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 ABSTRACT 

 

Conventional traffic crash analysis methods often use highly aggregated data, 

making it difficult to understand  the effects of many time-varying factors on crash 

occurrence. Although studies have used data with small aggregation intervals, they 

typically analyze the effect of a single factor on crash occurrence. In this study, the 

collaborative effect of roadway geometry, speed distribution, and weather conditions on 

crash occurrence and severity is investigated using an interpretable or explainable machine 

learning method XGBoost (eXtreme Gradient Boosting) on daily level crash data. The 

data are collected from four different sources on roadways in Texas. Three roadway 

facility types are considered in this study: (1) Rural Interstate; (2) Rural Two-Lane; (3) 

Rural Multilane. In the feature selection process, the Pearson correlation coefficient is 

applied to remove highly correlated variables. The study then uses the synthetic minority 

over-sampling technique (SMOTE) method to mitigate the data imbalance issue. The 

XGBoost model is trained twice: first on data with all crash severity levels, and then only 

on data with fatal and severe injury crash levels. Finally, the SHAP (SHapley Additive 

exPlanation) method is applied to investigate the contribution of all variables on the 

model’s output. The results show that on different roadways facility types the 

contributions of variables tend to be different, and moreover, the variables also contribute 

differently on crashes with different severity levels. 
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1. INTRODUCTION  

 

Traditional roadway crash analysis methods usually use highly aggregated data. 

Roadway and crash-related variables are often aggregated over a large time interval. Thus, 

for some explanatory variables that may change significantly during this interval, these 

variations are usually not considered because of the lack of detailed information (1). 

However, for many time-varying explanatory variables such as speed and weather 

information, the variations inside these variables are very important for crash analysis as 

well. Many studies have found that weather conditions, especially precipitation and 

visibility (2)(3)(4), and speed distribution, especially average speed and speed variation 

(5)(6)(7), are closely related to crash occurrence. It is unreasonable to aggregate these 

variables over a long time interval. For example, if two specific locations have identical 

monthly average precipitation values, it is problematic to say these two locations will have 

the same crash occurrence level because precipitation varies from day to day. Thus, 

ignoring the potential within-period variation in these explanatory variables may result in 

the loss of valuable information. The best way to avoid this problem is to aggregate crash 

data into smaller time intervals. In particular, data can be aggregated into daily, hourly, or 

even minute-by-minute levels. 

However, on the other hand, many other explanatory variables such as road 

geometry data (i.e., curve, lane width, and shoulder width) are relatively static. For the 

same roadway segment, road geometric data rarely change over any time interval. By 

aggregating roadway geometry data into smaller intervals, it means that for the same 
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roadway segment, more identical observations will be generated. Moreover, roadway 

segments that are close to each other always share similar geometry features which result 

in correlation over space. As a result, the temporal and spatial correlation will negatively 

affect the analysis of these relatively static explanatory variables (8)(9). 

Many studies have studied the effect of roadway geometric data on crash 

occurrence and some have studied the effect of speed distribution and weather conditions. 

However, few of them are conclusive enough, and even fewer researchers have 

investigated the collaborative effect of these three factors on crash occurrence. 

To address the problem of time-varying variables and the temporal and spatial 

correlation in crash frequency analysis, data should not only be aggregated into small time 

intervals, but also include lots of roadway segments with various geometry features. There 

are three main aggregation intervals previously studied by researchers. The first one is the 

yearly aggregation interval under which the effect of roadway geometric can be properly 

analyzed. However, the effect of speed distribution and weather conditions cannot be 

analyzed under a yearly aggregation interval. The second one is the daily aggregation 

interval under which the effect of roadway geometric and weather conditions can be 

properly analyzed. However, it is not ideal to study speed distribution under this interval. 

The third one is hourly or minute-by-minute intervals under which the effect of speed 

distribution can be properly analyzed. However, it is not ideal for studying the effect of 

roadway geometric and weather conditions. Considering the above-mentioned facts, this 

study chooses the daily aggregation interval to prepare the dataset. Moreover, since speed 

distribution tends to vary differently throughout different time periods within a day, this 
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study introduces speed measurement variables of different periods during a day to address 

this problem. For example, average speed and speed variation are calculated for daytime 

and nighttime separately. 
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2. RESEARCH OBJECTIVE 

 

This study develops a comprehensive roadway crash dataset that contains 

segments of three different facility types: Rural Interstate, Rural Two-Lane, and Rural 

Multilane in the state of Texas. The goal of this study is to analyze the hidden relationship 

between daily crash occurrences, roadway geometric, speed distribution, and weather 

conditions on these three different roadway facility types and to compare the variables’ 

relative contributions on affecting roadway daily crashes occurrence by using machine 

learning techniques. Moreover, this study will also investigate various explanatory 

variables’ contributions on crashes with different severity levels (i.e., all crashes and 

severe crashes) and see whether the same explanatory variable contributes differently to 

crash occurrences of different severity levels.  
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3. LITERATURE REVIEW 

 

Many previous researchers have studied the effects of roadway geometry, weather 

conditions, and speed distribution factors on crash occurrence separately. Some 

researchers have also studied the collaborative effects of two of the three factors. For 

example, Shankar et al. studied highway crash frequency by analyzing the effect of 

geometric elements and weather conditions. The study was conducted by applying a 

negative binomial model, and the data were aggregated into a monthly interval (2). Dutta 

and Fontaine introduced crash prediction modeling on a freeway segment using 

disaggregated speed data and roadway geometric data. The results indicated that by 

including hourly averaged speed data and selected roadway geometric data, the crash 

prediction performance improved compared with the one using annual data without speed 

information (10).  

Many studies have analyzed the relationship between roadway geometric features 

and crash occurrence or severity. Miaou and Lum utilized two linear regression models 

and two Poisson regression models to study the relationship between roadway geometric 

factors and crash frequency (11). Anderson et al. applied Poisson, negative binomial, and 

log-normal regression analysis to study the relationship between rural two-lane highway 

crash frequency and roadway geometric design consistency (12). Haghighi et al. 

investigated the effect of roadway geometric factors on crash severity with data collected 

from rural two-lane highways. They developed a multilevel ordered logit model to deal 
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with the hierarchical structure of the crash data. They found that the introduction of crash 

type as a variable can better explain the crash severity levels variation (13).   

Speed distribution is another important contributor to crash occurrence. Garber and 

Gadiraju investigated the impact of mean speed and speed variation on crash rate. They 

concluded that a higher mean speed does not necessarily increase the crash rate, but a 

higher speed variation can lead to a higher crash rate (14). Lee et al. used real-time traffic 

flow data from loop detectors to predict crash occurrence. They applied an aggregated log-

linear model to estimate the crash occurrence and found that speed variation and traffic 

density are strong indicators of crash frequency (15). Pei et al. analyzed the effect of mean 

speed on crash occurrence using disaggregated speed and crash data within a 4-hour 

interval from different periods of a day. They found that the mean speed and crash 

occurrence are positively related when distance exposure is considered, however, mean 

speed and crash occurrence are negatively related when time exposure is considered (16). 

Wang et al. studied the relationship between mean speed, speed variation, and crash 

frequency on arterials in urban areas. A hierarchical Poisson log-normal (HPLN) model 

was applied to model the crash frequency. Since speed distribution tends to vary 

significantly during different periods, this study aggregated crash data into three study 

periods (morning, midday, and evening), each period being three hours long. The results 

revealed that a higher average speed and higher speed variation will lead to higher crash 

frequencies on urban arterial roads (7).   

Weather condition factors can significantly affect crash occurrence as well. Scott 

included temperature and rainfall as explanatory variables to model the time-series crash 
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data. A regression model was applied to model single-vehicle crashes, and a Box-Jenkins 

model was applied to model two-vehicle crashes (17). Eisenberg analyzed the effects of 

precipitation on traffic crashes by applying the negative binomial regression method. Two 

data aggregation intervals (monthly and daily) were studied in this study. Its results 

revealed a significant negative relationship between monthly fatal crash frequency and 

precipitation. However, the results indicated a significant positive relationship between 

daily fatal crashes and precipitation (18). Brijs et al. applied an integer autoregressive 

model on daily crash data to model the time dependency nature of crash occurrences. Their 

results showed that the intensity of the rainfall is significantly related to the daily crash 

count (19). Jaroszweski and McNamara analyzed the influence of precipitation on crashes 

by utilizing weather radar images. This novel approach offers improvements to the 

analysis of weather-related accidents by giving a more representative rainfall measure in 

urban areas (20). Yu and Abdel-Aty analyzed the relationship between weather conditions 

and crash severity on mountainous freeways. The results indicate: (1) snow weather is less 

likely to cause severe crashes and (2) lower temperature increases the likelihood of severe 

crashes (21).  

Although previous studies have investigated these three factors separately, fewer 

studies have considered these three factors together and analyzed their collaborative 

effects on crash occurrence. One major problem of studying the collaborative effects on 

these three factors is which data aggregation level should be used. Previous studies tended 

to analyze the relationship between crash and roadway geometric data based on yearly 

aggregation intervals (11) (12), the relationship between crash and weather condition 
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variables based on daily aggregation intervals or monthly aggregation intervals (17) (18) 

(19), and the relationship between crashes and speed distribution based on real-time data 

with hourly intervals or minute by minute aggregation (15) (16) (7).  

By summarizing previous research, it is found that daily aggregation intervals 

seem ideal for collectively analyzing the effects of roadway geometry and weather 

conditions on crash occurrence. Although it is not ideal for analyzing the effect of speed 

distribution on crash occurrence using daily aggregation interval because speed 

distribution tends to differ significantly throughout a day, variables such as average 

daytime speed and average nighttime speed can be included in the daily model to alleviate 

this problem. 
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4. DATA DESCRIPTION 

 

Data are collected from roadways in the state of Texas. Three roadway types are 

considered in this study: (1) Rural Interstate, (2) Rural Two-Lane, and (3) Rural Multilane. 

First, a comprehensive dataset is developed by using the data conflation method. The 

dataset analyzed in this study contains four parts: (1) roadway geometry feature and traffic 

information, (2) weather condition data, (3) speed measurements data, and (4) crash data. 

These data are collected from four different sources respectively:  

• Texas Department of Transportation Road-Highway Inventory Network Offload 

(RHiNO 2018) 

• Automated Surface Observing System (ASOS) 

• National Performance Management Research Dataset (NPMRDS) 

• Crash Record Information System (CRIS) 

Figure 1 demonstrates the flow chart of the data preparation process. Figure 2 

shows the base roadway network used in this study. 

4.1. Base Roadway Network and Geometric Data 

The base roadway network is collected from the Texas Department of 

Transportation (TxDOT) Road-Highway Inventory Network Offload (RHiNO 2018), 

which contains roadway GIS linework and roadway inventory attributes, including 

geometric features and traffic information. TxDOT submitted this dataset to Federal 

Highway Administration (FHWA) as part of the Highway Performance Monitoring 

System (HPMS) program. This study only selects rural interstates from the base network. 
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4.2. Speed Distribution Data 

Speed data are collected from FHWA’s National Performance Management 

Research Dataset (NPMRDS). The NPMRDS contains travel time and speed data 

collected from a fleet of probe vehicles (cars and trucks). The NPMRDS can generate 

speed and travel time data by using probe vehicle location information. The data are 

aggregated in 3-time intervals (5-minute, 15-minute, and 1-hour), and this study uses data 

with 5-minute intervals because more detailed information can be kept when calculating 

speed variation. Speed data are available across the National Highway System (NHS), and 

the spatial resolution is set by different Traffic Message Channel (TMC) location codes 

(22). Daily speed distribution variables (i.e., average speed, speed standard deviation, 85th 

percentile speed, etc.) are calculated based on 5-minute speed data at each TMC. Each 

TMC is conflated with its corresponding roadway segment by using Geographic 

Information system (GIS) software.  

4.3. Weather Condition Data 

Weather condition data are collected from the Automated Surface Observing 

System (ASOS) of the National Oceanic and Atmospheric Administration (NOAA). Each 

roadway segment is matched with an ASOS station closest to it.  

4.4. Crash Data 

Crash data are collected within the state of Texas from 2017 to 2019 through Crash 

Record Information System (CRIS). Each crash record includes location and date 

information. Through GIS software, all crashes are assigned to the roadway segments on 

which they occurred. Then, the daily crash count of each roadway segment can be 
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summarized. The dataset used in this study contains 2,601,106 non-crash observations and 

26,210 crash observations, including 1,428 severe crash observations. The definition of a 

severe crash in this study is a crash that resulted in severe injuries or fatalities. In this 

process, crash severity is classified into 5 different levels: (1) K: Killed; (2) A: 

Incapacitating Injury; (3) B: Non-Incapacitating Injury; (4) C: Possible Injury; (5) O: Not 

Injured or Unknown.  

4.5. Data Conflation 

The data from the four parts above are conflated by using ArcGIS software. All data are 

aggregated into a daily interval. The final dataset is made up of 26 variables from the 

above-mentioned four parts. The total number of segments, total segment length, and the 

number of crashes at different severity levels (KABCO) are summarized in  

Table 1. In this study, all crashes include severity levels KABCO and severe crashes only 

include severity levels KA. The detailed definitions of all variables are listed in  

Table 2.  
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Figure 1. Flowchart of the data preparation process 

 

Figure 2. Roadways analyzed in this study 
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Table 1. Summary of segments and number of crashes at different severity levels 

Roadway 
Facility 
Type 

Number of Segments Total Mileage (miles) 
Number of Crashes (2017-2019) 

K A B C O 

Rural 
Interstate 2,594 1,743 398 1043 2863 3212 20616 

Rural 
Two-Lane 8,247 3,055 245 527 1258 1214 6473 

Rural 
Multilane 8,999 3,516 556 1391 3383 3425 17702 

 
Table 2. Variables' names and definitions 

Variable Names Definition 

Weather Condition 

 DailyPrecip Daily Precipitation 

 VsbyAve Average Visibility 

 VsbyStd Visibility Standard Deviation 

Speed Distribution 

 SpdAve Average of Daily Speed 
 SpdStd Standard Deviation of Daily Speed 

 SpdCV Coefficient of Variation (CV) of Daily Speed 

 Spd85 85th Percentile of Daily Speed 

 RefSpd Reference Speed 

 SpdAveDay Average of Daily Speed Using Data during Daytime 

 SpdStdDay Standard Deviation of Daily Speed Using Data during Daytime 

 SpdCVDay Coefficient of Variation (CV) of Daily Speed Using Data during Daytime 

 SpdAveNight Average of Daily Speed Using Data during Nighttime 

 SpdCVNight Coefficient of Variation (CV) of Daily Speed Using Data during Nighttime 

 SpdStdNight Standard Deviation of Daily Speed Using Data during Nighttime 

 SpdFFAve Average of Daily Speed Larger than Reference Speed 

 SpdFF85 85th Percentile of Daily Speed Larger than Reference Speed 

Roadway Geometry and Traffic 

 SpdMax Maximum Speed Limit 
 MedWid Median Width 
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 NumLanes Number of Through Lanes 
 LaneWidth Lane Width 
 SWid_I Inside Shoulder Width 
 SWid_O Outside Shoulder Width 
 SrfType Surface Type (Categorical) 
 AADT AADT 
 TrkAADTP Truck AADT Percentage 
 Length Roadway Segment Length 
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5. METHODOLOGY 

 

5.1. Feature Selection 

In the prepared dataset, some explanatory variables might be highly correlated with 

others. When machine learning models are trained on the dataset, these variables do not 

have extra benefits in distinguishing the target variables. Thus, to improve modeling 

efficiency and accuracy, these highly correlated explanatory variables need to be removed. 

In this section, the feature selection and oversampling processes are presented by 

using the rural interstate dataset. The processes for the datasets of all three roadway facility 

types are the same. Firstly, the Pearson correlation coefficient is applied to evaluate feature 

correlation. The Pearson correlation coefficient of two variables can be calculated by 

Equation 1. Figure 3 shows the Pearson correlation coefficient heatmap of the rural 

interstate dataset. Brighter cells represent a higher correlation between two explanatory 

variables. Two explanatory variables are considered highly correlated if their Pearson 

correlation coefficient is higher than 0.7. There are 23 pairs of highly correlated 

explanatory variables identified from the rural interstate dataset (see Table 3).   

𝑐!" =
∑ (𝑥# − 𝑥̅)(𝑦# − 𝑦*)$
#%&

+∑ (𝑥# − 𝑥̅)'$
#%& +∑ (𝑦# − 𝑦*)'$

#%&
 (1) 
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Figure 3. Pearson correlation coefficient heatmap 
 

After Pearson correlation coefficients are calculated for all explanatory variable 

pairs, a Random Forest (RF) model is trained using all explanatory variables on the dataset 

and the feature importance values of all explanatory variables are available. All variables 

are ranked based on their feature importance values. The feature selection criterion is that 

for each highly correlated explanatory variable pair, the one with a lower feature 

importance value is removed. Finally, 9 explanatory variables (SpdCV; SpdStdDay; 

SpdStd; SpdCVNight; SpdAveNight; SpdAve; SpdFF85; Spd85; RefSpd) are removed 

from the rural interstate dataset.    
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Table 3. Correlated Variable Pairs 

Identified Correlated Variable Pairs Abs Correlation Coefficient 
SpdFF85 Spd85 0.74271541 
SpdCV SpdStdNight 0.74397319 
SpdCVNight SpdStd 0.75024058 
SpdFFAve Spd85 0.76033368 
Spd85 SpdAveNight 0.7782837 
SpdAveDay Spd85 0.78406856 
Spd85 RefSpd 0.78770835 
SpdStd SpdStdNight 0.8128073 
SpdCV SpdCVNight 0.81324744 
Spd85 SpdAve 0.8222168 
SpdAveDay SpdAveNight 0.82246082 
SpdStdDay SpdCV 0.86242186 
SpdCVDay SpdStd 0.86389696 
RefSpd SpdFF85 0.87994823 
SpdStdDay SpdStd 0.92355007 
SpdCVNight SpdStdNight 0.92385636 
SpdCVDay SpdCV 0.92874229 
SpdCVDay SpdStdDay 0.92976377 
SpdCV SpdStd 0.92985596 
SpdAveNight SpdAve 0.93383347 
SpdFFAve RefSpd 0.95036766 
SpdAveDay SpdAve 0.96857392 
SpdFFAve SpdFF85 0.97319593 

 

5.2. Resampling Imbalanced Dataset 

This study aggregates crash occurrence into a daily interval. Because of the 

rareness nature of crashes, for any roadway segment, crashes only happen on a small 

portion of the total observations. Thus, the number of non-crash observations is 

significantly larger than crash observations. This nature results in an imbalanced dataset. 

To address this problem, this study applies a resampling method to rebalance the original 

dataset. Many previous studies have applied resampling methods. Abdel-Aty et al. applied 

a matched case-control method that manually matches crash samples with non-crash 

samples (23). Chawala et al. proposed the synthetic minority over-sampling technique 
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(SMOTE) to address the problem of imbalanced datasets (24). SMOTE is an oversampling 

method that only oversamples the minority class, and it is applied to the training dataset 

only. The minority is oversampled by creating “synthetic” samples along the line segments 

joining the k minority class nearest neighbors. The number of neighbors is randomly 

chosen based on the amount of over-sampling required. Since SMOTE is not applied to 

the testing dataset, the testing result can still be considered to reflect reality. Many 

previous studies have applied SMOTE to address imbalanced datasets (25) (26) (27).  

Figure 4 presents the data points before and after oversampling process.  

 

Figure 4. SMOTE oversampling method 
 

5.3. XGBoost (eXtreme Gradient Boosting) 

XGBoost (eXtreme Gradient Boosting) is a scalable end-to-end tree boosting 

system. It implements machine learning algorithms under the Gradient Boosting 

framework (28). XGBoost is an additive boosting tree package that is built by 𝑘 essential 

tree functions implemented with regularization, missing value imputation, shrinkage and 

column subsampling, sparsity-aware split finding, and column block for parallel learning. 
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Comparing with Gradient Boosting, XGBoost can deliver more accurate approximations 

by using the strengths of the second-order derivative of the loss function, L1 and L2 

regularization, and parallel computing. It can run more than ten times faster than existing 

popular solutions on a single machine, and it scales to billions of examples in distributed 

or memory-limited settings. The scalability of XGBoost is due to several important 

systems and algorithmic optimizations. These innovations include: a novel tree learning 

algorithm introduced for handling sparse data, and a theoretically justified weighted 

quantile sketch procedure enables handling instance weights in approximate tree learning. 

Parallel and distributed computing make learning faster which enables quicker model 

exploration. XGBoost can solve real-world scale problems by using a minimal number of 

resources. It is currently one of the fastest and best open-source boosting tree tools for 

modeling and prediction analyses. 

Given a dataset with 𝑛 observations, each observation has multiple features 𝑥#, and 

a corresponding response variable 𝑦# .  𝑦.#
())  is the predicted response value after 𝑡)+ 

iterations by adding one tree function 𝑓(𝑥#)  to the predicted value of the (𝑡 − 1))+ 

iteration corresponding to the 𝑖)+ observation. The boosting process is shown in Equation 

1. 

 

𝑦.#
()) = 3𝑓,(𝑥#) = 𝑦.#

()-&) + 𝑓)(𝑥#)
)

,%&

 (1) 
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The objective of this process is to minimize Equation 2. 𝑙(𝑦# , 𝑦.#)	is a loss function 

and 𝛺(𝑓)) = 𝛾𝑇 + &
'
𝜆∑ 𝑤.'/

.%&  represents the penalty for the complexity of the model 

where 𝑇 is the number of leaves and 𝑤.' is the L2 norm of 𝑗)+ leaf scores. This term is 

used to avoid over-fitting.  

 

𝑂𝑏𝑗 =3𝑙(𝑦# , 𝑦.#)
$

#%&

+3𝛺
)

,%&

(𝑓,) (2) 

By solving equations (1) to (2), the optimal value of 𝑤. is:  

𝑤.∗ = −
∑ 𝜕"1!(#$%)𝑙(𝑦# , 𝑦.#

()-&))#

∑ 𝜕
"1!
(#$%)

' 𝑙A𝑦# , 𝑦.#
()-&)B + 𝜆#

	 (3) 

And the corresponding minimum object value is: 
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6. RESULT – MODEL COMPARISON 

In order to show the advantage of the XGBoost model, the performance of the 

XGBoost model is compared with Random Forest - a machine learning method that has 

been widely used for classification in this section. These two models are both trained on 

the rural interstate dataset with all crash occurrences as the target variable. Table 4 

summarizes the performance measures of these two models.  

Table 4. Comparison between XGBoost and Random Forest 

Performance Measures XGBoost Random Forest 

Accuracy 78.7% 97.4% 

Sensitivity  64.2% 14.2% 

Specificity 78.8% 98.2% 

Weighted Accuracy 71.5% 56.2% 

 

Although the Random Forest model seems to have higher accuracy and specificity 

values, the sensitivity and weighted accuracy values are very low. Since the SMOTE 

oversample method is only applied to the training set, the testing set is still highly 

imbalanced. The Random Forest model tends to classify most of the records in the testing 

set as the majority class (non-crash), giving the model higher accuracy and specificity 

values (see Table 5). However, the sensitivity and weighted accuracy of the Random 

Forest is very low. This indicates that Random Forest’s performance on the rural interstate 

dataset is not ideal.  
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On the other hand, the difference between sensitivity and specificity scores of the 

XGBoost model are small. This indicates that the XGBoost model performs better than 

the Random Forest model on imbalanced datasets. In the following sections, the XGBoost 

model will be trained on all three roadway facility types and the results will be 

demonstrated and discussed.  

Table 5. Confusion matrix (Comparison between Random Forest and XGBoost) 

Predicted Labels 
XGBoost Random Forest 
Non-Crash Crash Non-Crash Crash 

Tr
ue

 
La

be
ls 

Non-Crash 512,731 137,546 638,668 11,609 

Crash 2,343 4,209 5,622 930 
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7. RESULT - RURAL INTERSTATE 

 

7.1. All Crash Model 

Firstly, the XGBoost model is trained on the rural interstate dataset with all crash 

occurrences as the target variable. The dataset is split into a training dataset and a testing 

dataset. The SMOTE oversampling method is applied to the training dataset to balance the 

minority group and majority group. The training dataset contains 1,950,829 non-crash 

observations and 19,658 crash observations. After the oversampling process, the numbers 

of both non-crash and crash observations are 1,950,829. The model evaluation is made 

with the testing dataset. Table 6 presents the confusion matrix of the XGBoost model. 

Several measurements are selected to evaluate the model performance. 

Table 6. Confusion matrix (Rural Interstate) 

Predicted Labels 
All Crash Model Severe Crash Model 
Non-Crash Crash Non-Crash Crash 

Tr
ue

 
La

be
ls 

Non-Crash 512,731 137,546 552,184 104,288 

Crash 2,343 4,209 114 243 

 

Performance measures for all crash model: 

(1)  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 78.7%	  

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 64.2% 

(3) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 78.8% 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 71.5% 
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Performance measures for severe crash model: 

(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 84.1%	  

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 68.1% 

(3) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 84.1% 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 76.1% 

Where: TP: True positive; TN: True Negative; FP: False Positive; FN: False Negative 

SHAP (SHapley Additive exPlanation) is selected to interpret the feature 

importance in the XGBoost model. Figure 5 is the SHAP summary plot. It ranks all 

explanatory variables based on their impact on the model output. A variable with a higher 

feature importance indicates that the variable has a more determining weight on 

classifying observations as crash or non-crash. 
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Figure 5. SHAP summary plot (Rural Interstate All Crash Model) 
 

The most important feature identified by SHAP is segment length. This is no 

surprise because longer roadway segments have a higher chance of capturing daily crash 

occurrences. This study applies machine learning methods to address a binary 

classification problem (crash or non-crash) so normalizing crash occurrence numbers as 

crashes per mile does not make a difference. This is one of the limitations of this study 

and thus in future studies; it would be better to prepare all segments with equal length to 

address this problem. The second most important feature is the daily speed CV during 

daytime. This is reasonable because, as proved by previous studies (5)(6)(7), speed 
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variation is closely related to crash occurrence. The third most important feature is daily 

precipitation. A higher precipitation level has a positive impact on the model’s outcome. 

This indicates that, as for daily crash occurrence, precipitation is a major factor and it is 

more important than roadway geometric features and most of the speed measurement 

features. Other top important features are AADT, Average Visibility, Standard Deviation 

of Visibility, and Daily speed average during daytime. The results indicate that weather 

condition variables, especially daily precipitation, have significant impacts on daily crash 

occurrence. 

7.2. Severe Crash Model 

In the previous section, the XGBoost model is trained to make binary classification 

on whether crashes happen on a particular roadway segment during a particular day. In 

this section, another XGBoost model is trained to make binary classification on whether 

severe crashes happen. For severe crashes, this study includes crashes that lead to death 

or severe injuries (K and A as defined in section 4). In Figure 6, most of the top important 

features are the same except for daily precipitation. In this model, daily precipitation ranks 

at 14th place. This means that daily precipitation makes only a little contribution to the 

model’s output.  

Figure 7 (b) presents the details of daily precipitation’s impact on the model’s 

output. There is no obvious pattern that can be seen in this plot. At different daily 

precipitation levels, the impacts on the model’s output seem to be evenly distributed along 

the y axis. The results reveal that although higher daily precipitation levels make a 

significant impact on the occurrence of total daily crashes, in terms of the occurrence of 
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severe crashes, the level of daily precipitation has little impact. This is because when 

people drive during rainy weather, they tend to drive more carefully. Even though crashes 

are more likely to happen during rainy weather, it does not necessarily cause severe 

crashes. However, visibility (both average and standard deviation) still seems to play an 

important role in distinguishing the occurrence of severe crashes. 

 

Figure 6. SHAP summary plot (Rural Interstate Severe Crash Model) 
 

7.3. SHAP Dependence Plot 

Below are the dependence plots between several key variables to show the 

variables’ collaborative effects on crash occurrence probability. Figure 7 (a) presents the 
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SHAP dependency plot between daily precipitation and daytime average speed of the all 

crash model. When the daily precipitation level is near 0, it makes little contribution to 

distinguishing between crash observation and non-crash observation because crashes 

happened on the non-raining day as well. However, as the value of daily precipitation 

increases, the impact of this explanatory variable tends to stay positive. This indicates that 

larger precipitation tends to cause daily crash occurrences. As for average speed during 

the daytime, it is obvious in Figure 7 (a) that when the precipitation level is high, larger 

daytime average speeds are more likely to cause daily crash occurrence. This is different 

from the general contribution of this explanatory variable to the model output which can 

be found in Figure 5- that larger daytime average speed tends to decrease all crash 

occurrence probability. 

 

(a) Rural Interstate All Crash Model 
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(b) Rural Interstate Severe Crash Model 

Figure 7. Dependence plot between daily precipitation and daytime average speed 
 

Figure 8 is the dependency plot between average visibility and visibility standard 

deviation of the all crash model. Similar to daily precipitation, when the value of visibility 

is near 10 ( the maximum value), it makes little contribution to distinguishing between 

crash observation and non-crash observation because there are crashes that happened on 

clear days as well. When average visibility starts to decrease, it tends to have positive 

impacts on the model’s output. It is noteworthy that on the left side of Figure 8, lower 

visibility standard deviation tends to make a positive contribution to the model’s output 

when average visibility is low. This is because if average visibility is low and the standard 

deviation is also low, the adverse visibility condition barely changes throughout the day 

which is a hazardous condition for drivers.  
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Figure 8. Dependence plot between average visibility and visibility standard 
deviation (All Crash Model) 

 

Figure 9 presents the collaborative impact of speed CV and daily precipitation on 

the probability of all crash occurrences. Larger daytime speed CV values tend to push the 

model’s output toward positive. Interestingly, the red dots in the dependency plot indicate 

that when daily precipitation levels are high, larger daytime speed CV values are more 

likely to cause daily crash occurrence. This shows that the effect of speed CV on daily 

crash occurrence becomes more significant under rainy weather conditions.  
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Figure 9. Dependence plot between daytime speed CV and daily precipitation (All 
Crash Model) 

 

7.4. Findings on Rural Interstate Roadway 

• Weather factors (precipitation and visibility) and speed variation are the main 

influential factors of roadway daily all crash occurrence.  

• Daily precipitation is highly ranked in the all-crash occurrence model. 

However, its rank falls significantly in the severe crash occurrence model. This 

indicates that higher precipitation level is more likely to cause roadway crashes 

while it does not necessarily lead to extremely severe crashes. 

• Generally, higher daytime average speed tends to decrease crash occurrence 

probability. However, with higher daily precipitation levels, higher daytime 

average speed is more likely to cause crash occurrences.  
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• When daily visibility is low, and it keeps low throughout the day, it is likely to 

lead to crash occurrences. 

• Night-time speed standard deviation is a strong contributor to extremely severe 

crash occurrences on rural interstate roadways. Higher night-time speed 

standard deviation is more likely to cause extremely severe crashes.  
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8. RESULT - RURAL TWO-LANE 

 

The same feature selection process is performed on the rural two-lane dataset. 9 

highly correlated variables are removed from the dataset. (Spd85, RefSpd, SpdCV, 

SpdStd, SpdStdDay, SpdAveNight, SpdStdNight, SpdFFAve, SpdAveDay). Two 

XGBoost models are trained on the all crash occurrence dataset and the severe crash 

dataset. Table 7 presents the confusion matrixes of these two models.  

Table 7. Confusion matrix (Rural Two-Lane) 

Predicted Labels 
All Crash Model Severe Crash Model 
Non-Crash Crash Non-Crash Crash 

Tr
ue

 
La

be
ls 

Non-Crash 1,447,028 413,749 1,590,621 272,352 

Crash 841 1,548 93 100 

 

Performance measures for all crash model: 

(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 77.7%	  

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 64.8% 

(3) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 77.8% 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 71.3% 

Performance measures for severe crash model: 

(5) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 85.4%	  

(6) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 51.8% 
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(7) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 85.4% 

(8) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 68.6% 

Where: TP: True positive; TN: True Negative; FP: False Positive; FN: False Negative 

8.1. All Crash Model 

 

Figure 10. SHAP summary plot (Rural Two-Lane All Crash Model) 
 

For rural two-lane roadways, AADT becomes the most important variable besides 

roadway segment length, followed by average daily visibility, visibility standard 

deviation, and daily precipitation. Higher AADT increases the probability of crash 

occurrence. Visibility is more important than precipitation on rural two-lane roadways. 
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This is different from rural Interstate roadways. Moreover, the importance of speed 

variation also decreases on rural two-lane roadways. Additionally, the importance of lane 

width significantly increases on rural two-lane roadways. Narrower lane width increases 

the probability of crash occurrences.  

8.2. Severe Crash Model 

 

Figure 11. SHAP summary plot (Rural Two-Lane Severe Crash Model) 
 

In the severe crash model for rural two-lane roadways, the contribution of speed 

variation becomes more important. On rural two-lane roadways, nighttime speed CV 

contributes more than daytime speed CV on severe crash occurrence. Similar to rural 
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Interstate roadways, the contribution of daily precipitation also decreases. However, the 

contribution pattern of daily precipitation is still observable on rural two-lane roadways. 

Higher precipitation still somehow tends to increase severe crash occurrence likelihood. 

Another noteworthy point is that the contribution of lane width significantly increases in 

the severe crash model. For truck AADT percentage, in the all crash occurrence model, 

the effect of this variable on the model’s output is not clear. While in the severe crash 

model, it is obvious that higher truck AADT percentage increases the likelihood of severe 

crash occurrence. This indicates that truck AADT percentage is an important contributor 

to the probability of severe crash occurrence on rural two-lane roadways. Another 

explanatory variable that becomes more important in the severe crash model is outside 

shoulder width (ranked at 6th place). Its importance increases compared with the all crash 

occurrence model. Lower outside shoulder width increased the probability of severe crash 

occurrence on rural two-lane roadways.  

Figure 12 is the SHAP decision plots of rural two-lane roadways all crash and 

severe crash models. The SHAP decision plot helps to visualize how the model reaches 

its decision based on all explanatory variables. For both decision plots, 10 observations 

are randomly selected and plotted. Red lines indicate the probability of crash occurrence 

is higher and blue lines indicate the probability of crash occurrence is lower. 
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(a) All Crash Model (b) Severe Crash Model 

Figure 12. SHAP Decision Plot 
 

8.3. Findings on Rural Two-Lane Roadway 

• AADT is the most important contributing factor except segment length in both all 

crash and severe crash models of rural two-lane roadways. Higher AADT 

significantly increases crash occurrence probability.  

• On rural two-lane roadways, nighttime speed variation makes more contributions 

than daytime speed variation on severe crash occurrences. This pattern cannot be 

seen on rural multilane roadways (introduced in the next section). 

• On rural two-lane roadways, the importance of lane width is more significant 

compared with rural interstate roadways. Especially for the severe crash model, 

lower lane width increases the probability of severe crash occurrence.  



 

38 

 

• The importance of outside shoulder width also increases in the severe crash model. 

Narrower shoulder width tends to increase severe crash probability. 

• On rural two-lane roadways, higher truck percentage tends to increase severe crash 

occurrence probability while this pattern is not obvious on the all crash model. 
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9. RESULT - RURAL MULTILANE 

 

For the rural multilane dataset, 10 highly correlated variables are removed from 

the dataset including SpdCVNight; SpdStdDay; SpdFFAve; Spd85; RefSpd; SpdStd; 

SpdAveNight; SpdCV; SpdFF85; and SpdAve. Two XGBoost models are trained on the 

all crash occurrence dataset and the severe crash dataset. Table 8 presents the confusion 

matrixes of these two models.  

Table 8. Confusion matrix (Rural Multilane) 

Predicted Labels 
All Crash Model Severe Crash Model 
Non-Crash Crash Non-Crash Crash 

Tr
ue

 
La

be
ls 

Non-Crash 1,629,323 539,110 1,888,631 285,743 

Crash 2,174 4,251 237 247 

 

Performance measures for all crash model: 

(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 75.1%	  

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 66.2% 

(3) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 75.1% 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 70.7% 

Performance measures for severe crash model: 

(1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = /34/5
/34/5463465

= 86.9%	  

(2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = /3
/3465

= 51.0% 
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(3) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = /5
/5463

= 86.9% 

(4) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 78$9#)#:#)"47;8<#=#<#)"
'

= 69.0% 

Where: TP: True positive; TN: True Negative; FP: False Positive; FN: False Negative 

 

9.1. All Crash Model 

 

Figure 13. SHAP summary plot (Rural Multilane All Crash Model) 
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Figure 13 presents the SHAP summary plot of the rural multilane all crash 

occurrence model. In this model, as for rural multilane roadways, average daily visibility 

becomes the most important variable besides segment length to distinguish crash and non-

crash observation, followed by AADT, daily precipitation, visibility standard deviation, 

and daytime speed CV. On both rural multilane roadway and rural two-lane roadways, 

average daily visibility tends to have a more critical effect on all crash occurrences than 

daily precipitation. Similar to rural two-lane roadways, the importance of roadway 

geometric variables becomes more important compared with those in the rural interstate 

model. For rural two-lane roadway, the importance of lane width is higher than the 

importance of shoulder width, whereas for rural multilane roadway, the importance of lane 

width is lower than that of shoulder width.  

9.2. Severe Crash Model 
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Figure 14. SHAP summary plot (Rural Multilane Severe Crash Model) 
 

Figure 14 presents the rural multilane severe crash model, in which the importance 

rank of daytime speed CV increases to 3rd place. The importance rank of the maximum 

speed limit significantly increases to 4th place with higher maximum speed limit being 

more likely to cause severe crash occurrence. As for median width, its importance rank 

also increases in the severe crash model and it seems that smaller median width tends to 
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increase the probability of severe crash occurrence. Moreover, similar to rural two-lane 

roadways, outside shoulder width also gain more importance in the rural multilane severe 

crash model. Higher outside shoulder width tends to decrease the likelihood of severe 

crash occurrence and the impact of outside shoulder width is more significant on rural 

two-lane roadways than rural multilane roadways. 

9.3. SHAP Dependence Plot 

Figure 15 presents the dependence plots between median width and average 

visibility. For all crash occurrences, lower visibility significantly increases all crash 

occurrence probability. This is likely because lower visibility condition affects drivers’ 

abilities to observe the traffic condition in the opposite direction. The exception is that 

when the median width is very small, lower visibility tends to decrease all crash 

occurrence probability. However, as for the severe crash model, larger median width 

significantly decreases severe crash occurrence probability, and when the median width is 

larger, lower visibility tends to increase the severe crash likelihood. When the median 

width is lower, average visibility levels do not have an obvious contribution to the model’s 

output. This pattern indicates that lower average visibility may increase severe crash 

occurrence likelihood when median width is larger, while visibility level does not affect 

severe crash occurrence likelihood when the median is relatively narrower. This is 

probably because during bad visibility conditions, drivers may have difficulty observing 

the traffic condition of the opposite direction and thus drivers will tend to drive more 

carefully if the median is narrow. In this scenario, even if crashes happen, the severity will 

usually not be too high. However, if the median becomes wider, drivers will tend to be 
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less vigilant even when the visibility condition is not ideal. Thus, the crash severities are 

likely to be high under this situation. 

 

(a) Rural Multilane All Crash Model 

 

(b) Rural Multilane Severe Crash Model 

Figure 15. Dependence plot between median width and average visibility 
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(a) Rural Multilane All Crash Model 

 

(b) Rural Multilane Severe Crash Model 

Figure 16. Dependence plot between outside shoulder width and median width 
 

As the importance ranks of outside shoulder width and median width increase in 

the severe crash model, Figure 16 presents the dependence plot between these two 
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variables. The comparison between Figure 16 (a) and Figure 16 (b) indicates that the 

change in outside shoulder width does not have an obvious effect on all crash occurrences. 

However, for severe crash occurrences, when the outside shoulder width is higher, the 

probability of severe crash occurrence decreases significantly. Moreover, when outside 

shoulder width is narrower, larger median width tends to decrease the likelihood of severe 

crash occurrence, whereas when the outside shoulder width becomes larger, the effect of 

median width becomes less obvious.  

 

 

(a) Rural Multilane All Crash Model 
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(b) Rural Multilane Severe Crash Model 

Figure 17. Dependence plot between truck AADT percentage and daytime speed 
CV 

Similar to rural two-lane roadways, compared with the all crash model, truck 

AADT percentage has a more significant effect on severe crash occurrence probability. 

Figure 17 presents the dependence plot between truck AADT percentage and daytime 

speed CV. Figure 17 (a) shows no obvious effect of truck AADT percentage on all crash 

occurrence probability, while in Figure 17 (b) it is obvious that higher truck AADT 

percentage increases severe crash occurrence probability, especially when truck 

percentage is greater than 60% and when truck AADT percentage is lower than around 

20%. Higher speed CV tends to have a positive effect on the likelihood of severe crash 

occurrence, but this pattern can’t be seen when truck AADT percentage is higher.  

Figure 18 is the dependence plot between AADT and outside shoulder width. For 

both all crash and severe crash models, higher AADT significantly increases crash 

occurrence probability. However, for the severe crash model, when the AADT level is 
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low, larger outside shoulder width may decrease the probability of severe crash occurrence 

according to Figure 18 (b). 

 

(a) Rural multilane all crash model 

 

(b) Rural Multilane Severe Crash Model 

Figure 18. Dependence plot between AADT and outside shoulder width 
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9.4. Findings on Rural Multilane Roadway 

• Daily average visibility is the most important contributing factor to crash 

occurrences on rural multilane roadways besides segment length. It is more 

important than daily precipitation. 

• On rural multilane roadways, the contribution of median width is more obvious in 

the severe crash model compared with that in the all crash model. In general, lower 

median width tends to increase severe crash occurrence probability. When the 

median is wide, lower visibility is more likely to cause severe crash occurrences. 

However, when the median is narrow, lower visibility seems to slightly decrease 

severe crash occurrence probability. 

• On rural multilane roadways, outside shoulder width makes a strong contribution 

to the probability of severe crash occurrence. When the outside shoulder width 

becomes wider, the probability of severe crash occurrence significantly decreases. 

Moreover, when the outside shoulder is narrow, increasing the median width may 

decrease the probability of severe crash occurrence. For the all crash model, the 

effect of outside shoulder width is not observable.  

• Rural multilane roadways with larger truck percentages are more likely to observe 

severe crash occurrence, especially when the truck percentage is greater than 60%- 

the likelihood of severe crash occurrence is skyrocketing. Moreover, when the 

truck percentage is relatively low, larger speed CV can make severe crash 

occurrence probability increase, whereas when the truck percentage is relatively 
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larger, the effect of speed CV becomes less obvious. For the all crash occurrence 

model, the effect of truck percentage is not observable.  

• AADT impacts both all crash and severe crash occurrence probabilities on rural 

multilane roadways. This effect is more obvious on the all crash occurrence model. 

For the severe crash model, when AADT is at a relatively lower level (less than 

10,000), increasing outside shoulder width can decrease severe crash occurrence 

probability. 
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10.  CONCLUSION 

This study analyzes the impacts of roadway geometry, speed distribution, and 

weather condition on roadway daily crash occurrence with different severity levels by 

using a machine learning method named XGBoost (eXtreme Gradient Boosting). The 

dataset consists of information from four sources: (1) RHiNO 2018 (Roadway geometric 

and traffic information); (2) NPMRDS (Speed distribution information); (3) ASOS 

(Weather condition information); and (4) CRIS (Crash information). In this study, 

roadway segments are classified into three different facility types (Rural Interstate, Rural 

Two-Lane, and Rural Multilane) and to study the variables contribution on crash severity 

level, for each facility type, one dataset is prepared for all crash occurrence and another is 

prepared for severe crash occurrence. To address the rareness nature of crash observations, 

the study applied an oversampling method called SMOTE to oversample crash 

observations, and this study also applied a feature selection process to remove highly 

correlated variables in the dataset.  

This study successfully analyzes the contribution patterns of geometric, speed 

distribution, and weather conditions on daily crash occurrence. Moreover, how these 

contribution patterns vary across different roadway facility types and crash severity levels 

is also investigated. Based on the findings of this study, it can be concluded that for rural 

interstate roadways, precipitation and speed variation play an important role in 

determining all crash occurrences. For severe crash occurrences, speed distribution is still 

very important whereas precipitation does not contribute too much. On rural interstate 

roadways, the contribution of roadway geometric variables is less significant for both all 
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crash and severe crash models. As for rural two-lane roadways, AADT plays a significant 

role in all crash and severe crash occurrences. Average visibility and visibility standard 

deviation make more contributions to crash occurrence than daily precipitation. The 

importance of some roadway geometric variables increases; for example, the impact of 

lane width significantly increases, especially in the severe crash model, and outside 

shoulder width also has an obvious contribution in the severe crash model. The result from 

rural multilane roadways offers a novel insight. Average visibility is the most important 

contributing variable besides segment length for both all crash and severe crash 

occurrences. The contribution of median width is apparent on rural multilane roadways. 

For all crash occurrences, low visibility increases all crash occurrence probability expect 

for when median width is very small, wherein low visibility tends to decrease all crash 

occurrence probability. For severe crash occurrences, only when median width is at a 

higher level, lower visibility can increase severe crash occurrence probability. Higher 

truck percentage increases severe crash occurrence probability on rural multilane 

roadways, especially when the truck percentage is greater than 60%. However, the truck 

percentage level seems does not affect all crash occurrence probability too much. 
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