−Ku,i
−→ui
∗ −Kk,i (2.42)

where, i = {d,m}

Kr,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQi

Kx,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiFi

Ku,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiΦi,−i

Kk,i = (ΦT
i,iQiΦi,i +Ri)

−1ΦT
i,iQiEiKk

The solution with constraints can be obtained as standard constraint MPC solution similar to

aforementioned follower’s solution of Stackelberg game.

2.1.4.4 Cooperative game

In Section 2.1.3.3, it is shown that cooperative game is converted to non-cooperative game with

simultaneous move with respect to an augmented system described in (2.33). Therefore solution

for this game can be obtained in the same way of non-cooperative game with simultaneous move

for the augmented system.

2.2 Shared Control Strategy

Human driver and machine use information about collision safety and tracking error to make

a decision. The collision with surrounding vehicles or objects should be avoided, and the two

vehicle controllers, human driver and machine, figure out how the vehicle maneuvers is dangerous

according to relative maneuver with respect to surrounding vehicles. Zhang et al.[63] suggested

a three warning levels based on time-to-collision(TTC) for forward collision warning system as

follows.

45

• 1.5 sec ≤ TTC < 2.5 sec : Cautionary warning (visual signal)

• 0.5 sec ≤ TTC < 1.5 sec : Imminent warning (visual signal+auditory signals)

• TTC < 0.5 sec : Overriding (automatic braking)

TTC can be obtained using relative speed and distance from the front vehicle as follows.

TTC(t) =
D(t)

VD(t)
(2.43)

where D(t) is the relative distance and VD is the relative speed from the front vehicle. Chen et

al.[64] defined the collision probability index(CPI) curve based on the three warning levels using

a Z-shaped membership function as follows.

Figure 2.3: Collision probability index(CPI)

46

Also, tracking errors is the other important information for human driver and machine to represent

how the vehicle follows their designated references. The weight sum of tracking error for each

player can be defined as follows, where i = {d,m}

etrck,i(k) =

√∑
j

wj(yi − ri) (2.44)

The information of collision probability in Figure 2.3 and tracking error in (2.44) are used in our

shared control strategy.

2.2.1 Shared control strategy for machine

It can be understood that tracking error represents how a vehicle follows control reference. Ac-

cordingly, machine will basically increase its control action as its tracking error increases. But ma-

chine also needs to consider human driver’s intention and to react appropriately to human driver’s

intention. In this research, the human driver’s intention is not directly estimated but the driver’s

intention is indirectly taken into account. Because the conflict by human driver with a different

intention leads to the machine’s high tracking error, the machine can figure out whether the human

driver has different intention or not based on machine’s tracking error. Therefore, the machine’s

tracking error is used as information to judge the human driver’s intention in this research. It is

desirable that machine needs to reduce its control action in a non-dangerous situation even though

its tracking error is large, because the human driver has a different intention. In other words, the

machine is able to follow its own decision or to follow human driver’s decision considering its

tracking error and collision probability. Based on this idea, shared control strategy for machine

can be defined as below.

d

dt
ρm = E · (1− CPI) + E · CPI (2.45)

47

where,

E: tracking error gain from weighted sum of tracking errors

CPI: collision probability index

The meaning of (2.45) is that machine increases its control action to take more control authority

according to its tracking error in safety critical conditions while machine decreases its control

action to reduce more control authority in non-safety critical conditions where there is not any

collision risk. In addition, machine needs to be capable of dealing with situations where a human

driver does not have an intention to control a vehicle. In these situations, machine has to increase

its control authority to control a vehicle by itself, regardless of the risk of collision. To handle these

situations, control activity function is introduced as shown in Equation (2.46) and Figure 2.4.

A = 1− exp
−
(
k11

∣∣∣∣ ud,1
ud,1max

∣∣∣∣)k12(
k21

∣∣∣∣ ud,2
ud,2max

∣∣∣∣)k22

(2.46)

Using control activity in (2.46), finally shared control strategy for machine is proposed as

below.

d

dt
ρm = S · (1− CPI) + E · CPI (2.47)

where,

S =


−E, if A > 0

E, otherwise

Figure 2.5 illustrates the proposed shared control strategy for machine.

48

Figure 2.4: Control activity

Figure 2.5: Shared control strategy of machine

49

In regards to non-safety critical condition where collision risk is low, Figure 2.6 shows the

path for reducing machine’s control authority, when a human driver has an intention to control a

vehicle. On the other hand, Figure 2.7 illustrates the path for increasing machine’s control authority

in non-safety critical condition, when a human driver has an intention to control a vehicle.

Figure 2.6: Shared control strategy of machine with human driver’s intention - non-safety critical

Similarly, Figure 2.8 illustrates the path for increasing machine’s control authority in regards

to safety critical condition where collision risk is high.

50

Figure 2.7: Shared control strategy of machine without human driver’s intention - non-safety crit-
ical

Figure 2.8: Shared control strategy of machine - safety critical

51

2.2.2 Shared control strategy for human

Similar to machine’s shared control strategy, it can be understood that human driver uses in-

formation about his tracking error as a measure to figure out how a vehicle maneuver corresponds

to his demand. Hence, human driver will basically increase his control action as his tracking error

increases. But human drier’s reaction to machine’s control action is dependent on human driver’s

characteristics. In other words, some human drivers tend to follow his own decision and some hu-

man drivers tend to follow machine’s decision, when human driver’s tracking error is high. Their

reaction can be varying according to their intention to follow his own or machine’s decision. With

consideration of this idea, human driver’s shared strategy is formulated as below.

d

dt
ρd = E · (1− I) + E · I (2.48)

where,

E: tracking error gain from weighted sum of tracking errors

I: human driver’s intention to follow his own or machine’s decision

It can be understood that human driver is cooperative with machine if value of intention term,

I , in (2.48) is 0. In other words, human driver acts as a cooperative driver to follow machine’s

decision when human driver’s tracking error is high. If value of intention term, I , is 1, human

driver will be non-cooperative and follow to his own decision by increasing his control authority

when his tracking error is high. Figure 2.9 shows the suggested shared control strategy for human

driver. To be specific, Figure 2.10 shows the path for reducing human driver’s control authority

when human driver does not have an intention to control a vehicle. Similarly, Figure 2.11 illustrates

the path for increasing human driver’s control authority in the condition that human driver has an

intention to control a vehicle by himself.

52

Figure 2.9: Shared control strategy of human driver

Figure 2.10: Shared control strategy of human driver - non-safety critical

53

Figure 2.11: Shared control strategy of human driver - non-safety critical

2.2.3 Game transition

In real driving situations, human driver and the machine may establish and change their game

according to driving situations. When a human driver starts driving, the human driver and the

machine recognize the existence of the other player and know both players are well-performing

vehicle controllers. Therefore, it is reasonable that the two players, human driver and machine,

start their game under cooperative game framework. Unless the human driver cooperates with the

other, the game is maintained as cooperative game. But in some cases, some drivers might intend

to compete with machine, and then the game is converted from cooperative to noncooperative if

machine also want to control a vehicle by itself. If collision probability is high in noncooperative

game, machine needs to increase its control authority and then eventually has to take all control

authority to avoid a collision. In this situation, the vehicle is operated in fully autonomous driving

mode. The driving mode goes back to cooperative driving from fully autonomous driving mode,

after the dangerous driving situation is gone. Based on this principle, finite state machine (FSM)

based game transition model is developed as illustrated in Figure 2.12. In game transition condi-

tions, new term ’degree of conflict’ is used to represent how machine’s action conflicts with human

54

driver’s action. The ’degree of conflict’ is defined by multiplication of machine’s tracking error and

machine’s control authority. That means the variable is high when machine increases more control

authority but vehicle maneuver still does not corresponds to its action, and it is low otherwise. To

remove human driver’s control action, specific mechanism such as electric clutch or steer-by-wire

needs to be equipped in real applications.

Figure 2.12: Game Transition

2.3 Simulation studies

In this section, simulation results are investigated. First of all, lane change scenario is studied

under fixed game framework. Simulation results are compared according to aforementioned four

different types of game. Also, lane change scenario with game transition is analyzed to under-

stand how human driver and machine change their control intention (authority) in accordance with

driving situations. In addition, more complicated driving scenario is studied. In the scenario, lane

change is required to avoid a collision from a slower front vehicle but the other vehicle also makes

55

a lane change to the same target lane of ego-vehicle. In this situation, game transition and shared

control authority are investigated.

2.3.1 Lane change scenario under fixed game

In this scenario, lane change is required to avoid a collision from a slower front vehicle, but

it is assumed that human driver does not recognize the front vehicle and keeps driving on current

lane. Also, it is supposed that human driver and machine do not change their game. Actually,

human driver and machine may change their game in real driving situations but simulations were

performed under fixed game framework to investigate simulation results according to specific game

type. Figure 2.13 briefly shows the simulation scenario.

Figure 2.13: Simulation scenario - Lane change under fixed game

In regards to non-cooperative game with leader-and-follower, it is assumed that human driver

plays as a leader and machine is a follower. This simulation scenario focuses more on lateral

maneuver than longitudinal maneuver. The simulation results are illustrated in Figure 2.14, 2.15

and 2.16. Under fixed non-cooperative game with simultaneous move and fixed non-cooperative

game with sequential move, moving trajectory of ego-vehicle converges to the middle between two

players’ references. Also, ego-vehicle goes to the middle of two player’s references under fixed

cooperative game framework. One the other hands, moving trajectory of ego-vehicle leans toward

follower’s reference. It can be interpreted that a leader make decision to maximize his payoff

with knowledge that a follower also make a decision to maximize his payoff using given leader’s

56

action. Therefore, a leader takes an action which give the best payoff among the best reactions of

a follower with respect to leader’s action, and it makes the trajectory of ego-vehicle is closer to

follower’s reference. In regards to control actions, human driver and machine exert control actions

in the opposite direction in non-cooperative games but the two players produce similar control

actions in cooperative game due to shared objective. In all game frameworks, ego-vehicle collides

with the front vehicle because ego-vehicle drives along the middle of two players’ references or

slightly lean to reference of the follower(machine).

(a) lateral position (b) yaw angle

Figure 2.14: Vehicle trajectory - lane change under fixed game framework

57

(a) Cooperative game (b) Non-cooperative game with simultaneous move

(c) Non-cooperative game with leader/follower (d) Non-cooperative game with sequential move

Figure 2.15: Steering torque input - lane change under fixed game framework

58

(a) Cooperative game (b) Non-cooperative game with simultaneous move

(c) Non-cooperative game with leader/follower (d) Non-cooperative game with sequential move

Figure 2.16: Long. acceleration input - lane change under fixed game framework

59

2.3.2 Lane change scenario with game transition

This scenario is similar to previous scenario under fixed game framework illustrated in Figure

2.13 but a game type can be varying according to driving situations. It can be more reasonable

in real driving situations to change a game type during driving. Similarly, it is assumed that hu-

man driver does not recognize the front vehicle and keeps driving on current lane, and additionally

it is supposed that human driver and machine player play non-cooperative game with sequential

move among aforementioned three different types of non-cooperative games, when they play non-

cooperatively. Meanwhile, human driver can figure out correspondence between his decision and

machine’s decision through his tracking error, because tracking error can be considered as a degree

of representing how vehicle maneuver follows to his decision. In the condition that human driver’s

tracking error is high, human driver can judge that machine wants to control a vehicle with differ-

ent control reference from human driver’s. In this condition, human diver may follow to machine’s

decision or control a vehicle by his own decision. Therefore, the simulation results are depen-

dent on human driver’s intention to follow his own decision or to follow machine’s decision when

there exists conflict between human driver’s and machine’s demands. Figure 2.17, 2.18 and 2.19

show the simulation results with a human driver who has an intention to follow his own demand

in the conflict condition. In contrast to results under fixed game framework, ego-vehicle avoids a

collision from the front vehicle because machine can take all control authority from human driver

when collision risk is high. Firstly, the game starts as cooperative game and then game is changed

to non-cooperative game. Eventually, their game is transitioned to fully autonomous driving when

collision risk is high enough. It is shown that each player applies the maximum input value in

the opposite direction with the other player during noncooperative game. This means that the two

players only focus on own decision and then exert their control action to compensate for the ef-

fect of the other player’s control action. Eventually, control action of each player converges to the

maximum possible value. After successful lane change, game type is returned to cooperative game

because there is no collision risk. The game type 3, 5 and 4 in Figure 2.19a means cooperative

game, non-cooperative game and fully autonomous mode, respectively. The control authority in-

60

formation in Figure 2.19b indicates how much players want to control a vehicle by their intention.

In other words, control authority represents 1 when a player wants to fully control a vehicle by his

own intention but 0 if a player is willing to follow the other’s action.

(a) lateral position (b) yaw angle

Figure 2.17: Vehicle trajectory - lane change with game transition

(a) Steering torque input (b) Long. accel. input

Figure 2.18: Control inputs - lane change with game transition

61

(a) Game type (b) Control authority

Figure 2.19: Control inputs - lane change with game transition

Figure 2.20, 2.21 and 2.22 illustrate the other simulation results with a human driver who

follows to machine’s decision in the conflict condition. It is shown that ego-vehicle is able to

avoid a collision from the front vehicle. Unlike previous results shown in Figure 2.17, 2.18 and

2.19, game is not changed and stay the same in cooperative game because human driver follows

machine decision in the conflict condition. To avoid a collision from the front vehicle, human

driver reduces his control authority to follow machine’s decision and machine increase its control

authority. After avoiding a collision from the front vehicle, their control authorities go back to the

default value by an assumption that two players intend to control a vehicle together with half of

their control authority in normal driving situations in which they have a similar decision.

62

(a) lateral position (b) yaw angle

Figure 2.20: Vehicle trajectory - lane change with game transition & cooperative driver

(a) Steering torque input (b) Long. accel. input

Figure 2.21: Control inputs - lane change with game transition & cooperative driver

63

(a) Game type (b) Control autority

Figure 2.22: Control inputs - lane change with game transition & cooperative driver

Also, additional simulation was conducted without any front vehicle. In other words, in this

scenario it is assumed that a human driver makes a lane change by his preference, even though lane

change is not necessary. Figure 2.23 illutrates this simulation scenario.

Figure 2.23: Simulation scenario - Lane change by human driver’s preference

In this scenario, it is expected that machine has to reduce its control authority to follow human

driver’s decision in this scenario. Simulation results are shown in Figure 2.24, 2.25 and 2.26. From

the simulation results, it can be analyzed that machine reduces its control authority and their game

is kept as cooperative game. That is, machine cooperates with human driver in a non-safety critical

condition, even though machine has a different decision from human driver.

64

(a) lateral position (b) yaw angle

Figure 2.24: Vehicle trajectory - lane change by driver’s preference

(a) Steering torque input (b) Long. accel. input

Figure 2.25: Control inputs - lane change by driver’s preference

(a) Game type (b) Control autority

Figure 2.26: Control inputs - lane change by driver’s preference

65

From these simulation results with game transition, it is investigated that machine is capable

of respecting human driver’s decision in driving conditions without collision risk and is able to

control a vehicle based on its own decision in driving conditions with high collision risk by taking

all control authority.

66

2.3.3 Lane change scenario with an interrupting vehicle

In this scenario, more complicated driving situation is investigated. Lane change is desired

to avoid a slower front vehicle in this scenario but there exist another vehicle interrupting a lane

change of ego-vehicle by making a lane change to the same lane. Figure 2.27 gives brief explana-

tion about this simulation scenario.

Figure 2.27: Simulation scenario - Lane change with an interrupting vehicle

In this situation, ego-vehicle needs to go back to the original lane and then slow down to

follow the front vehicle. That is, this simulation scenario is intended for lateral and longitudinal

maneuvers. In this simulation, it is presumed that human driver cannot recognize the interrupting

vehicle. The simulation results are shown in Figure 2.29, 2.28 and 2.30. Firstly, ego-vehicle tries

to make a lane change to avoid the front vehicle, but the other vehicle makes a lane change to the

same lane. Therefore, ego-vehicle goes back to the original lane and then reduce vehicle speed

to keep safe distance from the front vehicle and then make a lane change when lane change is

available. The game type is changed during driving. Firstly, it starts as cooperative game and then

is changed to non-cooperative game. Finally, ego-vehicle is operated in fully autonomous driving

mode by the machine taking all control authority to handle dangerous situation, so that ego-vehicle

successfully avoids a collision from surrounding vehicles. After successfully lane change is done,

two players go back to a normal driving condition.

67

(a) Steering torque input (b) Long. accel. input

Figure 2.28: Control inputs - lane change with an interrupting vehicle

(a) vehicle position (x-y) (b) yaw angle

(c) long. velocity

Figure 2.29: Vehicle trajectory - lane change with an interrupting vehicle

68

(a) Game type (b) Control autority

Figure 2.30: Control inputs - lane change with an interrupting vehicle

2.4 Conclusions

In this work, shared control between human driver and machine is studied based on game

theoretical model predictive control (MPC) framework. Four types of game are examined for

interaction between human and machine - non-cooperative game with simultaneous move, non-

cooperative game with leader-and-follower, non-cooperative game with sequential move and co-

operative game. Game transition is analyzed based on finite state machine (FSM), and shared

control strategy is suggested using information about collision probability and tracking error. Sim-

ulation results show shared driving successfully deals with safety-critical conditions in which ma-

chine demands high control authority and non-safety critical conditions in which machine needs

to cooperate with human driving by adjusting its control authority.

The proposed game theoretic MPC based controller requires lots of computational efforts, due

to inherent computational complexity associated with the property of receding horizon optimiza-

tion based control methodologies. It is an open research area in MPC based control field to re-

duce online computational burden, and many researchers suggested computationally efficient ap-

proaches for real-time implementation [65][66][67]. In this research, it is focused that mathemati-

cal formulation of interaction between human driver and machine to understand their relationship

69

under game theoretic framework, rather than computational efficiency. It can be expected that

the computational burden of the proposed game theoretic MPC controller can be reduced using

existing computational efficient solutions for MPC based controllers.

70

3. REINFORCEMENT LEARNING BASED DECISION MAKING FOR SELF-DRIVING

In this section, reinforcement learning based decision making model is specified for self-

driving. The decision making model generates behavioral level decisions and is a very signifi-

cant part in self driving system. Recently, reinforcement learning based approaches for decision

making model have received much attention due to its ability of learning from experiences in an

environment, even though knowledge about an environment is not known [29]-[37]. Many RL

algorithms have been proposed lately and several Deep Q Networks (DQN) algorithms based deci-

sion models are suggested in this research using three different state definitions which are relative

maneuver based state definition, surrounding gap based state definition and occupied grid based

state definition. Designed RL based decision models are compared to other types of decision mod-

els such as conventional human driver model for traffic simulation purpose, rule based decision

model and data-driven decision model. In regards to conventional human driver model, Intelligent

Driver Model (IDM) and Minimizing Overall Braking Induced by Lane Changes (MOBIL) model

are used, and finite state machine (FSM) based decision model is designed as a rule based model.

Also, Recurrent Neural Networks (RNN) based decision model is designed as data-driven decision

model using real world highway driving data, Next Generation Simulation (NGSIM) data from

U.S. Department of Transportation [68]. Comparison results show RL based decision model has

the best performance with respect to vehicle speed and moving distance in the simulation envi-

ronment. This section consists of following subsections. Section 3.1 describes theoretical back-

grounds of RL, and Section 3.2 provides details of designed RL based decision model including

algorithms details, state definitions reward functions and comparison studies. Finally, conclusions

are given in Section 3.4.

3.1 Theoretical backgrounds - Reinforcement learning

Reinforcement learning (RL) is sequential decision making problem under uncertainty. There

exists a learner called as agent, and that which is outside of the agent is called the environment.

71

In the RL framework, the agent interacts with the environment and learns from its own experience

to maximize the expected temporally discounted reward. The agent acts in specific state and then

observes the next state and receives a reward from the environment. The reward is considered as

a signal for positive or negative action taken by the agent, and the goal of RL problem is to find

the optimal action policy which is a map from a given state to a probability distribution for each

possible action. The environment is generally modeled as a Markov process but the agent does

not know about the environment and should learn about the environment via its own experience.

The conceptual structure of RL is shown in Fig 3.1. In this section, the theoretical background of

reinforcement learning is described.

Figure 3.1: Concept of interaction between agent and environment under RL framework

If the environment is exactly known, the optimal policy can be obtained by dynamic program-

ming via value iteration or policy iteration. But since the agent does not have prior knowledge

about the environment, it has to reinforce its policy using its own experience.

72

3.1.1 Markov Decision Process (MDP)

The decision making process can modeled as an MDP, and in the RL framework, MDP is

formed by combination of the agent’s action and the environment. Mathematically, MDP can be

expressed by a tuple composed of five elements (S,A, T,R, γ). The S,A, T,R and γ are the state

space, action space, transition function, reward function and discount factor, respectively. The goal

of the learning problem is to maximize the future rewards for an episodic task where there exists

the final time, T :

Rt = rt+1 + rt+2 + · · ·+ rT . (3.1)

However, for a task without a final time, the future rewards specified above became infinite. There-

fore, discounted future rewards are used and formulated as:

Rt = rt+1 + γrt+2 + · · · =
∞∑
k=0

γkrt+k+1. (3.2)

The discount factor 0 ≤ γ ≤ 0 is defined to be close to one if future rewards are to be considered

relatively important and close to zero if the current reward is to be more important. The Markov

property holds for the underlying state model if the conditional probability of future states depends

only on the current state, not on all past states. In an MDP the agent’s next state and reward only

depend on the current state and the agent’s current action.

The transition function, T , is defined as a probability distribution over next possible states (s′)

given the current state (s) and action (a) as follows.

T : S × A −→ Π(S) (3.3)∑
s′∈S

T (s, a, s
′
) = 1, ∀s ∈ S, ∀a ∈ A

The reward function, R, is defined as a mapping from a given current state, current action and next

73

state to a reward as follows:

R : S × A× S −→ R. (3.4)

The agent’s policy, π(s, a), can be defined as a probability distribution over the agent’s possible

action space and satisfies the following condition.:

∑
a∈A

π(s, a) = 1, ∀s ∈ S. (3.5)

The state value function provides the value of given state and action under the corresponding

policy, and it is used to evaluate the agent’s policy choices:

V π(s) = Eπ{
T∑
k=0

γkrk+t+1|sk = s}. (3.6)

In the above formula T can be the final time step for an episodic task and also can be∞ for a non-

finite task. The state value function can be expressed as a recursive equation called the Bellman

expectation equation:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s
′
)(R(s, a, s

′
) + γV π(s

′
)). (3.7)

The optimal policy, π∗, which maximizes the discounted future rewards, satisfies the following

condition:

V ∗(S) ≥ V π(s), ∀π, ∀s ∈ S. (3.8)

The optimal state value function with respect to the optimal policy, π∗ is called a Bellman optimal-

ity equation and it can be defined by a recursive equation as follows.

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s
′
)(R(s, a, s

′
) + γV ∗(s

′
)) (3.9)

74

Similarly, one needs to define a state-action value function for a specific state-action pair with

respect to a given policy and it is described as follows.

Qπ(s, a) =
∑
s′∈S

T (s, a, s
′
)(R(s, a, s

′
) + γV π(s

′
)) (3.10)

The optimal state-action value function with respect to the optimal policy, π∗, is specified as fol-

lows.

Q∗(s, a) =
∑
s′∈S

T (s, a, s
′
)(R(s, a, s

′
) + γV ∗(s

′
)) (3.11)

3.1.2 Dynamic Programming

Dynamic programming (DP) is used to compute the optimal policy using an exactly known

environment model based on MDP. Even though DP can be used for continuous state and action

spaces problem, it is only possible to get exact solutions by DP in special cases [12]. The method

based on quantization of state and action space is commonly applied for a continuous state space

problem. Therefore, in this section, DP is explained under finite state and action framework to

illustrate the theoretical background of DP. The key idea behind DP is to use the aforementioned

value functions to find good policies. Value functions represent how valuable a specific state or

specific state-action pair is, and it can be used to search for better policies.

The transition probability which depends on the previously mentioned transition function, T in

(3.3), is rewritten as the probability over each possible next states with respect to a given current

state and it is defined as

Pa
ss′

= Pr{st+1 = s
′ |st = s, at = a} (3.12)

The expected value of the next reward is rewritten as follows.

Ra
ss′

= E{st+1 = s
′|st = s, at = a} (3.13)

75

An arbitrary policy is evaluated in terms of value functions based on Bellman expectation

equation, but state value should be repeatedly computed with zero initial value until it converge.

This algorithmic process can be expressed as

Vk+1(s) = Eπ{rt+1 + γVk(st+1)|st = s}

=
∑
a∈A

π(s, a)
∑
s′∈S

Pa
ss′

(Ra
ss′

+ γVk(s
′
)) (3.14)

The subscript, k in the above refers to the iteration step and the iterations stop when the value

reaches a stationary point, such that |Vk+1 − Vk| −→ 0. This iterative algorithmic procedure is

called as policy evaluation. To apply policy evaluation,Ra
ss′

and Pa
ss′

should be known in advance.

The policy evaluation is to evaluate a given current policy, but a procedure is needed to obtain

a better policy which produces higher rewards. The improved policy can be obtained as the policy

which maximizes state action value as follows, and this process is called as policy improvement.

π
′
(s) = arg max

a
Qπ(s, a)

= arg max
a

∑
s′∈S

Pa
ss′

(Ra
ss′

+ γVk(s
′
)) (3.15)

These two phases, policy evaluation and policy improvement, constitute the policy iteration

algorithm as shown below.

One drawback of policy iteration is separation of policy evaluation and policy improvement,

which leads to a computational burden that requires computations of state values for the entire state

space. Value iteration is an iterative algorithm which truncates policy evaluation without loss of

convergence guarantees of policy iteration. The value iteration algorithm is described as follows.

76

Algorithm 3 Policy iteration
1. Initialization
V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S

2. Iterative policy evaluation
repeat

Set4 = 0
For each s ∈ S

v ←− V (s)
V (s)←−

∑
a∈A

π(s, a)
∑
s′∈S
Pa
ss′

(Ra
ss′

+ γV (s
′
))

4←− max(4, |v − V (s)|)
until4 < θ (θ is a small positive number)

3. Policy improvement
repeat

For each s ∈ S
b←− π(s)
π(s)←− arg maxa

∑
s′∈S
Pa
ss′

(Ra
ss′

+ γV (s
′
))

b 6= π(s), then go to policy evaluation
until b = π(s)

3.1.3 Reinforcement Learning

In the DP framework, prior knowledge about the state transition probability, Pa
ss′

, and rewards,

Ra
ss′

, is required. If this prior information is not given, the optimal policy cannot be found using

DP, in which case RL needs to be used to search for the optimal policy. The basic idea of RL is to

learn the optimal policy from experience without prior knowledge. In other words, the agent will

play an actual game and learns the state value based on observed rewards from the environment.

The state value in (3.14) can be written as follows by bootstrapping in which updates are performed

using an existing estimate.

77

Algorithm 4 Value iteration
Initialization
V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S

repeat
Set4 = 0
For each s ∈ S

v ←− V (s)
V (s)←− maxa

∑
a∈A

π(s, a)
∑
s′∈S
Pa
ss′

(Ra
ss′

+ γV (s
′
))

4←− max(4, |v − V (s)|)
until4 < θ (θ is a small positive number)

Output a deterministic policy, π, such that
π(s)←− arg maxa

∑
s′∈S
Pa
ss′

(Ra
ss′

+ γV (s
′
))

V π(s) = rt+1 + γV π(s
′
) (3.16)

Therefore, update of the state value is expressed in recursive form as follows.

V (st) = V (st) + α[rt+1 + γV (st+1)− V (st)] (3.17)

The update is performed using the previous value plus the prediction error scaled by the learning

rate α. The prediction error, rt+1 + γV (st+1) − V (st), is also called the Temproal Difference

(TD) error, and rt+1 + γV (st+1) is called as TD target. The main difference between state value

estimation by (3.17) and DP is that the agent needs to play a real game many times to learn the

state value by (3.17), otherwise the state value can be calculated by prior knowledge about the state

transition probability, Pa
ss′

, and rewards,Ra
ss′

. Similarly, a state-action value function, Q(s, a), can

78

be estimated. It is formulated as a recursive equation as follows.

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (3.18)

From the aforementioned recursive formula for state-action value estimation, one RL algorithm

(Sarsa or State–action–reward–state–action) can be established without prior knowledge about the

environment.

Algorithm 5 Sarsa: on-policy TD control algorithm

Initialize Q(s, a) arbitrarily
repeat

Initialize the state s arbitrarily
Choose action a based on ε-greedy policy
repeat

Take action a and move to the next state s′ and receive reward r
Choose the next action a′ at state s′ based on ε-greedy policy
Q(s, a)←− Q(st, at) + α[r + γQ(s

′
, a
′
)−Q(s, a)]

s←− s
′; a←− a

′

until reached to required number of steps or reached to a terminal state
until reached to required number of episodes

By the ε-greedy policy, the next action is selected as the action with the highest value in the state-

action value function, but random action is also chosen with a small probability ε. The drawback

of the Sarsa algorithm is that is an on-policy algorithm, since state-action value function estima-

tion is really dependent on the currently followed policy. To improve convergence, an off-policy

algorithm is commonly used where the state-action value function does not depend on the cur-

rent policy and the optimal state-action value function is directly estimated. The off-policy TD

algorithm is specified as below and it is also called Q-learning.

79

Algorithm 6 Q-learning: off-policy TD control algorithm

Initialize Q(s, a) arbitrarily
repeat

Initialize the state s arbitrarily
Choose action a based on ε-greedy policy
repeat

Take action a and move to the next state s′ and receive reward r
Q(s, a)←− Q(st, at) + α[r + γmaxa′ Q(s

′
, a
′
)−Q(s, a)]

s←− s
′; a←− a

′

until reached to required number of steps or reached to a terminal state
until reached to required number of episodes

The aforementioned algorithms are categorized as value-based learning algorithms because the

algorithms estimate state-action value function and then actions are chosen based on the estimated

value function. There exists another type of learning algorithm, i.e. policy based learning algo-

rithm, which is also called as actor-critic algorithm. The actor-critic algorithm includes two parts.

One is the actor (or policy) which is to choose an action for each state and the other is the critic

which estimates value function. The actor-critic algorithm is described further below.

The p(s, a) is the value at time t of the modifiable policy parameter of the actor and it indicates

the tendency to select each action in each state. The RL algorithms mentioned in this section are

described based on finite action and state spaces but they can be extended to continuous space

problems with universal function approximator such as neural networks to estimate the value func-

tion.

3.2 Design of Decision Making Model Based on RL for Highway Driving

For a finite state and action space problem, the estimates of the value functions are stored in a

table. For large finite state and action space problem or continuous action and state spaces prob-

lem, function approximation is applied to estimate the value function, while neural networks are

commonly used for value function estimation. Recently, breakthroughs in RL have been achieved

80

Algorithm 7 Actor-critic algorithm
Initialize

p(s, a)←− 0 ∀s ∈ S, ∀a ∈ A

π(s, a)←− ep(s,a)∑|A|
b=1 e

p(s,a)
∀s ∈ S, ∀a ∈ A

repeat
Initialize the state s arbitrarily
Choose action a from state s using π(s, a)
repeat

Take action a and move to the next state s′ and receive reward r
δ = r + γV (s

′
)− V (s)

V (s)←− V (s) + α(r + γV (s
′
)− V (s))

Q(s, a)←− Q(st, at) + α[r + γmaxa′ Q(s
′
, a
′
)−Q(s, a)]

s←− s
′; a←− a

′

p(s, a)←− p(s, a) + βδ

π(s, a)←− ep(s,a)∑|A|
b=1 e

p(s,a)
(Gibbs softmax method)

until reached to required number of steps or reached to a terminal state
until reached to required number of episodes

by applying deep neural networks. The state-value function can be rewritten as follows where θ

means parameters of the function approximator which need to be tuned by learning algorithms.

Q(s, a)∗ ≈ Q(s, a; θ) (3.19)

Deep Q Network (DQN), which is a Q learning algorithm using deep neural networks as function

approximators with an experience replay buffer, has been recently proposed and several variant

algorithms such as Double DQN, Dueling DQN and DQN with prioritized experience replay buffer

have been introduced. The basic algorithm of DQN is described as follows.

The DQN algorithm can be modified using another neural network for estimating the target value

of the state-action value function to overcome the unstable target value problem. Therefore, the

81

Algorithm 8 DQN algorithms with experience replay
Initialize replay memory D with capacity N
Initialize neural networks Q with random weights θ for state-value function
estimation
for episode= 1,M do

Initialize sequence s1 = x1
for t = 1, T do

Choose action at based on ε-greedy policy
with probability ε, select random action at
otherwise, select action at = maxaQ

∗(st, a; θ)
Take action at and move to the next state st+1 and receive reward rt
Store transition (st, at, rt, st+1) in D
Sample random mini-batch of transitions (sj, aj, rj, sj+1) from D

Set Qtarget,j =

{
rj, for terminal sj+1

rj + γmaxa′ Q(st+1, a
′
; θ), for non-terminal sj+1

Perform a gradient descent step on (Qtarget,j −Q(sj, aj; θ))
2

θ ←− θ − α5θ (Qtarget,j −Q(sj, aj; θ))
st ←− st+1

end for
end for

target value of the state-action value function is replaced byQtarget,j = rj+γmaxa′ Q(st+1, a
′
; θ−)

and target network weights θ− are periodically copied from Q network weights θ . In this research,

several DQN algorithms are applied to design decision making models for highway driving.

3.2.1 Experimental setup

In an RL framework, one needs to establish an environment which can interact with a learning

agent in a learning problem. Recently, several open-source driving simulators have been released

[69][70][71], while a highway driving simulator was developed by modifying an existing simulator

[71]. In our work, the roadway was designed with multiple lanes while a kinematic model is used

for vehicles in the simulator. The kinematic vehicle model is described as follows.

82

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v
tan(δ)

L
(3.20)

Figure 3.2: Kinematic vehicle model

Decision making models of longitudinal and lateral maneuvers are required for other vehicles in

the driving simulation and an Intelligent Driver Model (IDM) in [72] is used for longitudinal deci-

sion model and an Minimizing Overall Braking decelerations Induced by Lane changes (MOBIL)

model in [73] is used for lateral decision model for other vehicles. The IDM model described in

(3.21) produces longitudinal acceleration as a decision based on relative speed and distance to a

leading vehicle and its parameters is summarized in the table below.

83

v̇ = a

[
1−

(v0
v

)δ
−
(
s∗(v,4v)

s

)]
s∗(v,4v) = s0 + vT +

v4v
2
√
ab

(3.21)

parameter nominal value
desired speed v0 25 m/s
free acceleration exponent δ 4
desired time gap T 1.5 s
jam distance s0 2.0 m
maximum acceleration a 1.4 m/s2

desired deceleration b 2.0 m/s2

Table 3.1: IDM parameters

The MOBIL model described in (3.22) produces the lateral lane change decision based on

relative speed and distances to the following vehicle in the current lane and the following vehicle

in the next lane. The parameters of the MOBIL model are summarized in the table below.

ãc − ac + p(ãn − an + ão − ao) > 4ath (3.22)

ãn ≥ −bsafe

In (3.22), ac and ãc represent ego-vehicle’s current and the next acceleration after a lane change

respectively, and an and ãn represent current and the next acceleration of following vehicle in

the adjacent lane, respectively. Also, ao and ão represent the current and the next acceleration of

following vehicle in the current lane, respectively.

84

parameter nominal value
politeness p 0 ≤ p ≤ 1
lane changing threshold4ath 0.1 m/s2

maximum safe deceleration bsafe 4 m/s2

Table 3.2: MOBIL parameters

3.2.2 Problem statement

3.2.2.1 State space definitions

Human drivers perceive the driving situation and make decisions using this information. It is

generally understood that human drivers uses information about relative maneuvers with respect to

the surrounding vehicles to make decisions. Under this principle, relative maneuver based states

are used in our learning algorithms to represent the state of the environment. Highway driving in a

multi-lane setting is illustrated in the figure below.

Figure 3.3: Relative maneuver based state definition

The relative maneuver based state space is a 15 dimensional space and includes the ego-vehicle’s

longitudinal and lateral speeds, its lateral position on the road and the relative speed and distance

to the surrounding vehicles.

85

s = [vx, xy, do,4xrel,F ,4vrel,F ,4xrel,R,4vrel,R,4xrel,FL,4vrel,FL,4xrel,FR,4vrel,FR,

4xrel,RL,4vrel,RL,4xrel,RR,4vrel,RR] (3.23)

Elements Descriptions
vx ego-vehicle’s longitudinal speed
vy ego-vehicle’s lateral speed
do ego-vehicle’s distance to lane center
4xrel,F relative distance to front vehicle
4vrel,F relative speed to front vehicle
4xrel,R relative distance to rear vehicle
4vrel,R relative speed to rear vehicle
4xrel,FL relative distance to front left vehicle
4vrel,FL relative speed to front left vehicle
4xrel,FR relative distance to front right vehicle
4vrel,FR relative speed to front right vehicle
4xrel,RL relative distance to rear left vehicle
4vrel,RL relative speed to rear left vehicle
4xrel,RR relative distance to rear right vehicle
4vrel,RR relative speed to rear right vehicle

Table 3.3: Relative maneuver based state definition

In addition, it can be interpreted that the human driver uses the surrounding gap information to

make a decision. Thus, another state definition based on surrounding inter-vehicular gaps is also

considered as an alternative. Figure 3.4 shows the gap based state definition in highway driving

with multiple lanes.

The surrounding gap based state space comprises 17 elements (i.e., forms a 17 dimensional

space) and includes the ego vehicle’s longitudinal and lateral velocities, its lateral position on the

road, the length of the surrounding gaps, the time rate of change of the surrounding gaps and

distances to these gaps.

86

Figure 3.4: Gap based state definition

s = [vx, vy, do, GapF , ˙GapF , GapFL, ˙GapFL, distanceFL,

GapFR, ˙GapFR, distanceFR, GapRL, ˙GapRL, distanceRL,

GapRR, ˙GapRR, distanceRR,] (3.24)

In an RL problem, the state space has to be defined carefully to reflect the real situation but

it is very hard to define the state space appropriately. Previously defined state space definitions

(relative maneuver based and surrounding gap based definitions) are designed manually as feasible

ways that reflect the real driving situation on highways. Convolutional neural networks (CNN) are

capable of extracting features (states) from raw data which can be formulated in image-like format.

Therefore, an occupancy grid based state space is also defined so as to facilitate the application of

CNN. The occupancy grid based definition is illustrated below where its format is similar to the

three channel image data.

In the structure of CNN, actual features (states) are extracted in the convolutional layers and

then the extracted features are fed into the final fully connected layers.

87

Elements Descriptions
vx ego-vehicle’s longitudinal speed
vy ego-vehicle’s lateral speed
do ego-vehicle’s distance to lane center
GapF front gap

˙GapF rate of front gap
GapFL front left gap

˙GapFL rate of front left gap
distanceFL distance to front right gap
GapFR front right gap

˙GapFR rate of front right gap
distanceFR distance to front right gap
GapRL rear left gap

˙GapRL rate of rear left gap
distanceRL distance to rear left gap
GapRR rear right gap

˙GapRR rate of rear right gap
distanceRR distance to rear right gap

Table 3.4: Gap based state definition

3.2.2.2 Action space definition

Self-driving systems have to be capable of several driving tasks. Therefore, a hierarchical

architecture is widely used for self-driving. The self-driving system generally consists of four

modules, i.e. sensing , perception, planning and control modules. The sensing module as the

name implies, senses the environment using several sensors installed on the vehicle while the

perception module processes the information obtained from sensed data and produces physically

meaningful information. The planning module includes a decision making sub-module and a path

planning sub-module. The decision making sub-module produces the behavioral decisions using

information from the perception module while the path planner generates a target trajectory to be

followed. The control module controls the vehicle to follow the trajectory generated by the path

planning module. Under the hierarchical architecture of self-driving, the complicated self-driving

tasks can be handled efficiently, hence a hierarchical architecture is widely used. In another type

of architecture, termed end-to-end learning for self-driving, raw data from sensors are fed into a

88

Figure 3.5: Occupied grid based state definition

deep neural networks and the final control outputs are directly produced by the network. In this

architecture, control stability or robustness cannot be guaranteed. Therefore, the hierarchical ar-

chitecture is more appropriate for self-driving, since driving tasks are decomposed and the control

module can be designed to guarantee system stability (albeit within some limits) while also offer-

ing some level of interpretability. The behavioral decision making is focused on in this research

where the action space constitutes the high-level behavioral decision domain. In other words, the

action space is defined to include 5 elements as described below.

• keep lane

• left lane change

• right lane change

• acceleration (2m/s2)

• deceleration (−2m/s2)

89

3.2.2.3 Reward function definition

The definition of the reward function is critical for learning performance. If the reward function

is not defined appropriately, it is very hard to learn the so-called value function. Regarding the

driving problem, generally speaking higher speeds are preferred but collision must be avoided.

Therefore, the reward function is defined to encourage an agent to drive with high speed without

a collision. The reward function consists of three parts, speed reward, action reward and distance

reward, as described follows.

• speed reward Rs: ws
(vx − vmin)

(vmax − vmin)

• acceleration reward Ra: waax

• distance reward Rd: wdfd(x)

The fd(x) is a reward function dependent on the distance to the leading vehicle and it is defined

below, where x is the distance to the front vehicle; a and b are user-defined parameters.

fd(x) = − exp(−a ∗ (x− b)) (3.25)

Figure 3.6: Distance reward function

90

The final rewards are determined as the summation of the aforementioned three sub-rewards.

R = Rs +Ra +Rd (3.26)

By this reward definition, a higher reward is obtained for higher speeds and the agent can get an

additional reward for an acceleration action. Also, the agent gets a negative reward (or penalty)

based on its proximity to the front vehicle. Therefore, it is prevented from driving too close to the

front vehicle.

3.2.3 Learning results

3.2.3.1 Driving scenario

Simulation is performed in highway driving on three lanes road. One stopped vehicle is placed

in front of the ego-vehicle’s initial position. The other vehicles are operated based on IDM and

MOBIL model. The vehicles’ position, lane and speed are randomly chosen and the speed range

is defined to be between 20m/s and 30m/s.

Figure 3.7: Driving scenario

3.2.3.2 Neural networks structures

Several variant algorithms of DQN are applied to this problem. For relative maneuver based

and gap based state definitions discussed previously, a fully connected neural network with 2 hid-

den layers is used while a convolutional neural network with 3 convolutional layers is used to

extract features from the occupied grid and then fully connected networks with 2 hidden layers is

91

placed after the convolutional layers. The neural network structure used in each learning algorithm

is summarized in the table below.

Algorithms Relative maneuver Gap Occupied grid
(Neural Networks) (Neural Networks) (Convolutional Neural Networks)

DQN Input: 15 Input: 15 Input 3X24X88
Hidden: Hidden: Hidden:
- fully connected: 256 - fully connected: 256 - convolutional : [3,32,2,1,1]
- fully connected: 256 - fully connected: 256 - maxpooling : [2,2,0]
Output: 5 Output: 5 - convolutional : [3,32,2,1,1]

- maxpooling : [2,2,0]
- convolutional : [3,32,2,1,1]
- maxpooling : [2,2,0]
- fully connected: 256
- fully connected: 256
Output: 5

Double DQN ↑ ↑ ↑
Dueling DQN ↑ ↑ ↑
DQN with PER ↑ ↑ ↑
DQN with ↑ ↑ ↑
Noisy Net

Table 3.5: Neural networks structures

92

3.2.3.3 Learning results

Learning curves are compared with respect to several algorithms applied in this problem. Fig-

ure 3.8 shows the comparison results for several DQN algorithms with a relative maneuver based

state definition. There is no significant difference and the algorithms show similar levels of per-

formance. Also, learning curves are compared with respect to three different state definitions –

relative maneuver, gap and occupied grid. The comparison results with respect to state definitions

are shown in Figure 3.9. It is found that the three definitions of the state space show similar perfor-

mance. Relative maneuver and gap based states enable manually defined features while learning

results show these state space definitions appropriately capture the driving situation. Features are

extracted automatically by a convolutional neural network from the occupied grids and it is under-

stood that the extracted features show similar level of performance to manually defined features in

relative maneuver and surrounding gap based state space formulations.

Figure 3.8: Learning curves - comparison w.r.t algorithms

93

Figure 3.9: Learning curves - comparison w.r.t state definitions

3.3 Comparison studies with other decision making models

In this subsection, comparison studies are addressed to verify performance of designed RL

based decision model. Three types of other decision models are also designed and taken into ac-

count in this study to compare performances with the designed RL based decision model. Firstly,

conventional human driver simulation models, which are Intelligent Driver Model (IDM) for lon-

gitudinal behavior and Minimizing Overall Braking Induced by Lane Changes (MOBIL) model

for lateral behavior, are developed. A rule-based decision model, which is a still the mainstay of

industrial practice, is constructed for comparison purpose. Finally, a data-driven decision model

using real-world dataset is designed based on recurrent neural networks (RNNs) and particle swarm

optimization (PSO).

3.3.1 Human driver model

Intelligent Driver Model (IDM) is a conventional car-following model commonly used for

traffic simulation [72]. In other words, IDM is used for longitudinal behavior model of human

94

driver in traffic simulation. Minimizing Overall Braking Induced by Lane Changes (MOBIL)

model is a conventional human driver model for lane change considering the benefit with respect

to longitudinal acceleration after a lane change [73]. IDM is specified in Equation (3.21) and Table

3.1 and MOBIL is illustrated in Equation (3.22) and Table 3.2 in the previous section. In this

comparison studies, IDM and MOBIL models are used as conventional human driver simulation

models for both of longitudinal and lateral behaviors.

3.3.2 Rule-based decision model

In regards to the rule-based model, a finite state machine (FSM) based model is designed.

Rule-based decision models are highly dependent on specific rules employed in the model. Con-

sequently, the performance of the rule-based model can vary according to the internal rules. In this

study, a rule based model is designed under an FSM framework with transition conditions consid-

ering information about driving situations, such as collision probability and lane change feasibility.

Because rule-based models require a very dedicate job to define the rules in consideration of all

expected situations, it is very hard to design a standard rule-based decision model. Therefore, a

rule-based model is designed for comparison purposes considering highway driving situation and

is used as a representative rule-based model in this comparison studies. In total five states are

considered including "follow desired speed", "follow leading vehicle", "left lane change", "abort

left lane change", "right lane change" and "abort right lane change", while transition conditions

are defined in consideration of collision probability, lane change feasibility and lane change status.

Figure 3.10 below show the designed rule-based model using an FSM.

3.3.3 Data-driven decision model

In this study, data-driven decision model is also designed using real-world highway driving

datasets. Next Generation SIMulation (NGSIM) dataset which is commonly used for studies on

highway driving are used [68]. NGSIM data are processed to extract relative maneuver information

with respect to surrounding vehicles and then recurrent neural networks (RNNs) based models

are trained using the processed data to produce lane change decision. For longitudinal behavior,

95

Figure 3.10: Rule-based model by FSM

parameters of IDM are calibrated by particle swarm optimization (PSO) using NGSIM. RNN based

lane change decision model and IDM with calibrated parameters are used as data-driven decision

model.

3.3.3.1 NGSIM dataset

The NGSIM dataset has been a widely used public dataset for research on driver models [74]

[75] [76] [77] [78]. This dataset was collected by the Federal Highway Administration of the

U.S. Department of Transportation from 2003 to 2005 and consists of four different sub-datasets,

southbound US-101 and Lankershim Boulevard in Los Angeles, California, eastbound I-80 in

Emeryville, California and Peachtree Street in Atlanta, Georgia. All sub-datasets in NGSIM are

released to the public at the NGSIM website [68]. Among these four sub-datasets, I-80 and US-

101 datasets were collected on highways while the others have urban scenes. In this paper, only

the I-80 and US-101 datasets are used to focus on highway driving. In I-80, total 5648 vehicle

trajectories were collected on about a 500m section of the road with six lanes and are divided into

96

three 15 minutes intervals: 4:00 pm to 4:15 pm, 5:00 pm to 5:15 pm, and 5:15 pm to 5:30 pm. In

total 6101 vehicle trajectories were recorded on about 640m section of the road with six lanes on

US-101 and are segmented into three 15 minutes intervals: 7:50 am to 8:05 am, 8:05 am to 8:20

am, and 8:20 am to 8:35 am. Figure 3.11 shows the overview of study areas on I-80 and US-101

datasets [68]. The data NGSIM dataset was collected by 0.1 second sampling interval.

(a) I-80 dataset (b) HS-101 dataset

Figure 3.11: Overview of I-80 and US-101 datasets in NGSIM 6

3.3.3.2 Lane change decision model

Recurrent neural networks (RNNs) are applied for lane change decision model using processed

data from NGSIM dataset. Recurrent neural networks (RNNs) are a class of neural networks and

capable of processing time-series data and other sequential data. Basic architecture of RNNs is

shown in Figure 3.12. The key idea behind RNNs is the self-loop which allow RNNs to have

internal hidden state.

But basic RNNs suffer from vanishing gradient and computational explosion problems as well

as difficulty with long-term dependencies. Long Short-Term Memory (LSTM) was introduced to

solve the problems in the basic RNNs [79]. LSTM networks have three gates, which are input,

6source: “Next Generation Simulation” by Department of Transportation, Available at
www.http://ngsim.fhwa.dot.gov

97

Figure 3.12: Recurrent neural network architecture

output and forget gates, and can regulate the flow of information using these gates. Therefore,

LSTM networks have an ability of selectively read, write and forget information. A Gated Recur-

rent Unit (GRU) network is a simplified version of LSTM and has two gates, update and reset. It

has been reported that GRU networks are simpler in structure but they show similar performance

as LSTM networks [80]. In Figure 3.13a and 3.13b, the internal structures of LSTM and GRU

cells are shown respectively.

(a) LSTM
(b) GRU

Figure 3.13: Internal structure of LSTM/GRU cells

The original NGSIM dataset does not include exact information about lane change start execu-

tion time, which needs to be obtained from existing information in the original dataset. The dataset

has lane information which lets us know in which lane a vehicle is being driven. Lane information

is changed at the lane crossing time. Therefore, lane change execution start time and lane change

98

execution end time can be obtained in accordance with lateral vehicle movements. Lateral mov-

ing distance can be calculated as the integral of the vehicle lateral speed. Therefore, lane change

execution start time can be obtained as

tlc,start = arg max
t∗

∫ tlc

t∗

Vlat dt > 1.5 (3.27)

where, tlc,start is the lane change execution start time, Vlat is the lateral vehicle speed, and tlc is

the lane crossing time included in the original dataset. In (3.27), the right-hand side term, 1.5, is

a threshold for lateral moving distance (meter) and it is defined to be slightly smaller than the half

of a lane width. Lane width is approximately from 3.6m to 3.8m in the dataset. Similarly, the lane

change execution end time, tlc,end, is obtained as shown in (3.28)

tlc,end = arg min
t∗

∫ t∗

tlc

Vlat dt > 1.5 (3.28)

Figure 3.14 shows one example of a lane change status which is obtained by the aforementioned

method.

Figure 3.14: Produced lane change status information

99

Additionally, vehicle data including lane changes more than two are excluded, because the tra-

jectories have a high possibility to include lane change maneuver which is required when a vehicle

enters the road through an expressway ramp. Also, vehicle trajectories are divided into several

segments considering six surrounding vehicles in order that one segment has same surrounding

vehicles. The surrounding vehicles are front, rear, front left, rear left, front right and rear right

vehicles, because information about relative maneuvers for the six surrounding vehicles can be

effective to make a decision for lane change. Consequently, data used to train models are extracted

in consideration of lane change status and segments information as illustrated in Figure 3.15.

Figure 3.15: Data extraction

In other words, lane keeping data is selected as the data segment before the last segment before

lane change execution start time, and lane change data is selected as the last segment before lane

change execution start time. Finally, in accordance with maneuvers, the extracted data are labeled

by three classes shown below. While most previous works in [74] [75] [76] [77] [78] only consider

two classes (lane keeping and lane change) and did not consider lane change direction, in this work

three classes including lane change direction are considered which is considered realistic.

• lane keeping

• left lane change

• right lane change

100

Also, relative maneuver information with respect to six neighboring vehicles is extracted as

feature information to be used in training and is illustrated in Figure 3.16.

Figure 3.16: Relative distance and speed based feature definition

frel = (vx, vy, dy,∆vrel,∆xrel) (3.29)

where, ∆vrel = {∆vrel,i|i = {front, rear, front left,

rear left, front right, rear right}}

∆xrel = {∆xrel,i|i = {front, rear, front left,

rear left, front right, rear right}}

where, vx is the longitudinal speed, vy is lateral speed, dy is a distance to lane center, ∆vrel,i and

∆xrel,i are relative speed and distance with respect to surrounding vehicles respectively.

In this study, LSTM and GRU type of recurrent neural network, and their combined structure

with SVM are used to design the lane change decision-making model. Several previous researchers

have been trying to introduce SVM in a neural network architecture [81][82]. In [82], softmax in

the final output layer of a GRU model is replaced with linear SVM, and this idea is adopted in this

research. By introducing the SVM in the final output layer, the combined model use the SVM loss

instead of cross entropy loss. In [82], L2 type of SVM loss is used rather than soft margin SVM,

101

because soft margin SVM is not differentiable. L2 type of SVM loss is expressed by

min
w,b

1

2
‖w‖2 + C

N∑
i

max(0, 1− yi(wTx + b))2 (3.30)

Figure 3.17 shows the combined structure of RNNs and SVM.

Figure 3.17: RNN models structure

In Table 3.6, four different structures of designed classifiers are summarized. Combined struc-

ture of RNNs and SVM has multilayer recurrent layers (LSTM or GRU), linear layer and linear

SVM successively. The number of features in the hidden state of LSTM/GRU is defined as 512

and the number of hidden layers in LSTM/GRU is chosen as 3.

In addition, a conventional SVM classifier is designed and compared as the baseline scheme.

Figure 3.18 shows learning curves of four different types of RNNs based models, and validation

accuracies of each model are compared in Table 3.7. From the results, it is found that RNNs based

models have better performance than conventional SVM model.

102

Model Structure RNNs Parameters
LSTM Multilayer LSTM + Linear layer hidden size: 512

+ Softmax number of layers: 3
sequence length: 10

LSTM+SVM Multilayer LSTM, + Linear layer hidden size: 512
+ Linear SVM number of layers: 3

sequence length: 10
GRU Multilayer GRU + Linear layer hidden size: 512

+ Softmax number of layers: 3
sequence length: 10

GRU+SVM Multilayer GRU, + Linear layer hidden size: 512,
+ Linear SVM number of layers: 3

sequence length: 10

Table 3.6: RNNs Model Structure

Figure 3.18: Leaning curve - loss vs epoch (NGSIM)

Model Test Accuracy
SVM 0.8549
LSTM+softmax 0.9836
LSTM+SVM 0.9719
GRU+softmax 0.9789
GRU+SVM 0.9844

Table 3.7: Comparison of validation accuracy

103

3.3.3.3 Longitudinal behavior model

IDM is a commonly used human driver’s longitudinal behavior model for traffic simulation.

IDM has several parameters as specified in Table 3.1. But the nominal values of IDM parameters

in Table 3.1 don’t represent real drivers behaviors. Therefore, IDM parameters are calibrated using

NGSIM data by particle swarm optimization (PSO) which is a metaheuristic algorithm inspired

by the concept of swarm (group) intelligence [83]. PSO is a powerful optimization tool to solve

complicated mathematical problems. In PSO, a group of particles are considered, and each particle

is dealt as a candidate solution and it is characterized by a position vector and velocity vector. The

particles are updated as candidate solutions during optimization process to minimize or maximize

a cost function which is also called as fitness function. Each particle keeps its best parameter

(position vector) during optimization and the global best parameters are also saved among the

entire population of particles. Basic PSO algorithm is specified in Algorithm 9.

The history of global cost is shown in Figure 3.19, and calibration results of IDM parameters

are given in Figure 3.20. The calibrated parameters are distributed as illustrated in in Figure 3.20

and representative values are chosen as Table 3.8 for performance comparison with other decision

models.

parameter nominal value
desired speed v0 27 m/s
desired time gap T 0.5 s
jam distance s0 7.0 m
maximum acceleration a 1.0 m/s2

desired deceleration b 6.5 m/s2

Table 3.8: Calibrated IDM parameters

104

Algorithm 9 PSO algorithm [84]
Initialize N numbers of particles

- Randomize position vector xi within parameter boundaries
- Set velocity vector vi as zeros for particle i
- Set the best position vector for each particle as pBesti = xi
- Set global minimum cost, Jbest =∞

Minimize the cost function, J = f(x)
for iteration= 1,M do

for particle i = 1, N do
Compute current cost Ji = f(xi) of particle i
Save the best parameters of particle i as pBesti

if Ji < f(pBesti), then pBesti = xi
Save global best parameters gBest and global minimum cost as Jbest

if f(pBesti) < Jbest, then gBest = pBesti, Jbest = f(gBest)
end for
for particle i = 1, N do

Update particle i’s position and velocity vectors
xi ← xi + vi
vi ← wvi + c1rand(0,1)(pBesti − xi) + c2rand(0,1)(gBest− xi)

end for
end for

3.3.4 Performance comparison

In this comparison studies, four different types of decision models are compared. For each

decision model, 1000 simulations were conducted in highway driving situations with randomly

generated vehicles to setup realistic highway driving environments. In driving situations, higher

speed is preferred and a collision should be prevented. Therefore, performance of decision models

can be evaluated by mean speed and moving distance of ego-vehicle per simulation. Mean speed

can be regarded as a criterion for evaluating a performance with respect to higher speed. On

the other hands, moving distance can be considered as a criterion for performance in terms of

collision, because a simulation without a collision results in longer moving distance of the ego-

vehicle. Therefore, mean speeds and moving distances were collected during simulations for the

105

Figure 3.19: History of cost during optimization

Figure 3.20: Distribution of calibrated IDM parameters

106

purpose of performance comparison. The comparison results are shown in Figure 3.21 for mean

speed and in Figure 3.22 for moving distance. As shown in Figure 3.21 and 3.22, RL based decision

model has the best performance. Namely, RL based model shows higher speed of ego vehicle than

other models and moving distance is also the longest among the considered four types of decision

models. The other models show similar level of performance and it is observed that rule-based

decision model is slightly better than IDM and MOBIL based human driver behavior model and

data-driven model.

Figure 3.21: Performance comparison - mean speed

107

Figure 3.22: Performance comparison - moving distance

3.4 Conclusions

In this research, RL based decision making for self-driving is studied. Firstly, RL based deci-

sion making models are designed for highway driving problem. The highway driving environment

is defined as an MDP framework for RL problem. The three different types of state spaces are

defined such as relative maneuver based, surrounding gap based and occupied grid state space

definition. Also, reward functions consisting of three sub-rewards and high-level action space

with 5 elements are defined. Several DQN based algorithms are applied for the problem. The

RL algorithms successfully trains the agents and produces decision making model based on neu-

ral networks. The three different state spaces show the similar performance and it means defined

state spaces represent real driving situations appropriately. Comparison studies with other decision

models, such as traditional human driver behavior model, rule based model and data-driven model

using real-world dataset, presents RL based model has better performance than the other models.

108

4. APPLICATION OF REINFORCEMENT LEARNING BASED DECISION MODEL WITH

SHARED CONTROL

In this section, RL based decision model is applied with shared control in the highway driving

environment. In Sections, 3 and 2, design of low level vehicle controller based on game theoretic

MPC and development of decision model based on RL were the main purposes, but a combinato-

rial study of game theoretic MPC based shared controller and RL based decision model is focused

in this section. That is, RL based decision model is used for the machine’s decision model and the

game theoretic MPC based shared controller is used as a low level vehicle controller in this study.

To emulate human driver’s decisions, human driver models (IDM/MOBIL) are used as a human

driver’s decision model. Accordingly, a more realistic simulation configuration is achieved in this

study in consideration of human driver’ behaviors by human driver models and machine’s behav-

ioral decision model by well-developed RL based decision model. Figure 4.1 shows a hierarchical

structure which is considered in this study. Behavioral decision model, path planner and low level

controller are composed under a hierarchical structure. Data acquisition and processing systems

are neglected in this research and it is assumed that high-level driving information is given. Path

planner generates target vehicle trajectory corresponding to a behavioral decision from the decision

model. Path planning is beyond the scope of this research. Several path planning methods have

been proposed such as spline curve based methods [85][86][87] or polynominal spiral based meth-

ods [88][89]. As such the boundary spline based planning method in [87] is used in this research.

In this study, it is focused on application of RL based decision model with game theoretic shared

controller and evaluation of its functionality in terms of decision and control authority in traffic

situations. Therefore, kinematic vehicle model in (3.20) is used with the purpose of computation

efficiency during simulations. Game theoretic MPC based controller in Section 2, is applied as

low-level vehicle controllers in consideration of human driver and machine as two game players.

109

Figure 4.1: Simulation setup with Hierarchical architecture

4.1 Simulation studies

Several simulation scenarios are considered. Firstly, lane change scenario to avoid a collision

with a front stopped vehicle is investigated. In this scenario, four simulations were done with

different settings of simulation regarding game type and human driver’s intention. In addition,

more complicated traffic driving scenarios were conducted with randomly generated other vehicles

in highway driving environment with different simulation setups.

4.1.1 Lane change scenario with a front stopped vehicle

In this scenario, four simulations were conducted with a front stopped vehicle with the assump-

tion that the human driver does not recognize the stopped vehicle. In this scenario, the lane change

action is expected to avoid the front vehicle.

4.1.1.1 Under cooperative game framework

The first simulation was conducted under a cooperative game framework. This means that the

human driver cooperates with the machine even though he does not make the same decision as the

machine. After the lane change is successfully completed according to the machine’s decision, the

human driver has the intention to control the vehicle and therefore the machine returns the control

authority to the human. Figures 4.2 and 4.3 below show the simulation results.

110

(a) Vehicle position (x-y) (b) Yaw

Figure 4.2: Simulation results - lane change with a stopped vehicle under cooperative game

(a) Vehicle velocity (b) Control authority

Figure 4.3: Simulation results - lane change with a stopped vehicle under cooperative game

As shown in Figures 4.2 and 4.3, the human driver reduces his/her control authority to the fol-

low machine’s decision, even though the vehicle maneuver does not follow his/her demand. After

the lane change is successfully completed, the human driver increases his/her control authority

again to control the vehicle by his/her own decision, and the machine reduces its control authority

to allow the human driver to control the vehicle.

111

In addition, another simulation was conducted with the assumption that the human driver con-

tinues to follow the machine after the lane change. In this case, it is expected that the machine

does not reduce its control authority even though the lane change is completed. Figures 4.4 and

4.5 below show the simulation results.

(a) Vehicle position (x-y) (b) Yaw

Figure 4.4: Simulation results - lane change with a stopped vehicle under cooperative game

(a) Vehicle velocity (b) Control authority

Figure 4.5: Simulation results - lane change with a stopped vehicle under cooperative game

112

As shown in Figures 4.4 and 4.5, the human driver reduces his/her control authority to follow

the machine’s decision and keeps following the machine’ decision after the lane change. On the

other hands, the machine increases its control authority to avoid a collision and maintains its control

authority in order to continue to control the vehicle even after the lane change is completed.

4.1.1.2 Behavior under the game transition framework

Same simulation scenario was considered with game transition. Firstly, the human driver and

the machine play their game in cooperative mode but the human driver does not cooperate with a

machine when his/her decision is different from the machine’s decision. Therefore, it is expected

that the game type must be changed to non-cooperative and eventually the machine needs to take all

control authority to avoid a dangerous situation. Figure 4.6, 4.7 and 4.8 below show the simulation

results.

From Figure 4.8, it is found that the game type is changed according to the driving situation and

finally the machine takes all control authority. It is assumed that the human driver wants to keep

driving in the current lane after the lane change. After the lane change is completed, the human

driver increases his/her control authority again to control the vehicle by himself/herself, and the

machine reduces its control authority.

(a) Vehicle position (x-y) (b) Yaw

Figure 4.6: Simulation results - lane change with a stopped vehicle under game transition

113

(a) Vehicle velocity (b) Control authority

Figure 4.7: Simulation results - lane change with a stopped vehicle under game transition

In addition, another simulation was conducted but it is presumed that the human driver wants

to return to his/her original target lane after the lane change. Figures 4.9, 4.10 and 4.11 below

show the simulation results. The simulation results are the same as the previous results but the

ego-vehicle returns to the human driver’s original target lane after the lane change is completed to

avoid the front vehicle.

(a) Vehicle velocity (b) Control authority

Figure 4.10: Simulation results - lane change with a stopped vehicle under game transition

114

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.8: Simulation results - lane change with a stopped vehicle under game transition

(a) Vehicle position (x-y) (b) Yaw

Figure 4.9: Simulation results - lane change with a stopped vehicle under game transition

115

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.11: Simulation results - lane change with a stopped vehicle under game transition

4.1.2 Traffic scenarios in highway driving

In these scenarios, four simulations were conducted in highway driving with randomly gener-

ated other vehicles. In the first two simulations, it is assumed that the human driver is careless and

cannot properly deal with the expected driving situation. Therefore, it is required that the machine

handle the diving situation to avoid a dangerous situation. On the other hand, in the other two

simulations, it is assumed that the human driver acts incorrectly to lead to a collision with other

vehicles. The machine needs to adjust its control authority depending on the driving situation and

the driver’s behavior, and it is examined in these simulations that the control authority is properly

shared according to the diving situation to prevent falling into a dangerous condition.

4.1.2.1 Traffic scenarios with a careless driver

Two simulations were conducted with a careless driver. In these simulations, it is presumed that

the human driver of the ego-vehicle does not recognize certain situations so as to make a suitable

decision. In the first simulation, a lane change is required for the ego-vehicle and the human driver

and the machine make the decision for lane change, but a front vehicle also makes a decision to

change lanes to the same lane as the ego-vehicle. In this situation, a lane change to the previous

116

lane is required, but the human driver does not deal with this situation well and does not control the

vehicle to return to the previous lane. Therefore, it is required that the machine should control the

vehicle to handle this situation in order to avoid a dangerous condition. The simulation scenario is

briefly illustrated in Figure 4.12.

Figure 4.12: Traffic scenario 1 with a careless driver

The simulation starts under a cooperative game and the human driver follows his/her own

decision when there is a conflict between the human’s and the machine’s decisions. Figures 4.13,

4.14 and 4.15 show the simulation results.

(a) Vehicle position (x-y) (b) Yaw

Figure 4.13: Simulation results - Traffic scenario 1 with a careless driver

117

(a) Vehicle velocity (b) Control authority

Figure 4.14: Simulation results - Traffic scenario 1 with a careless driver

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.15: Simulation results - Traffic scenario 1 with a careless driver

118

From Figures 4.13, 4.14 and 4.15, it is observed that the machine increases its control authority

after the first lane change and the game is changed from cooperative to non-cooperative, because

the human driver also keeps its control authority to control the vehicle by himself. Due to the

conflict between the human and the machine, the machine removes the human driver’s action and

takes all control authority when the collision risk become high. After the ego-vehicle returns to

the previous lane and the driving situation is safe, the game is transitioned to the cooperative mode

and the machine reduces its control action, as the human driver increases his/her control authority.

In addition, another simulation was performed in the condition that a front left vehicle suddenly

gets into the lane of the ego vehicle to block the ego-vehicle. In this situation, lane change is desired

but it is assumed that the human driver does not recognize this situation. Therefore, the machine

should control the vehicle to deal with this situation by lane change instead of the human driver.

The simulation scenario is illustrated in Figure 4.16 and the simulation results are shown in Figures

4.17, 4.18 and 4.19.

Figure 4.16: Traffic scenario 2 with a careless driver

From Figures 4.17, 4.18 and 4.19, it is found that the machine makes a decision to change

lanes after the front left vehicle suddenly gets into the same lane and blocks the ego-vehicle.

Because the human driver’s action is to keep driving in the current lane, their game is changed from

cooperative to non-cooperative , due to conflict between two players. Their conflict continues in a

non-cooperative game and the machine eventually has to fully control the vehicle by itself. After

successfully changing lanes to left, the game is returned to the cooperative mode and the machine

lowers its control authority as the human driver starts to control the vehicle by increasing his/her

119

(a) Vehicle position (x-y) (b) Yaw

Figure 4.17: Simulation results - Traffic scenario 2 with a careless driver

(a) Vehicle velocity (b) Control authority

Figure 4.18: Simulation results - Traffic scenario 2 with a careless driver

120

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.19: Simulation results - Traffic scenario 2 with a careless driver

control authority.

4.1.2.2 Traffic scenarios with incorrect actions of the driver

In real driving situations, the human driver may actively take an action but his/her action maybe

incorrect. As a result, the human driver’s incorrect action can lead to a dangerous driving condition.

These traffic scenarios are aimed as investigating the aforementioned situation caused by incorrect

driver’s action. Two simulations were conducted with an incorrect action of the human driver.

In the first simulation, the human driver intends to make a lane change to the right but there

exists a front vehicle in the right lane. Accordingly, the human driver’s undesired action leads to

a rapid motion towards the front right vehicle. Hence, the machine has to take control authority

to handle the situation. The simulation scenario is illustrated in Figure 4.20 and simulation results

are given in Figures 4.21, 4.22 and 4.23.

121

Figure 4.20: Traffic scenario 1 with incorrect actions of a driver

(a) Vehicle position (x-y) (b) Yaw

Figure 4.21: Simulation results - Traffic scenario 1 with incorrect actions of a driver

(a) Vehicle velocity (b) Control authority

Figure 4.22: Simulation results - Traffic scenario 1 with incorrect actions of a driver

122

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.23: Simulation results - Traffic scenario 1 with incorrect actions of a driver

As shown in Figure 4.21, 4.22 and 4.23, the machine prevents a lane change by the human

driver toward the front right vehicle through increasing its control authority. The game is changed

to non-cooperative mode during the lane change and then finally transitioned to fully autonomous

driving mode to avoid a collision with the front right vehicle. After the collision risk disappears,

the game is return to cooperative mode and the human driver regains all control authority.

In the second simulation, undesired human driver’s longitudinal action is considered. The

human driver undesirably produces full acceleration as a longitudinal action, even though a front

vehicle exists in close proximity. Therefore, the machine should take proper action to deal with

this situation to be safe. The simulation scenario is illustrated in Figure 4.24 and Figure 4.25, 4.26

and 4.27 show simulation results.

Figure 4.24: Traffic scenario 2 with incorrect actions of a driver

123

(a) Vehicle position (x-y) (b) Yaw

Figure 4.25: Simulation results - Traffic scenario 2 with incorrect actions of a driver

(a) Vehicle velocity (b) Control authority

Figure 4.26: Simulation results - Traffic scenario 2 with incorrect actions of a driver

In Figure 4.25, 4.26 and 4.27, it is found that the machine makes a decision for lane change

and comes into conflict with the human driver. Due to their conflict, the game is transitioned to

non-cooperative mode and finally the machine fully controls the vehicle to overcome a situation

with high collision risk. After that, the ego-vehicle returns to a safe driving situation and the game

124

(a) Game type (3: cooperative, 5: non-cooperative,
4: fully autonomous mode)

Figure 4.27: Simulation results - Traffic scenario 2 with incorrect actions of a driver

is changed to cooperative mode. Finally, the machine reduces its control actions, as the human

driver intends to control the vehicle by himself through increasing his control authority.

4.2 Conclusion

In this study, an RL based decision model is applied with game theoretic MPC based shared

controller. In a hierarchical structure, the RL based decision model, path planner and shared con-

troller is incorporated. Several simulations in lane change scenarios and traffic scenarios were

conducted to evaluate performance of the RL based decision model and the shared controller.

From the simulation results, it is observed that the ego-vehicle can avoid dangerous situations by

the machine’s action when the human driver produces incorrect actions causing dangerous situ-

ations or does not take a proper action. In other words, the machine is capable of changing its

control authority to cooperate or compete with the human driver as circumstances demand in order

to keep vehicle safe in safety-critical conditions and not to interrupt the human driver in the con-

dition that human driver’s decision does not correspond to the machine’s decision but condition is

not safety-critical.

125

5. SUMMARY AND CONCLUSIONS

In this research, reinforcement learning based decision making for self-driving and shared con-

trol human driver and machine are studied.

First of all, the game theoretic model predictive control (MPC) based shared controller is pro-

posed with four different types of games. To deal with the nonlinearity of the vehicle dynamics

including nonlinear tire characteristics, a successive linearization technique is applied to establish

a linearized system at an operating point. Also, the game transition model is designed based on a

finite state machine (FSM) framework, and a shared control strategy is proposed to adjust the con-

trol authority in consideration of collision risk and tracking error. The proposed shared controller

was evaluated in several simulation scenarios and it is shown that machine is able to properly

change its control authority to cooperate with the human driver in non-safety critical conditions

and to compete with a human driver in safety-critical conditions. In other words, machine takes

more control authority when the driving situation is dangerous but reduces its control authority in

condition without collision risk.

The second part of this research is a study on reinforcement learning (RL) based decision

making model. To train the learning agents, highway driving environments were established with

appropriate state space, action space and reward functions. Three different types of state spaces

are defined as relative maneuver based, surrounding gap based and occupancy grid based. The

action space is defined via five behavioral actions for highway driving, and the reward function

is defined to encourage the RL agents to have a high vehicle speed without a collision during the

driving. Deep Q Networks (DQN) based RL algorithms was applied to train the learning agents and

simulations were performance with the trained agents. The performance of the RL based decision

model is compared to other decision models which are conventional human driver model, rule-

based model and data-driven decision model. The comparison studies show the RL based decision

model has the best performance and the ego-vehicle is able to travel a longer distance with higher

vehicle speed.

126

Finally, the application of RL based decision models with shared control was investigated in the

highway driving environment. An RL based decision model, a path planner and a game theoretic

MPC based shared controller were integrated in a hierarchical structure, and simulations were

conducted in lane change scenario and traffic simulation scenarios. The simulation results shows

that the machine is capable of handling its control task according to the human driver’s action

in consideration of the vehicle driving conditions. Namely, the machine is able to cooperate or

not cooperate with the human driver by adjusting its control authority depending on the driving

situation. In dangerous situations, the machine takes all control authority to prevent a collision but

reduces its control action in non-dangerous situations to follow the human driver’s decision when

the human driver has a different decision in mind.

In conclusion, this research strives to contribute on understanding the interaction between the

human driver and the machine based on a game theoretic MPC framework and also tries to develop

a behavioral decision making models using the state-of-the-art reinforcement learning algorithms.

The proposed shared controller and RL based decision model were evaluated in several simulation

scenarios and their performance is verified by examining vehicle safety and performance.

5.1 Future works

In this research, highway driving were considered but other various driving situations need

to be considered as future works. Also, it was assumed that the human driver behaves like an

MPC based feedback controller in this study but other approaches for representing the real human

drivers’ characteristic need to be studied as future works.

Also, model uncertainty was not explicitly dealt with in this research although certain margins

of safety were considered. The model uncertainty can be a challenge of MPC based methods.

Implementation of improved safety margins with existing knowledge about the target system can

be one way to handle model uncertainty, or robust model predictive control (RMPC), which is a

branch of the research in MPC to deal explicitly with modeling uncertainty [90][91][92], can be

another approach to treat model uncertainty. These studies about model uncertainty are expected

as future works.

127

In this research, the nonlinearity of the model is considered by successive linearization. Simu-

lations were conducted including severe maneuvers, which can reflect nonlinear characteristics of

the system, such as lane change with high speed and full acceleration. But more systematic studies

need to be investigated in regard to model nonlinearity.

Moreover, the surrounding vehicles are considered as feature information to produce a behav-

ioral level of decision, or features are extracted using convolutional neural networks (CNNs) in

this research. But more systematic studies need to be taken into account as future works to under-

stand broader traffic situations in terms of upstream and downstream traffic in the decision-making

process.

Finally, the performance of RL based models varies depending on the purpose of learning,

and RL models are able to produce the optimal actions by learning under a given desired learning

environment setup. In this research, the learning environment was established by the purpose for

higher speed without a collision and learned RL models showed the expected performance with

respect to the purpose. But the learning purposes can vary according to the demanded objectives

to achieve by learning. In other words, driving efficiency in terms of vehicle speed can be more

desirable in some cases and driving comfort more significant in other cases. Therefore, the optimal

action can vary according to the demanded purpose and the decision model needs to be designed

according to the demanded purpose. Thus, studies considering other aspects of driving need to be

considered as future works.

128

REFERENCES

[1] M. Harris, “Google has spent over 1.1 billion dollars on

self-driving tech.” Available at https://spectrum.ieee.

org/cars-that-think/transportation/self-driving/

google-has-spent-over-11-billion-on-selfdriving-tech.

[2] D. Primack and K. Korosec, “Gm buying self-driving tech startup for more

than 1 billion dollars.” Available at https://fortune.com/2016/03/11/

gm-buying-self-driving-tech-startup-for-more-than-1-billion/.

[3] “Ford invests in argo ai, a new artificial intelligence company, in drive

for autonomous vehicle leadership.” Available at https://media.

ford.com/content/fordmedia/fna/us/en/news/2017/02/10/

ford-invests-in-argo-ai-new-artificial-intelligence-company.

html.

[4] W. H. Organization, “Global status report on road safety 2018: Summary,” tech. rep., World

Health Organization, 2018.

[5] “Automated vehicles for safety.” Available at https://www.nhtsa.gov/

technology-innovation/automated-vehicles-safety.

[6] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,

T. Hilden, G. Hoffmann, B. Huhnke, et al., “Junior: The stanford entry in the urban chal-

lenge,” Journal of field Robotics, vol. 25, no. 9, pp. 569–597, 2008.

[7] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,

T. Galatali, C. Geyer, et al., “Autonomous driving in urban environments: Boss and the urban

challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

129

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/google-has-spent-over-11-billion-on-selfdriving-tech
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/google-has-spent-over-11-billion-on-selfdriving-tech
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/google-has-spent-over-11-billion-on-selfdriving-tech
https://fortune.com/2016/03/11/gm-buying-self-driving-tech-startup-for-more-than-1-billion/
https://fortune.com/2016/03/11/gm-buying-self-driving-tech-startup-for-more-than-1-billion/
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2017/02/10/ford-invests-in-argo-ai-new-artificial-intelligence-company.html
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

[8] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong, A. Wicks,

T. Alberi, D. Anderson, et al., “Odin: Team victortango’s entry in the darpa urban challenge,”

Journal of field Robotics, vol. 25, no. 8, pp. 467–492, 2008.

[9] T. Gindele, D. Jagszent, B. Pitzer, and R. Dillmann, “Design of the planner of team an-

nieway’s autonomous vehicle used in the darpa urban challenge 2007,” in 2008 IEEE Intelli-

gent Vehicles Symposium, pp. 1131–1136, IEEE, 2008.

[10] M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge: autonomous vehicles

in city traffic, vol. 56. springer, 2009.

[11] F. W. Rauskolb, K. Berger, C. Lipski, M. Magnor, K. Cornelsen, J. Effertz, T. Form, F. Graefe,

S. Ohl, W. Schumacher, et al., “Caroline: An autonomously driving vehicle for urban envi-

ronments,” Journal of Field Robotics, vol. 25, no. 9, pp. 674–724, 2008.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[13] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic mdp-behavior planning for cars,”

in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC),

pp. 1537–1542, IEEE, 2011.

[14] S. Ulbrich and M. Maurer, “Probabilistic online pomdp decision making for lane changes in

fully automated driving,” in 16th International IEEE Conference on Intelligent Transporta-

tion Systems (ITSC 2013), pp. 2063–2067, IEEE, 2013.

[15] J. Wei, J. M. Dolan, J. M. Snider, and B. Litkouhi, “A point-based mdp for robust single-lane

autonomous driving behavior under uncertainties,” in 2011 IEEE International Conference

on Robotics and Automation, pp. 2586–2592, IEEE, 2011.

[16] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, and D. Rus, “Intention-aware

motion planning,” in Algorithmic foundations of robotics X, pp. 475–491, Springer, 2013.

[17] H. Kita, “A merging–giveway interaction model of cars in a merging section: a game theoretic

analysis,” Transportation Research Part A: Policy and Practice, vol. 33, no. 3-4, pp. 305–312,

1999.

130

[18] H. X. Liu, W. Xin, Z. Adam, and J. Ban, “A game theoretical approach for modelling merg-

ing and yielding behaviour at freeway on-ramp sections,” Transportation and traffic theory,

vol. 3, pp. 197–211, 2007.

[19] A. Talebpour, H. S. Mahmassani, and S. H. Hamdar, “Modeling lane-changing behavior in a

connected environment: A game theory approach,” Transportation Research Part C: Emerg-

ing Technologies, vol. 59, pp. 216–232, 2015.

[20] J. C. Harsanyi, “Games with incomplete information played by “bayesian” players, i–iii part

i. the basic model,” Management science, vol. 14, no. 3, pp. 159–182, 1967.

[21] P. Bajari, H. Hong, and S. P. Ryan, “Identification and estimation of a discrete game of

complete information,” Econometrica, vol. 78, no. 5, pp. 1529–1568, 2010.

[22] H. Yu, H. E. Tseng, and R. Langari, “A human-like game theory-based controller for au-

tomatic lane changing,” Transportation Research Part C: Emerging Technologies, vol. 88,

pp. 140–158, 2018.

[23] M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, and R. Happee, “Game theoretic

approach for predictive lane-changing and car-following control,” Transportation Research

Part C: Emerging Technologies, vol. 58, pp. 73–92, 2015.

[24] D. Katzourakis, J. C. de Winter, S. de Groot, and R. Happee, “Driving simulator parameteri-

zation using double-lane change steering metrics as recorded on five modern cars,” Simulation

Modelling Practice and Theory, vol. 26, pp. 96–112, 2012.

[25] J. H. Yoo and R. Langari, “A stackelberg game theoretic driver model for merging,” in Dy-

namic Systems and Control Conference, vol. 56130, p. V002T30A003, American Society of

Mechanical Engineers, 2013.

[26] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, “Game theoretic

modeling of driver and vehicle interactions for verification and validation of autonomous

vehicle control systems,” IEEE Transactions on control systems technology, vol. 26, no. 5,

pp. 1782–1797, 2017.

131

[27] F. Meng, J. Su, C. Liu, and W.-H. Chen, “Dynamic decision making in lane change: Game

theory with receding horizon,” in 2016 UKACC 11th International Conference on Control

(CONTROL), pp. 1–6, IEEE, 2016.

[28] S. Coskun, Q. Zhang, and R. Langari, “Receding horizon markov game autonomous driving

strategy,” in 2019 American Control Conference (ACC), pp. 1367–1374, IEEE, 2019.

[29] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating occluded

intersections with autonomous vehicles using deep reinforcement learning,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA), pp. 2034–2039, IEEE, 2018.

[30] P. Wang and C.-Y. Chan, “Formulation of deep reinforcement learning architecture toward

autonomous driving for on-ramp merge,” in 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC), pp. 1–6, IEEE, 2017.

[31] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning based approach

for automated lane change maneuvers,” in 2018 IEEE Intelligent Vehicles Symposium (IV),

pp. 1379–1384, IEEE, 2018.

[32] H. An and J.-i. Jung, “Decision-making system for lane change using deep reinforcement

learning in connected and automated driving,” Electronics, vol. 8, no. 5, p. 543, 2019.

[33] X. Li, X. Xu, and L. Zuo, “Reinforcement learning based overtaking decision-making for

highway autonomous driving,” in 2015 Sixth International Conference on Intelligent Control

and Information Processing (ICICIP), pp. 336–342, IEEE, 2015.

[34] X. Li, X. Qiu, J. Wang, and Y. Shen, “A deep reinforcement learning based approach for

autonomous overtaking,” in 2020 IEEE International Conference on Communications Work-

shops (ICC Workshops), pp. 1–5, IEEE, 2020.

[35] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end deep reinforcement learning

for lane keeping assist,” arXiv preprint arXiv:1612.04340, 2016.

[36] J. Zhang, H. Chen, S. Song, and F. Hu, “Reinforcement learning-based motion planning for

automatic parking system,” IEEE Access, vol. 8, pp. 154485–154501, 2020.

132

[37] P. Zhang, L. Xiong, Z. Yu, P. Fang, S. Yan, J. Yao, and Y. Zhou, “Reinforcement learning-

based end-to-end parking for automatic parking system,” Sensors, vol. 19, no. 18, p. 3996,

2019.

[38] R. Li, Y. Li, S. E. Li, E. Burdet, and B. Cheng, “Indirect shared control of highly au-

tomated vehicles for cooperative driving between driver and automation,” arXiv preprint

arXiv:1704.00866, 2017.

[39] C. Sentouh, S. Debernard, J.-C. Popieul, and F. Vanderhaegen, “Toward a shared lateral con-

trol between driver and steering assist controller,” IFAC Proceedings Volumes, vol. 43, no. 13,

pp. 404–409, 2010.

[40] A.-T. Nguyen, C. Sentouh, and J.-C. Popieul, “Driver-automation cooperative approach for

shared steering control under multiple system constraints: Design and experiments,” IEEE

Transactions on Industrial Electronics, vol. 64, no. 5, pp. 3819–3830, 2016.

[41] B. Soualmi, C. Sentouh, J.-C. Popieul, and S. Debernard, “Automation-driver cooperative

driving in presence of undetected obstacles,” Control engineering practice, vol. 24, pp. 106–

119, 2014.

[42] S. Inoue, T. Ozawa, H. Inoue, P. Raksincharoensak, and M. Nagai, “Cooperative lateral con-

trol between driver and adas by haptic shared control using steering torque assistance com-

bined with direct yaw moment control,” in 2016 IEEE 19th International Conference on

Intelligent Transportation Systems (ITSC), pp. 316–321, IEEE, 2016.

[43] C. Guo, C. Sentouh, J.-C. Popieul, and J.-B. Haué, “Mpc-based shared steering control for

automated driving systems,” in 2017 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pp. 129–134, IEEE, 2017.

[44] C. Guo, C. Sentouh, J.-C. Popieul, and J.-B. Haué, “Predictive shared steering control for

driver override in automated driving: A simulator study,” Transportation research part F:

traffic psychology and behaviour, vol. 61, pp. 326–336, 2019.

133

[45] E. D. Dickmanns, Dynamic vision for perception and control of motion. Springer Science &

Business Media, 2007.

[46] L. Saleh, P. Chevrel, F. Claveau, J.-F. Lafay, and F. Mars, “Shared steering control between

a driver and an automation: Stability in the presence of driver behavior uncertainty,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 974–983, 2013.

[47] Z. Ercan, A. Carvalho, M. Gokasan, and F. Borrelli, “Modeling, identification, and predic-

tive control of a driver steering assistance system,” IEEE Transactions on Human-Machine

Systems, vol. 47, no. 5, pp. 700–710, 2017.

[48] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using safe envelopes for

obstacle avoidance and vehicle stability,” IEEE Transactions on Intelligent Transportation

Systems, vol. 17, no. 2, pp. 441–451, 2015.

[49] K. Iwano, P. Raksincharoensak, and M. Nagai, “A study on shared control between the driver

and an active steering control system in emergency obstacle avoidance situations,” IFAC Pro-

ceedings Volumes, vol. 47, no. 3, pp. 6338–6343, 2014.

[50] R. Li, Y. Li, S. E. Li, E. Burdet, and B. Cheng, “Driver-automation indirect shared control of

highly automated vehicles with intention-aware authority transition,” in 2017 IEEE Intelligent

Vehicles Symposium (IV), pp. 26–32, IEEE, 2017.

[51] R. Li, S. Li, H. Gao, K. Li, B. Cheng, and D. Li, “Effects of human adaptation and trust on

shared control for driver-automation cooperative driving,” tech. rep., SAE Technical Paper,

2017.

[52] J. Jiang and A. Astolfi, “Shared-control for a rear-wheel drive car: Dynamic environments

and disturbance rejection,” IEEE Transactions on Human-Machine Systems, vol. 47, no. 5,

pp. 723–734, 2017.

[53] J. Jiang and A. Astolfi, “Shared-control for the kinematic model of a rear-wheel drive car,” in

2015 American Control Conference (ACC), pp. 1155–1160, IEEE, 2015.

134

[54] J. Jiang and A. Astolfi, “Shared-control for the lateral motion of vehicles,” in 2018 European

Control Conference (ECC), pp. 225–230, IEEE, 2018.

[55] X. Na and D. J. Cole, “Linear quadratic game and non-cooperative predictive methods for

potential application to modelling driver–afs interactive steering control,” Vehicle System Dy-

namics, vol. 51, no. 2, pp. 165–198, 2013.

[56] X. Na and D. J. Cole, “Game-theoretic modeling of the steering interaction between a human

driver and a vehicle collision avoidance controller,” IEEE Transactions on Human-Machine

Systems, vol. 45, no. 1, pp. 25–38, 2014.

[57] X. Ji, Y. Liu, X. Na, and Y. Liu, “Research on interactive steering control strategy between

driver and afs in different game equilibrium strategies and information patterns,” Vehicle

system dynamics, vol. 56, no. 9, pp. 1344–1374, 2018.

[58] X. Ji, K. Yang, X. Na, C. Lv, and Y. Liu, “Shared steering torque control for lane change assis-

tance: A stochastic game-theoretic approach,” IEEE Transactions on Industrial Electronics,

vol. 66, no. 4, pp. 3093–3105, 2018.

[59] A. Zhakatayev, B. Rakhim, O. Adiyatov, A. Baimyshev, and H. A. Varol, “Successive lin-

earization based model predictive control of variable stiffness actuated robots,” in 2017

IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1774–1779,

IEEE, 2017.

[60] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and design. Nob Hill

Pub., 2009.

[61] A. Matsumoto, F. Szidarovszky, et al., Game theory and its applications. Springer, 2016.

[62] L. Wang, Model predictive control system design and implementation using MATLAB®.

Springer Science & Business Media, 2009.

[63] Y. Zhang, E. K. Antonsson, and K. Grote, “A new threat assessment measure for collision

avoidance systems,” in 2006 IEEE Intelligent Transportation Systems Conference, pp. 968–

975, IEEE, 2006.

135

[64] Y.-L. Chen, “An explicit and novel forward collision probability index,” in 2015 IEEE 10th

Conference on Industrial Electronics and Applications (ICIEA), pp. 1778–1782, IEEE, 2015.

[65] M. Ławryńczuk, “Computationally efficient model predictive control algorithms,” A Neural

Network Approach, Studies in Systems, Decision and Control, vol. 3, 2014.

[66] P. Tøndel and T. A. Johansen, “Complexity reduction in explicit linear model predictive con-

trol,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 189–194, 2002.

[67] Y. Wang and S. Boyd, “Fast model predictive control using online optimization,” IEEE Trans-

actions on control systems technology, vol. 18, no. 2, pp. 267–278, 2009.

[68] D. of Transportation, “Next generation simulation.” Available at www.http://ngsim.

fhwa.dot.gov.

[69] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving

simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.

[70] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simu-

lation for autonomous vehicles,” in Field and service robotics, pp. 621–635, Springer, 2018.

[71] E. Leurent, “An environment for autonomous driving decision-making.” https://

github.com/eleurent/highway-env, 2018.

[72] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations

and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.

[73] M. Treiber and D. Helbing, “Mobil: General lane-changing model for car-following models,”

Disponıvel Acesso Dezembro, 2016.

[74] E. Balal, R. L. Cheu, and T. Sarkodie-Gyan, “A binary decision model for discretionary lane

changing move based on fuzzy inference system,” Transportation Research Part C: Emerging

Technologies, vol. 67, pp. 47–61, 2016.

[75] H. Bi, T. Mao, Z. Wang, and Z. Deng, “A data-driven model for lane-changing in traffic

simulation.,” in Symposium on Computer Animation, pp. 149–158, 2016.

136

www.http://ngsim.fhwa.dot.gov
www.http://ngsim.fhwa.dot.gov
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

[76] J. Nie, J. Zhang, X. Wan, W. Ding, and B. Ran, “Modeling of decision-making behavior

for discretionary lane-changing execution,” in 2016 IEEE 19th International Conference on

Intelligent Transportation Systems (ITSC), pp. 707–712, IEEE, 2016.

[77] Y. Liu, X. Wang, L. Li, S. Cheng, and Z. Chen, “A novel lane change decision-making model

of autonomous vehicle based on support vector machine,” IEEE Access, vol. 7, pp. 26543–

26550, 2019.

[78] Y. Zhang, Q. Lin, J. Wang, S. Verwer, and J. M. Dolan, “Lane-change intention estimation

for car-following control in autonomous driving,” IEEE Transactions on Intelligent Vehicles,

vol. 3, no. 3, pp. 276–286, 2018.

[79] J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural Comput, vol. 9, no. 8,

pp. 1735–1780, 1997.

[80] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical ma-

chine translation,” arXiv preprint arXiv:1406.1078, 2014.

[81] A. Alalshekmubarak and L. S. Smith, “A novel approach combining recurrent neural net-

work and support vector machines for time series classification,” in 2013 9th International

Conference on Innovations in Information Technology (IIT), pp. 42–47, IEEE, 2013.

[82] A. F. M. Agarap, “A neural network architecture combining gated recurrent unit (gru) and

support vector machine (svm) for intrusion detection in network traffic data,” in Proceedings

of the 2018 10th International Conference on Machine Learning and Computing, pp. 26–30,

2018.

[83] B. S. G. de Almeida and V. C. Leite, “Particle swarm optimization: A powerful technique for

solving engineering problems,” Swarm Intelligence-Recent Advances, New Perspectives and

Applications, 2019.

[84] Z. A. B. S. . S. I. Klancar, G., Wheeled mobile robotics: from fundamentals towards au-

tonomous systems. Butterworth-Heinemann, 2017.

137

[85] T. Gu, J. Snider, J. M. Dolan, and J.-w. Lee, “Focused trajectory planning for autonomous

on-road driving,” in 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 547–552, IEEE,

2013.

[86] Y. Cong, O. Sawodny, H. Chen, J. Zimmermann, and A. Lutz, “Motion planning for an

autonomous vehicle driving on motorways by using flatness properties,” in 2010 IEEE inter-

national conference on control applications, pp. 908–913, IEEE, 2010.

[87] M. Elbanhawi, M. Simic, and R. Jazar, “Improved manoeuvring of autonomous passenger

vehicles: simulations and field results,” Journal of Vibration and Control, vol. 23, no. 12,

pp. 1954–1983, 2017.

[88] D. Madås, M. Nosratinia, M. Keshavarz, P. Sundström, R. Philippsen, A. Eidehall, and K.-

M. Dahlén, “On path planning methods for automotive collision avoidance,” in 2013 IEEE

intelligent vehicles symposium (IV), pp. 931–937, IEEE, 2013.

[89] R. Kala and K. Warwick, “Motion planning of autonomous vehicles in a non-autonomous

vehicle environment without speed lanes,” Engineering Applications of Artificial Intelligence,

vol. 26, no. 5-6, pp. 1588–1601, 2013.

[90] M. B. Saltık, L. Özkan, J. H. Ludlage, S. Weiland, and P. M. Van den Hof, “An outlook on

robust model predictive control algorithms: Reflections on performance and computational

aspects,” Journal of Process Control, vol. 61, pp. 77–102, 2018.

[91] A. A. Jalali and V. Nadimi, “A survey on robust model predictive control from 1999-2006,”

in 2006 International Conference on Computational Inteligence for Modelling Control and

Automation and International Conference on Intelligent Agents Web Technologies and Inter-

national Commerce (CIMCA’06), pp. 207–207, IEEE, 2006.

[92] Y. J. Wang and J. B. Rawlings, “A new robust model predictive control method i: theory and

computation,” Journal of Process Control, vol. 14, no. 3, pp. 231–247, 2004.

138

APPENDIX A

NONLINEAR VEHICLE DYNAMICS

A.1 Nonlinear vehicle dyamics

ẋ = f(x,um,ud)

ym = gm(x,um,ud)

yd = gd(x,um,ud) (A.1)

x =



x1

x2

x3

x4

x5

x6

x7

x8



=



X

Y

ψ

vx

vy

ω

θs

θ̇s



, um =

um,1
um,2

 =

ax,m
τm

 , ud =

ud,1
ud,2

 =

ax,d
τd

 (A.2)

139

where, f1(x,um,ud) = x4 cosx3 − x5 sinx3

f2(x,um,ud) = x4 sinx3 + x5 cosx3

f3(x,um,ud) = x6

f4(x,um,ud) = x6x5 + um,1 + ud,1

f5(x,um,ud) = −x6x5 +
1

m

(
Fy,f cos

x7
G

+ Fy,r

)
f6(x,um,ud) =

1

Iz

(
LfFy,f cos

x7
G
− LrFy,r

)

f7(x,um,ud) = x8

f8(x,um,ud) =
1

Js +G2
pMr

(
ud,2 +Ggum,2 −KrG

2
px7 − (Bc +BrG

2
p)x8 −

ηtFy,f
G

)
gm,1(x,um,ud) = x1, gm,1(x,um,ud) = x1

gm,2(x,um,ud) = x2, gm,2(x,um,ud) = x2

gm,3(x,um,ud) = x3, gm,3(x,um,ud) = x3

gm,4(x,um,ud) = x4, gm,4(x,um,ud) = x4

Fy,f = Df sin(Cf arctanBfαf)

Fy,r = Dr sin(Cr arctanBrαr)

αf =
x7
G
− arctan

(
Lfx6 + x5

x4

)
αr = − arctan

(
Lrx6 − x5

x4

)

140

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Background and Objectives
	Literature Review
	Decision Making for Self Driving
	Rule-based approach
	Markov Decision Process (MDP) based approach
	Game theory based approach
	Reinforcement learning based approach

	Shared Control Between Human Driver and Machine
	Cooperative assist approach - direct shared control
	Cooperative assist approach - indirect shared control
	Differential game theory based approach

	Organization of the Dissertation

	shared control based on game theoretic model predictive control for human driver and machine
	Theoretical backgrounds and Mathematical Formulation of a Problem
	Vehicle dynamic model
	Formulation of Game Theoretic Model Predictive Control
	Linear approximation of nonlinear system
	Discretization of linearized system

	Formulation of Model Predictive Control
	Derivation of matrix form for Model Predictive Control
	Definition of Cost Function
	Formulation of Quadratic Programming

	Solution of Game Theoretic Model Predictive Control
	Non-cooperative game with simultaneous move
	Non-cooperative game with leader-and-follower
	Non-cooperative game with sequential move
	Cooperative game

	Shared Control Strategy
	Shared control strategy for machine
	Shared control strategy for human
	Game transition

	Simulation studies
	Lane change scenario under fixed game
	Lane change scenario with game transition
	Lane change scenario with an interrupting vehicle

	Conclusions

	Reinforcement learning based decision making for self-driving
	Theoretical backgrounds - Reinforcement learning
	Markov Decision Process (MDP)
	Dynamic Programming
	Reinforcement Learning

	Design of Decision Making Model Based on RL for Highway Driving
	Experimental setup
	Problem statement
	State space definitions
	Action space definition
	Reward function definition

	Learning results
	Driving scenario
	Neural networks structures
	Learning results

	Comparison studies with other decision making models
	Human driver model
	Rule-based decision model
	Data-driven decision model
	NGSIM dataset
	Lane change decision model
	Longitudinal behavior model

	Performance comparison

	Conclusions

	Application of Reinforcement Learning based Decision Model with Shared Control
	Simulation studies
	Lane change scenario with a front stopped vehicle
	Under cooperative game framework
	Behavior under the game transition framework

	Traffic scenarios in highway driving
	Traffic scenarios with a careless driver
	Traffic scenarios with incorrect actions of the driver

	Conclusion

	SUMMARY AND CONCLUSIONS
	Future works

	REFERENCES
	APPENDIX Nonlinear vehicle dynamics
	Nonlinear vehicle dyamics

