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ABSTRACT 

 

Measurement invariance justifies using observed variables to identify group differences on the 

latent construct because it indicates that there is no systematic measurement bias between the 

observed and the latent variables across groups. Using structural equation modeling, multi-group 

confirmatory factor analysis (MGCFA) is a commonly used tool for testing measurement 

invariance. However, to date, the usefulness of MGCFA for testing measurement invariance on 

zero-inflated variables has not been studied. Due to the non-normality of zero-inflated data, 

flexible modeling to handle zero-inflation and extending the two-part model to factor analysis 

(two-part factor model) is possible. Therefore, we examined how different levels of zero-inflation 

affected the measurement invariance tests with the two-part factor model and the MGCFA and 

suggested the appropriate factor analysis model when zero-inflated variables are the target 

measures.  

 Study I compared the performance of the two-part factor model and the MGCFA on testing 

measurement invariance of empirical zero-inflated data. The two models led to different 

measurement invariance results on the target variables. Thus, applying a different factor model to 

test measurement invariance brought different conclusions when the measures were zero-inflated. 

Study II evaluated the performances of the two-part factor model and the MGCFA across different 

simulation conditions: sample size, level of non-invariance, and extent of zero-inflation. Both 

models showed acceptable Type I error rates except for some conditions, and the two-part factor 

model outperformed MGCFA in terms of its power to detect non-invariance on the zero-inflated 

variable. However, the two models had low power and difficulty in identifying correct partial 

invariance models when the zero-inflation was extreme (90%).    
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CHAPTER I 

INTRODUCTION 

Comparing groups of outcomes is a common approach to deriving meaningful conclusions from a 

target variable. If the target variable is an observable attribute, such as weight or height in the 

natural sciences, different results across groups directly indicate true group differences. By 

contrast, social sciences research frequently discusses unobservable and latent attributes (e.g., 

motivation or achievement) across groups, yet uses group comparisons of the observed scores to 

represent latent scores differences. However, to justify using observed scores to indicate latent 

scores, the relationship between the observed and the latent scores must be systematically derived 

without measurement bias. That is, the latent variable must be measured identically across different 

groups to ensure the observed score is the same if individuals have identical latent scores but are 

in different groups (Horn & McArdle, 1992; Millsap, 2012; Sörbom, 1974). This conditional 

independence of the observed variables given the latent variables, irrespective of group 

membership, is referred to as measurement invariance (Kim & Yoon, 2011b). In contrast, if   

measurement process differs depending on the groups, and the measurement invariance 

assumption is not met, the observed score of individuals with the same latent score but different 

group membership may differ. In other words, the observed difference score between groups might 

not represent an actual group difference on the latent score.  

Various statistical approaches are used to test measurement invariance. Millsap (2012) 

classified these approaches as (a) observed variable methods, such as Mantel-Haenszel method or 

SIBTEST (Shealy & Stout, 1993); and (b) latent variable models using structural equation 

modeling (SEM) or an item response theory framework (Kim & Yoon, 2011a; Lord & Novick, 

2008; Millsap, 2012; Stark, Chernyshenko, & Drasgow, 2006; Woods, 2009).  
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Among these, multi-group confirmatory factor analysis (MGCFA), a typical SEM model, 

is widely used. Several issues related to MGCFA have been investigated in the literature, leading 

to recommendations for the most appropriate approach. For example, types of measurement (i.e., 

categorical measure or continuous measure) (Kim & Yoon, 2011a; Liu et al., 2016; Millsap & 

Yun-Tein, 2004) and complex data structures, such as multilevel data (Kim, Kwok, & Yoon, 2012; 

Ryu, 2014) and longitudinal data (Kim & Willson, 2014; Liu et al., 2016) have been studied. Also, 

partial invariance (Jung & Yoon, 2016, 2017; van de Schoot et al., 2013; Yoon & Millsap, 2007) 

and fit indices for testing measurement invariance (Cheung & Rensvold, 2002; Fan & Sivo, 2009; 

Lai & Yoon, 2014; Meade & Bauer, 2007) have been examined. The diverse topics related to 

measurement invariance imply the importance of measurement invariance.  

 Despite the existing research, it is hard to find guidelines for testing measurement 

invariance dealing with non-normal data. Furthermore, limited research has focused on testing 

measurement invariance on zero-inflated data, a special type of non-normal data. As a result, it is 

unclear whether typical measurement invariance tests work properly with non-normal, especially 

zero-inflated, data. Several studies have proposed using robust estimators to handle non-normality 

in measurement invariance tests, but they have mainly involved non-normality from ordinal-

categorical measurement (Kim & Yoon, 2011a; Liu et al., 2016), not inflated item responses. 

Further, while many studies have discussed strategies for handling non-normality, they are not 

closely tied to measurement invariance tests. As a general methodological strategy for non-

normality, data transformation (Howell, 2012; Yuan, Chan, & Bentler, 2000) or robust estimator 

is well known for achieving less biased estimates (Curran, West, & Finch, 1996; Satorra, 1990; 

Savalei, 2014; Yuan & Bentler, 2000). A more flexible model represents yet another way to explain 
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non-normal data distribution. Further studies are required to implement such strategies to test the 

measurement invariance on the zero-inflated variables.  

Zero-inflation occurs due to excessive responses on the zero value because most people 

express a lack of experience with zero. For example, if items ask about rare experiences (e.g., 

bullying/victimization experiences for the past year), item responses are mostly 0; therefore, the 

item distribution will be skewed/inflated to zero. Although such zero-inflated items measure 

unusual events, that does not necessarily mean that the related research is also uncommon. In fact, 

zero-inflation is a common issue in delinquency (Brown, Catalano, Fleming, Haggerty, & Abbott, 

2005; Ferrer, Conger, & Robins, 2016; Kaysen et al., 2014; Kim & Muthén, 2009; Liu, Ma, & 

Johnson, 2008) and public health or health economics (Deb & Holmes, 2000; Deb & Trivedi, 2002; 

Duan, Manning, Morris, & Newhouse, 1983; Liu, Strawderman, Cowen, & Shih, 2010).  

Comparing groups of such zero-inflated variables is also common, yet measurement invariance 

has not been discussed enough. To fill this gap in the literature, the two issues of measurement 

invariance and zero-inflation are taken together in our study. That is, when examining the 

measurement invariance of zero-inflated data, we look at which flexible model is more appropriate 

for handling zero-inflation. Starting from this point, the current study suggests a useful factor 

analysis model for testing measurement invariance when normality is not met due to zero-inflation. 

 One of the best known models for handling zero-inflation is the two-part model. The core 

idea of two-part modeling is to decompose the majority of zeros and the minority of non-zeros into 

two parts to lessen the zero-inflation (Duan, Willard G. Manning, Morris, & Newhouse, 1984; 

Kim & Muthén, 2009; Xu, Paterson, Turpin, & Xu, 2015). We focus on this model because 

implementing the two-part modeling in the SEM is possible (Brown et al., 2005; Ferrer et al., 2016; 

Kim & Muthén, 2009; McTernan & Blozis, 2014; Muthén, 2001). However, to date, there is a lack 
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of in-depth research on the performance of two-part modeling in terms of testing measurement 

invariance.  

Previously, Kim and Muthén (2009) demonstrated the use of two-part factor mixture 

modeling on testing measurement invariance. However, their study did not evaluate the 

performance of two-part factor mixture modeling and the possible factors influencing this model. 

Therefore, the present study investigates whether or not the two-part modeling is appropriate for 

testing measurement invariance of zero-inflated variables under various data conditions. 

Furthermore, we compare the two-part factor model with the MGCFA and examine the effect of 

different extents of zero-inflation on the two models’ performances. The following chapter reviews 

the literature on measurement invariance and two-part modeling as well as presents the purposes 

of the study. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter overviews two primary topics: measurement invariance and methodological issues 

related to zero-inflated data and research purposes. Specifically, the following issues are reviewed: 

(1) definition of measurement invariance; (2) factorial invariance; (3) methods to detect 

measurement invariance; (4) general models to handle zero-inflated data; and (5) two-part factor 

modeling as a tool for testing measurement invariance on zero-inflated data. 

Definition of Measurement Invariance 

Researchers use observed variables (i.e., measures or items) to discuss latent constructs, such as 

traits or attributes, by assuming the observed score represents the level of underlying latent variable. 

To justify the uses of the observed variables, a systematically accurate measurement process of 

assigning numbers to the observed variable is required to reflect the corresponding level of the 

latent variable. In other words, the measurement needs to build the relationship between an 

observed score and a latent score without measurement bias (Millsap, 2012; Vandenberg & Lance, 

2000).  

We look at the measurement bias coming from an individual’s group membership in this 

study; therefore, the present study focuses on whether or not the observed score is from an equal 

function between the observed and the latent variables regardless of individuals’ groups. Suppose 

there is a systematic difference in the measurement according to groups (e.g., occasion, sex, 

ethnicity, age, culture, and so on). In that case, the observed score for the same level of the latent 

variable may differ due to the different subgroups; therefore, the measurement would be biased in 

terms of the groups. This measurement bias is referred to as measurement non-invariance. In 

contrast, when the observed score is identical given an equivalent level of latent construct 
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regardless of the subgroups, it indicates measurement invariance (Meredith & Millsap, 1992; 

Millsap, 2012; Vandenberg & Lance, 2000).  

 Measurement invariance supports the measurement quality of developed measures and 

justifies using measured variables for group comparisons because there is no measurement bias 

from the groups. On the other hand, if measurement invariance does not hold, the measures have 

inadequate validity (Millsap, 2012; Vandenberg & Lance, 2000), and discussing group differences 

on the target latent construct may mislead the study. Without measurement invariance, it is not 

clear that whether an observed difference score is from different latent scores across groups or the 

systematically inaccurate measurement related to the group memberships (Cheung & Rensvold, 

2002; Horn & McArdle, 1992; Little, 1997; Stark et al., 2006).  

  

Factorial Invariance 

As a special type of measurement invariance, factorial invariance has to do with measured 

variables an underlying factor structure (Millsap, 2012). Testing factorial invariance with a factor 

analysis model is common, and confirmatory factor analysis (CFA) model is widely used. The 

factor model is a linear regression model where the observed measures are regressed on the latent 

factors as follows: 

 𝑋 = 𝜏 +  𝛬𝜉 + 𝛿 (1) 

X represents a 𝑝 × 1 vector of measures, τ and δ are 𝑝 × 1 vectors of intercepts and unique factors 

respectively. In terms of the regression model, τ are the regression intercepts and δ are the 

regression residuals. Λ indicates a 𝑝 × 𝑚 matrix for factor loadings or regression slopes, and 𝜉 is 

a 𝑚 × 1 vector of factor scores. Also, X is factorial when the factor analysis model holds (Meredith, 

1993), and the mean vector (μ) and covariance matrix (Σ) of X are as follows: 
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 𝐸(𝑋) = 𝜇 = 𝜏 +  𝛬𝜅 (2) 

 𝐶𝑜𝑣(𝑋) = Σ = 𝛬ΦΛ′ + Θ (3) 

Equation 2 represents a 𝑝 × 1 mean vector of measures with κ denoting factor means, which is a 

mean vector of 𝜉. Equation 3 shows a 𝑝 × 𝑝 variance-covariance matrix of measures. Φ and θ 

indicate 𝑝 × 𝑝 variance-covariance matrix of 𝜉 and δ respectively. 

 The above factor analysis model can be extended to multiple subgroups, and testing 

factorial invariance across subgroups is possible with the MGCFA (Meredith, 1993; Millsap, 

2012). All parameters in Equations 1, 2, and 3 are allowed to be different depending on the group 

membership (g). Equations of MGCFA for gth subgroup are expressed as follows: 

 𝑋𝑔 = 𝜏𝑔 + 𝛬𝑔𝜉𝑔 + 𝛿𝑔 (4) 

 𝜇𝑔 = 𝜏𝑔 + 𝛬𝑔𝜅𝑔 (5) 

 Σ𝑔 = 𝛬𝑔Φ𝑔𝛬𝑔
′ + Θ𝑔 (6) 

 If factorial invariance holds, then specific parameters (𝛬𝑔 , 𝜏𝑔 , and Θ𝑔 ) representing a 

factorial relationship are invariant across groups. Testing factorial invariance is sequential as 

placing the gradual invariant restrictions on the parameters. Depending on the restriction, the type 

of factorial invariance model varies. 

A Sequence of Models for Factorial Invariance 

Vandenberg and Lance (2000) defined the sequence of the factorial invariance test. Commonly, 

four models: configural, metric, scalar, and strict invariance, are sequentially tested with gradually 

constrained parameters across groups. 

Configural Invariance 
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Configural invariance concerns whether the same factor structure is applicable to multiple groups 

by having identical patterns of factor loadings under the CFA model. Holding configural 

invariance indicates the CFA model examines the same number of factors, and corresponding 

measures are identically loaded on the specific factor regardless of subgroups. Configural 

invariance is necessary for a multi-group comparison because subgroups must have an equivalent 

model to be tested. The following hypothesis represent testing configural invariance,  

 𝐻𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑙: 𝛴𝑔 = 𝛬𝑔𝛷𝑔𝛬𝑔
′ + 𝛩𝑔,  𝜇𝑔 = 𝜏𝑔 + 𝛬𝑔𝜅𝑔   (7) 

Assume a test has six measured variables for two latent constructs of anxiety and 

depression, and each of the three variables measures one of the latent constructs. For the factorial 

invariance test of the six measures across two groups (i.e., sex: male and female), the parameters 

in Equation 7 can be shown as follows: 

 Λ𝑔 : 

[
 
 
 
 
 
λ11 0
λ211 0
λ311 0
0 λ42

0 λ521

0 λ621]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
λ11 0
λ212 0
λ312 0
0 λ42

0 λ522

0 λ622]
 
 
 
 
 

𝑔2

 (8) 

 Φ𝑔 : [
𝜙111 𝜙121

𝜙211 𝜙221
]
𝑔1

=   [
𝜙112 𝜙122

𝜙212 𝜙222
]
𝑔2

 (9) 

 Θ𝑔 : 

[
 
 
 
 
 
𝜃11

𝜃21

𝜃31

𝜃41

𝜃51

𝜃61]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
𝜃12

𝜃22

𝜃32

𝜃42

𝜃52

𝜃62]
 
 
 
 
 

𝑔2

 (10) 
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 𝜏𝑔 : 

[
 
 
 
 
 
𝜏11

𝜏21

𝜏31

𝜏41

𝜏51

𝜏61]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
𝜏12

𝜏22

𝜏32

𝜏42

𝜏52

𝜏62]
 
 
 
 
 

𝑔2

 (11) 

 𝜅𝑔 : [
𝜅11

𝜅21
]
𝑔1

=   [
𝜅12

𝜅22
]
𝑔2

 (12) 

   

With three subscripts (i.e., p, m, and g for measures, factors, and subgroups), parameters 

are differently estimated depending on the corresponding subscript. Elements of factor loading and 

factor variance-covariance matrix are represented as Λ𝑝𝑚𝑔 and Φ𝑝𝑝𝑔 respectively. Also, elements 

of the unique factor variance-covariance matrix are expressed as Θ𝑝𝑔 as Equation 10 if there is no 

correlation between unique factors. The 𝜏𝑝𝑔 and 𝜅𝑚𝑔 indicate the elements of intercept and factor 

mean vector respectively.  

Under configural invariance, a reference variable scaling the latent factor has an invariant 

factor loading (λ𝑝𝑚) across groups, as Equation 8 shows, and patterns of zero or non-zero factor 

loadings are the same (Horn & McArdle, 1992; Steenkamp & Baumgartner, 1998). However, there 

are no equal constraints on parameters across groups except for the reference variable; therefore, 

parameters have a different g subscript for each group. Factor loading locations need to be 

equivalent for all subgroups, and it shows measures that are related to a particular factor.  

Metric Invariance 

When configural invariance holds, testing metric invariance is feasible. The metric invariance 

model tests equal metrics across subgroups (Steenkamp & Baumgartner, 1998) with the following 

hypothesis, 
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 𝐻𝑚𝑒𝑡𝑟𝑖𝑐: 𝛴𝑔 = 𝛬𝛷𝑔𝛬′ + 𝛩𝑔, 𝜇𝑔 = 𝜏𝑔 + 𝛬𝜅𝑔 (13) 

 Λ𝑔 : 

[
 
 
 
 
 
λ11 0
λ21 0
λ31 0
0 λ42

0 λ52

0 λ62]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
λ11 0
λ21 0
λ31 0
0 λ42

0 λ52

0 λ62]
 
 
 
 
 

𝑔2

 (14) 

Equation 14 represents the difference with configural invariance. Factor loadings are invariant for 

two groups; therefore, metric invariance indicates that any change in the measure is due to a change 

in the unit of the corresponding factor, and it is the same for groups (Lubke & Muthen, 2005). 

With the above example, each linear slope of the regression model between the measure and the 

factor is identical for both males and females. Metric invariance is also known as weak invariance 

(Meredith, 1993). 

Scalar Invariance 

The configural and metric invariance models concern invariant covariation of the factorial across 

groups. Therefore, metric invariance still does not validate that the observed mean difference score 

between groups is from the actual factor mean difference. That is because metric invariance does 

not test intercepts in the mean structure (μ𝑔). When group comparison is the main research goal, 

the study needs to take the invariant mean structure 𝜇𝑔 into account, and testing intercepts in the 

factor model is necessary in such cases (Geiser, 2013; Steenkamp & Baumgartner, 1998). Testing 

intercept invariance is followed once metric invariance holds, and the equal intercept constraints 

are as follows: 

 𝐻𝑠𝑐𝑎𝑙𝑎𝑟: 𝛴𝑔 = 𝛬𝛷𝑔𝛬′ + 𝛩𝑔, 𝜇𝑔 = 𝜏 + 𝛬𝜅𝑔 (15) 
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 𝜏𝑔 : 

[
 
 
 
 
 
𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
𝜏1

𝜏2

𝜏3

𝜏4

𝜏5

𝜏6]
 
 
 
 
 

𝑔2

 (16) 

If intercepts are not invariant across groups, one of the subgroups has systematically higher or 

lower means of measures even though all subgroups have the same factor mean score. 

Consequently, it is difficult to say the observed mean differences among groups are utterly from 

the factor mean differences (Lubke & Muthen, 2005; Steenkamp & Baumgartner, 1998). In the 

example above, when scalar invariance holds, the observed difference scores between males and 

females are justified by the different factor mean scores.  For the scalar invariance, Equations 14 

and 16 hold simultaneously. Strong invariance (Meredith, 1993) is another term for scalar 

invariance. 

Strict Invariance 

Strict invariance has additional constraints than scalar invariance in terms of unique factor 

variances as follows: 

 𝐻𝑠𝑡𝑟𝑖𝑐𝑡: 𝛴𝑔 = 𝛬𝛷𝑔𝛬′ + 𝛩, 𝜇𝑔 = 𝜏 + 𝛬𝜅𝑔 (17) 

 Θ𝑔 : 

[
 
 
 
 
 
𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

𝜃6]
 
 
 
 
 

𝑔1

=   

[
 
 
 
 
 
𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

𝜃6]
 
 
 
 
 

𝑔2

 (18) 

The equal unique factor variance is similar to homoscedasticity (i.e., homogeneity of variance) in 

regression analysis (Meredith, 1993; Vandenberg & Lance, 2000). Homoscedasticity assumes the 

constant residual variance in the population. The violation of homogeneity of residual variances 
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across samples is related to biased parameter estimates; therefore, it is required for the validity of 

the prediction (Cohen & Cohen, 1983). Likewise, strict invariance is examined for the validity of 

the measurement instrument. If  Equations 14, 16, and 18 hold together, strict invariance holds.  

Model Evaluation to Test Measurement Invariance 

The evaluation of the factorial invariance test is based on fit indices by fitting sequentially 

constrained MGCFA models. In other words, a more restricted model is compared with a less 

restricted model based on the fit indices to see whether the new constraint on the previous model 

is statistically plausible or not. There are two types of fit indices to consider. First, global fit indices 

test an overall model with parameters that are equally constrained across groups. Second, local test 

statistics are taken into account for model comparisons when testing a specific parameter rather 

than overall model tests.  

Global Fit Indices for Full Invariance 

A full factorial invariance model refers to constraining all parameters to be equal across groups 

(Millsap, 2012; Steenkamp & Baumgartner, 1998; Yoon & Millsap, 2007). For example, if all 

factor loadings are invariant for all groups, it is full metric invariance. Testing full invariance is 

based on global fit indices.  

 A χ2 test is the most common way to test the hypothesized model. In the SEM framework, 

the χ2 test is to test the difference between a hypothesized model and an observed data. A model 

implied variance-covariance matrix from the hypothesized model, and the observed variance-

covariance matrix from the data is compared, and the χ2 tests a null hypothesis that there is no 

difference between the two matrices. The χ2 statistic is 0 if the model is perfectly fit to the data. 

The model fit is getting worse when the tested model less adequately fits to the data. That is, χ2 
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statistic is getting larger than 0. It is statistically significant to reject the hypothesized model, if the 

χ2 statistic is greater than the cutoff χ2 with the corresponding degree of freedom.  

Although the hypothesized model is fitted to the data well, the χ2 test is likely to reject the 

null model with large sample size, resulting in Type I error. Therefore, alternative fit indices less 

impacted by sample size are considered together. Comparative fit index (CFI), root mean square 

error of approximation (RMSEA), and standardized root-mean-square residual (SRMR) are the 

commonly considered fit indices for SEM. Hu and Bentler (1999) investigated these fit indices 

and suggested practical cutoff criteria. According to Hu and Bentler (1999), the adequate cutoff 

values of CFI (Bentler, 1990; Lai & Yoon, 2014), RMSEA (Steiger, 1989, 2009), and SRMR 

(Bentler, 1995)  are 0.95, 0.08, and 0.06 respectively. For example, a specified invariance model 

holds if CFI is above 0.95, RMSEA is below 0.08, and SRMR is below 0.06. 

Test Statistics for Partial Invariance 

Full invariance does not always happen in reality (Cheung & Lau, 2012; Vandenberg & Lance, 

2000; Yoon & Millsap, 2007). In that case, the study focuses on the part of parameter invariance 

rather than full invariance. Factorial invariance is referred to as partial factorial invariance when 

some of the parameters are constrained to be equal across groups (Byrne, Shavelson, & Muthén, 

1989; Steenkamp & Baumgartner, 1998). In other words, partial invariance indicates partially 

invariant factor loadings, intercepts, or unique factor variances.  

 The baseline model determines a direction of testing partial invariance, and the partial 

equivalence can be either gradually freed or constrained depending on the direction. Suppose a 

baseline model tests full factorial invariance (i.e., full metric, scalar, or strict invariance) but fails 

to hold it. In that case, the alternative model aims to test partial factorial invariance with fewer 

constraints on the parameters than the baseline, and the full invariance model is nested within the 
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partial invariance model. For example, the partial metric invariance model examines a freed factor 

loading of each variable, except for a reference variable, instead of constraining all factor loadings 

together if full metric invariance fails to hold. The model evaluation is based on the test statistic 

(e.g., likelihood ratio test) by comparing the partial metric invariance model to the baseline model 

(i.e., the full metric invariance model). The freely estimated factor loading is considered non-

invariant if the test statistic is significant. When partial factorial invariance is examined based on 

the full invariance model, as a baseline model, and the parameters are gradually freed, this 

directional procedure is called a backward procedure  (Millsap, 2012; Yoon & Millsap, 2007). The 

backward procedure compares less restricted partial factorial invariance models to the baseline 

model. 

 On the other hand, a baseline model can have all parameters freely estimated across groups, 

except for a reference variable. In this case, partial invariance models are more restricted than the 

baseline model; therefore, the partial model is nested within the baseline model. Comparing more 

restricted partial factorial invariance models to the baseline model that does not have any equal 

constraints on the parameters is called a forward procedure (Jung & Yoon, 2016; Kim, Joo, Lee, 

Wang, & Stark, 2016). If the test statistic is significant, the tested parameter is considered non-

invariant. Both backward and forward procedures require repeated model comparisons; therefore, 

Bonferroni correction is used to control Type I error inflation (Millsap, 2012; Stark et al., 2006). 

 As test statistics for the model comparison between the nested models, likelihood ratio test 

(LRT), Wald test, and modification index (MI) are commonly used in SEM (Bollen, 1989; Chou 

& Bentler, 1990). Tests are based on a difference of degree of freedom (𝛥df) to see either 

constrained or released parameters are statistically significant (Bollen, 1989; Chou & Bentler, 

1990; Vandaele, 1981). The three statistics are also widely used for testing partial factorial 
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invariance (Cheung & Lau, 2012; Kim et al., 2016; Meade & Bauer, 2007). In general, a single 

parameter is examined one at a time; that is, the test statistics evaluate the partial factorial model 

based on 1 degree of freedom (𝛥df = 1).  

A different baseline model prefers a different test statistic (Byrne et al., 1989; Chou & 

Bentler, 1990; Jung & Yoon, 2017; Kim et al., 2016; Yoon & Millsap, 2007). The LRT is used in 

both forward and backward procedures; therefore, the baseline model can be either the full factorial 

invariance model or the non-invariance model (Byrne et al., 1989; Kim et al., 2016). On the other 

hand, the Wald test is used in the forward procedure (Jung & Yoon, 2017), and the MI is used for 

the backward procedure(Yoon & Millsap, 2007).  

Likelihood Ratio Test (LRT) 

The LRT is based on a loglikelihood difference between the two models. Let 𝐿(Ω0) and 𝐿(Ω1) be 

likelihoods from an unconstrained (i.e., a less restricted model) and a constrained (i.e., a nested 

model) each. Then the LR statistic is,  

 𝐿𝑅 =  −2{𝑙𝑜𝑔  𝐿(Ω1) − 𝐿(Ω0)}, (19) 

and a significance of the LR is tested based on the 𝛥df (= df1 – df0). The LRT is also known as χ2 

difference test. 

Since all statistical software reports the loglikelihood of a model, the LRT might be the most 

common test, and it same for testing partial factorial invariance. However, the LRT is also sensitive 

to sample size as χ2  (Cheung & Lau, 2012) and it requires repeated model comparisons by 

estimating all models separately (Bollen, 1989; Cheung & Lau, 2012). Suppose testing partial 

metric invariance on six items under a single factor model. With the forward procedure, a nested 

model having an equally constrained factor loading across groups is compared to the baseline of 

the configural invariance model. The testing is performed on one-factor loading at a time; therefore, 
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each partial metric invariance model is compared to the configural model and evaluated 

individually based on the LRT. Except for the reference variable, a total of five different model 

comparisons with the baseline model are necessary, and five LRT statistics are considered to 

identify partial metric invariance.  

Wald Test 

When it comes to testing partial invariance, the Wald test examines whether a parameter difference 

between groups is zero (e.g., 𝜆𝑔1 − 𝜆𝑔2 = 0) or not. The benefit of the Wald test is that, unlike the 

LRT,  it does not require separate estimations of a baseline model and all partial invariance models. 

Multiple Wald tests are performed simultaneously by estimating a baseline model once with 

"MODEL CONSTRAINT" command in Mplus.  

 The baseline model depends on the targeted parameter. For testing partial metric invariance 

which targets factor loadings, the baseline model is the configural invariance model. Except for a 

reference variable, the Wald test examines each equal constraint on the factor loading relative to 

the configural invariance, one at a time; however, all the Wald test results are reported 

simultaneously in the output of the baseline model. Likewise, the Wald test examines partial scalar 

invariance compared to the baseline model of metric invariance and tests partial strict invariance 

compared to the scalar invariance model.  

While the Wald test has an analytical efficiency without a series of model estimations, it 

has a non-monotonically increased power issue. When the true population parameter is larger, the 

bigger Wald statistic for the estimate is expected; therefore, the power to detect the non-zero 

estimate is inclined to increase. However, previous studies found that the power of the Wald test 

was not monotonic compared to the tested population parameter size. The symptom was found in 

the regression model (Hauck Jr & Donner, 1977) and SEM (Chou & Bentler, 1990). In that case, 
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detecting the larger non-invariant parameter might not always easier than the smaller non-invariant 

parameter in terms of measurement invariance testing. However, the non-monotonic issue has not 

been reported in the previous measurement invariance studies (Jung & Yoon, 2017; Kim et al., 

2016).   

On the other hand, previous measurement invariance studies used the Wald test for either 

the forward or backward procedure, and the Type I error rates (i.e., the false-positive rates) for 

using the Wald test were different depending on the direction of testing measurement invariance. 

Kim’s et al. (2016) found the inflated Type I error rates of the Wald test for identifying partial 

invariance falsely with the backward procedure. In contrast, Jung and Yoon (2017) reported 

acceptable Type I error rates (α = 0.05; Serlin, 2000) with the forward procedure.  

Bias-Corrected Bootstrapping Confidence Interval (BCBS-CI) 

Meade and Bauer (2007) showed the usefulness of confidence interval (CI) to test metric 

invariance by complementing other fit indices where the Type I errors were inflated. For example, 

if global fit indices indicate metric non-invariance, but the CI for the difference in a factor loading 

between groups is very narrow and almost close to zero, it implies that the actual difference is not 

large. In that case, the detected non-invariance might not be repeated with a different sample, 

especially with a smaller sample size. Like this, CIs will be valuable information for researchers 

to make a decision. Since the use of CI was proposed for testing partial measurement invariance, 

the follow-up CI studies have been continued. Recently, Mackinnon, Lockwood, and Williams 

(2004) suggested the bias-corrected bootstrapping CI (BCBS-CI), and its performance was 

evaluated in terms of testing measurement invariance (Cheung & Lau, 2012; Jung & Yoon, 2016).  

Jung and Yoon (2016) examined the performance of the BCBS-CI for testing measurement 

invariance with several simulation conditions. The BCBS-CI had a lower Type I error of falsely 
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detecting non-invariance than the MI method. However, when the sample size was small, its Type 

II error of misidentifying invariance for small non-invariance was higher than the MI. The pros 

and cons of BCBS-CIs might be balanced with perfect recovery rates. The perfect recovery rate 

indicates the degree to which tests detect true invariant parameters as invariant as well as identify 

true non-invariant parameters as non-invariant. In Jung and Yoon’s (2016) study, the BCBS-CI 

was superior to other methods regarding the perfect recovery rates.  

The BCBS-CI also has a computational advantage similar to the Wald test. Only a single 

estimation of a baseline model is required, without separate estimations for repeated partial 

invariance models.  In addition to that, non-convergence errors are less likely to happen for the 

BCBS-CI, compare to other fit indices, because its baseline model is the least constrained model 

(Cheung & Lau, 2012).      

However, the described test statistics for partial invariance are based on the normality 

assumption. However, it is not clear the studied characteristics of each test are similar or not when 

it comes to the zero-inflated data. Still, partial invariance and the related fit indices have not been 

studied regarding the zero-inflation, and the general strategies for the normal data are applied to 

the zero-inflated data. For example, Antoniadou, Kokkinos, and Markos (2016) used the traditional 

MGCFA and global fit indices to validate factorial invariance across grade and sex when high zero 

response rates were reported (min: 75%, Max: 92.7%).  

This study tested the partial invariance of zero-inflated data through the two-part factor model 

and the MGCFA. Therefore, the performance of the general MGCFA regarding zero-inflation is 

also examined. In addition, the performance of the fit indices will be compared across the degrees 

of zero-inflation and the factor models (i.e., two-part factor model and MGCFA). In the next 
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section, general statistical models to handle the zero-inflation are presented, and the two-part factor 

model is followed.  

General Models to Handle Zero-inflation 

Assume researchers want to know the effects of diverse variables on a severe disease. A survey 

asked the diagnosis of the disease and its stage or severity to know the current state. Most people 

will report that they have never been diagnosed with the disease, and their responses will be coded 

as zero. On the other hand, only a few people who have been diagnosed with it will report its 

severity, and their responses will be coded as Likert scale or continuous numbers. Thus, data will 

be inflated to zero because of the major responses (i.e., never diagnosed or experienced), and such 

a data distribution is called zero-inflation.  

The zero-inflation separates the research question into two: 1) what are the effects of variables 

on the severity of the disease? and; 2) what makes people get a diagnosis or not. Health economy 

and medical expenditure studies have focused on these questions, and statistical models to handle 

the zero-inflation have been developed.  

 It is well known that a standard generalized linear model (i.e., linear regression analysis or 

ANOVA) is not proper for zero-inflated data (Duan et al., 1983). Alternative models are sample 

selection model, tobit model, multipart models (e.g., one-part, two-part, and four-part model), and 

zero-inflated (ZI) models (e.g., ZI Poisson and ZI negative binomial model). The alternative 

models are similar in some ways. The models treat zero and non-zero responses differently instead 

of considering all responses as a continuum by fitting different statistical models to zero and non-

zero responses. In addition, different groups are computed depending on zero or non-zero 

responses. However, each alternative model has a different model assumption and the function to 

compute groups.  
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Although several models were developed, only a few models are currently used because of 

model weakness. For example, previous studies found that the sample selection model (i.e., 

adjusted tobit model) has an implausible assumption (i.e., normality assumption) and poor model 

estimation (Duan et al., 1984; Hay & Olsen, 1984). Therefore, other flexible models have been 

studied, and a two-part model and ZI models have been widely used for the applied study.  

 In this current study, the two-part model is mainly discussed because of its flexibility. 

Olsen and Schafer (2001) mentioned two-part model covers ZI Poisson model (Lambert, 1992). 

In addition, Kim and Muthén (2009) extended Olsen and Schafer’s (2001) to SEM by suggesting 

two-part factor mixture modeling. Thus, the two-part model is not only more inclusive but also 

flexibly applied to SEM than ZI models.  

Two-part Modeling 

This section describes two-part modeling for generalized linear mixture model (Olsen & Schafer, 

2001) and factor mixture model (Kim & Muthén, 2009).  

Two-part Model 

The definition and characteristics of the two-part model are referred to by Olsen and Schafer’s 

(2001); however, they explained the model based on longitudinal data. This study focuses on two-

part modeling with cross-sectional data; consequently, different notations are used. 

 The ‘two-part’ indicates a separation of zero-inflated responses into two data parts; binary-

part and continuous-part. Let 𝑋 is a pth response of individual for p = 1, …, P. Depending on 

whether 𝑋𝑝 is zero or not, responses are redefined in each part (i.e., binary and continuous). The 

two-part is described with following:  
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𝑈𝑝 = {
1 if 𝑋𝑝 ≠ 0

0 if 𝑋𝑝 = 0
 

𝑉𝑝 = {
𝑓(𝑋𝑝)           if 𝑋𝑝≠0

irrelevant  if 𝑋𝑝=0
 

(20) 

If 𝑋𝑝 is non-zero (i.e., 𝑋𝑝 ≠ 0), 𝑈𝑝 is coded as 1 in the binary-part, and 𝑉𝑝 has a continuous 

value in the continuous-part where f is a monotonic increase function that will make 𝑉𝑝 

approximately normal. On the other hand, if 𝑋𝑝 is zero (i.e., 𝑋𝑝 = 0), 𝑈𝑝 is coded as 0, and 𝑉𝑝 is 

considered as a missing value.  

Two parts have different characteristics; 1) The binary-part directly shows the degree of zero-

inflation with zero or non-zero patterns by having a binomial model (e.g., logistic regression) (Xu 

et al., 2015) for 𝑈𝑝. Then effects of covariates on individual’s probability of zero or non-zero 

response can be examined; 2) Continuous-part expresses the extent of an individual’s experience 

by showing a continuous or count value which is conditional on the binary-part (i.e., if 𝑈𝑝 = 1). 

Because 𝑉𝑝 is usually skewed, log-linear models are typically used for the continuous-part to test 

relationships between covariates and 𝑉𝑝. Two parts’ models are correlated each other.  

The standard two-part model is a good approach to see the effects of covariates on the zero-

inflated variable, but there are limitations. A two-part model analyzes the single zero-inflated 

variable, and the zero-inflated variable is treated as an outcome only. A multivariate two-part 

model has been developed to test multiple zero-inflated variables simultaneously (Brown, Ghosh, 

Su, & Taylor, 2015). However, the multiple zero-inflated variables still act as outcomes only, and 

the effect of the zero-inflated variable is not tested. By applying the two-part model to SEM, the 

role of the zero-inflated variable can be diverse rather than the outcome. For example, the zero-

inflated variable can be either a predictor or an outcome variable, and the zero-inflated variable 
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can take both roles simultaneously. Testing such a complex relationship regarding the zero-inflated 

variable is one of the benefits of SEM with two-part modeling.  

Two-part Factor Model 

Kim and Muthén (2009) demonstrated two-part modeling on SEM, especially on a factor mixture 

model with latent classes. The two-part factor mixture model, proposed by Kim and Muthén (2009), 

combines a two-part model and a factor mixture model. The current study defines two-part factor 

modeling, but we focus on multiple observed groups (e.g., demographic groups) rather than latent 

classes. Therefore, the original notation of the two-part factor mixture model is changed to a two-

part factor model in this study.  

Let 𝑋𝑔 denote a 𝑝 × 1 vector of continuous responses for an individual in gth subgroup, then 

a factor model is the same with Equation 4, as in MGCFA. For the two-part factor model, the 

factor model is decomposed into two parts, similar to the two-part model in Equation 20. Two-

factor models having binary responses and continuous responses are respectively generated, and 

two factors are correlated. Factor models for each part are as follows: 

 

𝑋𝑔
∗ = 𝜏(𝑈)𝑔 + 𝛬(𝑈)𝑔𝜉(𝑈)𝑔 + 𝛿(𝑈)𝑔 

(𝑈)𝑔 = {
1 𝑖𝑓 𝑋𝑔

∗ > 𝜐𝑔

0 𝑖𝑓 𝑋𝑔
∗ ≤ 𝜐𝑔

,  
(21) 

 𝑋𝑔 = 𝜏𝑔 + 𝛬𝑔𝜉𝑔 + 𝛿𝑔  (22) 

Equation 21 represents a factor model for binary-part dealing with binary responses (𝑈)𝑔. Let 𝑋𝑔
∗ 

denote a 𝑝 × 1 vector of latent continuous variates for gth subgroup. Depending on threshold 𝜐𝑔, 

observed binary responses (𝑈)𝑔 have a 𝑝 × 1 vector showing zero or nonzero response. If 𝑋𝑔
∗ is 

greater than the threshold, (𝑈)𝑔 is 1, otherwise (𝑈)𝑔 is 0. 𝑋𝑔
∗ is a function of factor 𝜉(𝑈)𝑔. In the 
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factor model, 𝜏(𝑈)𝑔  and 𝛿(𝑈)𝑔  are a 𝑝 × 1 vector of intercepts and unique factors respectively, 

𝛬(𝑈)𝑔 indicates a 𝑝 × 𝑚 matrix for factor loadings, and 𝜉(𝑈)𝑔 is a 𝑚 × 1 vector of factor scores.  

Similar to Equation 20, 𝑋𝑔 which is a 𝑝 × 1 vector of continuous responses in Equation 22 

is also conditionally composes the factor model. As a monotonic increase function f, a logarithm 

function is usually used (Kim & Muthén, 2009) those for which (𝑈)𝑔 is 1, otherwise 𝑋𝑔 is treated 

as missing. These two factor models are correlated by having a factor correlation.  

 Because two-part modeling handles zero-inflated data, we expect the two-part factor model 

to outperform the traditional MGCFA to test factorial invariance on zero-inflated measures. The 

main goal of Kim and Muthén’s (2009) Monte Carlo simulation study was to evaluate the 

multistage strategy to find a proper number of classes and factors for the two-part factor model. 

The simulation study mainly focused on the model evaluation; therefore, the correct detection of 

factorial invariance or non-invariance was not evaluated. Therefore, it was not enough to examine 

the model performances concerning factorial invariance, especially for observable subgroups. 

More in-depth studies are required to investigate the performance of the two-part factor model for 

testing factorial invariance. The current study is the early research discussing this issue by 

comparing the two-part factor model and the  MGCFA when the observed variables are zero-

inflated under various conditions. 

Purpose of Studies 

We aimed to compare the two-part factor model and the MGCFA about testing factorial invariance 

on continuous response. Study I used the empirical zero-inflated variables and focused on applying 

the two different models to testing the factorial invariance and evaluating the partial invariance 

model with test statistics. On the other hand, Study II was based on the simulated data. The two-
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part factor model and the MGCFA were fitted to the simulated zero-inflated data, and 

performances of the two models and the fit indices were compared based on how the factorial 

invariance was correctly tested. Overall research questions are as follows: 

Q1: Do the two models perform differently in detecting violations of factorial invariance 

with zero-inflated data? 

Q2: Will the performance of the two models be affected by the degree of zero-inflation?  

Study I 

The MGCFA was found as a popular model for handling the zero-inflation (Antoniadou et al., 

2016) even after the two-part factor model has been introduced (Kim & Muthén, 2009). Therefore, 

the purpose of the first study was to apply the two-part factor model to testing factorial invariance 

for zero-inflated variables and to see its usefulness compared to the  MGCFA’s. In Study I, both 

the two-part factor model and the MGCFA are applied to empirical zero-inflated variables, and 

test procedures for the two models and factorial invariance results are compared to each other. 

Study II 

The second study aims to compare the performances of the two-part factor model and the MGCFA 

for metric and scalar invariance. We examined the performance of the two models about detecting 

the invariance and the non-invariance on the target parameter (i.e., factor loadings or intercepts). 

The different levels of factorial invariance were also manipulated. Test results of the two models 

were compared to the population parameters to see their absolute performance and compared to 

each other to see relative performances. Under each model, the Wald test and the BCBS-CIs were 

used to investigate partial invariance. The Type I error rate and power were outcome variables to 

evaluate the two models. The definitions of the outcome variables are described later in the method 

section.  
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CHAPTER III 

STUDY I 

Study I used empirical data. The two-part factor model and the MGCFA were applied to the same 

data, and their results regarding factorial invariance were compared. Across sex, factorial 

invariance in 10 continuous variables measuring bullying and victimization was tested. 

Participants, data, and analysis procedures for the two models are described next. 

Method 

Data 

We used some of the delinquent variables for adolescents with zero-inflation from the Korean 

Youth Panel Survey (KYPS). The data was collected initially through the KYPS by the National 

Youth Policy Institute in 2003. A total of 3,449 students (male: 1,725) in the 2nd year of middle 

school responded to the survey.  

The Study I focused on students’ bullying and victimization experiences measured by 10 

variables. Each 5-variable measured bullying or victimization by asking the frequencies of the 

different experiences over the past year. Three types of experiences were asked: physical, verbal, 

and general behaviors. Specifically, two variables asked physical behaviors (‘I have beaten 

up/been beaten up’ and ‘I have robbed somebody/been robbed’); two variables for asking verbal 

behaviors (‘I have mocked/been mocked’ and ‘I have threatened/been threatened’); and one 

variable measured the general bullying or victimization (‘I have bullied/been victimized somehow’). 

Table 1 represents the descriptive statistics of the variables. The reported statistics considered all 

responses, including zeros without transformation; therefore, non-normality was noticeable by 

having high skewness and kurtosis. All variables had zero-inflation over 80%, and it impacted on 

the high non-normality.
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Table 1  

Descriptive Statistics of Variables across Sex 

 
Male (N = 1,725)  Female (N = 1,724) 

 
Mean (SD) min/Max Skewness Kurtosis 

% of 

Zero 
 Mean (SD) min/Max Skewness Kurtosis 

% of 

Zero 

Bullying 

Mocking (B1) 1.78 (10.16) 0/100 8.71 78.94 80.40  0.66 (5.70) 0/100 14.34 229.52 91.00 

Beating (B2) 0.51 (4.17) 0/100 18.49 401.57 87.70  0.19 (2.52) 0/100 36.15 1420.12 94.40 

Threatening (B3) 0.29 (3.17) 0/100 23.26 643.99 94.60  0.12 (1.53) 0/50 25.49 755.99 97.00 

Robbing (B4) 0.25 (3.12) 0/100 24.66 700.84 95.20  0.37 (3.43) 0/100 19.98 489.44 93.90 

General (B5) 0.35 (4.12) 0/100 22.56 527.81 89.60  0.36 (1.55) 0/50 20.64 622.12 82.30 

Victimization 

Mocked (V1) 0.86 (6.45) 0/100 12.70 178.52 87.90  0.38 (4.21) 0/100 20.90 469.71 93.20 

Beaten (V2) 0.20 (1.88) 0/45 17.97 367.64 94.30  0.07 (0.70) 0/19 17.97 398.55 97.60 

Threatened (V3) 0.26 (1.92) 0/50 16.18 340.66 93.60  0.06 (0.70) 0/25 27.77 947.54 97.40 

Robbed (V4) 0.38 (1.59) 0/25 8.48 95.17 87.00  0.16 (1.34) 0/50 30.62 1124.35 93.40 

General (V5) 0.20 (3.58) 0/100 25.91 707.61 97.20  0.24 (3.29) 0/96 26.55 743.70 93.50 

Note. B = Bullying variable; V = Victimization variable. 
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Analysis 

Depending on the factor model, the zero-inflated 10 variables had different data formats for the 

analysis. In this section, different data formats and analysis procedures for the two-part factor 

model and the MGCFA were described. All analyses were conducted through Mplus8.4 (Muthén 

& Muthén, 1998–2017) with a robust maximum likelihood estimator (MLR).  

Data Preparation 

For two-part modeling in Mplus, DATA TWOPART command is necessary for handling the raw 

data. The command generates new binary and continuous variables representing the raw variables, 

and the characteristic of the original variables are separated into the binary and the continuous. If 

the raw value is zero, the new binary variable is coded as zero, and the new continuous variable is 

coded as missing. On the other hand, if the raw value is greater than zero, the new binary variable 

is coded as 1, and the new continuous variable has the log-transformed value of the original value. 

Therefore, each factor of the two-part separately constructs the factor model with new binary 

variables and the continuous variables in Equations 21 and 22. Without two-part modeling, either 

raw variables or manually transformed variables are used for the analysis depending on the degree 

of non-normality. Study 1 manually log-transformed the data with a constant (i.e., 𝑓(𝑋𝑝) =

𝑙𝑜𝑔(𝑋𝑝 + 1 ), 𝑋𝑝 > 0)  for fitting the MGCFA due to the severe zero-inflation of bullying/ 

victimization data. 

Analysis Procedure 

Measurement models of bullying and victimization were simultaneously tested across sex. Testing 

the configural invariance was conducted with the tentative reference variable by constraining the 

factor loading of the first variable as 1 because examining the global fit indices was the purpose at 

this step, and specific parameter estimates would not be considered. Since the metric invariance 
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test, the focus of the study was extended to parameter estimates as well. Therefore, a reference 

variable of each construct was explored before testing the metric invariance model. It was to avoid 

the bias on the parameter estimate resulted from the non-invariant reference variable. Study I used 

the LRT to explore the possible invariant variables; particularly, Satorra-Bentler adjustment was 

applied to the LRT (hereinafter, S-B LRT) because the general LRT was not appropriate when the 

estimator was the MLR (Satorra & Bentler, 2010). A full metric invariance model was the baseline 

model constraining all factor ladings equally across sex. We examined the statistical difference 

between the baseline and the compared model, which freely estimated single factor loading. The 

comparison was conducted for a single factor loading at a time until all factor loadings were 

separately tested based on the same baseline model. Therefore, the S-B LRT tested the model 

difference on the freed factor loading given 1 Δdf the following backward procedure.  

Identification 

Parameter constraints are necessary on the latent variable to identify the baseline model without 

specifying the reference variable. The variance-covariance structure is identified by standardizing 

all factor variances (i.e., Φ𝑟𝑒𝑓 = I) for one of the groups (i.e., a reference group), and the factor 

variances of the other groups are freely estimated. In this case, all factor loadings are equally 

constrained across groups. There is no identification issue over the mean structure when it comes 

to the continuous variables. The factor means and the intercepts are not included in the analysis as 

‘no mean structure’ is assumed (Muthén & Muthén, 1998–2017). However, the mean structure is 

necessary for the binary variables at the baseline model due to the thresholds of the binary variables. 

All thresholds are identically constrained across groups for identification of the mean structure 

regarding the binary variables, and the factor means of the reference group are fixed 0; however, 

the factor means for the other groups are freely estimated (Liu et al., 2016; Millsap & Yun-Tein, 
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2004). Study I followed this rule. First, all factor loadings were constrained for two groups (i.e., 

male and female). Second, the factor variances of males were fixed as 1, and they were freed in 

females. Third, factor means were fixed as 0 for both males and females if the factors were related 

to the continuous variables. These constraints corresponding to the continuous variables were the 

same for the two-part factor model and the MGCFA. However, the two-part factor model needed 

additional constraints due to the binary variables. All thresholds were equally constrained for the 

two groups, the factor means of the binary-part factors were fixed as 0 for male and freed for 

females.  

Lopez Rivas, Stark, and Chernyshenko (2009) suggested a way to select a reference 

variable leading to improved power to detect the actual non-invariance. As following their way, 

we picked each factor's reference variable if the variable was invariant through the S-B LRT and 

had the highest factor loading at the baseline model. Based on the chosen reference variables, the 

metric and the scalar invariances were sequentially tested. When the full invariance was rejected, 

the partial invariance model was examined with the Wald test and the BCBS-CI. The two statistics 

tested the parameter differences between the two groups given the hypothesis assuming the 

parameter difference was zero (H0: 𝜆𝑀𝑎𝑙𝑒 − 𝜆𝐹𝑒𝑚𝑎𝑙𝑒 = 0 or 𝜏𝑀𝑎𝑙𝑒 − 𝜏𝐹𝑒𝑚𝑎𝑙𝑒 = 0). The detailed 

procedure for each model is described next. 
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Figure 1 Analysis Factor Model for Bullying and Victimization. 

MGCFA Analysis 

The MGCFA represented a 2-factor model for bullying and victimization and examined the 10 

continuous variables (Figure 1). Examining a reference variable through the S-B LRT was 

conducted first, and the metric and scalar invariance models were tested for the eight variables 

except for the reference variables. The Wald test with the Bonferroni correction (e.g., α = 0.05/8 

for the metric invariance model) and BCBS-CI of 99%. The MGCFA did not take the binary 

variables into account; therefore, the MGCFA was less demanding than the two-part factor model 

with fewer parameter estimates. 

Two-part Factor Model Analysis 

Bullying and victimization variables were separated into the binary-part factor and the continuous-

part factor with the two-part modeling. Therefore, the factorial invariance in eight binary variables 

and eight continuous variables were tested except for four reference variables (Figure 1). For the 
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two-part factor analysis for multiple groups, the following commands were required (Muthén & 

Muthén, 1998–2017): 

1. TYPE = MIXTURE, 

2. ALGORITHM = INTEGRATION. 

The first command indicates mixture modeling to treat categorical latent variables, such as 

latent classes. Since this study aimed at observed two groups, we used ‘known class’ for the multi-

group mixture modeling. Thus, results for each latent class were for each observed subgroup (Kim, 

Mun, & Smith, 2014; Muthén & Muthén, 1998–2017).  

The second command aligns with TYPE = MIXTURE due to the demanding computation. 

Particular options under the algorithm command set details of the optimization to determine 

maximum likelihood estimates and specify the type of numerical integration and the number of 

integration points for computations. We used the default setting of Mplus. In detail, a maximum 

likelihood estimator with robust standard error (MLR) was used with a numerical integration 

algorithm having 15 integration points for one dimension (Muthén & Muthén, 1998–2017). 

Likewise, we tested the metric and the scalar invariance models sequentially after 

selecting the reference variables. The Wald test with the Bonferroni correction (e.g., α = 0.05/16 

for the metric invariance model) and BCBS-CI of 99%. 

Outcome 

Although the evaluation of the MGCFA model is possible based on the global fit indices with their 

criteria (RMSEA < 0.06, CFI ≥ 0.95, SRMR < 0.08; Hu & Bentler, 1999), there is no such fit index 

to assess the two-part factor model. Instead, information criteria (IC) indices, such as AIC (Akaike, 

1987), BIC (Schwartz, 1978), or adjusted BIC (aBIC; Scolve, 1987), are considered. IC indices 

are based on the log-likelihood of the fitted model, and each IC index gives different penalties 
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regarding a number of parameters or sample size (Nylund, Asparouhov, & Muthén, 2007). For 

example, AIC gives more penalties to the model having a larger number of parameters. On the 

other hand, BIC and aBIC give extra disadvantages to the larger sample size model in addition to 

the number of parameters. In general, one of the models having the lowest IC indices is selected 

among the competing models; that is, the lowest values are the most plausible given the penalties. 

However, the IC indices cannot evaluate the single model itself since there is no cutoff for them 

to select the model. 

The direct model comparison between the two-part factor model and the MGCFA based 

on the global fit indices is not available because such fit indices are only reported for the MGCFA. 

In addition to that, the model comparison with the IC indices might be inappropriate because the 

two models differ in the number of parameters and the types of data being treated. The IC indices 

are known as inadequate for categorical data under SEM (Lai, 2020). The MGCFA treats all 

variables as continuous, but the two-part factor model manages both binary and continuous 

variables. Therefore, the global fit and the IC indices were used to evaluate different factorial 

invariance models (i.e., configural, metric, or scalar invariance model) in each factor analysis 

model, rather than comparing the two different factor analysis models. Also, the results from the 

two-part factor model and MGCFA were compared in three points: 1) the selection of the reference 

variables; 2) the supported invariance model, and; 3) invariant or non-invariant parameters in the 

model. In addition, the test results between the Wald test and the BCBS-CI were compared to see 

if there was any difference between the two statistics in identifying variables invariance. 

Result 

MGCFA 
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We initially tested the configural invariance model to examine whether or not male and female 

groups had identical factor structures. The global fit indices were acceptable  (RMSEA = 0.03, 

CFI = 0.90, SRMR = 0.04, Table 5) by taking the combinational rule of Hu and Bentler’s (1999) 

cutoff criteria (RMSEA < 0.06 , CFI ≥ 0.95, SRMR < 0.08). Before the metric invariance test, we 

selected the reference variables with the S-B LRT.  

Table 2 represents the S-B LRT statistic of each variable. There were a total of 10 separate 

S-B LRTs to examine the equal factor loading constraint across sex. The second and fourth 

bullying variables (B2 and B4) had significant S-B LRT; that is, their factor loadings were 

statistically different between males and females. Among the variables representing the equal 

factor loadings across sex, we picked the first variables of bullying (B1) and victimization (V1) as 

the reference variables of each factor because their factor loadings were the highest at the baseline 

model (Kim et al., 2016; Lopez Rivas et al., 2009).  

Table 3 shows the test statistics of factor loading and intercept invariance. Each Wald test 

and BCBS-CI examined the differences in the eight factor loadings between males and females at 

the configural invariance model. The Wald test and BCBS-CI indicated the non-invariance of B4 

variable. Therefore, the partial metric invariance was considered instead of the full metric 

invariance. The partial metric invariance model had B4’s factor loading estimated freely and 

constrained the other factor loadings equally across sex (RMSEA = 0.03, CFI = 0.91, SRMR = 

0.05, Table 5). Next, the scalar invariance model on the seven intercepts was tested because the 

intercept of B4 was not considered due to its non-invariant factor loading. For all variables, equally 

constrained intercepts between male and female groups were rejected based on the Wald test and 

BCBS-CI; therefore, scalar invariance was not supported. In short, the partial metric invariance of 
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the continuous variables was supported through the MGCFA; B4 had the non-invariant factor 

loading between the groups. 

Two-part Factor Model 

After testing the configural invariance model (AIC = 27831.12, BIC = 28476.43, aBIC = 28142.79, 

Table 6), the reference variables were searched. The two-part factor model tested each 10 binary 

and continuous variables; therefore, a total of 20 S-B LRTs were conducted. Table 2 presents the 

results on the reference variables. The third variables of bullying and victimization (binary B3 and 

V3) were chosen for the references for the binary variables. On the other hand, the third and fifth 

variables of bullying and victimization (continuous B3 and V5) were selected for the references of 

the continuous variables. The continuous B1 and V1 were chosen as the references in the MGCFA, 

however, they were considered to have non-invariant factor loadings with the two-part factor 

model.  

 Table 4 shows the test statistics for the factor loading and intercept invariance. The binary 

and continuous variables showed different results. In terms of the metric invariance, some of the 

factor loadings of the binary variables were non-invariant; however, all factor loadings of the 

continuous variables were invariant. Also, there were inconsistent test results between the Wald 

test and the BCBS-CI for the binary B1’s factor loading. The Wald test indicated binary B1’s 

factor loading was invariant for the male and female groups, but the BCBS-CI considered it non-

invariant. The difference was because of the adjustment on the Type I error inflation. The 

Bonferroni correction (α = 0.05/16) was only applicable to the Wald test; therefore, the BCBS-CI 

was likely to reject the null. To control the possible Type I error inflation, we accepted the Wald 

test result and equally constrained the factor loading of binary B1 for the two groups. However, 

the factor loadings of binary B4, B5, V5 were consistently non-invariant for two statistics, and 
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they were estimated freely across sex. On the other hand, all continuous variables’ factor loadings 

were considered invariant. In conclusion, the partial metric invariance in the binary variables and 

the full metric invariance in the continuous variables were supported. Next, we tested the scalar 

invariance of the continuous variables’ intercepts only because intercepts of the binary variables 

were fixed to zero for the identification. All intercepts of continuous variables were considered 

invariant across sex, indicating the full scalar invariance of the continuous variables.  

 Taken together, the two different factor models led to different results for the continuous 

variables. First, different reference variables were chosen for each model. Second, the supported 

factorial invariance models were also varied. The MGCFA concluded partial metric invariance of 

the continuous variables. It also indicated the intercept non-invariance over all variables; that is, 

the observed mean differences between the groups might have been from the measurement bias 

rather than from the bullying and victimization constructs. Therefore, the group comparison with 

bullying and victimization variables was inappropriate based on the MGCFA.  However, the two-

part factor model concluded the full scalar invariance in the continuous variables and the partial 

metric invariance in the binary variables. With the two-part factor model, the group difference in 

bullying/victimization frequency was validated as they were derived from the differences in the 

bullying/victimization constructs. 
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Table 2  

S-B LRT Results for Selecting Reference Variable 

 B1 B2 B3 B4 B5 V1 V2 V3 V4 V5 

MGCFA           

  Continuous Variables 0.33⁺ 18.72 2.22 217.50 9.09 0.05⁺ 0.01 2.56 0.07 3.29 

TPM           

  Binary Variables 11.49 10.83 1.00⁺ 28.34 39.92 0.58 1.53 2.62⁺ 7.85 40.25 

  Continuous Variables 7.80 2.92 2.47⁺ 0.18 0.19 76.24 3.18 0.39 0.02 0.15⁺ 

Note. ⁺ Reference variables having the highest factor loading; Bold indicates the significant and non-invariant factor loading given 

S-B LRT (χ(1)
2  = 3.84); B = Bullying variable; V = Victimization variable; TPM = Two-part factor model.  
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Table 3  

Result of MGCFA on Factor loading and Intercept Invariance 

 B1 B2 B3 B4 B5 V1 V2 V3 V4 V5 

Factor Loading 

  Wald test - 0.19 0.06 -0.56 -0.33 - 0.05 0.26 0.15 -0.28 

  BCBS-CI - [-0.21, 0.59] [-0.36, 0.48] [-1.07, -0.04] [-0.75, 0.10] - [-0.68, 0.78] [-0.25, 0.77] [-0.76, 1.05] [-0.78, 0.22] 

Intercept 

  Wald test - 0.08 0.04 - -0.07 - 0.04 0.06 0.08 -0.03 

  BCBS-CI - [0.05, 0.11] [0.01, 0.06] - [-0.10, -0.04] - [0.02, 0.06] [0.03, 0.08] [0.05, 0.12] [-0.06, -0.01] 

Note. B = Bullying variable; V = Victimization variable; Bold indicates significant test results that is non-invariant factor loadings 

given Wald test with Bonferroni correction (α = 0.05/8 for factor loading α = 0.05/7 for intercept) and BCBS-CI (99%) 

 

Table 4  

Result of Two-part Factor Model on Factor loading and Intercept Invariance 

 B1 B2 B3 B4 B5 V1 V2 V3 V4 V5 

Factor Loading 

Binary Variables           

  Wald test 0.20A 0.14 - -0.26 -0.44 -0.07 0.16 - 0.11 -0.86 

  BCBS-CI [0.01, 0.39] [-0.02, 0.29] - [-0.43, -0.08] [-0.65, -0.23] [-0.31, 0.17] [-0.20, 0.23] - [-0.05, 0.28] [-1.62, -0.11] 

Continuous Variables 

  Wald test -1.07 0.01 - -0.18 -0.32 -0.47 0.0.63 0.19 0.13 - 

  BCBS-CI [-3.05, 0.91] [-1.05, 1.06] - [-1.30, 0.95] [-1.00, 0.37] [-1.95, 1.01] [-0.39, 1.64] [-0.80, 1.16] [-0.74, 1.01] - 

Intercept 

Continuous Variables 

  Wald test -0.05 -0.08 - -0.41 -0.17 -0.17 -0.07 -0.20 -0.04 - 

  BCBS-CI [-0.54, 0.45] [-0.47, 0.31] - [-0.85, 0.04] [-0.45, 0.12] [-0.72, 0.38] [-0.62, 0.47] [-0.28, 0.67] [-0.31, 0.39] - 

Note. B = Bullying variable; V = Victimization variable; Bold indicates significant test results that are non-invariant intercepts 

given Wald test with Bonferroni correction (α = 0.05/16 for factor loading and α = 0.05/8 for intercept) and BCBS-CI (99%); A 

indicates an inconsistent result between the Wald test and the BCBS-CI. 
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Table 5  

Fit Indices of MGCFA 

 Loglikelihood  No. of parameters RMSEA CFI SRMR AIC BIC aBIC 

Configural Invariance -9775.58 62 0.03 0.90 0.04 19675.16 19859.20  19859.20 

Partial Metric Invariance 

 : Factor loading of B4 was freed 
-9840.07 55 0.03 0.91 0.05 19790.13 20128.15 19953.39 

Note. B = Bullying variable; V = Victimization variable. 

 

Table 6  

Fit Indices of Two-Part Factor Model 

 Log Likelihood No. of parameters AIC BIC aBIC 
    

Configural invariance -13810.56 105 27831.12 28476.43 28142.79 
    

Metric Invariance 

  Full Invariance of continuous variables 

Partial Invariance of binary variables 

 : Factor loading of B4, B5, and V5 were freed 

-13829.21 92 27842.42 28407.83 28115.51 

    

Scalar Invariance 

  Full Invariance of continuous variables 
-13837.25 84 27842.51 28358.76 28091.85 

    

Note. B = Bullying variable; V = Victimization variable.  
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CHAPTER IV 

STUDY II 

Study I demonstrated that how the two-part factor model and the MGCFA detected factorial 

invariance or non-invariance on the zero-inflated bullying/ victimization variables. Test results 

focused on the hypothesized factorial invariance on the variables. However, evaluating the two 

models to discuss which model more correctly examined the factorial invariance was not possible. 

Their performance can be compared to each other when the true factorial invariance or non-

invariance pattern is known. Therefore, Study II conducted a Monte Carlo simulation study to test 

and compare the two models based on known population parameters. The data was generated based 

on the two-part factor model because we assumed that the two-part factor model might explain the 

highly zero-inflated variables better than the general factor model. Both the two-part factor model 

and the  MGCFA were fitted, and their performance indicating the correct detection of factorial 

invariance or non-invariance were compared to each other. The Monte Carlo simulation study was 

conducted with Mplus8.4 (Muthén & Muthén, 1998–2017). 

Method 

Simulation Conditions 

Figure 2 represents the basis of generated data. The two-part factors (i.e., 𝐹(𝑈) and 𝐹(𝑋) ) had six 

variables (i.e., 𝑈𝑝 or 𝑋𝑝) for each, and a factor correlation (i.e., 𝜙𝐹(𝑢)𝐹(𝑋)) between them was 0.5. 

The factor correlation represented a linear relationship between the two-part processes. For 

example, a high correlation between the binary-part factor and the continuous-part factor indicates 

that individuals with a high propensity for an event might also have more frequencies for the event. 

From weak to strong, a variety of correlation coefficients  (i.e., 𝜙𝐹(𝑢)𝐹(𝑋)= [0.33, 0.90]) were 



 

40 

 

reported in the empirical studies (Ferrer et al., 2016; McTernan & Blozis, 2014; Muthén, 2001). 

Study II set the moderate correlation as 0.5 based on the previous studies. To sum up, the generated 

data had 13 variables, and each part factor had 6-binary variables or 6-continuous variables.  

 

Figure 2 Generated two-part factor model. 

Table 7 and Table 8 show population parameters. As the subgroups were fixed as two, 

some of the parameters were different across two group memberships (G1 and G2). Parameters 

from the binary-part factor model were identically generated across two groups (Table 1) because 

Study II examined the performance of the two models when it comes to the continuous variables. 

It was because MGCFA tests the continuous variables only. In contrast, population parameters for 

the continuous-part factor model were diversely manipulated for two groups (Table 2). The factor 

variance and the factor mean for G2 are slightly higher than G1 by taking the different factor score 

distributions across groups into account.  
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A total of 36 different conditions were generated varying three design factors: level of non-

invariance (3) × sample size (3) × extent of zero-inflation (4). The number of replications was 

1,000 for each condition. Each design factor was described in the next section. The simulation 

study was conducted separately for the metric invariance and scalar invariance models. 

Level of Non-invariance  

A single variable had non-invariant parameters among six continuous variables, and five variables 

were generated as invariant. For the metric invariance model, the non-invariant variable had a 

different factor loading (𝜆2 in Table 2), but the corresponding intercept was set to be identical 

across groups. When it comes to the scalar invariance model, the intercept of the non-invariant 

variable (𝜏2 in Table 2) had a different value across groups, but its factor loading was set to be 

identical.  

The parameter difference between the two groups depended on the level of non-invariance: 

full invariance and two levels of partial invariance (i.e., small and large non-invariance). For the 

full invariance condition, both groups had the same factor loadings and intercepts. As the partial 

invariance, G2’s parameters (𝜆𝑥2 and 𝜏𝑥2) were higher than G1’s: 0.2 for the small non-invariance 

and 0.4 for the large non-invariance.  
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Table 7  

Population Parameters for Binary-part Factor Model 

 

 

 

 

G1 

  

G2 

 

 Percent of zero response 

 30% 50% 70% 90% 30% 50% 70% 90% 

Threshold         

𝜈𝑥1
∗  -.39 .13 .67 1.64 -.39 .13 .67 1.64 

𝜈𝑥2
∗  -.52 .0 .52 1.28 -.52 .0 .52 1.28 

𝜈𝑥3
∗  -.67 -.13 .39 1.04 -.67 -.13 .39 1.04 

𝜈𝑥4
∗  -.52 .0 .52 1.28 -.52 .0 .52 1.28 

𝜈𝑥5
∗  -.39 .13 .67 1.64 -.39 .13 .67 1.64 

𝜈𝑥6
∗  -.67 -.13 .39 1.04 -.67 -.13 .39 1.04 

Factor loading       

𝜆𝑥1
∗ − 𝜆𝑥6

∗   .7   .7  

Unique variance       

휀𝑥1
∗ − 휀𝑥6

∗   .3   .3  

Factor variance-

covariance 

 
 

  
 

 

𝜑11  1.0   1.3  

𝜑12  .5   .5  

Factor mean       

𝜅  .0   .2  

Note. Bold represents a higher value.  
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Table 8  

Population Parameters for Continuos-part Factor Model 

 
G1 

G2 

 Baseline  Small Large 

Factor loading     

𝜆𝑥1 .5 .5 .5 .5 

𝜆𝑥2 .6 .6 .8 1.0 

𝜆𝑥3 .7 .7 .7 .7 

𝜆𝑥4 .6 .6 .6 .6 

𝜆𝑥5 .5 .5 .5 .5 

𝜆𝑥6 .7 .7 .7 .7 

Intercept     

𝜏𝑥1 0.0 0.0 0.0 0.0 

𝜏𝑥2 .2 .2 .4 .6 

𝜏𝑥3 .3 .3 .3 .3 

𝜏𝑥4 .4 .4 .4 .4 

𝜏𝑥5 .5 .5 .5 .5 

𝜏𝑥6 .6 .6 .6 .6 

Unique factor variance  

휀𝑥1 .2  

 휀𝑥2 .3  

휀𝑥3 .4  

휀𝑥4 .3  

휀𝑥5 .2  

휀𝑥6 .4  

Factor variance 

𝜑 1.0 1.3 

Factor mean         

𝜅 .0 .2 

Note. Bold represents a higher value.        

Sample Size 

The sample size is an important factor affecting convergence and fit of the factor analysis model 

(MacCallum, Widaman, Preacher, & Hong, 2001; MacCallum, Widaman, Zhang, & Hong, 1999). 

The small ratio of the sample size over the number of observed variables might be a reason for 
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non-convergence and unbiased parameter estimates. In addition, the effect of small sample size is 

more critical when the communality (i.e., a variance of common factor) is low. Therefore, Study 

II avoided the low and wide range of communalities to control the communality effect with the 

sample size and had communalities around 0.55 (MacCallum et al., 2001; MacCallum et al., 1999). 

The two groups had the same sample size. Small (N = 250), medium (N = 500), and large (N = 

1,000) sample sizes were designed for each group, and consequently analyses were based on 500, 

1,000, and 2,000 for the total sample sizes.  

Extent of Zero-inflation 

The current study referred to delinquency studies for reflecting realistic conditions of zero-inflated 

measures and for varying the level of zero-inflations. A high percentage of zero values (i.e., ‘Never’ 

or ‘No experience’) was found in bullying studies. Nansel (2001) studied the effects of various 

factors on bullying/ victimization; the average ‘None’ rate was 55.7 %. On the other hand, You, 

Kim, and Kim (2014) reported overall high zero response rates, but the zero-inflations differed 

depending on the type of bullying. For example, 98.9% of 2nd year middle school students 

responded to ‘No’ for sexual bullying, but 57.9% of them responded to ‘No’ for cyber bullying. 

These examples have shown that the zero-inflation of delinquency measures is the common issue 

and overall high by showing some differences depending on the specific behaviors. 

 Study II reflected the empirical studies to set the simulation design.  From low to high zero-

inflation conditions, various zero-inflation levels were manipulated to see how the different extent 

of zero-inflation brings different performances of the two models. Therefore, four extents of zero-

inflation (i.e., a percentage of zero responses) were designed: low (30%), moderate (50%), severe 

(70%), and extreme (90%). The observed variables had a slightly different percentage of zero-
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inflation depending on the threshold 𝜐 under the binary-part factor (Table 1). However, their 

average percentage was one of the four extents.  

Data Analysis Procedure 

The data adjustment processes were necessary to fit the  MGCFA because the simulated data was 

based on the two-part factor modeling; the continuous variables were log-transformed, and zero 

responses were fixed as missing in the continuous-part model. The first process was to make the 

data without the transformation and the missing. Once the simulated data had been generated, the 

missing in the continuous-part was recoded as 0 to make the missing as the origin of the continuous 

values for the MGCFA. All continuous responses were transformed via the exponential function. 

For the second process, the dataset was log-transformed with a constant (i.e., 𝑓(𝑋𝑝) =

𝑙𝑜𝑔(𝑋𝑝 + 1), 𝑋𝑝 > 0) to lessen the data difference between the two models. Finally, the MGCFA 

used the data having 6-variables for a single factor model and one variable representing the group 

membership.  

 The two different factor models tested the metric and scalar invariance on the five variables 

except for the reference variable. For the metric invariance model, a baseline model was the 

configural invariance model with the freed factor loadings across groups. Each factor loading was 

equally constrained over groups (e.g., 𝜆𝑥21 − 𝜆𝑥22 = 0), therefore, a total of five pairs of factor 

loadings ( 𝜆𝑥2 − 𝜆𝑥6 ) were examined through the Wald test and BCBS-CIs. A Bonferroni 

correction was applied to the Wald test; hence, a strict p-value (p = 0.05/5 = 0.01) was considered 

for each test to control the inflated Type I error. Likewise, the BCBS-CIs were considered at 99% 

of the interval. For the scalar invariance model, a metric invariance model was a baseline model. 

All factor loadings were equally constrained, and intercepts were freely estimated. For the 
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identification, the intercept of a reference variable was fixed to zero for two groups (i.e., 𝜏𝑥1 = 0), 

and five pairs of the intercept were constrained (e.g., 𝜏𝑥21 − 𝜏𝑥22 = 0) across groups. The Wald 

test and the BCBS-CIs were applied in the same manner as the metric invariance test.  

Outcome 

We compared performances of the two-part factor model and the MGCFA in terms of a Type I 

error rate and power. In addition, we calculated the Type I error rates and the power with the Wald 

test’s and the BCBS-CIs’ results for the metric invariance model and the scalar invariance model. 

Therefore, the Type I error rates and the power for the two statistics (i.e., Wald test and BCBS-

CIs) were also compared. 

The Type I error rate was defined as a percentage of falsely detected non-invariance when 

the tested parameter was actually invariant. First, the Type I error was counted if any invariant 

parameter estimates were falsely identified as non-invariant for each iteration. Next, we calculated 

the Type I error rate by averaging Type I error over total replications at each condition. For 

generating the full invariance conditions, population parameters were identically manipulated for 

the two groups. Therefore, the Type I error rate was calculated for the 5-variable except a reference 

variable. On the other hand, the 4-variables were considered for the Type I error rates for partial 

invariance conditions because the condition had a reference variable and one non-invariant 

variable.  

The power was defined as a correct detection of non-invariance when a population 

parameter was non-invariant. Because a single variable was manipulated to be non-invariant, the 

true positive non-invariant factor loading and the non-invariant intercept were counted for the 

power. We reported the power at the partial invariance conditions only because all population 
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parameters were invariant across the groups at the full invariance conditions. The power for each 

condition was averaged over the total replications, similar to calculating the Type I error rate.   

Result 

Convergence Issue 

For each condition, Monte Carlo simulation studies were iterated 1,000 times through the two-part 

factor model and the MGCFA. Overall, the two-part factor model was more related to the non-

convergence because the zero-inflation resulted in the non-normality of the binary-part model and 

brought the missing of the continuous-part model. In addition, the two-part factor model was more 

computationally demanding than the MGCFA, and it was related to the non-convergence. 

 The non-normality and the small sample size were related to the problematic convergence. 

The two compared models had non-converged iterations for the conditions having extreme zero-

inflation (90%). However, the two-part factor model showed a more severe convergence issue with 

the extreme zero-inflation when the sample size was small and medium (N = 250 and 500). The 

averaged non-converged iteration ratio from the two-part factor model was 0.70 with the small 

sample size and was 0.16 with the medium sample size for testing the metric invariance. The non-

convergence was less severe for testing the scalar invariance; the averaged ratio of non-converged 

iterations was 0.43 with the small sample size and 0.04 with the medium sample size. The average 

non-convergence ratio for the other conditions was 0.004. The MGCFA also had the non-

convergence when the conditions had the extreme zero-inflation and small or medium sample size. 

However, the MGCFA did not have severe non-convergence as much as the two-part factor model, 

and the non-convergence only happened when the metric invariance was tested. The averaged ratio 

of non-convergence iteration was 0.02 with the small sample size and 0.002 with the medium 

sample size for testing the metric invariance.   
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Type I Error Rates 

We set the traditional criterion for the Type I error rate (i.e., p  < .05) to evaluate the two models. 

Table 9 represents Type I error rates for the invariant variables through the two-part factor model 

and the MGCFA. Except for some conditions, both two models showed acceptable Type I error 

rates of less than 0.05.  

 In the metric invariance test, the two-part factor model and the MGCFA resulted in the 

opposite pattern of the Type I error rates across the zero-inflation extents. The two-part factor 

model showed the highest Type I error rates at the extreme extent (90%), and the MGCFA had the 

highest Type I error at the 30% of zero-inflation. More specifically, the averaged Type I error rate 

of the two-part factor model was 0.042. The Type I error rates were similar from 30% to 70% of 

zero-inflation conditions and acceptable levels (averaged 0.036), although they had minor 

differences at the third decimal place (e.g., 0.030 at 30%, 0.032Wald/0.029BCBS-CI at 50%, and 

0.035Wald/0.033BCBS-CI at 70% when N =500 for small partial invariance). However, as Figure 3 

shows, relatively higher Type I error rates were found at 90% of the zero-inflation, and it was more 

noticeable when the sample size was small. Under these conditions (i.e., N = 250, 90% of zero-

inflation), the Type I error rates were higher than 0.05. Compared with the two-part factor model, 

the MGCFA had a smaller averaged Type I error (0.027), but the highest Type I error rates were 

the highest at the 30% of zero-inflation. In addition, the MGCFA generally had bigger differences 

between the smallest and the highest Type I error rates, compared with the two-part factor model 

having similar Type I error rates except for the small sample size conditions.  

 For testing the scalar invariance, the steep increase of the Type I error rates of the two-part 

factor model was not repeated. The averaged Type I error rate for the scalar invariance test was 

0.041, similar to the metric invariance test. On the other hand, the MGCFA’s Type I error rates at 
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the scalar invariance test were dissimilar compared with the pattern in metric invariance. The 

highest Type I error rates were still at 30% of zero-inflation when the sample size was small, 

likewise the metric invariance. However, as Figure 3 shows, the highest points of the Type I error 

rates are different for the moderate and large sample size; the Type I error rates are the highest at 

the moderate (50%) zero-inflation. The averaged Type I error rates from the MGCFA for test the 

scalar invariance test was 0.034, and it was also smaller than the two-part factor model. 

The Wald test and BCBS-CIs did not show noticeable differences in each other when it 

comes to the Type I error rates. For example, for testing the metric invariance, the Type I error 

rate from the two-part factor model was 0.035 and 0.033 for the Wald test and the BCBS-CIs 

respectively when the sample size was medium (N = 500), the partial invariance was small, and 

the zero-inflation was 70%. The averaged Type I error rates with the two statistics were similar 

but different between the two factor models: 0.042Wald/0.042BCBS-CI through the two-part factor 

model, and 0.028Wald/0.026BCBS-CI with the MGCFA. 

Although the binary-part factor model was generated with factorial invariance, and its 

result was not considered in Study II, we were able to look at Type I error rates for the metric 

invariance model of the binary-part. The pattern was the same as the continuous-part factor model. 

Except for some conditions with the small sample size and 90% of zero-inflation, the Type I error 

rates in the binary-part factor model were acceptable. 

Power 

In contrast to the Type I error rates, the power to correctly detect the non-invariant variable had 

obvious patterns across conditions; there were dramatic changes of the power depending on the 

extent of zero-inflation. Overall, the two-part factor model outperformed the MGCFA, and the two 

compared factor models showed the decreased powers when the zero-inflation was increased; the 
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highest power was at 30% of the zero-inflation, and the lowest power was at 90% of the zero-

inflation. Also, results from the Wald test and the BCBS-CIs were similar within the same factor 

model. Table 10 presents the results for the power. 

More specifically, the power showed the four dominant patterns for design factors. Figure 

4 represents the change of the power over design factors. We typically reported averaged results 

based on the metric invariance because patterns of the power were similar in both metric and scalar 

invariance tests. First, the two-part factor model showed a better power than the MGCFA. The 

average power from the two-part factor model was 0.495, and the average power through the 

MGCFA was 0.322. Second, the larger sample size positively affected the correct detection of 

non-invariance. The average power of the two-part factor model was 0.317 with the small sample, 

0.504 with the medium sample, and 0.664 with the large sample size. The MGCFA showed a 

similar pattern but a smaller power than the two-part factor model; 0.175 with the small, 0.316 

with the medium, and 0.476 with the large sample size. Third, the two different models detected 

the large partial invariance more easily than the small partial invariance. The average power of the 

two-part factor model was 0.335 to detect the small partial invariance and 0.655 to find the large 

partial invariance. The MGCFA had the same pattern; 0.183 for the small partial invariance and 

0.461 for the large partial invariance. Lastly, the larger zero-inflation was more related to the false 

detection of the non-invariant parameters. Figure 4 shows how the power decreased as the zero-

inflation increased from low (30%) to extreme (90%). Each averaged power at 30% and 90% was 

0.788 and 0.108 for the two-part factor model and 0.657 and 0.010 for the MGCFA.  

The powers between Wald test and BCBS-CIs were also similar to the Type I error rates. 

For example, when the sample size was medium (N = 500), the partial invariance was large, and 

the zero-inflation was 70%; the two-part factor model to detect metric non-invariance showed 
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0.665 and 0.660 power by using the Wald test and the BCBS-CIs respectively. For the same 

condition, the power using the MGCFA was 0.263 through the Wald test and 0.254 with the BCBS-

CIs. 
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Table 9  

Type I Error Rates for Invariant Variables 

   Metric Invariance  Scalar Invariance 

   Wald Test BCBS-CI  Wald Test BCBS-CI 

Sample 

Size 

Level of 

Invariance 
% Of zero 2PM CFA 2PM CFA 

 
2PM CFA 2PM CFA 

250 

Full 

30 0.036 0.041 0.036 0.037  0.048 0.047 0.045 0.042 

50 0.042 0.017 0.038 0.017  0.043 0.036 0.037 0.031 

70 0.034 0.025 0.034 0.020  0.058 0.039 0.053 0.035 

90 0.086 0.018 0.086 0.018  0.053 0.033 0.051 0.029 

Small Partial 

30 0.031 0.030 0.030 0.029  0.040 0.039 0.039 0.035 

50 0.033 0.015 0.032 0.015  0.035 0.032 0.030 0.028 

70 0.025 0.016 0.025 0.014  0.044 0.032 0.040 0.029 

90 0.083 0.017 0.083 0.017  0.051 0.029 0.048 0.028 

Large Partial 

30 0.033 0.029 0.033 0.028  0.040 0.039 0.039 0.035 

50 0.036 0.014 0.034 0.013  0.035 0.033 0.030 0.028 

70 0.027 0.015 0.026 0.015  0.044 0.032 0.040 0.030 

90 0.101 0.018 0.101 0.017  0.046 0.029 0.044 0.024 

500 

Full 

30 0.043 0.040 0.039 0.037  0.041 0.052 0.038 0.048 

50 0.040 0.037 0.035 0.034  0.038 0.054 0.036 0.052 

70 0.037 0.037 0.037 0.036  0.044 0.041 0.040 0.038 

90 0.057 0.010 0.055 0.010  0.044 0.016 0.042 0.015 

Small Partial 

30 0.030 0.044 0.030 0.042  0.035 0.043 0.032 0.039 

50 0.032 0.035 0.029 0.032  0.029 0.044 0.029 0.042 

70 0.035 0.033 0.033 0.032  0.039 0.039 0.036 0.036 

90 0.048 0.009 0.047 0.008  0.041 0.015 0.039 0.015 

Large Partial 

30 0.032 0.049 0.030 0.045  0.035 0.043 0.032 0.039 

50 0.033 0.036 0.030 0.032  0.029 0.044 0.029 0.042 

70 0.036 0.031 0.033 0.027  0.039 0.040 0.036 0.035 

90 0.050 0.009 0.048 0.006  0.041 0.015 0.039 0.015 

1,000 

Full 

30 0.044 0.051 0.043 0.048  0.047 0.036 0.047 0.033 

50 0.042 0.037 0.041 0.033  0.051 0.043 0.050 0.040 

70 0.047 0.040 0.043 0.040  0.045 0.051 0.044 0.046 

90 0.045 0.013 0.043 0.013  0.045 0.026 0.043 0.019 

Small Partial 

30 0.036 0.044 0.032 0.040  0.044 0.029 0.044 0.026 

50 0.038 0.031 0.035 0.027  0.046 0.038 0.045 0.035 

70 0.046 0.029 0.041 0.026  0.036 0.043 0.035 0.040 

90 0.042 0.011 0.040 0.011  0.038 0.023 0.036 0.018 

Large Partial 

30 0.038 0.044 0.037 0.041  0.044 0.029 0.044 0.027 

50 0.038 0.029 0.036 0.027  0.046 0.038 0.045 0.035 

70 0.045 0.027 0.041 0.024  0.036 0.042 0.035 0.040 

90 0.043 0.011 0.041 0.011  0.038 0.022 0.036 0.018 

Note. 2PM = Two-part factor model; CFA = Multi-group confirmatory factor model. Type I 

error rates above 0.05 are in bold. 
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Table 10  

Power for a Non-invariant Variable 

   Metric Invariance  Scalar Invariance 

   Wald Test BCBS-CI  Wald Test BCBS-CI 

Sample 

Size 

Level of 

Invariance 

% Of 

zero 
2PM CFA 2PM CFA 

 
2PM CFA 2PM CFA 

250 

Small 

Partial 

30 0.304 0.183 0.300 0.176  0.437 0.156 0.430 0.151 

50 0.191 0.081 0.185 0.079  0.293 0.069 0.284 0.067 

70 0.087 0.028 0.084 0.026  0.145 0.036 0.141 0.033 

90 0.017 0.001 0.017 0.001  0.034 0.007 0.032 0.005 

Large 

Partial 

30 0.872 0.650 0.870 0.646  0.980 0.726 0.979 0.722 

50 0.646 0.358 0.640 0.352  0.904 0.340 0.902 0.326 

70 0.328 0.098 0.324 0.097  0.622 0.110 0.610 0.108 

90 0.105 0.009 0.098 0.009  0.103 0.020 0.097 0.020 

500 

Small 

Partial 

30 0.636 0.394 0.629 0.389  0.783 0.358 0.773 0.350 

50 0.401 0.182 0.399 0.176  0.549 0.156 0.544 0.150 

70 0.210 0.053 0.200 0.051  0.283 0.052 0.274 0.047 

90 0.055 0.005 0.053 0.003  0.060 0.013 0.059 0.011 

Large 

Partial 

30 0.994 0.950 0.994 0.948  1.000 0.968 1.000 0.963 

50 0.947 0.687 0.946 0.681  0.999 0.659 0.999 0.652 

70 0.665 0.263 0.660 0.254  0.914 0.244 0.911 0.242 

90 0.141 0.009 0.140 0.009  0.217 0.037 0.209 0.033 

1,000 

Small 

Partial 

30 0.927 0.778 0.924 0.767  0.986 0.754 0.985 0.738 

50 0.732 0.393 0.725 0.381  0.927 0.320 0.923 0.313 

70 0.401 0.119 0.396 0.114  0.642 0.104 0.633 0.100 

90 0.082 0.007 0.081 0.007  0.113 0.025 0.110 0.023 

Large 

Partial 

30 1.000 0.999 1.000 0.999  1.000 1.000 1.000 1.000 

50 1.000 0.959 1.000 0.959  1.000 0.962 1.000 0.958 

70 0.926 0.548 0.923 0.535  0.998 0.516 0.998 0.505 

90 0.252 0.029 0.249 0.026  0.499 0.071 0.492 0.065 

Note. 2PM = Two-part factor model; CFA = Multi-group confirmatory factor model; Acceptable 

power (p ≥ 0.80) is in bold for each condition. 
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Figure 3 Type I Error Rates across Conditions.  

Note. 2PM = Two-part factor model; CFA = General confirmatory factor model; Percentage (%) indicates the zero-inflation percent 

of the data; Full = Full invariance; Small = Small partial invariance; Large = Large partial invariance. 
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Figure 4 Power across Conditions.  

Note. 2PM = Two-part factor model; CFA = General confirmatory factor model; Percentage (%) indicates the zero-inflation percent 

of the data; Small = Small partial invariance; Large = Large partial invariance. 
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Effect of Design Factors 

We tested the effects of the design factors on the Type I error rate and the power with the mixed 

ANOVA model: (a) between-subject factors: sample size (2) × level of non-invariance (3)  × 

extent of zero-inflation (4); (b) a within-subject factor: factor model (2).  

 Table 11 represents the result of the Type I error rates. Looking at the metric invariance 

test results, the main effects of between factors were not significant. However, the between factors 

interacted with the factor models and resulted in significant effects on the Type I error rates. For 

example, the significant interaction effect between the sample size and the factor model showed 

that the sample size effects on the Type I error rates were different in terms of the two factor 

models. The biggest effect size was from the interaction effect between the extent of zero-inflation 

and the factor model (𝜂𝑝
2 = 0.865). On the other hand, the interaction between the level of non-

invariance and the factor model was not significant. It indicated that the different levels of non-

invariance had subtle effects on the Type I error rates when the zero-inflated variables were 

analyzed with either the two-part factor model or the MGCFA. The patterns of design factor effects 

were a bit different in the scalar invariance test. The between effects of level of non-invariance 

and extent of zero-inflation were significant, and the interaction effect between the sample size 

and the factor model was not significant. 

 When it comes to power, we identified the four dominant patterns from the design factors. 

The ANOVA result in Table 12 also shows the significant main effects of the between factors and 

a within factor on the power. The extent of zero-inflation had the biggest effect size (𝜂𝑝
2 = 0.836 

for metric invariance, 𝜂𝑝
2 = 0.883 for scalar invariance). 
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Table 11  

ANOVA Results for Type I Error Rates 

Source 
Metric Invariance  Scalar Invariance 

df F p η𝑝
2   df F p η𝑝

2  

Between-subject Effects 

   N 2 0.089 0.915 0.006  2 0.559 0.578 0.038 

  LN 2 1.239 0.305 0.081  2 10.014 0.001 0.417 

  EZ  3 1.446 0.251 0.134  3 6.078 0.003 0.394 

  Error 28     28    

Within-subject Effects 

  FM 1 107.570 < .01 0.793  1 15.569 < .01 0.357 

  FM x N 2 13.699 < .01 0.495  2 3.026 0.065 0.178 

  FM x LN 2 0.375 0.691 0.026  2 0.224 0.801 0.016 

  FM x EZ 3 60.036 < .01 0.865  3 10.572 < .01 0.531 

  Error 28     28    

Note. η𝑝
2  = Partial eta square; N = sample size; LN = Level of Non-invariance; EZ = Extent of 

Zero-inflation; FM = Factor Model; Bold indicates statistically significant results. 

 

Table 12  

ANOVA Results for Power 

Source 
Metric Invariance  Scalar Invariance 

df F p η𝑝
2   df F p η𝑝

2  

Between-subject Effects 

   N 2 12.140 < .01 0.588  2 16.701 < .01 0.663 

  LN 1 31.018 < .01 0.646  1 52.744 < .01 0.756 

  EZ  3 28.836 < .01 0.836  3 42.906 < .01 0.883 

  Error 17     17    

Within-subject Effects 

  FM 1 59.554 < .01 0.778  1 48.469 < .01 0.740 

  FM x N 2 0.466 0.635 0.052  2 0.119 0.888 0.014 

  FM x LN 1 0.874 0.363 0.049  1 0.161 0.693 0.009 

  FM x EZ 3 2.491 0.095 0.305  3 2.620 0.084 0.316 

  Error 17     17    

Note. η𝑝
2  = Partial eta square; N = sample size; LN = Level of Non-invariance; EZ = Extent of 

Zero-inflation; FM = Factor Model; Bold indicates statistically significant results. 
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CHAPTER V 

CONCLUSION AND DISCUSSION 

Discussion 

The current study started with the concern that only a few studies discussed the factorial invariance 

of zero-inflated variables (Antoniadou et al., 2016; Argyriou, Um, Wu, & Cyders, 2020), in 

contrast to many studies that have discussed naturally zero-inflated behaviors and validated the 

related measures. The lack of studies demonstrating the two-part factor model for the zero-inflated 

variables might be the reason for this matter. Based on the result of this study, applying the 

MGCFA to the zero-inflated variables might result in the bias of the related studies. In this respect, 

we suggested a two-part factor model for the zero-inflated data to test the factor invariance. 

The MGCFA is a typical approach to test factorial invariance under the SEM (Meredith, 

1993; Millsap, 2012). Previous studies have reflected the various methodological perspectives on 

the MGCFA, and the non-normality issue is also covered with the MGCFA while the helpful 

methods are applied together. For example, the non-normality is taken into account with the robust 

estimator (Brace & Savalei, 2017; Chen, Wu, Garnier-Villarreal, Kite, & Jia, 2020; Liu et al., 

2016), or with the mixture modeling (Kim & Muthén, 2009) when the MGCFA is the analysis 

model. However, as Muthén (1989) discussed, a lot of zero observations might mislead the 

conclusion when the MGCFA is applied to the data because it treats all zero values as the origin. 

The data transformation of the zero-inflated variables can be aligned with the MGCFA to lessen 

the non-normality; however, the inflation at a certain value still exists. Using the two-part 

modeling to separate many zeros from the other continuous values might be more helpful. In that 

sense, Study I and Study II showed the usefulness of two-part factor model for testing factorial 

invariance of the zero-inflated data compared to the MGCFA. 
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Study I showed the use of the two-part factor model for testing the factorial invariance on 

the zero-inflated variables. We examined the factorial invariance on bullying and victimization 

variables having zero-inflation across sex. The MGCFA treated the zeros as the origin of 

continuous values; hence, all values were analyzed as the continuous variables under the 

corresponding single-factor structure. Therefore, bullying and victimization variables constructed 

each of the bullying and victimization factors. On the other hand, the two-part factor model 

separated zeros and the other values into two parts; all zeros were analyzed through the binary-

part factor, and the other continuous values were managed with the continuous-part factor. 

Therefore, bullying and victimization were represented with each two-part factor model. The 

results of the MGCFA and the two-part factor model were compared in terms of the results of the 

S-B LRT, the Wald test, and the BCBS-CIs which frequently used test statistics in testing the 

factorial invariance (Cheung & Lau, 2012; Kim et al., 2016; Meade & Bauer, 2007; Jung & Yoon, 

2016). We only compared the test results of the continuous variables, and they were dissimilar 

across models. The chosen reference variables were different, and the supported factorial 

invariance models were also varied. The MGCFA supported the partial metric invariance for the 

bullying and victimization factor models. Therefore, the sex comparison was not recommended 

based on the MGCFA. The two-part factor model also detected the non-invariance on the variables 

across sex; however, the non-invariance was on the binary variables measuring the binary-part 

factors, and the continuous variables under the continuous-part factors had the full scalar 

invariance. In other words, when the binary-part controlled the zero values, the sex comparison in 

terms of the continuous values was appropriate. There could be several reasons for the different 

results of the two models. In general, the traditional model such as ANOVA is known as inadequate 

for the zero-inflated data; thererfore, researchers recommend the ZI models or the two-part model 
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to analyze such data (Duan et al., 1983). In this context, we hypothesized that the results of the 

two models differed because the typical factor model might not have been adequate for handling 

zero-inflation and conducted Study II to investigate it. 

 While Study I empirically showed the different test results of the two models, Study II 

examined which data characteristics affected the different results between the two models and how 

much the characteristics influenced the test results with the simulation study. The level of non-

invariance, the sample size, and the extent of zero-inflation were manipulated to examine their 

effects on testing the metric and scalar invariance and to compare performances between the two 

different factor models. Generally, the ANOVA results showed the importance of model selection 

to test factorial invariance on the zero-inflated variables. Applying different factor models resulted 

in statistically varied Type I error rates and power. It indicates that the choice of the factor model 

might lead to different test results. It is in line with previous studies discussing specialized models 

(i.e., ZI models or two-part model) is necessary to handle the zero-inflation rather than the general 

models (Deb, Hall, Trivedi, & Hall, 2002; Duan et al., 1983; Lambert, 1992; Xu et al., 2015).  

Except for some of the conditions, both the MGCFA and the two-part factor model 

showed the acceptable Type I error rates (i.e., α < 0.05) in Study II. The MGCFA generally 

showed smaller Type I error rates than the two-part factor model, especially it was noticeable 

when the sample size was small, and the zero-inflation was 90%. However, it is difficult to 

conclude that the MGCFA is a better model for analyzing zero-inflated data in those conditions 

because the MGCFA showed lower power than the two-part factor model in any conditions. 

Based on the Study II result, when the extent of zero-inflation increased, the MGCFA had 

difficulty identifying the accurate partial invariance model. The correct model detection was 

harder when the sample size was decreased. However, its power was appropriate to test large 
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partial invariance when the data had 30% of zero-inflation, and the sample size was the medium 

or large sample. The MGCFA’s power was also acceptable when the zero-inflation was 50%, but 

large sample size was required. The possible source of the insufficient power of MGCFA might 

be from the approach to the zeros. The MGCFA considers the zero as the origin of the 

continuous values and keeps the original zero-inflation of the data, in contrast to the two-part 

factor model lessening the zero-inflation by separating the zeros into the binary-part factor 

model.  

In conclusion, the current study showed that the MGCFA did not perform well to the 

zero-inflation as its power became lower with the increased zero-inflation. However, it is 

difficult to say the results were inconsistent with the previous studies that found the robust 

performance of the MGCFA to the non-normality. They showed adequate Type I error rates and 

power of the MGCFA across various non-normal conditions (Brace & Savalei, 2017; Chen et al., 

2020). It is because our study and the prior research had differences in the approaches for testing 

the factorial invariance model and the type of non-normal data. The general definitions of the 

Type I error rate and the power were similar. The Type I error was to identify the factorial non-

invariance falsely, and the power was to detect the true factorial non-invariance. However, the 

target models were different. We investigated the factorial invariance model by testing individual 

parameters based on the difference of 1 degree of freedom (Δdf =1). On the other hand, the 

previous studies focused on testing the multiple parameters together. The used statistics were 

also varied. Unlike our study that used the Wald test and the BCBS-CI for testing factorial 

invariance, previous studies used the LRT. More importantly, the zero-inflation might need to be 

considered separately from the typical non-normality. The zero-inflation, a special case of non-



 

62 

 

normality, shows that a lot of responses gather at the smallest value. Thus, it is a bit different 

pattern from the widely studied non-normal data, which has gradual decreases on both sides of 

the peak of the distribution. These differences make it hard to compare the present study to the 

previous studies directly. Future studies for testing partial factorial invariance over the zero-

inflation are required to compare more results and find a better strategy for this type of non-

normality. 

Lastly, we found that the two-part factor model resulted in inadequate Type I error rates 

when the sample size was small, and the zero-inflation was extreme. With a sample size of 250 

and zero-inflation of 90%, the Type I error rates for identifying full, small, and large partial 

metric invariance models were 0.087, 0.083, and 0.101, respectively. Because of the high rates of 

non-convergence at these particular conditions, we considered the non-convergence under these 

conditions could represent the possible reason for the unacceptable performance of the two-part 

factor model. Nevitt and Hancock (2004) discussed the association of non-convergence, 

improper solutions, and the poor Type I error for testing SEM. The non-convergence was likely 

to occur from the small sample size, and the Type I error rates within the corresponding 

simulation condition were also high. Although there was no direct relationship between the non-

convergence and the Type I error rates, models with too small sample size were difficult to 

converge, and if they could be converged, the probability of Type I error would be greater than 

with larger sample sizes. In addition to the small sample size (Chen et al., 2020; Liu et al., 2016; 

Rhemtulla, 2012), high missingness and non-normality (Chen et al., 2020) were prone to the 

non-convergence. Because the zero values were recoded as missing in the continuous-part 

model, we contemplated that the missingness was also related to the higher Type I error issue 
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within the conditions resulting in the high non-convergence. In the meaning that the model 

complexity is related to the non-convergence, the mixture modeling showed more non-

convergence than the typical model (Henson, Reise, & Kim, 2007). That is, the two-part factor 

model for multiple groups, which is a combination of factor mixture modeling and two-part 

modeling, would have more difficulties to converge than the MGCFA, and it might be related to 

higher Type I error. In sum, the high Type I error rates of the two-part factor model were related 

to these reasons: mixture modeling with small sample size and high missingness due to extreme 

zero-inflaion. Therefore, we recommend the two-part factor model with a large enough sample 

size to avert non-convergence and to control Type I error for testing factorial invariance of the 

zero-inflated data. 

Limitation and Future Study 

We focused on zero-inflation as one type of non-normality and mainly examined its effects on 

testing partial factorial invariance. The limited design factors were considered in the current study; 

however, future studies can extend the current study for further investigation.  

First, we only manipulated different parameters regarding the continuous-part factor model 

but assumed the factorial invariance of the binary-part factor model across groups. Therefore, the 

future study can differentiate the binary-part factor model across groups and compare the two 

models to see any confounding effect between the binary-part and continuous-part factors.  

Second, various factor correlations can be manipulated between the binary-part factor and 

the continuous-part factor. We controlled the factor correlation as the moderate size. However, 

different factor correlation levels can clarify the effect of a correlational relationship between the 

two-part factors on the performance of the models. 
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 Lastly, the missingness might be another characteristic of the zero-inflated variables in the 

future study. The two-part factor model treats zeros values as the zeros in the binary-part factor 

model and as missing in the continuous-part factor. However, the missingness can be added for 

both factor models of the two-part if there are true missing responses. For example, the survey 

asking the organizational turnover is sensitive to answer. The employees might not want to answer 

the questions rather than responding to them as they are not likely to change their jobs (i.e., zero 

answers). The different levels of missingness and the zero-inflation depending on the field might 

be helpful to get the practical strategy regarding the zero-inflated data for specific settings. 
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