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ABSTRACT 

For many years, high water-cuts in the Delaware basin have been the source of much frustration 

for oil and gas operators producing in the region. The goal of this thesis was to construct 

automated workflows which are capable of predicting very early on in a horizontal well’s 

lifetime whether or not it will produce a substantially higher amount of water compared to 

hydrocarbon. With the intent to accomplish this goal, two different data-driven workflows have 

been developed. Each workflow focused on the differentiation of high water-producing wells 

(HWPs) and low water producing wells (LWPs) using machine learning (ML) algorithms. Both 

data-driven workflows use well log data, which provide information about the rock properties 

surrounding a given wellbore. The first data-driven workflow extracted out summary features 

from the well logs with respect to depth intervals below the kick-off point of a given wellbore, 

which is the point which a wellbore begins to transition from vertical to lateral. Using features 

extracted from well log data from 20 horizontal wells from the Delaware basin, supervised ML 

algorithms were trained to differentiate and predict which wells would be HWPs and LWPs. 

Logistic regression proved to be the most accurate supervised ML algorithm for the first 

proposed workflow. This workflow produced promising median F1 and Mathew’s correlation 

coefficient (MCC) scores of 0.96 and 0.92, respectively, for 100 cross-validation training 

iterations. The second data-driven workflow used unsupervised ML algorithms to assign a 

predicted lithology to every sample for 500 ft of well log data for 17 wells from the Delaware 

basin. This resulted in 5 unique lithologies which were found when all 17 wells were combined 

together. Using these predicted lithologies as a guide, features were extracted for all 17 wells and 

then used to train supervised machine learning algorithms to differentiate the two well classes: 

HWP and LWP. Using 100 cross-validation training iterations, three supervised algorithms 
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proved very comparable: K-Nearest neighbors, logistic regression, and support vector machine. 

Each of these supervised algorithms produced a median MCC score of 0.90. The geologic 

meaning of the most informative features from both workflows were also interpreted. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

With the increase in popularity of the usage of horizontal drilling and hydraulic fracturing 

in combination, the practice of producing hydrocarbons from unconventional formations 

greatly expanded within the U.S. These unconventional formations earned their name 

primarily due to the fact that they were uneconomical targets until the early 2000s or so. 

These formations were not common targets for hydrocarbon production due to the nature 

of their tight, low-permeability rock matrices. This of course changed as horizontal drilling 

and hydraulic fracturing became a more economical prospect for operators. One of the 

most oil-prolific regions of onshore United States is the Delaware basin, which is the 

western-most region of the greater Permian located in northwest Texas and southeast New 

Mexico. Although the Delaware basin is a major oil-producing region for the US, the 

primary fluid produced from hydrocarbon wells in the Delaware basin is actually water. 

One study found that a quarter of a set of 10,000 shale-oil wells in the Permian basin are 

producing at least 70% formation water (Male, 2019). Produced water forecasts are 

estimating as high as 30 million barrels/day from target formations and wells with a water-

to-oil ratio (WOR) of 10:1 is not unheard of (Duman, 2019). The percentage of water 

produced from a hydrocarbon-producing well is referred to as a water-cut. The brine 

produced from these wells is not readily useable for drinking or irrigation, thus must be 

managed or processed in some manner. 

1.1.1 Motivation 
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There are many concerns which revolve around the transportation, reuse, and storing of the 

formation water produced from these high water-cut wells in the Delaware basin. There are 

estimations which predict unit cost for produced water will rise to over US$5.00/bbl 

(Duman, 2019). With the cost of operating these wells rising at their current rates, 20% of 

undrilled Permian barrels can become non-commercial. The reuse of produced water has 

the potential to offset some of the cost of water management by saving money on hydraulic 

fracking jobs, but in especially high water-cut ratio wells operators are unable to cheapy 

reinject all produced volumes (Duman, 2019). 

One common method of reuse of formation water in the Delaware or Permian basin is 

through saltwater disposal (SWD) wells (Scanlon et al., 2017). Saltwater disposal wells are 

wells which are used to inject saltwater into the subsurface. The SWD solution raises 

concerns for many who are worried about the environmental impacts that may follow the 

reinjection of produced formation water into shallower, conventional geologic formations 

(Scanlon et al., 2017). These shallower formations are now being reported to be 

experiencing overpressure by operators in the Delaware. Another approach which is being 

considered is to drill deeper injection wells into the Ellenberger formation. Injection of 

disposal water into deeper formations can induce seismicity in the area (Scanlon et al., 

2017). Aquifer contamination is another primary concern resulting from produced 

formation water. The produced formation water from shale-oil plays has been tested to 

contain Benzine and other BTEX compounds at above-safe levels of drinking and 

irrigation water quality (Khan et al., 2016). 

1.1.2 Objective 
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For the purposes of mitigating the above-mentioned hazards from produced formation 

water, two novel data-driven workflows have been created to predict and classify which 

wells will produce an excessive amount of water. The goal of developing these two 

workflows was to provide quick, automated processes for determination of relative water 

production very early on in a horizontal well’s lifespan. The incorporation of machine 

learning techniques allows for rapid testing to determine if a well will produce a large 

quantity of water compared to its target hydrocarbon fluid. Both of the proposed 

workflows use a combination of petrophysical logs, well trajectory data, and production 

data for each well to train machine learning (ML) algorithms in order to predict well 

classification. With knowledge of whether or not a well will produce an excessive amount 

of water as soon as the well is logged, operators can make an informed decision on 

whether or not production from a well is going to be more harmful or more beneficial 

overall. Along with the proposed workflows, the geological features which appear to be 

significant when differentiating high water-cut wells and low water-cut wells were also 

determined. 

1.2 Machine Learning in Oil and Gas 

Machine learning methods are becoming increasingly popular in the oil and gas industry 

(Miah et al., 2020; Mohamed et al., 2015; Hajizadeh, 2019). The workflows proposed in 

this thesis draw inspiration from studies which have shown success in the utilization of 

machine learning algorithms predicting properties of geologic formations or production for 

wells. One study which utilizes methods that overlap greatly with the methods proposed in 

this thesis is Guevara et al. (2017). In Guevara’s approach, well log data from vertical 

wells is used to interpolate features in the horizontal wellbore where production occurs and 
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predict cumulative production itself. To perform these tasks, they used a relatively large 

suite of well logs and extracted features relative to formations in the vertical wellbore 

(Guevara et al., 2017).  

1.3 Well Log Suite 

During the development of the proposed workflows, the controls placed on the well log 

suite has varied over time. The sample count of available wells will increase as controls on 

the required well log suite are decreased. However, the increase in sample count has 

resulted in less accurate relative water production. The well log suite which has resulted in 

the best predictability of relative water production is as follows: gamma ray (GR), neutron 

porosity (NPHI), density porosity (DPHI), deep resistivity (ILD), and shallow resistivity 

(ILS). This combination of well logs has proven to be the most effective for differentiation 

of HWPs and LWPs after a series of testing different data sets with varying sample count 

and well log suites. This suite limits the sample count quite strictly, with the data set only 

consisting of 20 horizontal wells in the Delaware basin. Of these 20 wells, ten of them are 

HWPs and ten of them are LWPs. The final well log suite is the classic “triple combo” of 

gamma ray, porosity, and resistivity measurements. The triple combo has been a staple 

feature in petrophysical interpretation for many decades, due to its versatility in 

interpretable data. These 5 well logs provide insight into lithology, fluid saturation, and 

pore space in the surrounding rock body. An example of the well log data is displayed in 

Fig. 1 below. 
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1.4 Production Data 

It is important to note that the production data used in this study are calculated values 

provided by Enverus. The governing body for oil and gas production in the state of Texas, 

the Texas Railroad Commission (TXRRC), does not require operators to report the number 

of barrels of water produced from hydrocarbon wells. The data used in this study consists 

of synthesized water volumes which are calculated on the lease level by averaging well 

Fig. 1: Example display of well log data used in this thesis. 
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tests. Once well tests are averaged, a water-cut percentage is allocated to each individual 

based on its well test. Although values used in this analysis are not directly reported water 

production data, Enverus has ensured that this method of produced water approximation is 

highly accurate and has been rigorously tested on a random well-by-well spot-check basis. 

Information on this topic was acquired through personal email exchange with Enverus 

support. 

1.5 Target Labels 

In order to assign a class to each well, we must examine the production data provided for 

each well. The key variable which these workflows are intended to predict is the relative 

water production ratio (WPR) for each well. As mentioned in the previous section, the 

values provided by Enverus are not exact reported values. To account for this discrepancy, 

the wells are discretized into two categories: high water producer (HWP) and low water 

producer (LWP). The category is calculated using the cumulative water production for 

each well and the total produced fluid for each well. The WPR is calculated using eq. 1: 

 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑊𝑊𝑊𝑊𝑊𝑊𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃𝑊𝑊𝑊𝑊𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝑇𝑇𝑃𝑃𝐹𝐹𝑃𝑃

 (eq. 1) 

The WPR is calculated at four different time intervals, all concentrated around the 

beginning of a well’s production. These four time intervals are: 2 months, 6 months, 1 

year, and then 2 years of first production. Once a WPR has been calculated for each of 

these 4-time intervals, they are all averaged together to become one average WPR. Wells 

which produce a WPR ≥ 0.70 are labeled as a high-water producer. Low water producers 

are wells whose WPR is < 0.50. The data sets used in the proposed workflows only utilize 

these two categories of wells. This is done intentionally to provide some distance in 
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feature-space between the two classes, so that the ML algorithms are primarily 

differentiating the two extreme cases. The labels of HWP and LWP operate as the target 

variables. These target variables can be considered the dependent variables for the data sets 

which will be generated in both workflows. The features, or the independent variables 

which describe the rock bodies in the subsurface, will be used to train machine learning 

algorithms to predict which well class a given well will belong to. 

1.6 Spatial Distribution of Wells 

The primary area of interest for this thesis is the Delaware basin, where high water-cut 

wells are a severe issue. The spatial distribution of the Delaware basin data set is shown 

Fig. 2. In the Delaware data set, there are 20 horizontal wells in total. 10 of these 20 are 

HWPs and the remaining 10 are LWPs. These wells are targeting either the Bone Springs 

sands or Wolfcamp shale, which are the primary targets for hydrocarbon production in the 

region. From these wells and the wells of the proof-of-concept data sets, well log data has 

been gathered and will be used to extract features for ML algorithm training. The spatial 

distributions for the two proof-of-concept data sets are also illustrated in Fig. 2, these two 

data sets are taken from the Fort Worth basin and Gulf Coast region. 
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Fig. 2: Spatial distributions of all three data sets utilized – (A) Delaware Basin data set; 
(B) Fort Worth data set; and (C) Gulf Coast Region data set. 
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CHAPTER II 

HIGH WATER CUT PREDICTION USING DEPTH-BASED FEATURE 

EXTRACTION 

2.1 Interval of Interest 

In our first approach, the data sets utilized consisted of well log data taken directly below 

the kick-off point (KOP) of the wellbore. In this analysis, the KOP is defined as the point 

at which the vertical wellbore began to transition into the horizontal wellbore. This data 

was used to train supervised ML algorithms to classify and predict relative water 

production. The generalized workflow is illustrated in Fig. 3. To begin this process, the 

KOP was calculated for each well. KOP calculation was performed algorithmically using 

trajectory data which is available for each horizontal well. From the trajectory data, the 

inclination of the drill bit at each depth increment is provided and used to determine when 

the horizontal drilling has begun. This method allowed us to generate an accurate 

calculation of where the KOP is located in measured depth (MD). The KOP acted as an 

anchor point in the well logs. This is a key component, due to the fact that well logs are 

provided in MD as well.  
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Once the KOP was calculated, the well log data had to be truncated to only include depth 

intervals which could prove useful to ML algorithms later in the process. Many regions of 

the wellbores have been tested with the methods described in this thesis. Of these many, 

one region far outperformed the rest and that region was the depth intervals near the KOP 

of the wellbore. The region which was utilized in the first proposed data-driven workflow 

consists of 300 ft directly below the KOP. This provided us with 600 samples for each of 

the 20 wells in the data set, as well logs are sampled at every ½ foot. 

 

 

Fig. 3: Illustration of the data-driven workflow for chapter 2 where we train supervised 
classifiers to identify and predict excess water-producing wells using statistical parameters 
taken from 300 ft of well log data below the KOP. 
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2.2 Feature Extraction 

After the well logs have been truncated to only include the KOP and 300 ft of logged data 

below the KOP, feature extraction was performed. A key component that this analysis 

wanted to preserve in the feature set is the relative depth of the wellbore. Keeping this 

information in our extracted numerical data allowed us to make inferences about the 

influence that the petrophysical differences with respect to relative depth had on our two 

well classes.  

First, the 300 ft of well log data was divided into six different bands, or depth intervals. 

This process splits the well log data into six 50 ft bands. After the well log interval is split 

into 6 bands, seven statistical summary parameters are extracted for each well log, from 

each band. Given that we have 5 well logs, six band intervals, and 7 summary parameters, 

this results in a total of 210 features extracted to train ML algorithms. These seven 

parameters were: mean, median, kurtosis, skewness, root-mean square (RMS), entropy, 

and variance. 

2.3 Feature Reduction 

Not all 210 generated features were useful to ML algorithm training, there were redundant 

features in the data set. Thus, it was necessary to remove less useful features and preserve 

the most informative features for training supervised ML models. To separate algorithms 

from models, it is important to define them moving forward. An algorithm is essentially 

the foundation which a model will be generated by training it on well data to predict our 

two well classes. To begin the feature reduction process, an analysis of variance (ANOVA) 

F-test was applied to all the features with respect to the target label. The ANOVA test is 

very standard in the statistical realm. The F-test generates two linear regression models, 
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one built with randomly selected constants attached to a feature and another with one 

constant attached to a feature. If both of these generated models produce similar results, 

then the null hypothesis is accepted and the feature has been determined to carry no 

statistical significance with relation to the target (Osogba et al., 2020). The result of the F-

test was two values for every feature, the p-value and F-value. To sum their utility briefly, 

a significantly low p-value (≤ 0.05, generally) indicates strong statistical significance and a 

F-value ≥ 1.0 also indicates statistical significance. With these typical values in mind, cut-

off thresholds were applied to the features. The threshold values used for the final data set 

were p-values ≤ 0.08 and F-values ≥ 1.0. These threshold values were produced by 

adjusting threshold values and testing the data sets by training the supervised algorithms, 

then evaluating performance with various thresholds.  

The second reduction method utilized in this workflow was focused on collinearity 

between features. This further eliminated redundancies in the feature-set by removing 

features which are essentially sharing information. For the purpose of reducing 

collinearity, a Pearson’s correlation coefficient (PCC) (Guyon and Elisseeff, 2003) was 

calculated for each feature with respect to every other feature remaining in the data set. 

After a PCC is generated for all features, their relative correlation to one another is 

displayed in a correlation matrix as shown in Fig. 4. Due to the nature of our features, it 

was necessary to remove them based on a hierarchical scheme. The features are presented 

in the following form: “Well log”, “statistical parameter”, “band interval which parameter 

was taken (numbered from 0 – 5).” Since the geology will not vary substantially from band 

to band, it is expected that many features between two bands will have similar values. This 

can be considered an “inter-band” relationship. Redundancy with relation to our geologic 
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features which are described by the well logs are primarily a feature of “intra-band” 

relationships, or high collinearity within the same band interval. In general, the mean of 

any well log + band combination was preserved over all others, followed by skewness. A 

PCC value ≥ 0.80 was considered to be sufficient redundancy among features. The final 

result of both reduction methods was a data set of 21 features per well, for a total of 90% 

feature reduction. 

 

 
 
 

Fig. 4: Heatmap of the Pearson correlation coefficients for all feature pairs. Feature pairs with 
Pearson correlation coefficient (PCC) greater than 0.80 are shown with bright colors, while 
the black-colored boxes are low PCC values. 
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2.4 Data Processing 

2.4.1 Scaling Features 

Once feature reduction was complete, the data set was nearly prepared for building our 

supervised ML models. The final step before training was to scale and transform the 

features. This was a necessary step to ensure that the features are relatively Gaussian in 

distribution, as most ML models assume Gaussian distribution as part of their theory. To 

achieve more Gaussian distributions, two methods were utilized to scale and transform the 

data: A Z Score transform and Yeo-Johnson transformation. The Z Score transform shifts a 

feature’s distribution with respect to the mean, μ, and the standard deviation, S. It was 

performed with eq. 2, where X represents a given sample from the feature space (Jain et 

al., 2005). 

 𝑍𝑍 = 𝑋𝑋−𝜇𝜇
𝑆𝑆

 (eq. 2) 

After reshaping the features with a Z Score transform, a Yeo-Johnson transformation was 

applied to shift the curve further. These two methods in combination generated a more 

bell-like curve which the ML algorithms tended to perform better on. The Yeo-Johnson 

transform uses the following set of equations (eq. 3), where λ can be any real number (Yeo 

and Johnson, 2000): 

            𝜓𝜓(𝜆𝜆, 𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ {(𝑥𝑥 + 1)𝜆𝜆 − 1}/𝜆𝜆 

log (𝑥𝑥 + 1)
−{(−𝑥𝑥 + 1)2−𝜆𝜆 − 1}/(2− 𝜆𝜆)

−log (−𝑥𝑥 + 1)

     (𝑥𝑥 ≥ 0, 𝜆𝜆 ≠ 0),
      (𝑥𝑥 ≥ 0, 𝜆𝜆 = 0),
      (𝑥𝑥 < 0, 𝜆𝜆 ≠ 2),
      (𝑥𝑥 < 0, 𝜆𝜆 = 2).

 (eq. 3) 

A key note in this process to take into account is that due to the small sample size which is 

utilized in this analysis requires that training data and the testing data be scaled 
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simultaneously. This is key to the training, so as to ensure that all the data are in the same 

relative distribution after scaling.  

2.4.2 Cross-Validation 

In order to properly determine the efficacy of this workflow cross-validation was 

necessary. Cross-validation is a technique which allows a model to be trained and tested on 

various iterations of the data set, to allow for a balanced evaluation of the model. Cross-

validation splits the samples of a data set into k number of folds, for which then k – 1 folds 

are used for training (Stone, 1974). The remaining fold, which is set aside from the training 

data, was used to test and evaluate the trained model. The cross-validation process allows 

the model to mix-and-match training and testing samples in multiple randomly generated 

training and testing schemes as it shuffles around the samples. This process allows the 

model’s efficacy to be determined with a relatively wide spectrum of training data. 

2.5 Supervised Algorithms 

2.5.1 K-Nearest Neighbors 

In the process of developing this workflow, a small collection of supervised methods was 

tested. Of the tested models, three outperformed the others by a substantial margin. The 

first of these three models was K-nearest neighbors (KNN). The KNN algorithm calculates 

the Euclidean distance between samples in feature space. Samples which illustrate similar 

characteristic in their features can be considered “neighbors,” since they will be relatively 

close to one another in terms of Euclidean distance. When neighbors in a neighborhood are 

mostly of one class and distant from a neighborhood of the other class, a boundary is 
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drawn to represent the neighborhood. This is directed by defining how many neighbors, n, 

within a neighborhood is to be considered a “majority vote.” 

2.5.2 Support Vector Machine Classifier 

The second supervised method which performed well was the support vector machine 

(SVM). The support vector machine is a learning machine for two-group classification 

challenges. The assumptions are: input vectors are mapped non-linearly to a feature space 

with very high dimensionality. Within the highly dimensional feature space, a linear 

decision surface is constructed to separate the two classes (Cortes and Vapnik, 1995). This 

algorithm can be extended to construct decision planes or hyperplanes, but within the 

confines of this workflow a linear decision surface with a dimensionality of 1 performs the 

best.  

2.5.3 Logistic Regression 

The third algorithm which performed well on the data sets tested was the logistic 

regression. The logistic regression is a modified version of the linear regression, with the 

distinction being that the output variable of the logistic regression is binary (Hosmer et al., 

1995). Logistic regression algorithms use a Sigmoid function (eq. 4) to transform the 

variables of a data set. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = 1
1−𝑃𝑃−𝑥𝑥

 (eq. 4) 

This regression model assigns weights to all features within a given data set. The weights 

of these features are passed through the sigmoid function to determine if the sample will 

fall on a value of 1 or 0. The logistic regression finds a boundary between samples of 
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different classes by determining the maximum log-likelihood distribution which best 

represents the data (Wu et al., 2019).   

2.5.4 Hyper-Parameter Tuning 

Each of these supervised methods have attributes which alter their learning habits. These 

attributes are defined upon training the algorithms and are called “hyper-parameters.” 

Hyper-parameters vary between each algorithm and optimizing these parameters is a key 

component to an applied data science workflow. One of the most popular methods of 

hyper-parameter tuning is the grid search method (Bergstra and Bengio, 2012). With grid 

search, the process is to provide a range of values for any set of hyper-parameters to be 

used in a set of trials. The trials are run with each pair or combination of hyper-parameters 

and the set of hyper-parameters which has the best performance is preserved for training 

the model. 

2.6 Evaluation of Supervised Models 

The efficacy of these supervised models was quantified. Commonly, classification 

problems are simplified into a confusion matrix (Fig. 5) (Visa et al., 2011). The confusion 

matrix is a 2 x 2 array which helps to illustrate a classifier’s ability to correctly predict a 

class for a sample. A confusion matrix has two axes: the predicted axis and the true axis. 

Both of these axes have binary possibilities, a false and a true class. This limits the 

possibilities of a prediction into four categories: true positive (TP), true negative (TN), 

false positive (FP), and false negative (FN). The true quadrants of the confusion matrix 

represent the correct predictions from a classifier, while the false quadrants represent 

incorrect predictions. 
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Quantifying results from a confusion matrix has been done in a number of different ways. 

The methods used in this analysis are: F1 score and Matthew’s correlation coefficient 

(MCC). F1 score is a common metric for evaluating classifiers. F1 scores range from 0.0 to 

1.0, with 1.0 being a perfect score. The F1 score is calculated by using the following eq. 5: 

 𝐹𝐹1 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+12(𝐹𝐹𝑃𝑃+𝐹𝐹𝐹𝐹)

 (eq. 5) 

Although the F1 score (Chicco and Jurman, 2020) is reliable for balanced data sets, it has a 

weakness of biasing towards the true positive predictions. This issue is supplemented by 

bringing in the Matthew’s correlation coefficient (MCC). The MCC has the same goal as 

the F1 score, but uses a different equation (eq. 6) and thus different penalties. MCC is 

much more punishing for incorrect predictions in comparison to F1 score, due to the fact 

more weight is provided to the false classes. The MCC score ranges from -1.0 to 1.0, with 

Fig. 5: Illustration of a typical confusion matrix. TP represents true positive; TN is true 
negative; FP is false positive; and FN is false negative. 
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a score of -1.0 being all incorrect predictions and 1.0 being all correct predictions (Chicco 

and Jurman, 2020). 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑊𝑊×𝑇𝑇𝑇𝑇−𝐹𝐹𝑊𝑊×𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑊𝑊+𝐹𝐹𝑊𝑊)(𝑇𝑇𝑊𝑊+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑊𝑊)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)
 (eq. 6) 

2.7 Proof-of-Concept Data Sets 

It was also deemed appropriate to extend this workflow to other data sets with similar data. 

This allowed us to determine if the success, or lack thereof, of this workflow could be 

extended to other geologic regions outside of the Delaware basin. For purposes of 

validating this data-driven workflow, two data sets outside of the Delaware basin were also 

constructed. One of these validation data sets are from the Fort Worth basin and the other 

from the Gulf Coast region. It should be noted that the wells within these two validation 

data sets were not restricted by target formation, as the Delaware data set is, but they 

possessed sufficient well log, production, and trajectory data to be processed through this 

workflow. The Fort Worth data set has 29 wells, 11 HWPs and 18 LWPs. The Gulf Coast 

data set has 24 wells, 9 HWPs and 15 LWPs. The distribution of these wells 

geographically is illustrated in Fig. 1. 

2.8 Determination of Important Features 

Once the best performing algorithm for each data set was determined, the next step in this 

analysis was to determine which features were providing the most information to the 

generated models. This was determined using a method known as permutation testing 

(Pesarin and Salmaso, 2010). Permutation testing is a method which every feature in the 

data set is isolated and removed from the training data, one at a time. For every training 

iteration, the model is tested to determine how much prediction accuracy has changed 
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based on the chosen evaluation metric. This process provided insight into how much 

information each feature individually provided to a given model.  

Permutation testing was performed on the 10 best performing models, which were 

determined through model evaluation metrics (F1 score and MCC score). The cycle of 

cross-validation was performed 100 times. For each iteration, the F1 score, MCC score, 

and the model generated was stored. Using the scores as a guide, the 10 best performing 

models from the best performing algorithm for the data set were gathered for permutation 

testing. The features were automatically presented in a ranked format for each model, 

although most of the features were not provided a rank nor any weight by the permutation 

process. The features are ranked from 1 to n ranked features, where 1 is the highest ranked. 

In order to take into account in the frequency which a feature appeared to be informative 

across multiple models, the number of models which a feature appeared significant in, fRi, 

was used in the following equation (eq. 7): 

 𝑊𝑊𝑓𝑓 = ∑ 𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖

𝑓𝑓𝑅𝑅𝑖𝑖∗100
 (eq. 7) 

Where Rf, represents the final rank for a feature and Ri represents each rank for a feature 

for model i. From eq. 7, the feature with the lowest Rf value was the most informative 

feature for the set of 10 best performing models. With this ranking system, it was 

determined which well log, statistical parameter, or depth interval was the most 

informative when differentiating HWPs and LWPs. 

2.9 Results and Interpretations 

2.9.1 Delaware Basin Supervised Results 
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Out of the three supervised models utilized in this study the logistic regression consistently 

performed better than SVC and KNN, although only marginally better than SVC. After 

100 training and testing cross-validation iterations, the logistic regression algorithm 

generated a bimodal distribution of F1 and MCC scores with very low variance (Fig. 6). 

The overwhelming majority of iterations stacked up on the median for both scoring metrics 

of 0.96 and 0.92 for F1 and MCC, respectively. 

 

 

The variance coefficients for these distributions are significantly less than 1. This provides 

insight into how well the logistic regression models are performing on different 

permutations of the data set as it splits and shuffles the samples during cross-validation 

procedures. The F1 and MCC scores for the SVC models are 0.95 and 0.91, respectively. 

The distribution of the SVC metrics over 100 training iterations has more variance, but not 

Fig. 6: Prediction performances of logistic regression over 100 training iterations after 
applying dimensionality reduction on the Delaware Basin data set. The median F1 score, 
represented by the green dashed line, was 0.96. The median MCC score, represented by the 
dashed purple line, was 0.92. 
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enough to raise the variance coefficients for either score above 1.0. The median F1 and 

MCC scores for the KNN algorithm are 0.91 and 0.84, respectively. This is a noticeable 

drop in both scores and the variance is significantly larger than both SVC and logistic 

regression. 

2.9.2 Delaware Basin Most Informative Features 

Using the methods described in section 2.8 of this thesis, the most informative features for 

the best performing models were ascertained for the Delaware basin data set. For each data 

set in this analysis, we sought to determine the top 10 features for each the best performing 

model per data set. Logistic regression, for example, is the best performing model on the 

Delaware data set, so the most informative features for this algorithm are the focus for this 

data set. The results of feature ranking methods are displayed in Table 1. Readers will 

notice that there are only 7 ranked features in Table 1. This is due to the fact that the best 

performing models of the logistic regression algorithm only seem to utilize 7 features to 

predict well classification. The feature names are constructed as follows: “Well log 

mnemonic (GR, for example),” “statistical parameter,” and “band from which features 

were extracted.” The bands were numbered from 0 – 5, where 0 was the closest to the KOP 

and 5 was the farthest from the KOP. Upon observing the results from feature ranking, one 

will notice a few key points. The first being that the majority of the most important 

features were extracted from the closest bands to the KOP, and most of them from the 0th 

band. Secondly, resistivity and porosity seem to play a key role in differentiating the two 

well classes. Resistivity and porosity logs consist of 6 of the 7 top ranked features for the 

logistic regression models.  
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Delaware Basin Logistic Regression 
Ranked Features 

FEATURE RANK 
ILDvar0 1 
ILSkurt2 2 

NPHIvar1 3 
ILDrms0 4 
GRvar1 5 

NPHImean0 6 
DPHImean0 7 

 

2.9.3 Interpretation of Delaware Basin Most Informative Features 

The most important feature for the logistic regression models when differentiating HWPs 

and LWPs is the variance of deep resistivity (ILD) nearest to the kick-off point (KOP). 

This indicates that there is a distinction between HWPs and LWPs when involving 

formation resistivity near the KOP. If the formation resistivity is changing rapidly 

throughout this 50 ft interval, it may be indicative of thin intervals of highly water-

saturated rock which could be conduits or containers of formation water. Four out of seven 

top ranked features are within the 0th band and the other 3 are in the 1st and 2nd. This 

conveys that the location of the KOP is of critical importance to separating the two well 

classes.  

 

Table 1: The most informative features to the best performing logistic regression models 
for the Delaware basin data set is presented. These features are ranked from most 
informative to least informative and are numbered 1 – 7, respectively. The feature names 
are constructed as follows: “Well log mnemonic (GR, for example),” “statistical 
parameter,” and “band from which features are extracted.” Terms like “rms”, “var”, and 
“kurt” are all shortened versions of statistical parameters “root mean square”, “variance”, 
and “kurtosis.” 
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2.10 Proof-of-Concept Data Set Results 

To ensure that this workflow could be universally applied to basins outside of the 

Delaware, additional data was gathered from the Fort Worth basin and Gulf Coast region. 

The methods described for the Delaware basin worked comparably well for our proof-of-

concept data sets. The results for the Fort Worth basin are shown in Fig. 7. The logistic 

regression algorithm was also the best performing algorithm for the Fort Worth data set. 

The median F1 score and median MCC score were 0.89 and 0.82, respectively. This was a 

noticeable decrease in overall accuracy, compared to the Delaware data set, but these 

scores are indicative that the logistic regression models are still predicting accurately most 

of the time. 

 

 

Fig. 7: Prediction performances of logistic regression over 100 training iterations after 
applying dimensionality reduction on the Fort Worth data set. The median F1 score, 
represented by the green dashed line, was 0.89. The median MCC score, represented by the 
dashed purple line, was 0.82. 
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The results for the Gulf Coast region are slightly improved from the Fort Worth data set. 

The logistic regression, again, proves to be the most accurate algorithm for separating the 

two classes of wells. As shown in Fig. 8, the median scores for both metrics are back up to 

the low 0.90’s. The Gulf Coast data set still performs slightly less favorable than the 

Delaware basin data set by relative variance, but is still relatively accurate for most cross-

validation iterations. 

 

 

With the median scores for both of these regions as high as they are, it is reasonable to 

assume that this workflow can be applied to different regions. It should be noted that the 

features which contribute the most to the logarithmic models vary from basin to basin. 

Therefore, it is critical to train the models with respect to wells with similar geological data 

to new wells which relative water production is to be predicted for. Doing so will ensure 

Fig. 8: Prediction performances of logistic regression over 100 training iterations after 
applying dimensionality reduction on the Gulf Coast Region data set. The median F1 score, 
represented by the green dashed line, was 0.93. The median MCC score, represented by the 
dashed purple line, was 0.92. 
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that models are trained to predict high water-cut wells for the particular geologic region the 

user is operating in.  

It is also critical to note that the proof-of-concept data sets have not been subject to further 

scrutinization based on target formation. In the Delaware basin data set, the more 

restrictions placed on target formation and well production type increase the algorithm’s 

ability to correctly predict well class based on these methods. In all likelihood, both data 

sets would display increased predictability based on the methods proposed if the samples 

were made more homogeneous. 

2.11 Chapter II Conclusions 

A data-driven workflow which utilizes features extracted from petrophysical logs based on 

relative depth to the kick-off point (KOP) of a given wellbore has been developed to 

predict high water-cut wells. These features can be extracted from various regions of the 

vertical and horizontal portions of the wellbore; however, the most effective region is 

directly below the KOP in the transitionary region between vertical and horizontal 

wellbores. 210 statistical summary parameters in total are extracted as features in this 

workflow. These 210 features are then reduced, by 90% for the Delaware basin data set, 

and then used to train supervised ML algorithms to predict which well class a well belongs 

to: HWP or LWP. Using 100 cross-validation iterations, which were trained and evaluated 

using F1 and MCC scores, generate median F1 and MCC scores of 0.96 and 0.92, 

respectively. These scores signify that this workflow can reliably predict, given proper 

training data, whether or not a brand new well in the same geologic region will produce a 

high or low amount of water relative to target hydrocarbon.  
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This workflow was further evaluated using two proof-of-concept data sets which are 

entirely separate from the basin of interest, the Delaware basin. The data set from the Fort 

Worth basin generates a histogram of F1 and MCC scores with median values of 0.89 and 

0.82, respectively. The Gulf Coast data set generates a histogram of F1 and MCC scores 

with median values of 0.93 and 0.92, respectively. The results from the proof-of-concept 

data sets show that this workflow can likely be extended to other regions, which may 

experience similar problems of high water-cuts, and reliably predict high water-cut wells. 

From the top 10 best performing models, generated from training a logistic regression 

algorithm, the most informative features to best performing models were determined using 

permutation testing. The resistivity logs (ILD and ILS) and the porosity logs (NPHI and 

DPHI) seemed to provide the most informative information to ML models to separate these 

two well classes. Given that the resistivity curves provide insight into the fluid saturation 

of a rock and the porosity curves provide insight into potential fluid storage, it makes 

logical sense that these features would be important when separating HWPs and LWPs. 
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CHAPTER III 

HIGH WATER CUT PREDICTION USING UNSUPERVISED LITHOLOGY-BASED 

FEATURE EXTRACTION 

3.1 Interval of Interest 

The second data-driven workflow developed in this incorporates unsupervised ML 

methods. For this workflow, the interval of interest is expanded. Still using the KOP as the 

anchoring point, the 300 ft below is now accompanied by 200 ft above the KOP as well. 

The unsupervised methods are used to create pseudo-lithology types in each of these wells. 

With the additional 200 ft, the Delaware basin data set is reduced by 3 wells for a total of 

17 for workflow validation. This increase in sample count provides unsupervised methods 

with 1000 sample points per well, however. The generalized workflow for the 

unsupervised approach is presented in Fig. 9. 
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3.2 Multi-Layer Clustering 

3.2.1 Preprocessing Data 

The clustering process began with all the wells being treated as one continuous well. This 

is crucial to the application of unsupervised models, as any variation in the well logs could 

cause a change in predicted lithology label for samples. Treating all the well log data as if 

they were all one well ensured that the lithology labels were consistent across all wells. If 

the unsupervised models were to be ran on the wells individually, cluster A in well 1 might 

not be the same cluster A as in well 2 in terms of petrophysical properties.  

Fig. 9: Illustration of the generalized workflow for Chapter 3 methods. The well log data 
is clustered into 6 unique pseudo-lithologies using unsupervised ML algorithms, where 
features are extracted out for each cluster and each well log. These features are then used 
to train supervised models to predict well class. 
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Once wells are all in one bucket, the well logs are scaled and transformed. Well logs such 

as resistivity tend to function on a logarithmic scale compared to other well logs. For this 

reason, it is necessary to apply a log base 10 transform to bring it more into scale with the 

other well logs. This transformation is applied to both shallow and deep resistivities. In 

order to supplement the unsupervised models, a handful of features were created from 

existing well logs. These created features are relationships such as gamma ray divided by 

neutron porosity and average porosity. After these new features are created, all features in 

the data set are scaled using a Z score transform and Yeo-Johnson transform as described 

in section 2.4.1. 

After scaling, the process of removing outlier samples began. Outlier samples will cause 

shifts in the distributions of unsupervised clusters, due to potentially noisy data. To remove 

this noisy data, an isolation forest algorithm is utilized to detect outliers. Operating under 

the assumption that outliers in a sample pool are “few and different” from normal samples, 

the isolation forest algorithm builds a series of trees. Because outliers possess different 

attributes compared to normal samples, outliers tend to be isolated from the rest of the 

samples near the root of the tree as opposed to deeper in the tree (Liu et al., 2008). As for 

this workflow, a contamination percentage of 8% is assumed. The contamination 

percentage is the percentage of data which is presumed to be outliers.  

3.2.2 K-Means Clustering 

This workflow utilizes two unsupervised clustering methods. The first of these methods is 

K-Means. A K-Means algorithm applies a process of partitioning a population of N-

dimensions in to k sets (MacQueen, 1967). K-Means determines k initial cluster centers, 
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where k is defined by the user, and then each cluster center is refined to be the mean of 

constituent samples within similar clusters (Wagstaff et al., 2001). 

3.2.3 Spectral Clustering 

The second unsupervised model used in this workflow is spectral clustering. Spectral 

clustering constructs an affinity matrix, A, from a given set of points. That affinity matrix 

is then used to define a diagonal matrix, D, which is then transformed to L using equation 

8. 

 𝐿𝐿 = 𝐷𝐷−12 ∗ 𝐴𝐴 ∗ 𝐷𝐷−12 (eq. 8) 

The largest eigenvectors of L are then used to reshape the matrices further to cluster the 

samples, using K-means or another algorithm which attempts to minimize distortion (Ng et 

al., 2001). 

3.2.4 Cluster Validation 

3.2.4.1 Agreement 

K-Means and spectral clustering are used simultaneously to cluster the data. They were ran 

simultaneously as a means to validate the clusters they are generating. For example, if two 

separate clustering algorithms are defining the same relative boundaries in feature space to 

separate X number of clusters, this provides solid evidence that these clusters are signal 

and not noise. This is illustrated in Fig. 10, which shows the distributions of a feature 

space which was clustered by both algorithms individually. Given that produced results 

which are greatly similar, this gives us good indication that these boundaries are likely 

separating two different lithology types in the well logs. 
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3.2.4.2 Silhouette Score 

The second validation metric being used to evaluate the unsupervised methods is the 

silhouette score. Once data samples are clustered and assigned a label, the silhouette score 

for the samples can be determined. The silhouette score is algorithmic process which is 

commonly used to validate clustering performance. This algorithm calculates the distance 

between samples within the same cluster, say cluster A, and compares it to the distance of 

samples in cluster A to samples in cluster B (Rousseeuw, 1987). In short, this generates a 

silhouette score for every sample based on how small the intra-cluster distance is and how 

large the inter-cluster distance is. This silhouette score is then averaged based on each 

sample in the selection, which is defined when unsupervised models are run. An averaged 

silhouette score for a cluster can range from -1.0 to 1.0, with a perfect score being a 1.0. 

An illustration of the silhouette score for the used in this study is in Fig. 11. 

Fig. 10: Graphical representation of two methods of unsupervised clustering generating 
roughly the same boundaries between two clusters. 
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3.3 Clustering Results 

The average silhouette score for a 2-cluster setup, which is the best apparent setup, was 

0.46 for K-Means and 0.48 for spectral clustering. Both of the validation metrics producing 

relatively positive results for a 2-cluster setup indicates that this is likely the most optimal 

cluster selection for the large all-wells-in-one setup. All samples are labeled by both K-

Means and spectral clustering. Each label is paired with its counterpart label from the other 

algorithm. This keeps consistency between both labels and acts as another bottle-neck for 

the unsupervised methods. This splits the data into two primary clusters, with one cluster 

small enough to consider noise from the first layer of clusters. The two primary clusters are 

labeled cluster A and cluster B. It is worth noting that the depth index for each sample and 

what well it belongs to had been preserved through this entire process. This allowed us to 

reinject samples back into the correct order and the correct well after clustering. 

Fig. 11: Illustration of silhouette scores generated for both algorithms (K-Means and 
Spectral clustering). The dashed red line on each graph denotes the average silhouette 
score for both plots. 
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Cluster A contained 10,308 samples and cluster B contained 4063 samples after the first 

layer of unsupervised clustering. With this many samples per cluster, and reasonable 

geologic expectations, it was decided that these two primary clusters could be further 

reduced. The two clusters were then separated from one another for further, individual 

clustering. These two clusters were clustered into smaller sub-clusters using the same 

methods as described for layer one, aside from scaling the data as this was preserved into 

layer 2. Using the same validation scheme for layer 2 clustering, it was determined that 

cluster A should be subdivided further into 3 clusters and cluster B should be subdivided 

into 2. Again, the best performing unsupervised methods by silhouette score were K-

Means and spectral clustering. The average silhouette score for both clusters A and B 

subdivision were approximately 0.48. Cluster A ended up being split into 3 sub-clusters, 

while cluster B was divided into two sub-clusters. The final 5 clusters are named “A0, A1, 

A2, B0, and B1” The number of samples per cluster is presented in the following Fig. 12. 
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3.4 Feature Extraction and Selection 

These clusters can be considered predicted lithologies, determined automatically by the 

unsupervised clustering algorithms. The samples, along with their respective cluster label, 

are returned to the individual wells. The scaled well logs were used in feature extraction, 

with respect to each cluster. The well logs were scaled as one continuous data set, so there 

was not an issue with varying scales between wells during feature extraction. Each feature 

extracted was done with respect to each of the 5 clusters. The first feature extracted from 

the clustered data is a binary type feature which answers: is X cluster in this well? This 

feature gave us an idea of the importance the presence of a particular rock type is for 

differentiating HWPs and LWPs. The next feature extracted counts the number of samples 

Fig. 12: Bar graph of the sample count within each of the sub-clusters generated 
through the unsupervised methods described in Chapter 3. 
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which belong to each cluster for a given well. Similar to the first feature, the cluster count 

feature provided us with an idea on the frequency a predicted unsupervised lithology could 

be used to differentiate HWPs and LWPs. Along a similar line of reasoning, a third feature 

which was extracted checked if there are 30 samples or more for a given cluster in a well. 

If there were 30 samples of a given cluster in a well, similar statistical parameters to 

chapter 2 were extracted per each of the 5 well log for that cluster. However, the 

interquartile range (IQR) was implemented in statistical parameter extraction for the 

chapter 3 workflow. Two variants of IQR were extracted. One IQR used the range between 

the 75th percentile and the 25th percentile, while the other variant calculates the range 

between 95th percentile and the 2nd percentile. 

Due to the fact the depth data was preserved for each well, it was also possible to extract 

features based on the depth. The outlier removal process destroyed some samples of data 

from various wells. Therefore, some depth samples have been lost from well to well. With 

this in mind, the thickness of depth intervals must be iterable across all wells in the data 

set. To accomplish this, the minimum depth is subtracted from the maximum depth for 

every well and the difference is divided into 5 separate depth intervals. From the newly 

defined depth intervals, the sample count for each cluster was calculated for every interval 

and every well. The total feature extraction process for chapter 3’s data-driven workflow 

resulted in a total of 336 features for training supervised models. 

3.5 Training Supervised Algorithms 

3.5.1 Feature Reduction 
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Similar to chapter 2’s workflow, not all of these 336 features were useful to the supervised 

algorithms for classification. These features were reduced as in chapter 2’s data-driven 

workflow. The reduction methods are similar to what was used in chapter 2, but the F-

value is not utilized and a new parameter called mutual information (MI) was used in its 

place. The MI approach can be applied to both discrete and continuous variables, in the 

case of this described feature-space there were discrete and continuous features (Estévez et 

al., 2009). For a set of two continuous variables MI was calculated by examining the joint 

probability density function p(x, y), and marginal probability density functions p(x) and 

p(y). MI between X and Y is defined by equation 9: 

 𝐼𝐼(𝑋𝑋;𝑌𝑌) = ∫ ∫ 𝑝𝑝(𝑥𝑥,𝑦𝑦)log ( 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦))𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 (eq. 9) 

While MI between two discrete variables was calculated by a joint probability mass 

function p(x, y) and marginal probabilities p(x) and p(y) defined as (eq. 10) (Estévez et al., 

2009): 

 𝐼𝐼(𝑋𝑋;𝑌𝑌) = ∑ ∑ 𝑝𝑝(𝑥𝑥,𝑦𝑦)log ( 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)𝑦𝑦𝑦𝑦𝑦𝑦𝑥𝑥𝑦𝑦𝑋𝑋 ) (eq. 10) 

In summary, the MI algorithm calculated the dependency shared between two variables. A 

higher value indicates high dependency, while a low value indicates a more independent 

relationship between the features. For the purpose of feature selection, it was preferable to 

have features with low MI scores. Thus, to reduce the number of features being used for 

training a threshold is set for p-values from an ANOVA F-test and a threshold for MI score 

was also used. The reduction process reduced the feature set down to 5% of the data set. 

3.5.2 Supervised Algorithms Utilized 
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The same three successful supervised models from chapter 2 were also used to differentiate 

HWPs and LWPs with the new features from unsupervised clustering. Interestingly, the 

models seemed to show differing preferences for the number of features used for training. 

For example, the KNN algorithm seemed to favor a lower feature count with more 

restrictive p-value thresholds than logistic regression or SVC.  

3.6 Results and Interpretations 

The results of supervised classification models, from features extracted from the clustered 

well logs, are shown for all three algorithms in figures 13 – 15. The first important note 

about the three distributions of MCC scores is that they all generate a median score of 

0.90. This is an improvement for the KNN algorithm’s performance in Chapter 2, which 

was originally scoring 0.84 median MCC. The second key observation from figures 12 – 

14 is that none of the three algorithms produce an MCC score less than 0.70, over 100 

iterations. This means that even the worst possible training data from the cross-validation 

spits performs relatively well for all three algorithms. Increasing the scope of the data set, 

in terms of relative depth to the KOP, allows the user to gain a more comprehensive 

understanding of what is happening petrophysically within the rock formations.  
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Fig. 13: Histogram of the performance of KNN algorithm on the reduced feature set from the 
unsupervised workflow for 100 cross-validation iterations. The median MCC score is represented by 
the red dashed line at 0.90. 

Fig. 14: Histogram of the performance of logistic regression algorithm on the reduced feature set 
from the unsupervised workflow for 100 cross-validation iterations. The median MCC score is 
represented by the red dashed line at 0.90. 
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3.6.1 Ranked Features from Unsupervised Workflow 

Due to the fact that no supervised algorithm was relevantly superior to the other two 

algorithms, it was appropriate to use models from all three supervised algorithms for 

feature ranking. The top 10 features for each algorithm were determined using a modified 

sampling version to the methods described in section 2.8. In this unsupervised clustering 

workflow, 20 models generated from each of the 3 algorithms (K-Nearest neighbors, 

support vector machine, and logistic regression) were used for permutation testing and 

feature ranking. Upon calculation of the top 10 features for each algorithm, it was apparent 

that the overlap of significant features was very large between the three supervised 

algorithms. It was then possible to take these 20 models from all 3 supervised methods and 

Fig. 15: Histogram of the performance of support vector machine classifier algorithm on the 
reduced feature set from the unsupervised workflow for 100 cross-validation iterations. The median 
MCC score is represented by the red dashed line at 0.90. 
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rank each algorithm’s significant features individually first. Following the individual 

ranked significant feature generation for all three algorithms, the ranked features were then 

brought together for a cumulative ranking. There were 11 significantly informative features 

in total, across all methods, which are useful for differentiating HWPs and LWPs (Table 

2).  
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Delaware Basin Cumulative Ranked Features for All 
3 Supervised Methods 

Feature Rank 

A0_NPHI_Kurtosis 1 

A1Present 2 

B0_DPHI_Kurtosis 3 

B1_GR_rms 4 

B1icount3 5 

B1_DPHI_rms 6 

B1_GR_Variance & B1_ILD_mean 7 

B1gr30 8 

B1_ILD_median 9 

B1_ILD_rms 10 

 

3.6.2 Discussion of Ranked Features from Unsupervised Workflow 

At a glance of the ranked features across all supervised methods, there are a few 

characteristics which are quite apparent. The first of which is that out of the 10 features 

found to be important across all models, 7 of them are related to the ‘B1’ cluster. The ‘B1’ 

lithology occupies the most rankings of the top 10 most informative features, but this 

cluster is still trumped statistically by features taken from A0, A1, and B0.  

Table 2: Cumulative ranked features for KNN, SVM, and logistic regression methods 
resulting from the prediction performance on Delaware basin reduced feature set(s). 
Features are ranked from most important (1) to least important (10), but still much more 
important than features not included in the list. The features are illustrated with the 
following structure: “Cluster alias” + “feature or well log + statistical parameter.” The 
“present” feature is a binary feature which checks if the cluster is present in a given well. 
“gr30” checks if there are at least 30 samples of the said cluster in a given well. The 
"icount#” feature counts the number of samples which belong to a cluster in a given depth 
interval with respect to the KOP (interval #). 
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The kurtosis of the neutron porosity within lithology A0 is by far the most influential 

feature on all three algorithms. Prior to culmination of features into the cumulative ranked 

feature set, this feature was easily rank 1 for all three supervised methods. Why this 

cluster’s NPHI curve’s kurtosis is so significant needs to be further investigated. However, 

the fact that NPHI appears significant is not surprising. This well log is very sensitive to 

hydrogen atoms, which belong to water and hydrocarbon molecules in the case of the 

subsurface. As this well log device fires neutrons into the formation, the number of 

neutrons which return back to the device is monitored and logged. The number of neutrons 

which are captured in the formation is influenced greatly by the fluid which is saturating 

the pore space of the formation. Thus, the kurtosis of the distribution of NPHI within a 

cluster provides the insight that the way this well log reading, within the A0 lithology, is 

varying between HWPs and LWPs is so significantly different that the supervised ML 

algorithms have found it the most important factor in differentiating the well classes. 

The second most important feature, which is again ranked as second most important for all 

models, is ‘A1Present.’ This is a binary-type feature which check whether or not the 

cluster named ‘A1’ is present in the well. Due to the unsupervised methods, the physicality 

of the lithology is somewhat diminished, from an interpretive sense, but for whatever 

reason the simple presence of one sample of this cluster in a well is quite statistically 

significant in differentiating HWPs and LWPs. 

The third highest ranked feature is ‘B0_DPHI_Kurtosis.’ This feature only appears as 

significant in the SVM and logistic regression models, but since it is consistently ranked as 

3rd for both models it is still considered quite significant across all three supervised 

methods. Again, this is another porosity log which is considered to be quite statistically 
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significant. The kurtosis component of both ‘A0_NPHI’ and ‘B0_DPHI’ proving to be 

quite statistically significant for differentiating well class is peculiar. This statistical 

parameter is related to the curvature of the distribution for the porosity well logs involved, 

which can be summarized as involving the number of samples which seem to stack up at or 

around one value. 

The next 8 features are all related to the cluster ‘B1.’ All of these features are more 

subjective in terms of relative importance to each supervised methods, with some which do 

not appear significant at all for a given algorithm. However, all of them are considering 

some factor of the ‘B1’ cluster. It could be stated that due to the fact that the ‘B1’ cluster 

appears so frequently across all models at different levels of importance, its presence is 

perhaps is more important than the top 3 features. This of course is unlikely, due to the 

wide statistical significance of at least the top 2 features across all algorithms. Another 

observation one might make is that the ‘A2’ cluster does not appear to have any statistical 

significance whatsoever to the supervised models, as it does not appear once in the top 

ranked features. 

3.7 Chapter III Conclusions 

In chapter 3, a second data-driven workflow is proposed for separating HWPs from LWPs 

in a given set of wells. This workflow utilizes unsupervised clustering methods to assign 

well log samples a predicted lithology, based on similar characteristics between well log 

samples. 5 lithologies were determined using multi-layer unsupervised clustering for the 

well log data taken from the Delaware basin. From these 5 unique lithologies, features 

were extracted based on well log data for each lithology. These features were then used to 

train supervised ML algorithms to differentiate high water producing wells and low water 
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producing wells. Three algorithms display comparable success in differentiating the two 

well classes in this proposed workflow: K-nearest neighbors, support vector machine, and 

logistic regression. Each of these algorithms produced 100 models, using cross-validation 

methods, which result in histograms of MCC scores with median values of 0.90 for all 

three algorithms. 

As performed in chapter 2, the most informative features in training models generated in 

chapter 3’s workflow were ascertained using permutation testing methods. The top 3 most 

informative features to models generated across all 3 supervised algorithms are: the 

kurtosis of the neutron porosity (NPHI) of lithology A0, the presence of lithology A1, and 

the kurtosis of the density porosity (DPHI) of lithology B0. Out of the 5 lithologies 

generated by unsupervised ML clustering, four of them indicate significance when 

predicting whether or not a well will be a HWP or an LWP. The lower 7 of the top 10 most 

informative features all belong to lithology B1, which provides good indication that this 

lithology can be used as a key component for differentiating the two well classes.  
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CHAPTER IV 

REVIEW OF WATER SATURATION EMPIRICAL ESTIMATION METHODS 

4.1 Archie’s Equation 

One of the primary rock features associated with water production is water saturation, Sw. 

Over approximately 80 years of experimentation and development has gone into improving 

the accuracy of empirical estimations of Sw. In 1942, the work Archie performed in 

determining water saturation was published (Archie, 1942). In this work, Archie presented 

multiple relationships between resistivity, porosity, and water saturation which he was able 

to identify experimentally using a combination of well log data and core data from fully 

brine-saturated sandstone core samples. One key relation Archie identified was the 

relationship between the formation or rock resistivity and the resistivity of the brine 

saturating the rock (eq. 11): 

 𝑊𝑊𝑃𝑃 = 𝐹𝐹𝑊𝑊𝑤𝑤 (eq. 11) 

Where Ro is the resistivity of the sand when all of its pores are filled with brine, Rw is the 

resistivity of the brine and F is a “formation resistivity factor (Archie, 1942).” The 

formation resistivity factor, F, was what Archie described as a function of the type and 

character of the formation being investigated, which varies with porosity and permeability 

of the reservoir rock. Upon further investigation comparing values of F to permeability and 

porosity values of sandstones, Archie determined that porosity, θ, had a more direct 

relationship to F related by the following eq. 12: 

 𝐹𝐹 = 1
𝜃𝜃𝑚𝑚

  (eq. 12) 
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Where Archie defined the value of m as the slope of the line found on the porosity vs. 

formation resistivity factor plots, such as fig. 16. 

 

 

Multiple investigators performed experiments studying the variation of resistivity of sands 

with varying water saturation percentages (Archie, 1942). These experiments were done by 

displacing the conductive water from the sands with non-conductive fluid. The resulting 

relationship they identified became the precursor to what is now known as Archie’s 

equation, which even to this day is the most influential empirical relationship for the 

estimation of water saturation in a rock body (eq. 13). 

 𝑆𝑆𝑤𝑤−𝑛𝑛 = 𝑅𝑅𝑜𝑜
𝑅𝑅

   or   𝑆𝑆𝑤𝑤−𝑛𝑛 = 𝐹𝐹𝑅𝑅𝑤𝑤
𝑅𝑅

 (eq. 13) 

Fig. 16: Graphical representation of petrophysical data published in Archie’s original 
1942 paper. Samples taken from consolidated sandstone cores from the Gulf Coast 
(Archie, 1942). 
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Where R represents the apparent resistivity of the formation and n is referred to as the 

“saturation exponent” (Doveton, 2001).  

4.2 Evolution of Archie’s Equation 

Later investigators replaced the numerator in eq. 12 with a parameter named ‘a’ (Winsauer 

et al., 1952). This parameter is polarizing among users of eq. 14 as to what exactly ‘a’ 

represents physically, if it represents any physical characteristic at all (Doveton, 2001). 

Many who argue that a does have a physical meaning, refer to it as the “tortuosity index.” 

This factor a has transformed eq. 13 into what is now most commonly referred to as 

Archie’s Equation (eq. 14): 

 𝑆𝑆𝑤𝑤 = �𝑊𝑊∗𝑅𝑅𝑤𝑤
𝑅𝑅∗𝜃𝜃𝑚𝑚

𝑛𝑛  (eq. 14) 

This finalized version of Archie’s equation boasts very accurate results for both resistivity 

and water saturation, if the rock being analyzed is a clean sandstone. In modern times and 

especially in onshore US, the amount of production stemming from clean sandstones has 

been dropping greatly. This means that Archie’s equation cannot be applied to 

unconventional targets of the current day (Doveton, 2001).  

Expanding upon this, many investigators have gone on to construct multiple models with 

varying assumptions. In the most general form, the majority of transformations of Archie’s 

equation can be written as eq. 15: 

 1
𝑅𝑅𝑡𝑡

= 𝑆𝑆𝑤𝑤2

𝐹𝐹∗𝑅𝑅𝑤𝑤
+ 𝑋𝑋 (eq. 15) 

The X variable in eq. 15 represents the influence which clay rock has on the system. Many 

models of this general scheme have been generated with varying results and assumptions 
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(Doveton, 2001; Bardon and Pied, 1969; Simandoux, 1963). Typically, these modified 

versions of Archie’s equation require the calculation of properties such as the resistivity of 

shale or the volume of shale in the target interval. 

 

 

As illustrated above, this method involves applying a cut-off line for 100% shale rocks in 

the gamma ray curve and then translating this interpretation over to the resistivity log for 

an approximation of the resistivity of the interpreted shales. This approach is intended for 

Fig. 17: Example of workflow used in (Doveton, 2001) to determine resistivity of 
shale, Rsh and the volume of shale, Vsh to be used for water saturation calculations in 
shaly sands. 
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shaley sandstones, not for pure shale target reservoirs water saturation approximations. 

Typically, the values for Rsh are taken from a shale interval separate from the target 

reservoir interval. This means that that not only are these shales likely different 

geologically from the target reservoir interval, but the values of Rsh are not going to be 

entirely transferable to the target interval and thus will result in slight differences in Sw 

than reality (Doveton, 2001).  

4.3 Water Saturation in Shale Reservoirs 

In 1972, another model branching off of the Archie’s equation emerged from 

Schlumberger specifically to describe water saturation in shale formations (Zhang and Xu, 

2016). This equation, the total shale model, adds the effect of the non-shale rock volume to 

the resistivity of water in the denominator of Archie’s equation (eq. 16): 

 1
𝑅𝑅𝑡𝑡

= 𝜃𝜃𝑚𝑚𝑆𝑆𝑤𝑤𝑛𝑛

𝑊𝑊∗𝑅𝑅𝑤𝑤∗(1−𝑉𝑉𝑠𝑠ℎ)
+ Vsh𝑆𝑆𝑤𝑤

𝑅𝑅𝑠𝑠ℎ
 (eq. 16) 

Where Vsh and Rsh are the volume of shale and resistivity of shale, respectively. In more 

modern times, petrophysicists have learned the influence that TOC (total organic carbon) 

content is having on the determination of water saturation percentages in shales (Zhang 

and Xu, 2016). An increase in TOC content has been shown to result in an increase in 

resistivity for shale rocks, in both core and conventional water saturation equations. Due to 

this relation, corrections must be applied to accurately estimate water saturation in shales. 

One method designed for gas producing shales separates the rock body into two separate 

categories: inorganic and organic. As a result of many studies illustrating positive 

correlation of gas content with TOC, it can be inferred that TOC has a negative correlation 

with water saturation (Zhang and Xu, 2016). Ultimately, this results in what Zhang et. al 
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has referred to as the “TOC correction method.” This method uses graphical relationships 

of TOC and water saturations from core samples and conventional water saturation 

equations (fig. 17), which the authors consider any equations ranging from Archie’s to 

Simandoux and beyond. This method is based on the difference between water saturation 

calculated from conventional equations, Sw_con and the observed difference in water 

saturation within organic matter of the shales, Sw_d (Zhang and Xu, 2016). The authors 

relate Sw_d directly to TOC content in the shale and estimate water saturation for a shale 

formation using eq. 17: 

 𝑆𝑆𝑤𝑤 = 𝑆𝑆𝑤𝑤_𝑃𝑃𝑃𝑃𝑛𝑛 ∗ (1 − 𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥

) (eq. 17) 

Where TOCx was defined as a constant value of TOC (%) determined graphically by Fig. 

18. The investigators stressed that this method may only be used when a linear relationship 

is shown between TOC and (1-𝑆𝑆𝑤𝑤_𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐
𝑆𝑆𝑤𝑤_𝑐𝑐𝑜𝑜𝑛𝑛

), where Sw_core is the water saturation determined 

from core samples. 
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4.4 Chapter IV Conclusions 

Archie’s equation was established through empirical experiments and published in 1942. 

This equation still functions to this day as the basis for the majority of water saturation 

calculations using well logs. The original Archie’s equation assumed the rock being 

analyzed is a clean sandstone. As target reservoirs became more shaley over time, the 

equations used to calculate water saturation from well logs had to evolve over time. In 

more modern models, an estimation of the volume % of shale in a target reservoir and the 

resistivity of shale needed to be calculated for accurate water saturation estimations. 

Expanding on this idea, the different properties within a shale separating organic matrix 

and inorganic matrix have become increasingly important when calculating water 

Fig. 18: Graphical representation of the relationship between TOC (%) and 
Sw core/Sw con (Zhang and Xu, 2016).  
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saturation in shale reservoirs. Thus, the influence of total organic content (TOC) must be 

taken into account when estimating water saturation. 
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CHAPTER V 

CONCLUSIONS 

The final products of this thesis project are the two proposed workflows described in chapters 

2 & 3 of this manuscript. The intended goal of these workflows is to provide operators who 

are concerned with high water-cut wells with a quick and accurate determination of whether 

or not a well will produce a high amount of water relative to the target produced 

hydrocarbon. The workflows proposed use data which is already a common part of drilling 

and logging processes. This allows operators to incorporate both of these workflows 

seamlessly into their already existing standard production processes. 

The first data-driven workflow described utilizes supervised machine learning algorithms, 

trained on well log data taken from 20 horizontal wells from the Delaware basin. The well 

log data was taken from 300 feet below the kick-off point and divided into six 50-ft bands. 

From these six bands 7 statistical parameters were extracted from all five well logs used in 

the data set, which resulted in 210 features in total per well. These features were reduced by 

90% using an ANOVA F-test with relation to well class (high water producer and low water 

producer) and reduction based on collinearity amongst the features. The reduced feature set 

was then used to train a set of supervised machine learning algorithms, of which 3 proved the 

best at differentiating well class: K-Nearest neighbors, support vector machine, and logistic 

regression. Of these three best algorithms, the logistic regression performed the best based on 

the classifier evaluation metrics F1 score and Matthew’s Correlation Coefficient (MCC). The 

logistic regression produced a score distribution over 100 cross-validation training iterations 

with a median F1 score and MCC score of 0.96 and 0.92, respectively. This workflow was 

also evaluated on two separate proof-of-concept data sets, one from the Fort Worth basin and 
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one from the Gulf Coast region. The median F1 and MCC scores over 100 cross-validation 

training iterations proved to be satisfactory for both outside data sets. 

The second data-driven workflow discussed in chapter 3 of this work incorporates 

unsupervised methods to extract features, then train supervised models to differentiate well 

class. To accomplish this, 17 horizontal wells from the Delaware basin which have sufficient 

well log data are used. This workflow incorporates 500 total feet of well log data surrounding 

the kick-off point of the wellbore, 200 feet from above the kick-off point and 300 feet from 

below the kick-off point. This well log data is scaled, transformed, and purged of outlier data 

before being subject to the multilayer clustering methods. The data is then reduced by 

permutation testing, using silhouette score and agreement between K-Means and spectral 

clustering as a guide. Using all well log data in one data set, the unsupervised methods 

showed that the data was best split into two major clusters: cluster A and cluster B. Cluster A 

and B are the product of layer one of the multilayer clustering process used. Due to large 

number of samples in both clusters remaining, it was deemed suitable to further divide these 

two major clusters into sub-clusters. Using similar evaluation metrics as in layer one, cluster 

A was divided into 3 sub-clusters, while cluster B was divided into 2 sub-clusters. These 5 

unique clusters generated represent different lithology types, purely generated by clustering 

algorithms based on similar characteristics between samples.  From these lithologies 

generated, 336 features were extracted for each well based on lithology presence, statistical 

parameters of well logs specific to a cluster, frequency of cluster presence in a well, and 

cluster features based on distance from the kick-off point of each well. Similar to methods 

described Chapter 2, supervised methods were trained on a reduced set of these features to 

differentiate well classes. Three supervised algorithms produced very similar results. The 



56 
 

three best algorithms were again: K-nearest neighbors, support vector machine, and logistic 

regression. All three of these algorithms produce MCC score distributions with median 

values of 0.90. 

In the fourth chapter of this thesis, literature regarding empirical water saturation estimation 

methods is reviewed. A brief history of the evolution of Archie’s equation (Archie, 1942), 

which to this day is one of the most influential empirical relationships between resistivity of 

a rock formation and water saturation percentage. This simple relationship between 

petrophysical properties of clean sandstones and water saturation has slowly been expanded 

to more shaley rocks. Relationships such as the Simandoux equation and total shale model 

were developed from Archie’s equation to account for the influence which clay content has 

on conductivity in shaley sandstone reservoir intervals. In recent studies the influence of 

TOC in shale reservoirs has become a key factor in determining water saturation percentages. 

The necessity to calculate TOC from shale targets has made core data from shales even more 

important than previous years to properly assess a shale’s average TOC content.  
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CHAPTER VI 

FUTURE WORK 

The work done in this thesis can be expanded upon by examining well data from outside of 

Texas. As mentioned previously in the thesis, it is not required of oil and gas operators to 

report barrels of water produced in Texas. This fact leads to estimations of water production 

by Enverus using available data, such as well tests. Although these estimations methods have 

proven to be accurate, they are still approximations compared to thorough reporting of water 

production. There is an abundance of well log data available from the Delaware basin taken 

from New Mexico based wells, horizontal and vertical. New Mexico’s governing body 

requires operators to report water produced from hydrocarbon wells, which presents potential 

to expand the workflows used in this thesis to data which is likely more accurate. The 

methods could be even extended to change the approach from a classification problem to a 

regression problem to predict water cut percentages from hydrocarbon wells. 

The evolution of Archie’s equation has also made it apparent how crucial to the workflows 

presented the expansion of data may be. As this thesis is focused on the production from 

unconventional reservoirs, it is most appropriate to have some inclusion of TOC data in the 

workflows to predict water production which has shown to have a strong correlation to water 

saturation in shalier reservoirs. If core data from shalier or shale reservoirs can be 

incorporated into the workflows discussed in chapters 2 and 3, there could be great 

improvement in the prediction of relative water production for unconventional wells in the 

data set. 
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APPENDIX 

A DATA COLLECTION AND PREPARATION 

All data used in this project was taken from Enverus, a database for oil and gas data. The 

number of wells, or sample count, and types of wells included in the data sets utilized has 

varied greatly over several iterations. The set which was represented in this thesis is the final 

version, which has had the best results for prediction of relative water production. Primarily 

through a series of trial and error, it had become apparent that the more homogeneous the 

samples in each data set are, the better the machine learning (ML) algorithms were able to 

differentiate high water producers (HWPs) and low water producers (LWPs). Geologic 

heterogeneity was found to be significant by attempting to use various mixtures of wells with 

varying production types, with the final data set utilizing only oil-producing wells in the 

Delaware basin. The varying production types of these horizontal wells can be interpreted as 

some relative change in geology which made petrophysical signatures vary slightly, which 

may contribute to less accurate predictions from ML algorithms. Another feature of the data 

set that made a major difference is the presence of the kick-off point (KOP) within the 

analyzed logged interval for each well. In this analysis, we define the KOP as the point of the 

wellbore which it begins to transition from vertical into a horizontal wellbore. Through this 

analysis the region surrounding the KOP has demonstrated statistical significance in 

differentiating the two well classes.  
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