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ABSTRACT

The Standard Model (SM) of particle physics is a very successful, mathematically consistent

and experimentally proven theory of the known elementary particles. However it is challenged by

a variety of theoretical and experimental puzzles. Two well-established theoretical puzzles are the

tiny neutrino masses generations and explaining the observed astronomical dark matter content of

the Universe. Besides that there are a few anomalous experimental results that cannot be explained

by the SM alone. These are the hints that we need some new physics beyond the SM. In this

dissertation, we introduce new physics ideas in the form of a model at the MeV to TeV scale, by

extending the SM by adding new particles and/or new gauge symmetry and study different puzzles

of the SM. Since the new physics scale is below TeV, we can probe the models with the current

data coming from various experiments.
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1. INTRODUCTION

There is more mass throughout the Universe than what we are capable of seeing. The study

of the Gravitational effects such as galaxy rotation curve shows strong evidence of the presence

of an unobserved mass in the galaxy [28]. On the other hand, galaxy cluster collisions such as

the “bullet cluster” event [29] does not just confirm the presence of an extra mass in the galaxy,

but they also show evidence that these invisible masses have almost no interaction with the visible

masses. Only five percent of the Universe is visible or luminous mass. Therefore, there must be

more matter, which is not visible, causing an additional gravitational effect in the Universe. The

immediate question is, how many kinds of invisible matter are there in the Universe and what

fraction of the energy budget of the Universe is the invisible matter, what is the nature of these

matters, and what is their role in the formation of the galaxy, galaxy clusters and in general the

evolution of the Universe. We find that these invisible matters constitute 25% of the Universe with

relic abundance ΩDM = 0.265. Traditionally we call them Dark Matter. In this thesis we focus on

the origin of these dark matters within a model and how they interact with the visible sector of the

Universe, assuming the particle nature of dark matter. Explaining this dark matter content of the

Universe is one of the well-established puzzles of Elementary Particle Physics.

While it is clear that, dark matter can not be made up of any known particle from the Standard

Model (SM), there is a possible candidate for dark matter that could have the right behavior. At

a first glance, the neutrinos of the SM behave just like a viable dark matter candidate with no

electromagnetic interactions, they have only weak interactions with visible matter, and they also

form cosmic neutrino background after neutrino decoupling at ∼ 2.5 MeV. The relic density of

massive neutrinos is given by Ων = (
∑

jmj)/94h2 eV, where h is a dimensionless parameter of

order one, h = 0.673± 0.012. The measurement of the invisible decay width of the Z boson rules

out more than three SM neutrinos [30], hence j = 3. Therefore 3-4 eV mass per neutrino would

give correct dark matter relic density.

Unfortunately, there are problems with having light neutrinos that are that massive. The first
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problem is that, if neutrinos are dark matter, they would be hot dark matter. And the hot dark matter

would have washed out the matter density perturbation by free streaming, affecting the large-scale

structure formation of the Universe. The second problem is with the cosmological data, which

put a bound on the sum of the neutrino mass,
∑

jmj = 0.12 eV (BOSS Lyα + Planck [31, 32]).

Therefore only 1% dark matter can be in the form of light neutrinos. So what constitutes the other

99% of the invisible Universe is still a mystery. A most promising possibility is the particle dark

matter such as sterile neutrinos, weakly interacting massive particles, etc, which comes as a form

of a new unknown particle that must satisfy all the current particle physics and cosmological data.

Another interesting unsolved problem of elementary particle physics is the tiny mass of the

neutrinos which was confirmed from the observation of neutrino oscillations [33, 34]. SM can not

explain this tiny mass. Though the absolute values of the three species of neutrinos have not been

measured the mass square differences have been determined by solar and atmospheric neutrino

experiments. The global fit of neutrino oscillation data gives [35], ∆m2
sol = m2

2−m2
1 ' 7.4×10−5

eV2 and ∆m2
atm = m2

3 −m2
1 = 2.5 × 10−3 eV2. Therefore at least two neutrinos have non-zero

masses. Assuming the lightest neutrino to be massless, we get mνj = (0.00, 0.008, 0.05) eV. They

are consistent with the cosmological data [32]. We need new physics ideas to explain these tiny

neutrino masses and mixings.

The main goal of this thesis would be to address the two most important shortcomings of the

SM: the origin of the neutrino mass and mixings and explaining the observed dark matter content

of the Universe. The central theme of the thesis is to construct models at the MeV to TeV scale, by

extending the SM by adding new particles and/or new gauge symmetry in a bottom-up approach

and understand the puzzles of the SM. We also test the new physics models using the currently

available data and future projections from the upcoming experiments. We have used these models

to explain the recently found/confirmed anomalous experimental signals and predicted new signals

for the current/upcoming experiments.

This thesis is written based on the following published and unpublished research articles, orga-

nized in a chronological order,
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1. B. Dutta, S. Ghosh, I. Gogoladze and T. Li, “ Three-loop neutrino masses via new massive

gauge bosons from E6 GUT”, Phys. Rev. D 98, no. 5, 055028 (2018), arXiv:1805.01866

[hep-ph].

2. B. Dutta, S. Ghosh and J. Kumar, “A sub-GeV dark matter model”, Phys. Rev. D 100,

075028 (2019), arXiv:1905.02692 [hep-ph].

3. M. Abdullah, B. Dutta, S. Ghosh and T. Li, “(g − 2)µ,e and the ANITA anomalous events

in a three-loop neutrino mass model”, Phys. Rev. D 100, no. 11, 115006 (2019),

arXiv:1907.08109 [hep-ph].

4. B. Dutta, S. Ghosh and J. Kumar, “Contributions to ∆Neff from the dark photon of

U(1)T3R”, Phys. Rev. D 102 (2020) 1, 015013, arXiv:2002.01137 [hep-ph].

5. B. Dutta, S. Ghosh and T. Li, “Explaining (g − 2)µ,e, KOTO anomaly and MiniBooNE

excess in an extended Higgs model with sterile neutrinos”, Phys. Rev. D 102 (2020) 5,

055017, arXiv:2006.01319 [hep-ph]

6. B. Dutta, S. Ghosh and J. Kumar, “Opportunities for probing U(1)T3R with light media-

tors”, Phys. Rev. D 102 (2020) 7, 075041, arXiv:2007.16191.

7. B. Dutta, S. Ghosh, P. Huang and J. Kumar, “Explaining gµ − 2 and RK(∗) using the light

mediators of U(1)T3R”, arXiv:2105.07655.

All of the published papers are available under the terms of the Creative Commons Attribution

4.0 International license. This license permits unrestricted use, distribution, and reproduction in

any medium, provided attribution to the author(s), and the published article’s title, journal citation,

and DOI are maintained. The mathematical expressions, figures, and tables were reproduced from

these research articles to use in the appropriate places in this thesis.

The thesis is divided into three main chapters. In each chapter, we introduce a new physics

model by extending the SM and describe the related phenomenology. In Chapter. 2, we introduce

a low energy model, which is a complete model of neutrino mass and mixings and dark matter.
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It involves a light scalar mediator which can explain a few of the recent anomalies. This chapter

is based on article No. 5 from the above list. In Chapter. 3, we introduce a sub-GeV dark matter

model, allowed by current data, which can deplete correct relic density and has interesting direct

detection prospects. This chapter is based on articles No. 2, 4, 6, and 7. In the last chapter,

Chapter. 4, We describe a three-loop radiative neutrino mass model, accessible at the LHC, which

is based on the article No. 1 and 3.
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2. EXPLAINING (g− 2)µ, e , THE KOTO ANOMALY AND THE MINIBOONE EXCESS IN

AN EXTENDED HIGGS MODEL WITH STERILE NEUTRINOS*

The SM of particle physics is far from being a complete model, since it can not explain the

origin of tiny masses of neutrinos, their mixing [33, 34], and the observed abundance of dark matter

particles [32]. Besides the neutrino mass and dark matter problem, there are a few more recent

anomalous experimental results such as the muon and electron anomalous magnetic moment [36,

37, 38, 39], anomalous events at the KOTO experiment [40, 41, 42], and the observation of excess

electron-like events at MiniBooNE experiments [43, 44]. They are the indications that we need new

physics beyond SM to correctly describe the nature. In this chapter, we want to build a complete

model for neutrino mass and mixing with correct dark matter relic density that can explain the

above-mentioned experimental anomalies. We build the model by extending the SM by adding

three right-handed neutrinos and extending the scalar sector by adding one additional scalar doublet

and one scalar singlet. We produce a phenomenologically interesting physical scalar spectrum with

one short-lived, light scalar with mass ∼ 100 MeV, which plays an important role to connect the

anomalies. Correct neutrino masses and mixing can be generated using a low-scale type-I seesaw

mechanism. The lightest physical sterile neutrino with mass ∼ O(10) keV, is a viable dark matter

candidate that can produce the correct relic abundance. We have shown that the tree-level flavor

changing interactions of the light scalar together with the sterile neutrinos can explain all three

anomalies simultaneously, satisfying related constraints from the current experimental data.

The rest of the chapter is organized as follows: In Sec. 2.1 we discuss the details of the model by

introducing necessary parameters and interaction terms. The origin of neutrino mass and mixing

is presented in Sec. 2.2. In Sec. 2.3, we discuss the possibility of the lightest sterile neutrino

as a viable dark matter candidate in our model. We generate a phenomenologically interesting

physical scalar spectrum in Sec. 2.4. In Sec. 2.5, we study the anomalous magnetic moments

*this chapter is reprinted from “Explaining (g−2)µ,e, KOTO anomaly and MiniBooNE excess in an extended
Higgs model with sterile neutrinos” by B. Dutta, S. Ghosh and T. Li, Phys. Rev. D 102 (2020) 5, 055017 published
by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.
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of the electron and muon and allowed parameter space related to this. In Sec. 2.6, we discuss

the allowed parameter space associated with the KOTO anomaly and the relevant constraints. In

Sec. 2.7, we discuss the recent MiniBooNE observation and how to accommodate it in our model.

We summarize our analysis in Sec. 2.8 by showing a few benchmark points (BP) which explain

all the anomalies after satisfying all other experimental data. We provide additional information in

the Appendix. A and Appendix. B.

2.1 Model

The SM has the simplest possible scalar sector with just one scalar doublet [45, 46, 47, 48,

49]. Two-Higgs-doublet model (2HDM) [50, 51] and singlet/triplet extensions of 2HDM are good

example of the extension of the SM scalar sector backed by strong motivations [52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. In this chapter, we consider a simple extension of the CP-

conserving 2HDM by adding one complex scalar singlet. In addition to the extended scalar sector,

we add three right-handed sterile neutrinos n′Ri with i = 1, 2, 3 to explain the observed neutrino

masses and mixing. The definition of the electric charge is same as the SM i.e. Q ≡ T3 + Y . The

electroweak charges of the scalars are,

φ1 ∼ (2, 1/2), φ2 ∼ (2, 1/2), φS ∼ (1, 0) , (2.1)

For the purpose of our study, we assume that the scalar sector respect the CP symmetry but in

general it can be CP-violating. Note that, we do not impose any discrete symmetry to the scalar

6



sector. The most general renormalizable and CP-conserving scalar potential can be written as,

V = m2
1φ
†
1φ1 +m2

2φ
†
2φ2 +m2

12(φ
†
1φ2 + φ†2φ1) +m2

Sφ
†
SφS −m

2
S′(φ

2
S + φ†2S )

+m1S(φ†1φ1φS + φ†1φ1φ
†
S) +m2S(φ†2φ2φS + φ†2φ2φ

†
S) +

λ1
2

(φ†1φ1)
2 +

λ2
2

(φ†2φ2)
2

+
λS
2

(φ†SφS)2 + λ3(φ
†
1φ1)(φ

†
2φ2) + λ4(φ

†
1φ2)(φ

†
2φ1) + λ5

[
(φ†1φ2)

2 + (φ†2φ1)
2
]

+λ6

[
(φ†1φ1)(φ

†
1φ2) + (φ†1φ1)(φ

†
2φ1)

]
+ λ7

[
(φ†2φ2)(φ

†
1φ2) + (φ†2φ2)(φ

†
2φ1)

]
+λ1S(φ†1φ1)(φ

†
SφS) + λ2S(φ†2φ2)(φ

†
SφS) + λ12S

[
(φ†1φ2)(φ

†
SφS) + (φ†2φ1)(φ

†
SφS)

]
+m12S(φ†1φ2φS + φ†Sφ

†
2φ1) . (2.2)

We work in a basis, similar to the so called Higgs basis [68, 69, 70, 71, 72], where only one

of the doublet will obtain vev, 〈φ1〉 = v/
√

2. The ralated basis tranformation rules are defined

in Appendix. A. Therefore the doublet φ1 completely controls the spontaneous breaking of the

electroweak gauge symmetry and the mass generations of the fermions and gauge bosons. While

the other doublet and the singlet play role in the Yukawa interactions. After the spontaneous

symmetry breaking, the scalar fields can be written as,

φ1 ∼

 G+

1√
2
(v + ρ1 + iG0)

 , φ2 ∼

 φ2
+

1√
2
(ρ2 + iη2)

 ,

φS ∼
1√
2

(ρS + iηS) . (2.3)

We get the following conditions from the extremization of Eq. 4.3,

m2
1 +

λ1v
2

2
= 0 , (2.4)

m2
12 +

λ6v
2

2
= 0 . (2.5)

Eq. 2.5 implies that the field φ2 does not obtain vev. We get further conditions from the minimiza-
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tions,

λ1 > 0, m2
1 < 0, λ5 > 0, λ6 > 0,

m2
12 < 0, m12S > 0, m1S = 0 . (2.6)

The last condition makes sure that φS does not get vev.

Therefore there are altogether 17 free parameters in the scalar sector including the vev v. The

total number of scalar degrees of freedom is 10. Three of them get eaten to give mass to the gauge

bosons, W± and Z while the other 7 dof correspond to physical Higgs.G± and G0 become the

Goldstone bosons in the Higgs basis. φ±2 gives two charged physical Higgs h±. CP-even states ρ1,

ρ2 and ρS mix to give three neutral physical scalars h, h1 and h2. We denote the SM Higgs boson

as h. The CP-odd states η2 and ηS mix and gives two neutral physical pseudoscalar s1 and s2.

Analyzing the scalar potential, we find that the physical charged scalar mass squared is given

as,

m2
h± = m2

2 +
λ3v

2

2
. (2.7)

The three CP-even neutral scalars ρ1, ρ2 and ρS mix in the following way,

V ρ
mass =

1

2
(ρ1 ρ2 ρS)

(
M2

ρ

)
3×3


ρ1

ρ2

ρS

 , (2.8)

where the 3× 3 mass square matrix M2
ρ is defined as,

M2
ρ =


λ1v

2 λ6v
2 0

λ6v
2 m2

2 +
λ+345v

2

2
m12Sv√

2

0 m12Sv√
2

m2
S − 2m2

S′ +
λ8v2

2

 . (2.9)

we have used Eq. 2.5 to simplify terms in the above mass squared matrix and defined λ+345 ≡
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λ3 +λ4 +λ5. We get three physical scalars from the above mixing, h, h1 and h2 with mass squared

m2
h,m

2
h1

and m2
h2

, respectively. The fields in the mass basis, h, h1 and h2 are related to those in the

interaction basis, ρ1, ρ2 and ρS through a 3× 3 rotation matrix UR3×3(θi). UR can be parametrized

with three Euler angles θ1, θ2 and θ3 in the following way,

UR =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 , (2.10)

where ρi = URijhj . The quantities cij are functions of cos θk and sin θk (k = 1, 2, 3). The

interaction states can be expressed in terms of the physical states as

ρ1 = c11h2 + c12h+ c13h1 ,

ρ2 = c21h2 + c22h+ c23h1 ,

ρS = c31h2 + c32h+ c33h1 . (2.11)

The two CP-odd neutral scalars η2-ηS mix as

V η
mass =

1

2
(η2 ηS)

(
M2

η

)
2×2

 η2

ηS

 , (2.12)

where the 2× 2 mass square matrix M2
η is given by

M2
η =

 m2
2 +

λ−345v
2

2
−m12Sv√

2

−m12Sv√
2

m2
S + 2m2

S′ +
λ8v2

2

 , (2.13)

where we have defined λ−345 ≡ λ3 + λ4 − λ5. From the above mixing, we get two physical neutral
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pseudoscalar which can be expressed in terms of the interaction states as,

 s1

s2

 =

 cosα − sinα

sinα cosα


 η2

ηS

 , (2.14)

where the mixing angle is given by

tan 2α =
m12Sv/

√
2

m2
11 −m2

22

(2.15)

The corresponding mass squared are given as,

m2
s1

=
1

2
(m2

11 +m2
22)−

1

2

√
(m2

11 −m2
22)

2 +
m2

12Sv
2

2
(2.16)

and

m2
s2

=
1

2
(m2

11 +m2
22) +

1

2

√
(m2

11 −m2
22)

2 +
m2

12Sv
2

2
, (2.17)

respectively, where

m2
11 =

1

2

(
m2

2 +
λ3v

2

2
+
λ4v

2

2
− λ5v

2

2

)
(2.18)

and

m2
22 =

1

2

(
m2
S + 2m2

S′ +
λ8v

2

2

)
. (2.19)

The Yukawa sector of our model is very interesting in the Higgs basis. Both scalar doublets

interact with all the fermions in the interaction states. On the otherhand, the saclar singlet only

interacts with the right handed neutrinos. The doublet φ1 controls the masses of the fermions

while the other doublet φ2 couples to the fermions in an unconstrained way and do not need to

obey the flavor symmetry. Therefore the neutral component of φ2 interacting with the fermions

can gives rise to tree-level flavor-changing neutral current (FCNC). The mixing in the scalar sector

ensures that the singlet scalar can interact with the fermions in the mass basis. We start with the
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complete Yukawa sector Lagrangian in the interaction basis,

−L = q̄′Li(y
′
1d)ijd

′
Rj
φ1 + q̄′Li(y

′
1u)iju

′
Rj
φ̃1 + l̄′Li(y

′
1e)ije

′
Rj
φ1 + l̄′Li(y

′
1n)ijn

′
Rj
φ̃1

+q̄′Li(y
′
2d)ijd

′
Rj
φ2 + q̄′Li(y

′
2u)iju

′
Rj
φ̃2 + l̄′Li(y

′
2e)ije

′
Rj
φ2 + l̄′Li(y

′
2n)ijn

′
Rj
φ̃2

+n̄′cRi(y
′
sn)ijn

′
Rj
φS +

1

2
n̄′cRiM

′
ijn
′
Rj

+H.c. , (2.20)

where i, j = 1, 2, 3 are the family indices. The fermions in the interaction basis are denoted by the

primed fermions. Note that, in general all the Yukawa matrices defined are 3×3 complex matrices.

In general, the 3×3 Yukawa matrices, y′ij and the Majorana mass matrix M ′
ij can be diagonal-

ized using biunitary transformations as follows,

U †dLy
′
1dUdR = y1d, where (y1d)ij = (y1d)iiδij , (2.21)

U †uLy
′
1uUuR = y1u, where (y1u)ij = (y1u)iiδij , (2.22)

U †eLy
′
1eUeR = y1e, where (y1e)ij = (y1e)iiδij , (2.23)

U †νLy
′
1nUnR = y1n, where (y1n)ij = (y1n)iiδij , (2.24)

U †nRM
′UnR = M, where Mij = Miiδij , (2.25)

where UdL , UdR , UuL , UuR , UeL , UeR , UνL and UnR are eight appropriate 3 × 3 unitary matrices

which can be used to define the physical states of the fermions in the following way,

dLi = (U †dL)ijd
′
Lj
, dRi = (U †dR)ijd

′
Rj
, (2.26)

uLi = (U †uL)iju
′
Lj
, uRi = (U †uR)iju

′
Rj
, (2.27)

eLi = (U †eL)ije
′
Lj
, eRi = (U †eR)ije

′
Rj
, (2.28)

νLi = (U †νL)ijν
′
Lj
, nRi = (U †nR)ijn

′
Rj
. (2.29)
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In addition to the above eight matrces we also define the following matrices,

(y2d)ij = (U †dL)ik(y
′
2d)kl(UdR)lj , (2.30)

(y2u)ij = (U †uL)ik(y
′
2u)kl(UuR)lj , (2.31)

(y2e)ij = (U †eL)ik(y
′
2e)kl(UeR)lj , (2.32)

(y2n)ij = (U †νL)ik(y
′
2n)kl(UnR)lj , (2.33)

(ysn)ij = (U †nR)ik(y
′
sn)kl(UnR)lj . (2.34)

Using the relations defined in Eq. 2.21-2.34 and the definition of the physical scalar states, the

Yukawa sector Lagrangian can be rewritten as follows

−L = (mf )if̄ifi + (mνd)i(ν̄LinRi + n̄RiνLi) +
1

2
Mi(n̄

c
Ri
nRi + n̄Rin

c
Ri

)

+ ν̄Li(U
†
PMNS)ik(y2e)kjeRjh

+ + ēRi(y2e)ik(UPMNS)kjνLjh
−

− ēLi(UPMNS)ik(y2n)kjnRjh
− − n̄Ri(y2n)ik(U

†
PMNS)kjeLjh

+

+ ūi[(UCKM)ik(y2d)kjPR − (y2u)ik(UCKM)kjPL]djh
+

+ d̄i[(y2d)ik(U
†
CKM)kjPL − (U †CKM)ik(y2u)kjPR]ujh

−

+ f̄i(yfφ)ijfjφ+ (ynφ)ij(ν̄LinRj + n̄RiνLj)φ

+ (ynnφ)ij(n̄
c
Ri
nRj + n̄Rin

c
Rj

)φ , (2.35)

where we have used the compact notation: f = d, u, e; φ = h, h1, h2, s1, s2 and (mf )i =

(y1f )iv/
√

2. The Dirac mass matrix of neutrinos is defined as (mνd)i = (y1n)iiv/
√

2 while the Ma-

jorana mass matrix is Mi = Miiδij . The definitions of the Cabibbo-Kobayashi-Maskawa (CKM)

and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices are given by

UCKM = U †uLUdL , (2.36)

UPMNS = U †eLUνL . (2.37)
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respectively.

The scalar-charged fermion couplings yfφ are defined as

(yfh2)ij =
(mf )i
v

c11δij +
(y2f )ij√

2
c21 ,

(yfh)ij =
(mf )i
v

c12δij +
(y2f )ij√

2
c22 ,

(yfh1)ij =
(mf )i
v

c13δij +
(y2f )ij√

2
c23 ,

(yfs1)ij = i
(y2f )ij√

2
cosα ,

(yfs2)ij = i
(y2f )ij√

2
sinα . (2.38)

The couplings of active-sterile neutrino states with the scalars, ynφ are defined as

(ynh2)ij =
(mνD)i
v

c11δij +
(y2n)ij√

2
c21 ,

(ynh)ij =
(mνD)i
v

c12δij +
(y2n)ij√

2
c22 ,

(ynh1)ij =
(mνD)i
v

c13δij +
(y2n)ij√

2
c23 ,

(yns1)ij = i
(y2n)ij√

2
cosα ,

(yns2)ij = i
(y2n)ij√

2
sinα . (2.39)

And the couplings between two sterile neutrinos and the scalars, ynnφ are defined as

(ynnh2)ij =
(ysn)ij√

2
c31 ,

(ynnh)ij =
(ysn)ij√

2
c32 ,

(ynnh1)ij =
(ysn)ij√

2
c33 ,

(ynns1)ij = −i(ysn)ij√
2

sinα ,

(ynns2)ij = i
(ysn)ij√

2
cosα . (2.40)
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The above discussions show the general framework of the model without assuming any partic-

ular parameter space in mind. In the next three sections we will develop a particular phenomeno-

logically interesting parameter space which satisfy all the current constraints.

2.2 Neutrino Masses and Mixings

This section describe the mixing of active and sterile neutrino states and the generation of

tiny neutrino masses consistent with the global analysis of neutrino data. The three right handed

neutrino states generically mix with the three SM left handed neutrino states and give rise to six

physical neutrino eigenstates. We rely on the type-I see-saw mechanism [73, 74, 75, 76] to produce

the light mass states, where they get suppressed by the scale of the heavy right handed states. The

masses of the neutrinos can be obtained from the following Lagrangian,

−Lneutrino = (mνd)i(ν̄LinRi + n̄RiνLi) +
1

2
Mi(n̄

c
Ri
nRi + n̄Rin

c
Ri

)

=
1

2

(
ν̄CLi η̄Ri

) 0 (mT
νd

)i

(mνd)i Mi


 νLi

nCRi

+ H.c. . (2.41)

We define the 6×6 Dirac-Majorana mass matrix of neutrinos as,

MD+M
i =


0 (mT

νd
)i

(mνd)i Mi

 . (2.42)

The mass matrix, MD+M
i can be diagonalized by blocks [77, 78], up to corrections at the order of

M−1
i (mνd)i, under the assumption that all the eigenvalues of Mi are much larger than the eigen-
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values of (mνd)i as follows,

WTMD+M
i W '


(Mlight)i 0

0 (Mheavy)i

 , (2.43)

where the 6×6 diagonalizing matrixW is given by

W '


1− 1

2
RR† R†

−R 1− 1
2
R†R

 (2.44)

with R = M−1
i (mνd)i. The 3× 3 light and heavy neutrino mass matrices produced in the process

are given by

mνi = (Mlight)i = −(mT
νd

)iM
−1
i (mνd)i , (2.45)

mni = (Mheavy)i = Mi . (2.46)

respectively.

The physical states vi and ni are the light active and heavy sterile neutrinos respectively. A

more detail treatment of low scale type-I seesaw can be found in Ref. [79]. The absolute masses

of the light active states are not known from the oscillation data as the neutrino oscillation is only

sensitive to the mass squared differences, m2
νi
−m2

νj
. The mass squared differences depend on the

hierarchical order of the light neutrino masses. For our study, we consider the normal hierarchy

scenario, where mν1 � mν2 < mν3 . In this scenario, the two mass squared differences are

∆m2
21 = (7.05− 8.24)× 10−5 eV2 and ∆m2

31 = (2.334− 2.524)× 10−3 eV2 based on the global

analysis of the oscillation data [35]. It is easy to see that, there are at least two non-zero eigenstates.

Assuming the lightest neutrino to be massless, we get mνi ' (0, 8.66×10−3, 0.05) eV. The mixing
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angle between the active-sterile states can be parametrized as θij = M−1
i (mνd)i(U

†
nR)ij . We also

define θ2 ≡
∑

ij |θij|2. We consider two interesting benchmark scenarios that can generate tiny

neutrino masses estimated above along with mn2,3 ∼ O(100) MeV range, and mn1 ∼ O(10) keV.

We also estimate the mixing parameter.

BP
Mi

(MeV)
(mνd)i
(GeV) θ2

BP1 (0.002, 420, 10) (0, 1.9× 10−6, 1.58× 10−4) 6× 10−9

BP2 (0.007, 380, 640) (0, 1.81× 10−6, 5.62× 10−6) 10−11

Table 2.1: We consider two different benchmark scenarios which can generate 3 light and 3
heavy neutrino states in the normal hierarchy case.

2.3 Dark Matter

In Sec. 2.2, we found that the lightest of the three sterile neutrino state, n1 can get mass mn1 '

O(1 − 10) keV. These particles can be the dark matter candidates in our model under certain

conditions. Let us investigate the scenario where this can be a viable dark matter candidates. These

O(1 − 10) keV particles can be produced in the early Universe at high temperature but they can

never be in thermal equilibrium due to their very weak interactions with the SM particles. Though

the interaction strength is weak, these neutral particles can decay to the lighter SM particles as

the decay is not protected by any symmetry. But they can have lifetime longer than the age of

the Universe, which is controlled by the active-sterile mixing parameter defined in Sec. 2.2. On

the otherhand, the decay of the sterile neutrinos can put bounds on the mixing parameter. The

dominant decay channel is n1 → 3ν through active-sterile mixing the weak interactions of ν.

Another possible decay channel could be n1 → ν(h∗1 → γγ), where the off-shell h1 decays to 2γ

final state through a muon loop. But the choice of (mνd)1 = 0 forbids this channel as (ynh1)11 is

directly proportional to (mνd)1. The expression of the decay width of n1 decaying into 3ν is given

16



by [80, 81]

Γn1 =
G2
Fm

5
n1
θ2

96π3

' θ2

1.5× 1014 sec

( mn1

10 keV

)5
. (2.47)

The lifetime of n1 is given by τn1 = 1/Γn1 . As the decay of n1 is not protected by any symmetry,

the only way it can be viable dark matter candidates is that it is long-lived enough. To satisfy that

condition we need τn1 � tU , where tU = 4.4 × 1017 sec [32] is the age of the Universe. This in

turn gives a bound on the mixing parameter,

θ2 � 3.4× 10−4
(

10 keV
mn1

)5

. (2.48)

In the following, we consider the possible production mechanism of such particles in the early

Universe. As they were not in the thermal equilibrium with the SM particles due to their weak

interaction strength, there must be some other model dependent mechanism. We consider two

benchmark scenarios with two different possible production mechanism.

1. BP1: mn1 = 2 keV: The production mechanism considered here is the non-resonant Dodelson-

Widrow mechanism [82], where the sterile neutrinos mix with the active neutrinos and pro-

duced at high temperature through the mixing angle suppressed weak interactions. This

mixing generically arises in the type-I see-saw scenarios and we have estimated the mixing

angle to be θ2 ' 6 × 10−9 for the 2 keV n1 as shown in Table. ??.For a given thermal his-

tory of the Universe, the dark matter relic density is uniquely determined by mn1 and θ2 as

follows [83]

Ωn1h
2 ∼ 0.1

(
θ2

3× 10−9

)( mn1

3keV

)1.8
, (2.49)

where h = .72± 0.08 [32]. This also gives θ2 ' 6× 10−9 for the 2 keV n1. This benchmark

is safe from the structure formation bounds and X-ray search bounds [84].

2. BP2: mn1 = 7 keV: We use the Shi-Fuller mechanism [85] to produce n1. This bench-
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mark point gives θ2 ' 10−11 which is favored by X-ray searches [84]. In this mechanism

lepton asymmetry of the model plays vital role. It produces large enhancement due to the

Mikheyev-Smirnov-Wolfenstein (MSW) effect [86, 87]. The dark matter relic density is

controlled by the lepton asymmetry and the mass and is given by,

Ωn1h
2 ∼ 0.1

( mn1

1keV

)(∆L

0.02

)
, (2.50)

where ∆L is the lepton asymmetry. We need ∆L ∼ 3× 10−3 to get the correct relic density.

We can introduce lepton asymmetry in our model by considering CP-violation in the lepton

sector. The decay of 7 keV n1 can be the source of the recently observed 3.5 keV line in the

X-ray spectra of the galaxies [88, 89, 90] with θ2 ' 10−11 [84].

For simplicity, we will consider only CP-conserving real Yukawa sector and mn1 ∼ O(1 −

10) keV for our studies, though a complete study can include the CP-violating lepton sector with

more freedom in the mixing parameter.

2.4 Light Scalar

We obtain an interesting physical scalar spectrum in this section, which has phenomenologi-

cal significance. Specifically, we want to produce one light physical scalar with mass O(100 −

200) MeV. This light scalar when interacts with the SM fermions can produce tree-level FCNC,

which will be usefull for the rest of the analysis. The rest of the physical scalars are heavy enough

to satisfy the LHC constraints. We summarize the values of the free parameters of the scalar po-

tential in Table. 2.2 along with a specific benchmark points. The mass parameters O(100) GeV

and couplings λi ∼ 0.01− 0.1 can give the desired light physical scalar with mass ∼ 100 MeV.

The physical scalar masses and the possible final states in the detectors are summarized in

Table. 2.3. Note that, the SM Higgs h can decays to a pair of the light scalar h1 through h→ h1h1,

where h1 mostly decays to dark matter pair. Therefore this decay can contribute to the invisible

decay branching channel of the SM Higgs. For the given choice of parameters, we get the hh1h1

coupling is 0.42 with Br(h → invisible) = 0.01. This is consistent with the LHC bounds which
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Parameters
Descriptions
and Values

Benchmark
Values

m2
1,m

2
2,m

2
12

m2
S,m

2
S′

∼ [O(100) GeV]2 ,
m2

1 < 0,m2
12 < 0

m2
1 = −(88.7)2 GeV2

m2
2 = (497)2 GeV2

m2
12 = −(55)2 GeV2

m2
S = (277.7)2 GeV2

m2
S′ = (199.8)2 GeV2

m1S,m2S

m12S

∼ O(100) GeV,
m1S = 0,m12S > 0

m1S = 0
m2S = 50 GeV
m12S = 50 GeV

λ1, λ2, λ3, λ4
λ5, λ6, λ7
λS, λ12S

∼ O(0.1),
λ1, λ5, λ6 > 0

λ1 = 0.26
λ2, λ3, λ4, λ5, λ6, λ7
λS, λ12S = 0.1

λ1S, λ2S ∼ O(0.01) λ1S = λ2S = 0.01

Table 2.2: The descriptions of the free parameters of the scalar sector defined in Eq. 4.3. We
choose the given range of values to generate a light scalar with mass ∼ 100 MeV and other heavy
scalars consistent with the LHC bounds. We show one specific BP for the purpose. The value of
v is 246 GeV.

gives Br(h→ invisible) < 0.24 at 95% Confidence Level (C.L.) [91, 92].

For the rest of the analysis, we assume that the light scalar h1 is lighter than the muon and

promptly decays mainly to n̄1n1 pair with relatively small branching fraction to e+e− pair as well.

The partial decay widths are given as,

Γ(h1 → n̄1n1) = (ynnh1)
2
11 ×

mh1

16π

(
1−

4m2
n1

m2
h1

)3/2

,

(2.51)

Γ(h1 → e+e−) = (yeh1)
2
11 ×

mh1

8π

(
1− 4m2

e

m2
h1

)3/2

. (2.52)

with a negligible branching fraction to di photon final states. Therefore the total decay width can

be written as, Γh1 = Γ(h1 → n̄1n1) + Γ(h1 → e+e−), and the lifetime is τh1 = 1/Γh1 . For the

purpose of our study we set the couplings, (ynnh1)11 = 7 × 10−5 and (yeh1)11 = 10−5. Therefore
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Particles
Mass values

for the benchmark
of Table. 2.2

Possible final
states

Charged scalars :
h±

mh± ∼ O(500) GeV
mh± = 500 GeV

h+ → d̄iuj,
e+i +MET

Neutral scalars :
h, h1, h2

mh1 ∼ O(.1) GeV
mh2 ∼ O(500) GeV

mh = 125.5 GeV,
mh1 = 0.15 GeV
mh2 = 500 GeV

h, h2 → f̄ifj ,
γγ, h1h1

h1 → e+e−,
n̄1n1

Neutral
pseudoscalars :

s1, s2
msi ∼ O(500) GeV

ms1 = 500 GeV,
ms2 = 400 GeV

s1,2 → ēiej ,
d̄idj

Table 2.3: The descriptions of the physical scalar mass spectrum and the possible final states in
the detectors for the BP defined in Table 2.2.

the lifetime of h1 for mn1 = O(1 − 10) keV and mh1 in the range 100 − 200 MeV, is given as

τh1 ' 7× 10−14 sec. The branching fractions are,

Br(h1 → n̄1n1) ' 0.95 ,

Br(h1 → e+e−) ' 0.05 . (2.53)

In the following, we discuss different bounds relevant for the O(100) MeV scalar.

1. Fixed target/ beam dump experiments: These experiments can put bounds in the (mh1 , (yeh1)11)

and (mh1 , (yeh1)22) parameter space. We show them in Fig. 2.2 and Fig. 2.3 along with fu-

ture projection from the NA64 [25] experiments. In these experiments, e-bremsstrahlung

can give rise to the h1 production. It then decays to either n̄1n1 or e+e− pair when mh1 <

2mµ. NA64 [25] experiment is sensitive to the invisible final states while experiments like

E137 [93, 94, 10, 95] and Orsay [95] are sensitive to e+e− final states.

2. Kaon decay: Rare Kaon decays produced by the h1 mediated process and tree-level FCNC
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can put bounds on the (mh1 , (ydh1)21) parameter space. LSND [96] can also put bounds on

this parameter space [97].

3. B-meson decay: Due to the presence of the tree-level FCNC in the quark sector, rare B

decay process like B → Kµ+µ− can occur via h1 mdeiated diagram and can put bounds

from the LHCb results [98]. We assume that the coupling that give rise to this process to be

(ydh1)32 ∼ 0 without affecting any of the results of our analysis. Due to this assumption, the

decay is highly suppressed and we can neglect the LHCb bounds.

4. Supernova cooling, ∆Neff , BBN: The astrophysical and the cosmological bounds are very

weak [99, 2] for the mass range of interest and therefore we do not show them here.

2.5 Anomalous Magnetic Moment of Muon and Electron

There is a 3.7σ tension between the theoretical predictions [100, 101, 102, 103] and the exper-

imental results [36, 37] of the anomalous magnetic moment of the muon, given as,

∆aµ = aexpµ − athµ = (2.74± .73)× 10−9. (2.54)

Theoretical efforts are underway to improve the precision of the SM calculations [104, 105,

106, 107, 108] by various methods such as by computing the hadronic light-by-light contribution

with all errors under control by using lattice QCD. Recently one such result [109] was found

to be consistent with the previous predictions, hinting towards a new physics explanation of the

discrepancy. On the other hand, the ongoing experiment at Fermilab [110, 111] and one planned

at J-PARC [112] are aiming to reduce the uncertainty further.

Recently this was compounded with a 2.4σ tension between the experiment [39, 38] and the-

ory [113] values of the anomalous magnetic moment of electron, given by,

∆ae = aexpe − athe = (−8.7± 3.6)× 10−13. (2.55)

The fact that, the deviations are in the opposite direction and ∆ae/∆aµ does not follow the
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lepton mass scaling, m2
e/m

2
µ ∼ 2.25 × 10−5 indicates that a new physics solution is needed to

explain them simultaneously. Few such solutions can be found in [114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130].

Figure 2.1: We adopt a notation to denote a diagram as eiej, ek where ei, ej are the leptons in
the outer legs and ek runs inside the loop. Similar diagrams with heavier scalars are also possible
which are further suppressed by the large masses of the scalar particles.

We rely on the tree-level lepton flavor violating couplings of the light scalar h1 to solve the

puzzle. The one-loop diagrams mediated by h1 with different leptons inside the loop, that con-

tribute to the calculations are shown in Fig. 2.1 . In general, there can be 6 different realizations

of each process with three leptons inside the loop and different chirality of ei and ej . We assume

an asymmetric Yukawa matrix, (yeh1)ij and get that ēiLejRh1 and ēiRejLh1 couplings are different.

We utilize this to get the opposite sign for ∆aµ and ∆ae. We further assume that some of the

elements of (yeh1)ij are zero, for simplicity.

The one loop diagrams with muon inside the loop will contribute most to aµ. The contribution
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can be written as, [131]

∆aµµ,µ = (yeh1)
2
22

m2
µ

4π2

∫ 1

0

dx
2x2 − x3

x2m2
µ + (1− x)m2

h1

. (2.56)

The related parameter space plot in (mh1 , (yeh1)22) plane is shown in Fig. 2.2. Here, we show

the allowed parameter space as well as the relevant future bounds. This parameter space is allowed

by all the muon experiment as mh1 < 2mµ.

0.02 0.05 0.10 0.20
5.×10-6

1.×10-5

5.×10-5

1.×10-4

5.×10-4

0.001

mh1 (GeV)

(y
e
h
1
) 2
2

NA64μ

(gμ-2) favored

Figure 2.2: The allowed region in the parameter space favored by ∆aµ is shown as blue shaded
region. The relevant region of parameter space also satisfy the constraints from all muon experi-
ment.

The electron magnetic moment case is not as straightforward as the muon case. Both tau

and electron-induced loop diagrams are non-vanishing and the corresponding contributions to the
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electron anomalous magnetic moment are [131]

∆aee,τ = (yeh1)13 (yeh1)31
m2
e

4π2

×
∫ 1

0

dx
x2 − x3 + mτ

me
x2

x2m2
e + x(m2

τ −m2
e) + (1− x)m2

h1

, (2.57)

∆aee,e = (yeh1)
2
11

m2
e

4π2

∫ 1

0

dx
2x2 − x3

x2m2
e + (1− x)m2

h1

. (2.58)

It is interesting to note that ∆aee,e always gives positive contributions while ∆aee,τ can be neg-

ative if one of the couplings is negative because of the chiral nature of the couplings. Therefore we

require that ∆aee,τ gives the dominating contribution, and ∆aee,τ + ∆aee,e explains the deviation.

We show various bounds in the (mh1 , (yeh1)11) plane in Fig. 2.3.

0.02 0.05 0.10 0.20
10-8

10-7

10-6

10-5

mh1 (GeV)

(y
e
h
1
) 1
1

NA64e

E137

E141

Orsay

NA64e (future)

Figure 2.3: The excluded regions are shown as the shaded regions and the dotted lines denote
the future bounds.
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Here we show one benchmark scenario that gives correct values and signs for both ∆aµ and

∆ae. The light scalar mass is taken to be mh1 = 140 MeV, and the Yukawa matrix (yeh1)ij is given

by

(yeh1)ij '


10−5 0 −6.8× 10−4

0 5.13× 10−4 10−7

3.5× 10−4 0 0

 . (2.59)

Note that, these values do not vary much for the mass range mh1 = O(100− 200) MeV.

The Yukawa matrix presented in Eq. 2.59 can introduces flavor violating decays in the lepton

sector, mediating through the light scalar h1 such as: µ→ eγ with τ inside the loop, τ → eγ with

e inside the loop and τ → µγ with µ inside the loop. The analytical expression of the branching

fractions of these decay channels is given in Eq. B.1 of Appendix. B. We show the values of these

branching ratios for our benchmark and the corresponding experimental bounds [132, 133] in Table

2.4. We get that the branching ratios are safe from the experimental bounds. Note that, the values

do not change significantly over the mass range mh1 = O(100− 200) MeV.

Descriptions
Values for

mh1 = 140 MeV
Experimental

bounds

Br(µ→ eγ) 5.75× 10−14 < 4.2× 10−13

Br(τ → eγ) 1.15× 10−11 < 1.1× 10−7

Br(τ → µγ) 1.92× 10−15 < 4.5× 10−8

Table 2.4: We summarize the values of different lepton flavor violating processes for the
Yukawa matrix of Eq. 2.59. We also show corresponding experimental bounds.

2.6 KOTO Anomaly

Rare Kaon decay processes such as K0
L → π0νν̄ and K+ → π+νν̄ are good candidates to

search for in order to probe the physics beyond SM [42, 134, 135, 136, 137, 138, 139, 140]. In
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SM, these processes are loop suppressed [141, 142] and the predictions are [42]

Br(K0
L → π0νν̄)SM = (3.00± 0.30)× 10−11 (2.60)

Br(K+ → π+νν̄)SM = (9.11± 0.72)× 10−11 (2.61)

Therefore observation of such events in an experiment would require new physics ideas to explain

them. The KOTO experiment [143, 144] at J-PARC [145] and NA62 experiment [146] at CERN

are dedicated to study these processes and searching for new signals. In a recent run in the KOTO

experiment, four candidate events were suspected as new signals over the SM prediction of 0.10±

0.02 [40, 41], which were observed in the signal region of K0
L → π0νν̄. One of the event was

suspected as a background coming from the SM upstream activity. The other three events can

be considered as signals as they are not consistent with the currently known background and are

consistent with

Br(K0
L → π0νν̄)KOTO19 < 2.1

+2.0(4.1)
−1.1(−1.7) × 10−9 (2.62)

at 68(90)% C.L., including statistical uncertainties, given, single event sensitivity as 6.9×10−10 [40,

41]. The photons and invisible final states were interpreted as νν̄ in their study. The central value

is almost two orders of magnitude larger than the SM prediction and is in agreement with their

previous bounds [147]

Br(K0
L → π0νν̄)KOTO18 < 3.0× 10−9 . (2.63)

The KOTO experiment did not see any excess events for the charged Kaon decay while NA62

puts a bound on such processes [148]

Br(K+ → π+νν̄)NA62 < 2.44× 10−10 (2.64)

at 95% C.L., which is consistent with the SM prediction of Eq. 2.61.

One need to satisfy the Grossman-Nir (GN) bound [149] for the neutral and charged kaon
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decays, which depends on the isospin symmetry and kaon lifetimes. The bound is given as,

Br
(
K0
L → π0νν̄

)
≤ 4.3× Br

(
K+ → π+νν̄

)
, (2.65)

To explain the anomalous events found by KOTO, the new physics explanation should satisfies this

bound.

We utilize the tree-level FCNC in the quark sector mediated by h1 to generate the coupling,

(ydh1)21 necessary for Kaon decay to pion. This gives rise to the tree-level s→ d transition through

h1. The neutral/charged Kaon decays to a neutral/charged pion and a h1, which then promptly

decays to a pair of dark matter or an electron pair. The dark matter final states, Br(K0
L → π0n1n̄1)

can mimic the invisible search and give the desired branching fraction. There is a kinematic cut in

the mass range ∼ mπ ± 25 MeV [148, 150, 151, 152] for the Br(K+ → π+ + invisible) bound.

We utilize this fact and choose the mass mh1 in that range to evade the GN bound.

The decay width of K0
L decaying into a neutral pion and an on-shell h1 is

Γ(K0
L → π0h1) =

[Re(ydh1)21]
2

16πmK0
L

(
m2
K0 −m2

π0

ms −md

)2

f 2(m2
h1

)× λ1/2

(
1,
m2
π0

m2
K0
L

,
m2
h1

m2
K0
L

)
, (2.66)

where λ(x, y, z) = x2 + y2 + z2− 2xy− 2yz− 2zx is the triangle function, and the function f(q2)

for the vector form factor is given as [153]

f(q2) = f+(0)

(
1 +

λ0
m2
π

q2
)

(2.67)

with f+(0) = 0.97 and λ0 = 1.8× 10−2.

27



0.05 0.10 0.15 0.20 0.25

1.×10-13

2.×10-13

3.×10-13

4.×10-13

5.×10-13

6.×10-13

7.×10-13

8.×10-13

mh1 (GeV)

(y
dh
1
) 2
1

NA62 NA62

KOTO

Favored

KOTO18

K0→ π0e+e-

E949
LSND

Figure 2.4: The parameter space favored by the KOTO anomaly in our model is shown as the
pink shaded region and the contour corresponding to the central value of the KOTO anomaly
is the blue dashed line. The green contour corresponds to the KOTO18 excluded region. Con-
tour line corresponding to the K0

L → π0e+e− decay is shown in brown. The excluded region by
NA62, E949 and LSND are also shown.

The decay width of K+
L decaying into a charged pion and an on-shell h1 is

Γ(K± → π±h1) =
|(ydh1)21|2

16πmK±

(
m2
K± −m2

π±

ms −md

)2

f 2(m2
h1

)× λ1/2
(

1,
m2
π±

m2
K±

,
m2
h1

m2
K±

)
. (2.68)

The light scalar, h1 produced in the decay of the kaon is short-lived with typical lifetime τh1 '

10−13 sec, can travels γcτh1 ' 10−4 m before it decays, assuming it’s energy to be Eh1 ' 1.5 GeV.

Therefore h1 decays inside the detector as the length of the KOTO detector is 3 m . It can promptly
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decay into n1n̄1 or e+e− pair with branching fractions of 0.95 and 0.05, respectively. So we get

Br(K0
L → π0n1n̄1) =

Γ(K0
L → π0h1)× Br(h1 → n1n̄1)

ΓK0
L

,

Br(K0
L → π0e+e−) =

Γ(K0
L → π0h1)× Br(h1 → e+e−)

ΓK0
L

,

(2.69)

where ΓK0
L

= ΓSM
K0
L
+Γ(K0

L → π0n1n̄1)+Γ(K0
L → π0e+e−) with ΓSM

K0
L

= (1.29±0.01)×10−17 GeV.

We get similar expressions for the K± decays. Fig. 2.4 shows the favored parameter space in

(mh1 , (ydh1)21) plane for KOTO anomalous events. We also show the other relevant constraints.

Note that, the non-zero coupling (ydh1)21 can gives rise to the tree-level K0 − K̄0 mixing

mediated through h1. The contribution of this mixing to the KL − KS mass difference can be

expressed as,

∆mK = −2(ydh1)
2
21

m2
h1

f 2
Km

2
K

12mK

[
1− m2

K

(ms +md)2

]
, (2.70)

where, ∆mexp
K = 3.52×10−15 GeV [37]; fK ' 1.23mπ is the kaon decay constant [37]. One needs

(ydh1)21 < 10−8 to avoid this constraint for the mass range mh1 = O(100 − 200) MeV, which is

obviously satisfied in our discussions above.

2.7 MiniBooNE Excess

MiniBooNE experiemnt recently, in 2018, has reported a 4.7σ excess of νe+ ν̄e like events over

the estimated background in the energy range 200 < EQE
ν < 1250 MeV [43]. This was the result

of 15 years of data taking. The total excess events was found to be 460.5± 99.0 corresponding to

12.84× 1020 protons on target in neutrino mode and 11.27× 1020 protons on target in antineutrino

mode. A year after from the announcement, the result was updated with 638± 132.8 electron-like

events (4.8σ) as the reported number of excess events corresponding to 18.75 × 1020 protons on

target in neutrino mode and 11.27 × 1020 protons on target in antineutrino mode [44]. Both of

these are in tension with the simple two-neutrino oscillation mechanism within the standard three
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neutrino scenario of SM.

Several explanation of these excess events can be found in the literature within the context

of dark neutrino mass models using heavy sterile neutrinos and dark gauge bosons [154, 155,

156, 157, 158, 159] and dark sector models with dark scalars [160]. In all such scenarios, it was

considered that the light neutrinos upscatter to a heavy neutrino after coherent scattering off the

nucleus and subsequent decay of the heavy neutrino into a pair of electrons. The neutrino energy

can be reconstructed using the energy and angular distribution of the mediator coming from the

sterile neutrino decay [161]. Note that, the MiniBooNE detector can not distinguish the electron

pair.

Fig. 2.5 shows the Feynman diagram that gives rise to the excess events at the MiniBooNE

detector. Here, the heavy sterile neutrino n2 can be produced from the upscattering process: ν2A→

n2A mediated through the light scalar h1, which is enhanced by∼ A2 as it is a coherent scattering.

The heavy sterile neutrino, n2 then decays into n1 and an on-shell h1, which subsequently decays

into a pair of e+e− with Br(h1) → e+e− ' 5%. We estimate the path length they travel before

decay as ln2 ≤ 10−4 m and lh1 ' 10−4 m, taking the typical energies as, En2 , Eh1 ∼ 1 GeV. Note

that, there is an advantage for the scalar mediator models in comparison to the vector gauge boson

mediated explanations. The parameter space requied for the explanation in the dark gauge boson

models are constrained by CHARM-II data [162], since the scattering cross-section get enhanced

for large neutrino energy. On the other hand, the scattering cross section are much smaller for large

neutrino energy in the scalar models [160].

The total number events that will be observed by the MiniBooNE detector, given both the heavy

neutrino n2 and the light scalar h1 decay promptly, can be written as,

Nevent = fexp

∫ Eνmax

Eνmin

dEνΦ(Eν)

∫ ERmax

ERmin

dER ×
dσ(ER, Eν)

dER
× Br(h1 → e+e−) , (2.71)

where fexp is a factor which depends on the details of the experiment, including the numbers of

protons on target, exposure, effective area of the detector; ER is the recoil energy of the target
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Figure 2.5: The Feynman diagram for the upscattering process νA → nA. This diagram con-
tributes to the cross section which will give rise to the MiniBooNE excess events in our model.

nuclei; Eν is the energy of the incoming neutrino ; and Φ(Eν) is the incoming neutrino flux from

the Booster Neutrino Beam (BNB) line at Fermilab [163]. Therefore, one can define a model

dependent quantity as, fmodel = Nevent/fexp. The differential scattering cross section is given as

follows,

dσ

dER
= [Zfp + (A− Z)fn]2

(ynh1)
2
22

16πE2
ν

(m2
n2

+ 2mAER)(2mA + ER)

(m2
h1

+ 2mAER)2
F 2(ER) , (2.72)

wheremA is the mass of the target nucleus; Z andA−Z are the proton and neutron numbers of the

target nucleus; F (ER) is the nuclear form factor [164, 165]; the factors fp,n are defined as [166]

fp,n
mN

=
∑

q=u,d,s

f
(p,n)
Tq

fq
mq

+
2

27

(
1−

∑
q=u,d,s

f
(p,n)
Tq

) ∑
q=c,b,t

fq
mq

. (2.73)

We take, f(u,d) = (y(u,d)h1)11 and fs,c,b,t = 0. The constants f (p)
Tu

, f (p)
Td
, f

(n)
Tu

and f (n)
Td

are taken to

have the values 0.020, 0.041, 0.0189, and 0.0451, respectively [167, 168, 169, 170, 171].

In Fig. 2.6 we show the allowed range of n2 masses for mh1 = O(100− 200) MeV to generate

the MiniBooNE events given the couplings : (ynh1)22 = 6.1 × 10−2, (yuh1)11 = 5.0 × 10−6 and
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Figure 2.6: The allowed parameter space in the (mh1 ,mn2) plane which gives the desired num-
bers of total events is shown as the blue shaded region.

(ydh1)11 = 5.0× 10−6. Note that the masses of n2 is consistent with the neutrino mass generation

and mixings, as shown in Table. 2.1.

In Fig. 2.7, we show the total cross section versus the incoming neutrino energy for the bench-

mark values: mn2 = 420 MeV and mh1 = 140 MeV. Note that, the cross-section is small at,

Eνµ = 20 GeV [172] the energy scale of the CHARM-II experiment [173, 174, 175], therefore

gives no excess events [160]. If the decay length of the heavy sterile neutrino n2 has decay length

ln2 ≤ 10−4 m, then the scalar mediated process does not produce any excess events [176] in T2K

ND280 [177, 178, 179, 180, 181, 182] and MINERνA [183, 184, 185, 186] experiments. The

model-dependent parameter fmodel, is consistent with other dark gauge bosons [155, 162] or dark

scalar models [160].
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Figure 2.7: The solid blue line shows the corss-section of the upscattering process as a function
of the incoming neutrino energy. We have used the following BP: mn2 = 420 MeV, mh1 =
140 MeV, (ynh1)22 = 6.1× 10−2, (yuh1)11 = 5.0× 10−6, and (ydh1)11 = 5.0× 10−6.

2.8 Discussions

The main focus of this chapter was to present a complete model that can address the issues of

neutrino mass and mixings, and the observed dark matter relic density. We also addressed few re-

cent anomalous experimental results using the framework of this model. And we found a parameter

space, which is allowed by all the current data, can explain all the anomalies simultaneously.

To justify our claim, we choose three benchmark points in the allowed region of the parameter

space and show that they produce the correct observables. The becnhmark points are summarized

in Table. 2.5. For all the benchmark scenarios the following couplings were taken to be fixed:

(ynnh1)11 = 7 × 10−5, (yeh1)11 = 1 × 10−5, (ynh1)22 = 6.1 × 10−2, (yuh1)11 = 5.0 × 10−6,

and (ydh1)11 = 5.0 × 10−6. The observables calculated based on these benchmark values are

summarized in Table. 2.6.
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Parameters BP1 BP2 BP3

mh1(MeV) 130 140 150
mn1(keV) 2 3 2
mn2(MeV) 435 420 440
(yeh1)22 5× 10−4 4.75× 10−4 5.5× 10−4

(yeh1)13 −3.5× 10−4 −6× 10−4 −6.8× 10−4

(yeh1)31 6.8× 10−4 4× 10−4 3.5× 10−4

(ydh1)21 3× 10−13 3.5× 10−13 4× 10−13

Table 2.5: Three BPs are shown, for which we calculate the different observables quantities, and
can account for three anomalies.

Observables BP1 BP2 BP3

Ωn1h
2 0.1 0.1 0.1

∆aµ × 10−9 2.67 2.27 2.86
∆ae × 10−13 −8.43 −8.50 −8.43
Br(K0

L → π0n1n̄1)× 10−9 1.42 1.91 2.47
Br(K0

L → π0e+e−)× 10−11 5.81 7.82 1.01
Nevent (ν + ν̄) 671 644 497

Table 2.6: The observables corresponding to the three BPs.

Therefore the light scalar model studied here appears to be very effective in describing neu-

trino mass and mixing, explaining the dark matter content of the Universe and explaining recent

experimental anomalies. As the experiments gather more data, this model would be probed further.
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3. A SUB-GEV DARK MATTER MODEL: U(1)T3R EXTENSION OF SM*

Weakly interacting massive particles (WIMP) were speculated as to the most promising candi-

date for particle dark matter [28]. But experimental searches, so far, have failed to find any evidence

of WIMP. As a result, there is a recent interest in sub-GeV dark matter candidates. The sub-GeV

dark matters are very interesting as they can evade the current direct detection constraints and can

get the correct relic density (see, for example, [187, 188]) by evading the Planck bound [32]. If we

look at the two lightest flavor sectors of SM, the associated mass scale is O(100) MeV. Therefore,

following the idea of the WIMP miracle, if one connects the new physics of the dark sector to the

light flavor sector of the SM, the dark matter that arises from that new physics will also lie at that

scale. The new physics can also address the Yukawa hierarchy in the light flavor sector. We build

a model by connecting the dark sector to the light flavor sector of SM through dark photon/Higgs

interactions for right-handed SM fermions by adding a new gauge group U(1)T3R to the SM gauge

symmetry. Only the right-handed SM particles are charged under the new gauge symmetry. We

also introduce a pair of left and right-handed fermion charged under the new symmetry and SM

singlet. The Yukawa sector needs dark Higgs insertion, which gets vacuum expectation value

(V = 10 GeV) and breaks the symmetry down to parity under which only the new set of fermions

are charged and are possible dark matter candidates. The masses of all the particles scale as V and

all of them are sub-GeV. One of the most important features of the model is that it has two light

mediators: one light scalar and one light gauge boson. The model satisfies all the current direct de-

tection constraints and can give the correct relic abundance satisfying the Planck bounds. Because

U(1)T3R couples to chiral fermions, it gets qualitatively new constraints compared to the other well

studied U(1) gauge symmetry models. The parameter space is tightly constrained but can satisfy

all the current constraints. A variety of upcoming experiments can probe the open parameter space.

*this chapter is reprinted from “A sub-GeV dark matter model” by B. Dutta, S. Ghosh and J. Kumar, Phys. Rev.
D 100, 075028 (2019); “Contributions to ∆Neff from the dark photon of U(1)T3R” by B. Dutta, S. Ghosh and
J. Kumar, Phys. Rev. D 102 (2020) 1, 015013; “Opportunities for probing U(1)T3R with light mediators” by B.
Dutta, S. Ghosh and J. Kumar, Phys. Rev. D 102 (2020) 7, 075041 published by the American Physical Society under
the terms of the Creative Commons Attribution 4.0 International license.
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The model can also satisfy the recently found new constraints of the anomalous magnetic moment

of the muon [189] and can explain the recent value of B-anomalies processes [190].

The rest of the chapter is organized as follows: In Sec. 3.1, we describe the details of the

model including all possible interaction terms and the UV completion of the model. We describe

various bounds that can put constraints on the parameter space of our model in Sec. 3.2. The direct

detection prospects of our model are described in Sec. 3.3. In Sec. 3.4, we talk about ways in which

we can obtain the correct thermal relic density of the dark matter particles. The recent results of

the flavor violating process, RK(∗) are explained in Sec. 3.5. We conclude in Sec. 3.6.

3.1 Model

In this section we describe the setup of our model in detail. The low energy gauge symmetry

of our model is given by SU(3)C×SU(2)L×U(1)Y×U(1)T3R . The new gauge group U(1)T3R

is not connected to electric charge, defined as Q=T3L+Y . This gauge group was first used in

the context of left-righ symmetric model [191, 192, 193]. In this scenario, only the right-handed

Standard Model (SM) fermions (including a new right-handed neutrino) are charged under the

U(1)T3R gauge group and all other SM fields have their usual charges under the SM gauge groups.

We add three more new matter fields, a scalar φ, and a left and right-handed fermion pair ηL and

ηR, which are SM singlets and only charged under U(1)T3R .

For simplicity, we assume that only one charged lepton, one up-type quark, one down-type

quark, and one neutrino (all right-handed) are charged under U(1)T3R gauge group. This is neces-

sary to cancel all the gauge and gravitational anomalies, though they need not all be in the same

generation. We further assume that the up-type quark state is a linear combination of all up-type

mass eigenstates while the charged lepton and down-type quark states are mass eigenstates. This

was shown technicaly natural in Ref. [99]. We get tight constraints from cosmological observa-

tions [1] and atomic parity violation experiments [194], if we take electron as the charged lepton.

Therefore we take the right handed muon as the lepton charged under U(1)T3R . We also assume

that the right-handed u- and d-quarks are charged under U(1)T3R to avoid tight constraints from

the Kaon decay process if we take the second generation right handed quarks. We summarize all

36



fields with non-trivial charges under U(1)T3R in Table 3.1.

field uR dR µR νR ηL ηR φ

qT3R -2 2 2 -2 1 -1 2

Table 3.1: The charges of the fields which transform under U(1)T3R. For the fermionic fields,
we list the charges of the left-handed component of the Weyl spinor.

The non-renormalizable low energy interaction Lagrangian of the model can be written as,

L = −λu
Λ
H̃φ∗Q̄LuR −

λd
Λ
HφQ̄LdR −

λν
Λ
H̃φ∗L̄LνR −

λµ
Λ
HφL̄LµR −mDη̄RηL

−1

2
λLφη̄

c
LηL −

1

2
λRφ

∗η̄cRηR − µ2
φφ
∗φ− λφ(φ∗φ)2 +H.c., (3.1)

where QL and LL are the left-handed SM quark and lepton doublet, respectively; H is the SM

Higgs doublet; and H̃=iτ2H
∗.

The scalar field φ obtains a vev, V=(−µ2
φ/2λφ)1/2 and breaks the U(1)T3R down to a Z2

symmetry. In this process we also get a physical scalar φ′, which we call a dark Higgs, which

comes from the expansion, φ = V + φ′/
√

2. All of the SM fields and φ′ are even under the Z2

symmetry while only ηL,R are odd. The mass matrix of η has both Dirac and Majorana mass terms.

We assume that the Dirac mass, mD to be very small compared to the Majorana mass, mM . We

further assume that, λL = λR ≡ λM . Therefore, the Majorana masses for the left-handed and the

right-handed fields are equal, with mM = λLV = λRV = (λMV ). This gives us two physical

Majorana fermions η1 and η2, with masses m1 = mM −mD and m2 = mM + mD respectively.
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The states are expressed as,

η1 =
1√
2

 ηL − ηcR

ηcL − ηR

 ,

η2 =
1√
2

 ηL + ηcR

ηcL + ηR

 , (3.2)

Note that, the mass spliting between them is δ = 2mD, which is very small as mD � mM . The

small mD also make sure that the couplings of φ′ to η1,2 are proportional to the mass m1,2. The

lighter one of the two, η1 is the dark matter candidate in our model.

The low energy effective Lagrangian, below the SM scale for the physical fermions is given as

follows,

L = −muūLuR −mdd̄LdR −mνDν̄LνR −mµµ̄LµR −
1

2
m1η̄1η1 −

1

2
m2η̄2η2

− mu

V
√

2
ūLuRφ

′ − md

V
√

2
d̄LdRφ

′ − mνD

V
√

2
ν̄LνRφ

′ − mµ

V
√

2
µ̄LµRφ

′

− 1

2
√

2

m1

V
η̄1η1φ

′ − 1

2
√

2

m2

V
η̄2η2φ

′ +H.c., (3.3)

The neutrino mass matrix for νL,R contains a Dirac mass term, mνD , which is proportional to

V , and contains a Majorana mass for νR which is proportional to V 2/Λ, where Λ is some high-

energy scale. We expect the Majorana mass to be less than V . The diagonalization of the squared

mass matrix gives two mass eigenstates, νA and νS . We will assume small mixing between them

such that the active neutrino νA is mostly νL, with only a small mixing of νR.

The new gauge sector interactions can be explored by defining the covariant derivative as,

DµI = ∂µI + i
g

2
τaWµa + ig′Y Bµ + i

gT3R
2
QT3RA

′
µ. (3.4)

where g, g′ and gT3R are the coupling constant corresponding to the SU(2)L, U(1)Y and U(1)T3R

groups respectively. Wµ, Bµ and A′µ are the gauge bosons of the SU(2)L, U(1)Y and U(1)T3R
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groups respectively. The mass of the dark photon, A′, comes from |Dµφ|2 as m2
A′ = 2g2T3RV

2. The

interactions of the gauge boson A′ with the fermions and dark Higgs are then given by,

Lgauge =
mA′

4
√

2V
A′µ(η̄1γ

µη2 − η̄2γµη1) +
m2
A′

V
√

2
φ′A′µA

′µ +
m2
A′

4V 2
φ′φ′A′µA

′µ

− mA′

2
√

2V
jµA′A

′
µ. (3.5)

where the interaction current for the SM fermions is defined as, jµA′ =
∑
f

Qf
T3R
f̄γµ

(
1+γ5
2

)
f . Note

that the η fields have only off-diagonal vector interaction with A′.

(a) (b)

Figure 3.1: The one loop diagrams that give rise to the kinetic mixing parameters.

In addition to the interactions given in Eq. 3.5, the A′ has vector couplings to all other SM

fermions, with couplings given as , εe, where ε is a kinetic mixing parameter. The kinetic mixing

can arise from one loop diagrams shown in Fig. 3.1, where the right handed fermions charged

under U(1)T3R run inside the loop.

Note that, all the SM fermion masses, dark matter masses, the dark photon and the dark Higgs

masses are proportional to the symmetry breaking scale V and therefore their masses should be

less than V . A suitable choice to consider is, V = O(1) GeV, which would naturally give rise to

sub GeV masses for all the particles with O(1) couplings, but would be ruled out by the current

data. A more suitable choice is V = 10 GeV, leading to couplings which are moderately smaller

than O(1).
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3.1.1 A′ decays

The tree-level coupling strength of the dark photon to the right handed SM fermions are given

as,

gT3R =
mA′√

2V
. (3.6)

where the symmetry breaking scale V can be treated as a free parameter. We show the relation

between gT3R and mA′ for various choices of V in Fig. 3.2. The dark photon has vector coupling

to the other SM fermions with coupling strenght given by εe, where ε = gT3R
√
αem/4π3. We

consider the kintic mixing paramter, ε as a free parameter in our study.

V=1 GeV

V=10 GeV

V=30 GeV

10-9 10-6 0.001 1
10-12
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g
T
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Figure 3.2: The relation between the coupling constant gT3R of U(1)T3R and the gauge boson
mass mA′ is shown for three different values of V = 1, 10, 30 GeV. For phenomenological study
we choose the value V = 10 GeV in rest of the chapter.

To avoid the bounds from BaBar [6, 7], we take mA′ ≤ 2mµ, therefore the possible final
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states of A′ decays are η1,2η2,1, νν, and e+e−, of which only the last one is visible. If mA′ <

2me, then there is no visible decay channel as the decay A′ → γγ is forbidden by the Landau-

Yang theorem [195, 196]. In thta case, if either the η1η2 or νSνS final states are kinematically

allowed, then those tree-level decays will dominate the branching fraction. But if neither of them

are kinematically allowed, then the possible final states are νSνA, νAνA but they are suppressed by

the neutrino mixing angle. The expressions for the related decay widths are,

ΓA
′

η1η2
=

m3
A′

96πV 2

(
1−

4m2
η

m2
A′

)1/2(
1 +

2m2
η

m2
A′

)
,

ΓA
′

νSνS
=

m3
A′

12πV 2

(
1−

4m2
νS

m2
A′

)3/2

,

ΓA
′

e+e− =
ε2αemmA′

3

(
1− 4m2

e

m2
A′

)1/2(
1 +

2m2
e

m2
A′

)
. (3.7)

3.1.2 φ′ decays

The φ′ can decay to visible final states such as µ+µ− and γγ, which is via one loop, and the

invisible mode such as ηη, νν, A′A′. Note that, decays to νS or A′ can also produce visible energy,

if those states in eventually decay to SM particles. Ifmφ′ > 2mπ then tree-level decays to hadronic

states are also possible, but the corresponding branching fraction is negligible compared to µ+µ−,

because the coupling to first-generation quarks is so small. Also, if mφ′ > 2mA′ , then φ′ can decay

promptly to A′ and if this decay channel is dominant, then φ′ production in a beam experiment is
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essentially same as A′ production. The related expressions for the decay widths are given by,

Γφ
′

A′A′ =
m3
φ′

128πV 2

(
1− 4m2

A′

m2
φ′

)1/2(
1 + 12

m4
A′

m4
φ′
− 4

m2
A′

m2
φ′

)
,

Γφ
′

µ+µ− =
m2
µmφ′

16πV 2

(
1−

4m2
µ

m2
φ′

)3/2

,

Γφ
′

ηiηi
=

m2
ηi
mφ′

32πV 2

(
1−

4m2
ηi

m2
φ′

)3/2

,

Γφ
′

νSνA
=

m2
νD
mφ′

16πV 2

(
1−

m2
νS

m2
φ′

)2

,

Γφ
′

γγ =
α2
emm

4
µ

8π3mφ′V 2

[
1 +

(
1 +

4m2
µ

m2
φ′

)(
sin−1

mφ′

2mµ

)2
]2
,

(3.8)

where the decay width Γφ
′
γγ is calculated under the assumption that mφ′ < 2mµ, otherwise, this

decay is negligible compared to the µ+µ− channel. φ′ will always decay very promptly.

3.1.3 νS decays

If the mass of the sterile neutrino is greater than 2mµ then it will decay rapidly via the process

νS → µ+µ−νA, at tree level. On the other hand, if mνS < 2mµ, the sterile neutrino νS can decay

via the process νS → νAγγ, with a rate

ΓνS ∝ α2
em

m7
νS
m2
νD

m4
φ′V

4
. (3.9)

We estimate the lifetime as τνS ∼ O(1013) sec for V = 10 GeV, mφ′ ∼ 100 MeV, mνS =

10 MeV,mνD = 10−3 MeV. Therefore they can be considered as stable particles for the Laboratory

experiments. Another possible decay channel is νS → νAγ, through a transition dipole interaction,

but this process arises at two loop level and is therefore highly suppressed.
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3.1.4 Longitudinal polarization of A′

As U(1)T3R has chiral couplings to the fermions, the tree level production cross section of the

longitudinal mode of A′ can be enhanced. Therefore we can get qualitatively new constraints for

U(1)T3R compared to other well studied U(1) gauge groups such as such as U(1)B−L, U(1)Li−Lj ,

U(1)X [197, 198, 199, 200, 201]. Note that the enhancement entirely comes from the axial part

of the chiral interactions. The pure vector part of the interactions vanishes identically for the

longitudinal mode, by Ward identity. Therefore the A′ production cross section is only enhanced

if the A′ is produced at tree-level. If A′ is produced through kinetic mixing, then the contribution

from longitudinal polarization will again vanish identically due to the Ward Identity as this is pure

vector interaction.

The longitudinal polarization vector is proportional to EA′/gT3RV and this yields an enhance-

ment to the matrix element for the production of the longitudinal mode at high-boost. The matrix

element for such processes is similar to that for production of the Goldstone boson of U(1)T3R

symmetry-breaking, with a coupling to fermions which goes as mf/
√

2V , according to the Gold-

stone Equivalence theorem. For small mA′ limit, the coupling of a SM fermion to the longitudi-

nal polarization mode is enhanced with respect to the transverse polarization modes by a factor

mf/mA′ . But note that, this enhancement is restricted by perturbative unitarity, so can not be

arbitrarily large. Our scenario is perturbative as we have mf < V = 10 GeV.

As the production cross section of the longitudinal mode of A′ can be approximated as the

production corss section of a pseudo scalar with couplings proportional to mf/
√

2V , one can see

that the most dramatic effect will be on production of the A′ through a coupling to muons as the

coupling to u − /d−quarks is suppressed by close to two orders of magnitude, compared to the

coupling to muons. Therefore the enhancement in the production will affect the cosmological pro-

duction (via µ+µ− → γA′), production in supernovae (which have non-negligible muon content),

and from future experiments involving the invisible decays of light A′ coupling directly to muons,

such as NA64µ and LDMX-M3.
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3.1.5 UV completion

All the fermion mass terms were generated from a non-renormalizable low energy effective

lagrangian defined below the scale of electroweak symmetry breaking, of the form (1/Λ)Hφf̄f

due to the U(1)T3R assignments. Therefore there should be some UV completion of the model.

One such possibility is the universal seesaw mechanism [202, 203, 204, 205, 206, 207, 208, 209].

We add a set of heavy fermions χu,d,µ,ν which are singlets under SU(2)L and U(1)T3R, and have

same quantum numbers under SU(3)C and U(1)Y as u, d, µ and ν, respectively. They mix with the

fermions charged under U(1)T3R, generating the mass terms and couplings of the light fermions

through a high-scale seesaw mechanism. We summarize all the particles in Table. 3.2.

Particle SU(3)C × SU(2)L × U(1)Y × U(1)T3R
χuL (3, 1, 2/3, 0)
χdL (3, 1,−1/3, 0)
χµL (1, 1,−1, 0)
χνL (1, 1, 0, 0)
χcuR (3, 1,−2/3, 0)
χcdR (3, 1, 1/3, 0)
χcµR (1, 1, 1, 0)
χcνR (1, 1, 0, 0)
qL (3, 2, 1/6, 0)
ucR (3, 1,−2/3,−2)
dcR (3, 1, 1/3, 2)
lL (1, 2,−1/2, 0)
µcR (1, 1, 1, 2)
νcR (1, 1, 0,−2)
ηL (1, 1, 0, 1)
ηcR (1, 1, 0,−1)
H (1, 2, 1/2, 0)
φ (1, 1, 0, 2)

Table 3.2: The charges of the fields under the gauge groups of the model. For the fermionic
fields, we have shown the charges of the left-handed component of each Weyl spinor.
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The renormalizable Lagrangian of the UV complete model at high scale can be written as,

−LY = λLuq̄
′
Lχ
′
uRH̃ + λLdq̄

′
Lχ
′
dRH + λLν l̄

′
Lχ
′
νRH̃ + λLl l̄

′
Lχ
′
µRH

+λRuχ̄
′
uLu

′
Rφ
∗ + λRdχ̄

′
dLd
′
Rφ+ λRνχ̄

′
νLν

′
Rφ
∗ + λRlχ̄

′
µLµ

′
Rφ

+mχuχ̄
′
uLχuR +mχdχ̄

′
dLχdR +mχν χ̄

′
νLχνR +mχµχ̄

′
µLχµR

+mDη̄RηL +
1

2
ληLη̄

c
LηLφ+

1

2
ληRη̄

c
RηRφ

∗ +H.c. , (3.10)

the fermionic mass matrix in the flavor basis is given by,

Mf =

 0
λLfv√

2

λRfV mχ′f

 . (3.11)

We diagonalize the above mass matrix using the seesaw mechanism, which gives two mass eigen-

states, the lightest one is the SM fermion while the heavier one is the physical vector-like fermion.

The mass term for the SM fermion is given by,

mf =
λLfλRfvV√

2mχ′f

, (3.12)

and the physical vector-like fermion mass is

mχf ' mχ′f
. (3.13)

The physical mass eigenstates can be expressed in terms of the flavor state as follows,

 fL,R

χfL,R

 =

 cos θfL,R sin θfL,R

− sin θfL,R cos θfL,R


 f ′L,R

χf ′L,R

 , (3.14)
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where θfL,R are the mixing angles. In the high-scale seesaw limit, mχf � λLfv/2 we get,

θfL ' tan−1

[
λLfv√
2mχf

]
, (3.15)

and if mχf � λRfV then,

θfR ' tan−1
[
λRfV

mχf

]
. (3.16)

Note also that the neutrino mass matrix is more complicated 3 × 3 matrix since they can also

get Majorana maases as both ν ′R and χ′ν are uncharged under the unbroken SM gauge groups.

3.2 Constraints

In this section, we discuss various constraints for our model. The parameter space of our model

is tightly constrained by the current experimental bounds. But we have enough open parameter

space. Some of these open parameter space can be probed by future/upcoming experiments. Still

there is a small allowed region which even these upcoming experiments can not probe. We briefly

discuss our strategies for using the new datasets to probe the scenario. We broadly divide the

constraints in few categories and discuss them separately.

3.2.1 Corrections to g − 2

There is a long standing 3.7σ tension between the theoretical predictions [210, 211, 212, 213,

100, 101, 102, 214, 215, 103, 216, 217, 218, 219, 220, 221, 222, 223, 224, 109, 225, 226] and

the experimental results [36]. Recent data from Fermilab [189] combined with the BNL data [36]

increased the tension to to 4.2 σ level. This is given by,

∆aµ = aexp
µ − ath

µ = (2.52± 0.59)× 10−9 (3.17)

The muon anomalous magnetic moment receives corrections from one loop diagrams in which

either φ′ or A′ run in the loop as shown in Fig. 3.3. The correction to aµ = (gµ − 2)/2 due to
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one-loop diagrams involving A′ and φ′ is given by [131]

∆aµ =
m4
µ

16π2V 2

∫ 1

0

dx
(1− x)2(1 + x)

(1− x)2m2
µ + xm2

φ′
+

m2
µ

32π2V 2

∫ 1

0

dx
2x(1− x)(x− 2)m2

A′ − 2x3m2
µ

x2m2
µ + (1− x)m2

A′
.

(3.18)

Figure 3.3: One-loop Feynman diagrams mediated through φ′/A′ that contribute to gµ-2.

Note that, the contribution to gµ − 2 from φ′ mediated diagram is always positive, while the

contribution from A′ mediated diagram is always negative, as the A′ has both vector and axial

couplings to the muon. These contributions must cancel each other to within O(1%) in order

for the total correction to gµ − 2 to be consistent with experimental result. There is a region of

parameter space where we can achieve this cancellation. The contributions from the A′ mediated

is almost constant while φ′ mediated diagram depends on the φ′ mass. We find a narrow band in

the mφ′ parameter between 70-80 MeV, where this cancellation happens. We show this region of

parameter space in Fig. 3.6 along with other bounds.
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3.2.2 Cosmological and Astrophysical Constraints

We summarize the various constraints on our model arising from the cosmological and astro-

physical observations. As mentioned in the previous , due to the chiral nature of A′ couplings, the

tree level production cross section of the longitudinal mode of A′ gets an enhancement. This affect

the cosmological production of A′ in the early Universe. On can not go to the arbitrarily small

coupling limit to avoid the constraints arising from the cosmological observations. This leads to

tight constraints from CMB measurements [32]. If we assume that the Universe reheats to a tem-

perature ≥ 100 MeV, then region of parameter space given by mA′ < 1 MeV for V ∼ O(10) GeV

are ruled out, as they would lead to a number of effective neutrinos (Neff ) [1] which is inconsistent

with CMB measurements [32]. Note that, this bound can be circumvented if the Universe reheats

to a lower temperature.

Bounds on supernovae cooling [4, 5] can also restrict the parameter space. This is also impacted

by the enhancement in the tree level production cross section of the longitudinal mode of A′. The

temperature of supernovae is large enough that a non-negligible population of muons is produced,

and they couple to φ′ and A′ at tree level, which decay to invisible final states, then there will be

an anomalous rate of supernova cooling which is ruled out by observations of SN1987A. These

supernova cooling bounds would also rule out mφ′ ≤ 200 MeV if the decays φ′ → ηη, νSνS

are kinematically allowed. White dwarf (WD) cooling constraints can be neglected if mη,mνs ≥

0.1 MeV, as in this case they will be in equilibrium with the plasmons inside the WD and can

not escape. The other possible final states e+e− and νAνA are either not allowed kinematically or

mixing angle suppressed [227]. We also show related bounds from solar cooling [2, 3] and cooling

of stars in Globular clusters [2].

We show all the bounds arising from the above cosmological and astrophysical observations in

Fig. 3.4 on the (mA′ ,mφ′) parameter space, in the case where A′ and φ′ decay invisibly. Note that,

all the astrophysical bounds can be evaded by assuming dark photon to be chameleon-type field

with its mass depending on the environmental matter density [228, 229, 230, 2].
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Figure 3.4: Bounds from cosmological and astrophysical observables, where we assume that the
A′ and φ′ decay to invisible states: constraints on ∆Neff (green region) [1], on excess cooling of
stars [2, 3] and globular clusters (gray region) [2], and excess cooling of supernovae (light green
region) [4, 5].

3.2.3 Visible Decays at Displaced Detectors

One important strategy to probe the new light mediators is to produce them at a proton collider,

fixed-target, or beam dump experiment and searching for visible decays of this mediator at a distant

detector. The light mediators have to be long-lived enough and decay to visible final states to be

detected by these detectors. The φ′ of our model, which decays rapidly hence has a short lifetime,

can not produce an appreciable number of particles to reach the detector. Therefore they can not be

searched for in these displaced detectors. However, if A′ dominantly decays e+e− through kinetic

mixing, then the decay length may be long enough for the decay to occur within the detector.

The dominant production mechanism of A′ are p-bremsstrahlung and meson decay, where
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Figure 3.5: Shaded regions represent excluded region of parameter space by current laboratory
experiments, assuming that A′ and φ′ decay dominantly to SM particles: BaBar [6, 7, 8], E137 [9,
10, 11], Orsay [12, 8], U70/NuCal [13, 12, 8] and from fifth force experiments [14, 2].

the A′ couples at tree-level to u- and d-quarks. Note that, visible decays are only possible for

mA′ > 1 MeV, the enhancement to the production rate of the longitudinal polarization is minimal

and can be neglected. Though the production is at tree level, A′ decays at one-loop through kinetic

mixing. Therefore the allowed parameter space of our model can be estimated by considering

the estimated sensitivity of these experiments to models where A′ only couples to the SM via

kinetic mixing, but with the number of events enhanced by the factor (π/αemf)2, to account for

the fact thatA′ production is a tree-level process, where, f is the factor by which the kinetic mixing

parameter exceeds that obtained only from one-loop diagrams with SM fermions in the loop.

The sensitivity curve of these experiments have a ceiling, above which theA′ decays too rapidly

to reach the detectors, and a floor, below which the coupling is too weak for enough A′ to be pro-
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duced. To get visible decays of A′, we must have mA′ > 1 MeV; taking V = 10 GeV, we find that

we must have gT3R ≥ 10−4. We also assume that kinetic mixing is generated at one-loop only by

SM fermions (that is, f = 1). The parameter space of our model is constrained by the experiments

such as, E137 [9, 10, 11], Orsay [12, 8], U70/NuCal [13, 12, 8]. Future/upcoming experiments

such as FASER, FASER-2 [231, 232, 233, 234, 15], SHiP [235, 236] and SeaQuest [16, 237]

can project bounds on the parameter space. Electron beam dump experiments can also put con-

straints on our model [238], where one-loop processes can result in the production of either A′

(kinetic-mixing) or φ′ (Primakoff production), with subsequent one-loop decays to SM particles at

a displaced detector. In particular, BaBar [6, 7] provides tight constraints on the regions of param-

eter space where e+e− → µ+µ−(A′, φ′ → µ+µ−) is kinematically accessible. We also consider

the bounds coming from the fifth force searches experiments, [14]. They can put tight constraints

in the regions of parameter space where φ′ or A′ are extremely light.

We show all the constraints on our model in the (mA′ ,mφ′)-plane in Fig. 3.5, coming from the

existing experimental data assuming that A′, φ′ predominantly decay to SM particles. In Fig. 3.6,

we show the projections on the parameter space from the upcoming experiments in the region of

parameter space allowed by all the current experiments.

3.2.4 Visible and Invisible Decays at Nearby Detectors

In this subsection, we consider the bounds coming from the experiments with nearby detectors.

If A′ predominantly decays to invisible final states, then the Crystal Barrel (CB) [22, 23] detector

can give constraints on mA′ from the measurements of the branching ration of the process, π0 →

γA′. The bounds on this branching ratio from CB is [22, 23],

Br(π0 → γA′) ≤ 2.8× 10−4, mA′ ≤ 65 MeV, (3.19)

and,

Br(π0 → γA′) ≤ 6.0× 10−5, 65 MeV ≤ mA′ ≤ 125 MeV, (3.20)
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Figure 3.6: Shown are the sensitivities of upcoming laboratory experiments assuming A′, φ′ de-
cay visibly at displaced detectors: FASER [15] (purple region), FASER 2/SHiP [15] (dark green
region), and SeaQuest [16] (light green region). The constraints from current laboratory experi-
ments are shown by light gray region, reproduced from Fig. 3.5. The blue band shows the region
of parameter space where the gµ − 2 is consistent with the recent observations.

The expression for this branching fraction for our model is given by

Br(π0 → γA′) =
m2
A′

4παV 2

(
1− m2

A′

m2
π0

)3

(3.21)

Therefore the region of paramter space, 55 MeV < mA′ < 120 MeV is ruled out by CB.

The other experiments we considered are the Proposed detectors such as NA64µ [24, 25] and

LDMX-M3 [26, 27] (a proposed muon beam version of LDMX [239]) that can probe this scenario

in the case where either A′ or φ′ has a significant decay rate to invisible states. In the NA64µ

experiment a muon beam will be collided with a target, and interactions with missing energy will
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Figure 3.7: Shaded regions represent excluded region of parameter space by current labora-
tory experiments, assuming that A′ and φ′ decay dominantly to invisible particles: included are
bounds from COHERENT [17, 18, 19, 20, 21](light blue) and Crystal Barrels [22, 23] (light pur-
ple) experiments.

be searched for. The LDMX-M3 will also be a similar type experiment. Both of them can probe

the mφ′ parameter space if φ′ decays dominantly to invisible final states. NA64µ can probe muon-

scalar couplings ∼ O(10−5), largely independent of the scalar mass [24]. The coupling of φ′ to

muons isO(10−2) in our model, implying that this scenario can be probed by NA64µ for any mφ′ ,

provided the branching fraction to invisible states is Br(invisible) > 10−6. In a similar way,

LDMX-M3 Phase 1 will probe any mφ′ , provided Br(invisible) > 10−4, while Phase 2 will have

a greater sensitivity than NA64µ [27].

In our model, the decay φ′ → γγ is one-loop suppressed, whereas the decays φ′ → νSνA, ηη

occur at tree-level.Therefore the invisible decays will dominate if kinematically allowed. Even

if the decay φ′ → µ+µ− is kinematically allowed, the invisible decays will still have a branching
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fraction of at leastO(10−4), providedmη,νS > 1 MeV which is enough to be probed at these exper-

iments. The sensitivity to mA′ parameter space is roughly similar for both NA64µ and LDMX-M3.

Even arbitrarily light A′ can not escape these search as the longitudinal mode couples to muons

approximately the same as a pseudoscalar with coupling ∼ O(10−2). Therefore, NA64µ and

LDMX-M3 will be able to probe the entire parameter space, provided mA′,φ′ > 2mη or 2νS . Even

if the ηη and νSνS final states are not kinematically allowed for A′ decay, and the dominant decay

channel is is e+e− final states. NA64µ and LDMX-M3 can still probe if the decay length of the A′

is long enough that a significant number of A′ leave the detector without decaying. We show the

CB constraint in Fig. 3.7 and show the projected bounds of NA64µ and LDMX-M3 in Fig. 3.8.

3.2.5 Dark Matter and Sterile Neutrino Scattering at Displaced Detectors

In this subsection we consider the neutrino experiments which can be complimentary to the

beam dump experiments, as such they probe the appearance of dark matter/sterile neutrinos at the

detector. There are a variety of stopped pion based experiments e.g., COHERENT [17, 18, 19,

20, 21], CCM [240, 241], JSNS2 [242, 243, 244, 245, 246], etc that fall into this category. These

experiments produce neutrinos from a proton beam hitting a target, and search for the neutral cur-

rent scattering of these neutrinos at a distant detector. Among them, the ongoing COHERENT and

CCM experiments are CEνNS [247, 248] experiments. A large amount of photons from proton,

electron bremsstrahlung and meson decays [249] are produced in these experiments, which can

then produce A′. If the decays A′ → ηη, νSνS are kinematically allowed, then they will occur

promptly and dominate the A′ branching fraction and can scatter off the nuclei of the target ma-

terial, which can then be probed. However, neutrinos coming from pion and muon decays can

produce background which can mimic the dark matter/sterile neutrino signlas. However one can

extract the dark matter signal from the neutrino background by utilizing the pulsed nature of the

beam and the timing and the energy spectra of the recoiling nucleus [250]. This idea was used in

details in [249] to get bounds and we can rescale their result for our purpose.

Recently, the COHERENT experiment has observed 6.7σ evidences of CEνNS type events us-

ing CsI detector [17] while previously they found a 3.8σ excess using LAr [21] detector. Moreover,
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Figure 3.8: Shown are the sensitivities of upcoming laboratory experiments assuming A′, φ′

decay to invisible particles: NA64µ [24, 25], and LDMX-M3 [26, 27] (light blue region). The
constraints from current laboratory experiments are shown by light gray region, reproduced from
Fig. 3.7.

the CSI-data shows some excess events at ∼ 2.4 − 3σ confidence level for mA′ ≤ 100 MeV as-

suming the A′ decays promptly to dark matter or sterile neutrino (in this model) [250]. We simply

rescale the limits found in [249] to get the related bounds on the parameter space of our model. We

also find a benchmark which can explain the excess events.

In our scenario, theA′ is produced from the tree level couplings to u- or d-quarks. It then decays

to ηη or νSνS final states, which scatters off the nuclei of the target material by the process,νs/ηi +

N → νs/ηj + N mediated by either A′ or φ′, and generate nuclear recoil to be detected by the

detector. Therefore the event rate is proportional to g6T3R, two powers of the coupling of A′ to dark

matter (from the squared scattering matrix element) and four powers of the coupling of the A′ to

first generation quarks (two from the squared scattering matrix element, and two from the squared

55



A′ production matrix element). To do the rescalings of the result of [249], we relate our event rate

with that of [249] by assuming mη/mA′ ,mνS/mA′ = 1/3. If the dark matter/sterile scasttering is

mediated byA′, we then find that gT3R ∼ 0.002 can reproduced the COHERENT excess, following

[250]. This corresponds to mA′ ∼ 30 MeV for our model and interestingly this value is not ruled

out by any other laboratory based experiment. The dark photon mass parameter above 30 MeV

is ruled out COHERENT data. Note that, if the dark matter/sterile scattering mediates through

φ′, then we get an additional suppression factor g−4T3Rm
2
ηm

2
u,d,e/2V

4. This still rules out mA′ >

30 MeV. In Fig. 3.8, we show the limits on the A′ mass parameter from COHERENT together with

bounds from other laboratory based experiments where the final states are dominantly invisible.

3.2.6 Non Standard Interactions for Active Neutrinos

The non-standard interactions of active neutrinos with nuclei mediated by A′ and φ′, assuming

the momentum transfer to be small compared to mediators mass, can be expressed as dimension-6

effective operators as,

OA′ =
sin2 θ

2V 2
(ν̄Aγ

µPLνA)(q̄γµPRq),

Oφ′ =
m2
q sin θ

2V 2m2
φ′

(ν̄APLνA)(q̄PRq), (3.22)

where θ is the active-sterile neutrino mixing angle. We consider the constraints on these interac-

tions found in [251] by considering all the NSIs from a large set at the same time. Current data

bounds the coefficients of these operators to be ≤ O(10−5) GeV−2 [251]. And the bounds on the

mixing angles are,

sinθ ≤ O(10−5) (3.23)

for OA′ [251]. And for Oφ′ it is [251]

sin θ ≤
[
O(10−3)

] ( mφ′

5MeV

)2
, (3.24)
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Future experiments such as DUNE [252, 253, 254, 255, 256, 257], Hyper-K [258, 259, 260, 261,

262, 263] etc. can probe values of the mixing angles one order of magnitude smaller.
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Type of
experiments

Name of the
experiment Production of A′/φ′ Final states Results

Electron
beam dump
experiments

E137, Orsay

A′ : electron
bremsstrahlung
through kinetic

mixing at one-loop,
φ′ : Primakoff
production at

one-loop.

Both A′, φ′ decay
predominantly
to visible SM
states e+e−.
φ′ decay is

rapid.

E137 rules out :
1 MeV ≤ mA′

≤ 20 MeV,
1 MeV≤ mφ′

≤ 65 MeV.

Orsay rules out :
1 MeV ≤ mA′

≤ 40 MeV.

Proton
beam dump
experiments

U70/NuCal,
FASER

SHiP, SeaQuest
(displaced
detector)

p-bremsstrahlung
or meson decay

at tree level

A′ → e+e−

through kinetic
mixing.
φ′ → γγ

φ′ decays rapidly
hence cannot

be probed.

U70/NuCal
rules out :

1 MeV ≤ mA′

≤ 93 MeV.

FASER can probe :
1 MeV ≤ mA′

≤ 140 MeV.

FASER 2/SHiP
can probe :

1 MeV ≤ mA′

≤ 161 MeV.

SeaQuest
can probe :

1 MeV ≤ mA′

≤ 180 MeV.

e+e− collider
experiments BaBar, Belle-II e+e− → µ+µ− +A′/φ′,

e+e− → γA′
4µ final states,
γ + invisible

BaBar
rules out for

(4µ final states) :
200 MeV ≤ mA′

≤ 1.3 GeV,
290 MeV ≤ mφ′

≤ 3 GeV.

Belle-II can probe
(γ + invisible):
mA′ ≥ 30 MeV.

p̄p collider
experiments Crystal Barrel p̄p→ π0π0π0,

π0 → γA′
invisible states

The parameter
space is ruled

out for:
55 MeV < mA′

< 120 MeV
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Type of
experiments

Name of the
experiment Production of A′/φ′ Final states Results

Fifth force
searches

experiments

Precision tests
of gravitational

Casimir, and
van der Waals

forces

Relevant for
extremely

light A′/φ′.
For mA′ → 0

limit, the
Longitudinal mode

will contribute.

n/a

The parameter
space is ruled

out for:
mA′/mφ′ ≤ 1 eV.

Astrophysical
probes

SN1987A,
Cooling of Sun

and
globular clusters,

White dwarfs

γ + µ→ A′ + µ,
µ+ p→ µ+ p+A′,

µ+µ− → A′

at tree level,
e+e− → A′ through

kinetic mixing.

A′ → ηη, νsνs
(if decays to

νν, e+e− then can
not escape),
φ′ → ηη, νν

SN1987A
rules out :
mA′ ,mφ′

≤ 200 MeV.

Stellar cooling
rules out:
mA′ ,mφ′

≤ 1 MeV.

WD constraints
are negligible

if mη,mνs

≥ 0.1 MeV.

Cosmological
probes ∆Neff value

µ+µ− → γA′,
production of

longitudinal mode
get enhanced
due to axial

vector coupling.

invisible states

If the Universe
reheat at

a temperature
≥ 100 MeV,

mA′ ,mφ′ ≤ 1 MeV
is ruled out.

(Can be evaded if
reheat occurs at a

lower temperature.)

Muon beam
experiments

NA64µ,
LDMX-M3

(nearby detectors)
µ−bremsstrahlung

Can probe when
A′/φ′ has a

significant decay rate
to invisible states

such as νν, ηη

NA64µ, LDMX-M3

can probe
the entire

parameter space
if mA′,φ′ > 2mη,νs

with
Br(invisible)> 10−4,

even if
A′/φ′ → µ+µ−

is allowed
still

Br(invisible)> 10−4

provided
mη,νs > 1 MeV.
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Type of
experiments

Name of the
experiment Production of A′/φ′ Final states Results

Neutrino
experiments

COHERENT,
CCM
JSNS2

p/e- bremsstrahlung,
meson decay

A′ → νsνs/ηη,
νs/ηi +N → νs/ηj +N

generate nuclear recoil,
νs/ηi + e→ νs/ηj + e
generate electron recoil

Can be probed by
looking at

nuclear/electron recoil.

mA′ ∼ 30 MeV can
explain the

2.4-3σ excess found
by COHERENT,
mA′ ≥ 30 MeV

is ruled out.

CCM and JSNS2

will improve
the sensitivity.

Table 3.3: A summary of the various experiments/probes considered here, their methods for pro-
ducing and detecting the mediating particles, and the resulting sensitivities.

3.3 Direct Detection

In this section, we discuss about the direct detection prospects of our model and where does it

stand based on the current constraints. The direct detection experiments play vital roles in deter-

mining the presence of the dark matter in the Universe, where the dark matter particles hit the target

material of the detector. In the traditional direct detection experiments, the nuclear recoil energy is

detected as the detected energy, which does not work for sub-GeV dark matters as they loose their

sensitivity. Several new techniques have been considered to probe the sub-GeV dark matter direct

detection. Three such experiment can provide constraints for the sub-GeV dark matter:

1. CRESST-III: constrains the elastic spin-independent dark matter-nucleon scattering cross

section to be less than σSI ∼ 10−35cm2 for m ∼ 200 MeV [264].

2. XENON1T: cosmic ray boosted dark matter can deposit enough recoil energy to be detected

and can give bounds σSI ≤ O(10−29 − 10−30) cm2 or σSI ≥ O(10−28) cm2.

3. CDEX-1B: this experiment utilize the Migdal effect and can give constraints for the mass
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range 50-180 MeV, which requires the cross section to be less than σSI ∼ 10−32−10−34cm2.

We will show that, our model satisfies all of the above constraints. We also show projection of

differential event rates for future experiments with very low threshold. Studying the dark matter

-electron scattering cross section is another way to detect the low mass dark matter regime. Ex-

periments like XENON10 [265], SuperCDMS [266] and SENSEI [267] can put constraints on the

dark matter-electron scattering cross section, but our model satisfies them as well.

The differential event rate for nuclear recoil per unit target mass can be expressed as,

dR

dER
=
NTρη
mη

∫ vesc

vmin

vf(v)

(
dσ

dER

)
d3v, (3.25)

where NT is the number of target nuclei per unit mass; ρη ' 0.3 GeV cm−3 is the local dark matter

energy density; v is velocity of the incoming dark matter and f(v) is the corresponding normalized

velocity distribution, both in detector frame, and; vmin is minimum dark matter velocity required

for a scatter to produce recoil energy ER, and vesc = 540 km s−1 is the local galactic escape

velocity of the dark matter. And (dσ/dER) is the DM-nucleus differential scattering cross section

defined, in general, as

dσ

dER
=

mA

2µ2
ηAv

2
σ0(ηA→ ηA)

m4
φ′,A′

(2mAER +m2
φ′,A′)

2
F 2(ER), (3.26)

where µηA = (mηmA)/(mη +mA) is the reduced mass of the η-nucleus system; F (ER) is the

nuclear form factor; and σ0 is the scattering cross section at zero momentum transfer. The velocity-

distribution and the nuclear form factor used in the calculations are defined in Appendix. C.

There are two distinct channel to generate spin independent (SI) σ0(ηA → ηA) in our model.

They are,

• Elastic SI scattering mediated via φ′, which is isospin-invariant.

• Inelasatic SI scattering mediated by A′, which is isospin-violating [268, 269, 270], since the

up and down quarks have opposite charges under U(1)T3R
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The isospin-invariant dark matter-nucleus scattering cross section at zero momentum transfer

can be expressed in terms of the dark matter-nucleon spin-independent scattering cross section at

zero momentum transfer (σNSI) as follows,

σ0(ηA→ ηA) = σNSIA
2
µ2
ηA

µ2
ηN

, (3.27)

where µηN = (mηmN)/(mη +mN) is the reduced mass of the η-nucleon system. For the case

of inelastic scattering mediated by A′, the factor A2 in the above formula will be replaced with

(A − 2Z)2 due to it’s isopin-violating nature. For the elastic scattering ηjA → ηjA mediated

by the scalar particle φ′, the dark matter-nucleon spin-independent scattering cross section at zero

momentum transfer (σNSI) is given as,

σ
scalar(p,n)
SI =

µ2
ηNm

2
η

4πV 4m4
φ′
f 2
p,n (3.28)

where [166],
fp,n
mN

=
∑

q=u,d,s

f
(p,n)
Tq

fq
mq

+
2

27

(
1−

∑
q=u,d,s

f
(p,n)
Tq

) ∑
q=c,b,t

fq
mq

. (3.29)

where, fu,d = mu,d, fs,c,b,t = 0; f (p)
Tu

, f (p)
Td

and f (p)
Ts

are 0.019, 0.041 and 0.14, respectively [271];

and f (n)
Tu

, f (n)
Td

and f (n)
Ts

are 0.023, 0.034 and 0.14, respectively [271]. The threshold velocity as a

function of the nuclear recoil is,

vmin =

√
2mAER
2µηA

. (3.30)
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Figure 3.9: Dark matter-nucleon scattering cross section is shown as a function of the dark mat-
ter mass for mφ′ = 200 MeV, δ = 0 and V = 10 GeV.

For the inelastic scattering ηiA → ηjA mediated by the gauge boson A′µ,the dark matter-

nucleon spin-independent scattering cross section at zero momentum transfer (σNSI) is given as,

σ
vector(p,n)
SI =

µ2
ηN

16πV 4
, (3.31)

Here, we only consider small δ and keep only the terms which are linear in δ. In this limit,

µηjN ' µηiN = µηN and the threshol velocity is given by,

vmin =
1√

2mAER

(
mAER
µηA

+ δ

)
. (3.32)

We show both σ
scalar(p,n)
SI and σ

vector(p,n)
SI in Fig. 3.9, where we set mφ′ = 200 MeV, and

for the A′-mediated process, we assume δ = 0 (note, σvectorSI does not depend on mA′). Both

of these scattering cross sections satisfy the constraints posed by XENON1T and CDEX-1B.

Note that, the differential scattering cross section in our case will be suppressed by a factor

[1 + (2mAER)/m2
φ′,A′)]

−2 and the A′-mediated scattering is suppressed by an additional factor

of [1 − (2Z/A)]2. On the otherhand, the bounds are derived assuming the dark matter nucleon

scattering cross section is equal to the zero momentum transfer cross section. CRESST III does

not give any bounds for mη ≤ 100 MeV. We show the excluded region in the mφ′-mη parameter
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space for the φ′ mediated elastic scattering corresponding to the XENON1T and CDEX-1B bounds

in Fir. 3.13a.
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Figure 3.10: Differential event rate for elastic scattering off a Xenon nucleus for different dark
matter masses. We used, mφ′ = 200 MeV and V = 10 GeV. In both panels, the upper limit of
recoil energy increases with increasing dark matter masses.

The nuclear recoil spectrum for elastic scattering is shown in Fig. 3.10 and for inelastic scatter-

ing is shown in Fig. 3.11 respectively. Here we consider Xenon (A =131 and Z = 54) as the target

material and express the differential event rate in “differential rate unit” (dru), which is 1 event per

keV per kg per day. Note that for the elastic case, the upper limit of ER increases with the dark

matter mass. For the inelastic case, larger values of δ push the nuclear recoil energy, ER to smaller

values in order to satisfy the condition vmin ≤ vesc.
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Figure 3.11: Differential event rate for inelastic scattering off a Xenon nucleus for different dark
matter masses. We used, mA′ = 55 MeV and V = 10 GeV. Note that the values of maximum
recoil energy decrease with the increasing values of δ.

Dark matter-electron scattering also plays important roles to know more about the interac-

tions of dark matter with SM particles. The typical energy of light dark matter with mass O(1 −

100) MeV is E ' mv2/2 ' 50 eV×(m/100 MeV) which is not sufficient to deposit enough

nuclear recoil to overcome the threshold of the current experiments but is enough for the following

processes from dark matter-electron scattering,

• Ionization of electron of orbital electrons in the target atoms.

• Excitation of orbital electrons in the target atoms.

The typical enery required for these processes are O(1 − 10) eV and dark matter with mass

O(1−100) MeV can produce such signals in the detectors when scatters off the electrons of atoms

of the target material. We show the dark matter-electron scattering scross section in Fig. 3.12.

For this range of dark matter mass the allowed cross section is ≤ 10−38 cm2 [272, 273], comes

from experiments like XENON10 [265], SuperCDMS [266] and SENSEI[267]. We also show the

exclusion region in Fig. 3.13b.
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Figure 3.12: Dark matter-electron scattering cross section is shown as a function of the dark
matter mass for mφ′ = 200 MeV, δ = 0 and V = 10 GeV.
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Figure 3.13: Exclusion region shown in the mφ′- mη parameter space: the left panel is for the
dark matter-nucleon cross section bounds and the right panel is for the dark matter-electron cross
section constraints. In both panel, we have used: mφ′ = 200 MeV, mη = 100 MeV and V = 10
GeV.

3.4 Relic Density

In this section, we produce the correct relic density of dark matter using the standard theory of

thermal relic, where the dark matter abundance is depleted by (co-)annihilation to either Standard

Model particles or to other dark sector particles. Correct sub-GeV dark matter relic density can also

be obtained in a variety of other non-standard way, e.g. DM production from the decay of a heavy
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particle [274], freeze-in [275], modifications to the expansion rate in the early Universe [276] etc.

To ensure that, dark matter freezes out before BBN, we assume that mη > 40 MeV.

The tightest constraints on dark matter annihilation cross section comes from Planck bounds [32]

on the effect of energy injection at the time of the recombination on the CMB. If the s-wave chan-

nel, which is dark matter velocity independent dominates the dark matter annihilation and dark

matter decay to SM particles, then the produced cross section is large enough to deplete the dark

matter abundance ruled out by Planck bounds. One of the following scenario can be used to obtain

the correct thermal relic density consistent with these constraints,

• If the dark matter annihilation is p-wave suppressed i.e. velocity dependent, 〈σv〉 ∝ v2.

During the freeze out the cross section is suppressed by a factor of 10 as at that time v =

0.1 but during the time of recombination, v is very small, thus the cross section is highly

suppressed and can evade the Planck bounds

• If the dark matter annihilation produce invisible final states, then there is not extra energy

injection during the recombination.

• If dark matter largely co-annihilates at the time of freeze-out, but if the heavier component

has decayed away by the time of recombination, then dark matter co-annihilation at the time

of recombination will be negligible, and Planck constraints will again be satisfied.

In the following we consider two different channel for obtaining the correct relic density. Note

that, A′ couplings are suppressed by the mass of the A′, while φ′ couplings are suppressed by the

mass of the particle to which it couples.

• φ′-resonance: The dominant annihilation is through s-channel φ′ resosnance, which is p-

wave suppressed. The possible final states are A′A′, ν̄ν, ¯̀̀ , ππ, γγ, where the φ′ is nearly

on-shell. The resonance condition is needed to enhance the cross section, since the coupling
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of φ′ to the outgoing fermions is suppressed by the mass of the SM fermions.

σ(ηiηi → φ′ → X)vrel ∼
m2
i (E

2 −m2
i )

4V 2E2[(4E2 −m2
φ′)

2 + (mφ′Γφ′)2]

×(2mφ′Γφ′), (3.33)

where Γφ′ is the total decay width of φ′.

• A′-mediated: Co-annihilation of dark matter mediated by A′ in the early Universe can de-

plete the dark matter relic abundance correctly if the mass eigenstates η1 and η2 have com-

parable abundances at freeze-out, implying that δ/m ≤ O(0.1) and that the lifetime of η2

should be much greater than O(1) sec. The possible final states are νAνA and e+e− (the γγ

final state is forbidden by the Landau-Yang Theorem [196]). Both of these final states are

suppressed, either by a neutrino mixing angle or a kinetic mixing parameter, therefore the

co-annihilation via A′ will play no role in our benchmark scenario.

We show two benchmark scenario which can deplete the correct thermal relic abundance of

dark matter in Table. 3.4. For both them, we considered the φ′ resonance methods. The corre-

sponding dark matter-nucleon cross section is also mentioned.

mA′ (MeV) mφ′ (MeV) mη (MeV) mνs (MeV) mνD(MeV) 〈σv〉 (cm3/sec) σscalarSI (pb) σvectorSI (pb)

150 80 40 10 10−3 3×10−26 0.58 1.17
180 76 38 10 10−3 3×10−26 0.58 1.06

Table 3.4: Masses of A′, φ′ and η (DM), and the neutrinos and the corresponding thermal relic
abundances are shown . The dark matter-nucleon scattering cross sections for each BP are also
shown.

3.5 Explanation of RK(∗)

In B-physics, there are variety of anomalies in observables based on the process b → s`+`−.

Any new physics explanation of these anomalies requires both lepton flavor non-universality and
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quark flavor violation. The lepton flavor non-universality arises in our model naturally since the φ′

and A′ couple only to µ at tree-level. On the other hand, when we complete our low energy model

with the UV completion described in Sec. 3.1.5, it may introduces flavor violation couplings in the

quark sector. Therefore, our model can accommodates the flavor anomalies of the B-physics sector

such as [277, 278, 190].

3.5.1 Background

We restrict our analysis only to theoretically clean observables [279] such as RK , RK∗ , and

Br(Bs → µ+µ−), since they are devoid of hadronic uncertainties. The observables RK and RK∗

are defined as

RK ≡ Br(B → Kµ+µ−)

Br(B → Ke+e−)
, (3.34)

RK∗ ≡
Br(B → K∗µ+µ−)

Br(B → K∗e+e−)
. (3.35)

Note that, the SM predictions for RK and RK∗ are close to unity [280, 281] due to the lepton

flavor universal coupling. But the measurements of these observables are always below the SM

predictions [277, 278, 190, 282, 283]. Recently, The LHCb collaboration reported the updated

value of the RK based on the data set of full RUN-1 and Run-2 in the q2 bin of 1.1 to 6 GeV2. The

analysis now show a 3.1 σ deviation from the SM prediction,

RK = 0.846+0.042
−0.039(stat)+0.013

−0.012(syst), (3.36)

On the other hand the RK∗ measurements [277, 278] disagree with the SM predictions at the 2.4 σ

and 2.5 σ respectively for the q2 bin of (2mµ)2 to 1.1 GeV2 and 1.1 to 6 GeV2 respectively,

RK∗ =


0.660+0.11

−0.07 ± 0.03 (2mµ)2 < q2 < 1.1 GeV2 ,

0.685+0.11
−0.07 ± 0.05 1.1 GeV2 < q2 < 6 GeV2 ,

(3.37)
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For simplicity, we restrict ourselves to the central bin of RK∗ measurement, since it is extremely

challenging to explain the result of both bins at the same time using the effective operators, and we

will wait for more data to confirm the energy dependency [284, 285]. Another clean observables,

the branching fraction of b → s `+ `− transitions, was also reported by LHCb collaboration using

the full data set [286],

Br(Bs → µ+µ−) = 3.09+0.46
−0.43(stat)+0.15

−0.11(sysm)× 10−9. (3.38)

ATLAS [287] and CMS [288] also give value of this observable. All of these results favor a decay

rate smaller than the SM predictions [289, 279].

3.5.2 Theroretical Calculations

The lepton flavor non-universality from the low energy effective model and the flavor vi-

olating couplings originating from the UV completion in our model can generate the process,

b → s`+`−. In the UV complete model, the Z and A′ couplings to fermions in the flavor eigen-

state basis are diagonal matrices which need not be proportional to the identity while, these cou-

pling matrices can become non-diagonal in the mass eigenstate basis, yielding vertices of the

form b̄γµPL,Rs(Z,A
′)µ. One can get contribution to universal quark flavor-changing processes

(b → s`+`−) form b̄γµPL,RsZµ , while terms of the form b̄γµPL,RsA
′
µ can contribute to lepton

non-universal quark flavor-changing processes (b → sµ+µ−). Note that, such flavor changing

interaction vertices are not allowed for photon due to gauge invariance.

In Sec. 3.1.5, we describe the minimal UV completion. Note that, one could add additional

generations of these heavy particles, or even a single additional particle, without generating anoma-

lies. We consider an additional χ′a, neutral under U(1)T3R, which mixes with b and s through La-

grangian terms of form λ′b,sHQ̄
b,s
L PRχ

′
a +m′b,sχ̄

′
aPRq

b,s
R + h.c. (we assume negligible mixing with

the first generation). Note that (χ′a)R has same Z coupling as (b, s)R, therefore the Z-coupling to

these right-handed quarks is the identity in every basis. On the other hand, (χ′a)L has a Z coupling

which differs from (b, s)L, therefore we would find a vertex of the form b̄γµPLsZµ at tree-level as
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shown in Fig. 3.14a. A coupling of the form b̄γµPLsA
′
µ is also induced at one-loop through Z−A′

kinetic mixing, but this term will generally be small if we consider small kinetic mixing.

(a) (b) (c)

Figure 3.14: Feynman diagrams that contribute to the B-anomalies.

We add another vector-like fermion, χ′′a, charged under U(1)T3R charge QT3R = 2. It has the

same SM quantum numbers as (b, s)R but with and therefore it can mix with b, s (we assuming

negligible mixing with d) through a Lagrangian term of the form λ′′b,sφχ̄
′′
aPRqb,s. We get a tree-

level contribution to the coupling b̄γµPL,RsA′µ as shown in Fig. 3.14b, since χ′′a is charged under

U(1)T3R while b, s are not. Similarly, since (χ′′a)L has a different Z coupling than (b, s)L, this term

will yield a tree-level contribution to the coupling b̄γµPLsZµ while there is no similar contribution

to b̄γµPRsZµ, since (b, s, χ′′a)R all have identical coupling to the Z boson. A vertex of the form

λ′′b,sφ
′q̄L(s,b)qR(b,s) sin θ′(s,b)L is also possible, since χ′′a is charged under U(1)T3R. we show the

corresponding diagram in Fig. 3.14c.

The effect of these interactions can be approximated with effective operators which couple a

(b, s) quark bilinear to a muon bilinear, since the energy transfer is much larger than the mediator.

The various effective operators that contribute to the b→ s`+`− process can be written as,
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OZU =
e2

3m2
Z

tan2 θW (sin θsL sin θbL + sin θ′sL sin θ′bL)
(
b̄γµPLs

)
×
(
µ̄γµ

[
PR +

(
1− 1

2 sin2 θW

)
PL

]
µ

)(
b̄γ5s

)
(µ̄γ5µ) (3.39)

OA′NU =
1

Λ2
sin θ′s(L,R) sin θ′b(L,R)

(
mA′√

2V

)2 (
b̄γµPL,Rs

)
(µ̄γµPRµ)

+
1

Λ2
sin θ′s(R) sin θ′b(R)

(mµmb

2V 2

) (
b̄γ5s

)
(µ̄γ5µ)

− 1

Λ2
sin θ′s(L) sin θ′b(L)

(mµms

2V 2

) (
b̄γ5s

)
(µ̄γ5µ) (3.40)

Oφ
′

NU =
λ′′s
Λ2

sin θ′bL
mµ√
2V

(b̄PRs)(µ̄µ) +
λ′′b
Λ2

sin θ′sL
mµ√
2V

(b̄PLs)(µ̄µ), (3.41)

where θ(s,b)L are the left-handed (s, b) − χ′a mixing angles, θ′(s,b)(L,R) are the left-/right-handed

(s, b)− χ′′a mixing angles, and where we take Λ ∼ O(2) GeV.

We expand the above operators using the following basis

αemGF√
2π

VtbV
∗
ts

∑
i,`

Cbs``
i Obs``i , (3.42)

where different operators are defined as,
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Obs``9 = (s̄γµPLb)(¯̀γµ`), O′bs``9 = (s̄γµPRb)(¯̀γµ`),

Obs``10 = (s̄γµPLb)(¯̀γµγ
5`), O′bs``10 = (s̄γµPRb)(¯̀γµγ

5`),

Obs``S = mb(s̄PRb)(¯̀̀ ), O′bs``S = mb(s̄PLb)(¯̀̀ ),

Obs``P = mb(s̄PRb)(¯̀γ5`), O′bs``P = mb(s̄PLb)(¯̀γ5`). (3.43)

Defining CU
i = Cbsee

i and CNU
i = Cbsµµ

i − CU
i , we find

∆CU
9 = (−146)(sin θsL sin θbL + sin θ′sL sin θ′bL),

∆CU
10 = (1.8× 103)(sin θsL sin θbL + sin θ′sL sin θ′bL),

∆CNU
9 = ∆CNU

10 = (1.9× 108) sin θ′sL sin θ′bL

(
mA′√

2V

)2

,

∆C
′NU
9 = ∆C

′NU
10 = (1.9× 108) sin θ′sR sin θ′bR

(
mA′√

2V

)2

,

∆CNU
P = −∆C

′NU
P = −(2.0× 105 GeV−1)

(
V

10 GeV

)−2
× (sin θ′sR sin θ′bR − (ms/mb) sin θ′sL sin θ′bL) ,

∆CNU
S = (2.7× 107 GeV−1)λ′′b sin θ′sL

mµ

mb

(
V

10 GeV

)−1
,

∆C
′NU
S = (2.7× 107 GeV−1)λ′′s sin θ′bL

mµ

mb

(
V

10 GeV

)−1
.

(3.44)

Since sin2 θW ∼ 0.23, the universal lepton vector coupling is negligible.

Note that the coefficients can be controlled by independently-tunable couplings and mixing

angles. Also, we have freedom in the quark couplings, although the vector couplings to muons are

only right-handed.
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3.5.3 Benchmark Scenarios

It is usually very difficult to explain the RK(∗) and Bs → µ+µ− simultaneously with a vector

mediator while respecting all current experimental constraints. The allowed parameter space by

beam dump/fixed target experiments are tightly constrained by bounds from neutrino trident pro-

duction at CCFR [8, 290] and Br(B → K∗νν) [291]. Due to the lack of the left handed neutrino

couplings in our model, these bounds can not be applicable to our model. But the chiral nature

of the couplings give rise to another tight constraints in our model: C(′)NU
9 = C

(′)NU
10 , and this

constraint makes it difficult to explain the RK and RK∗ , and Br(BS → µ+µ−) measurements si-

multaneously. The RK and RK∗ measurements prefers a negative Cbsµµ
9 , or a positive Cbsµµ

10 while

the smaller decay rate of Bs → µ+µ− favors a positive Cbsµµ
10 , or a negative C ′bsµµ10 . If we want

to explain RK and RK∗ with a positive Cbsµµ
10 , which is favored by Bs → µ+µ−, that implies a

negative Cbsµµ
9 . Also, we have the relationship, CNU

9 = CNU
10 , a negative Cbsµµ

9 and a positive

Cbsµµ
10 imply a negative non-universal part and a positive universal part. Therefore a positive Cbsee

10

will leave the RK and R∗K unexplained. We rely on the following scenario to solve this puzzle,

• In the first scenario, we consider non-zero scalar and pseudoscalar couplings and use them

to explain Br(BS → µ+µ−), while the other operators take care of RK(∗) .

• In the second scenario, we consider non-zero primed operators, which only contain the non-

universal part. Therefore the contributions are generated from both left-handed and right-

handed quark couplings.

Based on the above setup, we consider four different benchmark scenarios. For all of them we

calculate the flavor observables such as RK and RK∗ , and Br(BS → µ+µ−) using flavio [292]. In

order to understand how well those three measurements can be described and how significant the

deviation is from the SM, we also calculate the SM pull, defined as
√

∆χ2. Note that, we only

consider the clean observables from LHCb results to calculate the SM pull.
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Benchmark BMA BMB BMC BMD
CU

10 4.85 -5.86 2.7 -5.67

CNU
9,10 -0.30 3.65 -0.8 4.55

|Cs − C ′s| GeV−1 0.033 0.024 0.011 -

|Cp − C ′p| GeV−1 - 0.030 0.043 -

C ′NU9,10 - - - -1.28
RK 0.82 0.87 0.86 0.87

R∗K [1.1, 6] 0.83 0.78 0.97 0.89

Br(Bs → µ+µ−) 3.36×10−9 3.05×10−9 2.67×10−9 3.34×10−9

SM pull 4.4σ 4.6σ 3.8σ 4.2σ

Table 3.5: We summarize the four benchmark scenarios described in the text. The first five rows
present the values of the coefficients CU

10, CNU
9,10, |Cs − C ′s| (in units of gev−1), |Cp − C ′p| (in units

of gev−1), and C ′NU9,10 . Rows 6-8 present predictions for RK , RK∗ (in the q2 ∈ [1.1, 6]gev2 bin),
and Br(Bs → µ+µ−). Row 9 presents the SM pull of each benchmark point.

Out of the four benchmark scenarios, the first three correspond to the scenario described above,

where the scalar and pseudo-scalar operators were used to explain the Br(Bs → µ+µ−) while the

others operators were used to fit RK and RK∗ . In particular, BMA has the scalar operators, and

while in BMB, and in BMC, we include both scalar and pseudo-scalar operators. For BMA,

RK and Bs → µ+µ− agree with the LHCb results within 1σ, and RK∗ agree with the LHCb

results within 2σ, and the SM pull is 4.4σ. For BMB, all three observables agree with the LHCb

measurements within 1σ, with a SM pull of 4.6σ. For the third benchmark, BMC, RK and Bs →

µ+µ− agree with the LHCb results within 1σ, whileRK∗ is SM like. The fourth benchmark, BMD,

corresponds to the second scenario. Here, we introduce the primed operators, which includes non-

universal part. RK and Bs → µ+µ− agree with the LHCb results within 1σ, and RK∗ agree with

the LHCb results within 2σ, and the SM pull is 4.7σ

In Table. 3.6, we summarize the predictions for other variables along with the experimental
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value and the SM predictions, related to b → s`+`− for our model. Note that, these observables

have large theoretical uncertainties related to hadronic form factors.

Observable Measured Value SM BMA BMB BMC BMD
Br(B+ → K∗+µ+µ−)(10−8)

[15.0, 19.0] 15.8+3.2
−2.9 ± 1.1 [293] 26.8±3.6 7.80 82.9 10.4 92.4

Br(B0 → K0µ+µ−) (10−8)
[15.0,22.0] 6.7±1.1±0.4 [293] 9.8±1.0 3.31 30.4 4.15 29.4

Br(B+ → K+µ+µ−)(10−8)
[15.0,22.0] 8.5± 0.3± 0.4 [293] 10.7± 1.2 3.59 33.0 4.5 32.0

dB(BS→φµ+µ−)
dq2 ( 10−8 GeV−2)

[1.0,6.0]
2.57+0.33

−0.31 ± 0.08± 0.19
[294]

4.81± 0.56 1.60 16.8 2.28 18.7

dB(Λ0
b→Λµ+µ−)
dq2 (10−7 GeV−2)

[15,20]
1.18+0.09

−0.08 ± 0.03± 0.27
[295]

0.71± 0.08 2.19 2.28 0.29 2.48

Table 3.6: Predictions for observables for the four benchmark scenarios summarized in the
Table. 3.5, along with the Standard Model prediction and the measured value with uncertain-
ties. The uncertainties, from left to right, are statistical, systematic and due to the normalisation
mode (for the last two only). Rows 1-3 consider Br(B+ → K∗+µ+µ−)(q2 ∈ [15, 19]gev2),
Br(B0 → K0µ+µ−)(q2 ∈ [15, 19]gev2), and Br(B+ → K+µ+µ−)(q2 ∈ [15, 22]gev2), respec-
tively, all in units of 10−8. Row 4 considers dBr(BS → φµ+µ−)/dq2, in units of 10−8gev−2,
averaged over q2 ∈ [1, 6]gev2, while row 5 considers dBr(Λ0

b → Λµ+µ−)/dq2, in units of
10−7gev−2, averaged over q2 ∈ [15, 20]gev2.

3.6 Conclusions

In this chapter, we have considered the scenario where only the right-handed light SM fermions

are charged under a new gauge group, U(1)T3R. This scenario is of particular interest because it

can tie the symmetry breaking scale of U(1)T3R to that of the light SM fermions and the new dark

sector physics. Sub-GeV particles arise naturally from the scenario including dark matter, sterile

neutrinos, dark photon, and dark Higgs. Besides that, this model can address the hierarchy problem

in the light fermion sector of the SM.

We find that the parameter space of the model is tightly constrained by various laboratory-

based experiments and cosmological/astrophysical observables. But there is enough open parame-

ter space is available, part of which can be probed in the upcoming/future experiments. We show,
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for example, on possibility in Fig. 3.15. Still, there is a part of the parameter space which these up-

coming/future experiments can not probe. The parameter space is also consistent with the currently

available data from the dark matter direct detection experiments. Another interesting feature of the

model is that it can produce the thermal relic density of dark matter by evading Planck bounds

consistently. Moreover, this model has the potential to explain some of the recent flavor anomalies

such as RK(∗) .

mA'=180 MeV

mA'=200 MeV

100 500 1000 5000 104
0.01

0.05
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5
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d
/
ln
(N
A
')
(m

)

FASERSHiPSeaQuest

Figure 3.15: We show the estimation of maximum d/ ln(NA′) necessary for an experiment to be
able to probe our model for mA′ ∈ [180 − 200] MeV, as a function of the maximum A′ energy
produced by the experiment. d is the distance of the detector from the beam dump, and NA′ is the
number of A′ at energy EA′ produced in a beam aimed at the detector. The maximum A′ energies
for the experiments like FASER, SHiP and SeaQuest are also shown.
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4. A THREE-LOOP NEUTRINO MASS MODEL*

Tiny neutrino masses can be obtained at tree level using Weinberg’s dimension-5 operator [296],

L5 = fijmnl̄
C
iαLljβLφ

(m)
γ φ

(n)
δ εαγεβδ + f ′ijmnl̄

C
iαLljβLφ

(m)
γ φ

(n)
δ εαβεγδ , (4.1)

But to realize them in the context of a model one needs a very high scale particle, usually at the

Grand Unified Theory scale which is inaccessible at LHC. Therefore to obtain the neutrino mass

using a testable new physics scale, one needs a new suppression mechanism such as the radiatively

generated neutrino mass. At the n-loop order, a dimension d diagram estimates the neutrino mass

as

mν ∼ c×
(

1

16π2

)n
× 〈v

(m)
0 〉

2k

M2k−1 , (4.2)

where c is a dimensionless quantity contains all the coupling constants and other mass ratios, and

the mass dimension of the corresponding effective operator is 2k + 3. For example, we consider

the dimension-5 Weinberg operator with n = 3 and k = 1 in this paper.

We build a model by extending the SM by the gauge group SU(2)N , which arises from the

decomposition of E6 GUT. We also impose a discrete Z2 symmetry such that only one particle

is odd under it and can be a viable dark matter candidate. The matter content of the model and

the Z2 symmetry prevent the Majorana neutrino mass from being generated below the three-loop

level. One can realize the dimension-5 effective Majorana neutrino mass operator at the three-loop

level in the model. The three-loop suppression factor pushes the new scale to TeV. The new flavor

structure involving the vector-like leptons can explain both muon and electron anomalous magnetic

moment simultaneously mediated by scalar mediators. The new particles of the model satisfy all

the current constraints from LHC and can be tested in future collider experiments.

*this chapter is reprinted from “ Three-loop neutrino masses via new massive gauge bosons from E6 GUT” by
B. Dutta, S. Ghosh, I. Gogoladze and T. Li, Phys. Rev. D 98, no. 5, 055028 (2018) and “(g − 2)µ,e and the ANITA
anomalous events in a three-loop neutrino mass model” by M. Abdullah, B. Dutta, S. Ghosh and T. Li, Phys. Rev.
D 100, no. 11, 115006 (2019) published by the American Physical Society under the terms of the Creative Commons
Attribution 4.0 International license.
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The rest of this chapter is organized as: In Sec. 4.1, we describe the gauge symmetry, particle

content, and the Higgs potential of our model. In Sec. 4.2, we derive all the necessary physical

scalars and fermions. The gauge boson masses and interactions are discussed in Sec. 4.3. In

Sec. 4.4, the theoretical framework and numerical analysis of the neutrino mass and mixing are

described. The anomalous magnetic moment of both muon and electron are explained in Sec. 4.5.

We conclude in Sec. 4.6.

4.1 Model Building

In this section, we discuss the gauge symmetry and the field content of our model. The low

energy gauge symmetry of our model is SU(3)C×SU(2)L×SU(2)N×U(1)Y . Note that, SU(2)N

has no component to the electric charge operator in our model, so the charge operator is defined

as Q = T3L + Y . This symmetry structure can arise from the E6 GUT. One possible maximal

subgroup of E6 is SU(6) × SU(2)N while the SU(6) group has a maximal subgroup SU(5) ×

U(1)′. We assume that U(1)′ gauge symmetry is broken at a very high scale, possibly around the

GUT scale.On the other hand, SU(5) group contains the SM gauge symmetry. Hence we get our

symmetry structure. We assume that the SU(2)L doublet assignments are vertical and the SU(2)N

doublets are horizontal. The fermionic field content is given as,

Qi ∼

 ui

di

 ∼ (3, 2, 1,
1

6
), U ci ∼ (3̄, 1, 1,−2

3
), Dc

i ∼
(
d′
c
i d

c
i

)
∼ (3̄, 1, 2,

1

3
) ,

Di ∼ (3, 1, 1,−1

3
), Li ∼

 E0
i νi

E−i e−i

 ∼ (1, 2, 2,−1

2
), Eci ∼ (1, 1, 1, 1) ,

Li
′ ∼

 E+
i

Ēi
0

 ∼ (1, 2, 1,
1

2
), N c

i ∼ (nc1i n
c
2i) ∼ (1, 1, 2, 0) ,

Fi ∼

 F3i F1i

F2i −F3i

 ∼ (1, 1, 3,−1), Fi
c ∼

 F c3i F c1i

F c2i −F c3i

 ∼ (1, 1, 3, 1) ,
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where i = 1, 2, 3 are the family index. We can get Qi, U c
i , Dc

i , Di, Li, Ec
i , L

′
i, and N c

i from the

fundamental representation of E6 i.e. 27 , while the vector-like fermions Fi and F c
i come from the

351 and 351 representations of E6, respectively. By construction, this scenario is free of all gauge

and gravitational anomalies.

The scalar sector of the model contains four scalar fields and given as,

Hd ∼

 φ1
0 φ3

0

φ1
− φ3

−

 ∼ (1, 2, 2,−1

2
), Hu ∼

 φ2
+

φ2
0

 ∼ (1, 2, 1,
1

2
) ,

S0 ∼
(
S0
1 S0

2

)
∼ (1, 1, 2, 0), T ∼

 T1
++ T2

++

T1
+ T2

+

 ∼ (1, 2, 2,
3

2
) .

One 27 representation of E6 can give Hd, Hu, and S0 and we get the bi-doublet scalar field T

from one 650 representation. S0 acquires a VEV and breaks SU(2)N gauge symmetry while the

electroweak gauge symmetry is broken by the VEVs of Hd and Hu.

The most general renormalizable scalar potential is given by,

Vpotential = m2
1Hd

†
αβHdβα +m2

2Hu
†
αHuα +m2

sS
0
αS

0†
α +m2

TT
†
αβTβα +

λ2
2
Hu
†
αHuαHu

†
βHuβ

+
λ1
2
Hd
†
αβHdβαHd

†
γδHdδγ +

λ3
2
Hd
†
αβHdβγHd

†
γδHdδα +

λs
2
S0
αS

0†
αS

0
βS

0†
β

+
λ6
2
T †αβTβαT

†
γδTδγ +

λ7
2
T †αβTβγT

†
γδTδα + λ4Hu

†
γHuγHd

†
αβHdβα

+λ5Hu
†
αHdαβHd

†
βγHuγ + λ8Hu

†
αHuαS

0
βS

0†
β + λ9S

0
γS

0†
γHd

†
αβHdβα

+λ10S
0
αHd

†
αβHdβγS

0†
γ + λ11S

0
γS

0†
γT
†
αβTβα + λ12S

0
αT
†
αβTβγS

0†
γ + λ13Hu

†
γHuγT

†
αβTβα

+λ14Hu
†
αTαβT

†
βγHuγ + λ15Hd

†
αβHdβαT

†
γδTδγ + λ16Hd

†
αβHdβγT

†
γδTδα

+λ17Hd
†
αβTβαT

†
γδHdδγ + λ′[HuαHdβγS

0
δ εαβεγδ +H.c]

+λ[TαρHdβσHdγµHdδνεαβερσεγδεµν + TαρHdβσHdγµHdδνεαβερµεγδεσν +H.c] , (4.3)

where α, β, γ, δ, ρ, σ, µ and ν are the SU(2) indices and εαβ is the totally antisymmetric SU(2)

tensor with ε12 = +1. We also assume that all the parameters are real.
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The minimization conditions for Eq. 4.3 are given as,

m2
1 +

1

2
(λ1 + λ3)v

2
1 +

1

2
λ4v

2
2 +

1

2
λ9v

2
s −

1√
2
λ′
v2vs
v1

= 0 , (4.4)

m2
2 +

1

2
λ4v

2
1 +

1

2
λ2v

2
2 +

1

2
λ8v

2
s −

1√
2
λ′
v1vs
v2

= 0 , (4.5)

m2
s +

1

2
λ9v

2
1 +

1

2
λ8v

2
2 +

1

2
λsv

2
s −

1√
2
λ′
v1v2
vs

= 0 . (4.6)

We write the most general Lagrangian for the Yukawa sector and the mass terms for the vector-

like fermions as,

−LY ukawa = y1ijLiαβTγβFjδδεαγεβδεβδ + y2ijLiαβHdγβF
c
jδδεαγεβδεβδ + y3ijQiαHdβγD

c
jδεαβεγδ

+y4ijQiαHuβU
c
j εαβ + y5ijD

c
iαS

0
βDjεαβ + y6ijLiαγL

′
jβS

0
δεαβεγδ

+y7ijL
′
iαHdβγN

c
jδεαβεγδ + y8ijLiαγHdβδE

c
j εαβεγδ + y9ijLiαγHuβN

c
jδεαβεγδ

+
1

2
MijFiF

c
j + µijFiE

c
j +mNijN

c
iN

c
j , (4.7)

where i and j are the family indices; α, β, γ and δ are SU(2) indices; and εαβ is the totally an-

tisymmetric SU(2) tensor with ε12 = +1. For simplicity, we make the following assumptions:

Mij = Miδij , and µij = 0. We also impose a discrete Z2 symmetry. Under this discrete sym-

metry, only N c
i are odd while all other particles are even. In such a scenario, the terms in Eq. 4.7

proportional to the couplings y7ij and y9ij are forbidden. The physical states of N c
i are denoted as

n1, n2, andn3 and the lightest component is thus stable and can be a viable dark matter candidate

in our model. Note that, there are no low-energy neutrino mass terms at tree level.

We rewrite the Yukawa Lagrangian using the explicit form of the fermionic and the scalar fields
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as follows,

−LY = y1ij(−E0
i T

+
1 + νiT

+
2 + E−i T1

++ − e−i T2++)F3j

+y2ij(−E0
i φ
−
1 + νiφ

−
3 + E−i φ

0
1 − e−i φ0

3)F
c
3j

+y3ij[(uiφ
−
1 − diφ0

1)d
c
j − (uiφ

−
3 − diφ0

3)d
′c
j] + y4ij(uiφ

0
2 − diφ+

2 )U c
j

+y5ij(d
′c
iS

0
2 − dciS0

1)Dj + y6ij[(E
0
i Ē

0
j − E−i E+

j )S0
2 − (νiĒ

0
j − e−i E+

j )S0
1 ]

+y8ij(E
0
i φ
−
3 − νiφ−1 − E−i φ0

3 + e−i φ
0
1)E

c
j +

1

2
MiFiF

c
i +mNijN

c
iN

c
j . (4.8)

We consider that only three scalar fields get vev: 〈φ0
1〉 = v1√

2
, 〈φ0

2〉 = v2√
2
, and 〈S0

2〉 = vs√
2
. Note

that, such vev assignment mean that, Hd controls the mass of down-type quarks and the charged

leptons, while Hu gives mass to the up-type quarks. Vector-like particles get mass from S0 field.

4.2 Physical Scalars and Fermions

We calculate the mass terms for all the necessary physical scalars and fermions in this section.

After the spontaneous symmetry breaking, Hd, Hu and S0 obtains vevs and we can write them as

Hd ∼

 1√
2
(v1 + ρ1 + iη1)

1√
2
(ρ3 + iη3)

φ1
− φ3

−

 , (4.9)

Hu ∼

 φ2
+

1√
2
(v2 + ρ2 + iη2)

 , S0 ∼
(

1√
2

(ρ1s + iη1s)
1√
2

(vs + ρ2s + iη2s)

)
. (4.10)

Using Eq. 4.9 and 4.10 in Eq. 4.3, we can get the mass terms of the various physical scalars.
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We start with the single charged scalar mass squared terms,

V ±mass =

(
λ5v1v2

2
+
λ′vs√

2

)(
φ−1 φ−2

) v2
v1

1

1 v1
v2


 φ+1

φ+2


+
(
φ−3 T−2

) m′±
2 6λv21

6λv21 m′′±
2


 φ+3

T+
2


+

[
m2
T +

(λ15 + λ16)v
2
1

2
+

(λ13 + λ14)v
2
2

2
+
λ11v

2
s

2

]
T−1 T

+
1 . (4.11)

where,

m′±
2

= −λ3v
2
1

2
+
λ5v

2
2

2
+
λ10v

2
s

2
+
λ′v2vs√

2v1
(4.12)

and

m′′±
2

= m2
T +

λ15v
2
1

2
+

(λ13 + λ14)v
2
2

2
+

(λ11 + λ12)v
2
s

2
(4.13)

The charged states φ±1 and φ±2 mix and give four charged scalars h±1 and h±2 with mass squared

m2
h1

= 0 and m2
h2

=
v21+v

2
2

v1v2

(
λ5v1v2

2
+ λ′vs√

2

)
respectively. The two massless states corresponding to

two charged Goldstone modes, and the other two states h±2 are two single charged physical scalars.

They can be expressed as,

h±1 = cos β φ±1 + sin β φ±2 , (4.14)

h±2 = − sin β φ±1 + cos β φ±2 , (4.15)

where the mixing angle is given by, tan β = v2
v1

. Similarly, we get four more charged physical

scalars H±1 and H±2 from the mixing of φ±3 and T±2 as follows,

H±1 = cos θ φ±3 + sin θ T±2 , (4.16)

H±2 = − sin θ φ±3 + cos θ T±2 , (4.17)

83



The corresponding mass squared are,

m2
H±1

=
1

2
(m2

2 +m2
3) +

1

2

√
(m2

2 −m2
3)

2 + 144λ2v41 (4.18)

and

m2
H±2

=
1

2
(m2

2 +m2
3)−

1

2

√
(m2

2 −m2
3)

2 + 144λ2v41 , (4.19)

respectively. The mixing angle is defined as tan 2θ =
12λv21
m2

2−m2
3
. The definition of the parameters m2

2

and m2
3 are

m2
2 = m2

T +
λ15v

2
1

2
+

(λ13 + λ14)v
2
2

2
+

(λ11 + λ12)v
2
s

2
, (4.20)

and

m2
3 = −λ3v

2
1

2
+
λ5v

2
2

2
+
λ10v

2
s

2
+
λ′v2vs√

2v1
. (4.21)

We get two more physical scalar states, T±1 , which are singly charged, with mass squared given by,

m2
T±1

= m2
T +

(λ15 + λ16)v
2
1

2
+

(λ13 + λ14)v
2
2

2
+
λ11v

2
s

2
. (4.22)

We get four doubly charged physical scalars T±±1 and T±±2 from the following term,

V ±±mass =
(
T−−1 T−−2

) m2
T±±1

0

0 m2
T±±2


 T++

1

T++
2

 . (4.23)

Note that, the matrix is already diagonalized. We have defined the following terms,

m2
T±±1

= m2
T +

(λ15 + λ16 + λ17)v
2
1

2
+
λ13v

2
2

2
+
λ11v

2
s

2
, (4.24)

and

m2
T±±2

= m2
T +

λ15v
2
1

2
+
λ13v

2
2

2
+

(λ11 + λ12)v
2
s

2
, (4.25)

respectively.
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There are 5 neutral CP-even states and 5 neutral CP-odd states. The mass terms for CP-even

states can be written as,

V ρ
mass = (ρ1 ρ2 ρ2s)


(λ1+λ3)v21

2
+ λ′v2vs

2
√
2v1

λ4v1v2
2
− λ′vs

2
√
2

λ9v1vs
2
− λ′v2

2
√
2

λ4v1v2
2
− λ′vs

2
√
2

λ2v22
2

+ λ′v1vs
2
√
2v2

λ8v2vs
2
− λ′v1

2
√
2

λ9v1vs
2
− λ′v2

2
√
2

λ8v2vs
2
− λ′v1

2
√
2

λsv2s
2

+ λ′v1v2
2
√
2vs




ρ1

ρ2

ρ2s


+

(
λ10v1vs

4
+
λ′v2

2
√

2

)
(ρ3 ρ1s)

 vs
v1

1

1 v1
vs


 ρ3

ρ1s

 . (4.26)

and the for the CP-odd states,

V η
mass =

λ′

2
√

2
(η1 η2 η2s)


v2vs
v1

vs v2

vs
v1vs
v2

v1

v2 v1
v1v2
vs




η1

η2

η2s


+

(
λ10v1vs

4
+
λ′v2

2
√

2

)
(η3 η1s)

 vs
v1
−1

−1 v1
vs


 η3

η1s

 , (4.27)

We get three neutral physical scalars, s1, s2 and s2s with masses ms1 , ms2 , and ms2s , respec-

tively, from the mixing of ρ1, ρ2 and ρ2s. The mixing is given by, ρ = R−1s, where the mixing

matrix can be parametrized with three angle θ1, θ2 and θ3 as follows

R−1 =


cθ1cθ3 − cθ2sθ1sθ3 −cθ1sθ3 − cθ2cθ3sθ1 sθ1sθ2

cθ3sθ1 + cθ1cθ2sθ3 cθ1cθ2cθ3 − sθ1sθ3 −cθ1sθ2

sθ2sθ3 cθ3sθ2 cθ2

 ≡


c11 c12 c13

c21 c22 c23

c31 c32 c33

 , (4.28)

where cθi = cos θi and sθi = sin θi (i = 1, 2, 3). We identify the s1 as the SM physical Higgs field,

s1 = h with mass mh. The mixing of the three CP-odd states η1, η2, and η2s can be parametrized

in a similar way, η = R′
−1
s′, using three angles θ′1, θ

′
2 and θ′3. Here, we get one physical neutral

pseudoscalar s′1 with mass ms′1
along with two neutral pseudoscalars Goldstone mode(s′′0 and s′′′0 ).
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The interaction states can be expressed in terms of the mass states as, η1 = c′13s
′
1, η2 = c′23s

′
1, and

η2s = c′33s
′
1.

We get two more states from the mixing of ρ3 and ρ1s, one neutral scalar Goldstone mode, s0

and one neutral physical scalar, s3 with mass ms3 . The mixing can be parametrized in terms of

only one angle, ψ as follows,

R2×2(ψ) =

 cosψ sinψ

− sinψ cosψ

 . (4.29)

Similar mixing and parametrzitation (using angle ψ′ ) occurs for the two CP-odd states η3 and

η1s, where we get one neutral pseudoscalar Goldstone mode, s′0 and another physical neutral pseu-

doscalar, s′3 with mass ms3 . The interaction states can be expressed in terms of the physical states

as, ρ3 = − sinψs3 and ρ1s = cosψs3; η3 = − sinψ′s′3 and η1s = cosψ′s′3.

Therefore we start with 24 scalar degrees of freedom but end up with 18 physical scalars. The

rest 6 degrees of freedom, which corresponds to the massless Goldstone mode, are eaten to give

mass to the gauge bosons. Hence there are 6 massive gauge bosons and one massless gauge bosons.

In the fermionic sector, the vector-like leptons E−i and F3i mix and give two charged physical

vector-like leptons as follows,

f+
1i = cos θfE

+
i − sin θfF

c
3i

f+
2i = sin θfE

+
i + cos θfF

c
3i (4.30)

respectively with massesmf1i andmf2i . The mixing angle, θf , can be determined by diagonalizing

the mass matrix. All the important physical scalar fields and fermionic fields are summarized in

Table. 4.1
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Particle type Particles Mass parameters Mass values
Possible final states

at LHC

Charged scalars h±1 , h
±
2 mh1 , mh2 mh1,2 ∼ O(500) GeV

h±1,2 → uid̄j + E0
i + E0

j ,
uid̄j

H±1 , H
±
2 mH1

, mH2

mH1 ∼ O(500) GeV
mH1

∼ O(5) TeV
H±1,2 → uid̄j + νi + E0

j ,
did̄j + e−j + E0

i

Neutral scalars
h, s2

s2s, s3

mh, ms2

ms2s , ms3

mh = 125 GeV
ms ∼ O(500) GeV

s2, s2s
→ e+

i e
−
i ,

did̄i

Neutral pseudoscalar s′1, s
′
3 ms′1

, ms′3
ms′ ∼ O(500) GeV s′1, s

′
3 → e+

i e
−
i ,

did̄i

Charged vector-like
leptons f±1 , f

±
2 mf1 , mf2 mf ∼ O(100) GeV

f1,2i → uid̄j + E0
i

did̄j + e+
i + Ē0

i + ν̄i

Neutral vector-like
leptons Ē0, E0 mĒ0 , mE0

mĒ0 > mE0

∼ O(100)GeV
Ē0
i → e+

i e
−
i + E0

i

E0
i → νi + n1in̄2j

New gauge bosons Xµ
1 , X

µ
2 , X

µ
3 mX1

, mX2
, mX3

mX ≥ 3.6 TeV
Xµ

3 → e+
i e
−
i , did̄i

Xµ
1,2 → uid̄j + diūj

+ ν̄i + Ē0
i

Charged vector-like
quark D mD mD ∼ O(1) TeV

Di → e+
i e
−
i + di

+νi + Ei,
did̄i + di + e+

i e
−
i

Table 4.1: Summary of the physical scalars, fermions, and the gauge bosons required for the
calculations. Here n1 and n2 are the viable dark matter candidates in our model . The E0 decays
only to neutral fields leading to a missing energy signal at the LHC.

4.3 Gauge Bosons

In this section, we explore the gauge sector of the model, the gauge boson masses and their

interactions with the other particls. First, we define the covariant derivative as,

DµI = ∂µI + i
g

2
τaWµa + i

g′2
2
τaW

′
µa + ig′Y BµI , (4.31)

where g, g′2 and g′ are the coupling constant of SU(2)L, SU(2)N , and U(1)Y groups respectively.

Wµ, W ′
µ, and Bµ are the gauge bosons of the SU(2)L, SU(2)N , and U(1)Y groups respectively.
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The gauge boson masses can obtained from the following Lagrangian,

Lgauge−scalar = (DµHu)
†
α (DµHu)α +

(
DµH

T
d

)†
αβ

(
DµHT

d

)
βα

+
(
DµS

0T
)†
α

(
DµS0T

)
α

+
(
DµT

T
)†
αβ

(
DµT T

)
βα

, (4.32)

where α and β are the SU(2) indices.

4.3.1 Gauge Boson Masses

In this subsection we calculate the expressions for the gauge boson masses. The massless gauge

bosons will become massive after the spontaneous symmetry breaking. The part of Eq. 4.32 that

gives gauge boson masses is,

−Lmassgauge =
1

4
g2(v21 + v22)W−

µ W
+µ +

1

4
g′2

2
(v21 + v2s)X2µX

µ
1

+
1

8

(
Bµ W3µ W

′
3µ

)


g′2(v21 + v22) −gg′(v21 + v22) −g′g′2v21

−gg′(v21 + v22) g2(v21 + v22) gg′2v
2
1

−g′g′2v21 gg′2v
2
1 g′2

2(v21 + v2s)




Bµ

W3
µ

W ′
3
µ

 .(4.33)

where we have used the definitions,
√

2W±
µ = W1µ ∓ iW2µ and

√
2X1,2µ = W ′

1µ ∓ iW ′
2µ. The

Bµ, W3µ and W ′
3µ fields will mix among themselves and give rise to three physical gauge bosons,

which can be written as follows,

Aµ = sin θW W3µ + cos θW Bµ (4.34)

Zµ = cos θN cos θW W3µ − cos θN sin θW Bµ + sin θN W ′
3µ (4.35)

X3µ = − sin θN cos θW W3µ + sin θN sin θW Bµ + cos θN W ′
3µ , (4.36)

where the mixing angles are defined as, tan θW = g′

g
and tan 2θN = b

a−
with the following defini-

tions,

b ≡ 1

8
g′2

√
g2 + g′2v21 , (4.37)
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a± ≡
1

16

[
g′2

2
(v21 + v2s)± (g2 + g′

2
)(v21 + v22)

]
. (4.38)

There are four more charged physical gauge bosons, W±
µ and X1,2µ. Therefore, we summarize all

the mass squared terms for all six gauge bosons as follows,

m2
W± =

1

4
g2(v21 + v22) , (4.39)

m2
X1,2

=
1

4
g′2

2
(v21 + v2s) , (4.40)

m2
A = 0 , (4.41)

m2
Z = a+ −

√
a2− + b2 , (4.42)

m2
X3

= a+ +
√
a2− + b2 . (4.43)

4.3.2 Gauge Boson Interactions

Part of Eq. 4.32, that gives the interactions between the gauge bosons and the physical scalars

is given by,

Lintgs =
1

2
g′2

2
X2µX

µ
1 φ

+
3 φ
−
3 +

1

2
g′2

2
X2µX

µ
1 T

+
2 T

−
2 +

i√
2
g′2X1µ

(
∂µφ+

1

)
φ−3

− i√
2
g′2X1µφ

+
1

(
∂µφ−3

)
+

i√
2
g′2X2µ

(
∂µφ+

3

)
φ−1 −

i√
2
g′2X2µφ

+
3

(
∂µφ−1

)
+

i√
2
g′2X1µ

(
∂µT−1

)
T+
2 −

i√
2
g′2X1µT

−
1

(
∂µT+

2

)
+

i√
2
g′2X2µT

+
1

(
∂µT−2

)
− i√

2
g′2X2µ

(
∂µT+

1

)
T−2 + ... . (4.44)
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In terms of the physical scalar states Eq. 4.44 can be rewritten as,

Lintgs =
1

2
g′2

2
X2µX

µ
1

[
H+

1 H
−
1 +H+

2 H
−
2

]
+

i√
2
g′2X2µ cos θ sin β

[
H+

1 (∂µh−2 )− (∂µH+
1 )h−2

]
+

i√
2
g′2X2µ sin θ cos β

[
(∂µH+

2 )h−2 −H+
2 (∂µh−2 )

]
+

i√
2
g′2X2µ sin θ

[
T+
1 (∂µH−1 )− (∂µT+

1 )H−1
]

+
i√
2
g′2X2µ cos θ

[
T+
1 (∂µH−2 )− (∂µT+

1 )H−2
]

+ h.c+ ... . (4.45)

We can derive the necessary Feynman rules from Eq. 4.45. Next, we consider the kinetic energy

term of the leptons, Li and calculate it’s interactions with the gauge bosons. Similar calculations

can be done for all other fermions.The kinetic term can be written as,

LLkinetic =
(
L̄i
)
αβ
iγµ (∂µILi)βα +

(
L̄i
)
αβ
iγµ
(

1

2
igτaWµaLi

)
βα

+
(
L̄Ti
)
αβ
iγµ
(

1

2
ig′2τaW

′
µaL

T
i

)
βα

−
(
L̄i
)
αβ
iγµ
(

1

2
ig′BµILi

)
βα

, (4.46)

where i is the family index; α and β are SU(2) index; and a = 1,2,3. Few important interaction

terms we get from Eq. 4.46 are,

LLkinetic = − 1√
2
g′2X2µν̄iγ

µE0
i − y1ijE0

i T
+
1 F3j + y2ij sinφ E0

i h
−
2 F

c
3j +H.c+ ... . (4.47)

4.4 Neutrino Masses

Here we discuss the neutrino mass generation mechanism in our model and the related numer-

ical calculations. The discrete Z2 symmetry and the particle content of the model ensure that the

tree level Lagrangian does not contain neutrino mass terms. So we must rely on the radiatively

generated neutrino mass terms. It is also evident that the mass term can not be generated be-

low three-loop level. The dimension-5 effective Majorana neutrino mass operator LiLjH∗dH
∗
d/M,

whereM is some effective mass scale, in the interaction basis can be generated from the Fig. 4.1.
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Figure 4.1: The three-loop diagram in the interaction basis that gives rise to the Majorana mass
term in our model.

4.4.1 Theoretical Calculations

(a) (b)

Figure 4.2: The three loop Feynman diagrams in the mass basis responsible for the Majorana
neutrino masses. We have two more similar diagrams for the X1 gauge boson.

The new gauge bosons, X1 and X2, associated with the new gauge group SU(2)N play im-

portant role to generate and controll the neutrino masses. The three-loop diagrams in the mass

basis are shown in Fig. 4.2, which gives the Majorana mass matrix elements, in unitary gauge, as
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follows,

(Mν)ji =
1

4
g′2

4
y1jly2li sin 2θ sin2β × I3loop , (4.48)

where i, j , l = 1,2,3. The three-loop integral factor, I3loop is given as follows,

I3loop =
1

(16π2)3
(
m2
X −m2

0j

)
(m2

X −m2
0i)m

2
X

∫ ∞
0

dr
r2

r +M2
l

[
1

r +m2
H1

+
1

r +m2
H2

]
×(4Mlmojm0i{fh(r,m2

X ,m
2
0i,m

2
h2

)g2T (r,m2
X ,m

2
0j,m

2
T1

)

+fT (r,m2
X ,m

2
0j,m

2
T1

)g2h(r,m
2
X ,m

2
0i,m

2
h2

)

−m2
Xfh(r,m

2
X ,m

2
0i,m

2
h2

)fT (r,m2
X ,m

2
0j,m

2
T1

)}

+2m0jfT (r,m2
X ,m

2
0j,m

2
T1

){g4h(r,m2
X ,m

2
0i,m

2
h2

)−m2
Xg2h(r,m

2
X ,m

2
0i,m

2
h2

)}

−2m0ifh(r,m
2
X ,m

2
0i,m

2
h2

){g4T (r,m2
X ,m

2
0j,m

2
T1

)

−m2
Xg2T (r,m2

X ,m
2
0j,m

2
T1

)}) . (4.49)

The definitions of the various functions are,

fh(r,m
2
X ,m

2
0i,m

2
h2

) =

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
h2

x(1− x)r + (1− x)m2
0i + xm2

h2

, (4.50)

fT (r,m2
X ,m

2
0j,m

2
T1

) =

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
T1

x(1− x)r + (1− x)m2
0j + xm2

T1

, (4.51)

g2h(r,m
2
X ,m

2
0i,m

2
h2

) = m2
X

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
h2

m2
X

−m2
0i

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

0i + xm2
h2

m2
X

, (4.52)

g2T (r,m2
X ,m

2
0j,m

2
T1

) = m2
X

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
T1

m2
X

−m2
0j

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

0j + xm2
T1

m2
X

, (4.53)
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g4h(r,m
2
X ,m

2
0i,m

2
h2

) = m4
X

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
h2

m2
X

−m4
0i

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

0i + xm2
h2

m2
X

, (4.54)

g4T (r,m2
X ,m

2
0j,m

2
T1

) = m4
X

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

X + xm2
T1

m2
X

−m4
0j

∫ 1

0

dx ln
x(1− x)r + (1− x)m2

0j + xm2
T1

m2
X

. (4.55)

Note that, the mass matrix element gets suppressed from the loop factor g′2
4

(16π2)3
∼ 10−11, which

plays important role to determine the scale of the new physics scale. Here it can pushes the new

physics scale to TeV. In the following subsection we show the numerical calculations which fit the

oscillation data in our model.

4.4.2 Numerical Analysis

Here, we want to show that the analytical expression of the neutrino mass matrix can fit the

data from the neutrino oscillation experiments. For our calculations, we only consider the normal

hierarchy scenarios but similar calculations can be done for the inverted hierarchy scenarios as

well. For normal hierarchy, the best fit of the neutrino oscillation data at 3σ level are [297],

sin2 θ12 = 0.271− 0.345; sin2 θ23 = 0.385− 0.635; sin2 θ13 = 0.01934− 0.02392;

δCP = 0◦ − 360◦;

∆m2
21 = 7.03× 10−5eV− 8.09× 10−5eV;

∆m2
31 = 2.407× 10−3eV− 2.643× 10−3eV (4.56)

We consider the diagonal neutrino mass matrix in mass basis as Mdν = diag(m1,m2,m3),
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where

m1 ' 0 eV;m2 ' 8.66× 10−3 eV;m3 ' 4.98× 10−2 eV . (4.57)

The Majorana mass matrix is then defined as, Mν = U−1MdνU , where U is the PMNS matrix. We

obtain,

Mν =


6.35989× 10−12 1.18618× 10−11 1.32647× 10−11

1.18618× 10−11 2.3611× 10−11 2.59738× 10−11

1.32647× 10−11 2.59738× 10−11 2.86893× 10−11

 GeV . (4.58)

We present one benchmark scenario which can reproduce the matrix obtained in Eq. 4.58. The

parameter point is,

mH1 = 5 TeV,mH2 = 500 GeV, mX = 5 TeV, mh2 = 268 GeV,

mT1 = 500 GeV , tanβ = 50, v1/
√

2 = 7 GeV, θ = 0.005◦,

mf = (110, 120, 130) GeV, mE0 = (105, 110, 115) GeV . (4.59)

Note that, we need y1 × y2 to be of the order of 0.1 to 0.01 to satisfy the data. Also, the renor-

malization group evolution suggest that the gauge coupling g′2 is of similar strength to the SM

couplings, and we take it to be 0.35.

4.5 The Muon and Elctron Anomalous Magnetic Moment

4.5.1 Background

There is a 3.7σ tension between the theoretical predictions [100, 101, 102, 103] and the exper-

imental results [36, 37] of the anomalous magnetic moment of the muon, given as,

∆aµ = aexpµ − athµ = (2.74± .73)× 10−9. (4.60)

And a 2.4σ tension between the experiment [39, 38] and theory [113] values of the anomalous
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magnetic moment of electron given by,

∆ae = aexpe − athe = (−8.7± 3.6)× 10−13. (4.61)

Note that, the simplest BSM solution where a new mediator couples to both electrons and

muons, are expected to give ∆ae and ∆aµ of the same sign, since the new physics couplings

would appear twice in each diagram. On the other hand, if one assumes coupling universality then

we expect the corrections to scale with the lepton mass, that is ∆ae/∆aµ ∼ m2
e/m

2
µ ∼ 2.25×10−5.

As neither of those is true, a more complex solution is required. Here we utilize the diversity of

the Yukawa couplings of our model in particular the chiral (different for left-handed and right-

handed components) and flavor non-universal (different for each lepton) nature. The chirality of

these interactions ensures that certain couplings appear only once in a given diagram, allowing for

corrections to ae and aµ in opposite directions, while the non-universality allows for modifying

each independently of the other.

4.5.2 Calculations and Results

The relevant Yukawa sector Lagrangian is given as,

−L = ēi[CS1 + CP1γ5]f1is3 + ēi[CS2 + CP2γ5]f2is3 + ēi[CS3 + CP3γ5]f1is
′
3

+ēi[CS4 + CP4γ5]f2is
′
3 + ēi[CS5 + CP5γ5]eis2 + ēi[CS6 + CP6γ5]eis2s

+ēi[CS7 + CP7γ5]eis
′
1 + ēi[CS8 + CP8γ5]E

0
iH
−
1 + ēi[CS9 + CP9γ5]E

0
iH
−
2

+ēi[CS10 + CP10γ5]νih
−
1 + ēi[CS11 + CP11γ5]νih

−
2 + H.C. , (4.62)

where the various couplings are defined as follows,

CS1 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.63)

CP1 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.64)
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CS2 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.65)

CP2 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.66)

CS3 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.67)

CP3 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.68)

CS4 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.69)

CP4 =
1

2
√

2
(y8i sinψ cos θf − y2i sinψ sin θf + y6i cosψ cos θf ), (4.70)

CS5 =
1

2
√

2
y8ic12 = −CP5; CS6 =

1

2
√

2
y8ic13 = −CP6, (4.71)

CS7 =
i

2
√

2
y8ic

′
13 = −CP7; CS8 =

1

2
y8i cos θ = −CP8, (4.72)

CS9 = −1

2
y8i sin θ = −CP9; CS10 = −1

2
y8i cos β = −CP10, (4.73)

CS11 =
1

2
y8i sin β = −CP11 . (4.74)

where the couplings CS1-CP11 are linear combinations of three Yukawa couplings y2, y6, and y8.

This will give rise to products of two different Yukawa couplings in various diagrams. Note that we

have exactly 11 one-loop Feynman diagrams generating from Eq. 4.62. We show them in Fig. 4.3

We broadly categorize the Feynman diagrams of Fig. 4.3 into two category: ones with a neutral

scalar inside the loop and ones with a charged scalar. Each of them can be written in the general

form

− L = ēi[CS + CPγ5]fis , (4.75)

where f denotes the fermion and S the scalar that run in the loop.
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The contribution from the first type of diagrams with a neutral scalar can be written as [131]

∆a1ei(CS, CP ,mfi,ms) =
−qfim2

ei

8π2

∫ 1

0

dx

[
C2
S

(
x2 − x3 +

mfi
mei

x2
)

+ C2
P (mfi → −mfi)

]
m2
eix

2 + (m2
fi −m2

ei)x+m2
s(1− x)

,

(4.76)

and the contribution of the second type of diagrams with charged scalar can be written as

∆a2ei(CS, CP ,mfi,ms) =
−qhm2

ei

8π2

∫ 1

0

dx

[
C2
S

(
x2 − x3 +

mfi
mei

(x2 − x)
)

+ C2
P (mfi → −mfi)

]
m2
eix

2 + (m2
s −m2

ei)x+m2
fi(1− x)

(4.77)

In the following we discuss how the various diagrams contribute to ∆aei.

• Fig. 4.3a shows four diagrams where we have the vector-like leptons f1,2 and the new neutral

scalar particles s3 and s′3 inside the loop. Their contributions to ∆aei is given by Eq. 4.76.

Here we get quadratic terms in the Yukawa couplings (y22i, y
2
6i and y28i) as well as cross terms

(y2i×y8i, y2i×y6i and y6i×y8i). The quadratic terms are all proportional tom2
ei and the cross

terms are proportional to mfi ×mei. With a fermion mass mfi ∼ 100 GeV, the cross terms

can give contributions that are both large and of opposite signs for the muon and electron

cases.
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(a) (b)

(c) (d)

Figure 4.3: The one loop Feynman diagrams in the mass basis which contributes to the anoma-
lous magnetic moments of the muon and electrons.
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• The next three diagrams shown in Fig. 4.3b with the new neutral scalars s2, s2s and s′1

inside the loop along with the SM muons and electrons are proportional to the SM Yukawa

couplings, y28i, and hence suppressed by m2
ei. Therefore, their contribution to ∆aei is small

compared to the contributions of the first four diagrams. Therefore the masses of the scalars

involved are thus far not fixed.

• Fig. 4.3c and 4.3d give four more diagrams with charged scalars (H±1,2 and h±1,2) and neutral

fermions such as E0
i and νi inside the loop. Their contributions to ∆aei are also suppressed

compared to the diagrams with cross terms as they are also proportional to y28i. Moreover,

as these particles also enter into the three-loop diagrams (Fig. 4.2) needed for neutrino mass

generation, their masses are already fixed in our model, and so they do not play important

roles in the ∆aei calculations.

• In addition to these 11 scalar loop diagrams we do get contributions from the one loop

diagrams with gauge bosons associated with the new gauge group SU(2)N . The lower limit

on the new gauge boson masses is given by ∼ 3.6 TeV [298, 299, 300] assuming the gauge

coupling g′2 to be 0.35. These contributions to ∆aei are also suppressed by the square of

lepton masses and their contributions can be neglected.

For completeness we consider the contributions from all the 11 Feynman diagrams to ∆aei and

can be expressed in a simple form as follows,

∆aei = ∆a1ei(CS1, CP1,mf1i ,ms3) + ∆a1ei(CS2, CP2,mf2i ,ms3) + ∆a1ei(CS3, CP3,mf1i ,ms′3
)

+∆a1ei(CS4, CP4,mf2i ,ms′3
) + ∆a1ei(CS5,mei,ms2) + ∆a1ei(CS6,mei,ms2s)

+∆a1ei(CS7,mei,ms′1
) + ∆a2ei(CS8, CP8,mE0

i
,mH1) + ∆a2ei(CS9, CP9,mE0

i
,mH2)

+∆a2ei(CS10, CP10,mνi,mh1) + ∆a2ei(CS11, CP11,mνi,mh2) . (4.78)

To find a viable parameter space, we start by setting the dimensionless parameters that are not

yet set by the neutrino mass and then vary the mass parameters. The y8’s are fixed by the SM
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charged lepton masses, mei = y8iv1/
√

2, and we set them to be y8e = −7 × 10−5, y8µ = 0.015

and y8τ = 0.25. Other important coupling constants are: y2e = 0.80, y6e = 2.50, y2µ =

0.50 and y6µ = 0.25. We choose the mixing angles ψ, ψ′ θf , θ1,2,3 and θ′1,2,3 to be 45◦ for

simplicity. We now vary the masses of the fermions and the scalars, f1,2, s3 and s′3, that play

important role in the ∆ai calculations and show such five benchmark in Table. 4.2.

Benchmark
Point

mf1

(GeV)
mf2

(GeV)
ms3

(GeV)
ms′3

(GeV)

BP1 120 121 350 1985
BP2 120 135 350 1121
BP3 120 102 350 1578
BP4 120 118 350 570
BP5 120 145 350 2150

Table 4.2: Five Benchmark points are shown which can account for ∆aei as well as be consistent
with neutrino mass calculations.

We perform a random scan over some of the parameters going into the g − 2 calculation to

check how well the model can fits the results. We limit the scan to a subset of four parameters and

fix the other parameters. For example, the diagrams in Fig. 4.3 shows that the dependence on mf1

and ms3 is similar to that on mf2 and ms′3
respectively, therefore, we fix the former and scan over

the latter. Similarly we fix y2e,µ and vary y6e,µ. The ranges of the parameters used in the scan is

shown in Table. 4.3

We sample 100,000 points at random from the range of the parameters shown in Table 4.3 with

the fixed parameters as y2e = 0.9, y2µ = 0.5,mf1= 120 GeV and ms3 = 350 GeV. In Fig. 4.4 we

show the results of the scan as a scatter plot in the ∆aµ −∆ae plane along with the 1 σ bands and

find that about 2800 points fell into the intersection of the two bands. We also find that while a

wide range of ∆aµ can be achieved, the values of ∆ae mostly lie on the upper end of the band.

100



Parameter Range

y6e 0.6-3.0
y6µ 0.001-2.0
mf2 100-150 GeV
ms′3

300-2500 GeV

Table 4.3: The scan range, are shown for the parameters, used to generate Fig. 4.4. The fixed
parameters are: y2e = 0.9, y2µ = 0.5, mf1= 120 GeV and ms3 = 350 GeV.

1.× 10-9 2.× 10-9 3.× 10-9 4.× 10-9 5.× 10-9 6.× 10-9
-1.4× 10-12

-1.2× 10-12

-1.× 10-12

-8.× 10-13

-6.× 10-13

-4.× 10-13

Δaμ

Δ
a
e

Figure 4.4: A scatter plot in the ∆aµ − ∆ae plane: we show about 16,800 points from a scan
100,000 parameter points randomly selected from the range shown in Table. 4.3. The bands rep-
resents the 1σ deviation. 2,773 points fall into the interaction of the two bands.
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4.6 Conclusions

In this chapter, we build a new physics model with energy scale at TeV, thus can be probed by

the current and proposed collider experiments. In addition to the theoretical appeal of fitting into

a unification scenario, the model has the potential to generate correct neutrino mass and mixings

radiatively at the three-loop level. The model can also explain the observed values of the anomalous

magnetic moment of muon and electron. The interesting flavor structure of the model, which

also allowed the neutrino fit, plays a crucial role to calculate the contributions to the anomalous

magnetic moments.

To explain all the above observables, we introduce a bunch of new particles in the range of 100

GeV to 1 TeV. All of these particles are allowed by the current LHC constraints. One reason they

have not been ruled out by LHC is that there is mass degeneracy between the particles and one

of their decay products. This can be a good motivation for LHC to close the mass gap by getting

more data.
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5. SUMMARY AND CONCLUSIONS

The main motivation of this thesis is to understand a problem of neutrino mass and its mixings

and the observation of the astronomical dark matter. These are the most interesting and compelling

puzzles of the SM. Though the SM is a highly successful theoretical model of elementary particle

physics to explain various experimental data at O(100 GeV), with solid experimental evidence,

it cannot accommodate the neutrino mass and the origin of the dark matter. Therefore any new

physics model that is an extension of the SM should incorporate them. Besides them, a few more

puzzles are coming from the experimental data.

In this thesis, we tried to link these experimental puzzles to a complete model of (a) neutrino

mass and its mixings and (b) nature of the dark matter.. For that purpose, we have proposed three

different models by extending the SM. The first model is a low energy model with a light scalar

of mass ∼ O(100) MeV. This model can produce correct neutrino mass using the type-I seesaw

mechanism and can give correct dark matter relic density using the Shi-Fuller mechanism. The

light scalar plays a crucial role to explain the anomalous magnetic moment of electron and muon,

excess events observed by the MiniBooNE experiment, and KOTO excess events simultaneously.

The main idea behind the second model was to get a sub-GeV dark matter model. We utilize the

gauge group U(1)T3R to connect the new dark sector physics to the light flavor sector of SM and

obtain the sub-GeV particles with a symmetry breaking scale of 10 GeV. The model has interesting

direct detection prospects and can obtain correct thermal relic density by evading Planck bounds.

The parameter space is tightly constrained, but open parameter space is available and has the

potential to explain the recently confirmed flavor anomalies in the B-meson decay processes. The

third model was proposed to generate neutrino mass radiatively at the three-loop level to bring

down the new physics scale associated with to TeV scale. Therefore this model can be probed at

the current/upcoming collider experiments. The interesting flavor structure of this model has the

potential to explain the anomalous magnetic moment of both muon and electron.

All of these models can be further probed at the upcoming/future experiments or with more
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data from the current experiments. I hope that this thesis will help us to understand SM and its

extensions more robustly.
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APPENDIX A

HIGGS BASIS TRANSFORMATION

In this appendix, we briefly discuss the basis transformation strategy we have used in the

Sec. 2.1 of Chap. 2. To begin with, we consider two complex scalar doublets H1,2 and once

singlet scalar HS . The charges under the SM gauge symmetry are,

H1 ∼ (2, 1/2), H2 ∼ (2, 1/2), HS ∼ (1, 0) . (A.1)

The most general charge conserving vev’s can be defined as,

〈H1〉 =

 0

v1√
2

 , 〈H2〉 =

 0

v2√
2

 , 〈HS〉 =
v3√

2
. (A.2)

The neutral components of the Higgs fields can be redefined by rotating via a Unitary ma-

trix U in such a way that only one of the scalar doublet will obtain a non-zero vev. The neutral

components of the new Higgs fields can be defined as,

φ0
a =

∑
b

UabH
0
b , (A.3)

where a, b = 1, 2, and S. And the Unitary matrix U is defined as,

U =


v1
v

v2
v

v3
v

−v2
v

v1
v

0

−v3
v

0 v1
v

 . (A.4)
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Using Eq. A.4 in Eq. A.3, we get the vev’s of the new Higgs fields as,

〈φ0
1〉 =

 0

v√
2

 , 〈φ0
2〉 = 0, 〈φ0

S〉 = 0 , (A.5)

where, we have defined v = (v21 + v22 + v23)
1/2. Therefore, in this Higgs basis, only one doublet

will controll the spontaneous symmetry breaking and the mass generation of various particles in

the model.
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APPENDIX B

CALCULATION OF LFV PROCESSES

In this appendix, we provide the most general expression for the branching fraction of the

lepton flavor violating processes mediated by scalar mediator. The expression for the process

ei → ejγ shown in Fig. 2.1 mediated by light scalar is given by,

Br(ei → ejγ) =
Γ(ei → ejγ)

Γ(ei → ej ν̄jνi)

=
3α

8πG2
Fm

2
ei

(
1−

m2
ej

m2
ei

)
[(yeh1)ik(yeh1)kj]

2 I1(mei ,mej ,mek ,mh1)

I2(m2
ej
/m2

ei
)

, (B.1)

here, the lepton ek runs inside the loop. The function I1(mei ,mej ,mek ,mh1) comes from the

partial decay width Γ(ei → ejγ) and the function I2(m2
ej
/m2

ei
) comes from Γ(ei → ej ν̄jνi) .

The functions I1 and I2 can be defined as,

I1(mei ,mej ,mek ,mh1) =

∫ 1

0

dz

∫ 1−z

0

dy
yz(mej −mei)− (z − 1)(zmei +mek)

z(y + z − 1)m2
ei
− yzm2

ej
+ (1− z)m2

ek
+ zm2

h1

, (B.2)

I2

(
m2
ej

m2
ei

)
= 1− 8

m2
ej

m2
ei

+ 8
m6
ej

m6
ei

−
m8
ej

m8
ei

+ 12
m4
ej

m4
ei

ln

(
m2
ei

m2
ej

)
. (B.3)

respectively.
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APPENDIX C

NUCLEAR FORM FACTOR AND DARK MATTER VELOCITY DISTRIBUTION

We provide the nuclear form factor and the dark matter velocity distribution used for the direct

detection rate calculations, in this appendix. Following the references [164, 165], we write the

nuclear form factor as,

F (ER) =
3j1(qR1)

qR1

exp
(
−q2s2/2

)
, (C.1)

where the momentum transferred is q is defined as q =
√

2mAER, ER is the nuclear recoil energy;

j1 is the spherical Bessel function of index 1; s ' 1 fm is the measure of nuclear skin thickness,

and; R1 '
√
r2 − 5s2 with r = 1.2A1/3 fm and A is the mass number of the nucleus of the target

material.

To get the dark matter velocity distribution in the Earth frame, we start with the Maxwellian

dark matter velocity distribution in the galactic rest frame [301],

f(v′)dv′ =

[
3

2πv20

]3/2
exp

(
−3v′2

2v20

)
4πv′

2
dv′, (C.2)

where v0 = 220km/sec. One crucial aspect of the dark matter velocity distribution is that it is

truncated at the local galactic escape velocity.

We make the following Galilean transformation to get the velocity distribution with respect to

the Earth frame,

~v′ = ~v + ~vE, (C.3)

where ~v is the dark matter velocity with respect to the Earth frame and ~vE is the velocity of Earth

with respect to the galactic rest frame, equal to 232 km/sec. Therefore in the Earth frame, the dark
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matter velocity distribution is given by,

f(v)dv =

[
3

2πv20

]3/2
exp

[
− 3

2v20
(v2 + v2E)

]
v20

3vvE
sinh

(
3vvE
v20

)
4πv2dv. (C.4)
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