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ABSTRACT 

 

Wavelets are localized small waves that exhibit the characteristic oscillatory behavior of 

waves with an amplitude that declines rapidly to zero.  Their properties include 

orthogonality or biorthogonality, a natural multiresolution and, often, compact support.  

These properties can be used to repeatedly rescale a signal or a function, decomposing it 

to a desirable level, and obtaining and preserving trend and detail data at all scales that 

allow re-composition of the original signal. 

 

The overall goal of this research is to create a set of wavelet-based (WB) numerical 

methods using different wavelet bases for application to the solution of the PDEs of 

interest to petroleum engineering.  To address the problem, a new flow simulator WTFGS 

(Wavelet Transform Flow and Geomechanics Simulator) has been developed, which is 

written in MATLAB, where this code couples wavelet transform with a standard Finite-

Difference scheme.  In the current state of development, the WB numerical solution is 

verified against analytical solutions of 1D problems for liquid flow through porous media 

and is validated through comparisons to numerical solutions for problems of 2D and 3D 

flow through porous media obtained from a conventional numerical simulator. 
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NOMENCLATURE 

 

Variables: 

A = cross-section area, m2 

a = wavelet expansion coefficients 

B = formation volume factor, bbl/STB 

ct = total compressibility, Pa-1 

f = a general function 

g = gravitational acceleration, (= 9.806) m/s2 

h = Haar wavelet family 

I = an integral of a Haar wavelet 

J = maximum level of resolution 

j = scaling factor 

k = translation factor 

kf = intrinsic permeability, m2 

fk  = permeability tensor, m2 

L = Lebesque integral 

L2 = square-integrable function 

L2 = error norm 

L∞ = error norm 

l2 = square-integrable sequence 
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   = Laplace transform of the quantity within the brackets 

m = defined in Eq. (4.2.5) 

m  = production flux, kg/s/m3 

Nm = B-spline of order m 

p = pressure, Pa 

q = production rate, kg/s 

scq  = strength of the source of sink, sec-1 

ℝ = the set of real numbers 

s = time step number 

t = time, sec 

tst = starting point in time 

tend = ending point in time 

Δt = time subinterval 

x = Cartesian coordinates, m 

Δx = x domain subinterval 

xe = total length of x domain, m 

y = Cartesian coordinates, m 

ye = total length of y domain, m 

z = Cartesian coordinates, m 

ze = total length of z domain, m 

zg = elevation 
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ℤ = the set of integers 

 

Greek Symbols: 

  = absolute error 

η = relative error 

ξ = subdomain 

λ = mobility, m2/(Pa·s) 

μ = fluid viscosity, Pa·s 

ρ = fluid density, kg/m3 

Φ = multidimensional wavelet scaling function 

ϕ = porosity, fraction 

φ = wavelet scaling function 

Ψ = multidimensional wavelet 

ψ = mother wavelet 

Ω = a general bounded domain 

ζ = domain 

 

Subscripts and Superscripts: 

D = dimensionless 

i = i-th wavelet 

j = scaling factor of wavelet 

k = translation factor of wavelet 
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m = the order of B-spline 

SC = standard condition 

 

Acronyms and Abbreviations: 

BEM = Boundary Element Method 

BSWL = B-spline Wavelet on the Interval 

DAF = Distributed Approximating Functional 

FDM = Finite Difference Method 

FEM = Finite Element Method 

FFT = Fast Fourier Transform 

HCSWI = Hermit Cubic Spline Wavelet on the Interval 

MRA = Multiresolution Analysis 

PDE = Partial Differential Equation 

ULP = Ultra-Low Permeability 

WB = Wavelet-Based 

WGM = Wavelet-Galerkin Method 

WCM = Wavelet-Collocation Method 

WTFGS = Wavelet Transform Flow and Geomechanics Simulator 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background 

 

The first wavelet was introduced by Haar (1910).  The basic concept of wavelet analysis, 

i.e., translation, dilation and trade-off between time and frequency resolution, was 

proposed in the early 1980's (Morlet, 1982; Grossman and Morlet, 1984).  However, it 

was not until the development of orthogonal bases of compactly supported wavelets 

(Daubechies, 1988, 1990, 1992) and the algorithm for multiresolution analysis (Mallat, 

1989) that the subject of wavelet analysis caught the attention of both mathematicians and 

engineers in signal processing, image processing, and numerical analysis.  

 

Wavelets are defined as oscillating functions of time or space with an amplitude that 

rapidly declines to zero. Some researchers view wavelets as a modern tool for solving 

time-frequency problems because of their ability to analyze non-stationary, transient, and 

time-varying behaviors. Some in applied mathematics communities consider wavelets a 

new topic because of their rapid development. Others treat it as a new basis to represent 

functions.  

 

Wavelets were first noted as an effective tool in signal and image compressing because 

these functions enable most signals and images to be decomposed as sparse multiscale 

representations by wavelet bases.  In other words, many wavelet- associated coefficients 

are zero or at least very small, so they can be neglected and reduce the related complexity 
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and computational burden.  Moreover, wavelets allow control of the estimated error by 

controlling the terms of neglected coefficients that can cause errors. 

 

Besides compression, the multiscale representation of wavelets allows the detection of 

edges or textures in an image, an attribute that has been used in the FBI's Fingerprint 

Identification System (Bradley, 1993).  This system created a database of fingerprints 

using a sparse format which requires the storage of only a few parameters and resulted in 

a vastly more efficient identification.  Wavelets are also very effective in de-noising, 

which is used in the transformation of different music formats. 

 

Because of the success of wavelet techniques in the areas mentioned above, scientists 

proposed the use of wavelet methods for the solution of partial differential equations 

(PDEs).  In particular, the compression properties of wavelets could represent solution 

domains that have localized features.  However, the expectations of using wavelet methods 

to solve PDEs were not quickly met with success or wide acceptance.  One reason is that 

PDEs are defined on general bounded domains instead of an interval or a square domain 

of signals and images.  Another reason is that the compression and error control properties 

of wavelets rely on a mathematical framework that needs to be extended to the bounded 

domain for differential equations.  In order to solve the problems mentioned above, 

researchers in wavelet numerical methods have made significant progress (Chui and 

Wang, 1991, 1992a, 1992b, 1993) which, however, lags behind the success of wavelet 

application to other disciplines of science and engineering. 
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For numerical analysis, a function in L2(ℝ) can be decomposed into, and reconstructed by, 

its wavelet bases.  Wavelets often have three important properties: orthogonality, 

multiresolution, and compact support.  The orthogonality (or semi-orthogonality) property 

can simplify computations.  The multiresolution analysis (MRA) properties can be used 

to form multiscale wavelet bases, and the compact support guarantees that the function is 

nonzero only on a finite interval. Because of the aforementioned properties, wavelets have 

been used in the solution of PDEs. 

 

1.2 Application of Wavelets to the Solution of PDEs 

 

During the past two decades, wavelet numerical methods using a variety of approaches 

have been developed for the solution of PDEs: (a) hybrid with weighted residual methods; 

(b) hybrid with finite element methods; and (c) hybrid with boundary element methods. 

 

1.2.1 Wavelet-Weighted Residual Method 

In the wavelet-weighted residual method, the wavelet functions or their scaling functions 

are used as weight functions in the solution domain.  Wavelets (a) can represent functions 

at different resolution levels, and (b) are localized in space, which can allow local 

refinement within desired regions.  The wavelet-weighted residual method mainly consists 

of two sub-methods (Li and Chen, 2014): the wavelet-Galerkin method (WGM) and the 

wavelet-collocation method (WCM). 

 

In their application of WGM, Qian and Weiss (1993) used the Daubechies wavelet scaling 

functions as weight functions to solve the biharmonic Helmholtz equation in non-

separable domains. Amaratunga and Williams (1994) used WCM to solve the two-
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dimensional Poisson's equation with periodic boundary conditions.  Then, by using the 

capacitance matrix method (Proskurowski and Widlund, 1976; O'Leary and Widlund, 

1979), Dirichlet boundary conditions were imposed.  WGM was found to converge much 

faster than the finite difference method and to have significant potential in developing 

hierarchical solutions.  However, the capacitance matrix approach used in WGM with 

classic wavelet bases can result in a large residual error, and it additionally involves a 

complex construction procedure.  To deal with these difficulties, Lu and Ohyoshi (1997) 

introduced a treatment in the one-dimensional wavelet-Galerkin system that replaced the 

boundary condition equations with end-equations.  

 

Subsequently, Nakagoshi and Noguchi (2001) and Kim and Jang (2001) proposed a new 

adaptive WGM to analyze the Mindlin plates problem and the thin-walled box beam 

problem using interpolation wavelet functions.  Ho and Yang (2001) used WGM to solve 

parabolic PDEs through the development of discretization formulations.  Park and Tsiotras 

(2003) developed a successive wavelet-Galerkin projection scheme for solving the 

Hamilton-Jacobi Bellman equations.  Al-Qassab and Nair (2003, 2004) used antiderivative 

wavelet bases as weight functions to solve the problem of free vibrations of an elastic 

cable. 

 

The WGM exhibited its superiority in many engineering fields. Dahmen et al. (1995) 

investigated WGM for the solution of the Stokes equations.  Yang et al. (1998) introduced 

WGM for computations in electromagnetic fields, especially for computing the associated 

connection coefficients. Venini and Morana (2001) used WGM for the solution of the one-

dimensional elastic-plastic-damage constitutive model.  Bindal et al.. (2003) proposed a 
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wavelet-Galerkin algorithm to solve the convection-diffusion problem.  Wang and Pan 

(2004) used WGM for a phase field model describing microstructural evolution.  

 

The applications of WGM over the past two decades exploited the multiresolution and 

localization properties of wavelets.  Although this method has some drawbacks in dealing 

with the complexities of different types of boundary conditions, WGM is still attracting 

the attention of researchers, especially because of the capability of adaptive WGM to 

formulate functions on various levels of detail.  

 

Similarly, WCM used wavelet functions as weight functions. McWilliam et al. (2000) 

used the Shannon wavelet functions to solve the stationary Fokker-Planck-Kolmogorov 

(FPK) equations, developed the n-dimensional solution method, and investigated the 

relationship between WCM and the Distributed Approximating Functional (DAF) 

approach. Chiavassa and Liandrat (2001) developed a fully adaptive wavelet-collocation 

algorithm to solve parabolic PDEs based on convolution operators.  Cruz et al. (2001) 

introduced adaptive WCM to the chemical engineering community; they showed that this 

method was able to dynamically change the level of resolution, but also admitted that the 

adaptive WCM still needed further optimization.  

 

Later, Park and Tsiotras (2003) developed a successive wavelet-collocation algorithm for 

approximations to optimal feedback control.  Zhang et al. (2008) used WCM to convert 

differential equations into a set of algebraic equations that could easily handle the 

nonlinear terms. Vasilyev et al. (2000, 2005) developed an adaptive multilevel WCM for 

PDEs using second generation wavelets, namely lifted interpolating wavelets on an 
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interval.  This numerical method was used for solving multidimensional elliptic problems 

constructed by the union of irregular grids.  In addition, Zhou et al. (2008) developed a 

modified WCM to simulate the nonlinear vibration of multi-degree of freedom (MDOF) 

systems and achieved satisfactory accuracy.  

 

Comparative studies between WGM and WCM were also conducted by many scholars. 

Vasilyev and Paolucci (1996) showed that the wavelet Galerkin approach mainly solves 

for the wavelet coefficients; the wavelet collocation approach provides solutions of the 

unknown function themselves at the collocation points.  Nikolaou and Yong (1994) 

compared the Laplace-transform-wavelet-Galerkin method and the Laplace-transform-

wavelet-collocation method in the solution of parabolic equations.  Their results show that 

the latter method gives better approximation for parabolic equations.  Further, Moridis et 

al. (1996) applied both WGM and WCM in solving two-phase flow problem through 

porous media using both Daubechies and Chui-Wang wavelet bases.  Moridis et al. also 

concluded that the wavelet-collocation method is superior to the wavelet-Galerkin method 

under the conditions of that study.  

 

Undoubtedly, even though the weighted residual method is a rather old method, the 

development of wavelets in the field of numerical analysis has revived this approach.  Not 

only were the WGM and the WCM further developed over the past two decades, but 

scholars also proposed new variants such as the wavelet Petrov-Galerkin method (Chen et 

al., 1997; Kaneko et al., 2003) and the wavelet least squares method (Dahmen, 1985). 

 

1.2.2 Wavelet-Finite Element Method 
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The finite element method (FEM) is a traditional and well-known method in the field of 

numerical analysis.  Wavelets have been introduced as the trial functions of FEM.  The 

wavelet-FEM can be categorized by the different wavelet bases it employs: the 

Daubechies wavelet; the spline wavelet; and the second-generation wavelet.  

 

The Daubechies wavelet-FEM was first developed by Ko and Kurdila (1995), who showed 

the well-suited characteristics of this method for integral operator compression.  The 

wavelet-FEM can solve the periodized PDEs in unbounded domains and both Dirichlet 

and Neumann boundary value problems on a specific class of bounded domains. Patton 

and Marks (1996) used a Daubechies scaling function as the interpolation function to 

develop a one-dimensional (1D) finite element.  This element was used in dynamic test 

cases and the results showed reductions in both degrees of freedom and computational 

time.  

 

Ma and Xue et al. (2003) also used the Daubechies scaling function to construct the 

wavelet-based beam element for the solution of beam bending problems.  Chen and Yang 

(2004) proposed a two-dimensional (2D) wavelet-FEM.  Mitra and Gopalakrishnan 

(2006a, 2006b, 2006c, 2006d, 2006e) proposed several formulations of the wavelet-based 

spectral finite element to perform wave characteristics and wave propagation in carbon 

nanotubes.  Jin and Xue (2006) developed the 2D plate element approach without tensor 

product calculation.  

 

In the aforementioned wavelet-FEM applications, the wavelet formulation depends 

strongly on the specific boundary conditions and they generally lack the ability to solve 
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problems involving non-homogeneous boundary conditions.  Addressing this 

shortcoming, Zhou and Zhou (2008) developed a modified wavelet-FEM to solve 

dynamic, static and buckling problems of square plate without requiring specific boundary 

conditions. Li and Cao (2011) applied later the 1D Daubechies wavelet-FEM to structural 

response analysis (Li and Cao, 2011). 

 

The spline wavelet-FEM was first applied to the solution of first-kind integral equations 

on a bounded interval (Goswami, Chan, Chui, 1995).   Compared to the Daubechies 

wavelet, the spline wavelet involves explicit expressions than can be used for the 

calculation of derivatives and integrals.  Additionally, the method was applied to structural 

mechanics — the wavelet functions were treated as the element displacement interpolation 

functions to form different types of elements, such as the beam element, the in-plane 

element, the tetrahedral solid element, and the hexahedral solid element (Han and Ren, 

2006, 2009).  Several researchers (Xiang and Chen, 2008; Chen and Xiang, 2010; Zhong 

and Xiang; 2011) conducted a series of studies of multiscale adaptive wavelet-FEM that 

were constructed using B-spline wavelets on the interval (BSWI) to solve structural 

analysis and stability analysis problems in 2D and 3D. 

 

The wavelet-FEM, and mostly its BSWI variant, has also been applied to the solution of  

multiple engineering problems, such as the identification of a crack in a beam (Xiang and 

Chen, 2006); the identification a crack in a rotor system (Xiang and Chen, 2007; Dong 

and Chen et al., 2009); the multi-damage detection in plate structures (Xiang and Chen, 

2012); wave propagation analysis (Chen and Yang et al., 2012); the detection of beam 
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cracks using modal shape (Xiang and Liang, 2012a, 2012b); and the identification of 

damage locations in structures, based on the operating deflection shape or the curvature 

mode shape (Xiang and Matsumoto, 2011, 2012, 2013a, 2013b).  Curved shell elements 

were also formulated using BSWI (Yang and Chen, 2012), which can better fit the 

geometry of a system with complex shape/geometry than flat shell elements.  The method 

was used in free vibration and buckling analysis (Yang and Chen, 2013), and resulted in 

fast convergence with fewer degrees of freedom. 

 

In general, the spline wavelet-FEM is a useful tool to conduct structural analysis.  Several 

numerical examples showed its advantages over traditional numerical methods in terms of 

the rate of convergence and the accuracy of the solution, especially when computing 

generalized stresses.  

 

The main advantage of the wavelet-based numerical methods is that they can directly form 

the multiscale approximations from the two-scale relation.  However, wavelets are usually 

defined on the whole square integrable L2 domain, which poses significant difficult in the 

description of boundary conditions, often leading to instabilities.  

 

To address the traditional difficulty of wavelet bases construction on irregularly spaced 

meshes, the second-generation wavelets (SGW) were introduced.  These are built in three 

steps (Sweldens and Schroder, 2000): (a) split: divide the original set into an even subset 

and an odd subset, (b) predict: the odd subset can be predicted from the neighboring even 

samples, and (c) update: form a coarse approximation to the original signal.   
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The second-generation wavelet finite element method that was proposed later was based 

on the Hermite family.  Sudarshan and D'Heedene (2003) applied this method to analyze 

the static and dynamic responses of a Euler beam. He and Chen et al. (2007, 2008) 

designed SGW, performed multiresolution finite element method studies, constructed an 

associated adaptive algorithm, and produced hierarchical approximation spaces.  Wang 

and Chen (2010) first proposed an adaptive multiwavelet-Hierarchical method to solve 

field problems.  Wang and Chen also developed an adaptive inverse iteration algorithm to 

solve structural eigenvalue problems (Wang and Chen, 2011). Quraishi and Sandeep 

(2011) applied the SGW-FEM to solve elliptic PDEs on 2D triangulations.  Wang and 

Chen, (2012) introduced a SGW variant based on a lifting scheme and derived the related 

formulation of the SGW-finite element equations based on the equivalent-filter concept.  

This method eliminated most restrictions and deficiencies of traditional wavelets, and 

provided significant flexibility in the solution of engineering problems. 

 

1.2.3 Wavelet-Boundary Element Method 

 

The boundary element method (BEM) reduces the dimensionality of the problems for 

which it is used, and is generally more accurate than the weighted residual method and 

FEM.  However, the BEM formulation matrices are fully populated and are thus more 

difficult to solve.  This means that the computational time and storage will grow with the 

square of the domain size.  In an effort to create sparse (instead of the fully-populated) 

boundary element matrices, Spasojevic and Schneider (1997) used the orthogonal Haar 

wavelet, which resulted in sparse matrices in the solution of the Laplace equation in 2D 

electrostatic problems. 
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Koro and Abe (2001a, 2001b) used the non-orthogonal spline wavelet and the orthogonal 

Haar wavelet to build h-hierarchical BEM for the solution of 2D Laplace problems.  

Harbrecht and Paiva (2002) developed a multiscale bi-orthogonal wavelet method by 

coupling FEM and BEW, and applied it to the solution of the 2D Poisson equation.  To 

further reduce the computational load, fast wavelet transforms using parallel iterative 

methods were introduced to the solution of BEM systems (Gonzalez and Cabaleiro, 2002).  

Tausch (2003) solved problems of potential theory and Stokes flow problems using a 

variable order wavelet-BEM.  Koro and Abe (2003) proposed a strategy based on wavelet-

BEM to determine optimal threshold parameters.  Bucher et al. (2003) proposed a fast 

method using assembled BEM matrices and fast wavelet transforms to rapidly solve 

problems involving multiple load cases.  Further developing this scheme, Bucher et al. 

(2004) introduced a computational procedure based on block wavelet transforms.  

 

Eppler and Harbrecht (2003) solved some elliptic shape optimization problems using a 

wavelet-BEM.  The method was further applied to fluid dynamics (Ravnik et al., 2004) 

using Haar wavelet matrix compression.  Ravnik et al. (2006, 2008) extended the original 

method and introduced a hybrid FEM-BEM approach to solve the Navier-Stokes 

equations and to simulate dilute particle-laden flow. Xiao et al. (2007) solved 2Dl 

potential problems using Daubechies wavelets with coefficient matrices calculated by fast 

Fourier transforms (FFT).  Barmada (2007) applied this method to diffusion problems with 

time-dependent fundamental solutions.  Eppler and Harbrecht (2008) applied a spline 

wavelet-BEM to the solution of electromagnetic shaping problems in both 2D and 3D.  



 

12 

 

Xiao and Tausch (2009a, 2009b, 2009c, 2010) conducted a series of studies on wavelet-

BEM that: summarized different compression method; introduced a-posteriori 

compression strategy; simplified the implementation of wavelet-BEM; linked the wavelet-

BEM and the low-rank approximation method; developed a fast wavelet-multipole 

method; was extended to 3D electrostatic analysis; and solved large-scale Stokes flow 

problems (Xiao and Ye, 2011). 

 

Wavelets with short compact support and a high order of vanishing moments are useful 

tools to obtain a high matrix compression rate.  Thus, selecting or constructing suitable 

wavelet bases to meet special engineering needs when using the wavelet-BEM is of great 

significance. 

 

Thus, the main purpose of this chapter is to offer a complete (to the extent possible) 

discussion on the subject of wavelet applications in the solution of PDEs -- including their 

advantages, drawbacks, and future potential development of each wavelet-based 

numerical method -- and to provide some guidance for my future research path. 
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1.3 The general PDE for flow through porous media 

 

The single-phase fluid flow through anisotropic and heterogeneous porous media can be 

described by the following general equation: 

( ) ( )f gk p g z m
t


 



  
  −  + = 

 
 ................................................................ (1.3.1) 

where: 

fk  = permeability tensor, m2 

μ  = fluid viscosity, Pa-s 

g  = gravitational acceleration, (=9.806) m/s2 

p  = reservoir pressure, Pa 

ϕ  = porosity, fraction 

ρ  = fluid density, kg/m3 

t   = time, sec 

zg = elevation, m 

m  = mass entering (leaving) a control volume from a sink (source), kg/m3/s 

 

Here, the permeability tensor usually defined as 

0 0

0 0

0 0

xx xy xz xx

f yx yy yz yy

zx zy zz zz

k k k k

k k k k k

k k k k

   
   

=    
     

 ................................................................ (1.3.2) 

The off-diagonal permeability terms can be assumed to be zero only if the coordinate 

system coincides with the principal directions of the permeability tensor. 
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Eq. (3.1) applies to all fluids and to all conditions under which Darcy's law is valid.  

Assuming that the porous media is isotropic and that the fluid is slightly compressible 

(which means that the liquid compressibility is small and both it and the fluid density 

remain constant within the pressure range of interest), Eq. (3.1) can be simplified as 

( ) t

f f

p
p g z m c

k k t

 
 




  −  + =   

 ................................................................ (1.3.3) 

where ct = cf + cr. 

ct  = total compressibility, Pa-1 

cf  = fluid compressibility, Pa-1 

cr  = rock compressibility, Pa-1 

 

Implicit in Eq. (1.3.3) is the assumption that viscosity is constant, which is a valid 

approximation for isothermal flows and small pressure changes.  Next, assuming that 

gravity plays a minor role (a valid approximation in highly pressurized, relatively thin 

formations), Eq. (1.3.3) can be further simplified, yielding the following PDE in the 3D 

cartesian coordinate space: 

2 2 2

2 2 2

t

f f

cp p p m p

x y z k k t





   
+ + + =

   
 ...................................................................... (1.3.4) 

Eq. (1.3.4) is known as the diffusivity equation of a single-phase, slightly compressible 

fluid in a homogenous and isotropic porous medium.  Then, the 1D linear flow linear 

diffusivity equation without an explicit source or sink term is expressed as 

2

2

t

f

cp p

x k t

 
=

 
 ...................................................................................................... (1.3.5) 
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The dimensionless form of linear flow is derived based on a treatment of the inner 

boundary (i.e., at the source or sink) that accounts for the fixed constant rate, yielding: 

2

2

D D

D D

p p

x t

 
=

 
, ......................................................................................................... (1.3.6) 

in which the dimensionless variables are defined as 

( )f

D i

e

k A
p p p

qB x
= − , 

2

f

D

t e

k
t t

c x
= , D

e

x
x

x
=  ...................................................... (1.3.7) 

where xe is the total length of x domain, A is the cross-Chapter area, B is the formation 

volume factor, and q is the constant injection or production rate at the inner boundary. 

 

1.4 Objectives 

 

The main objective of this work is to use wavelet-based (WB) numerical methods to solve 

problems of fluid flow in homogeneous and heterogeneous porous and fractured media, 

with particular focus on ultra-low permeability (ULP) systems such as shale oil and gas 

reservoirs.  The effort aims to use the WB simulation approach to analyse the flow and 

pressure behavior to the external stimuli of fluid injection and/or withdrawal, and intends 

to include the following activities: 

• To extend the wavelet-Galerkin method (WGM) and wavelet-collocation method 

(WCM) proposed by Moridis et al. (1996) to the solution of two-phase flow 

problems. 

• To derive a general approach involving the use of different appropriate wavelet 

bases and the application of their multi-resolution property to solve problems of 

single- and multi-phase flow through multidimensional porous media domains. 
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• To develop a compact MATLAB program implementing the WB solutions. 

• To compare the results obtained from the various WB numerical methods using 

different wavelet bases. 

• To validate the WB solutions against analytical solutions and the predictions of a 

numerical reservoir simulator. 
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CHAPTER II  

WAVELET TRANSFORMS AND THEIR APPLICATION TO THE SOLUTION OF 

THE PDE OF FLOW 

 

2.1 General wavelet concepts and approach 

 

2.1.1 Wavelet Function and Scaling Function 

In the terminology used in this study, ( )x  is referred to as a mother wavelet or basic 

wavelet. The integral of wavelet function ( )x  is zero in the interval of ( ),− + , i.e., 

( ) 0x dx
+

−
=  ...................................................................................................... (2.1.1) 

Traditionally, wavelets are generated by a scaling factor and a translation factor as follows: 

( )/2

, 2 2  ,j j

j k x k j k = −  , ............................................................................. (2.1.2) 

where  is the set of all integers, x is the independent variable of the wavelet, j is the 

scaling factor, and k is the translation or shifting factor.  Moreover, 2j is the stretch of the 

wavelet and the factor 2j/2 maintains a constant norm independent of the scale j.  The 

equation above has also been named as the "two-dimensional parameterization" (Burrus, 

1997) achieved by the wavelet function ( )x . 

 

Wavelet analysis allows a target function to be represented in terms of different wavelet 

bases over an interval. Thus, theoretically, any function ( )f x  can be expressed as: 

( ) ( ), ,

,

j k j k

j k

f x a x


=−

=   ........................................................................................ (2.1.3) 
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where the terms 
,j ka  are called the wavelet expansion coefficients and can be calculated 

from the relationship 

( ) ( ), ,,j k j ka f x x= , ........................................................................................... (2.1.4) 

in which ,A B denotes the inner product of the quantities A and B to the right and left 

of the comma, respectively. 

 

Generally, the multiresolution formulation requires two closely related basic functions. In 

addition to the mother wavelet ( )x  discussed above, the other basic function is the 

scaling function ( )x .  A set of scaling functions are defined in terms of integer 

translations of the basic scaling function as follows: 

( ) ( ) ( )2,  ,  k x x k k L  = −    ...................................................................... (2.1.5) 

where L2 denotes the space of all functions ( )x  with a well-defined integral of the 

square of the function.  Here, L stands for a Lebesque integral, and ℝ denotes that the 

integration of the independent variable x is a number over the whole real line. 

 

The subspace 
0V  of L2(ℝ), can be spanned by the translations of the scaling function as 

( ) 0 ,  k
k

V Span x k=   ...................................................................................... (2.1.6) 

The over-bar in Eq. (2.1.6) denotes closure of the associated space. Eq. (2.1.6) means that, 

for any ( ) 0f x V , 

( ) ( )k k

k

f x a x=  .................................................................................................. (2.1.7) 
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where, 
ka  is the coefficient of each translation of the basic scaling function.  

 

Next, by changing the scale of the scaling function, the size of each subspace can be 

increased.  A family of scaling functions can then be generated from the basic scaling 

function ( )x  by scaling and translation, yielding: 

( ) ( )/2

, 2 2  ,j j

j k x x k j k = −   .......................................................................... (2.1.8) 

 

The new subspace 
jV  spanning over k is: 

( )  ( ) ,2 ,  j

j k j k
k k

V Span x Span x k = =   ........................................................ (2.1.9) 

 

The term ( ) ,j k k
x


 forms a Riesz basis of 

jV . For any ( ) jf x V : 

( ) ( )2 j

k

k

f x a x k= +  ...................................................................................... (2.1.10) 

For j > 0, the size of the span will be larger than the span in Eq. (2.1.6) because ( ),j k x  is 

narrower than ( )k x  in Eq. (2.1.6).  The new span in Eq. (2.1.10) can represent the finer 

details of a function.  On the contrary, for j < 0, the spanned subpace is smaller than the 

span in Eq. (2.1.6) because ( ),j k x  is wider than ( )k x  in Eq. (2.1.6), which represents 

only coarse information on a function. 

 

2.1.2 Multiresolution Analysis 

The multiresolution property of wavelets is an important property that can be exploited 

for the multilevel approximation of problems of flow and geomechanics routinely 
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encountered in petroleum engineering.  A multiresolution analysis is composed of a nest 

of closed subspaces ( ) ( )2

j j
V L


  such that: 

(i) 
1j jV V +  

(ii) ( ) ( ) 12 ,   j jf x V f x V j+     

(iii) ( ) ( )2 ,   j

j jf x V f x V j−  −    

(iv) j
j

V

  is dense in ( )2L , and  0j

j
V


 =  

(v) There is a function 
0V , such that ( ) 

k
x k


−  forms a Riesz basis of 

0V  

The first property (i) is simply called the nested property, which indicates that the space 

that contains the high-resolution functions will also contain those of a lower resolution.  

The second property (ii) is called self-similarity in scale j, which ensures that the elements 

in space Vj are simply scaled versions of the elements in the next finer space Vj. Similarly, 

the third property (iii) describes self-similarity in the independent variable x. Each 

subspace Vj is invariant under translations or shifts of 2-j.  

 

The fourth property (iv) is named completeness and demands that the union of the nested 

subspaces fill the whole space; in other words, to be dense in L2(ℝ).  Additionally, the 

intersection of those subspaces only contains the zero element, i.e., they do not include 

redundant information. 

 

The fifth property (v) is named regularity and requires that the subspace V0 be generated 

as the linear span of the integer shifts k of a finite number of the basic scaling function 
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( )x .  It also imposes certain conditions, i.e., there exist constants c ( 0 c C   + ) 

such that: 

( )
2

2 2

2

k k k

k k k

c a a x k C a
  

   
 −    

   
    ........................................................ (2.1.11) 

for all sequences of ak in the space l2. 

Therefore, the scaling function ( )x  generates a multiresolution analysis (MRA) with 

the properties discussed above. 

 

2.2 The Haar wavelets 

 

Mathematically, Haar wavelets are a sequence of rescaled "square-shaped" functions that 

were proposed by Haar (1910).  The "mother" wavelet function and the associated scaling 

function of the Haar wavelet are defined as follows: 

( )

1
1        0

2

1
1     1

2

0        otherwise

x

x x


 




= −  





 ...................................................................................... (2.2.1) 

 

( )
1        0 1

0        otherwise

x
x

 
= 


 ...................................................................................... (2.2.2) 
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Graphs of these functions are shown in Fig. 2.1. 

 

 

Figure 2.1 – (a) Haar wavelet's scaling function φ(x), and (b) Haar wavelet's mother 

wavelet function ψ(x). 

 

The Haar wavelet family on an interval  1 2,x    is described by  

( )
1 2

2 3

1        

1     

0        otherwise

i

x

h x x

 

 

 


= −  



 ...................................................................................... (2.2.3) 

where h denotes the Haar wavelet family, and the subscript i indicates the i-th Haar 

wavelet. 
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The subdomain parameters ξ are defined as: 

( )
( )

( )
( )

( )
( )

2 1

1 1

2 1

2 1

2 1

3 1

2
2

2 1
2

2 2
2

k
m

k
m

k
m

 
 

 
 

 
 

−
= +

−
= + +

−
= + +

 ...................................................................................... (2.2.4) 

where 

2

0,  1,  ...,  

0,  1,  ...,  1

jm

j J

k m

=

=

= −

 .................................................................................................. (2.2.5) 

and J is defined as the maximum level of resolution: 

The scaling parameter j and the shift parameter k were discussed in Section 2.1.1.  

 

Given Eq. (2.2.5), the number of wavelets i can be obtained as 1i m k= + + . Note that j is 

also named the level of resolution: as j increases to a maximum level of resolution J, the 

wavelet becomes narrower.  The translation factor k localizes the position of the wavelet 

on the x-axis. When k increases from 0 to 1m−  on the x-axis, the initial point ξ1 of the i-

th Haar wavelet hi(x) changes from ζ1 to 
( )1 21m

m

 + −
. 

 

Eq. (2.2.3) is valid only if i > 2. The case for i = 1 corresponds to the scaling function of 

the Haar wavelet that was introduced by Eq. (2.2.2) and Fig. 2.1(b). Fig. 2.2 presents four 

examples of the Haar wavelet family, that is from h1(x) to h4(x) on the domain  0,1x  

(i.e., with i varying from 1 to 4) and for various values of j and k. 
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Figure 2.2 – Haar wavelet for (a) i = 1; (b) i = 2, j = 0, k = 0; (c) i =3, j = 1, k = 0; (d) 

i = 4, j = 1, k = 1 

 

Select integrals of the Haar wavelets are as follows: 

( )

( )

,1
0

,2 ,1
0

x

i i

x

i i

I h x dx

I I x dx

=

=




 .................................................................................................... (2.2.6) 

in which I denotes an integral of a Haar wavelet, the first subscript i indicates the integral 

of the i-th Haar wavelet family, and the second subscript denotes the number of times of 

integration. Those formulas hold true for any i > 1. 

 

Based on Eq. (2.2.3), it is easy to obtain the following explicit expressions for those 

integrals on  1 2,x   : 
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( )

1 1

1 1 2

,1

3 2 3

3 2

0          

   

   

0          

i

x

x x
I x

x x

x

 

  

  

 

 


−  
= 

−  
  

 .................................................................................. (2.2.7) 

 

( )

( )

( ) ( )

( ) ( ) ( )

1 1

2

1

1 2

2 2
,2

1 2

2 3

2 2 2

1 2 3

3

0                                                         

                                            
2

2
                        

2

2
       

2

i

x

x
x

I x x x
x

x x x

 


 

 
 

  


 

−
 

= − − −
 

− − − + −
2x 










  


 .................................. (2.2.8) 

 

The integrals ( ),1iI x  and ( ),2iI x  corresponding to the wavelets h1 to h4 (shown in Fig. 

2.2) are presented in Figs. 2.3 and 2.4, respectively. 
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Figure 2.3 – Integrals Ii,1(i = 1, … ,4) of the Haar wavelets shown in Fig. 2.2. 
 

 

Figure 2.4 – Integrals Ii,2 (i = 1, … ,4) of the Haar wavelets shown in Fig. 2.2. 
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2.3 The B-spline wavelets 

B-splines are a special type of cardinal splines. They are defined by the following recursive 

formula: 

( ) ( ) ( )1 1m mN x N x t N x dt


−
−

= −  .......................................................................... (2.3.1) 

( )1

1   0 1

0   . .

x
N x

o w

 
= 


 .............................................................................................. (2.3.2) 

where ( )mN x  is the B-spline of order m, with m being any positive integer.  

 

The cardinal B-splines start from the B-spline of order m = 1, which is the constant B-

spline that takes the value 1 in the interval [0,1] and 0 elsewhere.  This is the reason why 

the linear spline (usually associated with the exponent 1) corresponds to m = 2, and the 

cubic spline (usually associated with the exponent 3) corresponds to m = 4. 

 

Chui and Wang (1991, 1992a, 1992b, 1993) developed B-spline wavelets bases using B-

spline functions. B-spline wavelet applications often involve splines with an even order 

m.  At this point, we present information describing the difference in behavior between 

linear (m = 2) and cubic B-spline wavelets (m = 4). 

 

The linear B-spline function N2(x) is given by: 

( )2

           0 1

2   1 2

0           . .

x x

N x x x

o w

 


= − +  



 .................................................................................... (2.3.4) 

 

In the ensuing discussion, the resolution level j and the dilation parameter k are as they 

have been earlier defined in Chapters 2.1 and 2.2.  For B-spline wavelets, the range of k is 
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in the domain 1 ,2 1nm − −  . Using the j and k values in the four examples of Fig. 2.2, the 

corresponding linear B-spline wavelets family N2 in the domain  1,2x −  is shown in 

Fig. 2.5. Note that, when j = 0 in Fig. 2.5(a), i.e., when resolution level is zero, the 

resulting plot describes the linear B-spline scaling function itself; when the resolution level 

j = 1, the wavelet is narrower by a factor of 2 and is shifted from k = -1 to k = 1 – see Figs. 

2.5(b) to Fig. 2.5(d). 

 

 

 

Figure 2.5 – Linear B-spline wavelet for (a) j = 0, k = 0; (b) j = 1, k = -1; (c) j = 1, k = 

0 (d) j = 1, k = 1 
 

Here, N2(x) is in essence the scaling function ( )x  of the linear spline wavelets. 

Recalling Eq. (2.1.8) that defined a family of scaling functions, the scaling function of the 

linear B-spline wavelet family in the example of Fig. 2.5 is described as: 
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( ) ( ) ( )1

0

2 2
m

m

m

k

m
x N x x k

k
 − +

=

 
= = − 

 
  ................................................................ (2.3.5) 

and the wavelet basis ( )x  is given by 

( ) ( ) ( ) ( ) ( )
2

2 2
1

2

0

2 1 1 2
m

m
k mm

m

k

x N k N x k
−

− +

=

= − + −  .................................................... (2.3.6) 

where, 
( ) ( ) ( ) ( )
2

0

2 1
m

m
km

k

m
N x k x k

k


=

 
− = − − 

 
 . 

 

Because of the superior accuracy and flexibility that makes cubic spline wavelets 

convenient to use, these are used as the basis in the WB solution for the PDEs of interest 

in petroleum engineering.  Also, Haar wavelets are included for the purposes of 

completeness and comparison of performance. 

 

The scaling function of the cubic spline wavelet function is defined as follows: 

( )

3

3 2

3 2

4

3 2

1
,                                    0 1

6

1 2
2 2 ,         1 2

2 3

1 22
4 10 ,        2 3

2 3

1 32
2 8 ,       3 4

6 3

0,                                        otherwise

j

j

j

j

x x

x x x x

N x x x x x

x x x x


 


− + − +  




= − + −  


− + − +  



  






 .................................................. (2.3.7) 

 

Fig. 2.6 presents six examples of the cubic B-spline wavelet family (m = 4) for various j 

and k values.  For zero-level resolution (j = 0) in Fig. 2.6(a), N4 is in essence the cubic B-
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spline function, namely the scaling function that generates MRA; for j = 1, the wavelet is 

narrower for a factor of 2 and is shifted from k = -3 to k = 1. 

 

The interpolation wavelets that generate B-spline wavelets are not compactly supported. 

Compactly supported B-spline wavelets were developed by Chui and Wang (1991, 1992a, 

1992b, 1993).  The Chui-Wang wavelets, denoted as ( ),j k x , have the following 

properties: 

(i) These are smooth in k  

(ii) These are semi-orthogonal: 
' ',  0,   '   , ', , 'jk j k j j j j k k  =    

(iii) ( ),j k x  is symmetric for an even spline order m, and anti-symmetric for an odd 

spline order m 

(iv) The support of ( ),j k x  is in the closed interval ( )2 ,  2 2 1j jk k m− − + −   

 

One major advantage of B-spline wavelets is that explicit expressions exist for the scaling 

function, the wavelet function and their dual functions.  A disadvantage is that the dual 

wavelet function and scaling function are not compactly supported. 

 

2.4 WB Solution of the 1D Equation of Flow 

 

2.4.1 Haar WB Solution 

 

Recalling Eq. (2.1.7), any square integrable function ( )f x  in the interval [0,1] can be 

expressed as: 

( ) ( )
1

i i

i

f x a h x


=

=  .................................................................................................. (2.4.1) 
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where the coefficients ( ) ( )
1

0
2 j

i ia f x h x dx=  , and ( )ih x  is the i-th Haar wavelet. 

 

 

Figure 2.6 – Cubic B-spline wavelet for (a) j = 0, k = 0; (b) j = 1, k = -3; (c) j = 1, k = -

2 (d) j = 1, k = -1; (e) j = 1, k = 0; (f) j = 1, k = 1 
 

Assuming that the function ( )f x  can be approximated as piecewise-constant in each sub-

interval, the infinite number of terms is drastically reduced to a limited number of finite 

terms.  Therefore, 
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( ) ( ) ( )
2

2 2

1

M
T

i i M M

i

f x a h x a h x
=

= =  ............................................................................ (2.4.2) 

where, M = 2J, J is the maximum resolution level defined earlier in Eq. (2.2.5), T denotes 

the transpose of the associated vector, and the coefficients and Haar wavelet family are 

column vectors expressed as follows: 

 

 

( ) ( ) ( ) ( )

2 1 2 2

2 1 2 2

,  ,  ...,  

,  ,  ...,  

T

M M

T

M M

a a a a

h x h x h x h x

=

=   

 .................................................................. (2.4.3) 

 

The 1D flow in the x-direction of a nearly incompressible fluid through a homogeneous 

porous medium is described by the following diffusivity partial differential equation 

(PDE): 

2

2

t sc

f

c qp p

x k t





 
= +

 
 .............................................................................................. (2.4.4) 

sc

sc

m
q


=  is the strength of the source or sink 

 = k/(B) is the mobility. 

scq  = permeability tensor, s-1 

sc  = fluid density at standard condition, kg/m3 

λ   = mobility, m2/Pa/s 

B  = formation volume factor, res vol/std vol 

 

From Eq. (1.3.6) in Section 1.3, the dimensionless form of the PDE in Eq. (1.6) is: 

2

2

D D

D D

p p

x t

 
=

 
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with the initial condition of ( ), 0 0D D Dp x t = =  and boundary conditions that are described 

as follows: 

( )0, 1D
D D

D

p
x t

x


= = −


 .............................................................................................. (2.4.5) 

( )1, 0D Dp x t= =  .................................................................................................... (2.4.6) 

 

where Eq. (2.4.5) describes a constant production rate at the inner boundary (i.e., the well), 

and Eq. (2.4.6) describes a no-flow outer boundary of the domain. 

 

The dimensionless variables pD, xD and tD are defined in Eq. (1.3.7). 

 

The spatial and temporal discretization of the diffusivity equation in Eq. (1.3.6) is now 

discussed.  For  0,1
D

x  , the grids are defined by: 
0.5

, 1, 2, ..., 2
2D

l l
x l M

M

−
= = , in which 

the subscript D denotes a dimensionless variable, and the superscript l denotes the level of 

discretization (refinement) of each one of the 2M grids. For  ,
D st endt t t , time is divided 

into Nt segments of equal length end st

t

t t
t

N

−
 = , where tst denotes the starting point in time 

(usually tst = 0) and tend denotes the ending time.  The timesteps define the series of 

discretized times ( )1 , 1, 2, ...,
D

s

tt s t s N= −  = , where Δt denotes the increment/ timestep 

(into which time is subdivided), and s is the timestep number in the sequence. 
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To solve the 1D fluid flow through porous media problem,  the time-dependent right-hand 

side (RHS) of Eq. (1.3.6) is discretized using a standard backward Finite-Difference (FD) 

scheme, which yields: 

( )
( ) ( )12

1

2

, ,
,

s s

D D D D D DsD
D D

D

p x t p x tp
x t

x t

+

+
−

=
 

 ............................................................ (2.4.7) 

 

Following the approach of Lepik (2005, 2007), at each time subinterval 
1,

D

s s

D Dt t t +    , the 

left-hand side (LHS) of Eq. (1.3.6) ( )
2

1

2
, sD

D D

D

p
x t

x

+


 is approximated by a series of Haar 

wavelets using Eq. (2.4.2), resulting in: 

( ) ( )
2 2

1

2
1

,
M

sD
D D i i D

iD

p
x t a h x

x

+

=


=


  .................................................................................. (2.4.8) 

 

Integrating Eq. (2.4.8) with respect to xD from 0 to xD yields: 

( ) ( ) ( )
2

1 1

,1

1

, 0,
M

s sD D
D D D i i D

iD D

p p
x t t a I x

x x

+ +

=

 
= +

 
  ............................................................ (2.4.9) 

where the ( )10, sD
D

D

p
t

x

+


 term is known because of the given inner boundary condition. 

 

Next, integration of Eq. (2.4.9) from 0 to xD results in: 

( ) ( ) ( ) ( ) ( )
2

1 1 1

,2

1

, 0, 0 0,
M

s s sD
D D D D D D D i i D

iD

p
p x t p t x t a I x

x

+ + +

=


= + −  +


  ........................ (2.4.10) 
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To find the unknown ( )10, s

D Dp t +
, 1Dx =  is substituted into Eq. (2.4.10) to obtain: 

( ) ( ) ( ) ( ) ( )
2

1 1 1

,2

1

1, 0, 1 0 0, 1
M

s s sD
D D D D D i i

iD

p
p t p t t a I

x

+ + +

=


= + −  +


  .................................. (2.4.11) 

 

Substitution of the inner boundary conditions in Eqs. (2.2.5) and (2.2.6) into Eq. (2.4.11), 

provides the unknown ( )10, s

D Dp t +
 as: 

( ) ( )
2

1

,2

1

0, 1 1
M

s

D D i i

i

p t a I+

=

= −  .................................................................................. (2.4.12) 

 

Substitution of Eq. (2.4.12) and the inner boundary condition given by Eqs. (2.2.5) and 

(2.2.6) into Eq. (2.4.10) provides the general wavelet-based expression for pressure at time 

1

D

st +  as: 

( ) ( ) ( ) ( )
2 2

1

,2 ,2

1 1

, 1 1
M M

s

D D D D i i D i i

i i

p x t x a I x a I+

= =

 
= − + − 

 
   .......................................... (2.4.13) 

 

Next, inserting Eqs. (2.4.8) and (2.4.13) into Eq. (2.4.7) and rearranging terms leads to the 

following equation: 

( ) ( ) ( ) ( ) ( )
2

,2 ,2

1

1 1 ,
M

s

i i D i D i D D D D

i

a h x t I x I x p x t
=

  − + = − −   .............................. (2.4.14) 

 

When 0,  0s

D sts t t= = = , ( ), s

D D Dp x t  is given by the initial condition ( ), 0 0D D Dp x t = =  

and the boundary grid points are constrained by the known boundary conditions.  Then 

the coefficients ai of Eq. (2.4.14) can be successively calculated, with the estimation 

process starting with the known initial condition.  
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2.4.2 Cubic B-spline WB Solution 

 

The ( ),D D Dp x t  in the 1D dimensionless form of the diffusivity Eq. (1.3.6) that describes 

flow through a homogeneous porous media, as well as in the corresponding initial and 

boundary conditions described by Eqs. (2.2.5) and (2.2.6), is approximated by a finite 

series of cubic B-spline scaling functions ( ),j k Dx  as: 

( ) ( ) ( ), ,,D D D j k D j k D

k

p x t a t x=  ........................................................................ (2.4.15) 

where, ( ),j k Da t  are the coefficients of each of the cubic B-spline scaling functions.  The 

resolution level j and k are as previously defined. 

 

Because the cubic B-spline scaling functions and their first and second derivatives have 

explicit expressions, the second derivative of the dimensionless pressure function with 

respect to x-axis can be easily expressed as follows: 

( ) ( ) ( )
22

,

,2 2
,

j kD
D D j k D D

kD D

dp
x t a t x

x dx


=


  ................................................................ (2.4.16) 

 

Similarly, for  0,1
D

x  , the interval x  between two consecutive points on the x-axis is 

defined as 
1

x

x
N

 = , where Nx denotes the number of the equally spaced grid points.  Each 

point in the discretized domain is defined as ( )1 , 1, 2, ...,
D

l

xx l x l N= −  = , where 

superscript l denotes the number of the discretized interval in the Δ𝑥 sequence. 

 



 

37 

 

The time discretization follows the same approach described in the case of the Haar WB 

solution of the 1D diffusivity.  Thus, the temporal discretization of the RHS of the PDE in 

Eq. (1.3.6) and substitution of Eqs. (2.4.15) and (2.4.16) therein yields: 

( ) ( )
( ) ( ) ( ) ( )1

2 , , , ,
,1

, 2

D D

D

s s

j k j k D j k j k D
j ks k k

j k D

k D

a t x a t x
d

a t x
dx t

 


+

+

−

=


 
  .............. (2.4.17) 

 

Rearrangement of Eq. (2.4.17) results in: 

( ) ( ) ( ) ( ) ( )
2

,1

, , , ,2D D D D D

j ks l l s l

j k j k j k j k

k kD

d
a t t x x a t x

dx


 +

 
  − = 
  

   .......................... (2.4.18) 

 

Because of the known initial and boundary conditions of Eq. (2.4.15), the RHS of Eq. 

(2.4.18) is known. This allows the determination of the coefficients ( )1

, D

s

j ka t +
 for each 

time 1

D

st +  of the sequence of timesteps into which the time dimension is discretized. 

 

2.5 WB Solution of the 2D Equation of Flow 

 

Multidimensional wavelet bases can be constructed from one-dimensional wavelet bases 

or scaling functions by means of a tensor product (Mallat, 1989). In this case, the scaling 

functions for the 2D case are: 

( ) ( ) ( ) ( )
1 2 1 2, , , ,, ,j k k j k j kx y x y x y    =  =  ...................................................... (2.3.1) 

where k1 and k2 are shifting factors of the scaling functions corresponding to the 

independent variable x and y, respectively. The symbol   denotes a Kronecker product. 

 

Similarly, 2D wavelets are defined by the following three different sets of equations: 



 

38 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , 1 21 2

, , 1 21 2

, , 1 21 2

1

, ,

2

, ,

3

, ,

, ,

, ,

, ,

j k k

j k k

j k k

j k j k

j k j k

j k j k

x y x y x y

x y x y x y

x y x y x y

   

   

   

 =  =

 =  =

 =  =

 ...................................................... (2.3.2) 

 

The flow of a nearly incompressible fluid through a 2D homogeneous and isotropic porous 

medium is described by the following diffusivity PDE, already discussed in a more general 

form in Eq. (1.3.4) of Section 1.3: 

   
2 2

2 2
,     0, , 0, , 0t

e e

f sc

cp p p m
x x y y t

x y k t



 

  
+ = +   

  
 .................................. (2.3.3) 

 

The x and y coordinates are normalized first, resulting in the dimensionless coordinates: 

,D D

e e

x y
x y

x y
= =  and ( ) ( ) ( ), 0,1 0,1D Dx y   . Similarly, the initial and boundary conditions 

are defined in terms of the dimensionless coordinates as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

3 4

0, , ;  1, , ;

,0, ;   ,1, ;

, ,0

D D D D D D

D D

D D D D D D

D D

D D D

p p
y t g y y t g y

x x

p p
x t g x x t g x

y y

p x y f t

 
= =

 

 
= =

 

=

 .............................................. (2.3.4) 

where gi(u), i = 1, 2, 3, 4 denotes a Neumann boundary condition function, f(v) denotes an 

initial condition function, and u and v are the general independent variables of the 

corresponding functions. 

 

Using cubic B-spline basis, we approximate the pressure term as: 

( ) ( ) ( )
1 2 1 2, , , ,, , ,D D j k k j k k D D

k

p x y t a t x y   ............................................................ (2.3.5) 
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In a manner entirely analogous to that for the solution of the 1D PDE, for  0,1
D

x   and 

 0,1
D

y  , the intervals Δx and Δy between any two successive points on the x- and y-

axes, respectively, are defined as 
1 1

,  
x y

x y
N N

 =  = , where 
xN  and 

yN  denote the 

number of subdivisions into which the x- and the y-axes are discretized. Time is discretized 

in a manner identical to that in the 1D PDE and will not be further discussed here. 

 

Spatial and temporal discretization of Eq. (2.3.3) and substitution of Eq. (2.3.5) using 

cubic B-spline wavelets, yields: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 2

2

1 2

1 2 1

1 2 1

2

,1

, , , 22 2

2

,1

, , , 12 2

1

, , , , 2

, , , , 2

1

1

j kj

j k k D j k D

ke D

j kj

j k k j k D D

ke D

j

j k k j k D j k D

kt

jf sc

j k k j k D j k D

k

a t x y
x x

a t x y
y y

a t x y
c m

tk
a t x y







 


 
 

+

+

+






+



 
 
 = +

  
− 
 









 .............................................. (2.3.6) 

 

Proceeding closely to the process described in the solution of the 1D PDE, the unknown 

coefficients  
1 2, ,j k ka  are obtained using the given/known initial and boundary conditions.  

These are then used in Eq. (2.3.4) to provide the solution at any desirable point and time 

in the discretized 2D domain. 
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2.6 WB Solution of the 3D Equation of Flow 

 

The flow of a nearly incompressible fluid through a 3D homogeneous and isotropic porous 

medium is described by the following general diffusivity partial differential equation 

(PDE) already described by Eq. (1.3.4) 

     
2 2 2

2 2 2
,  0, , 0, , 0, , 0t

e e e

f sc

cp p p p m
x x y y z z t

x y z k t



 

   
+ + = +    

   
 

 

Normalization of the x, y and z coordinates yields the dimensionless coordinates D

e

x
x

x
=

, D

e

y
y

y
= , D

e

z
z

z
= , with. The initial and boundary conditions are defined as:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

3 4

5 6

0, , , , ;  1, , , , ;

,0, , , ;   ,1, , , ;

, ,0, , ;   , ,1, , ;

, , ,0

D D D D D D D D D D

D D

D D D D D D D D D D

D D

D D D D D D D D D D

D D

D D D D

p p
y z t g y z y z t g y z

x x

p p
x z t g x z x z t g x z

y y

p p
x y t g x y x y t g x y

z z

p x y z h t

 
= =

 

 
= =

 

 
= =

 

=

 ...................... (2.6.1) 

where, gi(u,w), i = 1, 2, 3, 4, 5, 6 denotes Neumann boundary condition functions, f(v) 

denotes the initial condition function, and u, v, and w are the general independent variables 

of the corresponding functions. 

 

Using cubic B-spline bases, the pressure is approximated as: 

( ) ( ) ( )
1 2 3 1 2 3, , , , , ,, , , , ,D D D j k k k j k k k D D D

k

p x y z t a t x y z   ............................................ (2.6.2) 
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where ( ) ( ) ( ) ( ) ( )
1 2 3 1 2 3, , , , , ,, , , ,j k k k D D D D D D j k D j k D j k Dx y z x y z x y z      =   = , and 

k1, k2, and k3 are shifting factors of the scaling functions corresponding to the independent 

variables xD, yD and zD, respectively. 

 

In a manner entirely analogous to that for the solution of the 1D and the 2D PDE, for 

( ) ( ) ( ) ( ), , 0,1 0,1 0,1D D Dx y z    , the intervals x, y and z between any two successive points 

on the x-, y- and z-axes, respectively, are defined as:  

 

1 1 1
,  ,  

x y z

x y z
N N N

 =  =  =  

 

where Nx, Ny, and Nz denote the number of subdivisions into which the x-, y- and z-axes 

are discretized.  Time is discretized in a manner identical in the 1D and 2D PDE. 

 

Spatial and temporal discretization of Eq. (1.3.4) and substitution of Eq. (2.6.2) using 

cubic B-spline wavelets yields the WB form of the discretized equation as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2 3 2 3

2

1 2 3 1 3

3

1 2 3 1 2

1 2 3 1 2 3

1

2

,1

, , , , ,2 2

2

,1

, , , , ,2 2

2

,1

, , , , ,2 2

1

, , , , , ,

, ,

1

1

1

j kj

j k k k D j k D j k D

ke D

j kj

j k k k j k D D j k D

ke D

j kj

j k k k j k D j k D D

ke D

j

j k k k j k D j k D j k D

kt

f

j k

a t x y z
x x

a t x y z
y y

a t x y z
z z

a t x y z
c

tk
a


 


 


 

  


+

+

+

+






+




+



=


−









( ) ( ) ( ) ( )
2 3 1 2 3, , , ,

j sc

k k j k D j k D j k D

k

m

t x y z
 

  

 
 
  +
 
 
 


 .......................... (2.6.3) 
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Following the same successive process described in the solution of the 1D and 2D PDEs, 

the unknown coefficients  
1 2 3, , ,j k k ka  at each time step tj+1 can be obtained using the known 

initial and boundary conditions.  Next, substitution of the resulting coefficients  
1 2 3, , ,j k k ka  

into Eq. (2.6.3) yields the pressures at any point and time in the discretized 3D domain. 
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CHAPTER III  

VERIFICATION AND VALIDATION OF THE WB SOLUTION OF THE PDE OF 

FLOW 

 

In this chapter, several examples of the WB solutions of PDEs for flow through porous 

media are investigated in order to: 

• Compare the WB numerical solutions to existing analytical solutions in a one-

dimensional space. 

• Contrast the explicit method with the implicit WB numerical method. 

• Compare the errors of the WB solutions obtained using the Haar and the B-spline 

wavelets. 

• Compare WB numerical solutions to results obtained from the FTSim (Wang, 2019) 

numerical simulator in a multidimensional space. 

 

3.1 Case 1: 1D Flow, Cartesian Domain, Constant Production Rate, Constant-

Pressure (Dirichlet) boundary 

 

For a constant pressure at the outer boundary, an analytical solution to the dimensionless 

diffusivity equation of flow through a porous medium in a 1D domain — Eqs. (1.3.6), 

(2.4.5) and (2.4.6) — in the Laplace domain was provided by Blasingame (1996) as: 

( )

( )

sinh 11

cosh

D

D

s x
p

s s s

 −
 =  ................................................................................ (3.1.1) 

where, ( ) ( ) DDp s p t= , L{} denotes the Laplace transform of the quantity within the 

brackets, and s is the Laplace parameter. 
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The Stehfest algorithm (1970) was applied to numerically invert the Laplace domain 

solution described by Eq. (3.1.2) in order to obtain the solution in time.  Per the 

suggestions of Moridis and Reddell (1991) and Moridis et al.. (1999, 2021), the number 

of terms used in the series of the Stehfest algorithm is 18 for all cases.  

 

The WB numerical solution used the cubic B-spline wavelet (m = 4) and set the resolution 

level j = 4.  The dimensionless spatial domain is  0,1Dx  , and the dimensionless time 

domain is  0,5Dt  . The time interval is Δt = 10-4.  Two xD discretizations were used.  In 

the first, the space interval Δx1 = 0.01, and in the second the space interval Δx2 = 0.01.  

The simulation was conducted following the equations and derivations discussed in 

Section 2.4.2. 

 

Fig. 3.1 shows an excellent agreement between the analytical and the WB solutions of the 

evolution of the pD over tD as a function of xD.  This is confirmed by Fig. 3.2, which 

presents the deviation — referred to as "error" when the analytical solution is taken as the 

reference solution — between the analytical and the WB numerical solution with regard 

to dimensionless time and distance.  The absolute error shown in Fig. 3.2 is computed as 

follows: 

analytical numerical

i i ip p = −  ........................................................................................ (3.1.2) 

where ε is the absolute error. 

 

The maximum deviation between the two solutions is on the order of 10-4 and is observed 

early in the course of production.  For tD > 1, the deviations between the two solutions are 
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consistently on the order of 10-5 or lower, thus providing evidence in support of the validity 

and accuracy of the WB numerical solution. 

 

In addition, in order to provide another quantitative measure of the accuracy and overall 

performance of the WB numerical solution, we computed the error norms L2 and L∞ 

against the analytical solutions. 

 

2

2

max

analytical numerical

i i

i

analytical numerical

i i
i

L x p p

L p p

=  −

= −


 ............................................................................ (3.1.3) 

 

The results for the two different Δx discretizations appear in Table 3.1 and show a clear 

dependence of the error on the Δx size; as expected, both L2 and L∞ decrease consistently 

with a decreasing Δx.  However, the WB numerical solution is shown to be highly accurate 

even for the relatively coarse discretization bases on the larger Δx = 0.01. 
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Table 3.1 – Case 1: comparison of the error norms. 
 

Cubic B-spline Wavelets Δx = 0.01 Δx = 0.005 

xD = 0 
L2 1.39E-06 8.61E-07 

L∞ 1.04E-04 1.26E-04 

xD = 0.25 
L2 1.28E-06 7.41E-07 

L∞ 9.61E-05 1.07E-04 

xD = 0.5 
L2 1.02E-06 5.57E-07 

L∞ 7.78E-05 7.97E-05 

xD = 0.75 
L2 5.71E-07 3.01E-07 

L∞ 4.39E-05 4.29E-05 

 

 
 

Figure 3.1 – Comparison of (a) the analytical and (b) the WB numerical solution using 

cubic B-spline wavelet bases for Δx = 0.005 in Case 1: Reservoir pressure 

pD as a function of tD and xD. 
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Figure 3.2 – Case 1: Absolute deviation between the analytical (reference) solution and 

the WB numerical solutions using cubic B-spline wavelet bases for Δx = 

0.005 as a function of tD and xD. 
 

3.2 Case 2: 1D Flow, Cartesian Domain, Constant Production Rate, No Flow 

(Neumann boundary conditions) 

 

For a no flow outer boundary condition, an analytical solution to the dimensionless 

diffusivity equation of flow through a porous medium in a 1D domain — Eqs. (1.3.6), 

(2.4.5) and (3.2.1): 

( )1, 0D
D D

D

p
x t

x


= =


 ................................................................................................ (3.2.1) 

 

Blasingame (1996) proposed the following analytical solution to this problem in the 

Laplace domain: 
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( )

( )

cosh 11

sinh

D

D

s x
p

s s s

 −
 =  ................................................................................ (3.2.2) 

 

The WB numerical simulation in Case 2 also used cubic B-spline wavelets (m = 4).  Time 

and space are discretized in a manner identical to that in Case 1. The WB simulation was 

conducted following the derivations in Section 2.4.2. 

 

For this case, the Stehfest algorithm (1970) was applied to numerically invert the Laplace 

space solution described by Eq. (3.2.2).  The number of terms in the Stehfest algorithm 

series is 18 for all cases. 

 

The analytical and the WB solutions of the evolution of pD over tD as a function of xD are 

shown in Fig. 3.3 and show a very good agreement.  The deviation of the WB solution 

from the baseline (reference) analytical solution is deemed as an "error" and is shown in 

Fig 3.4 for 0.01x = .  The absolute error that is depicted in Fig. 3.4 is computed by Eq. 

(3.1.3) 

 

Note that, unlike the observations in Fig. 3.2, the (obviously small) errors in Fig. 3.4 

appear to increase with tD for any xD and are consistently and significantly larger (by 2-3 

orders of magnitude) than those of Fig. 3.2.  This is confirmed by the estimates of the error 

norms in Table 3.2, all of which are on the order of 10-6 – 10-5 and are more than plain 

satisfactory.  
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Table 3.2 – Case 2: comparison of the error norms 

 

Cubic B-spline Wavelets Δx = 0.01 Δx = 0.005 

xD = 0 
L2 5.55E-06 2.95E-06 

L∞ 1.04E-04 1.26E-04 

xD = 0.25 
L2 5.53E-06 2.92E-06 

L∞ 9.65E-05 1.07E-04 

xD = 0.5 
L2 5.52E-06 2.90E-06 

L∞ 8.16E-05 8.41E-05 

xD = 0.75 
L2 5.49E-06 2.87E-06 

L∞ 8.17E-05 8.36E-05 

 
 

 
 

Figure 3.3 – Comparison of the analytical and the WB numerical solution using cubic 

B-spline wavelet bases for Δx = 0.005 in Case 2: Reservoir pressure pD as 

a function of tD and xD 
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Figure 3.4 – Case 2: Absolute deviation between the analytical (reference) solution and 

the WB numerical solutions using cubic B-spline wavelet bases for Δx = 

0.005 as a function of tD and xD. 
 

3.3 Case 3: Comparative Evaluation of the Performance of WB Solutions using 

Haar and B-spline Wavelets 

 

This study investigates the differences in the performance of the WB numerical solution 

caused by the use of two-different types of wavelets: Haar and B-splines.  The problem 

chosen for this study is the one discussed in Case 1 involving 1D flow through a porous 

medium in response to a constant-rate production from a domain with constant-pressure 

conditions at its outer boundary. 

 

The difference between the implementation of the Haar and the B-spline wavelets is that 

the former involve integration, which has been demonstrated in Eqs. (2.4.10) and (2.4.11) 
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in Section 2.4.1, while the latter involve differentiation, which has been stated in Eq. 

(2.4.17) in Section 2.4.2.  The performance of the WB numerical solution using B-spline 

(cubic) wavelets has already been discussed in Case 1 and is described in Table 3.1 and 

Figs. 3.1 and 3.2. 

 

The WB solutions of the evolution of pD vs. tD for various xD using the Haar wavelets are 

shown in Fig. 3.5, and the deviation between the Haar WB solutions and the analytical 

solutions (considered the reference and correct solution) are shown in Fig. 3.6.  The 

deviation, namely the absolute error, is calculated by Eq. (3.1.3) 

 

The analytical solution is also obtained from Eq. (3.1.2) using the Stehfest algorithm to 

obtain the solution in the real-time domain.  The procedures and parameters of the 

numerical inversion are identical to those in Case 1. 

 

The WB numerical solution involved Haar wavelets and a resolution level j = 5.  The 

dimensionless spatial domain is  0,1Dx   and the dimensionless time domain is 

 0,10Dt  .  The time interval is Δt = 10-5 and the space interval is Δx = 1/26.  The whole 

simulation was conducted following the derivations in Section 2.4.1. 

 

Comparison to the results of the WB numerical solution in Case 1 (Fig. 3.1, and 3.2) 

provides clear evidence of the superiority of B-spline wavelets; the deviations between the 

analytical solutions and the Haar wavelet-based predictions are in the order of 10-3 to 10-

1, i.e., still satisfactory, but about 2 to 3 orders of magnitude higher than those of the WB 

solutions for B-spline wavelets. 
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The reason for the superiority of the B-spline wavelets may be the shape of those two 

wavelet bases.  Haar wavelets have shapes defined by two straight lines that form 

rectangular footprints; on the other hand, B-spline wavelets involve smooth curves that, 

intuitively, are expected to be easier to conform to the shape of a changing function. 

 

The conclusion to be drawn from this study is that B-spline wavelets are more appropriate 

bases in the WB numerical solution of PDEs, yielding more accurate solutions. Therefore, 

only B-spline wavelets are used as the bases for all subsequent WB numerical studies. 

 
 

Figure 3.5 – Comparison of the analytical and the WB numerical solution using Haar 

wavelet bases in Case 3: Reservoir pressure pD as a function of tD and xD. 
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Figure 3.6 – Case 3: Absolute deviation between the analytical (reference) solution and 

the WB numerical solutions using Haar wavelet bases for Δx = 1/26 as a 

function of tD and xD. 

 

3.4 Case 4: 2D Flow, Cartesian Domain, Constant Production Rate, No Flow 

(Neumann) boundary 

 

The Case 4 is an application problem designed to show the validity of the WB numerical 

solution to a 2D problem flow for which there is no analytical solution.  The general 2D 

equation of flow through a homogeneous and isotropic porous medium in an aerial system 

(i.e., involving a single layer in the vertical direction describing the reservoir thickness) 

have already been described by Eqs. (2.3.3) and (2.3.4). 
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Evidence in support of the validity of the WB solution is provided through comparison to 

results obtained from the FTSim numerical simulator (Wang, 2019).  In this case, the well 

that is producing at a constant rate is located at the center of the domain (see Fig. 3.7).  

 

 

 

Figure 3.7 – Case 4: Sketch of the 2D domain 

 

The parameters used in the numerical simulation are listed in Table 3.3. The spatial 

discretization of the domain for the WB solution is 1 meter × 1 meter. I used a resolution 

level j = 4, and the order m of the B-spline wavelets is 4 as well.  The numerical computing 

followed the derivations in Section 2.5. The spatial discretization of the domain for the 

FTSim solution is also 1 meter × 1 meter.  

 

The WB prediction and FTSim solution of the reservoir pressure on the y-plane at x = 25.5 

m in the 2D reservoir at t = 0.1-day, 1 day, 2days, 10 days, 1 month, 2 months, 3 months 

and 4 months are shown in Figs. 3.8 and 3.9.  The deviations between the two solutions, 

namely the relative error η, is computed using the following equation. 
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FT Sim WB

i i

i FT Sim

i

p p

p


−

−

−
=  ................................................................................................ (3.4.2) 

 

The average η between the FTSim and WB results is on the order of 10-4 and the maximum 

discrepancies between the two solutions are observed at the location/element of the 

production well. However, even these (and all the smaller discrepancies) are around 

0.023%, which indicates an excellent match of two sets of solutions and provides further 

evidence in support of validation of the WB numerical method.  

 

Table 3.3 – Case 4: Input Parameters for WB and FTSim Simulations 

 

Parameter Value 

Order of B-spline wavelets m 4 

Level of resolution J 4 

Production rate q 0.01 kg/s 

Initial pressure pi 3 × 107 Pa 

Porosity φ 0.25 

Oil compressibility, co 5 × 10-9 Pa-1 

Oi density, ρ 811.39 kg/m3 

Oil viscosity, μ 3.11 × 10-4 Pa·s 

Formation permeability, kf 2.5 × 10-13 m2 

Rock compressibility, cr 1 × 10-9 Pa-1 

Domain length x 51 m 

Domain width y 51 m 

Domain depth z 20 m 
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Figure 3.8 – Case 4: Evolution of pressure distribution over time between the WB and 

the FTSim solutions in the y-direction at x = 25.5 m for constant-rate 

production. 
 

 
 

Figure 3.9 – Case 4: Evolution of pressure distribution over time between the WB and 

the FTSim solutions in the y-direction at x = 25.5 m for constant-rate 

production. 
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Figure 3.10 – Case 4: Evolution of following bottom hole pressure over time the WB 

and the FTSim solutions in the y-direction at x = 25.5 m and y = 25.5 m for 

constant-rate production. 
 

 
 

Figure 3.11 – Case 4: Reservoir pressure distribution of the WB pressure results in the 

2D domain at t = 4 months for constant-rate production. 
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3.5 Case 5: 3D Flow, Cartesian Domain, Constant Production Rate, No Flow 

(Neumann) boundary 

 

As in Case 4, this is an application problem designed to show the validity of the WB 

numerical solution to a 3D problem flow for which there is no analytical solution.  This 

problem is described by the general 3D equation of Eq. (1.3.4) as  

2 2 2

2 2 2

t

sc

cp p p p m

x y z k t



 

   
+ + = +

   
 

Eq. (2.6.1) is rewritten in terms of the volumetric production rate q instead of the mass 

production rate m: 

2 2 2

2 2 2

0

t

sc

cp p p p q

x y z k t V



 

   
+ + = +

   
 .................................................................... (3.3.1) 

The above parameters are defined as in Case 4. 

 

As in Case 4, the validity of the WB solution will be provided through its comparison to 

the results from the FTSim numerical simulator (Wang, 2021).  A description of the 

domain is provided in the sketch of Fig. 3.10, which also shows the reservoir dimensions 

and the well that is located at the center of the domain and is producing at a constant rate.  

The well is completed in the entire length of the reservoir thickness in the z-direction.  

Detailed information on the reservoir properties, the initial conditions, and the domain 

dimensions are described in Table 3.4.  

 

The spatial discretization of the domain for the WB solution is 1 meter × 1 meter × 1 

meter.  A resolution level j = 4 is used, and the order m of the B-spline wavelets is 4 as 
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well.  The numerical computations followed the equations and derivations in Section 2.6. 

The spatial discretization of the domain for the FTSim solution is also 1 meter × 1 meter 

× 1 meter.  

 

The WB prediction and the FTSim solution of the pressure along the y-plane at x = 5.5 m 

and z = -4.5 m in the 3D reservoir at t = 1 day, 10 days, 30 days, 60 days are shown in Fig. 

3.13.  The average deviation, defined in Eq. (3.4.2), between WB and the FTSim results 

is around 0.3%.  This provides evidence of the validity and accuracy of the WB solutions. 

 

Table 3.4 – Case 5: Input Parameters for WB and FTSim Simulations 

 

Parameter Value 

Order of B-spline wavelets m 4 

Level of resolution J 4 

Production rate q 1 × 10-3 kg/s 

Initial pressure pi 3 × 107 Pa 

Porosity φ 0.25 

Oil compressibility, co 5 × 10-9 Pa-1 

Oi density, ρ 811.39 kg/m3 

Oil viscosity, μ 3.11 × 10-4 Pa·s 

Formation permeability, kf 2.5 × 10-13 m2 

Rock compressibility, cr 1 × 10-9 Pa-1 

Domain length x 11 m 

Domain width y 11 m 

Domain depth z 5 m 
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Figure 3.12 – Case 5: Sketch of the 3D domain. 
 

 

 

Figure 3.13 – Case 5: Evolution of pressure distribution over time between the WB and 

the FTSim solutions in the y-direction at x = 5.5 m and z = -4.5 m for 

constant-rate production. 
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Figure 3.14 – Case 5: Reservoir pressure distribution of WB results in the 3D domain at 

t = 60 days for constant-rate production 

 

3.6 Case 6: 1D Two-Phase Flow, Cartesian Domain, Constant-water saturation 

(Dirichlet boundary conditions) 

 

The Buckley-Leverett two-phase flow model neglects gravitational force and capillary 

pressure and assumes that (a) the fluids are immiscible and incompressible and that (b) the 

porous medium is homogeneous.  The related PDE is given as follows: 

 

( )w ww
f SS q

t A x


= −

 
 .............................................................................................. (3.6.1) 
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where Sw is the water saturation, fw is the fractional flow of water defined in Eq. (3.6.2), 

q  is the constant volumetric injection/production rate, and the other terms are as defined 

in Section 1.3.  Additionally, 

0,            if 0

,  if 1

1,             if 1 1

wr

w
w wr or

w o

or

S S

f S S S

S S



 

  



=   −
+

 −  

 .......................................................................... (3.6.2) 

The terms λw and λo are the water and oil mobilities, respectively, that are defined as  

( ) ( )
2 2
,  1w w wr o w orS S S S = − = − −  .................................................................... (3.6.3) 

where Swr and Sor are the water and oil irreducible saturations, respectively. 

The initial and boundary conditions are: 

( ) ( )0, 1 ,  , 0w or w wrS x t S S x t S= = − = =  .................................................................. (3.6.4) 

 

Both linear and cubic B-spline wavelets are used in the solution of the 1D two-phase flow 

problem. As in Eq. (2.4.1), the water saturation can be approximated as follows. 

( ) ( ) ( ), ,

1

,w j k j k

i

S x t a t x


=

  .................................................................................. (3.6.4) 

 

The procedure to discretize Eq. (3.6.1) and substitute Eq. (3.6.4) is like that in Eqs. (2.4.16) 

to (2.4.18), yielding the expression: 

( ) ( ) ( ) ( ) ( ) ( )1 1

, , , ,

1 1

, ,s l s l l s l s

j k j k j k j k w w

i i

q t
a t x a t x f x t f x t

A x
 



 
+ −

= =


 = − −
 

   ........ (3.6.5) 
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For the WB numerical simulation, the spatial domain is  0,1x , and the time domain is 

 0,1500t [days]. The time interval is Δt = 37.5 [days], and the space interval is  

1

p

x
n

 = , where np is the number of collocation points, defined by the relationship np = 2j 

+ m -1. 

 

The comparisons of the WB numerical solution to both the analytical solution and the 

numerical solution from the finite difference (FD) method are shown in Figs. 3.13 to 3.18.  

Evidently, as the resolution level j increases, the accuracy of the solution increases.  For a 

resolution level j = 6, the WB solution is in excellent agreement with the analytical 

solution.  Similarly, as the B-spline order m increases from 2 to 4, the accuracy of the 

solution also increases.  Note that the B-spline order m has a smaller impact on the 

accuracy of the solutions than the resolution level, and the improvement in the accuracy 

of the WB solutions with an increasing order of the splines is more obvious at the lower 

resolution level (j = 4). 

 

Table 3.5 – Case 6: Input Parameters for WB Simulation 

 

Parameter Value 

Order of B-spline wavelets m 2, 4 

Level of resolution J 4, 5, 6 

Injection/Production rate q  0.5335 × 10-4 m/s 

Cross-section area A 1 m2 

Porosity φ 0.25 

Oil irreducible saturations, Sor 0.2 

Water irreducible saturations, Swr 0.16 

Domain length x 1 m 
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Figure 3.15 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 2, n = 

4), the FD solution and the analytical solution. 
 

 
 

Figure 3.16 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 2, n = 

5), the FD solution and the analytical solution.. 
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Figure 3.17 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 2, n = 

6), the FD solution and the analytical solution. 
 

 
 

Figure 3.18 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 4, n = 

4), the FD solution and the analytical solution. 
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Figure 3.19 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 4, n = 

5), the FD solution and the analytical solution. 
 

 
 

Figure 3.20 – Case 6: Water saturation Sw distribution over time in the x-direction for 

the Buckley-Leverett problem: comparison of the WB solution (m = 4, n = 

6), the FD solution and the analytical solution. 
 

  



 

67 

 

 

3.7 Case 7: Evaluation of the Performance of WB Solutions Applying 

Multiresolution Properties with B-spline Wavelets 

 

In this section, Mallat's decomposition and reconstruction algorithms (1989) are combined 

based on wavelets and the two-scale method (Daubechies, 1991; Nikolaou and Yong, 

1994) to evaluate the performance of WB solutions. 

 

According to Mallat (1989), the relationship between coefficients obtained from 

difference resolution levels {aj,k} and {aj+1,k} only depends on the wavelet basis itself. 

Recalling the subspace Vj from Section 2.1, the set of scaling functions {φj,k} form a Riesz 

basis of this space, and defining another subspace Wj yields: 

1j j jV V W+ =   ........................................................................................................ (3.7.1) 

where the subspace Wj is the orthogonal complement of Vj to Vj+1. 

 

After defining two operators ( ) ( )2:jA f x L  where ( )j jA f x V and 

( ) ( )2:jD f x L  where ( )j jD f x W , we can approximate the functions as follows. 

( ) ( ), ,j j k j k

k

A f x a x=  .......................................................................................... (3.7.2) 

( ) ( ), ,j j k j k

k

D f x b x=  ........................................................................................ (3.7.3) 

 

Therefore, the function f(x) can be decomposed as follows (Moridis et al., 1996). 

( ) ( ) ( )

( )

( )

( )1 1 1 1

, , 1, 1, 1, ,=

j j j j

j j k j k j k j k j k j k

k k k

A p x V D p x W

A p x a x a x b x  

− − − −

− − −

 

= +  

 ........................................ (3.7.4) 
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The efficient decomposition algorithm is stated as follows (Mallat, 1989). 

( )

( )
1,

,

21

2 2
j k

j l

g l ka
a

b h l k
+

−  
=     −   

 .................................................................................... (3.7.5) 

Similarly, the reconstruction algorithm (Mallat, 1989): 

( ) ( )1, , ,2 2j l j k j k

k

a p l k a q l k b+
 = − + −   .............................................................. (3.7.6) 

The g(k) and h(k) are called decomposition sequences, the p(k) and q(k) are called 

reconstruction sequences, and they only depend on the wavelet basis itself. 

 

Considering a linear differential equation: 

( ) ( )L p x f x  =   ...................................................................................................... (3.7.7) 

where L is a linear differential operator. 

 

Substituting the wavelet series representation of the pressure function p(x) as Eq. (2.4.15) 

in Eq. (3.7.7) and rearrange to the residual expression at resolution level j: 

( ) ( ) ( )j jR x L p x f x = −   ........................................................................................ (3.7.8) 

 

By solving Eq. (3.7.8), we obtain a set of wavelet coefficients and an approximate solution 

at resolution level j.  However, if the residual is unsatisfactory at this resolution level, we 

can apply Eq. (3.7.4) to go up to the next resolution level j+1: 

( ) ( ) ( )1 1j jR x L p x f x+ +
 = −   .................................................................................... (3.7.9) 

where ( ) ( ) ( )1 1 1=j j j j jL p x L A p x D p x+ − −
   +    . 
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Therefore, we can solve for the set of wavelet coefficients {bj,k} and obtain the pressure 

function at a higher resolution level j+1 through the reconstruction algorithm. 

 

I investigate the above-stated WB numerical method on the Case 1 involving 1D flow 

through a porous medium with a constant-rate production from a domain with constant-

pressure conditions at its outer boundary as demonstrated in Eqs. (1.3.6), (2.4.5) and 

(2.4.6).  The reconstructed WB results from Figs. 3.20-3.22 are compared against 

analytical solution as stated in Eq (3.1.1) for different reconstructed resolution levels j 

from 2 to 4. 

 

The agreement between two solutions is getting better when we reconstruct the solution 

from a lower resolution level to a higher resolution level.  It reaches an excellent 

agreement at reconstructed resolution level j = 4.  The results shed light on the application 

of wavelet multi-level method where the approximate WB solutions can be generated at a 

higher resolution levels from lower-level calculations. 

 

Moreover, this approach can be applied in grid refinement.  If we find the residual to be 

relatively large in a small subdomain, we can refine the mesh of the subdomain only using 

wavelet bases to improve accuracy and decrease computational cost.  Thus, the properties 

of multiresolution analysis (MRA) can be used in an efficient manner to maintain different 

resolution levels for different regions of the solution domain.  
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Figure 3.21 – Case 7: Comparison of (a) the analytical and (b) the WB reconstructed 

solution using cubic B-spline wavelet bases at j = 2: Reservoir pressure pD 

as a function of tD and xD. 
 

 

 

Figure 3.22 – Case 7: Comparison of (a) the analytical and (b) the WB reconstructed 

solution using cubic B-spline wavelet bases at j = 3: Reservoir pressure pD 

as a function of tD and xD. 
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Figure 3.23 – Case 7: Comparison of (a) the analytical and (b) the WB reconstructed 

solution using cubic B-spline wavelet bases at j = 4: Reservoir pressure pD 

as a function of tD and xD. 
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CHAPTER IV  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE WORK 

 

4.1 Summary 

 

The main goal of this study is to investigate the applicability and performance of wavelet-

based (WB) numerical solutions in the solution of the linear and non-linear PDEs 

associated with the flow of fluids through porous and fractured (PF) media.  In this 

approach, the wavelets are used to represent the spatial functions of the primary variables 

involved in the associated PDEs.  The work was conducted using a MATLAB-based, 

purpose-built WB simulator, and the FTSim program (Wang, 2019) — a base version of 

the TOUGH + compositional non-isothermal numerical simulator (Moridis et al., 1999, 

2016) — also a conventional, fully implicit, Jacobian-based program that involves the 

Integral Finite-Difference scheme for space discretization for the analysis of fluid flow 

through PF media — was used for comparisons aimed to validate the WB simulator.  

 

The study evaluated the performance of two typical wavelet bases: an orthogonal, and a 

biorthogonal one. The WB simulator (a) was verified through comparison to 1D flow 

problems with known analytical solutions, and (b) was validated by means of comparison 

of its results against the solutions to 2D and 3D problems obtained from the FTsim 

conventional simulator. 
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4.2 Conclusions 

• Appropriate formulations of WB solutions using both Haar and B-spline basis 

functions have been developed and were shown to provide highly accurate solutions 

of flow and transport in problems of (a) 1D, 2D and 3D single phase, nearly 

incompressible (liquid) flow through porous media and (b) 1D two-phase flow under 

Buckley-Leverett conditions. 

• The B-spline wavelet is highly flexible in a mathematical sense and can be seamlessly 

combined with FD-based discretization of the time domain to solve the PDEs of flow 

through porous media, while the Haar wavelets have some inherent difficulties in the 

treatment of the PDEs considered in this work and in the description/representation 

of the associated initial conditions. 

• At the same resolution level, the WB method which uses B-spline wavelets yields 

consistently more accurate results than the methodology involving Haar wavelets.  

This is due to the different shapes of the wavelet bases, and the ability of the curvature 

in the B-spline wavelets to better conform to the shape of the solution surface. 

• For the nonlinear Buckley-Leverett problem, as the resolution level increases, the 

accuracy of the solution increases.  Also, as the B-spline order increases, the accuracy 

of the solution also increases.  However, the B-spline order has a very limited impact 

on the accuracy of the solutions compared to the resolution level. 

• The WB method based on the multiresolution property shows that higher-level 

approximate results can be obtained from the lower-level results and the 

reconstruction algorithm.  This approach is particularly useful when the solution is 
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smooth in some subdomains and has abruptly changed in other subdomains.  The grid 

refinement can be applied only on the specific subdomains. 

• Because of the flexibility afforded by the process of construction and deconstruction 

of wavelets and their multi-resolution properties, WB methods have the potential to 

become powerful tools for solving coupled problems of multi-phase fluid flow (and 

possibly geomechanics) in 3D domains, thus providing integrated solutions to all 

aspects of problems of (a) multi-stage hydraulic fracturing and (b) coupled short- and 

long- term flow, production and geomechanics processes, including calculating 

fracture geometries, obtaining pressure changes between clusters and within each 

cluster, production rates and their evolution over time behavior, changes in the 

geometry and properties of the fractures and of the matrix, etc. 
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4.3 Future Recommendations for Future Work 

• Exploit the innate multi-resolution property of wavelets for minimization of grid 

discretization and localized grid adaptation and refinement that allows resolution at 

any desired level, and use for the solution of complex multi-dimensional, intensely 

heterogeneous media with multiple fractures. 

• Extend the proposed WB methods to multi-dimensional problems of multi-phase 

flow through complex porous and fractured media. 

• Combine the wavelet basis functions with the finite element method to model rock 

deformation during and after hydraulic fracturing.  The rate of convergence and the 

accuracy of this approach have been investigated by others and this work next stage 

of WB modeling should consider this problem. 

• Combine wavelet basis functions with the boundary element method to perform 

fracture propagation analysis.  This method is capable of meeting specific 

engineering needs and has the potential to significantly reduce the computational 

demands of the simulations by reducing the dimensionality of the problem.   
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