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ABSTRACT

Any aircraft wing design configuration is primarily intended to maximize performance during

the predominant flight condition (e.g., cruise in transport aircraft) while control surfaces (e.g., flap

and slats) permit necessary wing reconfigurations to transition between phases of flight. Control

surfaces lead to higher performance during required maneuvers but are not without drawbacks. Due

to their structural and mechanical complexity, they occupy volume inside the wing, which might

displace valuable fuel storage and add weight. Due to the use of discontinuous surfaces, extra drag

and acoustic noise are also generated for all flight conditions. These disadvantages motivate using

alternative adaptive technologies, such as conformal wing morphing, that do not introduce discon-

tinuities to the flow. Adaptive components (e.g., shape memory alloy and piezoelectric actuators)

are a key to bioinspired locomotion, but there are unknowns regarding engineering and operational

aspects (e.g., how to utilize, control, and design). The operation of a shape memory alloy (SMA)

component is first explored for bi-pedal locomotion to demonstrate it operates as an artificial mus-

cle, functioning as an actuator, a brake, or a spring. The following study shows the controllability,

robustness, and scalability of an SMA-based morphing wing. Further considerations in how to

design involve how to represent the morphed geometry, and new parameterization methods are de-

veloped to represent the aircraft topology. Current state-of-the-art methods in this field generally

consider only one adaptive technology or do not consider structural restrictions (e.g., the necessary

rigid spars and ribs) during the design process. It is proposed herein that a universal tool based on

kinematic equations can be used to model morphing structures independent of the actuator technol-

ogy used. An intuitive parameterization method is proposed that considers kinematic constraints

to efficiently generate structurally consistent (i.e., all internal structural constraints are satisfied)

morphed configurations with a limited number of design variables. The structurally consistent

parameterization method is further implemented to optimize subsonic morphing wings using low-

fidelity fluid solvers. Small changes to the wing outer mold line can result in significant noise

reduction and drag loss; thus, a method to accurately and efficiently describe the deformed aircraft
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geometry is developed that allows universal parameterization, including topological representa-

tions developed in this work.
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NOMENCLATURE

a A gain scheduling coefficient −

ac Independent child shape function coefficients −

ap Independent parent shape function coefficients −

A Active shape function coefficient −

A Domain of feasible active shape coefficients −

Ac Child active shape function coefficient −

Af Austenite final transformation temperature C

Ap Parent active shape function coefficient −

As Austenite start transformation temperature C

α Angle of attack −

αl Left leg pitch angle −

αr Right leg pitch angle −

b A gain scheduling coefficient −

b Backwards restriction vector −

B Backwards function matrix −

β1 Curvilinear coordinate tangent to OML m

β2 Curvilinear coordinate normal to OML m

c Voltage input defined by the controller V

C Class function −

CST Class/Shape Transformation

D Drag N

∆T Temperature amplitude C
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e Spring stiffness N/m

E Young modulus N/m2

ε Strain −

εb Difference between a reference and process values m

η Non-dimensional coordinate in the parameterized domain −

EBM Energy-Based Model

ηm Master η-coordinate in the parameterized domain −

ηo η-reference coordinate in the parameterized domain −

ηs Slave η-coordinate in the parameterized domain −

f Forwards restriction vector −

F Forwards function matrix −

fr Reference value factor for PID −

Fx x-component of the reaction force imposed on the leg −

Fy y-component of the reaction force imposed on the leg −

g Gravity m s2

g Curvilinear coordinate system −

G Shear modulus N m

GA Austenite shear modulus N m

γ̄ Effective shear strain −

γ̄t Effective transformation shear strain −

GM Martensite shear modulus N/m2

h Length of rigid spar m

H Shape function coefficient −

Hcur Current effective transformation strain −

Hmin Minimum effective transformation strain −
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Hmax Maximum effective transformation strain −

i Global/assembly coordinate basis vectors −

I Global/assembly coordinate system −

J Cost function −

J∗ Non-dominated cost function −

J̃ Expected value −

k̄ Correction factor −

Kc Controller gain for PID −

kleg,l Left leg stiffness −

kleg,r Right leg stiffness −

kswing Elastic torsional spring stiffness −

κ Position components in assembly coordinate system m

l Local/part coordinate basis vectors −

ll Deformed length of left compression spring −

lo Undeformed length of compression spring −

lr Deformed length of right compression spring −

lx x-component of the spring length −

L Lift N

L∗/D Optimum lift-to-drag ratio −

Λ Local/part coordinate system −

m number of piecewise CST equations −

M Moment vector N m

Mb Main body mass of the robot kg

ME Moment distribution from external sources N m

M e Moment distribution vector from spring interactions N m
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Mf Martensite final transformation temperature C

MI Moment distribution from internal sources N m

Ml Leg mass of the robot kg

M q Moment distribution from concentrated forcesQ N m

M r Moment distribution from reaction forcesR N m

Ms Martensite start transformation temperature C

M t Moment distribution from applied torques T N m

Mw Moment distribution from pressure distribution w N m

n Order of Bernstein polynomial −

n Normal vector to OML in physical domain −

N Total number of integration points −

Nc Number of coils −

ne Number of spring forces −

Ni Class functions coefficient −

ni i-th hardening parameter −

nq Number of concentrated forces −

NURBS Non-Uniform Rational B-Splines

nr Number of reaction forces −

ω Equality constraint −

ωswing Angular frequency of the leg motion m

OML Outer mold line

p Probability density function −

P Passive shape function coefficient −

P p Parent passive shape function coefficient −

P c Child passive shape function coefficient −
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Pc Domain of child passive shape coefficients −

φ Rotation angle of curvilinear basis relate to cartesian −

Φfwd Forwards transformation function −

Φrev Reverse transformation function −

ψ Non-dimensional coordinate in the parameterized domain −

ψcA Child ψ-coordinate −

ψm Master ψ-coordinate in the parameterized domain −

ψo ψ-reference coordinate in the parameterized domain −

ψs Slave ψ-coordinate in the parameterized domain −

Q Force vector N

R Spring radius m

r Wire radius m

r Position vector in the assembly domain m

rm Master position vector in the assembly domain m

rpn Parent position along neutral line m

rcn Child position along neutral line m

ro Rigid body translation tensor m

rs Spearman correlation factor −

rs Slave position vector in the assembly domain m

R Total beam residual m

Rl Total beam residual for lower beam m

Ru Total beam residual for upper beam m

R∗ Minimum total beam residual m

Rl−i Rigid body rotation tensor from physical to assembly −

s Curvilinear coordinate tangent to OML m
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S Shape function −

SST Supersonic transport

t Tangent vector to OML in physical domain −

T Temperature C

T Twist tensor −

τ̄ Effective shear stress N/m2

τcrit Shear stress that transformation strain starts in Martensite N/m2

Ti Integral timefor PID −

Td Derivative time for PID −

θ Parameters −

θr Phase offset −

u Displacement vector m

V Velocity m/s

Vp Process value m

Vr Reference value m

Vrange Reference value range m

w Displacement components in global coordinate system m

W pressure distribution m

x Coordinate in the physical domain m

X ψ-scaling factor from parameterized to intermediate domain m

x̄ x-component of the position on the neutral line m

x̂ Coordinate in the intermediate domain m

ξ Martensitic volume fraction −

Ξ Knot −

ξr Martensitic volume fraction at transformation reversal −
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xshear x-component of shear vector m

y Coordinate in the physical domain m

Y η-scaling factor from parameterized to intermediate domain m

ŷ Coordinate in the intermediate domain m

yshear y-component of shear vector m

z Coordinate in the physical domain m

Z ζ-scaling factor from parameterized to intermediate domain m

z̄ z-component of the position on the neutral line m

ẑ Coordinate in the intermediate domain m

ζ Non-dimensional coordinate in the parameterized domain −

ζcA Child ζ-coordinate −

ζcT Non-dimensional child trailing edge thickness −

ζo ζ-reference coordinate in the parameterized domain −

ζT Non-dimensional trailing edge thickness −
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background

In pursuit of developing the next generation of high-performance aircraft, researchers are ex-

ploring the use of morphing aerodynamic surfaces. The implementation of morphing could in-

crease the lift-to-drag ratio for subsonic flight [1] and mitigate the perceived loudness from sonic

booms [2]. It is of particular interest that actuators embedded within the wing skin because of the

very low volume impact and surface continuity advantages realized during activation [3]. Solutions

utilizing high specific actuation energy density materials are desirable because of the restrictions

imposed on actuator dimensions. Possible active materials that have been implemented experimen-

tally include piezoelectrics [4], shape memory alloys [5], and combinations of both [6]. Beyond

having external surfaces that are themselves actively deforming, conformed reconfiguration can

also be enabled by features such as corrugated surfaces [7] or bistable structures [4]. Therefore,

the technology for camber morphing exists, but a thorough analysis to determine desirable outer

mold lines (OMLs) for different stages of a flight envelope is necessary to fully explore the po-

tential of morphing wings. High-fidelity models utilizing constitutive models and finite element

analysis may be highly enabling to forming design intuition and even accurate predictions, but

their high computational cost can be prohibitive during preliminary design as one seeks to freely

explore feasible designs towards understanding performance ranges; thus, the development of a

low cost, structurally consistent morphing wing generator may be enabling and is proposed in this

dissertation for the first time.

Irrespective of morphing motivations, there has been an increasing interest in airfoil optimiza-

tion methods over the last two decades, motivated by the possibility of improving the aerodynamic

performance of aircraft [8] and wind turbine blades [9]. This work builds on those successes, but

with a focus on reconfigurable geometries. To effectively optimize the OML of an aircraft, it is

necessary to employ a reliable and efficient method to represent the geometry. As a consequence,
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several parameterization methods for airfoils and other geometries have been introduced. Each

method has been developed for a specific application or to mitigate the weaknesses of other meth-

ods [10]. Consequently, there is great benefit in utilizing a universal shape parameterization such

as the Class/Shape Transformation (CST) method [11] to represent 2D or 3D OMLs. Moreover,

the CST method can be used to represent feasible morphed configurations if kinematic constraints

are considered [12] and is a valuable reduced-order model for designing morphing aircraft.

Far beyond static representations, material and geometric non-linearities can be leveraged to

improve performance and are the essence of aero-structural “morphing”. Although non-linearities

are often considered undesirable for engineering analysis and design, birds and other animals have

evolved to exploit non-linear responses to increase the range of their physical capabilities across

a wide range of environmental conditions. Therefore, the research into avian flight inspires the

concept of conformal wings and the means for manipulating such a morphing system via “artificial

muscles.” Although wing flapping is beyond the scope of this dissertation and also unsuitable for

high speed flight, the same functional flexibility can be observed in quasi-static reconfiguration or

in the simple dynamic study of bipedal locomotion with a shape memory alloy (SMA) providing

the non-linear actuation. Regarding geometric non-linearity, a “parameterized beam” formulation

that allows for an arbitrary initial shape and large deflections is developed and used to explore

the atypical design domain. When fully developed in Chapter 6, this new framework allows for

seamless communication between geometric description and structural analysis, enabling the full

exploration of material, geometric, and eventually surrounding aerodynamic behavior. Overall,

the distinct efforts in this dissertation can be classified based on the utilization of kinematics,

mechanics, and geometric parameterization as shown in Fig. 1.1.

1.2 Artificial muscle

SMA components, usually formed from nickel and titanium alloys (nitinol), generate and re-

cover large strains (displacements) under large stresses (forces) and dissipate energy when under-

going phase transformation between austenite and martensite [13]. Depending on the initial state

and thermomechanical loading, different phenomena can be observed. When not transforming,
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SMA components are linearly elastic and can be used as structural members. However, if suf-

ficiently mechanically loaded, an initially austenitic nitinol specimen will transform and deform

toward a microstructural configuration of oriented martensite variants in a macroscopically non-

linear fashion and then fully recover the austenitic configuration when unloaded. This is known

as the pseudoelastic effect, and it can be highly dissipative. A specimen in an oriented martensite

state can also be heated until it transforms into austenite state and recovers large strains under high

stresses in a non-linear manner known as the shape memory effect. SMA actuators can generate

positive mechanical work given the appropriate timings of supplied thermal energy [3]. Collec-

tively, these features of SMAs point to their potential use as an artificial muscle [14] with tunable

mechanical performance [15], but it is unknown whether SMAs can replicate the breadth of multi-

functional capability shown by natural skeletal muscle, especially given cyclic stimuli.
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Dynamic variation in functional demands is common to all forms of animal locomotion, but is

an extreme feature of powered flight [16]. Birds dynamically adjust the shape and position of their

wings to tailor performance to atmospheric conditions such as high winds [17, 18], and while cap-

turing prey and gliding [19]. Insight into “wing morphing" adaptations that accommodate changing

conditions is a major design target for improving aircraft performance. Skeletal muscle provides a

compact solution for performing multiple tasks under diverse operational conditions, a capability

lacking in many current engineered systems. In Chapter 2, it is evaluated if shape memory alloy

(SMA) components can serve as artificial muscles with tunable mechanical performance.

1.3 Morphing

Morphing in aircraft is a concept at least partially inspired by how birds expand their perfor-

mance envelope, enabling faster and longer flight and more effective maneuvering [20]. However,

load-bearing structures and actuated control surfaces are typically distinct subsystems in aircraft

while in a flying vertebrate the musculoskeletal system functions as both [21]. A morphing air-

craft design [5] moves the former toward the latter by embedding the actuators into the skin. This

actuating material often acts as a structural component, but under the appropriate stimulus the ac-

tuators function similar to muscles, leading to displacements that are constrained by the internal

structure (i.e., ribs and spars) in similar fashion to how bird wing movements are restricted by stiff

the skeletal system. In the literature, many works that address camber morphing mechanisms [22]

incorporate solutions for alleviating strain in a morphed airfoil section such as rolling leading

edge skin [23], corrugated skins [24–26], sliding skin [27], shape memory alloy actuators [28]

and flexible skin [29–34]. In Chapter 5, it is shown that the Class/Shape Transformation (CST)

method can be modified to represent feasible morphed airfoil configurations considering internal

kinematic constraints regardless of actuation technology [3]. This framework is defined as “struc-

turally consistent” since the OML must be consistent with the initial and rigid internal structure.

This is a valuable tool to predict designs of morphing aircraft that can be used for structural and

aerodynamic analysis.

In typical aircraft design, the selected OML is fixed and must have satisfactory performance
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for all flight conditions [35]. For example, rudder dimensions are driven by Federal Aviation As-

sociation (FAA) regulations [36] that state that an aircraft must be able to execute a safe landing

in the presence of crosswind, perhaps with either the right or left wing-mounted engine inopera-

ble. Outside of this specific flight condition, the rudder is oversized and induces a drag penalty;

clearly a more adaptive tail structure that minimized drag losses during the vast majority of flight

operations. To overcome analogous performance losses, several methods exist to adapt them ac-

cording to freestream conditions or changing performance requirements. The most common is the

inclusion of rigid hinged control surfaces, which permit the reconfiguration of the wing necessary

to transition from takeoff to cruise to landing [37]. These mechanisms lead to higher performance

during required maneuvers but are not without drawbacks. Due to their structural and mechanistic

complexity, they occupy volume inside the wing which might displace valuable fuel storage and

would clearly add weight. Discontinuous surfaces also generate extra drag and noise. These disad-

vantages motivate the use of alternative adaptive technologies, such as conformal wing morphing

via implementation of shape memory alloys or other active materials [38].

1.4 Parameterized representation

Regardless of the OML addressed and its ability to reconfigure, a representation of the sur-

face, two- or three-dimensional, is necessary for both structural and aerodynamic analysis; the

coupled results of which are essential to robust aircraft design. Parameterized representation are

highly preferred over discrete ones due to the benefits of a continuous analytical geometric rep-

resentation and seamless communication between vary analyses regardless of mesh requirements.

The main difference between parameterization methods is the quantity of degrees of freedom re-

quired to accurately represent a geometry. Usually there is a compromise between performance

for a specific problem and computational performance for a general shape [39]. The most uti-

lized parameterization methods include: the PARSEC method [40], Bezier curves [41], NURBS

(Non-Uniform Rational B-Splines), Joukowski transformation, Hicks-Henne method [42], and

Fergurson’s method [43]. The PARSEC, Bezier curves, and modified Bezier curves seem to be

the most widely used methods for wings [9, 44–47]. The PARSEC method is exclusive to 2-D air-

5



foil geometry and cannot be utilized for 3D bodies, while Bezier curves represent a generalization

approach that requires several control points to represent an aircraft geometry. Kulfan [11] de-

veloped a universal shape representation known as the Class/Shape Transformation (CST) method

that can mathematically define different geometries such as nacelles, fuselages, and subsonic [44]

and supersonic wings [48]. Moreover, Sripawadkul et al. [10] established that among all meth-

ods evaluated, the CST method performs the best regarding the five desirable properties for airfoil

representation: parsimony, orthogonality, completeness, flawlessness, and intuitiveness. Thus, the

CST parameterization method provides desirable attributes in its generation of unique smooth ge-

ometries via physically meaningful variables, as will be further explored in Chapter 4.

Currently, free-form deformations (FFD) are used by multiple research groups to modify the

mesh of pre-existing objects [49]. The method consists of establishing a grid of NURBS curves

defining affine transformations that deform the geometry. The key advantage of this method is

the capability of evaluating multiple configurations without requiring mesh generation. However,

FFD is not an intuitive parameterization method (i.e., free variables do not have physical meaning),

adding a layer of complexity to an already existing parameterization method. Applying kinematic

constraints are essential when considering morphing outer surfaces enclosing rigid interior struc-

tural members; this is not trivial for FFD because the perturbation methods and geometry represen-

tation methods are uncoupled. Because this work proposes implementation of the parameterization

method with aerodynamic models, the advantages of FFD are not significant. Conversely, the CST

method represents the geometry and perturbations without any post-processing and is used as a

universal shape parameterization to represent 2D or 3D OMLs [11], especially given the spline

version developed in this work that allows for varying degrees of continuity along the OML.

1.5 Structural analysis

Historically, the fields of Computer Aided Design (CAD) and Finite Element Analysis (FEA)

have developed independently from each other and different mathematical descriptions of the ge-

ometry are used in both fields. This has led to a gap between design and analysis models that

is overcome by two-way model conversion. Meshing is often the most time-consuming step in

6



the design-through-analysis process [50]. Additionally, this introduces so-called “discretization

error”, which describes the difference between the design model and the analysis model. There

are varied techniques to bridge the gap by using the same mathematical description for the design

and the analysis model. In the past decade, Isogeometric Analysis (IGA) has proposed NURBS as

basis functions of the Galerkin method instead of the more traditional Lagrange/Hermite polyno-

mials [50]. Through the concept of knots, the global geometric representation can be subdivided

into Cn−1 local knot spans that satisfy the requirements of a basis function [51]. However, the

tensor product structure of NURBS functions proves to be inefficient due to the global nature of

refinement operations, and the high-order continuity offered by NURBS has a negative impact on

the performance of direct solvers. [52]

A fundamental step in the structural analysis an object is the choice of coordinate system. The

Cartesian coordinate system is sufficient for most rigid bodies and linear elasticity problems [53]

but may not be adequate for arbitrarily shaped objects as exemplified in Fig. 1.2. As a result, mul-

tiple FEA elements are defined in curvilinear coordinate systems (i.e., basis vectors are not fixed in

the spatial domain). Two commonly used curvilinear coordinate systems are the cylindrical (e.g.,

as in curved beams [54]) and spherical (e.g., as in shell elements [55]). However, both frames

assume a geometry to the object or a subset of the element (e.g., uniform radius along element).

IGA methods are claimed to be more accurate than traditional FEA because a unique parameter-

ized representation is used for the whole object across multiple applications [50]. However, other

methods are also capable of a unique representation method for design and structural analysis [56].

As long as the implemented parameterization technique can represent all deformed configurations,

accurate alternative structural models can be modeled [57].

An alternative to FEA is to utilize energy methods such as Ritz methods [58], principle of

virtual work [59], or principle of minimum total potential energy [60]. Peraza Hernandez et al.

have shown that all three methods can be used to accurately solve adaptive structure problems [57,

61,62]. The principle of minimum potential energy postulates that the configuration that minimizes

the potential energy, calculated via Hamilton’s principle, is the stable configuration [60]. The
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Cartersian coordinate system
Curvilinear coordinate system

Figure 1.2: Curvilinear basis vectors along the neutral line of a beam. For the neutral surface, the
vectors are orthogonal and equivalent to the normal and tangent vectors.

principle of virtual work is also based on Hamilton’s principle where a continuum body is in

equilibrium if and only if the virtual work of all forces acting over any local virtual displacement

of the stabilized body is zero, but assumes quasi-static deformations [58]. Ritz methods require a

priori knowledge of the potential stable solutions, but have low computational cost [63]. A method

inspired by the principle of minimum potential energy and Ritz methods is proposed because it

enables the utilization of a universal parameterization similar to IGA as shown in Fig. 1.3. Similar

approaches have been previously considered for beam angle [64–66], but applied here to CST

parameterizations for the first time, leading to a unique aerodynamic-centric method for analyzing

aerostructures in a preliminary manner. This is essential to the design of such systems.

CAD (Splines)Nodes

FEA (Lagrange poly.)

(a) Traditional FEA.

CAD (CST) = EBM (CST)

(b) Proposed model.

Figure 1.3: Comparison between FEA, CAD, and the proposed Euler-Bernoulli model (EBM).

1.6 Design of morphing structures

Although there has been extensive work in optimizing an aircraft OML to improve overall

performance, most methods have one of the following three drawbacks:
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(i) lack of structural constraints [45, 46, 67, 68],

(ii) lack of a set of analytical C1 geometric representation [49, 68], and/or

(iii) design is optimized for a limited number of flight conditions [3, 9, 42, 46, 48, 67, 68].

Optimized configurations for models that do not consider problem (i) will result in thin airfoils

that are infeasible to manufacture while problem (ii) hinders the implementation of gradient-based

methods or sensitivity analyses. The solution for problem (i) usually involves thickness [9, 68]

and volume [42, 49] constraints on the OML that reproduce internal structural restrictions. High-

fidelity CFD and FEA models an accurately portray the physics of the problem, but this approach

suffers from high computational cost [69]. The structurally consistent CST approach demonstrate

herein addresses the first two problems.

Problem (iii) leads to designs that are highly sensitive to flight condition perturbations and

are likely to underperform for a non-analyzed set of parameters (e.g., angle of attack, altitude,

and aircraft velocity). The last challenge is solved both by explicitly considering morphing as

part of the design search and by utilizing a parametric optimization (e.g., via P3GA [70]) that

calculates the set of non-dominated solutions for a continuous set of varying parameters (i.e.,

flight conditions). Parametric optimization has the potential to become the standard procedure

when optimizing morphing structures as it determines and describes how the optimum changes

as a function of the parameters. Therefore, the performance efficiency of a morphing wing can

be evaluated for all flight conditions and all mission objectives on flight regime and compared to

traditional airfoils, verifying the advantages of adaptive structures relative to their possibly higher

costs, weight, and complexity.

Morphing provides a solution to these design drawbacks by enabling multiple OMLs optimized

for different flight conditions [3]. General aviation can benefit of this technology by increasing air-

craft maneuverability [71] or minimizing drag [3] and noise [72] as shown in Fig. 1.4. Therefore, it

is advantageous for an aircraft to adapt the OML for different flight conditions to satisfy acceptable

performance requirements. This in part motivates the case study of a Cessna 172 with morphing
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wings. The aircraft is suitable testing platform as information regarding the aerodynamic perfor-

mance (e.g. lift coefficients) and mission profiles (e.g. frequency distribution of airspeed and angle

of attack) are publicly available. A reduced-order model of the structural consistent CST equations

with an aerodynamic solver is utilized with parametric optimization to determine the optimal per-

formance for all relevant flight conditions simultaneously. Finally, flight data is leveraged to aid in

the selection of the best concept (i.e., initial geometry).

Figure 1.4: Shock flow field for an F-5E and a modified F-5E developed as part of DARPA’s
QSP [72]. The modified aircraft decreased loudness 6.1% while significantly increasing drag. A
morphing aircraft would enable OML adaptation to minimize fuel consumption or satisfy noise
regulations (two conflicting objectives).

1.7 This study

Considering the previously mentioned challenges in the development of morphing structures,

the following contributions depicted in Fig. 1.5 are proposed herein:

(i) demonstration of an SMA component as an artificial muscle that can be utilized as an actu-

ator, brake, or spring,

(ii) manufacturing and testing of a morphing wing that is controllable and robust performance
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for various environmental conditions,

(iii) formulation of a modified CST Transformation model for multi-component assembly,

(iv) derivation and verification of a two-dimensional structurally consistent framework as a reduced-

order model for morphing structures,

(v) structural optimization of subsonic adaptive wings and determination of the need of morph-

ing technology, and

(vi) development of a finite-deflection reversion beam theory for any geometric parameterization

method.

The remainder of this dissertation is summarized here. Chapter 2 presents experimental and nu-

merical results for SMA-based artificial muscles that motivate their utilization as the driving com-

ponent for morphing wings in Chapter 3. After verifying the feasibility of a morphing wing with

experimental results, models are developed to enable efficient and accurate designs of morphing

wings. The first step is to improve the CST equations to fully represent an aircraft with multi-

ple components and discontinuities (i.e., splines) in Chapter 4. The second step is to incorporate

the kinematic constraints into the parameterization method to develop structurally consistent CST

equations in Chapter 5. The structurally consistent equations enable exploration of the morphing

wing design domain that was not possible in Chapter 3, allowing for performance quantification of

adaptive wings for various flight conditions and initial geometries in Chapter 6. The design studies

motivate future analysis capabilities that incorporate material mechanics and use any parameteriza-

tion method (e.g., CST, CST splines, and power series) to determine the feasible deformed solution

in Chapter 7.
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Figure 1.5: Overview of the main contributions of this dissertation. SMA components are exper-
imentally and numerically evaluated for bio-inspired maneuvering. The first study consists of a
bi-pedal robot with varying gaits as a function of thermal stimuli. The second study is of a camber
morphing wing with skin-embedded SMA components that morph as a function of thermal stim-
uli. The experimental studies are followed by numerical analysis of the morphing wing including
kinematics and constitutive response. A structurally consistent framework is optimized to explore
the design domain of morphing wings. Moreover, a beam model that incorporates kinematics and
constitutive response is developed. Overall, the numerical tools aid the design of future morphing
structures.
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2. EXPERIMENTS WITH BIRD AND ARTIFICIAL MUSCLES

2.1 Background

In traditional engineered systems, actuators, brakes, and structural members represent distinct

components. In contrast, when an animal moves through its environment, all such functions can

be performed by a single integrated musculoskeletal system [73]. Dynamic variation in functional

demands is common to all forms of animal locomotion, but is an extreme feature of powered flight

[16]. Birds dynamically adjust the shape and position of their wings to tailor performance to atmo-

spheric conditions such as high winds [17, 18], and while capturing prey and gliding [19]. Insight

into “wing morphing" adaptations that accommodate changing conditions is a major design target

for improving aircraft performance. An important mechanism believed to be responsible for shape

change in the wing is the elbow motion [74] driven by two triceps muscles, the humerotriceps

and scapulotriceps. Theriault et al. [75] determined that in the humerotriceps muscles of pigeons

(Columba livia), the timing of neural stimuli relative to the muscle length cycle (hereafter “phase

offset") affected the production of mechanical power (Fig. 2.1a). Electrically stimulating the mus-

cle just before attaining peak length resulted in actuation, whereas nearly all other phase offsets

resulted in either dissipation (a brake) or low hysteresis (a spring). This observed multi-functional

capability of a single wing muscle raises the question of whether human-designed systems can be

designed to shift among functional roles with minimal changes to applied stimuli.

The design gap between natural and engineered systems [76] can be bridged by using smart

materials such as shape memory alloys (SMAs). Because the functional role of skeletal muscle

is dependent on phase offset [77–79], we sought to determine how SMA systems respond to

phase offset of supplied thermal stimuli. We first performed experimental studies to measure the

mechanics inherent to an SMA system. This revealed that an SMA system can have negative,

neutral, and positive work-loops in a fashion that emulates those shown by skeletal muscle, namely

the humerotriceps muscles of pigeons [75]. We performed numerical investigations to determine
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Figure 2.1: Setup for experiments with humerotriceps muscles of pigeons and SMA actuators. a,
the humerotriceps muscle originates on the head of the humerus, and the insertion was attached to a
servo motor arm for work loop measurements. The dorsal branch of the brachial nerve was draped
over two hooked electrodes and received electrical impulses to stimulate the muscle [75]. b, the
engineering actuator consists of an equiatomic nickel-titanium wire attached to a loading frame
responsible for the strain stimuli via insulated grips on each side. c, schematic of the electric and
mechanical inputs for work-loop studies. d, isometric twitch of the pigeon humerotriceps muscle
(7) and block force of a nitinol wire reveal similar asymmetry in force onset versus force offset.

what potential advantages are available for engineering applications by tuning the force dynamics

of shape memory alloys, a common mechanism found in nature [80].

2.2 Methods

2.2.1 SMA artificial muscle setup

All experiments utilize the setup depicted in Fig. 2.1 and are here described. Two stimuli, an

electrical and a mechanical, were imposed on the SMA wire. The electrical stimulus in the form

of voltage was directly applied to the wire to increase temperature via Joule heating; cooling is

provided via natural convection. Type-K thermocouples are utilized to measure temperature, and

two ABS 3D-printed connectors were used to electrically insulate the load frame from the nitinol

wire. The mechanical stimuli in the form of displacement were controlled through an MTS Insight

tensile testing machine, and a 100 N loadcell measured force. The strain is defined as a cosine
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wave with the same frequency as the electric pulse wave, which is further defined by duty, phase

offset, and amplitude. Five cycles are imposed for each work-loop, and only the last three are

studies to remove outliers.

2.2.2 Bipedal compass model

A notable model explaining the natural motions resulting from the interplay of gravity, in-

ertia, and elasticity is a spring-loaded inverted pendulum model that closely reproduces running

gaits [81, 82]. Specifically, we utilized the model by Remy and coworkers, as shown in Fig. 2.2a,

which has extensively been utilized for various gait problems [83–85]. Incorporated into this is the

high-fidelity SMA constitutive model for the leg components [13, 86] (see section 2.2.4) in spring

form (see section 2.2.3).

The SLIP model consists of the main body with massMb, two legs with massMl and stiffnesses

kleg,l and kleg,r, and an elastic torsional spring between both legs with stiffness kswing (omitted

from the figure). Leg mass is neglected, and each leg has an SMA compression spring element

of length, ll and lr, and undeformed length lo. The system is defined by the coordinates (x, y) of

the center of mass as well as the pitch angles αl and αr for the left and right legs. As typical for

bipedal locomotion, all results are normalized based on body size dimensions [87]. If no energy

is dissipated, an angular frequency ωswing of the leg motion is guaranteed by defining the torsional

spring stiffness as:

kswing = ω2
swingMll

2
o . (2.1)

During locomotion, at most one foot at a time can be in contact with the ground, and no-

slip conditions are assumed. During contact, the angle and length of leg i is defined through

αi = arctan [(lx,i − x)/y] and li =
√

(x− lx,i)2 + y2 , where lx,i is the x-component of the spring

length, and the reaction forces are:

Fx = kleg,l(ll − lo) sinαl + kleg,r(lr − lo) sinαr ,

Fy = kleg,l(ll − lo) cosαl + kleg,r(lr − lo) cosαr .

(2.2)
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examples. Concept analysis requires the coupling of the following models: a, a dynamic model
for the transient bipedal locomotion for a variable stiffness spring (parameters: kleg,l, kleg,r, kswing,
and M ), b, a phenomenological model coupling local strain to spring displacements (parameters:
r, R, and N ), and c, a one-dimensional constitutive model for the thermomechanical response
of the SMA material. d, the resultant states for systems- (location and velocity of the robot),
actuator- (force and displacement), and material-levels (stress, strain, and temperature) for a con-
stant temperature (T = 390 K), and e, for a cyclic thermal stimuli (To = 387.8571, ∆T = 2.8571,
θr = 0.5143, θl = 0.9000, and frequency of 0.7429/
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log Hz)

16



However, when not in contact, the leg is assumed to be at the rest length lo. The transition in

between contact and no-contact is defined by Gan et al. through a series of events (e.g., take-off

and touchdown) [83].

The trajectory of the robot center of mass in the state space was not imposed to understand the

dynamic interplay of all acting physical phenomena and their role in generating efficient mechanics

observed in gait [88]. Contrary to the experiments in Figs. 2.1 and 2.3, the strain and stress paths

were not known a priori and were calculated as the robot advanced. The governing equations are

the following 2nd-order ordinary differential equations: [83–85]

ẍ = Fx/Mb ,

ÿ = Fy/Mb − g ,

α̈l =
1

l2oMl

[−ẍMl lo cosαl − (g + ÿ)Ml lo sinαl − kswing αl] ,

α̈r =
1

l2oMl

[−ẍMl lo cosαr − (g + ÿ)Ml lo sinαr − kswing αr] .

(2.3)

In the state space, the four governing equations can be constructed in the canonical form of

eight 1st-order differential equations that are fully defined by {x, ẋ, y, ẏ, αl, α̇l, αr, α̇r} and inte-

grated via a 4th-order Runge-Kutta scheme, calculating all states variables as shown in the first col-

umn of Figs. 2.2(d) and 2.2(e). The initial conditions were taken from the work of Gan et al. [83],

and the resultant elastic gait is classified as a “running forward symmetrical single stance." The

robot parameters and initial conditions are provided in Table 2.1. Spring stiffnesses are calculated

for each instance of time for the instantaneous thermomechanical states, as is explained in the

following sections.

2.2.3 Spring model

Nitinol can only generate at most 6% recoverable extensional strain [89] and would not provide

sufficient compliance if formed into the most common wire/rod configurations [90]. An SMA

spring was utilized among any possible options for balancing force against displacement [91]. The

17



nitinol components along an SMA spring are undergoing pure shear that is not uniform along the

wire radius. For engineering purposes, the constitutive model for the cross-section of the SMA

wire is defined based on an effective shear stress τ̄ and strain γ̄ via:

τ̄ = Gγ̄ (2.4)

where G is the shear modulus. Force F and displacement u at the systems level are associated to

the local τ̄ and γ̄ of the SMA springs through: [91]

F =
2πr3

3R
τ̄ ,

u =
8πNcR

2

3r
γ̄ ,

(2.5)

where R is the spring radius, r is the wire radius, and Nc is the number of coils; alongside the

undeformed length lo, these four parameters fully define the spring geometry as shown in Fig. 2.2b;

the selected parameter values are depicted in Table 2.1. Examples of spring force and displacement

when functioning as a brake or an actuator are provided in the second column of Figs. 2.2(d)

and 2.2(e).

2.2.4 SMA model

The constitutive model elaborated by Lagoudas et al. [13] is implemented to describe the SMA

response. The lumped-parameter model originally developed for tension [90] is modified for shear

strain. The model considers three external state variables: effective shear stress τ̄ , effective shear

strain γ̄, and absolute temperature T . Two internal state variables are also considered: effective

inelastic transformation strain γ̄t and martensitic volume fraction ξ. For this chapter, temperature is

known, while stress is calculated through linear and angular momentum conservation. Considering

that the shear modulus for autenite and martensite phases are different, the effective shear is given

by:
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γ̄ =

[
1

GA

+ ξ

(
1

GM

− 1

GA

)]
τ̄ + γ̄t . (2.6)

Crystal structure transformation only takes place at specific thermechanical states according

to the transformation direction, forwards from austenite (ξ = 0) to martensite (ξ = 1) or reverse

from martensite to austenite. The region where transformation is possible is defined through trans-

formation functions Φrev and Φfwd as depicted in the third column in Figs. 2.2(d) and 2.2(e). The

relation between the evolution of effective transformation strain γ̄t and evolution of martensitic

volume fraction is given as:

˙̄γt = ξ̇


sgn(τ̄)Hcur(|τ̄ |) ξ̇ > 0

γ̄t−r/ξr ξ̇ ≤ 0

, (2.7)

where γ̄t is the effective transformation strain at transformation reversal, ξr is the martensitic

volume fraction at transformation reversal, and Hcur(|τ̄ |) is the current effective transformation

strain. The current effective transformation strain is given by the following piecewise equation:

Hcur(|τ̄ |) =


Hmin |τ̄ | > τcrit

Hmin + (Hmax −Hmin)
(
1− e−κ(|τ̄ |−τcrit)

)
|τ̄ | ≤ τcrit

, (2.8)

where Hmin, Hmax, κ, and τcrit are material parameters. Other parameters considered in the model

are: the transformation temperatures (As, Af , Ms, and Mf ) that determine where transformation

occurs when load-free, the slopes of the reverse and forwards transformation surfaces (CA and

CM ), and the hardening parameters (n1, n2, n3, and n4) that determine the smoothness in the tran-

sition between transformation and thermoelastic loading. An in-depth description of each variable

is provided by Lagoudas et al. [13], and selected parameter values are provided in Table 2.1.
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Compass-gait
parameters

M 10 kg
g 9.81 kg m/s2

lo 1 m
ωswing 7

Spring parameters
r 1.8 mm
R 5.5 mm
N 113

SMA constitutive
model parameters

GA 14.4 GPa
GM 34.2 GPa
Ms 380 K
Mf 376 K
As 381 K
Af 385 K
CA 7.20 MPa/K
CM 7.95 MPa/K
Hmin 0
Hmax 0.055
κ 4.68 GPa−1

τcrit 0 Pa
n1 0.18
n2 0.18
n3 0.15
n4 0.29

Compass-gait initial
conditions

(non-dimensional)

xo 0
ẋo 1.4709
yo 0.9053
ẏo -0.3840
αl,o -0.4528
α̇l,o 1.1412
αr,o 0.4387
α̇r,o -1.1684

SMA initial
conditions (both

springs)

ξo 0
εto 0
σo 0
εo 0

Table 2.1: List of parameters utilized for numerical simulations.
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2.3 Results

2.3.1 Artificial vs. natural muscles

The experimental setup for the investigation of artificial muscles includes an equiatomic nitinol

wire subject to tensile loading via an MTS Insight tensile testing machine and electrical stimuli via

Joule heating as depicted in Fig. 2.1d. This setup is capable of timed mechanical and electrical

stimuli to the SMA wire, reproducing the studied stimuli on humerotriceps muscles [75].

We first assessed the transient response of SMA systems to electrical stimuli (Fig. 2.1d). Sim-

ilar to the isometric twitch investigation performed by Theriault et al. [75], we subjected SMA

specimens to a block force test; here, the specimen lengths were held constant while a pulse of

electrical stimulus was applied. This initial assessment indicated clear similarities between nitinol

wire and pigeon triceps muscle responses, particularly in the asymmetry in force onset vs. offset,

which then motivated the investigation of other shared functionalities.

In cyclic operation (Fig. 2.1c), a stimulated muscle contracts and produces force, which can

either provide positive work by shortening or can provide negative works as it resists lengthen-

ing [77]. Muscle performance in animals is influenced by muscle length, velocity, stimulation

intensity and timing, and imposed force change during a cycle [16]. In situ work-loops, as de-

picted in Fig. 2.3a and 2.3b, estimate the in vivo output work for biological muscles. Varying the

phase offset between the mechanical and electrical cyclic stimuli alters the net work produced. A

positive work cycle, counterclockwise in the force-displacement (stress-strain) space, corresponds

to the muscle functioning as an actuator. Negative work, clockwise in stress-strain space, equates

to a dissipative brake. Although not considered explicitly herein, the muscle can also result in zero

net work cycles similar to a spring if its stress-strain response is non-hysteretic. Therefore, the

humerotriceps can function as a brake, actuator, or a spring with variable compliance depending

on activation properties [75].

The exploration of work-loops in the SMA wire expanded upon the previous block force testing

by instead imposing a cyclic strain with an amplitude of 0.02 within each of three frequency treat-
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ments. Timed Joule heating represented the imposed actuation stimulus while cooling occurred

via forced convection. The stimuli frequencies studied were based on the explored frequencies

by Theriault et al. [75] and adjusted to consider the intrinsically different time scales between

the natural and artificial muscle responses (cf. Fig. 2.1d). Considering this setup, the influence

of frequency (29, 40, and 48 mHz), duty cycle (50 and 69%), and phase offset (-25, 0, 25, and

50%) were experimentally explored. The mechanical results for one of the evaluated cases are

depicted in figure 2.4 to demonstrate the cyclic response as a function of time. Similar to Theriault

et al. [75], the first two cycles are neglected to consider results with reproducible heat transfer (i.e.,

the same temperature at the end of each cycle). The majority of experiments lead to reproducible

cycles, whereas the case here depicted has the most variability. The applied stimuli, figure 2.4a,

result in the stress output depicted in figure 2.4b and 2.4c. The net work for the depicted work-loop

is positive, characterizing an actuator.
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It was expected that the SMA wire would behave as a brake for most explored cycles given the

dissipative nature of many mechanic cycles previously explored [92]. This behavior was observed

for phase offsets 25% and 50% for the work-loop cycles depicted in Figs. 2.3c and 2.3d. However,

if the electrical stimuli was timed to phase offsets between -25% and 0%, the work-loops evolve

in a counterclockwise manner, corresponding to positive net work output. Therefore, it is possible

to utilize the same SMA wire as a brake, structural member, and actuator solely as a function of

thermal stimuli.

The overall similarity in work loop shape and direction motivated us to determine how strong

the phase offset effects are on power output in both natural and artificial materials. We evaluated the

non-linear monotonic relationship between stimulus parameters and net work using the Spearman

rank correlation factor rs [93].∗ Similar to natural muscle systems, the phase offset of the thermal

stimuli on SMA is strongly correlated to the resultant power output with rs = −0.75. The effects of

frequency and duty cycles were not significant for the explored ranges† with respective Spearman

rank correlations of -0.03 and -0.04. This predominant dependency on stimuli phase offset is

similar to that observed by natural systems [75]. For the pigeon humerotriceps, the Spearman

values for phase offset, frequency, and duty cycle were -0.49, -0.30, and -0.01. Considering all

the experimental results for natural and artificial muscles, the same trends are noticeable regarding

specific power. Fig. 2.3e depicts the data for varying frequencies, duty cycles, and phase offsets

solely as a function of phase offset and specific power. Both systems are mostly dependent on

the phase offset and act as an actuator for approximately the same phase ranges, a similarity that

motivated us to further explore the use of SMA components as artificial muscles.

∗rs ∈ [−1, 1] where negative values indicate an inversely proportional relationship. Correlations are qualifies as
“very weak" (rs ∈ ±[0.0, 0.2[), “weak" (rs ∈ ±[0.2, 0.4[), “moderate" (rs ∈ ±[0.4, 0.6[), “strong" (rs ∈ ±[0.6, 0.8[),
and “very strong" (rs ∈ ±[0.8, 1.0[).

†Higher values of frequency and duty cycles were not explored because they would lead to higher temperatures,
and, as a result, the nitinol wire would predominantly act as an elastic structural component.
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2.3.2 Robotics application to multifunctional SMA components

All results hitherto indicate that SMA components enable tailored structural properties in

cyclic applications. Previous studies have aspired to develop various potential engineered sys-

tems mimicking biological counterparts and have implemented SMA components in biomimetic

jellyfish [94,95], birds [28,90], earthworms [96], human-like anatomical systems [97], and others.

However, previous studies did not explore the multifunctional potential of SMA components as

inspired by natural musculoskeletal systems. We examined the prospect of SMA for non-smooth

systems [98], specifically bipedal locomotion [99]. This locomotor mode is of interest for bioin-

spired engineering because in animals it allows for the exploration of challenging habitats that are

not currently accessible by wheeled and tracked vehicles [100]. Simple rigid bipedal robots can

achieve some necessary gaits [101, 102], but timed and tailored compliance plays an essential role

in nature [103] by allowing energy storage and release as well as improving passive adaptabil-

ity [104].

The compass gait model from Gan et al. [83] is non-dimensional, but a leg length and body

mass of 0.526 m and 10 kg are assumed for calculating the mechanical state of the SMA wire cross

section. The leg length of the 10 kg robot was selected based on the avian leg length to body mass

correlation from the work of Daley and Birn-Jeffrey [105] as shown in figure 2.5a. The utilized

leg length is 50 % above that of a child with equivalent body mass. For the selected dimensions,

the SMA component can achieve actuation frequencies beyond the robot stride frequency with the

proper combination of parameters as shown in figure 2.5b. The maximum actuation frequency is

inversely proportional to the body mass times a coefficientA as derived in appendix A. As the body

mass of the robot increases, the maximum actuation frequency decreases for the same coefficient

A, corresponding to a constant set of parameters (e.g., heat transfer, spring design, operation, and

others). Parameters such as the spring index C, typically between 4 and 25, can significantly

impact the maximum actuation frequency as shown by the gray line in figure 2.5b. The developed

frequency-mass relation, Eq. A.7, and the Daley and Birn-Jeffrey correlation can be combined

to determine the maximum actuation frequency for the selected robot parameters as a function of
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Figure 2.5: Scalability of the SMA-based robot in regards to dimensions, mass, and frequency.
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ages 5-19 provided by the World Health Organization (WHO). b, maximum actuation frequency
of SMA spring relative to robot body mass for bi-pedal locomotion. The relation between both
metrics is derived in appendix A.

mass as shown by the magenta line in figure 2.5b. Overall, SMA components can function for

bipedal locomotion for the explored frequency, body mass, and leg length domains.

In the field of robotics, sinusoidal stimuli can generate gaits that are similar to those found in

nature (e.g., running of a cockroach [108]). Moreover, sine wave inputs have also been employed

for natural muscles (e.g., angle extensors in wild turkeys [78]). Therefore, we used sinusoidal

thermal stimuli for our robot prototype [78]. The sinusoidal temperature imposed on each leg

has the same frequency, amplitude ∆T , and mean temperature, but the phase offsets, θr and θl,

are different. A solution where the SMA components have opposite functions (i.e., actuator vs.

brake) is depicted in Fig. 2.6b and 2.6c. As the robot walks, the martensitic volume fraction ξ

of the springs varies when in contact with the ground. All cases explored represent only partial

transformation (ξ < 20%), which is beneficial to the component fatigue life [109, 110], and thus

26



t = 0.54t = 0 t = 0.22 t = 0.38 t = 0.95

t = 1.32 t = 1.54 t = 1.76 t = 1.97

(4)(1) (2) (3) (5)

(6) (7) (8) (9)

SMA spring (right leg)SMA spring (left leg)

T
he

rm
al

 in
pu

t
M

ec
ha

n
ic

al
 o

ut
pu

t

(4)

(1)

(2)
(3)

(5)

Strain

b

c

d

Actuator

Active leg: right

Active leg: left

(6)

(7)

(8)

(9)

Strain
0.005 0.01

Brake

θr

Δ
T

θl

Left

Right

Left

Right(2)

(4)

(7)
(9)

Full
Austenite

20%
Martensite

Center of Mass v
a

αrαl

SMA spring
(right)(left)

SMA spring

Te
m

pe
ra

tu
re

 (
K

)

Te
m

pe
ra

tu
re

 (
K

)

σ
 (

M
P

a
)

Stride TimeStride Time

σ
 (

M
P

a
)

0

50

100

150

2.52.01.51.00.50
385

390

395

2.52.01.51.00.50
385

390

395

0.005 0.010

50

100

150
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various states of the transient locomotion of the robot. The mechanical output for each state is also
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utilize only a fraction of the contracting capability of the artificial muscle (10%) similar to muscle

fibers constrained by joints (20%) [15]. These results demonstrate that an SMA component can

preserve or dissipate energy to achieve more natural gaits with a simple mechanism, not requiring

the use of other components such as latches [111].

The real value of utilizing SMA components is the tuning capability [112] resulting from phase
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increase velocity and two brakes decrease velocity).

transformation; this is elucidated in Fig. 2.7. Changes in time-variant temperature stimuli can result

in different features than those depicted in Fig. 2.6. If the thermal amplitude is fixed at ∆T = 5K

and only the right leg phase offset is varied, the compression springs operate as various combina-

tions of brakes, structural members, and actuators, as shown in Fig. 2.7a. Therefore, the thermal

stimuli can be modified such that energy is provided to drive locomotion or dissipated based on en-

vironmental conditions (e.g., terrain and gust) or maneuver objectives (e.g., trajectory and velocity

requirements). Some applications only require a dissipative functionality, but benefit from vary-

ing dissipation magnitude [112]. By decreasing the thermal stimuli amplitude, multiple tunable
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brake configurations are possible that are a function of a single parameter. A direct consequence of

varying the net cyclic system energy is a decrease or increase of the robot instantaneous velocity,

as depicted in Fig. 2.7b. Note that all results herein depicted (cf. Figs. 2.6 and 2.7) are for spe-

cific robot and spring specifications; more general design studies may identify other responses of

interest.

The obtained mechanical results in figure 2.7 can also be utilized to provide insight on how the

mechanical states (i.e., stress, strain, and power) change along with the stride and the reason why

the SMA component acts as a brake or an actuator. The upper and lower bounds of all evaluated

SMA responses are provided in figure 2.8a in a similar fashion as the bird gait study by Higham et

al. [113]. While the actuator and brake strains are similar, the stress significantly differs at the end

of the stride, from 70% to 95%. As a consequence, less power is generated at the end of the stride

for a brake SMA component. Any stimuli combination will add or subtract energy throughout the
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stride regardless of whether the net work is positive or negative. Even for the case of a linear spring

where the net work is zero, negative and positive instantaneous power is experienced as shown in

figure 2.8b. Comparing the actuator and brake performances relative to the linear spring as shown

in figure 2.8c provides further insight why some stimuli result in actuators. Actuator solutions do

not decrease the strain and stress at the end of the cycle relative to the zero-work performance,

resulting in more energy being added rather than subtracted as for most brakes. Therefore, the

SMA spring can increase power at specific points of the stride provided timely stimulus is applied,

leading to a narrow set of solutions with net positive work.

2.4 Remarks

That skeletal muscle can achieve multifunctionality, transitioning between actuator, brake, or

spring-like behavior, via changes to stimulus phase has been well established [16, 75, 78, 79]. De-

spite engineering efforts to mathematically characterizing biological systems capable of this multi-

functionality [114], no study had heretofore reproduced this feature for an engineered system. We

explored the capabilities of shape memory alloys as artificial muscles based on the similarity of the

mechanical response of phase transformation with muscle fiber phenomenology [15]. Through ex-

perimental and numerical studies, we observed highly similar trends in work and power output in

response to the phase offset by skeletal muscles and SMA-based artificial muscles. Both systems’

work-loops were highly sensitive to the phase offset of the electrical input, indicating that energy

output can be tailored during operation by shifting the stimulus phase.

Comparing the performance capabilities of skeletal muscle and shape memory alloy reveals

these materials have a similar capacity for braking and actuation under different stimulus phases,

despite substantial differences in actuation frequency. In Fig. 2.9, we provide a comparison of

work-related properties of SMA and skeletal muscles that have been examined in the context of

phase offset to timed stimuli: hawkmoth dorsolongitudinal [115], zebra finch pectoralis [116], and

pigeon humerotriceps [75] muscles. Although the SMA specimens examined herein operated at

slower strain rates than typical skeletal muscle, thin-wire preparations of SMA [89] allow higher

frequency oscillations that approach the operating frequencies of skeletal muscles. The work and
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power output of SMA shows as broad a range as that for skeletal muscles, albeit with a slightly

narrower range of work density (J/kg) and a slightly broader range of power density (W/kg). More-

over, SMA shows as strong of a tunability via phase compared to the primary muscles that power

flight in hawkmoths and birds, and a stronger relationship between power and phase than that in

the pigeon’s humerotriceps. Collectively, each of these materials affords control authority over

functional output, which can be tuned via phase offset adjustments. What is especially promis-

ing is that shape memory alloys show a greater range of work per unit mass over studied ranges,

indicating that SMA is a valuable material if adaptive changes to the magnitude of force or work

production are the design target.
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3. EXPERIMENTAL STUDY OF MORPHING WINGS∗

3.1 Background

The allure of morphing wings is their potential to increase overall aircraft aerodynamic perfor-

mance. Replacing traditional control surface actuators with morphing components can lead to a

6.5% increase in the lift-to-drag ratio relative to discrete surface actuators [8]. Furthermore, con-

cepts that consider morphing wings in the design of glider wing sections have been predicted to

increase the lift-to-drag ratio by approximately 30% [8]. However, technical limitations such as

high energy requirements, manufacturing difficulties, and modeling complications have hindered

the adoption of the concept. In the context of actuating morphing, shape memory alloys (SMAs)

are an enabling material due to their high energy density [118]. The current state of the art for

monolithic and composite SMA actuators offers the possibility to overcome previous shortcom-

ings. Therefore, a novel composite SMA actuator and multiple wind-tunnel tested prototypes are

developed to explore the morphing concept once again.

A conformal surface enables different outer mold lines (OMLs) that are favorable to specific

flight conditions, allowing for non-traditional designs such as avian-inspired airfoils. Most bird

wings are the result of natural selection where the evolutionary objectives include reduced energy

consumption via aerodynamic efficiency [119]. The work of Bansmer et al. [119] and Liu et

al. [120] developed avian-inspired airfoils based on the wing section geometry of ducks, seagulls,

mergansers, teals, owls, and hawks. Although all species differ regarding aspect ratios, wingspan,

and other geometric properties, all studies indicate that bird and insect wings have low-efficiency

factors at high Reynolds numbers compared to conventional airfoils [121]. Therefore, the use of

such wing geometries with high camber and maximum thickness so close to the leading edge is

∗Reprinted with permission from: (1) "Skin-based camber morphing utilizing shape memory alloy composite
actuators in a wind tunnel environment" by Leal, P., Stroud, H., Sheahan, E., Cabral, M., and Hartl, D., 2018, AIAA
Scitech; (2) "Experimental and computational assessment of a shape memory alloy based morphing wing incorporating
linear and non-linear control" by Leal, P., Goecks, V., White, T., Valasek, J., and Hartl, D., 2018, AIAA Scitech; and
(3) "Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section" by Stroud,
H., Leal, P., and Hartl, D., 2018, SPIE.
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unsuitable for the typical cruise velocity of modern aircraft. A method to change the OML during

flight is necessary to enable avian wing use for a large aircraft designed for high-speed flight

conditions. Because of these advantages, morphing capabilities are explored for avian-inspired

platforms.

Previous experimental work from Strelec et al. [122] indicates that SMA wires can be utilized

for morphing the OML. However, in that example, substantial structural compliance of the airfoil

section was required to enable morphing, and the actuator mechanism occupied a large portion

of the wing volume. Monolithic SMA actuators embedded at the wing skin minimizes the loss

of internal volume while also maintaining wing rigidity. As the SMA wires are heated, the con-

traction of the actuators modifies the outer mold line of the wing; the new geometry will improve

aerodynamic performance in other flight conditions. A similar concept is explored in this chapter,

but composite actuators are utilized instead for various reasons.

This chapter intends to demonstrate the feasibility of morphing wings through experimental

testing of various prototypes in multiple controlled environments, as shown in 3.1. Each experi-

ment is performed to satisfy one of the following requirements:

• Design flexibility (section 3.2): the actuator embedded in the skin shall have a tailorable

thermomechanical response for each application. There is a trade-off between generated

force and displacement or input energy. Therefore, a tailorable composite actuator is pro-

posed, manufactured, and tested. All following prototypes utilize versions of the composite

actuator.

• Controllability (section 3.3): the mechanical response of the morphing wing has geomet-

ric and constitutive nonlinearities, posing a challenge to traditional control algorithms. A

single-actuator, rapid prototype wing shall demonstrate controllability and robustness to en-

vironmental fluctuations. Two non-linear control strategies are developed.

• Scalability (section 3.4): the morphing wing concept shall function independently of the

scale of the prototype, the number of actuators, the airfoil, and the material composition of
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Figure 3.1: Overview of requirements, prototypes, and tests. A different prototype and set of
tests are utilized to demonstrate each of the following requirements: tunability, controllability, and
scalability. A composite actuator concept is tested to demonstrate that the generated force from
the SMA component can be tuned via simple geometric properties. Control laws are developed
for a 3D printed prototype with an SMA actuator in a wind tunnel environment to demonstrate
controllability. Finally, a 6-foot wing with 12 actuators is tested to demonstrate scalability.

the platform. Therefore, a 4 ft long composite avian-inspired wing that utilizes 12 actuators

is manufactured, instrumented, and tested in a wind tunnel environment.

3.2 SMA composite actuator

A robust actuator is required to produce the desired morphing effect on the wing. This actuator

must generate a force capable of inducing necessary displacements to achieve the desired OML.

Other requirements for the actuators are that they must be easily attached to the wing itself, present

a continuous and smooth OML, be easy to manufacture, and allow local tailoring of actuator ther-

momechanical properties. The use of elastomers embedded with SMA wires proposed by Peraza

Hernandez et al. [57] enables design flexibility of generated force and power consumption to the

local actuation needs. As a consequence of the inherent advantages of these composite actuators

and morphing, the fabrication and implementation of the actuators depicted in Fig. 3.2 are assessed.
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Figure 3.2: Concept of the composite SMA actuator.

Shape memory alloys have a high energy density and high actuation stress, but they also have

poor energy efficiency, and thermal management can be difficult at the system level. Therefore,

for applications that do not require high force, minimizing the volume of SMA while generating

enough strain is essential [5]. Integrating an insulating matrix with SMA components to form a

unique composite structure also decreases total actuator density and power requirements relative

to a monolithic SMA component [118]. There is a great diversity of possible matrix materials

for embedded SMA composites such as aluminum honeycomb [123], silicone [124], graphite-

Epoxy [125], Epoxy-Kevlar [126, 127], Epoxy-glass [128], Polydimethylsiloxane (PDMS) [129],

and bulk Epoxy [130,131]. Therefore, an engineer has multiple options to select a material matrix

that tailors actuator properties such as stiffness-to-weight ratio and thermal conductivity [118].

PDMS elastomer matrix does not hinder the generation of actuation strain but is not suitable for

applications with high shearing forces [118]. Because the force requirements for the morphing

wing are not high, PDMS is utilized as the matrix material.

There are a plethora of papers about SMA composite applications in the pursuit of variable

natural frequencies [127,128] and stiffness [131] of a structure. Similar to the current effort, some

authors have explored the use of SMA composites for morphing. Villanueva et al. [124] embedded

SMA wires into a jellyfish-inspired structure, where the matrix material was RTV silicone. Choi
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et al. [130] explored the advantages of active buckling for an epoxy beam with an embedded SMA

wire. Balta et al. [126] demonstrated the capabilities of strain-stabilizing feedback control for an

Epoxy-Kevlar composite. Despite all previous work, this is the first time an active SMA composite

is utilized for morphing the outer mold line (OML) of a wing.

3.2.1 Design and fabrication

The SMA composite actuator is manufactured using a mold casting method. The cast part is

designed so that its outer surface is flush with the wing surface when installed and also features

a method of attachment to the wing via dowel pins. A fixed (cf. Fig. 3.3a) and adjustable (cf.

Fig. 3.3b) molds were designed and fabricated. The pins are inserted into the mold through a

clearance fit hole, allowing them to be easily removed for cured part removal from the mold.

SMA wire is cooled to ensure a complete martensite state before it is wrapped around the dowels,

manually tensioned, and secured. Once secure, liquid PDMS is poured into the mold and set to

cure as depicted in Fig. 3.3a, forming a compliant matrix that surrounds the wire tensile actuators.

The curing process is accelerated by heating the casting in an oven at 60◦C, a temperature that

increases curing speed but is insufficient to actuate the SMA wires. The cured part is then released

from the mold by depressing the dowels fully through the aluminum mold and separating the cured

composite actuator from the mold. The final result is depicted in Fig. 3.4a. The manufactured

actuator is stiff along the intended actuation direction and compliant in the transverse direction.

The active component composed of a nitinol wire embedded in a PDMS matrix is depicted

in Fig. 3.4. The pre-tensioned SMA wire wraps around rows of metal dowels to form a web

configuration that allows ease of manufacturing and installation. The pre-tensioning of the wires

is necessary so that the individual segments are straightened, but the SMA is not detwinned. This

concept also allows for design flexibility such that the force and deflection provided by the actuator

vary based on the distance between dowels. Decreasing the distance between dowels leads to an

increase in effective SMA cross-section within the actuator and increased generated force. On the

other hand, increasing the distance between the dowels increases the in-plane angle between SMA

wires, increasing the resultant actuator strain. This design also allows for ease of assembly in that
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Figure 3.3: Molds to fabricate composite SMA actuator.

the wing has matching metal dowels to allow the actuator to be installed on the final morphing

wing.

Intended direction of actuation

Holes for 
attaching 
to dowel 
pins in 
morphing 
wing.

(a) Top view.

(b) Side view of the assembled actuator.

Figure 3.4: The fabricated composite SMA actuator.

3.2.2 Actuator characterization

Material characterization of the SMA wire, actuator, foam, and composite material was per-

formed to determine the properties needed to develop a high-fidelity model of the wing for the

structural analysis-driven design of the actuator configuration and placement. Differential scan-

38



ning calorimetry (DSC) was executed to estimate the zero stress transformation temperatures as

Mf at 5.6◦C, Ms at 29.9◦C, As at 58.9◦C, and Af at 77.1◦C. Because the final martensitic trans-

formation temperature is below room temperature pre-stress, it is necessary to have an actuator

with repeatable, cyclic stroke. The SMA wires were provided by SAES [132], have a 0.5 mm di-

ameter and can generate up to 33 N when fully actuated. The tests consisted of heating the SMA

to a temperature sufficient to ensure a fully austenitic phase, loading to the desired stress level

(e.g., 100 MPa in Fig. 3.5a), cycling the temperature back down to martensite below Mf , and then

back to well above Af once again. The SMA wire was subjected to constant force tests, shown

in Fig. 3.5a, as described in ASTM WK55902 [133]. Utilizing the SMA wire force as nominal,

the total theoretical force and displacement of the composite actuator is determined by the number

of dowels and the distance in between dowels, as shown in Fig. 3.5b. The selected dimensions

for the composite actuators are 25.4 cm (10 in) in the spanwise direction and 20.2 cm (8 in) in the

chordwise direction (e.g., SMA wire).
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Figure 3.5: Force generated by SMA wire (experimental) and composite actuator (theoretical).

After performing thorough material characterization for the wire, it was important to test its
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performance when embedded into the composite. Thus, the same tensile tests mentioned for the

SMA wire were performed for an actuator. At the same stress level of 100 MPa and temperature

ranges, the martensite and austenite effective Young’s modulus were obtained (EM = 32.96 GPa

and EA = 67.18 GPa). These results showed very little difference from those for the SMA wire.

Further testing was undertaken to evaluate how much force each actuator could generate in similar

conditions to the intended application. The actuator displacement was fixed, and the wires were

heated via an electric current. The resultant temperature field can be observed via IR cameras as

shown in Fig. 3.6a. The results at Fig. 3.6b indicate that even an actuator with a sparse amount of

wire can generate more than 400 N.

(a) Infrared measurement of actuator surface. (b) One heating cycle.

Figure 3.6: Blocked force testing.

3.3 Single-actuator platform

The morphing wing concept theory is first verified using one actuator before considering the

multi-actuator design. This more straightforward platform serves to evaluate the ability of the ac-

tuators to morph the wing and to evaluate control strategies. Partial transformation, as opposed

to full transformation between two OML configurations, allows morphing wings to be fully lever-
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aged. Popov et al. [134] effectively explored the partial transformation of two SMA wires attached

to a flexible wing surface in a wind tunnel environment to obtain distinct outer mold lines accord-

ing to flight conditions. Consequently, a control scheme that enables morphing between several

outer mold lines is desirable.

3.3.1 Fabrication of avian-inspired prototype

The avian-inspired wing considered utilizes the F0808 airfoil developed by Bansmer et al. [119]

as depicted in Fig. 3.7. Compared to other airfoils such as the seagull-inspired SG04 [119] and

SD7003 [135] airfoils, there is a larger range of angles of attack for which the hawk airfoil performs

well, even up to 15◦.

y/c
0

0.1

x/c0.2 0.4 0.6 0.8 1.00

Figure 3.7: Hawk-inspired airfoil (F0808) [119].

The morphing wing section prototype is additively manufactured using Fused Filament Fabri-

cation (FFF) and an Acrylonitrile butadiene styrene (ABS) filament. The modifications are made

to accommodate for the actuator, as shown in Fig. 3.8. Part of the wing skin is removed to fit the

actuator without creating a discontinuity at OML. Two cavities are placed to allow the passage of

SMA wires to the voltage source, and two additional inner surfaces extend from the lower sur-

face to attach the actuator to the wing structure. Dowel pins are driven into the inner surfaces,

allowing the actuator to be mounted easily by pressing each of the molded holes over the dowel

pins. Because FFF characteristically results in "ridging" along the build axis of the part, resulting

in non-negligible surface roughness, some amount of post-processing was required in fabricating

the wing. The surface is therefore sanded with the appropriate grit until a satisfactory finish was
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achieved.

Figure 3.8: Prototype of avian wing with an SMA embedded actuator.

3.3.2 Controls

SMA actuators exhibit strong thermomechanical coupling and have a hysteresis during phase

transformation. A model that fully describes the response of most SMA actuators does not have

a simple analytical solution, and multiple experiments are necessary to calibrate it [89]. Conse-

quently, most work related to the control of SMA actuators is experimental or simplifies material

mechanics for a specific application. Velazquez and Pissaloux [136] demonstrated that for rapid

heating, the hysteresis can be neglected, and linear algorithms such as P, PI, and PID are effec-

tive. Ikuta et al. [137] and Ma et al. [138] calibrated a electric resistance feedback controller for

actuator systems utilizing SMA wires and springs via a linear simplification [137] or a neural net-

work [138]. Moghadas et al. [139] showed that reinforcement learning can be used to control the

bending angle of a self-folding sheet with SMA wires. The advantage of the last method is adapt-

ability. Despite an initially expensive training process, the algorithm is capable of lifelong learning

and adapting to changes. Reinforcement learning is explored because a morphing wing will likely

be subject to unknown flight conditions, and SMA properties can change with time. Consequently,

the two control algorithms, gain scheduled PID and reinforcement learning, are implemented for

an SMA system that is exposed to aerodynamic pressure and forced convection.
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Figure 3.9: Control framework for the morphing wing.

As depicted in Fig. 3.9, after the measured displacement is processed through the PID con-

troller, the resulting control output (i.e., a voltage) is applied via the voltage sources. The voltage

supplied, or their lack of, stimulates the actuator, thus controlling the trailing edge displacement.

The laser sensor then measures the new displacement to complete the feedback loop, and this

process is continually repeated to attain the desired reference displacement.

3.3.2.1 PID

Proportional-integral-derivative (PID) controllers are the standard for linear feedback control

algorithms. Many researchers have explored their use for shape memory alloys because of their

simplicity and implementation in tools such as Matlab. Experimental work from Balta et al. [126]

demonstrated that a PID controller suffices to maintain system equilibrium of SMA wires embed-

ded in an epoxy matrix. If incorporated with a gain scheduling, a linear PID can be utilized for

non-linear systems in various environments.

A conventional PID algorithm minimizes the error εb between a reference value (Vr) and a

measured process variable (Vp), which correspond to the reference wing tip displacement and the

measured wing tip displacement, respectively [140]. The resultant control input c is computed

through LabVIEW’s built-in Advanced PID algorithm that is of the form:

c(t) = Kc(Vr)

(
εb(t) +

1

Ti

∫ t

0

εb(τ)dτ + Td
dεb
dt

)
, (3.1)

where Kc is the controller gain, Ti is the integral time, Td is the derivative time, and εb(t) is
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calculated via

εb(t) =
(
fr Vr − Vp(t)

) |fr Vr − Vp(t)|
Vrange

, (3.2)

where Vrange is the reference value range, and fr is the reference value factor. The default range

of Vr was used, and the values of Ti and Td were found empirically and fixed; however, Kc em-

ploys a form of gain scheduling [141] for which the reference value acts as the scheduling variable.

Through experimentation and least-squares regressional analysis, an approximated analytical rela-

tionship between the controller gain and reference value was discovered to be of the form:

Kc(Vr) = ab Vr , (3.3)

where a and b are coefficients determined by the least-squares regression. The difference between

LabVIEW’s Advanced PID Algorithm and the conventional PID algorithm is the reference value

factor and linearity factor. The reference value factor, ranging from zero to one, enables the con-

troller to be more adaptive to reference value response. A value of one maximizes the controller

response to reference value changes, and a value of zero minimizes reference value changes to

favor load-disturbance response. The linearity factor, ranging from zero to one (i.e., with a value

of one generating linear control action), yields a non-linear controller gain that increases as the

error between the reference value and the measured process variable increases. A reference value

factor of one was sufficient to manage load disturbances. However, in actual flight conditions, a

reference value factor less than one would be more appropriate to address the more substantial load

disturbances from turbulence that are not as pronounced in wind tunnel conditions.

3.3.2.2 Reinforcement learning

Reinforcement learning, a sub-field of machine learning, considers a class of algorithms where

an agent interacts with the environment to learn a policy that maps states to actions to maximize

a numerical reward signal, as depicted in Fig. 3.10 [142]. The goal of the learning algorithm is

to adapt the deep neural network parameters that represent the controller to successfully map the
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input deflections to output voltages necessary to move from any arbitrary wing configuration to

another. For the application considered, the agent is the controller, the reward is the aerodynamic

performance, the environment is the morphing wing, states are the readings from the sensors (i.e.,

displacement), and actions are the voltage inputs for the actuators. The authors refer the reader to

Sutton and Barto [142] for in-depth coverage of the topic.

Figure 3.10: Overview of reinforcement learning algorithm.
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Figure 3.11: Deep neural network architecture that maps the current wing configuration to control
inputs.

The network architecture consists of neurons organized as hidden layers. The neural network
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implemented is depicted in Figure 3.11 which also shows how these neurons are connected between

layers, the specific activation functions used after each layer output, and additional operations to

transform the network output. The learning algorithm is evaluated based on the control effort

required to morph, time to go from the initial to the final configuration, and the number of iterations

required to train the learning algorithm to achieve the best performance.

3.3.3 Setup and instrumentation

Experiments were undertaken to evaluate the actuation of the fabricated prototype to demon-

strate the capabilities of the SMA composite actuator and the morphing wing concept for open-

loops. The prototype for the open-loop testing was fixed to an optic table via a grip at the quarter-

chord location, as will be later shown in Fig. 3.13. The free SMA wire ends were connected to

a voltage source. A laser displacement sensor and a ruler are also placed on the optic table to

measure the trailing edge displacement.

The prototype in close-loop experiments is utilized in conjunction with a laser sensor to mea-

sure the trailing edge displacement, a thermocouple to measure the temperature of the SMA wire,

and a voltage source to heat the SMA wire via Joule heating. Experimentation of the prototype is

conducted in a 1 ’ x 1 ’ subsonic wind tunnel that is water-cooled to maintain an approximate con-

stant stream temperature. A steel spar is fitted through to the rectangular cavity shown in Fig. 3.8

and mounted to two end caps inserted into the wind tunnel wall. It should be noted that the dowels

holding the actuator are electrically isolated from the ABS, so current only flows through the wire

and dowels. The mounted wing setup can be seen in Fig. 3.12. The thermocouple is wrapped

in aluminum tape that acts as a grounded Faraday’s Cage to eliminate the electromagnetic noise

emitted by the wind tunnel electric motor. A single National Instruments Data Acquisition Mod-

ule (DAQ) is employed to interface the hardware (e.g., the laser sensor and thermocouple) to the

controller
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Figure 3.12: Single-actuator platform on 1 ’ x 1 ’ wind tunnel.

3.3.4 Results

3.3.4.1 Open-loop

The results obtained are depicted in Fig. 3.13. After four seconds with voltage applied, the

original configuration in Fig. 3.13a morphs into the configuration in Fig. 3.13b. The obtained

trailing edge displacement is 0.5 in (12.7 mm), which is 3.5% of the chord. After 40 seconds

cooling down, the prototype recovers the initial configuration (c.f. Fig. 3.13). Compared to an

equivalent monolithic actuator, the heat necessary for full actuation is considerably smaller because

the SMA wires are a small fraction of the total actuator volume, and PDMS is a poor thermal

conductor. As a result, most of the power utilized is used to heat the SMA wires. The cooling

process was also considerably fast because SMA wires have a high area-to-volume ratio, and the

wires are directly exposed to air at room temperature (the wires are located at the surface).
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(a) Before actuation.

(b) After actuation.

Figure 3.13: Results of morphing wing utilizing SMA composite actuators.
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3.3.4.2 Closed-loop: PID

As stated previously, robustness is a necessary aspect for algorithms implemented for control

surfaces. Robustness is qualified herein as managing to achieve reference values under fluctuations

in aerodynamic loading and convection under dynamic flow conditions. As such, gain scheduling

is calibrated to guarantee that the PID control algorithm can perform various environmental con-

ditions. Additionally, SMA behavior during a complete cycle of actuation is characterized by

a unique hysteresis loop when comparing strain and temperature of the SMA, where strain in

the scope of this topic can be equated to the trailing edge displacement. Suppose the PID con-

troller is robust enough to manage the non-linearity of SMA. In that case, it is expected that the

displacement-temperature curve from measured laser and thermocouple data also exhibits the hys-

teresis behavior. Fig. 3.14 shows that the constitutive relationship between displacement (i.e.,

strain) and temperature is upheld by demonstrating full and partial transformation cycles.
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Figure 3.14: Voltage applied to maintain 10 mm deflection for varying velocities.

3.3.4.2.1 Disturbance Response The controller was set to hold a reference displacement of 10

mm for various flow velocities to demonstrate the PID’s ability to manage perturbations through
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voltage output adjustment. As shown in Fig. 3.15, the controller regulated the output voltage

synchronous to changes in flow velocity. Though the measured displacement is not presented in

the figure, the controller’s timely responsiveness to both changes in the convective state of the flow

on the SMA and the lift-induced moment on the trailing edge enabled the actuator to maintain a

constant displacement at the wingtip.
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Figure 3.15: Output voltage response compared to the velocity profile.

3.3.4.2.2 Reference Value Response To further evaluate the robustness of the PID controller,

the performance of the wing was analyzed at 0◦, 4◦, 8◦, and 12◦ angles of attack at wind tunnel

velocities of 15 m/s, 20 m/s, and 25 m/s. A five-sequence set of reference displacements was

chosen using a random number generator constrained between 0 and 10 mm, eliminating bias from

familiarity with controller performance. The results for reference values 8.3 mm, 6.9 mm, 3.3 mm,

9.3mm, and 1.7 mm are shown in Fig. 3.16. From these results, it is shown that the PID controller

not only actuates to the reference displacements at each angle of attack and stream velocity but that

the controller performs consistently across all test cases. The difference in performance is nearly

indistinguishable. For minor changes, flow conditions have a negligible effect between test cases;
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however, for more significant displacement decreases, the flow velocity does affect the amount of

time required to reach the reference displacement.
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Figure 3.16: Wing tip displacement as a function of time for three flow velocities (15, 20, and
25 m/s) for four angles of attack (0◦, 4◦, 8◦, and 12◦).

Suppose there is no flow, as displayed in Fig. 3.17. In that case, displacement recovery re-

quires significantly more time to attain the reference displacement, especially for the last sequence

where the test was terminated because of the time necessary to reach a displacement of 0.28 mm.

However, when comparing the camber morphing sequences, the response is nearly identical be-

tween flow and without flow, further presenting that the PID controller is robust within the actuator

abilities scope. Additionally, it is also observed that introducing flow to the wing section, thus
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increasing convection, inherently improves the overall reference displacement response.
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Figure 3.17: Wing tip displacement as a function of time without flow.

3.3.4.3 Closed-loop: reinforcement learning

The deep reinforcement learning algorithm was deployed to the hardware platform to train the

neural network. The learning process is separated into episodes that can be considered as separate

training sessions where the algorithm can change parameters between episodes. The algorithm

ran in the wind tunnel for more than 300 episodes over two days. Every 200 seconds, the desired

reference displacement is randomly changed, and the learning algorithm has to adapt the applied

voltage to match the reference value. Results achieved after 100 episodes are shown in Fig. 3.18.

Although the number of episodes was not sufficient to obtain equivalent performance of a PID, the

trained policy is sufficient to approximately obtain the reference displacement.

Applying data-driven learning algorithms directly to hardware is challenging. Deep rein-

forcement learning algorithms are well known to depend heavily on multiple graphic and cen-

tral processing units (GPUs and CPUs, respectively) [143–146] and training time on the order of

days [143,147] to achieve meaningful results. Simple continuous tasks (e.g., controlling a two-link
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Figure 3.18: Training on the Wind Tunnel: solid blue lines show the true displacement and red
dashed lines the desire shape.

robotic arm) require on average more than 2.5 million steps [148] and more complex operations

(e.g., control of a humanoid robot or robots with multiple degrees of freedom), requires on average

25 million steps using different reinforcement learning algorithms [149]. Since it was infeasible to

perform a wind tunnel test for weeks, it was desired to create a model with the same dynamics of

the avian-inspired airfoil section actuated by an SMA wire under a wind tunnel test. A deep neural

network was implemented using initial wind tunnel data to learn to approximate the hardware dy-

namics as a solution. Figure 3.19 shows the learned model compared to the truth model in terms

of temperature and displacement.

The learning algorithm was also tested using a simulated wing model based on data collected

from the wind tunnel. The algorithm ran for 1500 episodes. Every 200 time steps the commanded

setpoint was randomly changed, and the learning algorithm had to adapt the applied voltage to

match the commanded value. Figure 3.20 shows the controller performance after 900 and 1500

episodes of training. After 900 episodes, there is still a steady-state error between the current and
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Figure 3.19: Displacement and temperature changes over time.

commanded displacement. After 1500 the deep reinforcement learning algorithm can complete the

task multiple times in a row for different commanded morphing shapes.

A trade-off between both algorithms is expected; nevertheless, both controllers are expected

to achieve the reference displacement for the experimental tests. As shown by the experimental

results, the PID is robust enough to manage the aerodynamic loading and convection fluctuations

on the SMA for tested cases. It can be stated that a PID controller is sufficient for controlling a

wing section consisting of a single SMA composite actuator for the test conditions evaluated. As a

more complex wing with multiple actuators is eventually addressed in a wind tunnel environment,

the relevance of reinforcement learning over linear controllers will become evident.

3.4 Multi-actuator platform

The overall goal of this section is to demonstrate that the skin-embedded morphing wing con-

cept is scalable. As such, a four-foot long camber morphing wing is designed, fabricated, and

tested. A significant modification from the single-actuator platform is using a foam-core fiberglass

skinned wing instead of a 3D printed plastic wing. The motivation behind this change is the sub-
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Figure 3.20: Training of Deep reinforcement learning controller performance after 1500 episodes.

stantial increase in the stiffness-to-weight ratio, which could enable implementation on a commer-

cially available UAV. The structural components of the wing (i.e., all parts except the actuators and

actuator attachment components) are comprised of six primary materials: cross-linked polyethy-

lene foam, polystyrene foam, fiberglass-epoxy composite, aluminum, steel, and filler primer for a

smooth, finished surface. The selected airfoil is from the wing cross-section of a Tawny owl in the

gliding phase of flight obtained by a group of researchers from the Royal Veterinary College led

by Dr. Richard Bomphrey [150]. The platform is tested in a wind tunnel environment for various

operating conditions to demonstrate the repeatable aerodynamic performance change.

Traditional engineering sensors, such as strain gauges and thermocouples, are robust and re-

liable for most applications. However, these methods are intrusive (i.e., influence the system re-

sponse) and provide information for only a localized region. For morphing wings, it is relevant to

measure the displacement and temperature of the whole OML, not just a single point (e.g., trailing

edge) [151] to fully explore the advantages of conformal shape change. A non-intrusive method is
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necessary to obtain 3D continuous temperature and strain measurements in a wind tunnel environ-

ment. This section also utilizes state-of-the-art technology for the multiphysical characterization

of an SMA actuated morphing wing under both thermomechanical and aerodynamic loads in a

wind tunnel environment.

3.4.1 Material characterization

The foam core of the morphing wing must be resilient (i.e., must be able to absorb energy

when it is deformed elastically and release that energy upon unloading) so that all generated strain

is recovered while it must simultaneously be stiff. For this use, 2 lb cross-linked polyethylene is

used, where the density for foam is defined for dimensions of a cube 12 ” x 12 ” x 12 ”. According

to compression tests, which is the standard characterization method for foam [152], the Young’s

modulus (assuming linear elasticity) is 305 kPa, and the material fully recovers all deformation up

to 10% strain. The fiberglass composite was characterized as well. Four plies in a quasi-isotropic

configuration were shaped into rectangular specimens at various orientations 0◦, 45◦, or 90◦, cured,

and mechanically evaluated. The 0◦ and 90◦ orientations did not show a concerning difference in

their Young’s modulus (14.7 GPa and 13.9 GPa). But the 45◦ orientation plies showed a much

smaller Young’s modulus of 4.7 GPa. Using the methodology from Glaser and Caccese [153], the

shear modulus was calculated to be 1.4 GPa, assuming Poisson’s Ratio of νAB = 0.21 and νBA =

0.23.

The chart in Fig. 3.21 summarizes all the mechanical properties of the materials used for fabri-

cating the prototype. As can be seen, there is a significant difference in stiffness and density based

on the function that the material components have for the morphing wing.

3.4.2 Design and fabrication

A finite element analysis (FEA) model is developed utilizing the material properties from the

previous section and consists of two parts: the first part consists of hexahedral elements and repre-

sents the foam and the two SMA actuators on the bottom surface; the second part consists of shell

elements and represents the quasi-isotropic four-layer fiberglass. The model is integrated into an
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Figure 3.21: Ashby [154] chart for material utilized for wing manufacturing.

in-house developed Fluid-Structure Interaction (FSI) framework connecting Abaqus and Xfoil [8].

Since the SMA components generate more force than necessary to bend the composite wing, the

constitutive model is simplified so that the actuator consistently achieves full stroke regardless of

stress. The design variables of the model are the location and lengths of the two actuators. The

objective metrics are the lift coefficient and the total length of the actuators, which are related to

power consumption. The model is used in the Latin hypercube sampling strategy to explore the

domain of feasible designs as depicted in Fig. 3.22. Because of manufacturing constraints, a non-

dominant design was chosen instead of a solution on the Pareto frontier. In this context, the Pareto

frontier is the set of solutions that minimize power and maximize lift. The selected configuration is

represented in Fig. 3.23; it leads to a trailing edge displacement of 3.8 cm and lift coefficient equal

to 2.35.

Regarding manufacturing, polyethylene foam (XLPE) and polystyrene are utilized for the foam

core that gives the wing its shape. Except for the half-span section, all the foam core is XLPE

because of its stiffness and resilience. Polystyrene is used for the half-span section for the pressure

ports because it is easier to machine than XLPE. Two 23-inch long sections of XLPE are machined
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Figure 3.22: Explored design domain. Highlighted design is was manufactured.

Figure 3.23: Selected design for morphing wing

using a CNC mill to the owl airfoil, as seen in Fig. 3.24a. A two-inch polystyrene section is hot-

wired with a hollow interior at the leading edge to allow pressure tubes to be inserted easily into

the assembled wing. Two machined aluminum fixtures are placed at the cutouts on the XLPE foam

sections following the curvature of the leading edge; the fixtures serve as the attachment points

between the wing and two eight-inch steel spars that connect the wing to the wind tunnel load

cells.

The foams and the aluminum fixtures are epoxied together before four plies of fiberglass-epoxy

composite in a [0, +/-45, 90] orientation scheme are laid up and cured over the OML of the entire

four-foot surface. The surface of the composite is filled and sanded successively with filler primer

to ensure a smooth surface. Once the structural assembly is complete, the actuator elements are

added to the wing, as shown in Fig. 3.25a. Sections of phenolic sheet are cut to size, drilled to

reflect the dowel pattern of the actuators, and epoxied to the actuator-sized recesses on the lower

surface of the wing. Actuator attachment was analyzed previously with the morphing wing section
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(a) 2lb XLPE machined foam core (b) Polystyrene hot-wired foam core

Figure 3.24: Machined foam core of morphing wing.

prototype, yielding a design that relied on dowel pins embedded in a recessed surface that allows

the actuator to sit flush with the OML after applying speed tape as seen in Fig. 3.25b. This assembly

is not only convenient for actuator attachment and removal but for actuator manufacturing as well,

as the mold relies on identical dowels to secure the SMA wire inside the PDMS matrix.

(a) Fabricated actuators attached to the bottom surface
of the wing (b) Assembled wing in wind tunnel test section

Figure 3.25: Assembled morphing wing prototype.
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Two rows of actuators run along the span of the lower surface with dimensions and position-

ing to obtain maximum trailing edge deflection with minimal power consumption. The actuation

system consists of twelve actuators total. Sets of three actuators are wired in series, and the four

sets are wired together in parallel. The actuators are connected to a voltage source and resistively

heated. The current prototype allows for control of each set of actuators if separate voltage sources

are used. However, for this experiment, only simple, simultaneous actuator heating achieved by a

single voltage source is required.

3.4.3 Setup and instrumentation

As previously discussed, Digital Image Correlation (DIC) is utilized as a non-interferometric

optical technique for gathering full-field strain and displacement data [155]. Moreover, the tem-

perature field on the actuators is heterogeneous because of non-uniform heating and convection,

and conventional methods for temperature data acquisition result only in local indication [156].

Therefore, infrared (IR) thermography is utilized in conjunction with the DIC to map the full field,

thermomechanical description of the sample [157]. Simultaneously using both full-field measure-

ment techniques enables a multiphysical profile to be developed for a section and allows for deter-

mination and visualization of correlations between temperature variation and regional deflection in

multiple directions. For experiments utilizing DIC, the sample must have a visible, high-contrast

pattern that the system can track, known as a speckle pattern; therefore, a new coating with a

speckled pattern is applied at the surface for thermomechanical tests as shown in Fig. 3.26.
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Figure 3.26: Wing with applied speckle pattern.

This experiment was performed in a 3 ’ x 4 ’ test section of a low speed wind tunnel. Fig. 3.27

depicts a 2D schematic of the instruments utilized and relative locations within the test setup.

Infrared 
Camera

Laser

Load 
 Cell

Thermocouples

Digital
Image 
Correlation 
Cameras

Actuators

Voltage Source

Pressure 
Port Location
Pressure
Transducer

Figure 3.27: Schematic of test setup (not to scale).
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The wing is mounted to two three-axis load cells to collect aerodynamic loading data during

the test, and a pressure transducer acquires pressure data at the surface of the wing in 13 discrete

locations at half span. To obtain the surface temperature of the actuator, two thermocouples are

attached to each actuator at the surface not exposed to flow. A FLIR A655sc infrared camera

mounted and sealed into the floor of the tunnel views both actuators and obtains thermal data

through a hole sized to the camera lens. Two Correlated Solutions Grasshopper3 GS3-U3-23S6M

DIC cameras equipped with Nikon Nikkor 60 mm lenses view the lower surface of the wing in

stereo through a plexiglass section in the floor of the tunnel for DIC. A Keyence Intelligent-L laser

sensor is directed at the lower surface of the wing at the aft-most point of the field of view of

the cameras in order to correlate one-dimensional displacement data with the three-dimensional

data acquired from the DIC. Field of view was maximized while working within space constraints

beneath the tunnel, and the final area visible to the system was 5 " x 7.5 ". Since the chord of the

wing is larger than the possible field of view length, the area of focus is the area that encompasses

the forward and aft actuators and includes the closest possible point to the trailing edge. To instigate

actuation, a voltage source is connected to the actuators. The maximum voltage and current outputs

of this voltage source are 40 V and 12 A respectively.

3.4.4 Results

To fully evaluate the fabricate platform, the following quantitative characterizations are un-

dertaken: aerodynamic characterization (experimental and numerical) of the wing without morph-

ing in Section 3.4.4.1, wind tunnel testing of the morphing wing for a single actuation cycle in

Section 3.4.4.2, wind tunnel testing of the morphing wing for multiple actuation cycles in Sec-

tion 3.4.4.3, and thermomechanical characterization of the lower OML during morphing in Sec-

tion 3.4.4.4.

3.4.4.1 Aerodynamics: non-morphing

The platform is initially tested in a wind tunnel without actuation (Fig. 3.25b) and compared

to numerical fluid analysis to verify that the fabricated prototype has the intended aerodynamic
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properties of the owl wing. The implemented low-fidelity potential fluid solver Xfoil [158] consid-

ers inviscid flow coupled with a built-in semi-empirical correction for viscous effects. Although

the model is of lower fidelity and limited to conditions prior to stall, it has a low computational

cost and is a robust tool for preliminary design. For high fidelity results, a Reynolds-averaged

Navier-Stokes (RANS) simulation utilizing CRADLE [159] is employed. In each case, the bound-

ary conditions used are: inlet fluid velocity at 15, 23, or 30 m/s, static pressure at the outlet is zero,

and no-slip conditions on airfoil walls. A k-ω turbulence model is used with a time step of 0.02

milliseconds, air density of 0.9398 kg/m3, and dynamic viscosity 1.6922 Pa.s. The fluid dimen-

sions are 11x8 chords. The mesh consists of three mesh regions to refine the mesh near the airfoil

while enabling a coarse mesh far from the airfoil. In total, 665,052 elements were utilized.

The lift coefficient results from the RANS, Xfoil, and wind tunnel experiments for wind ve-

locities 15, 23, and 30 m/s are depicted in Fig. 3.28. All methods obtained similar lift curves

demonstrating that the fabricated prototype, despite manufacturing uncertainties, has a similar per-

formance to expected.

Figure 3.28: Avian wing prototype and obtained results in wind tunnel: Lift coefficient v. angle of
attack.
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(a) With no aerodynamic loads. (b) With aerodynamic loads.

Figure 3.29: Trailing edge displacement of morphing wing.

3.4.4.2 Aerodynamics: single actuation cycle

An initial actuation cycle was done before turning the wind tunnel on and is depicted in

Fig. 3.29a. The trailing edge of the wing displaced 12 mm (32% of the theoretical capacity)

when actuated and fully recovered during cooling. However, the cooling path is much slower than

heating because Joule heating is intrinsically a faster phenomenon than convection. With the wind

tunnel at an average speed of 16 m/s, the displacement is marginally smaller than the wind-off

actuation, but the actuation authority is increased as depicted in Fig. 3.29b. It should be noted

that there are critical voltages between voltage bounds at which the rate of actuation rapidly in-

creases or decreases, as denoted in Fig. 3.29b. The lift and pitching moment coefficients during

the actuation cycle are depicted in Fig. 3.30. As the wing morphs, camber increases; consequently,

lift and pitching moments increase 40% and 30% in magnitude. Finally, the pressure distributions

before and after morphing are measured (c.f. Fig. 3.31). Overall, the morphed, highly cambered

airfoil has higher pressure magnitude in all of the pressure ports installed. In conclusion, consid-

erable camber morphing of a composite wing is not only feasible but yields significant changes in

aerodynamic performance.
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(a) Lift. (b) Pitching Moment.

Figure 3.30: Aerodynamic metrics for morphing wing.
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Figure 3.31: Pressure distribution before and after morphing.
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3.4.4.3 Aerodynamics: multiple actuation cycles

After further improvements of the skin roughness and actuator improvements, more tests were

performed to evaluate performance robustness for multiple actuation cycles. Even minor modifi-

cations of the airfoil can lead to significant variations in metrics such as lift, drag, and pitching

moment. The morphing wing actuators undergo four actuation cycles proceeded by a normalizing

cycle. Each cycle consists of 150 seconds of the voltage at 40 V and 450 seconds with zero voltage.

The data collected from the laser sensor, Fig. 3.32, shows that a 4 mm displacement is generated

when voltage is applied. A negative deflection for the reference system implies a downwards de-

flection of the point of interest. A positive deflection indicates upwards deflections usually caused

by aerodynamic loads. After the initial voltage application, the system only has slight variations in

deflection during heating. Once the voltage is turned off, convection and aeroelastic effects domi-

nate, eventually recovering to a displacement slightly above the previous reference displacement.

This increase is related to residual deformation of the compliant wing structure.
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Figure 3.32: Transient signal for displacement and voltage under flow conditions.
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(a) Lift.
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(b) Pitching Moment.

Figure 3.33: Transient response for aerodynamic metrics.

The lift and pitching moment coefficients, Figs. 3.33a and 3.33b, show that a consistent change

in aerodynamic performance is achieved via morphing. The partial transformation of the compos-

ite actuators generated a 5% lift increase and 12% pitching moment increase. Another relevant

aerodynamic metric is the pressure distributions showed in Fig. 3.34. As expected, the magnitude

of the measured pressures increased for locations on the top surface. Because the generated de-

formations are smaller than for the single cycle test, the magnitude of the pressure distribution of

the morphed configuration is smaller than Fig 3.31. The pressure distributions for all cycles are

similar, indicating that similar aerodynamic properties obtained before and after heating.

3.4.4.4 Thermomechanical Results

While single-point data acquisition helps characterize thermomechanical interactions, this method

does not provide the full field description of an area of interest. DIC and IR imagery shows prop-

erties of the whole surface of a sample and can validate these single-point measurements. In a

no-flow environment, laser extensometer readings show the aft-most point in the field of view de-

flecting 4.5 mm when fully actuated. DIC deflection data reflects comparable results for the same

point of interest, with deflection of the same point measured at 4.1 mm (an 8% difference); a full

wind off, heating and cooling cycle is depicted in Fig. 3.35.
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Figure 3.34: Pressure distribution of the actuated and non-actuated configurations during cycling.

Heating 

Cooling 

Figure 3.35: Deflection contour mapped onto shape data from DIC imaging of a heating and
cooling cycle with no flow.

The temperature contours are mapped to the wing shape providing a 3D view of the displace-

ment and temperature fields. As the wing morphs, a full-field description of thermal activity allows

for a greater understanding of the resulting shape change than single-point measurements. Fig. 3.36
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shows the temperature contour mapped onto the wing shape at the same points in time as the de-

flection mapping in Fig. 3.35. From this imagery, the temperature differential between the SMA

wires and the rest of the wing can be seen as well as the disparity in actuator heating resulting

from the difference in actuator size. Actuator sizes vary according to chord location as previously

shown in Fig. 3.23. Because the actuators with the greater chord have more SMA wire and there-

fore more resistance per actuator, the current the aft actuators are exposed to is lower and less heat

is generated.

Heating 

Cooling 

Figure 3.36: Mapped IR contour onto shape data from DIC imaging of a heating and cooling cycle
with no flow.

The actuation of the wing is voltage-limited. Therefore, the wing does not actuate to its total

capacity; this is especially relevant for the wind on condition as the flow generates pitching mo-

ments that hinder morphing, and more energy is dissipated via forced convection. Fig. 3.37 depicts

the temperature mapping for the wing as exposed to the airflow of 15 m/s. The disparity in actuator

heating is more visible in these images.
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Heating 

Cooling 

Figure 3.37: Mapped IR contour onto shape data from DIC imaging of a heating and cooling cycle
with flow (third cycle).

Because the temperature profile is not uniform according to Fig. 3.37, quantitatively depicting

temperature for points along the chord is essential. While thermocouple data shows the same tem-

perature differential, without the IR camera validation, this could be attributed to sensor placement

sensitivity. However, the full-field view of cooling and heating cycles in Fig. 3.38 shows that the

actuators did achieve different temperatures at the maximum voltage.
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(a) Temperature along chord during heating.
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(b) Temperature along chord during cooling.

Figure 3.38: Temperature along a chordwise slice during heating and cooling.
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3.5 Remarks

The concept of a morphing wing with composite SMA actuators embedded in the skin is pro-

posed, modeled, fabricated, and tested as an alternative to increasing aircraft aerodynamic perfor-

mance. Various prototypes were manufactured to demonstrate design flexibility, controllability,

and scalability of the actuator implementation.

The concept of an SMA actuated skin-based morphing structure was initially validated with

an additively manufactured, single-actuator section, achieving a 1.3 cm trailing edge deflection,

corresponding to 3.5% of the chord. The aerodynamic benefits of morphing structures were further

tested with a four-foot, composite morphing section with optimized actuator location maximizing

trailing edge deflection with minimal power consumption. Wind tunnel experiments showed that

with partial transformation (32% of the theoretical maximum trailing edge displacement) there was

a 40% increase in lift compared to the original OML.

Two types of controllers, PID and deep reinforcement learning, are explored on the single-

actuator wing prototype. The PID with gain scheduling is sufficiently robust to manage the aerody-

namic loading and convection fluctuations on the SMA for tested cases. While the PID controller

is sufficient for a wing section consisting of a single SMA composite actuator, the relevance of

reinforcement learning over linear controllers is evident as a wing with multiple actuators.

Further testing of the four-foot span composite morphing wing is performed for multiple cy-

cles and 3D DIC and IR cameras to obtain the thermomechanical properties in situ. The results

obtained demonstrate that considerable change in aerodynamic coefficients, 5% for lift and 12%

for pitching moment, are achieved with small deflections. The peak magnitude of the pressure

coefficients also increases along the chord. Repeated actuation of the system showed that aerody-

namic gains are consistent throughout cycles. Displacement data obtained using DIC corresponded

to traditional methods within 8%, and full-field temperature readings obtained through IR thermog-

raphy are mapped to the corresponding shape. The coupled 3D DIC and IR measurements enabled

the visualization of manufacturing errors, the temperature profile, and a local correlation between

displacement and temperature.
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4. PARAMETERIZATION OF MULTI-COMPONENT AIRCRAFT ASSEMBLY∗

The Class/Shape Transformation equations are utilized instead of other parameterization meth-

ods as it intuitively allows the specialization of geometries per aerospace industry requirements.

The following improvements are incorporated to the CST equations initially proposed by Kul-

fan [11] in 2006: i) a more intuitive 3D representation where rigid body motion and geometry are

decoupled, ii) the assembly of multiple intersecting CST objects, and iii) a spline representation

where the basis functions are CST functions.

4.1 Modified Class/Shape Transformation

Inspired by discrete parameterization methods [160], the 3D CST method is expanded herein

to include large rotations and the concept of shape coefficient functions. As shown in Fig. 4.1, the

parameterized aircraft can be represented in the following three domains: parameterized, interme-

diate, and physical. In the parameterized domain, class and shape coefficients are used to define

the general and local details of the OML, respectively. All geometries in the parameterized domain

are normalized, facilitating operations such as mesh generation and numerical integration. In the

intermediate domain, the geometry from the parameterized domain is linearly scaled to appropri-

ate x− y − z dimensions and features such as taper and span are considered). In this intermediate

domain the leading and trailing edge are located on the x − y plane, which is suitable for apply-

ing internal kinematic constraints. The physical domain builds upon the intermediate domain by

introducing twist and shear (e.g., dihedral and sweep) mappings. This final domain is the most

relevant from a design point of view since it represents the final built geometry and will be used

for structural and aerodynamic analysis.

∗Part of the data reported in this chapter is reprinted with permission from "Extended 3D Class/Shape Transfor-
mation equations for multicomponent aircraft assemblies" by Leal, P., Giblette, T., Hunsaker, D., and Hartl, D., 2019,
AIAA Scitech.
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Figure 4.1: Overview of parameterizing a physically meaningful wing using the CST framework.

4.1.1 Parameterized domain

The CST method is a universal method to parameterize geometries that combines the concepts

of a class function C and a shape function S. To facilitate the mathematical representation of the

aircraft geometry, the physical domain x−y−z, wherein the aircraft is represented, is transformed

into unique parameterized domains ψ − η − ζ for each major aircraft component via a bijective

linear transformations such that ψ ∈ [0, 1] and η ∈ [0, 1]. Defining ζ(ψ = 1, η) = ζT , which in

general need not be zero, the general form for the CST equations is:

ζ(ψ, η) = C(ψ, η)S(ψ, η) + ψζT (η) . (4.1)

The concept of a class function is used, without any loss of generality, to define geometric

characteristics inherent to given geometric forms common in an aircraft, e.g., nacelles, fuselages,

and wings. The class function C, adjusted via parameters N1 and N2, is

C(ψ, η) = k̄ ψN1(η)(1− ψ)N2(η) , (4.2)

where k̄ is a correction factor so that the maximum cross-section thickness is always normalized
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for shape functions equal to one and is given by:

k̄(η) =
(N1 +N2)N1+N2

NN1
1 +NN2

2

. (4.3)

The 2D [161] class functions are extended to 3D by allowing N1 and N2 to be defined as

functions of the spanwise coordinate η as in Eq. 4.2. As depicted in Fig. 4.2, various geometry

classes are obtained for different combinations of N1 and N2 and the values of these coefficients

can change along the span. This feature allows the use of supersonic (sharp leading edge) and

subsonic (blunt leading edge) airfoils on the same wing. The 3D shape functions further define the

N1=N2: 0.005 0.5 1.0

ψ

ζ

ψ

ζ

ψ

ζ

Figure 4.2: Example of varying class function along span for a constant shape function.

OML and are defined as Bernstein polynomials that are a linear combination of Bernstein basis

polynomial each weighted by a shape coefficient Hi(η) [162]. The shape coefficients for 2D are

constants and have multiple applications for airfoils [8]. Similar to the class functions, the 3D

shape functions are the same as for 2D with the exception that the shape coefficients are a function

of the spanwise coordinate η. Specifically, the 3D shape function is formulated as follows:

S(ψ, η) =
n∑
i=0

Hi(η)

[
n!

i!(n− i)!
ψi(1− ψ)n−i

]
, (4.4)

where n is the order of the shape coefficients. The effects of the class and shape functions for 2D

are depicted in Fig. 4.3.

The example in Fig. 4.4 demonstrates how the cross-section varies across the span based on the
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(b) Influence of shape functions for an airfoil.

Figure 4.3: Example of the effects of parameters over class and shape function.

shape coefficient function. In this case, the shape coefficients are defined as Bernstein polynomials,

resulting in smooth geometries originally defined by Kulfan [48]. Ai(η) is a function defined by

the user depending on the intended application. If the shape coefficients are constant, the resultant

geometry has a constant cross-section. If Ai(η) are piecewise linear functions, the resultant C0

geometry consists of linear lofts between cross-sections defined along the span (cf., Fig. 4.1).

η (span)

ψ (chord)

Sx(ψ)

Sy(η)

ζ

Figure 4.4: Example of 3D shape function whereHi(η) is a 2D shape function. The resultant shape
is the tensor product of two 2D CST functions.
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4.1.2 Physical and intermediate domain

The model in the parameterized domain, defined by only shape and class coefficients, is a

rectangular untapered, unswept wing with no dihedral and twist which is not typically useful for

designing aircraft. However, other geometric properties can be introduced via linear mappings.

The first step is to linearly scale the chordwise and spanwise dimensions to introduce the notions

of the chord, taper, sweep, and span. The resultant design domain x̂−ŷ−ẑ is called the intermediate

domain where the OML coordinates for both surfaces are given by:

x̂ = (ψ − ψo)X(η) , (4.5)

ŷ = (η − ηo) Y (η) , (4.6)

ẑ = (ζ − ζo) Z(η) , (4.7)

where (ψo, ηo, ζo) is the reference point in the parameterized domain, and X(η), Y (η), and Z(η)

are linear mappings. For a wing, X(η) and Y (η) are related to taper and span, and Z(η) = X(η).

The full geometric representation in the physical domain as shown in Fig. 4.5 is obtained

by including twist and shear, where shear mapping is defined as displacement along the plane

perpendicular to η. Consequently, the leading edge and trailing edge are not necessarily on the

x− y plane. The upper surface coordinates in the physical domain x− y − z are given by :


x

y

z

 = T


x̂

ŷ

ẑ

+


xshear(η)

0

zshear(η)

 ∈ Λ , (4.8)

where xshear is the x-component of the shear displacement (e.g., sweep for a wing), zshear is the

z-component of the shear displacement (e.g., dihedral for a wing), Λ = {l1, l2, l3} is the lo-

cal/physical vector space, and T is the twist matrix that can take Euler angles, Euler vector, and
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Figure 4.5: Wing example demonstrating the framework capability to portray twist, camber, and
dihedral changes along the span.

quaternions as inputs [163].

4.1.3 Assembly domain

Despite the flexibility of the CST equations, it is inefficient to only use one set of CST equations

to present complex structures such as an aircraft. As a solution, the structure is subdivided into

smaller components (e.g., fuselage, wing, nacelle, and tail), each with a unique CST representation.

Thereafter, all parts are included in the assembly domain as position vectors r with a respective

part origin and orientation. The transformation from local to global is attained via the following

rigid body motion:

r = Rl−i


x

y

z

+ ro ∈ I, (4.9)

where Rl−i is the rotation matrix related to the part orientation, ro is the position vector of the part

origin in the assembly domain, and I = {i1, i2, i3} is global/assembly vector space.
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Considering Eqs. B-4.9, the following relations are used to transform the coordinates from

the parameterized domain to the assembly domain, resulting in a physically meaningful geometry

based on a given mesh (e.g., set of points in the parameterized domain):

r = Rl−i

T


X(ψ − ψo)

Y (η − ηo)

Z(ζ − ζo)

+


xshear

0

zshear


+ ro . (4.10)

For model calibration and intersection calculations, it is also important to transform from the

physical domain to the parameterized domain; the relation is given as:


ψ

η

ζ

 = T−1

Ri−l (r− ro)−


xshear

0

zshear




X−1

Y −1

Z−1

+


ψo

ηo

ζo

 . (4.11)

The key technical challenge of subdividing the structure into smaller components is guaran-

teeing compatible OML representation at the intersections. Typically, intersections between 3D

geometries are defined after mesh generation [164]. However, because all the surfaces herein uti-

lized are analytically defined, the intersections are implicitly solved as the desired structured mesh

for structural and aerodynamic analysis can be generated. When calculating the intersection for

two parts utilizing the proposed algorithm, a slave-master relation exists to ensure convergence

during iterations. The master is defined as the component to which the slave is attached, while

the slave is the smaller component that defines the parametric coordinates ψs for the mesh. The

position vectors rm and rs are associated with the master and slave components, respectively, at the

intersection. For the case of an aircraft shown in Fig. 4.6, the fuselage is the master and the wing is

the slave. The intersection algorithm summarized in Algorithm 1 consists of a fixed point iteration

method to find the parameterized coordinate ηs that returns a norm of the difference between rm
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and rs smaller than a given tolerance.
Algorithm 1: Intersection algorithm for CST objects.

Input: ψs;

Result: rm and rs at intersections

ηs = ηs,o;

while ||rm − rs|| < tol. do

Determine assembly vector rs based on parameterized coordinates (ψs, ηs) - Eq. 4.10;

Calculate parameterized coordinates (ψm, ηm) based on assembly vector rs - Eq. 4.11;

Estimate assembly vector rm from paramerized coordinates (ψm, ηm) - Eq. 4.10;

end

Slave (wing)

Master (fuselage)

g1

g3

g2

Figure 4.6: Intersection of JWB wing and fuselage.

4.2 Geometric representation capability

4.2.1 Two-dimensional CST

Two airfoils are considered as the primary example parent airfoils throughout this paper. The

first airfoil is a conventional NACA0008, while the second one is the hawk-inspired F0808 air-

foil [165]. Two sets of shape coefficients are calibrated to enable the CST method that best rep-

resents these airfoils. In this work, a genetic optimization algorithm is utilized that considers

the Hausdorff distance, a metric to determine similarity between two geometries, as the objec-
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tive function [166]. Resulting calibrations of the CST demonstrate that it can represent simple

and challenging airfoil geometries equally well. As shown in Fig. 4.7, both airfoils are ac-

curately represented by a fifth order CST function. For the NACA0008 airfoil: Du = Dl =

{0.1194, 0.0976, 0.1231, 0.0719, 0.1061, 0.1089}, ∆ξTE = 0, and the final mean Hausdorf distance

is 0.0013, or 0.13% of the chord. As for the F0808 airfoil: Du = {0.2399, 0.3447, 0.1813, 0.3537,

0.2441, 0.2572}, Dl = {0.1889,−0.2469, 0.0776,−0.5478, −0.0047,−0.2399}, ∆ξTE = 0.0094,

and the final mean Hausdorf distance is 0.0028, or 0.28% of the chord.

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1
CST NACA0008
Original NACA0008

ψ

ξ

(a) Conventional NACA008 airfoil.

CST F0808
Original F0808

ψ

ξ

0.10

0.05

0.00

0.0 0.4 0.60.2 0.8 1.0

CST F0808
Original F0808

(b) Hawk-inspired F0808 airfoil [165].

Figure 4.7: Curve fitting of shape coefficients demonstrating the capability to various airfoils.

4.2.2 Three-dimensional CST

3D CST is proposed as a method to accurately represent geometries; to this purpose, two sets

of CST equations are calibrated to represent two distinct objects with disparate linear mappings,

shape coefficient functions, and location/orientation in the assembly domain. The two parts consid-

ered are the fuselage and wing of the JAXA Wing Body (JWB) [160], an SST concept developed

for low-boom signatures at ground level (cf., Fig. 4.8). Each component has distinct geometric

features which makes it suitable to confirm the developed framework capabilities.
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g1

g3

g2

Figure 4.8: JAXA Wing Body (JWB) as an example of an aircraft assembly represented using the
framework.

The calibration of the CST equations consists of a gradient-based minimization of the shape

difference between the parameterized JWB and the original configuration [160]. The optimizer uti-

lized is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, an unconstrained quasi-Newton

method (i.e., the Hessian matrix is approximated by gradient evaluations). The shape difference

metric implemented is the average of the vector distance field [167] defined as:

E =
1

N

N∑
i=1

||pi − r(pi)||2 , (4.12)

where N is the number of points evaluated, p is the position vector from the original JWB con-

figuration and r is the estimated position vector utilizing CST equations. r is calculated for the

parameterized coordinates ψi, ηi obtained from utilizing p as an input for Eq. 4.10; thus, the er-

ror will be minimum only when the position vectors coincide. For the convergence studies, the

normalized shape difference is also utilized and is defined as the shape difference relative to the

optimized solution with the greatest shape difference.

The calibration of the CST equations is computationally intensive because of the high number

of degrees of freedom and the need to calculate of the shape difference. However, the curve fitting
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Linear mapping
suboptimization

X, Y, Z, T, xshear, zshear

Shape
suboptimization

Function types, R, ro

A

Calibrated model

Inputs

Figure 4.9: Overview of the calibration process.

process can be split into two sequential suboptimizations, mitigating the curse of dimensionality

and the overall runtime. The first suboptimization is related to the linear mappings that transform

the parameterized domain into the physical domain (Eq. 4.10) and only considers points at ψ =

0 and ψ = 1 for calculating the shape difference. The subsequent suboptimization is related

to the shape coefficient functions and utilized the optimized linear mappings from the previous

optimization. All the data from the original shape is utilized for the shape difference calculation.

4.2.3 Fuselage

The fuselage is the main body of an aircraft and is symmetric along the butt line; thus, only

half of the fuselage is herein evaluated. The object is oriented such that the non-dimensional coor-

dinates (ψ, η, ζ) are aligned with the water line, butt line, and reference line of the fuselage. The

JWB fuselage is an atypical design because of the significant fuselage camber not usually found

in current aircraft. Furthermore, because the geometry is achieved to mitigate boom, multiple

small-scale features exist specially near the tail. As a consequence, high-order CST and Bernstein

polynomials are utilized for an accurate representation. The mapping functions (c.f., Eq. 4.10)
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utilized are:

X(η) = hf S
b(ψ, η)Cb(ψ, η) , (4.13)

Y (η) = lf , (4.14)

Z(η) = wf S
b(ψ, η)Cb(ψ, η) , (4.15)

Ai(η) = Sdi(ψ, η) , (4.16)

xshear(η) = Sf (ψ, η) , (4.17)

zshear(η) = 0 , (4.18)

where hf , lf , wf are the fuselage height, length, and width; Sb and Sf are the shape function

for shape coefficients Ab ∈ Rb and Af ∈ Rf ; Sdi is the shape function for the i-th row of

Ad ∈ Rd1×d2 ∀i ∈ [1, n]; and Cb is the class function for parameters N1 = 0.75 and N2 = 0. The

selected class coefficients are considered because it guarantees a conic geometry at the leading

edge and minimizes the number of shape coefficients necessary to represent it.

Following the calibration procedure described in Fig. 4.9, two suboptimizations are imple-

mented to curve fit the CST equations for a JWB fuselage. Convergence studies are executed to

evaluate the influence of the shape coefficient orders over the shape difference. The objective of

the study is to determine the minimum order necessary for satisfactory OML representation. The

results depicted in Fig. 4.10 show that an accurate representation of the fuselage is achieved with

orders b = 15, d1 = 18, d2 = 24, and f = 15. The resulting parameterized geometry is depicted

in Fig. 4.11.

4.2.4 Wing

Because of manufacturing and control surface constraints, aircraft wing OMLs consist of lofts

between defined airfoil along the span. Compared to the design of a fuselage, the number of

degrees of freedom is significantly reduced. Mathematically, lofting can be represented as a linear

piecewise function. For a given set of known values {q0, ..., qr} at {η0, ..., ηr}, the interpolation
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(a) Linear mapping suboptimization. (b) Shape coefficient suboptimization.

Figure 4.10: Convergence study of CST calibration for JWB fuselage.

Figure 4.11: JWB fuselage parameterized and original geometries.

function is given by equation 4.19. An example of the characteristic lofting of aircraft wing is

depicted in Fig. 4.12 for the case of a B787-800, where four sections are defined along the wing to

accurately define functions for taper, sweep, and dihedral.
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p(η) =



q0 + η
η̄1

(q1 − q0), if η0 < η < η1

· · ·

qi + η−ηi
ηi+1−ηi (qi+1 − qi), if ηi < η < ηi+1

· · ·

qr−1 + η−ηr−1

ηr−ηr−1
(qr − qr−1), if ηr−1 < η < ηr

(4.19)

x

y
zshear (Dihedral)
xshear (Sweep)
X (Taper)

Figure 4.12: Simplified schematic of a B787-800 with linear mappings and respective physical
meaning.

Two surface, an upper and lower, are necessary to represent the OML of a wing because CST

mapping is bijective. The Z-mapping and shape coefficients for the upper surface are represented

by Zu and Au while for the Z-mapping and shape coefficients are represented by Zl and Al. The
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functions utilized for describing the linear mappings and shape coefficients are:

X(η) = croot p
b(η) , (4.20)

Y (η) = b/2 , (4.21)

Zu(η) = croot S
u(ψ, η) pb(η) , (4.22)

Zl(η) = croot S
l(ψ, η) pb(η) , (4.23)

Aui (η) = pui(η) , (4.24)

Ali(η) = pli(η) , (4.25)

xshear(η) = pf (η) , (4.26)

zshear(η) = pg(η) , (4.27)

where croot is the root chord root, b is the span, pb, pui , pli , pf , and pg are linear interpolation

functions for parameters qb ∈ Rb, qui ∈ Ru, qli ∈ Rl, qf ∈ Rf , and qg ∈ Rg, and Su and Sl are

shape functions for shape coefficients Au and Al.

The same procedure for curve fitting the fuselage is herein utilized for the wing. The order of

the piecewise linear equations and the Bernstein polynomials are known from the original JWB

paper to be four and six. Therefore, there is not a need to do a convergence study. The resul-

tant surface obtained by optimizing the CST equations for the wing is depicted with the original

database in Fig. 4.13. Overall, the calibrated CST equations can represent the wing OML.

4.3 Spline CST

Despite the versatility of a CST representation, there are shape modeling situations for which

it is not a suitable method. Because a CST requires the same degree of continuity for any point

in the domain it spans (except for the bounds ψ = 0 and ψ = 1), it is an inefficient method

capturing shapes that require discontinuities. The order n of the shape functions can be increased

to approximately represent discontinuity, but this is inefficient as it requires a high number of shape

coefficients to do so. This challenge is not unique to CST equations but is common to all continuous
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Figure 4.13: JWB wing parameterized and original geometries.

functions. A standard solution is to utilize a piecewise assemblage of polynomials or splines

to satisfy the localized continuity requirements along the geometry [168]. An additional benefit

of splines is that their use leads to topologically stable representations, avoiding the “waviness”

inherent to high-order polynomials. The stability and flexibility of splines are the main reasons they

are the default parametric representation for CAD software (e.g., NURBS, B-splines, and Bezier-

splines). Therefore, it is evident that incorporating CST equations for use as the basis functions

in such a well proven spline apporach can be beneficial to this work. The CST splines are the

foundation of the beam formulation in Chapter 7 for discontinuous bending moment distributions.

In general, a spline consists of m piecewise polynomials connected at points denoted as knots;

the vector containing all the knot locations as the knot vector and the region in between knots as

the knot span [50]. Each knot Ξk is defined by its arc-length coordinate s and the knot span (also

denoted as a spline beam element in Chapter 7) is denoted as sk = {s : Ξk−1 ≤ s ≤ Ξk}. The

domain a knot span has the same degree of continuity, but discontinuities for line representation

are allowed at the knots. In general, a 2D spline can be described in the parameterized domain as:

87



ζ(s) =
m∏
l=1

ζ l , (4.28)

and

ζk(s) =


Ck(ψk)Sk(ψk) +

(
1− ψk

)
ζkL + ψkζkT if Ξk−1 ≤ s < Ξk ,

1 otherwise,
(4.29)

where

ψk =
x(s)− x(Ξk−1)

ck
. (4.30)

and Ck, Sk, ζkL, ζkT , and ck are the following properties respectively for the k-th knot span: class

function, shape function, ζ at ψ = 0, ζ at ψ = 1, and chord.

The affine transformation from the parameterized to the physical domain (i.e., (ψ, ζ)→ (x, z))

is given by:

x =
∑k−1

l=1 c
l + ck(s)ψk(s)

z = c(s)ζ(s) .

 s.t.
{
c(s) = ck|Ξk−1 ≤ s < Ξk

}
(4.31)

The arc-length of each knot span is calculated based on the chord ck, hence

Lk = Lk−1 +

∫ ck

0

√
1 +

[
dζ

dψ
(s)

]2

. (4.32)

Finally, degrees of continuity C0, C1, and C2 at the knots can be satisfied by the following

relations:

• C0 is ensured if coordinates x and y at knot k for both knot spans, k and k+ 1, are the same.

From Eqs. 4.29 and 4.31, the following relation must be satisfied:

ckζkT = ck+1ζk+1
L . (4.33)

• C1 is imposed if the first derivative at knot k for both knot spans, k and k + 1, are the same.
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From Eqs. B.7 and B.9, the following relation must be satisfied if Nk
1 = Nk−1

2 = 1:

− ζkL − Akn + ζkT = −ζk+1
L + Ak+1

0 + ζk+1
T . (4.34)

• C2 is guaranteed if the second derivative at knot k for both knot spans, k and k + 1. From

Eqs. B.11 and B.12, the following relation must be satisfied if Nk
1 = Nk−1

2 = 1:

1

ck
[
nAkn−1 − (N1 + n)Akn

]
=

1

ck+1

[
−(n+ 1)Ak+1

0 − nAk+1
1

]
. (4.35)

Each knot span is represented by a different set of shape coefficients Ak, but the continuity

constraints can impose dependencies among the coefficients through ζT , ζL, and An. Therefore,

the geometric properties (i.e., positions, angles, and derivatives) are calculated in series from the

knot span at the root (k = 1) to the free end (k = m) when generating the spline. The collection

of independent shape coefficients that define the spline is denoted as a.

Figure 4.14: Spline and derivatives in the physical domain for Ξ = (0, 0.2, 0.6, 1.0) and A =
(0, 1.14, 2.28, 7.34, 6.47, 5.574, 3.69, 2.80)× 10−2.

An example of a CST spline and the respective derivatives are depicted in Fig. 4.14. C0 and

C1 continuities are imposed for all domains in the spline, and the domain is also C3 except for the

knots. The knot at Ξ1 = 0.2 is C2 continuous while the knot at Ξ2 = 0.6 is only C1 continuous.
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The resultant geometry could not be represented using a continuous function (e.g., a single CST

function).

While Fig. 4.14 depicts the spline and derivatives in the physical domain, understanding of a

parameterized domain is also important. The spline and derivatives are again depicted in Fig. 4.15,

but each knot span and the basis functions are shown separately in the parameterized domain. For

any CST spline, m(n+1) bases or shape coefficients are used to represent the geometry (e.g., nine

basis functions for the depicted spline as n = 2 and m = 3). Each basis function has a greater

influence at a specific region of the knot span (e.g., ζ0 is more relevant near ψ0 = 0) and has

localized influence on its respective knot span (e.g., ζ0 does not influence the second knot span).

Moreover, the implications of the continuity constraints are noticeable even in the parameterized

domain as n-th basis function of a knot span is always continuous with the 0-th basis function

of the following knot span. It is worth highlighting that the non-linear basis can represent linear

geometries as shown for the second derivative in Fig. 4.15.
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Figure 4.15: CST basis for derivatives and positions in the parameterized domain for Ξ =
(0, 0.2, 0.6, 1.0) andA = (0, 1.14, 2.28, 7.34, 6.47, 5.574, 3.69, 2.80)× 10−2.
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5. PARAMETERIZATION OF MORPHING STRUCTURES∗

Regardless of any ability to morph, aircraft wings undergo a wide variety of flight loads and

therefore must include stiff internal structural components. These components impose restrictions

on feasible morphed shapes independent of the utilized technology. In general, a morphing struc-

ture problem considers a single reference state, a parent OML, and many derived or morphed

states, the children OML. Every child configuration satisfies a set of essential internal structural

constraints (e.g., ribs and spar stiffnesses) and is deemed structurally consistent. Designs derived

from the parent that do not satisfy these constraints violate the laws of physics and are not con-

sidered children configurations. Here we propose modifications to the CST method that consider

these kinematic constraints to generate all possible children OML based on a given parent OML.

The framework is developed so that the parent configuration is the OML either before or after

morphing; thus, the children OMLs are either the OMLs of a morphed parent airfoil or are the

OMLs that, when morphed, will result in the parent OML. This enables the use of a robust shape

parameterization method in problems where minimum internal volume or component dimensions

are satisfied.

5.1 Two-dimensional camber morphing

Leal et al. [161] modified the CST equations so that children airfoils (e.g., morphed config-

uration) can be generated from any parent airfoil (e.g., original configuration) while considering

kinematic constraints related to the internal structure; thus, all of the explored designs are feasible

with regards to structural performance and manufacturability. Eq. 4.1 can be used to describe the

children and parent configurations (denoted by a superscript c and p) by varying the values of the

shape coefficients. Using an unconventional hawk-inspired airfoil as an example parent airfoil [28]

and an internal structure consisting of five spars, different OMLs can be generated that preserve the

spar dimensions as shown in Fig. 5.1. An assumption inherent in the framework as proposed is that

∗Reprinted with permission from "Structurally consistent Class/Shape Transformation equations for morphing
airfoils" by Leal, P., and Hartl D., 2018, Journal of Aircraft.
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one surface/skin is passive (e.g., no strain) while the remaining surface is active (e.g., generates

strain), each surface specified by shape coefficients A and P.

Children
Parent

Figure 5.1: Structurally consistent airfoils based on a parent F0808 airfoil for calculation with
actuators on lower surface; note the change in total chord due to assumed length preservation in
non-actuated upper surface.

5.2 Nomenclature for skin-based camber morphing

Herein morphing is defined as the transformation of an airfoil section OML from a reference

(e.g., strain-free) configuration toward any structurally consistent compatible deformed (e.g., ac-

tuated) configuration. The two OML surfaces, upper and lower, are defined as either active or

passive. The active surface is both axially extended/compressed (e.g., actuated in the chord-wise

direction) and bent as a consequence of this actuation; while the passive surface is purely bent.

Therefore, Eq. 4.1 is rewritten to accommodate the notion of an active/passive dichotomy:

ξP (ψ) = sgn(ξP , ξA)

[
ψN1(1− ψ)N2

n∑
i=0

PiKi,nψ
i(1− ψ)n−i + ψ

∆ξTE
2

]
, (5.1)

ξA(ψ) = sgn(ξP , ξA)

[
ψN1(1− ψ)N2

n∑
i=0

AiKi,nψ
i(1− ψ)n−i + ψ

∆ξTE
2

]
. (5.2)

where ξP and ξA are the ξ-coordinates for the passive and active surfaces respectively, ∆ξ =

ξP (ψ)− ξA(ψ) for a ψ ∈ (0, 1), and Pi and Ai are the shape coefficients for the passive and active

surfaces.

Depending on the application, either the geometry of the reference (i.e., strain-free) OML

or the geometry of the desired deformed (i.e., active surface actuators engaged) OML is taken
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to be known while options for the other are explored. Two structurally consistent frameworks,

defined as backwards and forwards, are then developed to account for each scenario. For forwards

calculations possible deformed OMLs (children) are generated based on a known reference OML

(parent). For backwards calculations, possible reference OMLs (children) are generated based on

a known deformed OML (parent). This design flexibility is mapped in Fig. 5.2.

Single goal
reference

configuration

Single goal
deformed

configuration

Reference
configuration

Deformed/morphed 
configuration

Parent Children

Children Parent

Forwards
calculation

Backwards
calculation

Figure 5.2: Map of the two morphing possibilities considered in the developed framework.

In this work, we specifically consider the restrictions imposed by the rigid, non-actuated inter-

nal structure when examining possible children (dependent) configurations generated via morphing

of a parent (known). During camber-wise morphing, the chord length is not constant, as is depicted

in Fig. 5.3. Geometric properties preserved in the dimensional domain x−y are then not preserved

in the non-dimensional domain ψ−ξ because the chord of the child configuration cc is not the same

as that for the parent (cp). Consequently, the full representation of the children configurations is

known if and only if shape coefficients Ac and Pc as well as chord cc are known. Finally, the

following relation is used to convert the trailing edge thickness between the configurations with

different chord lengths:

∆ξcTEc
c = ∆ξpTEc

p . (5.3)

5.3 Assumptions for structurally consistent skin-based camber morphing

In brief, the purpose of this work is to develop a new mathematical formulation to directly

calculate the possible chord cc and active shape coefficients Ac for children configurations as func-
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Children
Parent

Figure 5.3: Structurally consistent airfoils based on a parent F0808 airfoil for backwards cal-
culation with actuators on lower surface; note the change in total chord due to assumed length
preservation in non-actuated upper surface.

tions of the parent configuration and any desired shape coefficients Pc. Generally, the functions

describing cc and Ac lead to an underdetermined system of equations. However, a unique closed-

form solution for the child shape coefficients (e.g., child OML) is obtained given the following five

assumptions:

• Compliant ribs: a traditional rib is chordwise stiff and hinders camber-wise morphing; it is

assumed that a compliant rib is utilized so that the ribs do not act as structural constraints.

As shown in Fig. 5.4, possible concepts for compliant ribs are Fishbone ribs [169], Jointed

ribs, and Voronoi ribs [7].

(a) 

(b)

(c) 

Figure 5.4: Examples of compliant ribs: (a) Fishbone [169], (b) Jointed, (c) Voronoi [7]

• Rigid body spars: no actuators are placed in the internal structure and spar deformations

of any kind are assumed negligible. Consequently, spar dimensions are common to both

children and parent airfoils as depicted in Figs. 5.3 and 5.5. In the non-dimensional domains,
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the parent and child spar heights hpj and hcj are related via the following geometric relation

for spars j = 1, . . . ,m:

hcjc
c = hpjc

p . (5.4)

• Constant leading edge radius: deformations at the leading edge are also neglected since

no actuators are placed at the leading edge and conventional D-sections are often rigid; the

leading edge radius is preserved as shown in Fig. 5.5. According to Kulfan [11], shape

coefficients for i = 0 (P c
0 , Ac0, P p

0 , and Ap0) are related to the leading edge radius, and the

relation between these shape coefficients for parent and children airfoils having a common

leading edge radius is:

P c
0

Ac0

 =

√
cp

cc

P p
0

Ap0

 . (5.5)

• Constant passive surface length: the curvilinear length of the passive surface LP is constant

because this surface does not contain any active materials or actuators, the aerodynamic

loading is moderate, and the active surface does not generate more than 4% strain, a common

actuation stroke for shape memory alloys [5]. This assumption enables the determination of

the children chords and a relation between children and parent spar locations. If LcP and

LpP are the passive surface lengths for the children and parent configurations, the relation

between lengths is simply:

LP = LcP = LpP . (5.6)

• Constant angles between spars and passive surface: the connection between the spars and

the passive surface is assumed to be of high stiffness. Thus, it is assumed that angles βj be-

tween the spars and the passive surface are constant, as depicted in Fig. 5.5. This assumption

enables the determination of spar orientations in the deformed configuration. Once the spar
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locations and angles are calculated, all geometric dimensions of both airfoils are known. If

βpj and βcj are the angle values for the parent and children j = 1, . . . , n, the following is

assumed:

βj = βcj = βpj . (5.7)
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Figure 5.5: Schematic of airfoils and their respective spars for example backwards calculation with
actuator on the lower surface. The complement angles of β′ are depicted for better visualization.

Given the above assumptions applied to relations (5.1) and (5.2), the closed-form solution

for the functions that define cc and Ac can in general be found numerically. There are also two

simplified cases where exact analytical solutions are possible as shown by Leal et al. [8, 12].

5.4 Forwards calculation

Forwards calculation is useful in designing wings where the reference (non-deformed) OML

is optimal for the predominant flight condition, but multiple possible morphed OMLs that could

improve performance for other flight conditions are unknown and of interest. As an example,

Leal et al. [8] optimized an airfoil for high lift-to-drag ratio for cruise configuration (the parent)

and also optimized a structurally consistent morphed landing OML (the child) based on the op-

timal cruise airfoil. Therefore, the wing was kinematically able to morph between two optimal
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airfoils, and this was verified through high-fidelity finite element analysis. For forwards calcu-

lation, spar geometric dimensions including spar locations, heights, and orientations (spars are

assumed vertical for the parent configuration) are given and an example is shown in Fig. 5.6.

Consequently, the spar connection points (i.e, intersection between the spar and the OML) on the

passive and active surfaces share the same ψ-coordinate ψpj , and spar heights are clearly given as

hpj = ξpu(ψ
p
j ) − ξ

p
l (ψ

p
j ) = |ξpP (ψpj ) − ξ

p
A(ψpj )| for the jth spar. It follows from equations (5.1) and

(5.2) that the child spar heights in the non-dimensional space for ψc − ξc are simply renormalized

for the modified chord to give:

hcj =
cp

cc
hpj =

cp

cc
∣∣ξpP (ψpj )− ξ

p
A(ψpj )

∣∣ = sgn(∆ξ)
cp

cc
(
ξpP (ψpj )− ξ

p
A(ψpj )

)
. (5.8)

Though vertical in the parent configuration, spars are rotated in the morphed children configu-

rations to accommodate for morphing of the skin, and the coordinates of their end points must be

calculated. For the children, the intersection of the jth spar with the passive surface takes place at

ψcP,j , and the intersection with the active surface takes place at ψcA,j .

ψ

ξ
j t

s
(ψj, ξP(ψj ))

p pp

(ψj, ξA (ψj ))
p pp

p

p
h

p
j

(a) Parent airfoil.
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p
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ξ j t
s

(ψP,j, ξP(ψP,j ))c

(ψA,j, ξA (ψA,j ))
c c c

c c
p
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(b) Child airfoil.

Figure 5.6: Conservation of spar heights and relative angles for forwards calculation.

For the chosen passive shape coefficients P c, the conserved spar heights and leading edge are
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known, but no other geometric properties of the children airfoils are known a priori. Considering

that the leading edge radius for both airfoils are the same, the CST equation for the active surface

(Eq. (5.2)) of the child configuration is rearranged to give:

2 sgn(∆ξ) ξcA(ψcA,j) + ψcA,j∆ξTE

2
√
ψcA,j(ψ

c
A,j − 1)

− A0(1− ψcA,j)n =
n∑
i=1

AiKi,n(ψcA,j)
i(1− ψcA,j)n−i . (5.9)

This can also be represented as:

fj =
n∑
i=0

FjiA
c
i or f = F A , (5.10)

where A is the active shape coefficient vector (n-dimensional), f is the forwards restriction vector

(m-dimensional)

fj =
2 sgn(∆ξ) ξcA(ψcA,j) + ψcA,j∆ξ

c
TE

2
√
ψcA,j(ψ

c
A,j − 1)

− A0(1− ψcA,j)n , (5.11)

and F is the forwards function matrix (m× n dimensional)

Fji = Ki,n(ψcA,j)
i(1− ψcA,j)n−i . (5.12)

F is a non-negative tensor where all components are non-zero since there are no spars located

at the leading or trailing edges. In the case where n = m (e.g., number of spars equal to n ), F is a

square tensor and invertible, and the solution for the linear system of equations is simply:

A = F−1f . (5.13)

Through geometric constraints and the known values for the spar heights, f and F are calcu-

lated.
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5.4.1 Constant length for forwards calculation

The passive surface is assumed to have constant length for aerodynamically applicable defor-

mations because the skin-based actuators are placed on the active OML. The arc length of the

passive surface LP in the x− y coordinate system valid for the child and parent airfoils is:

LP = c

∫ 1

0

√
1 +

(
dξP
dψ

)2

dψ , (5.14)

where the derivative term is obtained from Eq. (B.4).

Since the chord cp is known and the length of the passive OML for parent and children airfoils

are the same (Eq. (5.6)), we have that:

LcP = cc
∫ 1

0

√
1 +

(
dξcP
dψc

)2

dψc = cp
∫ 1

0

√
1 +

(
dξpA
dψp

)2

dψp = LpA , (5.15)

∴ cc = cp
∫ 1

0

√
1 +

(
dξpP
dψp

)2

dψp

∫ 1

0

√
1 +

(
dξcA
dψc

)2

dψc

−1

. (5.16)

The derivative terms in Eq. (5.16) are functions of cc after the dependency of the trailing edge

thickness is a function of the chord cc (Eq. (5.3)). Thus, Eq. (5.16) can be also represented as:

cc = f(cc) . (5.17)

Relation (5.17) is solved via a fixed-point iterative approach. This method converges to the

correct solution if the initial guess is close to the actual chord and the derivative is smaller than one.

This is generally true since chord changes are small and the child chord can easily be calculated

for moderate deformations.

With cc calculated, the value for the trailing edge ∆ξcTE is known via Eq. (5.3). To apply the

restrictions related to the spars, the spar locations for the child configuration are determined. Since
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the arc lengths along the passive surface from the leading edge to each spar are the same for both

configurations, the spar locations ψcP,j are numerically calculated for each spar via:

LcP (ψcP,j) = cc
∫ ψcP,j

0

√
1 +

(
dξcP
dψc

)2

dψc = cp
∫ ψpj

0

√
1 +

(
dξpP
dψp

)2

dψp = LpP (ψpj ) (5.18)

5.4.2 Constant angles assumptions for forwards calculation

The assumption of constant spar intersection angle with the passive surface is used to determine

spar orientations. In forwards calculation, the parent spars are vertically aligned while the child

spars must translate and rotate to accommodate camber morphing. Therefore:

sc(ψcP,j) =

sc1(ψcP,j)

sc2(ψcP,j)

 , (5.19)

sp(ψpj ) =

0

1

 . (5.20)

As depicted in Fig. 5.6, the mathematical definition of the angle βj between spar j and the

passive OML is the internal product between a unit vector tj tangent to the airfoil surface and a

unit vector sj affixed to the spar:

cos(βj) = sj · tj , (5.21)

where the normalized tangent vector at a point ψj for any surface is given by:

tj =

t1,j
t2,j

 =
1√

1 +
(
dξ(ψj)

dψ

)2

 1

dξ(ψj)

dψ

 (5.22)

and the inner product between spj and tpj at the passive surface for the parent airfoil is then:
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cos(βj) = spj · t
p
j =

1√
1 +

(
dξpP (ψpj )

dψ

)2

dξpP (ψpj )

dψ
. (5.23)

From the definition of a unit vector and the inner product between the tangent and spar vectors

for the child airfoil, the following system of equations is formulated to determine the components

of vector scj:

sc1(ψP,j) t
c
1(ψcP,j) + sc2(ψcP,j) t

c
2(ψcP,j) = cos(βj) ,

sc1(ψcP,j)
2 + sc2(ψcP,j)

2 = 1 .

(5.24)

Solving the system of equations (5.24) for sc2(ψcj), there are two solutions, but only one is

physically meaningful. The unique solution is:

sc1(ψcP,j) =
cos(βj)− tc2(ψcP,j)[t

c
2(ψcP,j) cos(βj) + tc1(ψcP,j) sin(βj)]

tc1(ψcP,j)
,

sc2(ψP,j) = tc2(ψcP,j) cos(βj) + tc1(ψcP,j) sin(βj) .

(5.25)

After calculating the location and orientation of the spars, these geometric properties are used

to determine the intersection of the spars with the active surface (ψA,j, ξ
c
A(ψA,j)) via:

 ψcA,j

ξcA(ψcA,j)

 =

 ψcP,j

ξcP (ψcP,j)

+ sgn(∆ξ) hcj

sc1(ψcP,j)

sc2(ψcP,j)

 . (5.26)

With all the spar heights hj known, the system of equations (5.13) is solved, and the dependent

Ac vector is calculated.

5.4.3 Discussion and summary for forwards calculation

A step-by-step algorithm for calculating the forwards structurally consistent airfoils is provided

in Table 5.1. The conventional NACA0008 airfoil is used as the parent (reference) airfoil for a fifth

order CST to demonstrate the capabilities of this framework. Fig. 5.7 contains four examples of
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structurally consistent airfoils with actuators placed either on the lower or upper surface. Accord-

ing to the chosen passive shape coefficients Pc, negative and positive camber are generated from

an initially symmetric airfoil during morphing. As the shape changes, the camber and spar orien-

tations also change. This demonstrates the capabilities of this framework for forwards calculation.

5.4.4 Finite Element Analysis validation of forwards calculation

Finite element analysis (FEA) is used to numerically validate the structurally consistent CST

equations. The model in Fig. 5.8 solely consists of shell elements. In this example, the active

surface is the lower surface. Strains are defined for the active surface components to generate

approximately equivalent strains to the deformed CST configuration. The FEA strains are not

point-wise equivalent to the CST; instead the average strains for the six regions delimited by spars

are used. For this model, the out of plane dimension is neglected and the converged mesh consists

of 1734 S4R elements. The comparison between FEA and CST for varying strains is depicted in

Fig. 5.9. For small deflections, e.g., strains ≤ 1.1%, the structurally consistent CST equations

and the FEA model generate the same deformed OML as shown in Fig. 5.9a. The Hausdorf

distance is 0.0022, which is quantitatively similar to the obtained values during initial curve fitting

in Section 4.2.1 (0.0013 and 0.0028). However, the structurally consistent CST equations slightly

underpredict the morphing calculated for greater deflections. A case with moderate deflections

(strains ≤ 4%) was also analyzed as shown in Fig. 5.9b and a Hausdorf distance of 0.0069 was

obtained. An additional case with even greater deflections (strains ≤ 5.5%) was evaluated as

depicted in Fig. 5.9c and a Hausdorf distance of 0.0098 was obtained. Comparing the three

morphing configurations, the assumption of constant passive surface length assumption appears to

be invalid for strains exceeding 4%. In summary, the developed framework is accurate for strains

up to 4% and provides good estimates for higher strains with only the use of kinematic relations.
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1. Calculate chord until convergence (initial guess cc = cp)
a. Find shape coefficients satisfying constant leading edge radius assumption via Eq. (5.5)(

P c
0

Ac0

)
=

√
cp

cc

(
P p

0

Ap0

)
b. Solve Eq. (5.16) via fixed point iteration to find children chord cc satisfying assumptions

cc = cp
∫ 1

0

√
1 +

(
dξpP (ψp)

dψp

)2

dψp

∫ 1

0

√
1 +

(
dξcP (ψc)

dψc

)2

dψc

−1

where:
dξP
dψ

=
n∑
i=0

PiKi,n
ψi(1− ψ)n−i

2ψ0.5

[
− (3 + 2n)ψ + 1 + 2i

]
+

∆ξTE
2

2. Spar location calculation
For each spar:

a. Find children configuration coordinate ψcP,j for spar j that satisfies Eq. (5.18)

cp
∫ ψpP,j

0

√
1 +

(
dξpP
dψp

)2

dψp = cc
∫ ψcP,j

0

√
1 +

(
dξcP
dψc

)2

dψc

b. Calculate angle βj between spar and passive surface from parent airfoil via Eq. (5.23)

cos(βj) =
1√

1 +
(
dξcP (ψcP,j)

dψp

)2

dξcP (ψcP,j)

dψp

c. Use system of Eqs. (5.25) to find spar orientation components scj and scj for child airfoil

sc1(ψcP,j) =
cos(βj)− tc2(ψcP,j)[t

c
2(ψcP,j) cos(βj) + tc1(ψcP,j) sin(βj)]

tc1(ψcP,j)
,

sc2(ψcP,j) = tc2(ψcP,j) cos(βj) + tc1(ψcP,j) sin(βj)

d. Find spar heights hpj for parent airfoil using Eq. (5.8)
hpj =

∣∣ξpP (ψpj )− ξ
p
A(ψpj )

∣∣
e. Find spar intersections with active surface (ψcA,j, ξ

c
A(ψcA,j) via Eq. (5.26)(

ψcA,j
ξcA(ψcA,j)

)
=

(
ψcP,j

ξcP (ψcP,j)

)
+ sgn(∆ξ)hcj

(
sc1(ψcP,j)
sc2(ψcP,j)

)
3. Find active shape coefficients A (Eq. (5.13))

A = F−1f
where:

Fji = Ki,n(ψcA,j)
i(1− ψcA,j)n−i

fj =
2 sgn(∆ξ) ξcA(ψcA,j) + ψA,j∆ξ

c
TE

2
√
ψcA,j(ψ

c
A,j − 1)

− A0(1− ψcA,j)n

Table 5.1: Forward calculation: algorithm to compute dependent shape coefficients for child air-
foil. 104
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(a) Actuators expand lower surface; child OML with all passive shape coefficients equal to 0.05 except for
P0.
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(b) Actuators contract lower surface; child OML with all passive shape coefficients equal to 0.25 except for
P0.
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(c) Actuators expand upper surface; child OML with all passive shape coefficients equal to 0.02 except for
P0.
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p
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(d) Actuators contract upper surface; child OML with all passive shape coefficients equal to 0.3 except for
P0.

Figure 5.7: Example of structurally consistent forwards calculation with a NACA0008 as the parent
airfoil.
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Figure 5.8: Schematic description of the finite element model for the morphing wing section show-
ing permitted degrees of freedom.
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(a) Comparison for P c = {0.1113, 0.1487, 0.1084, 0.1508, 0.1092, 0.1284} (Hausdorf distance of 0.0022).
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(b) Comparison for P c = {0.1117, 0.2187, 0.1784, 0.2208, 0.1792, 0.1984} (Hausdorf distance of 0.0069).
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(c) Comparison for P c = {0.1097, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500} (Hausdorf distance of 0.0098).

Figure 5.9: Numerical validation of structurally consistent CST via refined FEA for forwards
calculation with actuators on lower surface.
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5.5 Backwards calculation

For backwards calculation, the parent design is the deformed configuration and the children

designs represent all structurally feasible reference (i.e., strain-free) configurations. The imple-

mentation of backwards calculation is useful for designing high-performance reference airfoils

that can morph into a desired OML for a given flight configuration. As an example, avian-inspired

airfoils are highly cambered geometries that have been naturally selected for low Reynolds flight,

but are unsuitable for use at high Reynolds [165]. Thus, to use such an airfoil efficiently, Leal et

al. [170] optimized a low-camber cruise airfoil that could morph into an avian-inspired airfoil and

validated the kinematic results using a high-fidelity finite element model. As mentioned before,

the spanwise wing spars are assumed rigid and also play a major role in constraining the chordwise

OML. This follows the mathematical formulation of Section 5.4, but is presented in some detail

for completeness. The child airfoil spars are assumed vertical because aircraft are fabricated with

vertical spars. Therefore, the connection points of the spar with upper and lower surfaces share

the same ψc coordinates, and spar heights hcj = ξcu(ψ
c
j) − ξcl (ψcj) = |ξcP (ψcj) − ξcA(ψcj)| for spars

j = 1, . . . ,m. It follows from Eqs. (5.1) and (5.2) that the spar heights are:

hcj =
∣∣ξcP (ψcj)− ξcA(ψcj)

∣∣ = sgn(∆ξ)

[√
ψcj(1− ψcj)

n∑
i=0

(P c
i + Aci)Ki,n(ψcj)

i(1− ψcj)n−i + ψcj∆ξ
c
TE

]
.

(5.27)

It is convenient to define P c
i +Aci as a single variable Āi so that Eq. (5.27) can be rewritten as:

hcj = sgn(∆ξ)

[√
ψcj(1− ψcj)

n∑
i=0

ĀiKi,n(ψcj)
i(1− ψcj)n−i + ψcj∆ξ

c
TE

]
. (5.28)

We have from Eq. (5.28) that for a Bernstein polynomial of n-order, the OML can only be

subject to a maximum of n thickness constraints. It is possible to obtain an analytical solution

for Bernstein polynomial of order one [3]. However, an analytical solution is impractical or even

infeasible for n-order Bernstein polynomial equations with m restrictions (i.e., m spars). Never-
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theless, the linear system of equations can be numerically solved. Considering that the leading

edge radius for both airfoils are the same (Eq. (5.5)), the thickness restriction function (Eq. (5.28))

is modified so that only components with unknown variables Āi are on the right-hand side:

sgn(∆ξ)hcj − ψcj∆ξcTE√
ψcj(1− ψcj)

− Ā0(1− ψcj)n =
n∑
i=1

ĀiKi,n(ψcj)
i(1− ψcj)n−i , (5.29)

which can be also represented as:

bj =
m∑
i=1

BjiĀi or b = B Ā , (5.30)

where Ā is the equivalent shape coefficient vector (n dimensional), b is the backwards thickness

restriction vector (m dimensional), given by

bj =
sgn(∆ξ)hcj − ψcj∆ξcTE√

ψcj(1− ψcj)
− Ā0(1− ψcj)n , (5.31)

and B is the backwards shape function matrix (m× n dimensional), given as

Bji = Ki,n(ψcj)
i(1− ψcj)n−i. (5.32)

B is a non-negative tensor where all components are non-zero since no spars are located at the

leading (ψ = 0) or trailing edges (ψ = 1). In the case where n = m, B is a square tensor. Since B

is invertible, the solution for the linear system of equations is:

Ā = B−1b . (5.33)

Except for defining spars as rigid, no other assumptions have been herein considered in this sec-

tion. The trailing edge thickness ∆ξcTE and spar heights hcj are still unknown since the spar location

for the children configurations and the orientation for the parent configurations are unknown. The

following sections will handle the calculation of b and B through the assumptions.
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5.5.1 Constant length and angles assumptions for backwards calculation

Using the same assumptions for constant passive surface length and constant relative spar an-

gles, the equations obtained for forwards and backwards calculation are similar. Only the most

relevant steps that differ from backwards calculation are demonstrated here to avoid repetition. As

indicated in Fig. 5.10, children airfoils have vertical spars in backwards calculation problems so

the connection points of the spar with the passive and active surfaces have the same ψ-coordinate

ψcj , which is not true for the parent configuration. For the parent, the ψ-coordinate for the passive

connection points are denoted as ψpP,j while for the active connection points they are denoted as

ψpA,j . From the constant passive surface length assumption, the arc length from the leading edge

up to the spar location ψpP,j is the same for both configurations such that

LcP (ψcj) = LpP (ψpP,j) , (5.34)

and the unit vectors sj affixed to a spar j for the child and parent configurations are:

sc(ψcj) =

0

1

 , (5.35)

sp(ψpP,j) =

sp1(ψpP,j)

sp2(ψpP,j)

 . (5.36)

For backwards calculation, the inner product between the unit spar vector s and the tangent

vector t is given by:

cos(βj) = scj · tcj =
1√

1 +
(
dξcP (ψcj )

dψ

)2

dξcP (ψcj)

dψ
. (5.37)

From the assumption of constant angles between spars and passive surfaces, the components
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(b) Child airfoil (note the vertical spars).

Figure 5.10: Description of backwards calculation in the case of an avian-inspired airfoil.

of the parent spar orientation vector are:

sp1(ψpP,j) =
cos(βj)− tp2(ψpP,j)[t

p
2(ψpP,j) cos(βj) + tp1(ψpP,j) sin(βj)]

tp1(ψpP,j)
,

sp2(ψpP,j) = tp2(ψpP,j) cos(βj) + tp1(ψpP,j) sin(βj) .

(5.38)

After obtaining the location and orientation of the spars, the heights of the spars are calculated

from the definition of the spar vector. From Fig. 5.10, the vector that connects
(
ψpP,j, ξ

p
P (ψpP,j)

)
and

(
ψpA,j, ξ

p
P (ψpA,j)

)
has unit vector sj and magnitude hj . Therefore:

 ψpP,j

ξpP (ψpP,j)

− sgn(∆ξ)hj

sp1(ψpP,j)

sp2(ψpP,j)

 =

 ψpA,j

ξpA(ψpA,j)

 . (5.39)

The system of two Eqs. (5.39) for two unknowns hj and ψpA,j can be manipulated to give:

ψpA,j = ψpP,j +
sp1(ψpP,j)

sp2(ψpP,j)
[ξpA(ψpA,j)− ξ

p
P (ψpP,j)] , (5.40)

hj = sgn(∆ξ)
ξpP (ψpP,j)− ξ

p
A(ψpA,j)

sp2(ψpP,j)
. (5.41)
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A fixed-point iterative method is used to solve Eq. (5.40) because it is an equation that defines

ψpA,j implicitly. With all the spar heights hj known, the system of Eqs. (5.33) is solved and the

dependent Ac vector is calculated based on the definition of the equivalent shape coefficient vector:

Ac = Ā−Pc . (5.42)

5.5.2 Discussion and summary for backwards calculation

The step-by-step algorithm is summarized for the reader in Table 5.2. A first-order CST (i.e.,

single-parameter) is used to demonstrate the influence of child shape coefficient Pc over the child

chord. The trailing edge thickness is set to zero, the parent chord cp is one, and the shape coeffi-

cients are all initially set to 0.2. From Eq. (5.16), cc is inversely proportional to P c
0 as is depicted

in Fig. 5.11. As camber increases the chord must decrease to maintain the same arc length for

the child configuration. The parent OML is not affected by the change of shape coefficient, but

the spar orientation and heights are modified as shown in Fig. 5.12. Since P c
0 increases, the ratio

between the arc lengths from the leading edge to the spar and the spar to the trailing edge increases.

Consequently, the spar is calculated to be closer to the trailing edge (i.e., ψpP,j increases according

to Eq. (5.18)), and the spar orientation is rotated in a counterclockwise manner (i.e., βj increases

according to Eq. (5.37)).

ψc0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

c
ξ

= 1.0

=P0
c P0

p

= 0.6P0
c

P0
c

= 0.2P0
c

P0
c

Figure 5.11: Influence of P c
0 over upper surface OML and chord of children airfoil sections for

backwards calculation (actuators on lower surface). Note the conservation of arc length.
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Figure 5.12: Influence of P c
0 over spars direction and height for parent geometry for backwards

calculation with actuator on lower surface. Spars are vertical in the strain-free parent configuration.

Fig. 5.13 contains multiple examples for fifth-order CST equations representing the unortho-

dox, avian-inspired F0808 airfoil held as the parent (morphed) configuration. Actuators are as-

sumed to be placed alternatively on the upper or lower surfaces in various sub-figures. Depending

on the chosen children shape coefficients, an increase or decrease of camber and actuator lengths

are generated while all geometric constraints remain satisfied, demonstrating the capabilities of

the framework. Note how the location and direction of the spars change, but the spar heights do

not. Furthermore, the airfoil chord is altered due to camber morphing, but the trailing edge thick-

ness remains fixed. This novel airfoil parameterization allows for realistic reference configurations

while allowing great flexibility in choosing shape parameters.
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1. Calculate chord until convergence (initial guess cc = cp)
a. Find shape coefficients that satisfies constant leading edge radius assumption via Eq. 5.5(

P c
0

Ac0

)
=

√
cp

cc

(
P p

0

Ap0

)
b. Solve Eq. (5.16) via fixed point iteration to find children chord cc satisfying assumptions

cc = cp
∫ 1

0

√
1 +

(
dξpP (ψp)

dψp

)2

dψc

∫ 1

0

√
1 +

(
dξcP (ψc)

dψc

)2

dψp

−1

where:
dξP
dψ

=
n∑
i=0

PiKi,n
ψi(1− ψ)n−i

2
√
ψ

[
− (3 + 2n)ψ + 1 + 2i

]
+

∆ξTE
2

2. Spar height calculation
a. Find parent configuration coordinate ψcP,j for spar j that satisfies Eq. (5.18)

cp
∫ ψpP,j

0

√
1 +

(
dξpP (ψP )

dψp

)2

dψc = cc
∫ ψcP,j

0

√
1 +

(
dξcP (ψcj)

dψc

)2

dψp

b. Find angle βj between spar and passive surface for child airfoil using Eq. (5.37)

cos(βj) =
1√

1 +
(
dξcP (ψcP,j)

dψc

)2

dξcP (ψcP,j)

dψc

c. Use Eq. (5.38) to find spar orientation components spj and spj for parent configuration

sp1(ψpP,j) =
cos(βj)− tp2(ψpP,j)[t

p
2(ψpP,j) cos(βj) + tp1(ψpP,j) sin(βj)]

tp1(ψpP,j)
,

sp2(ψpP,j) = tp2(ψpP,j) cos(βj) + tp1(ψpP,j) sin(βj)

d. Find spar coordinate ψpA,j via Eq. (5.40)

ψpA,j = ψpP,j +
sp1(ψpP,j)

sp2(ψpP,j)
[ξpA(ψpA,j)− ξ

p
u(ψ

p
P,j)]

e. Find spar heights hj using Eq. (5.41)

hj = sgn (∆ξ)
ξpP (ψpP,j)− ξ

p
A(ψpA,j)

sp2(ψpP,j)
3. Solve system of equations (Eq. 5.33)

Ā = B−1b
where:

bj =
sgn (∆ξ) hcj − ψcj∆ξcTE√

ψcj(1− ψcj)
− Ā0(1− ψcj)n ,

Bji = Ki,n(ψcj)
i(1− ψcj)n−i

4. Find active shape coefficients Ac via Eq. (5.42)
Ac = Ā−Pc

Table 5.2: Backwards calculation: algorithm to calculate dependent shape coefficients for child
airfoil.
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(a) Actuator placed on lower surface: Child OML with all independent passive shape coefficients equal to
0.15.
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(b) Actuator placed on upper surface: Child OML with all independent passive shape coefficients equal to
0.15.
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(c) Actuator placed on lower surface: Child OML with all independent passive shape coefficients equal to
0.35.
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(d) Actuator placed on upper surface:Child OML with all independent passive shape coefficients equal to
0.35.

Figure 5.13: Example of structurally consistent backwards calculation considering an F0808 air-
foil [165] as parent (i.e., as the morphed shape).
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5.6 Conclusions

A novel structurally consistent kinematic model for skin-based camber morphing was devel-

oped herein based on appropriately constrained Class/Shape Transformation (CST) relations. As-

sumptions were made regarding the rigidity of the spars and of the active or passive nature of

upper and lower skins. A designer invoking this framework can generate a wide range of feasible

children configurations based on a parent configuration with little computational cost. The parent

OML, assumed to be fully defined, can either be the reference strain-free OML (forwards calcu-

lation) or the final deformed OML (backwards calculation) according to the design application.

Design features were explored using the examples of a NACA0008 (forwards calculation) and an

avian-inspired F0808 airfoil (backwards calculation) as the parent airfoils. Results indicate that

structurally consistent airfoils are obtainable for increasing and decreasing camber designs with

actuators placed on either the lower or upper surfaces. Despite the restrictions of structural consis-

tency, chord and spar orientations are necessarily altered as the structure morphs. The framework

permits closed-form numerical solution, and even simpler analytical solutions can be developed

for sufficiently simple CST formulations. When compared to an FEA model with equivalent av-

erage strains on the morphing skin selected, the structurally consistent CST equations accurately

calculate morphing deflections for moderate deformations (strains ≤ 4%). Structurally consistent

airfoils allow quick analysis of morphing wings without the need for full structural analysis for a

preliminary assessment. Consequently, optimizations and other design processes that might suffer

from the complexity of run time for the finite element model can now be performed.

The original CST methods were originally developed for 3D representations of aerospace

forms. Therefore, the framework herein can be further expanded for fully 3D structurally con-

sistent wings that include other structure restrictions such as ribs, control surfaces, and spanwise

spar restrictions; this work is ongoing. Other future research will study the effects of morphing on

aerodynamic improvements according to reference configuration, internal structure, and actuation

technology.
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6. DESIGN AND OPTIMIZATION OF MORPHING STRUCTURES∗

The previous three chapters introduced the improved CST equations and the structurally con-

sistent implementation. Herein, their implementation is proposed for preliminary rapid aircraft

design. The design domain expanded by morphing is nontrivial and nonlinear, requiring tools such

as design of experiments (DOE) and optimization frameworks. The main goal of the design explo-

ration is not necessarily to achieve a final optimal design but to facilitate decision making. For this

intent, a parameterized optimization algorithm is implemented. These features are beneficial to

morphing structures, which are most advantageous when considering performance across multiple

flight conditions. The methodology is implemented for a civil utility subsonic aircraft to demon-

strate that a fixed airfoil is unable to reproduce the aerodynamic performance of a wing utilizing

morphing.

In a typical aircraft design process, the designer is tasked with selecting an airfoil with accept-

able performance throughout its flight. Concept selection typically happens in the earliest stages of

design, and designers are asked to make preliminary design decisions with little information and

much uncertainty [171]. To further pressure a designer, concept selection is a very consequential

step of the design process and can affect everything that follows. Malak and Paredis [172] echo

this sentiment stating that “no amount of detail engineering can compensate for a poorly chosen

concept”. A sound concept selection method is vital to the success or failure of the design pro-

cess. Therefore, a concept selection method is proposed for the design of morphing airfoils that

considers many flight conditions.

6.1 Methodology

The current morphing aero-structural design problem can be formulated as a multi-parametric

optimization problem, where the single objective is to maximize the lift-to-drag ratio. This ratio is

∗Part of the data reported in this chapter is reprinted with permission from "Parametric Optimization for Morphing
Structures Design: Application to Morphing Wings Adapting to Changing Flight Conditions" by Weaver-Rosen, J.,
Leal, P., Hartl, D., and Malak, R., 2020, Structural and Multidisciplinary Optimization.
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determined by calculating the coefficients of lift and drag using XFOIL [158], a subsonic panel-

method aerodynamic solver. The operational parameters considered are the angle of attack α and

airspeed V , all of which vary during flight. For this design problem, the optimization variables are

the shape coefficients of the child (morphed) airfoil P c
i for i = [1, 2, 3, 4], where each coefficient is

spatially predominant in a different chordwise location. Together, the four shape coefficients define

the airfoil shape. P c
1 and P c

4 dominate the leading and trailing edges, respectively, while P c
2 and P c

3

are most relevant for intermediate chordwise coordinates. All other aspects of the problem, such

as the initial parent shape coefficients and spar locations, are held constant for each parametric

optimization (see Table 6.1 for parent shape coefficients P p and Ap). Thus, the mathematical

problem formulation is:

J∗(α, V ) = max
P c

J(P c;α, V ),

Subject to:

A ∈ Ac, 0◦

20 m/s

 ≤
α
V

 ≤
 12◦

65 m/s

 ,
(6.1)

where J∗(α, V ) represents the maximum lift-to-drag ratio as a function of the parameters deter-

mine by the parametric optimization (section 6.1.1), A is the domain of feasible active (i.e., lower)

shape coefficients imposed by a non-linear constraint (section 6.1.2), and the objective function J

represents the lift-to-drag ratio. Expected values, defined for this work as the convolution of air-

craft performance with aircraft flight data (section 6.1.3) and other metrics are utilized to determine

the “best” airfoil according to concept selection (section 6.1.4).

6.1.1 Parametric optimization

Parametric optimization is different from traditional optimization in that it solves an optimiza-

tion problem as a function of some parameters that are currently unknown to or uncontrolled by
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Table 6.1: Shape coefficients for parent (reference) airfoils considered in this work from which all
morphed configurations are generated.

NACA 0012

P p
0 P p

1 P p
2 P p

3 P p
4

0.1828 0.1179 0.2079 0.0850 0.1874
Ap

0 Ap
1 Ap

2 Ap
3 Ap

4

0.1828 0.1179 0.2079 0.0850 0.1874

NACA 4415

P p
0 P p

1 P p
2 P p

3 P p
4

0.2590 0.3113 0.3033 0.2719 0.3530
Ap

0 Ap
1 Ap

2 Ap
3 Ap

4

0.1700 0.0750 0.0904 0.0315 0.0746

NACA 641-212

P p
0 P p

1 P p
2 P p

3 P p
4

0.1469 0.1607 0.2394 0.1592 0.1237
Ap

0 Ap
1 Ap

2 Ap
3 Ap

4

0.1174 0.1098 0.1729 0.1023 0.0126

UAG 88-143/20

P p
0 P p

1 P p
2 P p

3 P p
4

0.2156 0.3757 0.2671 0.6060 0.2000
Ap

0 Ap
1 Ap

2 Ap
3 Ap

4

0.0777 0.0028 0.0389 0.0128 0.0157

the designer. The result is not an optimal point but rather a function describing the optimal point

related to the parameters, also known as the “non-dominated surface.” The algorithm is well suited

for problems with design variables x and parameters θ that can be formulated as:

J∗(θ) = max
P c∈Pc

J(P c,θ) ∀θ ∈ [θlb,θub] . (6.2)

where Pc is the bounded domain of the optimization variables, and θlb and bmθub are the lower and

upper bounds of the parameter doain.

In the case of morphing aircraft, optimization variables include the variables that control wing

OMLs (i.e., shape variables) during operation. Parameters consist of airspeed and angle of attack,

but altitude, temperature, air density, and others could also be considered. In most cases, it is un-

likely that a pilot will know all of these parameter values for a given flight plan at take-off, and

many parameters are subject to change during flight. A pilot or a controls system utilizing the
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generated non-dominated surface is always informed of all optimal lift-to-drag ratios and corre-

sponding shape variables for a vector of parameters describing the flight condition.

The predictive parameterized Pareto genetic algorithm (P3GA) [70] has been applied to mul-

tiple engineering case studies [173–175]. P3GA has been shown to outperform a parameterized

version of NSGA-II [176] when there are multiple parameters or many objectives as demonstrated

on several test problems [174]. In that study, P3GA converged to a solution with an acceptable tol-

erance and found a solution at every operational parameter with improved performance compared

to the undeformed OML. The results reinforce the idea that parametric optimization (and P3GA

specifically) reduces the computational burden when compared to a grid of individual optimization

loops due to shared information throughout the parameter space. For a more detailed description

of parametric optimization as used in this work, see Ref. [70, 173–175, 177].

6.1.2 Non-linear constraint

The shape coefficients are conservatively constrained based on feasible, existing airfoil shapes

to prevent generating OMLs that are either unreasonable or unsolvable with the panel method.

This feasible set of active shape coefficients is denoted as A. 1636 shape coefficient vectors are

calculated for all the airfoils contained in a public database [135] to quantify this constraint. A

thorough investigation of this four-dimensional data revealed that the feasible space would not

be easily imposed via linear constraints. Instead, a Support Vector Domain Description (SVDD)

is trained to fit the data and provide a single nonlinear constraint [172]. This SVDD is a one-

class classifier that, once trained, predicts whether a new data point lies inside or outside of the

class [178]. In this case, the class being trained is that of feasible airfoil shapes, as shown in Fig.

6.1. Outlier designs, outside of the 94% percentile, are not considered for the constraint.

6.1.3 Expected value

If the probability density functions (PDFs) of the parameters are known, the expected value J̃

for the i-th concept is defined as: [177]
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Figure 6.1: Non-linear constraint to impose only existing airfoil solutions for morphed configura-
tions.

J̃i =

∫ θub

θlb

J∗i (θ)p(θ)dθ , (6.3)

where p(θ) denotes the PDF of the parameters. Eq. (6.3) is the convolution of the performance

information and parameter probabilities into a single expected value for use in oncept selection.

Not all flight conditions evaluated by the parameterized optimization are of equal frequency and

relevance. Therefore, a probability density function p(θ) is defined for the Cessna 172 models

based on the following parameter-specific assumptions:

• Velocity: Historical data is obtained from a database with measurements from Automatic

Dependent Surveillance-Broadcast (ADS-B), a surveillance technology in which an aircraft

location is determined via satellite navigation. Most aircraft have an ADS-B due to FAA

regulations. The data is utilized for training a kernel density estimation (KDE) to estimate
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the probability density function for a specific velocity, which is assumed to be equivalent to

the air velocity for a smaller aircraft.

• Weight: it is assumed that the aircraft weight has a uniform probability of being between the

minimum Wf and maximum weights Wi.

• Angle of attack: Thin-airfoil theory is utilized to determine the angle of attack of the aircraft

as a function of the aircraft weight W and airspeed V as shown by [37]:

α =
1

CLα

2W

ρV 2S

1

cosα
− CL0 , (6.4)

where CLα is the lift curve slope (CLα = 5.143), CL0 is the lift coefficient at zero angle of

attack (CL0 = 0.31), and S is the planform (S = 16.12m2) [179].

Finally, the Monte Carlo method, which consists of randomly sampling the design domain

based on the the KDE distribution for angle of attack and uniform distribution for weight, is im-

plemented to determine the probability density function of a specific flight condition, as shown in

Fig. 6.2.

6.1.4 Concept selection

The solution of the concept selection algorithm is defined as:

x∗ = argmax
x∈X

J̃(x), (6.5)

where x represents a design concept including shape coefficients for passive and active surfaces,

X is the set containing all concepts, x∗ represents the optimal design concept, and J̃ denotes the

metric, which can be a traditional or an expected value objective. Due to the nested nature of this

problem, each design concept considered requires a parametric optimization loop. For problems

whose objective functions can be time-consuming and where solving the parametric optimization

problem is very costly, it is unlikely that the concept selection could be performed as a continuous
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Figure 6.2: Flight condition probability of a Cessna 172 based on ADS-B measurements.

optimization problem promptly. Therefore, a case with a discrete set of design concepts in X is

considered. Each design concept can be quantitatively scored and compared based on expected

values to determine the best design concept for the given situation.

The implemented concept selection methodology is depicted in Fig. 6.3. The problem for-

mulation in Eq. 6.1 is solved in multiple instances for different parent airfoils, also denoted as

concepts, via parametric optimization, returning the optimal morphed performance for all flight

conditions. The non-dominated surface establishes the relationship between flight conditions and

optimal lift-to-drag ratio. The maximum L/D calculated from the surface is a traditional metric

for the aerospace industr and is also utilized for concept selection. However, existing flight data re-

garding the most relevant flight conditions allow for quantification of concept performance through

expected values. Therefore, the parent airfoils can be ranked utilizing concept selection based on

the traditional or expected metrics.
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Figure 6.3: Overview of concept selection methodology incorporating operation condition prob-
ability of an aircraft and parametric optimization of a morphed airfoil to select the ideal parent
airfoil.

6.2 Results

The parametric optimization method is first implemented in section 6.2.1 for a single parent

airfoil, the NACA 4415, to demonstrate the capability of a parametric optimizer. The procedure is

repeated for three additional airfoils (NACA 0012, NACA 641-212, and UAG 88-143/20), expected

values are calculated, and concept selection is performed in section 6.2.2. Finally, the designs of

the non-dominated surface are compared to a public airfoil database in section 6.2.3.

6.2.1 Parametric optimization of NACA 4415

Considering a fixed altitude of 10,000 ft, the non-dominated surface of the performance of a

NACA 4415 over changing angle of attack and airspeed is illustrated in Fig. 6.4a. For the fixed

airfoil case, parametric optimization is not necessary since there are no variables to change beyond

the initial concept.
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Depending on the parameter values, lift-to-drag ratios of up to 203† are achieved. Overall, the

optimal lift-to-drag ratio monotonically increases with airspeed V . An increase in angle of attack

for smaller angles (α ≤ 6◦) increases the objective function. However, for higher angles of attack

(α > 6◦), the lift-to-drag ratio decreases because of sensitivity to stalling [158]. Fig. 6.4b shows a

comparison between the performance of the camber morphing NACA 4415 and four fixed airfoils

for the same flight conditions. The benefits of using a morphing configuration are apparent at

higher angles of attack where all fixed configurations underperformed. For lower angles of attack,

the morphing alternative seems to be less advantageous as at least one airfoil, the UAG 88-143/20,

has improved performance without requiring the additional complexity of morphing. Nevertheless,

the morphing NACA 4415 outperforms most fixed airfoils for the considered flight parameters.

(a) (b)

Figure 6.4: Lift-to-drag ratio results considering altitude at 10,000 ft. (a) Non-dominated surface
for the morphing NACA 4415 and the aerodynamic results of the fixed configuration (b) Compar-
ison between the performance of the morphing NACA 4415 and the fixed NACA 0012, NACA
4415, NACA 641-212, and UAG 88-143/20 airfoils.

The optimal morphed configuration changes with flight condition, but three distinct families

can be clustered based on their topology [180]. Fig. 6.5 illustrates the non-dominated surface

†Conservatively, the values of the support vectors are utilized instead of the SVDD values.

125



together with cluster centers for each family of solutions [180]. At lower angles of attack (α < 4◦),

the morphed configurations (design A) are similar to traditional high-lift airfoils [181]. As angle

of attack increases (4◦ ≤ α < 8◦), the maximum camber location tends towards the leading edge,

resulting in configurations (design B) similar to avian airfoils [119]. At the highest angles of attack,

delaying boundary layer separation dominates the morphing design, leading to unorthodox designs

(design C) known as reflexed airfoils [182]. Each of the identified designs is not acceptable for all

flight conditions but is viable as one of many states of a morphing configuration.

A

B

C

B

C

A

α = 1.6°   V = 29.5 m/s   L/D = 148
Pc = [0.3255, 0.2762, 0.4914, 0.4993]

α = 5.4°   V = 55.5 m/s   L/D = 194
Pc = [0.3617, 0.4387, 0.3359, 0.3728]

α = 9.7°   V = 35.5 m/s   L/D = 167
Pc = [0.4548, 0.4507, 0.2520, 0.2976]

Figure 6.5: The non-dominated surface and the three cluster centers are depicted along with airfoil
shape coefficients, designed flight condition, and lift-to-drag ratio for NACA 4415.

6.2.2 Concept selection for four parent airfoils

Another high-level objective of this chapter is to select the optimal parent airfoil. The op-

timization procedure implemented for the NACA 4415 is repeated for the NACA 0012, NACA

641−212, and UGA 88-143/20. The non-dominated surfaces for each morphing configuration and

the aerodynamic performance of the fixed configuration are depicted in Fig. 6.6. For all airfoils,

the morphing configuration outperforms or is equivalent to the originating configuration. However,

different trends are observed for each concept due to the original OML and structural constraints:
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• NACA 0012 is the only symmetric airfoil (i.e., zero lift coefficient at zero angle of attack) of

the evaluated concepts. The low performance of the parent airfoil did not restrict the morph-

ing configuration to achieve lift-to-drag ratios as high as 200. At high angles of attack, the

morphed configuration is equivalent to the original airfoil as airfoil symmetry is beneficial

to delay boundary layer separation.

• NACA 4415 is an outlier in regards to the performance insensitivity to flight conditions. The

objective value for the fixed and morphed configurations shows the smallest variation among

all airfoils for changing angle of attack and airspeed.

• NACA 641-212 is designed for maximizing laminar flow and has a low lift-to-drag ratio for

the fixed configuration. However, the morphing configuration resulted in the highest L/D of

all concepts (the maximum took place for α = 0◦ and V = 60 m/s). This result demonstrates

that the aerodynamic performance of the parent airfoil does not directly correlate to the

performance of the morphing configuration.

• UAG 88-143/20 is the only airfoil that does not considerably increase performance at low

angles of attack when incorporating morphing. The airfoil is intended for sailplanes and is

already tailored for a maximum L/D for low α. However, morphing does improve perfor-

mance at higher values of α.

When comparing fixed configurations, as shown in Fig. 6.7a, it is evident that the sailplane

airfoil is best at low α while the NACA 4415 is superior at high α. However, the same conclu-

sions cannot be made when comparing the morphing configurations, as shown in Fig. 6.7b. Each

concept has flight conditions where it has superior aerodynamic performance over the other three.

Therefore, a formal process for concept selection is necessary and would benefit from a metric that

weighs J∗(α, V ) for the most relevant flight conditions.
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(a) NACA 0012 (b) NACA 4415

(c) NACA 641−212 (d) UAG 88-143/20

Figure 6.6: Aerodynamic performance of the fixed configuration and the non-dominated surface
for the morphed configuration with the following parent airfoils: (a) NACA 0012, (b) NACA 4415,
(c) NACA 641−212, and (d) UAG 88-143/20.
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(a) Fixed

(b) Morphed

Figure 6.7: Aerodynamic performance of (a) the fixed configuration and (b) the non-dominated
surface for the morphed configuration with the following parent airfoils: NACA 0012, NACA
4415, NACA 641−212, and UAG 88-143/20.
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The expected value J̃ considers optimal lift-to-drag ratios as a function of the operational pa-

rameters, angle of attack and airspeed, and the probability of each flight condition. The SVDD for

each of the morphed configurations (i.e., J∗(α, V )) is utilized to determine the optimal objective

for each flight condition continuously. A margin of error of 2.8% is assumed for morphed config-

uration results based on the average error from a previous study [183]. As discussed in Appendix

??, the error does not affect expected lift-to-drag ratio, but is relevant for maximum lift-to-drag

ratio. The compilation of all metrics is shown in Table 6.2. The optimal airfoil for fixed and mor-

phed configurations varied according to the selected metric. Regarding the fixed configurations,

the UAG 88-143/20 is the optimal airfoil according to the traditional metrics, but the NACA 4415

is determined optimal if utilizing the expected lift-to-drag ratio. Regarding the morphed concepts,

the NACA 641-212 is best for the traditional metric and similar to the sailplane airfoil for the ex-

pected value. Hence, utilizing an expected value does not always imply a change of the selected

concept. Except for the UAG 88-143/20, all morphing airfoils are aerodynamically superior to the

fixed concepts for both metrics.

Conf. Parent
Traditional Expected
(L/D)max (L/D)ev

Fi
xe

d

NACA 0012 104 85
NACA 4415 151 126

NACA 64(1)-212 103 86
UAG 88-143/20 250 102

M
or

ph
ed

NACA 0012 226 ± 6 208 ± 6
NACA 4415 218 ± 6 169 ± 5

NACA 64(1)-212 314 ± 9 216 ± 6
UAG 88-143/20 247 ± 7 218 ± 6

Table 6.2: Summary of maximum and expected lift-to-drag ratios for fixed and morphed airfoils.
Selected concepts are highlighted.
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6.2.3 Similarity of morphing OML to existing airfoils

As discussed in section 6.1.2, a non-linear constraint is implemented such that the explored

morphed airfoils resemble designs in existing airfoil databases. The development of aerodynam-

ically favorable airfoils is a well-developed and active area of research and is not the goal of this

chapter. All the airfoils on the non-dominated surface have a substantial degree of similarity (i.e.,

low RMSE) to existing airfoils, as shown in Fig. 6.8. The three previously mentioned clusters in

Fig. 6.5, A, B, and C, are equivalent to the following Gottingen series airfoils: GOE 502, GOE

675, and GOE 503. This series of high-camber airfoils was created at Gottingen University in Ger-

many in the early days of aviation, during the 1920s, and are not utilized in commercial aviation.

The remaining concepts include typical sailplane airfoils such as the UAG 88-143/20, the Eppler

644 (ex), the Eppler 678, and the Quabeck HQ 2.5/12. In general, morphing allows altering the

OML in between different well-known airfoils according to flight conditions rather than utilizing

a sub-optimal airfoil for the whole flight mission.

An additional study is performed where the calculated support vectors, which can vary be-

tween 30 to 50 designs, for the non-dominated surface for each concept are compared to the airfoil

database. Interpolation between the support vectors or the trained SVDDs could be utilized to

evaluate more designs and obtain a more continuous distribution, but could also introduce errors.

Fig. 6.9 depicts the probability mass function (i.e., the frequency distribution of discrete objects)

of the five most common similar existing airfoils for the support vectors for each concept . This

analysis provides insight on how many interchangeable airfoils would be necessary to obtain a

similar aerodynamic performance as the non-dominated surface. Once again, out of the 20 airfoils,

almost half are from the Gottingen series. The most frequent airfoil is the GOE 573. This result

highlights that no existing fixed airfoil can obtain the same performance as a morphing airfoil.
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Morphed C Quabeck HQ 2.5/12 Morphed C Gottingen 573

Morphed B Drela DAE11 Morphed B UAG 88-143/20

Morphed A Eppler 678Morphed A Eppler 644 (ex)

Morphed C NACA 2412 Morphed C Gottingen 503

Morphed B Gottingen 322 Morphed B Gottingen 675

Morphed A Gottingen 501 Morphed A Gottingen 502

(a) Parent: NACA 0012 (b) Parent: NACA 4415

(c) Parent: NACA 641-212 (d) Parent: UAG 88-143/20

Figure 6.8: Cluster centers of te non-dominated surfaces and airfoils with the most significant
degree of similarity for each concept.
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(a) Parent: NACA 0012 (b) Parent: NACA 4415

(c) Parent: NACA 641-212 (d) Parent: UAG 88-143/20
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E678 M27

Figure 6.9: Probability mass function for similar airfoils for the support vectors of the four evalu-
ated concepts.
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6.3 Comments

This chapter shows that parametric optimization is an effective tool for optimizing a flight

performance objective function over a range of parameters, making it a valuable method for opti-

mizing morphing structures. Specifically, P3GA is a reliable method to optimize the aerodynamic

performance of a structurally consistent airfoil coupled with an aerodynamic solver. This accuracy,

coupled with the decreased runtime compared to traditional methods [174], supports the use of

parametric optimization over conventional optimization methods for solving morphing problems.

The two-parameter non-dominated surface describing the lift-to-drag ratios of morphing NACA

0012, NACA 4415, NACA 641-212, and UAG 88-143/20 airfoils are compared to those from non-

morphing baseline designs, quantifying the improvement from morphing technologies. Morphing

airfoils achieve similar or better performance across changing operational conditions than fixed,

specialized airfoils. Overall, there is not a strong correlation between the aerodynamic perfor-

mance of a parent airfoil and the calculated non-dominated surface. Structural constraints and

initial OML constrain the feasible morphed shapes due to the structurally consistent framework.

The evaluated airfoils are ranked according to concept selection and expected value principles.

The selected airfoil depends on the utilized metric, maximum lift-to-drag ratio vs expected lift-to-

drag ratio. Fixed airfoils can also have superior performance over a morphing airfoil, demonstrat-

ing that morphing is not always necessary. Nevertheless, concept selection is a suitable method to

procedurally define the optimal parent airfoil for an aircraft class or mission, or even to determine

if morphing is more advantageous than utilizing an aerodynamically favorable airfoil.
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7. FINITE-DEFLECTION REVERSION BEAM THEORY

The proposed structurally consistent parameterization method in Chapter 5 considers kinematic

constraints when generating deformed shapes, leading to geometrically feasible configurations for

most shape coefficient combination inputs. However, the approach does not provide a unique

solution for the convex problem of a structure under load as shown in Fig. 7.1. Therefore, there

must be an affine transformation M that relates the applied loads L to the deformed position r or

geometric coefficients a in a injective fashion; hence:

M(L)→ r(a). (7.1)

Such a relation is proposed in this chapter by including kinematics of finite-beam deflections,

constitutive models, and other assumptions to form the governing equations. Because no assump-

tions are made regarding the bending moments and geometry, a general beam model is developed.

The proposed framework is implemented for a two-dimensional cross section of the airfoil skin.

The current model does not allow for embedded skin actuators (cf. Chapter 3) but enables modeling

of skins subject to various loads and actuators and an extension to actuators is proposed. There-

fore, it can be utilized as an alternative or an improvement to the structurally consistent method of

Chapter 6.

R
es

id
ua

l

Geometrically feasible
solutions

Satisfies governing
equation

Does not
satisfy governing

equation

For a given set of applied loads:

Does not
satisfy governing

equation

Figure 7.1: Distinction between a geometrically feasible solution and the stable solution under
specific loads.
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For sake of clarity, Fig. 7.2 is provided as a reference to the various variables utilizes in this

chapter. Keeping with the previous nomenclature for structurally consistent airfoils (Chapter 4),

the term child and parent are used to denoted deformed and undeformed for this chapter.

(u) upper or (l) lower
beams

Position nomenclature

(T) trailing or (L) 
leading edge

(c) child or (p) parent
configurations

(k) knot span

(i) node or direction

(u) upper or (l) lower
beams

Moments and arc length nomenclature

(i) node or direction

External: (t) torque, (q)
force, and (w) pressure

(E) external or (I)
internal sources

Internal: (r) reaction
and (e) spring

Figure 7.2: Nomenclature regarding superscripts and superscripts utilized for any variable in this
chapter (e.g., x, M , and s)

7.1 Overview

7.1.1 Motivation

As depicted in Fig. 7.3, a universal parameterization method for Computer-Aided Design

(CAD), structural analysis, and fluid analysis is required to guarantee higher accuracy for anal-

yses of high-performance aeronautical vehicles and more intuitive geometry manipulation. The

traditional structural analysis method of Finite-Element Analysis (FEA) is not utilized herein ex-

cept for result verification. The new universal representation is inspired by the work from Hughes

and co-authors [184] on Isogeometric Analysis (IGA). However, IGA can only be utilized for pa-

rameterization methods with specific properties (e.g., subdomains, denoted as “patches”, where

shape function requirements are satisfied [184, 185]). Therefore, IGA requires parameterization

methods (e.g., NURBS) that are not:

• efficient (i.e., introduce large number of degrees of freedom), and
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• intuitive (i.e., the NURBS coefficients have no physical meaning).

In this chapter, a method to solve the boundary value problem of a thin beam undergoing large

deflections is proposed for any parameterization technique.

CAD (Splines)Nodes

FEA (Lagrange poly.)
CAD = EBM

Figure 7.3: Traditional methodology vs. universal parameterization methodology, where EBM
stands for Euler-Bernoulli method. A universal parameterization method enables higher accuracy
analysis without approximating the topology with a mesh of low-order piecewise polynomials.

7.1.2 Case studies

The overarching goal is to develop a structural model that can be utilized for arbitrary geome-

tries and loads such as airfoil sections. Different set of requirements are solved in increasing order

of complexity to achieve this goal. For each set of requirements, a different category of beam

model is developed. The following three categories of beam problems depicted in Fig. 7.4, each

with a respective set of case studies (A, B, and C), are analyzed:

(A) Spline element beam: consists of a beam represented by one continuous polynomial, usually

a CST. This is the most limiting case as concentrated forces and torques can only be applied

at the free end, and no boundary conditions can be imposed along the beam. This case study

is also evaluated for a power series to demonstrate that the proposed method is not restricted

to CST equations.

(B) Spline beam: consists of a beam represented by a spline, usually a CST spline. It consists of

m spline element beams connected at knots Ξ, leveraging the properties of the spline element

beam, but allowing for bending moment discontinuities at the knots from concentrated forces

and torques.
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(C) Multi-beam assembly: consists of two spline beams, denoted as upper and lower, inter-

acting with each other through hinged spars, actuators, and springs. The model leverages

the previous two beam categories and allows the modeling of systems similar to a skinned

aerodynamic structure.

A B

C

  
  
  
  
   

   
             Arbitrary pressure distribution

Rigid
Elastica

Position
components

Figure 7.4: The different categories of beam models studied in this chapter: (A) spline element
beam, (B) spline beam, and (C) multi-beam assembly. (A) requires C0 pressure distributions,
while (B) and (C) do not. (C) includes incorporates the interactions between different beams.

7.2 Finite-deflection Euler-Bernoulli derivation

Curvilinear beam theory is an active field of study with methodologies continually being de-

veloped since 1945 and papers continue to be published in the topic [64–66, 186–203]. Beam

models can be derived in multiple ways, including three more common methods [204]: Newtonian

method based on the free body diagram [186], variational method [58], and variational asymptotic

method [187]. The first two are ad hoc methods that include various kinematic assumptions (e.g.,

the Euler-Bernoulli assumptions), leveraging the knowledge that the engineer has of the problem.
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The variational asymptotic method has the merits of the variational method without using ad hoc

assumptions. Since the steps utilized for defining the general Euler-Bernoulli governing equation

are well-established, a Newtonian methodology is utilized. The assumptions considered for the

beam model in this chapter are:

• Finite deflections: most engineers are familiar with the beam derivation that assumes small

deflections. As a consequence, the component of the displacement parallel to the beam

is typically neglected, and all governing equations are depicted in a Cartesian coordinate

system (ii ∈ [1, 2, 3]) as a function of x-coordinates as shown in Fig. 7.5. A morphing skin,

however, is subject to large rotations and deflections, making the small deflection assumption

unsuitable. Therefore, finite deflections are assumed, and a curvilinear reference frame (gi ∈

[1, 2, 3]) is utilized that is a function of the arc length coordinate s along the beam neutral line.

The curvilinear coordinate system also consists of coordinate β that denotes the distance

along the normal of the neutral line for a specific arc length s. The relation between arc

length s and Cartesian coordinates x and z is given by [205]:

Cartersian coordinate system
Curvilinear coordinate system

Figure 7.5: Curvilinear and Cartesian coordinate systems for bending beam.

s =

∫ x

0

√
1 +

(
dz

dx
(χ)

)2

dχ . (7.2)

In the study of finite deflections and curved geometries, it is convenient to define two other
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geometric quantities. The first is the beam angle φ related to the following Cartesian coordi-

nates derivatives: [196]

cosφ =
dx

ds
, (7.3)

sinφ =
dz

ds
, (7.4)

and the second is the radius of curvature ρ defined via the relationship to the curvature κ

as: [196]

κ(s) =
1

ρ(s)
=
dφ

ds
(s) =

d2z
dx2

(s)[
1 +

(
dz
dx

(s)
)2
]3/2

. (7.5)

• Euler-Bernoulli: for most aerospace applications, the aircraft skin thickness is orders of

magnitude smaller than the arc length or chord. Therefore, the Euler-Bernoulli assumption,

where cross sections perpendicular to the reference neutral line remain perpendicular for

all deformed configurations, is acceptable. As such, the position vector r(s, β) is the linear

combination of the position vector of the neutral line r̄(s) and the distance β from the neutral

line along the normal n as shown in Fig. 7.6. Therefore [206]:

r(s) =

x(s)

z(s)

 =

x̄(s) + βn1(s)

z̄(s) + βn2(s)

 = r̄(s) + βn(s) , (7.6)

where

n(s) =

n1(s)

n2(s)

 =

−dz
ds

(s)

dx
ds

(s)

 . (7.7)

Thus, the position vector can be reformulated as:
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x(s)

z(s)

 =

x̄(s)− β dz
ds

(s)

z̄(s) + β dx
ds

(s)

 . (7.8)

Cartersian coordinate system
Curvilinear coordinate system

Figure 7.6: Definitions of position vectors for the beam.

• Elastica: strains along the curvilinear neutral axis are assumed to be small and the beam is

assumed to be experiencing pure bending. The arc length L of the curvilinear neutral axis

is constant for all deformed configurations. Because the arc length coordinate s is the same

for the child (deformed) and parent (undeformed) (cf. Chapter 4 for definitions of the parent

and child configurations), the position vectors for both configurations are a function of the

same arc length coordinate:

xc(s)
zc(s)

 =

x̄c(s)− β dzcds (s)

z̄c(s) + β dx
c

ds
(s)

 , (7.9)

xp(s)
zp(s)

 =

x̄p(s)− β dzpds (s)

z̄p(s) + β dx
p

ds
(s)

 , (7.10)
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and the displacement is given by:

u(s) =

xc(s)
zc(s)

−
xp(s)
zp(s)

 . (7.11)

Regarding additional geometric metric properties, the beam angles for child and parent con-

figurations are defined as φc and φp while ρc and ρp are the radii of curvature for the child

and parent configurations.

• Only transverse loads: in the most general form, the contributions to the bending moment

are generated by an arbitrary pressure distributionW (s), concentrated forcesQ, and discrete

bending moments (torques) T . The resultant bending moment is composed of contributions

from forces internal MI(s) and external ME(s) to the assembly such that:

M(s) = MI(s) +ME(s) , (7.12)

where MI is a summation of the moments from reactions forces M r and elastic springs M e:

MI(s) = M e(s) +M r(s) , (7.13)

and these two moments components resultant from beam interactions as will be discussed

in the next section. When only one beam is considered, M(s) = ME(s). ME(s) is a lin-

ear combination of moment contributions from torques M t(s), forces M q(s), and pressures

Mw(s), and it is given by:

ME(s) = M t(s) +Mw(s) +M q(s) . (7.14)

The discrete bending moments can take place anywhere along the beam, originating from

torque springs, torque tube actuators, or others. Other papers that develop finite deflection
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beam models only consider one torque at the end of an element or the whole beam, but such

a simplification is not herein assumed. Instead, nt concentrated moments T k are considered

at arc length coordinates st. Modified from Zhang et al. [196], the resultant contribution is :

M t(s) =
nt∑
k=1

〈st,k − s〉0T k , (7.15)

where 〈·〉0 is the Macaulay bracket notation for a unit step [207] (i.e., if the parenthetical

expression is negative, the output is zero; otherwise, the output is one).

Non-uniform pressure distributions along the arc length are expected for the skin of the air-

craft. Previous papers simplified the pressure distribution as uniform or linearly distributed

pressures, but that is not possible herein. Instead, an arbitrary pressure distribution W (s) is

assumed. The pressure distribution can be rotational (i.e., load angle with neutral line is con-

stant for all deformed configurations) depending on the value of parameter γ. the pressure

distribution is aligned with the original undeformed vertical direction if γ = 0 or aligned

with the normal n(s) for any child configuration. Modified from Rao and Rao [201], the

contributions to the bending moment along the out-of-plane axis i2 are:

Mw(s) =

∫ L

s

[W (χ)n̄(χ)× d(s, χ)] · i2dχ , (7.16)

where the vector n̄(s) is the pressure orientation (n̄(s) = n(s) if γ = 1) and the vector

d(s, χ) denotes the distance from an arc length s to any other point along the neutral line

with arc-length χ. Both vectors are given by:

d(s, χ) =

xc(χ)− xc(s)

zc(χ)− zc(s)

 , (7.17)

n̄(s) =

− cos(γφc(s))

sin(γφc(s))

 . (7.18)
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Finally, concentrated transverse loads on the beam are expected from various sources such as

actuators or structural weights. Similar to torques, previous finite beam models only consider

one force per element or beam. Because an aircraft skin is subject to various load sources

such as from the internal structure, the same assumption is not made. The possibility of nq

concentrated loads Q applied at arc lengths sq is considered. Modified from Mutyalarao et

al. [208], the contribution to the bending moment distribution along the out-of-plane direc-

tion i2:

M q(s) =
nq∑
k=1

〈sq,k − s〉0
[
Qc,k × d(s, sq,k)

]
· i2 . (7.19)

The initial load vectorQp,k has magnitude Qk and angle θk relative to the inertial horizontal

orientation at arc length sq,k. The orientation of the load is held constant if γ = 0. If the

load is rotational (γ = 1), the load vector Qp,k is rotated by angle φk that is the difference

between the child beam angle φc,k and the parent beam angle φp,k at arc length sq,k. The

general equation for loadQk is:

Qk = RQp,k = QkR

sin θk

cos θk

 = Qk

cos βφk − sin βφk

sin βφk cos βφk


sin θk

cos θk

 . (7.20)

• Infinitesimal strain: despite the finite deflections, material obeys linear elasticity and is only

subject to small strains. As such, the non-linear component of the Green-Lagrangian strain

tensor [209] can be neglected. Considering all the assumptions, the governing equation for

finite beams, as shown by Frisch-Fay [186], is:

M(s) = −ĒI
(

1

ρc(s)
− 1

ρp(s)

)
, (7.21)

where Ē is the equivalent Young Modulus, I is the beam moment of inertia, and EI is
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known as the flexural rigidity of the beam [196]. Considering that E is the material Young

Modulus and ν is the Poisson ratio, Ē = E for plane stress and Ē = E/(1 − ν2) for plane

strain [210]. All the illustrative results for this chapter are for a thin beam sections, so plane

stress is assumed. However, for an aircraft skin, plane strain should be assumed.

Depending on the beam model, it is convenient to write Eq. 7.21 as a function of beam

angles of parent and child configurations, φP and φc. Utilizing the definition of the radius of

curvature (Eq. 7.5), the governing equation is formulated as follows [186]:

M(s) = −EI
(
dφc

ds
(s)− dφp

ds
(s)

)
. (7.22)

7.2.1 Simplications

The derived general equation for Euler-Bernoulli can be unfamiliar to most engineers but can

be simplified to a more familiar format if certain assumptions are made. First, if the initial ge-

ometry is a straight beam, we have that the parent curvature radius ρp(s) → ∞ for s ∈ [0, L].

Therefore [186]:

M(s) = −EI 1

ρc(s)
. (7.23)

Shell and curved beam theory utilized in FEA often assume that the radius for each element is

constant. Therefore, the child curvature radius ρc(s) = ρ and:

M(s) = −EI
ρ
. (7.24)

Moreover, if only small deflections are considered, the second derivative of the z-component of

the displacement (i.e., d2z/dx2 << 1 and the horizontal component of the displacement can be are

small and are not considered in the formulation. Since the arc length derivative ds/dx = 1, Eq. 7.23

can be formulated in the following more familiar format as a function of Cartesian coordinate

x [210]:

M(x) = −EI d
2zc

dx2
(x) . (7.25)
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While useful in demonstrating the equivalency of this approach to more commonly used meth-

ods, these simplified beam models are not utilized throughout the remainder of this chapter.

7.3 Methodology

There are other finite deflection beam models with associated solvers that utilize the same

assumptions from section 7.2 for specific initial geometries and loads [64–66,186–203]. However,

as shown in Table 7.1, the current body of literature lacks a beam model that allows for arbitrary

initial geometry and loads. Therefore, a new method is proposed by this chapter that satisfies

this requirement and utilizes a universal parameterization method. Since multiple features of the

proposed model are inspired by previous work, a short summary of existing methods is discussed

before introducing the new methodology.

7.3.1 Previous methods

Five aspects are of interest regarding existing methods: permitted initial geometry, permit-

ted loading conditions, category of free variables, applicable solvers, and required discretization.

Existing shortcoming will form the motivations for the developments demonstrated in this chapter.

Loads

Forces
Distributed
pressure

Discrete
moments

Arbitrary

In
iti

al
ge

om
et

ry

Straight
[65, 66,

186–196]

[186, 189,
190, 192,
198–200]

[186–188,
191, 196] [66, 201]

Polar
[186, 191,

197]
[186]

[186, 191,
197]

-

Arbitrary
[64, 202,

203]
[202] - -

N
um

berofpapers

Table 7.1: A review of implementations of beam theory.

1. Initial geometry: the majority of studies regarding finite deflection beams consider that the
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initial geometry is straight (see Eq. 7.23) [65, 66, 186–196, 200, 201] or of a constant radius

(see Eq. 7.24) [66, 201]. The latter is by far the most common in engineering applications

given fabrication constraints and their load-carrying efficiencies; they are also the only initial

geometries that possess analytical solutions for specific conditions [186, 187, 190, 196, 200].

Finally, a more general approach for geometry is possible [64,202,203], with the framework

developed by Hampton et al. [64] being utilized in this work.

2. Loading conditions: the majority of studies solve for a concentrated force at the free end of a

straight [65,66,186–196], constant radius curved [186,191], and arbitrarily curved [66,201]

beam. However, there are no existing models for discrete bending moments and arbitrary

bending moment distributions (e.g., a combination of concentrated loads and linearly dis-

tributed pressures). Moreover, except for the work from Rao and Rao [201], no methods

consider rotational loads. Therefore, all available methods limit arbitrary admissible geome-

tries, portraying only a fraction of possible loading conditions.

3. Free variables: the general governing equation for Euler-Bernoulli is commonly solved for

the following three free variables: beam angle φ, displacement u, and coefficients A of a

power series. Solving for displacements is widely implemented for other models such as

small deflection beams. Still, it is uncommon for finite deflection beams as it leads to non-

linear second-order differential equations. Beam angle φ is the most common method for

finite deflections (see Eq. 7.22) as the governing equation is a first-order differential equation

and has analytical solutions for specific cases. Moreover, the beam angle φ can be approxi-

mated by a power series (i.e., the reversion method) where polynomial coefficients A must

be determined. All three methods require additional processes to calculate the deformed

parameterization (i.e., angle integration, linear superposition, and/or regression methods).

Therefore, no approach provides a true analytical relation between Cartesian coordinates of

the neutral line and a set of coefficientsA.

4. Solvers: except for a restricted category of beam problems with analytical solutions [186,
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187, 190, 196, 200], most beam problems can only be solved numerically. Most authors ar-

range the governing equations in a system of first-order differential equations and implement

a fourth-order Runge-Kutta method [189, 192, 193, 199, 201]. Conversely, the governing

equation can also be solved via complete and incomplete elliptical integration [194–196].

Other less popular techniques include the Shooting method [198, 203], and the Projection

algorithm [211].

Outside of the domain of finite beams, the Weighted-Residual and Ritz methods

are common means to solve partial differential equations [58]. Both methods approximate

the displacement by a polynomial series and generate a system of equations that can be

solved for the polynomial coefficients. The methods require that the power series satisfy

certain requirements (e.g., polynomial order), lead to a non-linear system of equations that

needs to be solved via Newton’s method for finite deflections of arbitrary geometries, and

require additional processes to determine the geometry of the shape configuration. For such

reasons, an alternative general method inspired by the aforementioned methods is utilized.

5. Discretization: Independent of the method, any beam with discontinuous bending moment

distribution benefits from discretization as will be later shown. The chain algorithm, similar

to FEA, discretizes elastic members into small linearized elements, but, unlike FEA, ele-

ments are analyzed in succession (i.e., from the fully fixed end to the free end) and hence in-

version of the overall stiffness matrix is avoided [191]. Campanile and Hasse [197] proposed

a circle-arc method that uses a similar discretization technique as in the chain algorithm but

approximates the deflection configuration of each element by a circular arc.

7.3.2 The proposed reversion method

There has not been located in the existing literature any finite deflection model that allows

for arbitrary initial geometry and loads and a universal geometric representation of all deformed

geometries, as shown in Fig. 7.7. A method that incorporates all these features provides a po-

tentially intuitive tool to design engineers and can be incorporated into the design of morphing
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Figure 7.7: A summary of methods from Table 7.1 that consider a combinations of the following:
arbitrary initial geometry, arbitrary loads, and parametric representation. Previous publication only
consider up to one or two of these attributes, but this work considers the synthesis of all three.

structures. Therefore, a new approach that combines elements from power series, chain algorithm,

and conservation of angular momentum is proposed.

For an arbitrary moment, the bending discontinuities can take place at the arc length locations

Ξ, also known as the knots for a spline. In cases where the bending moment is continuous or

approximately continuous, a non-piecewise parameterization method can be utilized. A piecewise

representation is necessary to represent arbitrary loads as will be depicted in Fig. 7.19 as one

CST cannot accurately represent discontinuous bending moments. The degrees of freedom of the

parameterization method are denoted by coefficientsAc for the child andAp for the parent.

The kinematic constraints that will be discussed in the next section will be shown to restrict

the array of independent shape coefficients ac and ap to be subsets of all possible child and parent

shape coefficients Ac and Ap. Therefore, the parent (xp, zp) and child (xc, zc) coordinates can be

written as functions of the independent variables sets for splines (cf. Chapter 3 for the mathematical

formulation of splines) as∗:

∗Semicolons are utilized to distinguish individual variables (left), and parameters (right).
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zc(s) = z(s;ac,Ξ) , (7.26)

zp(s) = z(s;ap,Ξ) . (7.27)

Consequently, the Euler-Bernoulli equation for large deflections and arbitrary geometries (Eq. 7.21)

can be rewritten as:

M(s,ac) = g(s,ac) + r(s) , (7.28)

where r is the residual due to the approximate z function and g is has terms dependent on the arc

length, geometry, and material properties as defined by:

g(s) = EI

[
1

ρc
(s;ac,Ξ)− 1

ρp
(s;ap,Ξ)

]
. (7.29)

The total residual along the neutral line of the beam is:

R(ac) =

∫ L

0

r(s)ds =

∫ L

0

[M(s,ac)− g(s,ac)] ds . (7.30)

The values of ac that minimize the total residual R represent the stable solution of a convex

problem as they approximately satisfies conservation of linear momentum. Ideally, the minimal

performance R∗ is zero or close to zero for the correct solution. Moreover, kinematic restrictions

are imposed via equality constraints ω (e.g., case studies C). Therefore, the problem statement is

formulated as:

R∗ = min
ac

R(ac) ,

subject to:

ω(ac) = 0 .

(7.31)
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In the case of a multi-beam assembly, ac = {acu,acl} and the objective function is the norm of

the residual of each beam (Ru and Rl):

R =
√

(R2
u + R2

l ) . (7.32)

For all examples, a gradient-based optimizer known as the Sequential Least Squares Program-

ming (SQLSP) algorithm [212] is implemented where the Jacobian:

J =
∂R(ac)

∂ac
, (7.33)

is calculated via finite differences. Potentially, the Jacobian terms could have analytical solutions

if linearized, but the calculation is not trivial as the bending moments cannot be decoupled from

geometry properties for large deflections (Eqs. 7.16-7.15) and the non-linear relation between

Cartesian coordinates and the arc length (Eq. 7.2). Although this work focuses on CST equations,

the problem statement is valid regardless of the parameterization method.

7.3.3 Kinematic constraints and boundary conditions

Because the proposed approach utilizes shape coefficients as independent variables, boundary

conditions are imposed based on their geometric implications. Dirichlet boundary conditions (pre-

scribed values for z(s) along the domain boundary) lead to a decrease in the number of independent

shape coefficients by imposing kinematic constraints on the parameterization method itself. The

analytical solutions for constrained degrees of freedom are derived in this section. As the method

is not restricted to one geometric parameterization method, the constraints are formulated in a

general format that is relevant for all paramterization methods as well as for CST equations. The

following eight constraints are considered:

1. Fixed root: the beam root is fully fixed for all examples. The constant vertical coordinate

and slope at the root are defined as z0 and slope z′0 (for most examples z0 = 0 and z′0 = 0);

151



thus,

z(s = 0) = z0 , (7.34)

dz

dx
(s = 0) = z′0 . (7.35)

When CST equations are utilized as the parameterization technique, this corresponds to the

following solutions for the parameterized coordinate ζ and the zeroth shape coefficient of

the first spline element A1
0 (Eq. 4.31):

ζ1
L = z0/c

1 , (7.36)

A1
0 = −ζT +

z0

c1
+ z′0 . (7.37)

2. Free end: the bending moment at the beam free end is zero if no torque Ts is applied at arc

length coordinate s = L, corresponding to knot arc length Ξm. From the Euler-Bernoulli

equation for large deflections and arbitrary geometries (Eq. 7.21):

Ts
EI

=
1

ρc,m
− 1

ρp,m
, (7.38)

ρc,m =
EIρp,m

Ts + EI
. (7.39)

If torque at the free end is zero, Ts = 0, then the radius of curvature between child and

parent configurations are the same, ρc,m = ρp,m. Based on the radius of curvature equation

at ψ = 1 (Eq. B.15) and the free end constraint (Eq. 7.39), the following relation is defined

for the m-th spline element:

2nAc,mn−1 − 2(N1 + n)Ac,mn

cc,m [1 + (−Ac,mn + ζc,mT − ζc,mL )2]3/2
=

2nAp,mn−1 − 2(N1 + n)Ap,mn

cp.m [1 + (−Ap,mn + ζp,mT − ζp,mL )2]3/2
, (7.40)
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and solving for the n-th child shape coefficient of the m-th spline element Ac,mn :

Ac,mn =
1

N1 + n

{
nAc,mn−1 +

[
nAp,mn−1 − (N1 + n)Ap,mn

] cc,m
cp,m

[
1 + (−Ac,mn + ζc,mT − ζc,mL )2

1 + (−Ap,mn + ζp,mT − ζp,mL )2

]3/2
}
.

(7.41)

3. Rigid leading edge: for airfoil applications, the region near the leading edge tends to be

stiffer than the rest of the skin because of structural reinforcement, and it can be assumed

rigid. Previously for structurally consistent airfoils (see Chapter 4), where a single CST was

utilized, this imposition leads to a constant leading edge radius at arc length coordinate s =

0. However, helicopter blades and other structures are likely to be rigid for the whole region

corresponding to the D-section. Therefore, a rigid leading edge section can be imposed by

fixing the coefficients for the first spline element (i.e., k = 1). Therefore,

Ac,1i = Ap,1i ∀ i ∈ {0, . . . , n} . (7.42)

As a consequence of a rigid leading edge section, the bending moment at the knot arc length

Ξ1 is discontinuous and only C1 continuity is imposed even if the remainder of the beam is

C2 continuous.

4. C0 continuity: The beam consists of a single component. As such, all relevant geometries

are assumed to be C0 continuous. Therefore the following is true for the parent and child

configurations for any parameterization method:

zk−1(Ξk) = zk(Ξk) ∀ k ∈ {1, . . . ,m} . (7.43)

For CST equations (see Eq. 4.33), the rigid leading edge constraints for parent and child

configurations are given by:

ζkL =
ck−1

ck
ζk−1
T ∀ k ∈ {1, . . . ,m} . (7.44)
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5. C1 continuity: Aerodynamic outer mold lines are smooth surfaces; discontinuities increase

drag and can initiate laminar to turbulent transition and should be avoided. The aerodynam-

ically relevant geometries considered herein are assumed to be C1 continuous. Therefore,

the following is valid for any parameterization method:

dzk−1

dx
(sk) =

dzk
dx

(sk) ∀ k ∈ {1, . . . ,m} . (7.45)

For CST equations (see Eq. 4.34), the C1 continuity constraint at the knots is imposed for

parent and child configurations by:

ζkT = −ζk−1
L − Ak−1

n + ζk−1
T + ζkL − Ak0 ∀ k ∈ {1, . . . ,m} . (7.46)

6. C2 continuity: except for applied torques, the bending moment in Eq. 7.21 is aC0 continuous

function. From the same equation (or Eq. 7.25), the second derivative of the vertical posi-

tion must also be C0 continuous at all arc length coordinates except for rigid components.

Therefore, C2 continuity conditions are assumed for the position for all locations of the child

configuration that the bending moment is C0 continuous. The parent configuration has no

bending moments applied, so C2 continuity is always assumed. Therefore, the following is

valid:
d2zk−1

dx2
(sk) =

d2zk
dx2

(sk) ∀ k ∈ {1, . . . ,m} . (7.47)

For CST equations, (see Eq. 4.34), the kinematic constraints are imposed for parent and child

configurations by:

1

ck−1

[
nAk−1

n−1 − (N1 + n)Ak−1
n

]
=

1

ck
[
−(n+ 1)Ak0 + nAk1

]
, (7.48)

and solving for the 0-th shape function for spline element k (i.e., the beam is composed of
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m spline elements), Ak0:

Ak0 =
1

n+ 1

{
nAk1 −

ck

ck−1

[
nAk−1

n−1 − (N1 + n)Ak−1
n

]}
. (7.49)

7. Elastica: as mentioned before (third assumption in Section 7.2) the beams here considered

are inextensible along the neutral line. The mathematical implication to the spline is that the

arc length Lk is preserved for spline beam elements similar to structurally consistent airfoils.

As a consequence:

Lc,k = Lp,k . (7.50)

From the definition of arc length (Eq. 7.2), the constraint is imposed by calculating chord

cc,k for each beam region that satisfies:

∫ cc,k

0

√
1 +

(
dz

dx
(χ;Ac)

)2

dχ =

∫ cc,p

0

√
1 +

(
dz

dx
(χ;Ap)

)2

dχ . (7.51)

8. Displacement boundary conditions: any knot to which a constraint on a displacement degree

of freedom is applied experiences a reaction force or moment. Because of the suggested

solution approach (see Eq. 7.31), the bending moment distribution together with resulting

reaction forces must be calculated. This calculation is atypical for FEA and similar methods

as reaction forces are usually only calculated at post-processing. Therefore, a methodology

to calculate reaction forces from kinematic constraints is introduced.

Such kinematic constraints might include boundary conditions (e.g., pinned root) or connec-

tions to attached rigid bodies (e.g., spars as is Chapter 5). The arc length coordinates sr

where displacements can be constrained are included in the set of knots Ξ (sr ∈ Ξ). The

x-component of the reaction forces is neglected because of the small influence compared

to the z-component. This assumption is valid for all the explored case studies, but could

be limiting to certain applications. From Eq. 7.19, the generated moment from nr reaction

forces Rk is:
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M r(s) =
nr∑
k=1

〈sr,k − s〉0Rk
(
x(sr,k)− x(s)

)
. (7.52)

To determine the values of the reaction forces Rk, the governing equation (Eq. 7.21) can be

rewritten as follows:

Mw(s) +M t(s) +M q(s) +M e(s) +
nr∑
k=1

〈sr,k − s〉0
(
x(sr,k)− x(s)

)
Rk = g(s) , (7.53)

Rearranging, the following relation is valid at any arc length s for any configurationAc,:

nr∑
k=1

〈sr,k − s〉0
(
x(sr,k)− x(s)

)
Rk = g(s)−Mw(s)−M t(s)−M q(s)−M e(s) . (7.54)

Eq. 7.54 is valid for any arc length coordinate and can be sampled along the neutral line to

form a system of equations with nr unknown reaction forces. The number of independent

sampled points is denotedN . IfN < nr, the system is underdefined and cannot be solved. If

N = nr the system of equations is invertible, but the selection of sampled points is arbitrary

and could bias the solutions. If N > nr the system of equations is overdefined and can be

solved via a least-squares algorithm. Therefore, the reaction forces are calculated from an

overdefined system of equations nr×N . The definition of the sampling N will be discussed

in Section 1.4 as it also pertains to the stability of the solution.

Other boundary conditions such as simply supported locations or interactions with other beams

can be incorporated through constraints or other parameter dependencies, which is discussed in

future sections.

Considering all the boundary conditions imposed on the shape coefficients, the number of

configuration variables depends on the number of rigid edges, torques applied, or C2 continuous

knots. Moreover, the number of coefficients necessary to define the parent geometry is not the same
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as the number of degrees of freedom for the child geometries because of the free end boundary

condition. Table 7.2 provides a summary of the number of shape coefficients for parent and child

geometries where n is the order of the polynomial, m is the number of polynomial domains, and

t is the number of discrete locations to which a concentrated torque or simply supported boundary

condition is applied.

Table 7.2: Number of degrees of freedom to define a parent geometry ap and child configuration
ac. Because of the imposed constraints, the number of degrees of freedom vary according to the
imposed continuity at the knots. n is the order of the polynomial, m is the number of polynomial
domains, and t is the number of locations with an applied torque.

Number of degree of freedom
dim(ap) dim(ac)

C1 continuous beam (n+ 1)m (n+ 1)m
C2 continuous beam nm+ 1 nm+ t

C2 continuous beam with Rigid LE nm+ 1 n(m− 1) + t

7.3.4 Beam interactions

The OML of the airfoil can be simplified as two beams, upper and lower, connected at specific

knot locations. Each beam has distinct parameterization equations and positions coordinates for

each beam is attributed as (xu, zu) and (xl, zl). The beams can interact via the following compo-

nents: hinged rigid spars, hinged springs, and hinged actuators. These interactions do not change

the number of design variables or how the geometry is defined but affect the problem statement and

bending moment distributions. As depicted in Fig. 7.8, all interactions can be classified regarding

the relationship between forces Qp,k and Qc,k (first introduced in Eq. 7.15) as well as the lengths

lp,k and lp,k. A summary of each interaction is herein provided.

Three different beam interactions are studies to represent situational differences between the

relation between the beam and the attached internal component. In aerospace, the thin skin is less

stiff than internal structures (e.g., ribs and spars); hence, the internal components can be considered

as hinged rigid bodies compared to the compliant skin. However, if the stiffness of an internal
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components of the same order of magnitude or lower than the skin (e.g., a leaf-beam suspension),

the internal structure can be modeled as a hinged linear spring. Finally, if the internal component is

not a structural component but instead it exerts a coupled load without kinematically constraining

the beam, it can be simplified to a hinged actuator.

(a) (b) (c)Hinged rigid spar Hinged spring Hinged actuator
Internal structure is stiff

compared to skin
Internal structure is compliant

compared to skin
Internal structure applies

coupled load on skin

Load angle is 
not preserved

Load angle is 
not preserved

Figure 7.8: Interactions between beams. For all three investigated interactions, the relation be-
tween reaction forces and lengths for parent and children configuration differ.

1. The length of the components is preserved for child and parent configurations for rigid spars

(lp,k = lc,k). The length is defined as:

lp,k =

√(
xp,ku − xp,kl

)2

+
(
zp,ku − zp,kl

)2

, (7.55)

lc,k =

√(
xc,ku − xc,kl

)2

+
(
zc,ku − zc,kl

)2

, (7.56)

and the angle between the spar and the beams is not preserved as depicted in Fig. 7.9(a). The

child geometry defines the magnitude and direction of the reaction forces, but the length is

determined by the parent geometry. Moreover, a rigid spar generates an additional reaction
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force at both beams with the same magnitude but opposing directions because of the conser-

vation of linear momentum. Therefore, the reaction forces for the upper and lower surfaces

at knot k are defined as:

Rk
u = −Rk

l , (7.57)

the moment generated by the opposing reaction force is still calculated via Eq. 7.52 and the

following equality constraint ω is imposed on the momentum residual minimization (cf. Eq.

7.31):

ωk = |lc,k − lp,k| . (7.58)

2. If the internal structure has stiffness on the same order of magnitude as the beam or cross

section of the skin, the interaction between both beams can occur through hinged springs as

depicted in Fig. 7.8(b). ne springs with stiffness ek can be applied at knots se. The resultant

bending moment from spring components along the out-of-plane axis i2 is given by:

M e(s) =
ne∑
k=1

〈se,k − s〉0
[
Qe,k × d(s, se,k)

]
· i2 , (7.59)

where d is the distance vector from arc length s to se,k (cf. Eq. 7.17),

Qe,k = ek(lc,k − lp,k)

xc,ku − xc,kl
zc,ku − z

c,k
l

 . (7.60)

3. In some applications such as morphing airfoils [122], actuators can connect the beams and

generate force without imposing kinematic restrictions (e.g., lp,k = lc,k). Therefore, the

hinged actuators can be modeled as coupled force vectors where the magnitude is constant,
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but the direction and length are defined by the child geometry as depicted in Fig. 7.8(c),

rotating as the structure rotates to maintain actuator alignment. From the conservation of

linear momentum, the force vectors acting on each beam are related by:

Qk
u = −Qk

l . (7.61)

7.4 Implementation

The implementation of the proposed methodology benefits from efficient algorithms and a gen-

eral framework to allow for various loading and initial geometries; it must provide reliable results.

A framework that satisfies all three is here described via pseudocode. Although the implementa-

tion is specific to CST equations, any parameterization method can be utilized as will be shown

in Section 1.5.1. For the purposes of illustration, the following three beam models are considered

in increasing order of complexity: spline beam element (m = 1), the CST spline beam (beam

component with m > 1), and the multi-beam assembly. The more complex models utilize the

simpler models as a foundation, as shown in Fig. 7.9, allowing for robustness and an intuitive flow

of information as the implementation is developed and demonstrated.

Multi-beam assembly

Spline beam

Spline beam elementIncreasing complexity

Figure 7.9: Nested beam models.
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7.4.1 Spline beam element and spline beam

To efficiently calculate integrals along the neutral line (e.g., Eq. 7.30) as well as track the

displacements (see Eq. 7.11), a quadrature with N integration points along the neutral line is

defined. The integration points are not necessary for geometric representation nor are they related

to the number of free variables (as in FEA) but are necessary for numerical integration. As multiple

integrations are necessary for each configuration, it is efficient to store geometric properties along

the mesh for reuse. Each region k of the beam over which a continuous CST function is used can

have an arbitrary number of integration points Nk. As such, the total number of integration points

is:

N =
m∑
k=1

Nk −m+ 1 . (7.62)

The distribution of integration points for each region can be uniformly distributed based on the

radius of curvature ρ, Cartesian coordinate x, or arc length s. The latter is here utilized for all

examples. An example is provided in Fig. 7.10 to illustrate the differences between integration

points s and the knots Ξ.

Integration point
Knot

Figure 7.10: An example of a beam with four knots and varying number of integration points per
spline beam element.

The defined quadrature is utilized for multiple operations such as the integral of the residual
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via trapezoidal rule (cf. Eq. 7.30): †

R(Ac) ≈ 1

2

N−1∑
j=0

(sj+1 − sj) (r(sj,A
c) + r(sj+1,A

c)) , (7.63)

and to calculate the arc length (Eq. 7.2) for specific coordinate xj:

sj =

j∑
p=1

1

2
(xp − xp−1)

(
dsp
dx

+
dsp−1

dx

)
. (7.64)

When utilizing Eq. 7.64 to calculate xj for a new ac, the value of dsj/dx is at first unknown

as it is dependent on xj . The equation is reformulated as follows such that it can be solved via

fixed-point iteration for xj:

sj =
1

2
(xj − xj−1)

(
dsj
dx

+
dsj−1

dx

)
+

j−1∑
p=1

1

2
(xp − xp−1)

(
dsp
dx

+
dsp−1

dx

)
,

xj = xj−1 +
2sj −

∑j−1
p=1 (xp − xp−1)

(
dsp
dx

+ dsp−1

dx

)
(
dsj
dx

+
dsj−1

dx

) .

(7.65)

The details regarding the implementation of the methodology and any other relevant calcula-

tions are portrayed in Boxes 7.1-7.4. The core of the algorithm is depicted in Box 7.1 while the

algorithms for calculating dependent shape coefficients are in Box 7.2, for geometric states are in

Box 7.3, and for moments are in Box 7.4. The residual for each case is calculated, whereas the op-

timization will utilize the current set of objective values to determine the next design variable or if

the optimization converged. Convergence is achieved when the variation of the objective function

between two iterations is less than 10−6.

†For specific boundary conditions (e.g., the non-zero slope at the root) and class coefficients (N1 = 0.5), there
are singularities at the bounds that result in an improper integral [213]. The singularity can be mediated by separating
the integral into two components, unbound and bound, such that the unbound component can be analytically solved
and the bound component is a proper integral. This decomposition is necessary for implementing the framework to
arbitrary geometries at the root but was not utilized for any of the case studies and is thus omitted.
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Box 7.1: Main algorithm for CST and CST spline beam models.

Initialize with ac = ap

1. Parent
a. Calculate dependent shape coefficients and knot positions using Box 7.2

ap → {Ap, ζpL, ζ
p
T}

b. Determine geometric states using Box 7.3

{Ap, ζpL, ζ
p
T} →

{
rp,

drp

ds
,P

}
2. Child

a. Calculate dependent shape coefficients and knot positions using Box 7.2

ac → {Ac, ζcL, ζ
c
T}

b. Determine geometric states using Box 7.3

{Ac, ζcL, ζ
c
T} →

{
rc,

drc

ds
,ρc
}

3. Calculate moment distribution components (Eq. 7.12) via Box 7.4

M(s) = M q(s) +Mw(s) +M t(s) +M r(s)

4. Calculate residual (Eq. 7.63)

R(ac) ≈
N−1∑
j=0

1

2
(sj+1 − sj) [M(sj,a

c)− g(sj,a
c) +M(sj+1,a

c)− g(sj+1,a
c)]

where (Eq. 7.29) gives:

g(s;ac) = EI

[
1

ρc
(s;ac)− 1

ρp
(s;ap)

]
5. Calculate Jacobian based on finite differences

6. Optimizer calculates next ac based on Jacobian

7. Repeat steps 2-6 until optimization converges
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Box 7.2: Algorithm to calculate dependent variables for CST spline (m 6= 1) and CST (m = 1)
beams.

Calculate dependent shape coefficients and knot positions

For k = 1, . . . ,m (initial guess cc,k = cp,k):

If k = 1 and child configuration and rigid:

Ac,k = Ap,k

else:
Ac,k
i = ac(k−1)n+i ∀ i ∈ [1, n]

a. If k > 1, C2 (Eq. 7.49) continuity conditions are imposed:

Ak0 =
1

n+ 1

{
nAk1 −

ck

ck−1

[
nAk−1

n−1 − (N1 + n)Ak−1
n

]}
b. If k = 1, boundary conditions ζ(0) and ζ ′(0) (Eq. 7.37) are imposed:

ζ1
L = z0/c1

A1
0 = −ζT +

z0

c1
+ z′0

else, C0 (Eq. 7.44) and C1 (Eq. 7.46) continuity conditions are imposed:

ζkL =
ck−1

ck
ζk−1
T

ζkT = −ζk−1
L − Ak−1

n + ζk−1
T + ζkL − Ak0

c. If k = m and child configuration, free end (Eq. 7.41) conditions are imposed:

Acn =
1

N1 + n

{
nAcn−1 +

[
nApn−1 − (N1 + n)Apn

] cc
cp

[
1 + (−Acn + ζcT − ζcL)2

1 + (−Apn + ζpT − ζ
p
L)2

]3/2
}

d. If child configuration, calculate chord cc,k (Eq. 7.51):

∫ cc,k

0

√
1 +

(
dz

dx
(χ;Ac,k)

)2

dχ =

∫ cc,p

0

√
1 +

(
dz

dx
(χ;Ap,k)

)2

dχ

e. If child configuration, iterate steps a-d until chord converges
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Box 7.3: Algorithm to determine parent and child geometries for CST spline (m 6= 1) and CST
element (m = 1) beams.

Calculate geometric states
For j = 1, . . . , N (initial guess xcj = xpj for child and xpj = sj for parent):

a. Determine k such that Ξk−1 ≤ sj < Ξk and calculate ψkj (Eq. 4.30)‡

ψkj =
x(sj)− x(Ξk−1)

ck
b. Calculate arc length derivatives regarding x (Eq. 7.2)

dsj
dx

=

√√√√1 +

(
dζkj
dψk

)2

where (Eq. B.4)
dζkj
dψk

= Ck(ψkj )
n∑
i=0

Aki Si(ψ
k
j )

(
i− n−Nk

2

1− ψkj
+
Nk

1 + i

ψkj

)
+ ζkT

Ck(ψkj ) =
(
ψkj
)Nk

1 (1− ψkj )N
k
2

Si(ψ
k
j ) =

[
n!

i!(n− i)!
(
ψkj
)i

(1− ψkj )n−i
]

c. calculate horizontal component xj by fixed-point iteration to Eq. 7.65

xj = xj−1 +
2sj −

∑j−1
p=1 (xp − xp−1)

(
dsp
dx

+ dsp−1

dx

)
(
dsj
dx

+
dsj−1

dx

)
d. Repeat a-c until xj converges
e. Calculate vertical component zj using Eq. 4.31

zj = ckζk(ψkj )
f. Calculate angles if load is rotational using Eq. 7.4

sinφj =

(
dsj
dx

)−1

cosφj =
dζj
dψ

(
dsj
dx

)−1

g. Calculate second derivative of parameterized vertical component using Eq. B.5

d2ζkj
dx2

= Ck(ψ)
n∑
i=0

Aki Si

(Nk
1 + i

ψkj
+
i− n−Nk

2

1− ψkj

)2

− Nk
1 + i

(ψkj )2
+
i− n−Nk

2(
1− ψkj

)2


h. Calculate radius curvature using Eq. (7.5)

1

ρcj
=

1

ck
d2ζkj
dψ2

[
1 +

(
dζkj
dψ

)]−1/2
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Box 7.4: Algorithm to determine bending moments.

Calculate moment components

a. Calculate contribution due to torques M t via Eq. 7.15:

M t(sj) =
nt∑
i=1

〈st,k − sj〉0Ti

b. Calculate contribution due to pressure Mw via Eq. 7.16:

Mw(sj) =
N−1∑
i=j

1

2
(si − si+1)(mi +mi+1)

where:
mi = W (xi) {cos(βθi) [xi − xj]− sin(βθi) [zi − zj]}

For j = 1, . . . , N :
c. Calculate contribution due to forces M q via Eq. 7.19:

M q(s) =
nq∑
k=1

〈sq,k − sj〉0
[
Qc,k × d(sj, s

q,k)
]
· i2 .

where:

Qk = Qk

[
cos βφk − sin βφk

sin βφk cos βφk

](
sin θk

cos θk

)
.

d(sj, s
q,k) =

(
xc(sq,k) − xc(sj)
zc(sq,k)− zc(sj)

)
d. Calculate reaction forces Ri via Eq. 7.54:

nr∑
k=1

〈sr,k − sj〉0
(
x(sr,k)− x(sj)

)
Rk = g(sj)−Mw(sj)−M t(sj)−M q(sj)−M e(sj)

e. Calculate M r via Eq. 7.52:

M r(s) =
nr∑
k=1

〈sr,k − sj〉0Rk
(
x(sr,k)− x(sj)

)
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7.4.2 Multi-beam assembly

Implementation of the proposed approach for a multi-beam assembly is similar to solving the

upper and lower beams simultaneously (Box 7.5) via inclusion of spar reactions or spring forces

in Box 7.6, and the calculation of equality constraint ω (Eq. 7.58). The reaction and spring forces

are only calculated for the upper beam. In contrast, the forces or moment distributions for the

lower beam are related to the upper equivalents via Eqs. 7.57 and 7.61. Following the calculation

of the bending moment and geometric states, the residual for each beam and the objective function

are determined (Box 7.1). Based on the objective and constraint values, the optimizer will define

the next set of design variables or if the algorithm has converged. If there are reaction forces, the

Levenber-Marquardt algorithm is implemented to calculate them [214].
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Box 7.5: Algorithm for coupled CST spline beams.

Initialize with acu = apu and acl = apl
1. Parent
a. Upper beam: implement procedure from Box 7.1(1)

{Ap
u} → {rpu,ρpu}

b. Lower beam: implement procedure from Box 7.1(1)

{Ap
l } → {r

p
l ,ρ

p
l }

c. Calculate distance between constrained knots for parent configuration
For k = 1, . . . ,me:

lp,k =

√(
xp,ku − xp,kl

)2

+
(
zp,ku − zp,kl

)2

2. Child
a. Upper beam: implement procedure from Box 7.1(2-4) and Box 7.6

{au} → {rcu,ρcu,Ru}
b. Lower beam: implement procedure from Box 7.1(2-4) and Box 7.6

{al} → {rcl ,ρcl ,Rl}
c. Calculate distance between constrained knots for child configuration
For k = 0, . . . ,m:

lc,k =

√(
xc,ku − xc,kl

)2

+
(
zc,ku − zc,kl

)2

3. Calculate constraints
For k = 1, . . . ,m:

ωk = lc,k − lp,k
4. Calculate total residual

R =
√

(R2
u + R2

l )

5. Calculate Jacobian via finite differences

6. Optimizer calculates next au and al based on Jacobian and constraints ω

7. Repeat steps 2-5 until optimizer converges
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Box 7.6: Main algorithm to determine the solution of a multi-beam assembly.

Calculate external moment components ME

For j = 1, . . . , N :
a. If upper beam, calculate moment M e if there are spring elements via Eq. 7.6:

M e(s) =
ne∑
k=1

〈se,k − sj〉0
[
Qe,k × d(sj, s

e,k)
]
· i2 ,

where:

Qe,k = ek(lc,k − lp,k)
(
xc,ku − x

c,k
l

zc,ku − z
c,k
l

)
where:

lp,k =

√(
xp,ku − xp,kl

)2

+
(
zp,ku − zp,kl

)2

lc,k =

√(
xc,ku − xc,kl

)2

+
(
zc,ku − zc,kl

)2

else moment M e
l is given by Eq. 7.54:

M e
u = −M e

l

b. If lower beam, connected reaction forces Rj are (Eq. 7.57):

Rk
l = −Rk

u

else calculate reaction forces via Eq. 7.61:

nr∑
k=1

〈sr,k − sj〉0Rk
[
x(sr,k)− xj

]
= g(sj)−Mw(sj)−M t(sj)−M q(sj)−M e(sj)

c. Calculate M r via Eq. 7.52:

M r(sj) =
nr∑
k=1

〈sr,k − sj〉0Rk
(
x(sr,k)− x(sj)

)
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7.5 Case studies

Multiple case studies are evaluated for the developed beam formulations to demonstrate the

versatility and robustness of the proposed framework that does not exist in currently existing beam

models. Three sets of case studies are explored for: (A) a spline beam element, (B) a spline beam,

and (C) a multi-beam assembly. An example of each case study is depicted in Fig. 7.11. A total of

20 case studies for CST basis and nine for power series parameterization are evaluated. Each case

study is utilized to verify the different features of the framework, with the nature of the studies

approaching that os morphing airfoil sections as features are added. All case studies are validated

against known solutions from either analytical solutions, experiments [189,201,202], or FEA. The

root mean square error in the deformed position ε is utilized to quantify the difference between the

novel solutions and the reference.

Example: A6

Case studies A: spline beam element Case studies B: spline beam

Rigid

Example: B6

Case studies C: multi-beam assembly
Example: C4

Rigid

Rigid

Figure 7.11: Schematics of loads, boundary conditions, and initial geometries for an example from
each case study.

7.5.1 Case studies A: beam spline element

Case studies A consider parameterizations with only one spline beam element. Therefore, all

domains are Cn continuous (n being the order of the polynomial)and no discontinuities of the
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bending moment are possible. Although it is the simplest implementation of the proposed for-

mulation, all demonstrated capabilities are pertinent for more complex case studies such as beam

splines and assemblies. Six case studies with variants for varying loads are selected to demonstrate

reliable responses for finite deflections, concentrated loads, linear pressure distributions, rotational

loads, and initially curved geometries. Features of each case are depicted in Table 7.3 and the

respective schematics are found in Fig. 7.12.

Table 7.3: All explored features for case studies A.

Finite
deflections

Concentrated
load

Linear
pressure

Rotational
load

Initially
curved

C
as

e
st

ud
ie

s A1 X
A2 X
A3 X X X
A4 X X X
A5 X X X
A6 X X X X

Case studies A are first evaluated for a power series to demonstrate that the methodology is gen-

eralizable to any parametric representation. While still imposing length preservation to calculate

x, the vertical component z is given by:

z =
n∑
i=2

Aix
i , (7.66)

where Ai are the shape coefficients and A0 = A1 = 0 because of the fixed boundary conditions

(Eq . 7.37).

The solutions for all cases utilizing the power series are provided in Fig. 7.13. All the low resid-

ual solutions have a low root mean square error regarding the reference; hence, the results are in

agreement with known solutions. The same study is implemented for a CST basis as summarized

in Fig. 7.14 with similar results. When comparing the residual and RMSE for both parameter-

ization methods in Table 7.4, the advantage of CST basis over a power series is not evident as
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1.0 m

A1

1 N

1.0 m

1 N.m

A2

0.4 m

0.758 N.m

a: 0.098 N
b: 0.196 N

A3

1.0 m

233.33 N.m

A4

A5

0.4285 m

A6
159.28 N

0.4285 m

EI = 156.67 Pa m3

ap = (-0.279, - 0.292, -0.305, -0.318) ap = (-0.279, - 0.292, -0.305, -0.318)

ap = (0, 0, 0)ap = (0, 0, 0)

ap = (0, 0, 0)ap = (0, 0, 0)
EI = 58.33 Pa m3 EI = 58.33 Pa m3

EI = 0.026 Pa m3 EI = 58.33 Pa m3

EI = 156.67 Pa m3

a: 159.28 N
b: 232.86 N

a:
b:

400 N.m

                      Rotational

Figure 7.12: Schematics of loads, boundary conditions, and initial geometries considered in case
studies A. Studies A3-A6 result in finite deflections.

only initially straight beams as both metrics have the same order of magnitude. However, CST

equations have improved accuracy for initially curved configurations (e.g., case study A5).
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Table 7.4: Residual and RMSE for case studies A with power series and CST.

Residual RMSE
Power series CST Power series CST References

C
as

e
st

ud
ie

s

A1 1.3× 10−6 1.5× 10−7 5.2× 10−7 2.9× 10−8 Euler-Bernoulli, FEA
A2 9.4× 10−7 2.9× 10−6 2.3× 10−7 4.6× 10−7 Euler-Bernoulli
A3a 7.5× 10−3 6.8× 10−3 4.7× 10−4 3.8× 10−4 Experiment [189]
A3b 4.7× 10−2 1.3× 10−2 1.2× 10−3 3.3× 10−4 Experiment [189]
A4a 3.0× 10−2 1.1× 10−2 2.1× 10−3 2.9× 10−3 Experiment [201]
A4b 2.7× 10−2 1.8× 10−2 2.0× 10−3 2.6× 10−3 Experiment [201]
A5a 1.1× 10−2 8.2× 10−4 1.5× 10−3 1.5× 10−3 Experiment [202]
A5b 1.6× 10−2 1.1× 10−3 1.2× 10−3 7.4× 10−4 Experiment [202]
A6 5.0× 10−3 6.5× 10−4 6.8× 10−5 7.1× 10−5 FEA
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Figure 7.13: Results of case studies A with a power series basis. All case studies returned low
RMSE ε and residuals R with no error exceeding 0.43% of the maximum deflection magnitude.
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Figure 7.14: Results of case studies A with CST basis. All case studies returned low RMSE ε and
residuals R with no error exceeding 0.53% of the maximum deflection magnitude.
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7.5.2 Case studies B: CST spline beam

For the next case studies, power series are not considered and only a CST spline beam is evalu-

ated. Six case studies are evaluate to demonstrate the following features: concentrated loads at any

location of the beam, arbitrary pressure distributions, reaction forces, applied torques, rigid com-

ponents, and initially curved geometries. The features of each case are summarized in Table 7.5

and the respective schematics in Fig. 7.15. Note the progression toward a morphing airfoil section.

Table 7.5: All explored features for case studies B.

Concentrated
loads

Linear
pressure

Reaction
force

Discrete
moments

Initially
curved

Rigid
component

C
as

e
st

ud
ie

s

B1 X
B2 X X
B3 X
B4 X X
B5 X X
B6 X X X

The stable solutions for all case studies are in agreement with the known solutions for each

problem as shown in Fig. 7.16. Residuals up to 2.8 × 10−3 N m can provide accurate solutions

with root mean square error of 5.9× 10−4 m.
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Figure 7.15: Schematics of loads, boundary conditions, and initial geometries for case studies B
(independent shape coefficients are depicted).
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Figure 7.16: Results of case studies B with CST basis. All case studies returned low RMSE ε and
residuals R with no error exceeding 0.05% of the maximum deflection magnitude.
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7.5.3 Case studies C: multi-beam assembly

The last set of case studies verifies the performance of multi-beam assemblies with various

types of beam interactions and initial geometries as depicted in Table 7.6 and Fig 7.18. Similar to

the previous case studies, all results agree with FEA as depicted in Fig. 7.18, demonstrating that

this method is reliable for structures that begin to represent categories of morphign airfoil sections.

Table 7.6: All explored features for case studies C.

Coupled
force

Spring
element

Reaction
force

Rigid
component

Initially
curved

C
as

e
st

ud
ie

s C1 X X
C2 X
C3 X X
C4 X X X

0.2 m 0.1 m

100 N

0.7 m

0.2 m 0.8 m

10000 N/m

0.2 m 0.1 m0.7 m

0.2 m 0.8 m
10 N

C2C1
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C3 C4

0.2 m 0.4 m0.4 m

60 N
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ap = {u: (0.3209, 0.2846, 0.2431, 0.2714,      
0.0647, 0.0622, -0.0281, -0.0441)}

ap = {u: (0, 0, 0, 0, 0), l: (0, 0, 0, 0, 0, 0, 0)}

Figure 7.17: Schematics loads, boundary conditions, and initial geometries of case studies C.
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Figure 7.18: Results of case studies C with CST basis. All case studies returned satisfactory RMSE
ε and residuals R with no error exceeding 0.37% of the maximum deflection magnitude.

A final example is evaluated utilizing one spline element for each beam and two spline ele-

ments as shown Fig. 7.19. As previously mentioned, the piecewise representation is necessary to

represent arbitrary loads as one CST cannot accurately represent discontinuous bending moments.

The error at s = 0.2 m also leads to an incorrect estimation of the reaction force; further deteriorat-

ing the correct bending moment distribution. Note that the RMSE ε for both cases are of the same

magnitude despite the incorrect moment distributions and increased residual R when utilizing one

spline element.
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Figure 7.19: Motivation to utilize CST spline for beam representation in lieu of a single CST. The
highlighted regions demonstrates that a single spline element is unable to capture the discontinuous
bending moment. The bending moments differ at the root because the reaction force calculation is
dependent on the geometric representation as will be shown in Section 7.3.4.

7.6 Comments

The skins of morphing wings, if they have constant cross sections and are morphed uniformly

along the span (cf. Chapter 4) can be simplified as 2-D beams subject to a number of distributed

and discrete boundary conditions and internal constraints undergoing finite deflections. There are

no existing beam models that satisfy all desirable characteristics while allowing for a universal

parameterization for CAD and structural analysis. Therefore, a geometry- and mechanics-based

method has been demonstrated that it satisfies conservation of linear momentum to determine the

stable solution of a beam or assembly of beams that satisfy all kinematic constraints.
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In increasing complexity, the model is developed for a spline element beam, a spline beam,

and a multi-beam assembly. Kinematic constraints are imposed directly on shape coefficients to

decrease the number of degrees of freedom or as equality constraints penalizing solutions. In total,

the physical responses of 20 case studies are verified with existing solutions utilizing CST, CST

splines, and power series as basis functions. Overall, the proposed method reliably determines the

correct solution for arbitrary initial geometries and loads for any parameterization method.

Because of the generality of the proposed model, it can be coupled with other components

or further improved. While an elastica is assumed (i.e., linear elastic material model and length

preserving beam formulation), the theory of an extensible elastica [215] could be incorporated.

Therefore, it would enable the utilization of the structurally consistent framework from Chapter 5

with the energy minimization. Moreover, the curvilinear Euler-Bernoulli beam equations can be

generalized into the curvilinear Kirchhoff-Love shell theory [206]; hence, the 3D CST equations

from Chapter 4 could be utilized as the universal representation of a morphing skin; this is proposed

as a highly enabling extension for other researches. Finally, the non-linear constitutive behaviors

such as those of shape memory alloys (Chapter 2) could be incorporated instead of assuming linear

elasticity, allowing the modeling of a morphing wing with embedded SMA components.
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8. CONCLUSIONS AND FUTURE WORK

The goal of this dissertation is to explore bio-inspired applications that leverage geometric and

material non-linearities and to develop tools that enable design explorations for these unorthodox

problems. In Section 1.6, the six goals of this study were outlined and led to the discussions in

Chapters 2-7. The following two sections specify the conclusions and future work for each goal.

8.1 Summary and conclusions

Considering the previously mentioned challenges in the development of morphing structures,

the following contributions are made:

(i) Shape memory alloys as artificial muscles: Muscle constitutive behavior plays a critical role

in understanding animal locomotion [75] as well as developing efficient bipedal locomo-

tion [103]. In our effort to explore the design domain of artificial muscles, SMA compo-

nents are incorporated in a novel bipedal locomotion model as a stiffness-controlled spring

element. The tunable spring compliance adds a mechanism that can increase or decrease

the amount of energy delivered to or dissipated from locomotion, changing robot gait. This

adaptivity is expected to benefit other applications beyond bipedal locomotion. As the work-

loop response of the humerotriceps is the same as that of other muscles used for flying, this

multifunctional mechanism could aid the design of other bio-inspired devices. It may pro-

vide biological insight regarding the design of more efficient engineering systems while also

providing engineering insight into movement and coordination in biological systems that

cannot be easily directly measured (e.g., bird wings) [74].

(ii) Experimental study of camber morphing wing: In the context of aerospace engineering, mor-

phing structures are useful in their ability to change the OML while improving or maintaining

certain aerodynamic performance metrics. Skin-based morphing is of particular interest in

that it minimizes installation volume. SMAs have a high force to volume ratio that makes

them a suitable choice for skin-based morphing. The concept of a morphing wing with com-
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posite SMA actuators embedded in the skin is proposed, modeled, fabricated, and tested as

an alternative to increasing aircraft aerodynamic performance. The various manufactured

platforms and ensuing wind tunnel tests demonstrate that the concept can be tuned to meet

application requirements, is controllable in various environmental conditions, and leads to

reproducible results regardless of platform size and number of actuators. Experimental re-

sults include a 40% lift increase and a 3.5% deflection relative to the chord.

(iii) Parameterization of multi-component aircraft assembly: a physically meaningful and effi-

cient parameterized representation is developed for an accurate depiction of already existing

aircraft. The main restriction to the development of commercial supersonic transport (SST)

is the noise intrinsic to sonic booms. Small changes to the OML of an SST can lead to

noise decrease for specific flight conditions. However, aeroacoustic performance improve-

ment may not be maintained for off-design flight conditions. A concept to overcome this

design dilemma is a morphing aircraft that changes shape to tune performance according to

flight conditions. To accurately represent the geometry of a morphing aircraft and of already

existing aircraft, a modified 3D CST method is proposed. The schema is adapted according

to the desired structure to be represented (e.g., fuselage and wing). Through boolean oper-

ations and analytical intersection calculations, parts are precisely combined to generate an

assembly (e.g., aircraft). The tool is benchmarked utilizing the JAXA wing body. A CST

spline is also proposed to increase the versatility of CST equations, which are intended for

modeling morphing wings. It is shown that the improved parameterization can accurately

describe general SST concepts and possibly other geometries of interest.

(iv) Development of structurally consistent morphing wing models: Camber morphing of the

wing OML may improve aerodynamic performance and reduce noise emissions for some

aircraft. However, not all OMLs are obtainable from a given reference configuration as the

extent to which the OML can deform is restricted by both the reference airfoil shape and wing

internal structure. The CST parameterization method is modified for the first time to con-
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sider the kinematics of a morphing airfoil with rigid internal structure, providing structurally

consistent CST equations. Skin-based actuators and certain assumptions regarding the in-

ternal structure are stipulated. Accurate kinematically feasible deformed configurations are

rapidly calculated without the need for structural analysis or consideration of actuation tech-

nology, enabling rapid iterative preliminary design optimization. The kinematic relations are

accurate for moderate deformations (strains ≤ 4%) while still providing good estimates for

larger deformations when comparing to FEA results.

(v) Optimization of morphing wings for subsonic flight conditions: Morphing structures can al-

low significant improvements in performance by optimally changing shape across varying

conditions. A critical barrier to the design of morphing structures is the challenge of de-

termining how optimal shapes change as a function of the many operating conditions that

affect optimality. Traditional engineering optimization techniques are able to determine

an optimal shape only for one condition or an aggregation over operating conditions (i.e.,

optimizing average performance). Parametric optimization is an alternative approach that

can solve a family of related optimization problems simultaneously. Herein the analysis of

the design of a structurally consistent camber morphing wing is performed for civil utility

subsonic aircraft applications using parametric optimization techniques. The approach com-

bines rigorous consideration of structural constraints via CST equations with the Predictive

Parametric Pareto Genetic Algorithm (P3GA), an algorithm for nonlinear multi-parametric

optimization. The system is tuned to maximize lift-to-drag ratio, a key metric for aircraft

flight range. The process is repeated for multiple concepts (i.e., different parent airfoils)

and ranked based on expected and maximum lift-to-drag ratios. Results show that morphing

always increases performance and allows reconfiguration between existing airfoils, but that

it is not necessary for all aircraft. The concept selection algorithm shows that there are fixed

airfoils that could have performance equivalent or superior to a morphing configurations

depending on the application.
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(vi) Development of a finite beam method with universal parameterization: the optimization re-

sults motivate the development of a finite beam method for arbitrary geometries and loads for

any parameterization method. Currently, no existing method satisfies the aforementioned re-

quirements. A new curvilinear beam method is developed inspired by isogeometric analysis

and teh Ritz method that satisfies all requirements. Case studies for power series, CST, and

CST spline as a basis are verified with known solutions. Overall, the method provides reli-

able solutions as function of shape coefficients, providing a universal representation between

topology and structural analysis.

8.2 Future work

Considering the previously mentioned challenges in the development of morphing structures,

the following future work is proposed:

(i) Shape memory alloys as artificial muscles: the main focus of the bi-pedal locomotion study

was to evaluate the effect between the electrical and mechanical stimuli for only one cycle

(i.e., period of time between landing of the same robot end point). The transient response of

the gait under varying electrical stimuli for multiple cycles was not explored. Future work

could explore this rich design domain and develop control laws that explore the multifunc-

tional response. Finally, the numerical results for the bi-pedal robot need to be experimen-

tally verified despite previous experimental verification of the isolated actuators.

(ii) Experimental study of camber morphing wing: a key product of the camber morphing wing

study is a six-foot composite prototype with twelve actuators. Only a open-loop control is

implemented in Chapter 3 and all the actuators are imposed to the same current. However,

future studies could modify the platform setup to allow for closed-loop control of the separate

actuators, leading to a greater design domain. The morphed configurations would include

the previously studied camber morphing, but could also include twisting and varying camber

morphing along the span.

(iii) Parameterization of multi-component aircraft assembly: the CST splines are developed for

186



a two-dimensional domain but can be expanded to three dimensions. The 3D CST equations

can incorporate splines (e.g., knots in two directions in the parameterized domain), allowing

for a more versatile parameterization method that can incorporate taper and other geometric

discontinuities.

(iv) Development of structurally consistent morphing wing models: the structurally consistent

framework was developed for camber morphing and was restricted to two dimensions. The

framework can be expanded to three dimensions, allowing for other structural constraints for

other components such as ribs. This would allow for varying internal structures as well as

other modes of morphing such as twist or span morphing.

(v) Optimization of morphing wings for subsonic flight conditions: the operating conditions are

incorporated into the expected value in Chapter 6 to generate a metric that returns the best

airfoil for a Cessna 172. This procedure can be repeated for other aircraft without having to

run a parametric optimization. Moreover, cases with an additional parameter (e.g., altitude)

or additional objective function (e.g., power) could also be studied. The resultant volume

in hyperdimensional space cannot be easily visualized, and a concept selection algorithm

becomes necessary to determine a dominant solution.

(vi) Development of a finite beam method with universal parameterization: since Euler-Bernoulli

beams can be generalized to Kirchoff-Love shell theory, the new beam model can also be

generalized to shells. Moreover, non-linear constitutive response and structurally consistent

frameworks can also be incorporated in the framework. If coupled with an aerodynamic tool,

a similar study to Chapter 6 can be performed, determining the optimal kinematically and

mechanically correct morphed solution for each flight condition.
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APPENDIX A

DERIVATION OF ACTUATION FREQUENCY TO BODY MASS RATIO

A relation between the maximum actuation frequency of an SMA spring located at the robot

leg and the body mass of the bi-pedal robot is derived based on conservation of linear momentum

and energy. During the stride, the robot weight and ground reaction force, equivalent to the elas-

tic spring force, counter each other with the maximum load on the SMA springs taking place at

approximately 50% of the stride. In that instance, the elastic force is aligned with gravity, and the

conservation of linear momentum considering the spring stiffness definition (Eq. ??) and stretch

δl = (ll − lo)/lo is:

Mg =
Gr

4NC3
δllo , (A.1)

solving for the wire radius r:

r =
4NMgC3

Gδllo
. (A.2)

A second equation is derived from conservation of energy by making three assumptions. The

maximum frequency of an SMA is dominated by the cooling period. Considering that the heating

period is at most an order of magnitude less than cooling, the heating phase is neglected for calcu-

lating actuation frequency. Moreover, heat contributions from phase transformations are neglected

as all studied cases only had partial phase transformation. Finally, thermal expansion is neglected

as the temperature ranges are not significant. Conservation of energy [216] considering the three

assumptions reduces to governing equation to Newton’s cooling law. The solution to the equation

for cooling a wire at initial temperature Ti to final temperature Tf at ambient temperature T∞ is:

Tf = (Ti − T∞)e−
h
ρc

∆t + T∞ (A.3)

where c is the SMA heat capacity, ∆t is the time necessary to cool down the specimen, and h is the

heat transfer coefficient. h is a function of the wire radius, the Nusselt number Nu, and the fluid
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thermal conductivity k such that:

h =
kNu

2r
. (A.4)

Solving Newton’s cooling law, Eq. A.3, for ∆t and considering the definition of the convection

coefficient, the actuation frequency is given by:

f =
1

∆t
= −kNu

2ρcr

[
ln
Tf − T∞
Ti − T∞

]−1

. (A.5)

Finally, the definition of radius from conservation of linear momentum, Eq. A.2, is incorporated in

the actuation frequency equation from conservation of energy to derive the following final relation:

f =
A

M
, (A.6)

where

A = − G

8ρcg

kNu δllo
NC3

[
ln
Tf − T∞
Ti − T∞

]−1

. (A.7)

The typical ranges for each parameter are provided in the Supplementary Information documents.

The lower and upper bounds for coefficient A are 4× 10−7 and 9× 103 kg.
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APPENDIX B

CST DERIVATIVES

From Eq. , the relationship between dimensional coordinate z and non-dimensional coordinate

ζ is

z = cζ . (B.1)

From the previous equation, the following definitions are derived between non-dimensional

and dimensional derivatives:
dz

dx
=
dζ

dψ
, (B.2)

and
d2z

dx2
=

1

c

d2ζ

dψ2
. (B.3)

The first and second derivatives in the ψ − ζ non-dimensional domain are given by:

dξP
dψ

= C(ψ)
n∑
i=0

AiSi(ψ)

(
i− n−N2

1− ψ
+
N1 + i

ψ

)
+ ζT , (B.4)

d2ξP
dψ2

(ψ) = C(ψ)
n∑
i=0

AiSi

[(
N1 + i

ψ
+
i− n−N2

1− ψ

)2

− N1 + i

ψ2
+
i− n−N2

(1− ψ)2

]
. (B.5)

These have components at the denominator that cause singularities if numerically evaluated

at the ψ = 0 and ψ = 1,. However, the derivatives have finite solutions for most cases if limits

are evaluated, the form the equations below are the derivative values as it approaches the possible

singularity. A non-exhaustive list is here presented based on the fact that they are utilized in the

model. The equations are derived for classical CST, but can are also valid for any domain of a CST

spline.
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B.1 First derivative

For any class coefficients N1 and N2, as ψ → 0+, the first derivative is:

lim
ψ→0+

dζ

dψ
(ψ) = A0N1ψ

N1−1 + ζT − ζL , (B.6)

and if N1 = 1

lim
ψ→0+

dζ

dψ
(ψ) = A0 + ζT − ζL . (B.7)

For any class coefficients N1 and N2, as ψ → 1−, the first derivative is:

lim
ψ→1−

dζ

dψ
(ψ) = A0N1ψ

N1−1 + ζT − ζL , (B.8)

and if N2 = 1

lim
ψ→1−

dζ

dψ
(ψ) = −An + ζT − ζL . (B.9)

B.2 Second derivative

Except for the case where N1 = N2 = 1, all second derivatives are singular at ψ → 0+ and

ψ → 1−.

For ψ → 0+, N1 = 0.5, and N2 = 1 the second derivative is

lim
ψ→0+

d2ζ

dψ2
(ψ) =

1

2ψ3/2
[−2(n+ 1)A0ψ − 0.5A0 + 5nψ] , (B.10)

and if N1 = 1:

lim
ψ→0+

d2ζ

dψ2
(ψ) = −2(n+ 1)A0 + 2nA1 . (B.11)

For ψ → 1− and N2 = 1:

lim
ψ→1−

d2ζ

dψ2
(ψ) = 2nAn−1 − 2(N1 + n)An . (B.12)
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B.3 Curvature radius

Despite the singularities for the second derivatives, the curvature radius is not singular at the

bounds. For ψ → 0+ and N2 = 1

lim
ψ→0+

1

ρ
(ψ) =

N1 − 1

A2
0N

2
1 c
, (B.13)

and if N1 = 0.5

lim
ψ→0+

1

ρ
(ψ) = − 2

A2
0c
. (B.14)

For ψ → 1− and N2 = 1

lim
ψ→1−

1

ρ
(ψ) =

2nAn−1 − 2(N1 + n)An

c [1 + (−An + ζT − ζL)2]3/2
. (B.15)
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