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ABSTRACT

Metal additive manufacturing (AM) or metal three-dimensional (3D) printing offers significant

benefits for manufacturing parts with features and capabilities that conventional techniques cannot

match. Meanwhile, it is widely accepted that metal AM processes come with their own challenges.

Metal AM typically suffers from high degrees of variability in the properties of the fabricated parts

and high complexity in the fabrication process, particularly due to the lack of understanding and

control over the physical mechanisms during fabrication. Simulation models for AM are essential

to enable process planning and accelerate qualification and certification of fabricated parts. One

important task involves calibrating simulation models to ensure that predictions are in agreement

with experimental observations.

Part of my dissertation works on integrating Bayesian model calibration to accelerate the de-

velopment of metal AM processes such as Laser Powder Bed Fusion (LPBF). A framework is

developed includes experimental design, multiscale modeling and simulation, uncertainty quan-

tification, and experimental material characterization for fully characterizing parameter-process-

property relations in LPBF for materials design, process standardization, part qualification, and

discovery/innovation.

Other parts of this dissertation focus on statistical calibration of a computer simulation model

with multiple outputs where experimental observations for one (or more) of the outputs are expen-

sive to acquire. Bayesian multiple imputation method is used in a statistical calibration framework

to help estimate calibration parameters in the case of lacking expensive experimental data. The

proposed methodology is properly analyzed and validated by an analytical simulation model of

melt pool geometry in LPBF process. The insights and understanding achieved by applying these

methods advance the development of AM processes.
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NOMENCLATURE

A Absorptivity of material [dimensionless between 0-1]

AM Additive manufacturing

ANOVA Analysis of variance

c Thermal conductivity [W/(m·K)]

χ Input domain of interest or study region

cov[·; ·] Covariance Operator

D Melt pool depth [µm]

D4 Laser beam size at 4 standard deviations

E[·] Expectation Operator

EDM Wire Electrical Discharging Machining

FEM Finite Element Method

Γ(·) Gamma Function

GP Gaussian Process

gPCE Generalized Polynomial Chaos Expansions

GPRM Gaussian process regression model

h Hatch spacing [µm]

HGPM Hierarchical Gaussian process model

ICME Integrated Computational Materials Engineering

k Specific heat capacity [J/(kg·K)]

K Kernel function

LED Linear Energy Density [J/mm]

LOO Leave-One-Out Cross Validation
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LPBF Laser powder bed fusion

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MARS Multivariate Adaptive Regression Splines

MCMC Markov Chain Monte Carlo

MLE Maximum likelihood estimation

NiNb Nickel niobium alloy

NiTi Nickel titanium alloy

P Laser power [W]

pdf Probability Distribution Function

PSD Particle Size Distribution

QoI Quantity of Interests

ρ Bulk density [kg/m3]

RMSE Root Mean Squared Error

SEM Scanning Electron Microscopy

SMA Shape-Memory alloy

t Layer thickness [µm]

Tb Boiling temperature [K]

Tm Melting temperature [K]

UQ Uncertainty Quantification

V Scan speed [m/s]

VED Volumetric energy density [J/mm3]

W Melt pool width [µm]

x Input vector to the process

X Input data matrix
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xi ith input to the process

Y Output or QoI of the process

Y Output data vector

Y P Output prediction

Y E Output experimental data

yD Melt pool depth data

yW Melt pool width data
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1. INTRODUCTION

1.1 Additive Manufacturing (AM)

Additive Manufacturing (AM) technologies have already been shown to be of significant rele-

vance to industry since the late 1990s [1, 2]. With the capability of producing direct end-use parts,

AM technologies have been well applied across many industries including the aerospace, biomed-

ical, defense, and automotive industries among many others [3, 4, 5]. These industries leverage

the attractive capabilities of AM, such as the ability to fabricate parts with complex geometries,

the consolidation of multiple parts that would need to be integrated in complex assembly processes

into monolithic components, as well as the customization of the designs in order to meet very spe-

cific engineering requirements. Laser Powder Bed Fusion (LPBF), as a common AM technology,

has attracted great attention with the objective to control and reduce the defects of fabrication [6].

1.1.1 Laser Powder Bed Fusion (LPBF)

LPBF process employs a high energy laser beam to selectively fuse fine metallic powder par-

ticles in a layer-by-layer fashion [7]. Within each layer, the desired shape is selectively melted

by a laser that traces parallel linear paths. This process is repeated over and over again until the

entire part has been fused together. LPBF process involves heat transfer, evaporation, melting and

solidification, re-melting and re-solidification, shrinkage and other thermophysical behaviors upon

successive passes of the laser beam within the same layer or across successive layers.

The complicated LPBF process is the root cause of many technical challenges that have nega-

tive impacts on its progress and adoption in mainstream industrial manufacturing. They are mainly

printability and quality, indeed, are the microstructural and mechanical properties of fabricated

parts. To achieve better understanding of processing parameter-property relationships, careful

characterization of parts under various printing settings are necessary [8].
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1.1.2 Printability

In particular, the challenges are resulted by defects like porosity, residual stress, micro-cracks,

etc, due to the very high thermal gradients and cooling rates [9]. In turn, these defects distress the

mechanical properties of the end parts making them unsuitable for several industrial applications.

Furthermore, the LPBF process involves more than 40 processing parameters, and each of them

has direct or indirect impact on the printability, quality and performance attained by the as-printed

parts [10, 11].

1.1.2.1 Defects

Despite significant technological advances, the defect ratios are still high in LPBF process with

respect to conventional manufacturing systems.

Porosity is particularly critical for most metal AM applications because it strongly impacts the

fatigue performances and the crack growth characteristics of the part [12]. There are three main

phenomena that result in porosity; namely lack of fusion, keyholing, and balling. Lack of fusion

can occur when the melt pool depth is smaller than powder layer thickness due to an insufficient

amount of laser energy being deposited into the powder bed. The lack of fusion boundary line

then can be plotted as the line passing through laser power-scan speed combinations that result

in a melt pool depth that is equal to the layer thickness. Large laser energy density can lead

to the development of vapor cavities resulting from the recoil pressure associated with the rapid

evaporation of the molten liquid. This enables the laser beam to “drill” into the material to a

larger depth than is the case during the general conduction mode. This can ultimately result in

the collapse of the cavity, leaving voids known as keyholing porosity [13]. The balling effect is

observed at high laser power and scan speed combinations as the melt pool form into droplets (as

opposed to a continuous weld track) due to Plateau-Rayleigh capillary instability [14].

Residual stresses in LPBF have been pointed out to arise from two different mechanisms, in-

cluding the thermal gradient mechanism and the cool-down phase of molten top layers [15]. As a

consequence of a stress relief through fracturing when the tensile stress exceeds the ultimate ten-
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sile strength of the solid material at a given point and temperature, cracking phenomena occur [16].

Delamination is a particular case of cracking, where cracks originate and propagate between adja-

cent layers (inter-layer cracking). When the residual stresses exceed the binding ability between

the top layer and the previous one, delamination occurs [17].

The LPBF fabricated parts may exhibit different kinds of dimensional and geometric deviations

from the original CAD models [18, 19]. Regarding the size of the part, shrinkage and oversizing

have been reported. Warping and elevated edges are the other types of geometrical distortion. This

defect strongly impacts the quality and stability of the process for different reasons [20]. First, it

deteriorates the surface topology and the dimensional accuracy of the part. Second, it may worsen

the stair-stepping effect due to the layer level production. Third, when elevated edges protrude from

the powder layer, they may interfere with the recoating system, increasing its wear and negatively

affecting the consequent powder bed uniformity.

In LPBF processes, surface roughness has two contributors, i.e. the stair-stepping effect due

to the layer-wise production, and some critical features like thin walls, overhang surfaces and

acute corners. The surface finishing depends on the surface orientation with respect to the growth

direction. In particular, downward- and up-ward surfaces are known to have considerably different

roughness properties [21]. In those regions, the melt pool is largely surrounded by loose powder,

which has a lower conductivity of the solid material. The diminished heat flux yields local over-

heating phenomena that may deteriorate the geometric accuracy.

1.1.2.2 New Materials and Alloys

Despite the notable growth and potential, it is widely accepted that metal AM technologies

come with their own challenges such as lack of standards, time and cost intensive qualification and

certification processes, and susceptibility to defects that compromise part performance. Some of

these challenges are attributed to the fact that most (if not all) of existing commercial raw materials

used in AM were originally developed for other manufacturing processes such as casting, forging,

and machining. When attempting to process these materials using AM, they undergo different–and

typically more complex–physical transformations resulting in defects, microstructural inconsisten-
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cies, and high degrees of variability. Most AM researchers and practitioners have recently come to

the realization that new materials and alloys need to be developed specifically for AM, with these

complex physical phenomena in mind.

Developing new alloys for AM involves yet another set of challenges, the most obvious of

which is the fact that there is no systematic procedure to determine the processing recipes (or

parameters) for these new materials [22, 23]. One possible approach is through brute force, ex-

haustive, exploration of the entire parameter space [24, 25]. Such an approach is inefficient when

considering the associated materials, fabrication, and characterization costs. Another slightly im-

proved approach is to utilize tools of statistical design of experiments such as factorial design,

fractional factorial design, or Taguchi-based designs [26, 27, 28]. These approaches are well-

studied and may give acceptable results. However, they still require sufficiently large numbers of

experiments (although less than brute force trial and error). Furthermore, they are specific to cer-

tain experimental conditions such as the type of AM commercial system or properties of the raw

feedstock. When one factor changes, entirely new sets of experiments must be conducted leading

to higher experimental costs. A third approach sometimes followed by AM practitioners is to start

with the processing parameters that have been successfully used to process a similar class of ma-

terials [29, 30]. For example, a newly designed binary nickel niobium (NiNb) alloy may be tested

starting with the processing parameters for nickel-based superalloys such as Inconel 718 or Inconel

625 [31, 32]. These starting sets of processing parameters are then adjusted through trial and error

until the material can be successfully printed (i.e., with little to no porosity, and showing desirable

mechanical properties) [11]. However, there is no guarantee that processing parameters that work

for a specific material system will necessarily work for a new material system just because they

share some compositional similarities.

Some more elaborate model-based approaches resort to computational models, such as finite el-

ement models (FEM) or integrated computational materials engineering (ICME) models in general

[33]. Statistical design of experiments is usually utilized in the model-based approaches to make

an experimental plan for reducing experimental burden [34]. The benefit of these approaches is the
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fact that the models used are based on first principles and are thus, in theory, material-and system-

agnostic. However, in reality ICME models need to be tuned and calibrated in order to ensure

that their predictions agree with experimental observations, depending on the material being pro-

cessed or the AM platform being employed. Despite notable recent advances in developing ICME

models for AM, there is still much work to be done towards developing models with improved fi-

delity. Even if we assume that these models already exist and are mature enough, there are no clear

guidelines on how to use them to determine processing recipes for new materials. Finally, most of

these models are computationally expensive, making them more suitable for understanding process

physics than conduct process optimization. They also typically require access to proprietary code

that might not be readily available for all AM practitioners.

1.1.3 Quality Consistency

In LPBF AM process, from powder bed forming to melting and solidification, various sources

of uncertainty are involved in the processes. These sources of uncertainty result in variability in the

quality of the manufactured component. The quality variation hinders consistent manufacturing of

products with guaranteed high quality. This becomes a major hurdle for the wide application of AM

techniques, especially in the manufacturing of metal components. This large microstructure and

mechanical property variability in print is one of the predominant barriers to widespread adoption

of additively manufactured structural components.

Although, in some cases, post-processing techniques are suitable to mitigate or remove defects

from LPBF fabricated parts (e.g. hipping) as well as maintain the same quality level, improving

the quality of the as-built parts is fundamental to meet stringent and challenging industrial require-

ments. Processing parameter optimization, model-based variability and uncertainty analysis are

applied to control and improve the quality of LPBF as-built parts while planning and conducting

the fabrication process.
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1.1.4 Process Standardization and Optimization

Most experts agree that the lack of AM standards is a key issue that must be taken into account

when barriers to the broad adoption of AM are considered. In relation to this, the existing standards

are not suitable for AM. Several factors strongly influence the limited applicability of conventional

standards to AM. For example, the layered approach to the additive manufacturing of parts may

cause directional dependence in the material properties of that part. Several research studies have

reported different mechanical properties when the part is made in the X–Y direction compared

to the Z direction. In LPBF, the processing parameters (laser power, scan speed, hatch spacing,

layer thickness, etc.) have been shown to influence microstructural and mechanical properties [8].

The interaction effects between processing parameters are more dominant than individual effects.

Even the oxygen level while laser sintering, the amount of recycled powder used in printing and

the recycled time were observed to have a strong influence on the final dimensions and properties

of the part [35, 36, 37]. Further more, two manufacturers of AM parts supplying the same prod-

uct to final users, even using the same equipment and material, could supply parts with different

characteristics, either in terms of mechanical properties or geometric tolerances and roughness.

Therefore, developing processes to increase certification of AM is needed. A protocol that can

steamline the development, application, and optimization of any metal alloys in LPBF is urgently

required.

1.2 Computational and Analytical Methods in AM

1.2.1 Computer Models for AM

It is crucial to develop better understanding of the physics mechanisms that drive the thermal

history within the part during LPBF processes. In reality, experimental measurement of the thermal

field in LPBF is extremely difficult due to a number of challenges such as very high thermal

gradients and cooling rates, micro-scale melt pool size, and emissivity variations, among many

other challenges. In-situ monitoring can be an approach to capture thermal information while laser

sintering [38, 39]. However, the in-situ sensors for LPBF are complicated due to significantly high
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noise factors. Nevertheless, the acquired sensors data have to be post-processed before analyzing

and predicting the quality of the part. Consequently, computer models are needed to complement

experiments in understanding the thermal history of LPBF processes.

Improved model simulations have the capability of mimicking almost any kind of physical

processes, saving hours and even days worth of manual calculations [40, 41]. The purpose of

these simulations is to model the entire LPBF processes and predict outcomes by varying different

processing parameters [42]. However, none of the models is perfect. The disagreement between

the experimental results and the model outputs can be attributed to one or more of the following

factors: (1) lack of understanding of the physics mechanism in LPBF processes, (2) unknown

model parameters, (3) wrong input values for the model, (4) variability resulted by the random

behavior of the system, and (5) uncertainties within numerical simulation algorithms [43, 44, 45].

Hence, it is necessary to identify, characterize, and quantify the uncertainties within models in

order to strengthen the robustness of model performance. So that the models can be employed to

guide the AM processing parameters selection and optimization.

1.2.2 The Purpose of Uncertainty Quantification (UQ) for AM

Like we mentioned above, the quality inconsistency is a major hurdle for the wide application

of AM techniques, especially in LPBF. To achieve the quality control of the AM process, a good

understanding of the uncertainty sources in each step of the AM process and their effects on product

quality is needed [46]. Uncertainty quantification (UQ) is a process of investigating the effects of

uncertainty sources (aleatory and epistemic) on the quantities of interest (QoIs) [47, 48]. Even

though UQ for models of physical hardware has been intensively studied during the past decades

and continue to address important research questions, UQ in AM is still at its early stage. Only

a few examples have been reported in the AM literature which are mainly based on experiments

and are performed at the process level [49, 43]. This will result in excessive material wastage,

increased product development cost, and delay in the product development process because UQ

usually requires numerous experiments and process optimization and UQ are implemented in a

double loop framework (i.e., UQ needs to be performed repeatedly when the process is changed)
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[50]. A generic UQ framework built upon the understanding of fundamental principles of the AM

will significantly benefit the wider acceptance of the AM process and push the AM techniques for

the manufacturing of metal products to the next stage. Systematic UQ of AM will also provide

a solid foundation for the uncertainty management of the AM process, thus allowing effective

allocation of limited resources to meet quality requirement and robustness targets.

The purpose of UQ is to investigate the effects of uncertainty sources on the variation of the

QoIs. In AM, the modeling of model discrepancy and model parameter uncertainty is the major job

in modeling of uncertainty sources. Model discrepancy or model form uncertainty comes from the

assumptions and simplifications made in various simulation models. For example, the simplifica-

tion of melting pool models by ignoring the heat radiation and evaporation, and the simplification

of Marangoni forces in the finite element thermal model. The model discrepancy can be modeled

as a surrogate model by comparing the difference between the simulation model and the experi-

ment at different input settings. On the other hand, since some parameters are unknown due to the

model parameter uncertainty and the model form uncertainty is a function of these model param-

eters, it is very difficult to accurately model these two sources of model uncertainty together. A

widely used approach for dealing with this kind of problem is the employment of model calibration

approach under the Kennedy and O’Hagan framework, the details of this framework are available

in Ref. [51]. More recently, Tapia et al. conduct UQ for a physics-based precipitation model of

nickel-titanium shape memory alloys through combining experimental and computer simulation

data [52]. Mahmoudi et al. conduct UQ for a 3D finite element thermal model with multiple QoIs

through linking the model to experimental observations via a computationally efficient surrogate

modeling approach based on multivariate Gaussian processes [53].

1.3 Organization of the Dissertation

This dissertation is organized by the following four chapters. This work aims to fill the gaps

outlined above, the quality optimization, printability, and AM certification. More specifically,

the objective is to establish a unified framework to determine printability maps for a given newly

developed material or alloy in LPBF metal AM processes by employing robust modeling and

8



calibration methods.

In chapter 2, we characterized and optimized the LPBF processing parameters of as-fabricated

and electropolished Nitinol Titanium (NiTi) shape memory alloy (SMA) actuators with embed-

ded channels for liquid metal forced fluid convection to increase actuator heat transfer rates. This

work utilizes a design of experiments methodology by varying LPBF processing parameters on

the as-fabricated surface roughness of the overhangs and walls of interior channels in NiTi. To

enable post-process increases in surface quality, the channels are subjected to an electropolishing

treatment and further characterized. Analysis of variance (ANOVA) and ain effects plots are uti-

lized to identify the significance of each processing parameter and to further explore the optimal

processing parameters.

Next, in chapter 3 we proposed an efficient framework for printability assessment of newly

developed alloys or materials that have never been applied in LPBF. The most obvious challenge

in fabricating these materials is the fact that there is no systematic procedure to determine the

processing recipes (or parameters) for these new materials. An computationally tractable analytical

model enhances the accelerated aspect of the proposed framework through a backward UQ step

(also known as calibration). In addition the proposed framework guides the microstructural and

mechanical characterization of specimens that are printed according to that map. We validate this

proposed framework using three different material systems, two of which have not been previously

investigated.

In chapter 4, we take the next step toward the printability framework and present methodologies

for statistical calibration of a computer simulation model with multiple outputs where experimental

observations for one (or more) of the outputs are expensive to acquire. On one hand, a hierarchical

Gaussian process methodology is developed to make predictions of the missing outputs by leverag-

ing their inherent correlation. Then the experimental observations together with the predicted data

are applied into multivariate statistical calibration framework. On the other hand, bayesian mul-

tiple imputation method is directly used to estimate calibration parameters in the case of missing

data.
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The dissertation is concluded in Chapter 5 where a summary of implications, concluding re-

marks and potential future extensions are outlined.
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2. PROCESS OPTIMIZATION ON THE SURFACE ROUGHNESS OF LPBF FABRICATED

NiTi INTERIOR CHANNELS*

2.1 Background

Nickel Titanium (NiTi) which exhibits shape memory effect has been utilized in many appli-

cations, such as biomedical, automotive, aerospace and others. In aerospace, NiTi alloy actuator

with embedded channels were designed for liquid metal forced fluid convection to increase ac-

tuator heat transfer rates. However, the fabrication of NiTi actuators with complex structures is

challenging using traditional manufacturing technologies due to NiTi’s difficulty of machining and

sensitivity to temperature and composition. As the development of AM, LPBF as one of the pop-

ular AM processes has the capability of tailoring the functional response of NiTi, such as phase

transformation temperatures, through controlling the manufacturing processing parameters, with

minimal to no need for post-heat treatment. However the surface roughness of as-fabricated LPBF

interior channel parts are directly influenced by L-PBF manufacturing processing parameters (that

have been listed in the previous chapter) and the design of channel diameter, no prior studies have

reported the effects of these parameters on interior surface roughness.

In this chapter, I present a work which is the first systematic study to understand the relation-

ships between processing parameters, structure and the surface roughness of as-fabricated NiTi

parts, with an application emphasis on interior channels. Second, this work presents one of the

first effort on post-processing LPBF NiTi parts using electropolishing to improve surface quality

and further establishes a relationship between processing parameters and electropolished surface

roughness.

*Reprinted with permission from “Effect of process parameters and electropolishing on the surface roughness of
interior channels in additively manufactured nickel-titanium shape memory alloy actuators” by Jacob Mingear, Bing
Zhang, Darren Hartl, Alaa Elwany, 2019. Additive Manufacturing, Volume 27, Pages 565-575, Copyright [2019] by
Elsevier.
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2.2 Experimental Method

The interior channel parts were printed by ProX 100 commercial LPBF system by 3D Systems,

where the maximum laser power is 50 W. The machine has a Gaussian profile fiber laser with

wavelength λ = 1070 nm and beam spot size of approximately 80 µm [54]. The maximum scan

speed of our printer is 2.5 m/s. Fabrication was carried out under an inert argon atmosphere with

oxygen level set to less than 500 parts per million (ppm). All parts were printed at constant layer

thicknesses set equal to the 80th percentile of the powder size distribution (d80).

The as-fabricated interior channel parts were subsequently cut from the build substrate using

wire electrical discharge machining (EDM). All parts were sectioned along their channel axes

using a slow speed diamond precision cutting wheel, exposing their internal surfaces for sur-

face roughness measurements and imaging. Sectioning was needed for two reasons: (1) to en-

able measurement of surface roughness, and (2) to facilitate electropolishing. After sectioning,

channels were sonicated in a 1:1 ethanol/acetone mixture to remove cutting fluid and remove any

loose powder from their interior surfaces. The surface roughness was measured over an area of

the exposed channels using a Zygo Zegage optical profilometer. Then, electropolishing was per-

formed as a post-processing step based on a procedure by Pohl et al. [55] for NiTi alloys using an

acetic/perchlorate acid electrolyte, as depicted in Figure 2.1. A nickel foil anode encompassed the

interior of a beaker to ensure equal distance from the channels. The channel parts were adhesively

bonded to a copper wire-embedded rubber stopper and acted as the cathode. The electropolish-

ing step took 25 min at 10 V at room-temperature. After electropolishing the channel parts, the

specimens were subsequently reevaluated for surface roughness measurement and imaging.

To enable further increases in performance, it is critical to characterize and control the sur-

face quality of fully interior channels which have higher surface roughness compared to exterior

top surfaces. A two-level 25−1 fractional factorial design of experiments was employed to study

the relationship between five LPBF processing parameters and the surface roughness of interior

channels in as-fabricated NiTi. The processing parameters include: laser power 45 or 50 [W],

scan speed 80 or 120 [mm/s], hatch space 35 or 120 [µm], scan pattern [rasting angle of ±45◦

12



Figure 2.1: Schematic of the electropolishing experimental setup.

and 0◦/90◦, displayed as Figure 2.2], and channel orientation [horizontal (H) or vertical (V)]. A

L16 experimental design matrix for two levels (low and high) of each channel was developed, as

shown in Table 3.4. Channels with horizontal and vertical build orientation are denoted by H1-H8

and V1-V8, respectively. Further, the design matrix was repeated independently to consider a total

of three channel diameters 1, 1.5, and 2 [mm]. The fabrication process and as-fabricated channel

samples are displayed in Figure 2.3. The experimental results of root-mean-square surface rough-

ness, Sq and profile skewness, Ssk were analyzed by the analysis of variance (ANOVA) to elucidate

the effects of the processing parameters on the channel surface roughness.

2.3 Results and Discussion

2.3.1 As-Fabricated Channel Analysis

A representative group of SEM micrographs of the as-fabricated channels decreasing in channel

diameter is presented in Figure 2.4, with the top and bottom rows representing horizontal channel

overhangs and vertical channel walls, respectively. Micrographs further detail that the surfaces

of vertical channel walls are speckled with partially fused powder feedstock while the horizontal

channel overhangs contain a similar appearance but with additional large stalactites.
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Table 2.1: The L16 design of experiments matrix.

Channel Laser Power (W) Scan Speed (mm/s) Hatch Spacing (µm) Scan Pattern Channel Orientation
Low-level: 45 80 35 ±45◦ Horizontal (H)
High-level: 50 120 120 0◦/90◦ Vertical(V)

H1 45 80 35 ±45◦ Horizontal
H2 50 120 35 ±45◦ Horizontal
H3 50 80 120 ±45◦ Horizontal
H4 45 120 120 ±45◦ Horizontal
H5 50 80 35 0◦/90◦ Horizontal
H6 45 120 35 0◦/90◦ Horizontal
H7 45 80 120 0◦/90◦ Horizontal
H8 50 120 120 0◦/90◦ Horizontal
V1 50 80 35 ±45◦ Vertical
V2 45 120 35 ±45◦ Vertical
V3 45 80 120 ±45◦ Vertical
V4 50 120 120 ±45◦ Vertical
V5 45 80 35 0◦/90◦ Vertical
V6 50 120 35 0◦/90◦ Vertical
V7 50 80 120 0◦/90◦ Vertical
V8 45 120 120 0◦/90◦ Vertical

Figure 2.2: Graphical description of scanning strategy settings specified by the rastering angle
relative to the build-plane coordinate axis for successive odd and even layers. (a) Rastering angle
of 90◦ and 0◦. (b) Rastering angle of 45◦ and -45◦.
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Figure 2.3: (a) Diagram depicting the layer-by-layer fabrication routes for horizontal and vertical
channels; vertical channels build new layers upon a previously solidified layer while horizontal
channels build ceilings upon powder beds; (b) Horizontal channel cross-section schematic depict-
ing the result of a melt pool penetrating into porous powder during ceiling fabrication leading to
higher roughness. (c) All three diameters in a given channel lie on a single line for facile mea-
surement; channel diameters step every 5 mm. (d) Finished channel parts with their respective
parameter sets (e) Scanning electron microscope (SEM) image of NiTi powder.
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Figure 2.4: Representative SEM micrographs of the as-fabricated horizontal channel overhangs
(top three images) and the vertical channel walls (bottom three images) over the three channel
diameters. Both orientations contain partially fused powder feedstock on their surfaces. The sta-
lactite structures on the overhangs are a prominent feature and increase surface roughness. The
vertical channels are more circumferentially uniform.

Volumetric energy density (VED) in LPBF is a metric that combines laser power (P), scan

speed (V), and hatch space (h), and layer thickness (t) through the following relationship:

VED [J/mm3] =
P

V ht
(2.1)

When comparing channels of the same size and ordering in terms of VED as shown in the SEM

micrographs in Figure 2.5, qualitatively, there appears to be a trend regarding surface quality.

As a first observation, the higher VED channels seem to be more densely covered in partially

fused powder feedstock than lower VED channels. Specifically in the horizontal channels, the size

of the stalactites are also much larger at higher energy densities. In vertical channels, the underly-

ing surface where the melt pool solidified for each layer is more easily observed as VED decreases

(look for a fish scale-like morphology and notice the increase of the underlying melt surface from

V5 to V8, including V7 from Figure 2.4, as VED decreases). The underlying surface is less notice-
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Figure 2.5: SEM micrographs displaying interior channel morphology with respect to VED. The
lower VED channels have less partially fused powder feedstock on their respective surfaces. Fur-
ther, for the horizontal channel overhangs, the size of the stalactite structures are smaller for lower
VED.

able in the horizontal channels as the stalactites are the main feature. These observations are also

seen in the smaller channel diameters, 1.5 mm and 1 mm, which are not displayed in Figure 2.5.

A suitable physical explanation for such features may stem from increased VED leading to larger

melt pools which consequently result in more melt pool runoff into adjacent non-melted powder

feedstock creating larger stalactites and/or partially fusing to more powder feedstock. When com-

piling the quantitative Sq data in regards to VED, however, this observation is not as obvious; more

accurate profilometry techniques could better reveal such a trend.

Surface profile data was processed to produce p-values from ANOVA, shown in Table 2.2, to

assist in clarifying which processing parameters are significant in determining as-fabricated Sq and

Ssk. A p-value of less than 0.05 is considered significant with 95% confidence. Thus, based on

these calculations, it can be stated that channel orientation has the most significant effect on Sq. For

Ssk, it can be suggested that scan pattern for only 1 mm channels play an important role compared
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Table 2.2: p-values from ANOVA of as-fabricated channels corresponding to the main effect plots;
bold-face denotes significance.

Roughness Channel
Diameter

Laser Power
(W)

Scan Speed
(mm/s)

Hatch Spacing
(µm)

Scan Pattern Channel
Orientation

Sq 2mm 0.0909 0.0859 0.3313 0.5566 0.0002
1.5mm 0.5083 0.2792 0.4280 0.4309 0.0002
1mm 0.8381 0.7806 0.6255 0.3766 0.0062

Ssk 2mm 0.3910 0.3826 0.5348 0.3175 0.0816
1.5mm 0.7180 0.8280 0.5070 0.1170 0.2330
1mm 0.9189 0.3678 0.7056 0.0313 0.3072

to other factors.

The main effect plots of Figure 2.6 correspond to the ANOVA results by the high slopes asso-

ciated with channel orientation for Sq, in addition to scan pattern for Ssk. Comparing horizontal

channel walls against vertical channel overhangs, the mean of horizontal channel Sq values are

nearly twice that of the the mean of vertical channel Sq values. The remaining parameters are

overshadowed by the influence of channel orientation for Sq.
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Figure 2.6: Main effects plots for as-fabricated channels showing the mean value of Sq and Ssk with
each level and factor. Channel orientation dominates the resultant Sq, while only 1 mm channels
are dependent on scan pattern for Ssk, based on the ANOVA results from Table 2.2.

The effect of channel orientation on surface roughness is consistent with expectations. Chan-

nel orientation is an important design consideration in AM. It is not uncommon to encounter a

situation where flexibility in setting a specific channel orientation is not feasible. For example,

a complex vascular part may inevitably require some channels to be fabricated in the horizontal

orientation, or the layout of support structures in the part may necessitate building in a specific
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orientation. Therefore, it is important to consider the surface of the channel ceiling will inevitably

have high roughness, seemingly indifferent to other processing parameters when producing hori-

zontally oriented channels.

2.3.2 Electropolished Channel Analysis

Electropolishing was performed as a post-processing step to improve surface roughness. Before

electropolishing the samples, an initial experiment was conducted to quantify the mass loss of small

features on as-fabricated surfaces. After 25 min of electropolishing, all pillars lost approximately

0.25 mm of material circumferentially. Thus, a consistent mass loss rate of approximately 0.01

mm/min occurred, regardless of processing parameters used; this does not necessarily suggest that

each channel had the same reduction in surface roughness, however. In practice, this procedure

would result in a 1.5 mm diameter channel losing enough material to become a 2 mm diameter

channel, an important consideration when designing channels or similarly sized features.

As discussed before, the existence of a trend in the as-fabricated surface morphology with

respect to laser energy density was observed qualitatively. It was suggested that this trend origi-

nated from higher energy densities producing more melt runoff which could create larger stalactites

and/or partially fuse more non-melted adjacent powder located in the channel. This trend seems

to persist after electropolishing. For both horizontal and vertical channels, an inverse correlation

is observed between the effectiveness of electropolishing (reducing surface roughness) and laser

energy density, as presented in Figure 2.7.
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Figure 2.7: As VED decreases during fabrication, the reduction and reduction percentage of sur-
face roughness from electropolishing step increases, displayed for horizontal and vertical channels.

SEM micrographs of the electropolished surfaces are shown in Figure 2.8. Channel H2 clearly

has more remnant features after electropolishing than the lower energy density channel, H4; these

features include the remnants of stalactites and fused powder boundaries. For the vertical channels,

V6 presents many fused powder boundaries while V8 has a relatively clean surface finish. Optical

profilometry data highlights such a distinction with V6 having over three times the Sq value than

V8. These observations are also found for channel diameters not displayed in Figure 2.8. It seems

that more penetrating melt pools and partially fused particle interfaces, associated with high laser

energy density, result in a less effective electropolish; a lower energy density would lead to less

melt pool runoff into supporting powder and less partial fusion with powder.
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Figure 2.8: SEM micrographs displaying electropolished interior channel morphology with respect
to energy density. The lower energy density channels have visibly smoother surface. There is a
higher density of particle edge remnants from partially fused powder feedstock in the higher energy
density channels. There are also some remnants of the stalactite structures in the electropolished
horizontal channel overhangs.

Captured by the ANOVA p-value results and main effect plots in Table 2.3 and Figure 2.9,

there appears to be multiple significant parameters in determining electropolished Sq, unlike the

as-fabricated channels. For Sq, channel orientation remains the most significant parameter for

2 mm and 1.5 mm channels but not 1 mm channels; this further supports the notion that some

factors become more or less impactful based on the channel size. Laser power and scan pattern

are also significant for only 2 mm channels. Hatch space is significant for only 1 mm channels

and the 35µm hatch space leads to higher roughness, a similar result for overhanging surfaces has

beed observed [56]. This result could stem from lower hatch spacing corresponding to increased

melt overlap interactions between laser scans. Ultimately, including the step of electropolishing
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Table 2.3: p-values from ANOVA of electropolished channels corresponding to the main effect
plots; bold-face denotes significance.

Roughness Channel
Diameter

Laser Power
(W)

Scan Speed
(mm/s)

Hatch Spacing
(µm)

Scan Pattern Channel
Orientation

Sq 2mm 0.0400 0.5030 0.2521 0.0031 0.0003
1.5mm 0.2921 0.5714 0.3694 0.4659 0.0134
1mm 0.5530 0.1954 0.0076 0.9020 0.1348

Ssk 2mm 0.2230 0.1760 0.7670 0.7020 0.3020
1.5mm 0.1039 0.0644 0.1915 0.0251 0.5989
1mm 0.8245 0.2211 0.3794 0.0032 0.5393

provides a method to control Sq by decisively altering LPBF processing parameters rather than

being confined by the design constraint, channel orientation, in as-fabricated channels.

For Ssk, the tendency of channels to be dominated by troughs or peaks is dependent on scan

pattern; the 45◦/ -45◦ leads to peaks while the 90◦ and 0◦ leads to troughs. The main effects plot

of Figure 2.9 also indicate that, on average, 1 mm channels remain strictly dominated by troughs

after electropolishing.
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Figure 2.9: Main effects plots for electropolished channels showing the mean value of Sq and Ssk
with each level and factor. Based on the ANOVA from Table 2.3, it can be identified that channel
orientation again dominates the resulting Sq for 2 mm and 1.5 mm channels; as channel diameter
decreases, channel orientation becomes less dominant. Ssk is most affected by scan pattern for 1.5
mm and 1 mm channels.

In conclusion, as-fabricated Sq values range between 30-100 µm which are orders of magni-

tude higher than the typical Sq values associated with machined metallic parts (0.5-5 µm [57]), and

also several times higher than the Sq values of the top flat exposed surfaces of additively manufac-

tured parts (10 µm [58]). Between channel diameters, no significant trend is observed in regards to
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the overall Sq values. The mean of as-fabricated Ssk values across all channels is slightly negative,

indicating a slight bias towards troughs on the surface. When the mean is taken across horizon-

tal overhangs and vertical channel wall separately, there is a clear distinction between horizontal

channels overhangs tending to be dominated by troughs and vertical channel walls tending to be

dominated by peaks.

After electropolishing, we observe a reduction in Sq values, which are further shown to increase

in intensity inversely proportional to parameters that relate to laser energy density. However, it is

evident that electropolishing is an effective post-process procedure for the reduction in Sq. Post-

electropolish Ssk indicates a bias for peaks for 2 mm and 1.5 mm channels and a bias for troughs

for 1 mm channels, generally indifferent to channel orientation.

Overall, significant improvement in surface quality after electropolishing can be observed. The

horizontal channel surfaces originally contained stalactites covered in powder feedstock; after elec-

tropolishing, these features were almost completely removed, leaving behind thin bridge-like fea-

tures and some circular topology. The vertical as-fabricated surfaces were originally speckled

with partially fused precursor powder, which subsequently yielded a visibly smooth surface with

sporadically positioned particles-like features remaining after the electropolish.
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3. AN EFFICIENT FRAMEWORK TO ACCESS THE PRINTABLE PROCESS SPACE IN

LPBF*

3.1 Background

Additive manufacturing (AM) is a well-established manufacturing technology capable of pro-

ducing parts with complex geometries and intricate features, among many other benefits it offers

[59, 60]. To unlock AM’s full potential, however, more developments are yet to be conducted

especially in the areas of materials design and process optimization to enable successful printing

of defect-free parts and reduce variability in the properties of fabricated parts [61, 62, 63].

Determining processing recipes for newly designed AM materials can be time-and cost-intensive

before a successful print (i.e., a part with near-full density and the minimal amount of macroscopic

defects) is realized [64]. In contrast to the experimental-based or modeling-based approaches that

have been introduced in chapter 1, some recent studies in the literature indicate that AM processing

parameters can be determined via single-track experiments and/or melt pool modeling approach.

Bosio et al. developed laser power-scan speed processing maps using single-track experiments for

the laser powder bed fusion (LPBF) process [28]. A simplified analytical melt pool model and

single-track samples of the LPBF process are used to create a novel density control algorithm [34].

In that paper, an energy density-build rate processing map is numerically generated and experi-

mentally calibrated to support the optimization of printed samples’ density.

The current work aims to fill the gaps outlined above to access the printability of new metal al-

loys in LPBF. More specifically, the objective is to establish a unified framework to determine print-

ability maps for a given newly developed material or alloy in Laser Powder Bed Fusion (LPBF)

metal AM processes. In this context, a printability map refers to windows of processing param-

eters space within which parts free of macroscopic defects can be produced in good region. An

*Reprinted with permission from “An efficient framework for printability assessment in Laser Powder Bed Fusion
metal additive manufacturing” by Bing Zhang, Raiyan Seede, Lei Xue, Kadri C Atli, Chen Zhang, Austin Whitt,
Ibrahim Karaman, Raymundo Arroyave, Alaa Elwany, 2021. Additive Manufacturing, Volume 46, Pages 102018,
Copyright [2021] by Elsevier.
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Figure 3.1: An example of a printability map showing processing windows corresponding to dif-
ferent modes or regimes. The contour lines represent maximum hatch spacing that is to be used
with a given speed-power combination.

example of such a printability map is depicted in Figure 3.1. The maps proposed in this work are

distinguished from processing maps developed by Bosio et al., which work for single-track exper-

iments not in contract to full parts [28]. For the purpose of this work, we focus on three processing

parameters shown to have significant influence on the quality of the printed part: laser power, P

[W], scan speed, V [m/s], and hatch spacing, h [µm] [65, 66, 67]. The physical phenomena or

regimes that are to be mitigated in order to minimize macroscopic defects (such as pores, cracks,

and delamination) are: keyholing [68, 69, 70], lack of fusion [69, 71, 72], and balling [73, 74, 75].

Mechanical properties such as ultimate tensile strength (UTS) and tensile ductility are also tested

of the as-printed parts [76].

3.2 Methodology

3.2.1 Nickel-niobium Alloy (NiNb5)

To simplify the modeling of Nb segregation during rapid solidification of Ni-based alloys, a

newly developed binary NiNb5 alloy has been proposed as a surrogate in previous works [77,

33]. In this study, gas atomized NiNb5 powder produced by Nanoval GmbH & Co. KG is used.
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[a] [b]

Figure 3.2: SEM micrographs of NiNb5 powder particles. (a) A high magnification image showing
the surface morphology of a characteristic powder particle. (b) A low magnification image showing
the powder size distribution.

The exact composition of this powder was determined using inductively coupled plasma atomic

emission spectroscopy (ICP-AES) for 5.08 (± 0.91) wt.% of Nb, the remaining is Ni. NiNb5

powder particles were characterized using a scanning electron microscope (SEM), as shown in

Figure 3.2. The particle size distribution and density of the alloy were determined by the supplier,

reporting that 80% of the powder particles were smaller than or equal to 30 µm (d80 = 30µm)

and that the bulk density ’ρ’ of the material was 8909 kg/m3 (at room temperature). The melting

temperature of this alloy is Tm = 1703 K.

Other unknown material properties were estimated as follows: thermal conductivity ‘k’, spe-

cific heat capacity ‘c’, and boiling temperature ‘Tb’ were approximated using the rule of mixture

for Ni and Nb, and computed as 70.4 W/(m ∗ K), 636.19 J/(kg ∗ K), 3103 K, respectively

[78, 79, 80]. These properties were selected at the melting temperature in the solid-state as an

approximate reference point. The absorptivity ’A’ of the material was approximated using the cal-

culated value for a Gaussian distributed laser beam with 1 µm wavelength melting of Ni powder

which has an average powder particle radius of 13.5 µm, and the value is 0.51 [81].

3.2.2 Analytical thermal model

The first step in constructing a printability map is through establishing a relationship between

AM processing parameters and melt pool geometry. This can then be used to define sub-regions in
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the processing parameters space that correspond to different defect criteria (lack of fusion, keyhol-

ing, and balling) and to good prints. To generate such a map, a full sweep within the parameters

space must be performed. To achieve this, a relatively low fidelity analytical model Eagar-Tsai

(E-T) developed by T. W. Eagar and N. S. Tsai is utilized to simulate melt pool geometry across

the ’P − V ’ parameter space [82]. Although the model was generated with simplifying assump-

tions to exclude some physics relating to convection and keyhole modes, it represents a reasonable

approximation for a starting step. Furthermore, statistical calibration will help adjust the model

predictions such that they agree with experiments which will be described later in section [83].

The input parameters of the E-T model include NiNb5 thermo-physical material properties,

processing parameters (in particular, laser power and scan speed), and laser beam size. E-T model

simulations are used to define sub-regions in the printability map according to defect criteria that

are discussed in the next section.

3.2.3 Criteria for Establishing the Printable Region

By using the above analytical thermal model, we can get melt pool width and depth simulations

for any processing parameter combinations. Our first goal is to reduce this parameter space from

a theoretically infinite space in the positive quadrant to a finite space. So, we establish upper and

lower bounds on the laser power and scan speed, respectively. The upper bound on the scan speed,

’Vmax’, is set to the maximum attainable speed by the laser optics on the AM system while the

lower bound, ’Vmin’, is set to an arbitrarily small value slightly above the theoretical minimum

(i.e. zero). Because the E-T model requires a moving heat source. 0.05 m/s is taken as the lower

bound on the laser speed. The upper bound on the laser power, ’Pmax’, is set as the maximum

power attainable by the AM system (i.e. a machine limitation). The lower bound on the laser

power, ’Pmin’, is set as the minimum laser power that will cause melting at a speed of ’Vmin’. This

value can be computed using the E-T model. Therefore, we have Pmin = 65 W , Pmax = 260 W ,

Vmin = 0.05 m/s, and Vmax = 2.5 m/s.

Next, the E-T model is used to further split this space into sub-regions corresponding to phe-

nomena that result in porosity; namely lack of fusion (LOF), keyholing, and balling, as depicted
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in Figure 3.3. Lack of fusion porosity is due to voids that create among unmelted or incompletely

melted powder particles. Theoretically, LOF occurs when melt pool depth is smaller than powder

layer thickness, D
t
< 1. To be more conservative, the threshold of D

t
< 1.5 is also considered for

our study. Keyhole porosity happens when the deposited laser power is sufficient to cause evap-

oration of the metal and formation of plasma which leads to the development of a vapor cavity.

This enables the laser beam to “drill” to a far deeper depth forming a key shape than is possible in

general conduction mode [84]. Literature reported that keyhole mode can be characterized by an

aspect ratio of W
D

which is material dependent [68]. Here, two thresholds for determining keyhol-

ing W
D
< 2.5 and W

D
< 2.2 are considered. Balling is a phenomenon where the molten track shrinks

and breaks up into a row of discontinuous balls to reduce the surface energy by the surface tension

if the molten material does not wet the underlying substrate [85]. When the melting-solidification

process takes place under low energy density and very fast scan speed, the balling could happen

[73, 86]. In order to classify the balling sub-region, a machine learning algorithm, support vector

machine (SVM), is used to fit the characterized balling singles based on their morphology.

Except for the above three defects, as displayed in Figure 3.3, two more temperature-based cri-

teria are considered in the initial printability map to indicate a server condition in metal AM which

is unmelting and general condition evaporation. E-T simulations for NiNb5 with its maximum

melt pool temperature Tmax less than Tm = 1703K means that these input processing parameter

combinations’ energy are too low to melt any powder particle. By plotting another curve with

Tmax equal to Tb = 3103K, we get a new sub-region within the finite space. The boiling phe-

nomenon happens outside of it, while within it is roughly treated as the region without material

evaporation. These two criteria are only included in the initial printability map as guidance of the

design of experiments. For example, few single tracks need to be conducted within the unmelting

sub-region.

3.2.4 Single Track Experiments

Recall that the E-T has parameter and model uncertainties. For example, those unknown phys-

ical material properties. Before finalizing the printability map, it is important to ensure that these
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Figure 3.3: The initial printability map of NiNb5.

uncertainties are quantified and accounted such that model predictions of melt pool width and

depth are in agreement with experimental characterization. This is a process formally known as

statistical calibration which will be described in the next section 2.5. Single-track experiments

are conducted to obtain experimental characterization. To initialize the experiment, 40 processing

parameter combinations were selected based on the initial printability map. To effectively achieve

the three purposes of doing single-track experiments: 1) to calibrate the model predictions agree

with experimental characterization; 2) to characterize the relationship between melt pool dimen-

sions and LOF, keyholing, and balling formation mechanisms for NiNb5; 3) to save experimental

effort. Both Latin hypercube sampling (LHS) and grid sampling methods were utilized to design

the experiments, as shown in Figure 3.4. LHS was implemented in the region ending with D
t

= 1.5

criteria which is the area having the best experimental results. In that area, as many processing

parameter combinations as possible are sampled randomly to evenly spread across the area. LHS

can also avoid the "collapsing" property, which means no two design points share the same values
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Figure 3.4: The initial printability map of NiNb5 with 40 selected single track experiments.

for any parameter. Grid sampling was applied to the other two areas with different sparse levels

split by the ending point of another LOF criteria D
t

= 1, as depicted in Figure 3.4. Grid sampling

is the simplest design method, and require no expert judgment other than the parameter ranges and

ensemble size.

In this study, we used the following procedure for conducting single-track experiments. A

NiNb5 70 mm × 40 mm × 3 mm dimension stage was printed using 200 W laser power, 1 m/s

scan speed, and 120 µm hatch spacing. This stage was normalized under industrial-grade argon

at 1100 ◦C for 1 hour and air-cooled. Next, forty tracks were printed following the experimental

methodology described in Section 3.4.2.

3.2.5 Statistical Calibration of the Thermal Model

Statistical calibration is the process of refining the prior distributions of such uncertain param-

eters (also called calibration parameters) and model uncertainties by matching model simulations

with experimental characterization [87, 51]. We follow a two-step multivariate Bayesian calibra-
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tion framework proposed by Mahmoudi and Tapia, details refer to the literature [53, 51]. Here,

we mainly present how to reasonably apply this framework to calibrate and estimate uncertain

parameters of NiNb5.

Three material properties: thermal conductivity ’k’, specific heat capacity ’c’ and absorptivity

’A’. which are greatly sensitive to the melt pool morphology were selected as calibration parame-

ters. All possible values of these parameters need to be considered in the model simulation pool

for selecting their best estimation. Since the E-T model assumes only conduction mode, heat trans-

fer does not take melt pool convection into account. The optimal effective thermal conductivity

value for the E-T model will be inflated compared to the initially assumed value. For this similar

reason, the estimated three material property parameters after calibration may not be meaningful

in science. Therefore, a large sampling range of these parameters was selected for calibration

accuracy(the degree of agreement of the calibrated model predictions with experimental character-

ization). The sampling ranges of ’k, c, A’ are [10, 100], [450, 650], (0, 1), respectively. Then the

mode of each calibration parameter posterior distribution, 42.03 W/(m ∗K), 457.89 J/(kg ∗K),

and 0.77 were taken as the estimated material properties. As part of the calibration process, a dis-

crepancy function accounts for model uncertainty and a measurement error term is also estimated.

Then the calibration accuracy of the E-T model was computed for the mean average error (MAE)

of melt pool width and depth: 1.37 µm and 1.53 µm. As well as the mean absolute percentage

error (MAPE) of width and depth, which are 1.6% and 4.05%. Less than 5% error is completely

acceptable for melt pool characterization. The calibrated E-T model can now be used to update the

initial printability map.

3.2.6 Finalizing the Printability Map

A new printability map is depicted in Figure 3.5 using the calibrated E-T model predictions.

Multiple keyholing regions were classified in this map with different criterion ratios. Forty single

tracks were labeled on the map according to the observed melt pool morphology (from top-view

and cross-sectional imaging), then utilized to help justify the correct keyholing criteria for this

NiNb5 material. The balling region can be classified using the SVM method. An SVM classifier
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Figure 3.5: The revised printability map of NiNb5 with classified single track characterizations.

with a 3rd degree polynomial kernel that matches the best of the balled tracks is used to split

out the balling region. As depicted in Figure 3.5, some of the tracks are missed, misclassified,

or exist in two different defect regions. The keyholing criterion W
D
< 1.2 provides the best fit for

classifying keyholing single tracks, only misclassifying 1 track, and does not misclassify any tracks

as having undergone keyholing. However, the criteria W
D
< 1.5 and W

D
< 2 each misclassified 4

single tracks as having undergone keyholing. Thus, the keyholing region was finalized by W
D
<

1.2 criterion, as shown in Figure 3.6. The revised printability map in Figure 3.6 is limited to

P − V combinations, which are sufficient to print single tracks. To print coupons (and ultimately

parts), one needs to determine the hatch spacing parameter ’h’, which is defined as the distance

between two adjacent passes of the laser beam within the same layer. Recently, a new approach

of computing the maximum allowable hatch spacing is proposed by Seede et al [21]. This hatch

spacing criterion is geometrically derived to promote full fusion for a given melt pool width ’W ’,

melt pool depth ’D’, and layer thickness ’t’. The maximum hatch spacing ’hmax’ for all processing
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Figure 3.6: The revised printability map of NiNb5 with the finalized criterion for each defect.

parameter combinations in the printability map using the calibrated E-T model predictions of width

and depth can be computed by equation:

hmax = W

√
1− t×D

D(t+D)

Figure 3.7 incorporates maximum hatch spacing contour in the revised printability map. In this

study, the computed maximum hatch distance is rounded down to the nearest multiple of five for

each processing parameter.

3.2.7 Printing Coupons and Tensile Testing Specimens

Upon finalizing the printability map, the final step is to print coupons and test specimens guided

by the map. These parts were printed on a pure Ni substrate. The process of printing parts is an

accumulation from melting multiple single-tracks with the calculated hatch spacing to a single

layer, then built up layer upon layer with selected scanning pattern until finish. All parts were
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Figure 3.7: The finalized printability map of NiNb5 generated using W
D
< 1.2 keyholing criterion,

D
t
< 1 lack of fusion criterion, and SVM classifier for balling. The printabiliy map is overlaid with

a geometrically based maximum hatch spacing criteria.

printed at a constant layer thickness 30 µm following the experimental methodology described in

Section 3.4.2.

First, fifteen coupons were printed by the selected processing parameter combinations within

and around the good printability region as illustrated in Figure 3.8(a). These 10 mm × 10 mm ×

10 mm coupons as you can see in Figure 3.8(b) were then cut off from the substrate by EDM for

density (or porosity) analysis and compression test.

Next, five processing parameter combinations were selected from the near full density coupons

(coupons 3, 7, 8, 13, and 15) to print tensile testing specimens marked in Figure 3.9(a). Five 10 mm

× 10 mm × 34 mm block specimens were first printed in the horizontal orientation (with respect

to the building direction) as depicted in Figure 3.9(b). Three 1 mm thick flat tensile samples were

then cut with 26 mm overall length, 7 mm overall width, 8 mm gauge length, and 3 mm gauge

width from each block by wire EDM, as shown in Figure 3.10.
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[a] [b]

Figure 3.8: (a)The fifteen selected processing parameter combinations from the finalized print-
ability map for printing NiNb5 coupons. (b)Image of the as-printed coupons for density and mi-
crostructure study.

[a] [b]

Figure 3.9: (a) The selected five processing parameter combinations from fifteen coupons. (b)
Image of the as-printed block specimens.
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Figure 3.10: The schematic of the block and the mechanical test sample cut from it.

Room temperature monotonic loading tests for compression and tensile samples were con-

ducted with an MTS 810 servo-hydraulic test frame at a strain rate of 5 × 10−4 (s−1). And an

extensometer with ceramic extension rods indirect contact with the gauge section of the samples

recording axial strain. Grips equipped with WC platens were utilized to load and unload the sam-

ples.

3.3 Results and Discussion

3.3.1 Density Analysis

The averaged density measurement of each coupon by the OM methods are listed in Table

3.1. Figure 3.11 shows OM images of the polished coupon cross-sections displaying the porosity

measurements for the fifteen coupons. 14 out of 15 coupons have OM density above 99%. Even

coupon 11 that selected from the lack of fusion region displays an OM density above 99%. Pores

are visible in the adjacent tracks of coupons 2 and 10 from Figure 3.11 which correspond to their

relatively low OM density 94.45% and 99.03%. This may because of the proximity of the pro-

cessing parameter combinations to the keyhole region, and possibly due to melt pool morphology

prediction error. Since the equation for computing the maximum hatch spacing depends on accu-

rate melt pool dimensions. Prediction errors can result in larger hatch spacing parameter values

being used for printing in terms of causing porosity formation in the as-printed coupons.
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Table 3.1: The processing parameter combinations and density measurement results of NiNb5

coupons.

Coupon # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) LED (J/m) OM Density (%)
1 85 0.25 100 30 340 99.40
2 125 0.25 165 30 500 94.45
3 100 0.5 70 30 200 99.83
4 120 0.5 95 30 240 99.78
5 140 0.5 110 30 280 99.68
6 160 0.5 125 30 320 99.42
7 130 0.75 65 30 173 99.85
8 160 0.75 90 30 213 99.91
9 190 0.75 110 30 253 99.78

10 220 0.75 125 30 293 99.03
11 130 1.0 55 30 130 99.82
12 160 1.0 70 30 160 99.79
13 190 1.0 80 30 190 99.84
14 220 1.0 95 30 220 99.87
15 250 1.0 105 30 250 99.80

Figure 3.11: OM images of the polished coupon cross-sections displaying the porosity measure-
ments for the fifteen coupons
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Figure 3.12: SEM micrographs of top surfaces for Coupons 1-15.

3.3.2 Microstructure Analysis

Figure 3.12 shows SEM micrographs of the NiNb5 coupons’ top surfaces. All fifteen coupons

exhibit flat surfaces with low roughness. As shown in this figure, coupon 2 has obvious gaps

between tracks with powder particles inside which agrees with the OM density result. Then we

took 10 measurements of track width from the top surface for coupon 2 and got an average of

149.83 µm, which is much smaller than its hatch spacing parameter 165 µm. For coupon 11, it

is difficult to distinguish the tracks at the top surface. This indicates low deposited energy within

each track, refers to the LED in Table 3.1.

Figure 3.13 shows the optical micrographs of each polished and etched vertical cross-section

(with respect to the building direction) displaying the grain structure. Long and thin columnar
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Figure 3.13: OM images of each polished and etched NiNb5 coupon vertical cross-section display-
ing the grain structure.

grains are dominated with mixed small equiaxed grains in the as-printed coupons. The grain size

of each coupon was calculated by taking the average of six measurements at the bottom, middle,

and top vertical cross-sections using the intercept method. Due to the relatively high cooling rates

at the bottom of the vertical cross-section, grains are stretched towards the cooling direction. The

average grain size is larger at the bottom of the vertical section than at the middle which is close

to the top. For example, coupon 4 has the average grain size 42 µm, 31 µm, and 29 µm at the

bottom, middle, and top section, respectively. We also observe a larger grain size at higher scan

speed when laser power is the same. For example, coupons 6, 8, and 12 with the same laser power

and increasing scan speed, having an increasing grain size 26 µm, 32 µm, and 35 µm.
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Table 3.2: The compression testing results of horizontal and vertical samples for NiNb5 coupons.

Horizontal Compression Sample |||||| Vertical Compression Sample
Coupon # Elastic Modulus (Mpa) Yield stress (MPa) Yield Strain (%) Elastic Modulus (Mpa) Yield stress (MPa) Yield Strain (%)

1 86590.14 573.88 0.86 73344.69 544.24 0.97
2 79971.41 463.89 0.78 72063.43 520.34 0.92
3 86519.50 584.95 0.88 85954.67 567.12 0.86
4 116365.94 628.12 0.74 119016.62 593.92 0.70
5 119456.90 614.40 0.71 120739.98 576.05 0.68
6 100731.86 583.53 0.78 109265.36 553.97 0.71
7 114987.34 616.22 0.74 125612.73 559.33 0.65
8 125954.77 625.90 0.70 124153.98 560.76 0.65
9 118828.53 604.32 0.71 90860.96 582.54 0.84
10 118697.41 582.00 0.69 94658.33 573.37 0.81
11 125194.34 604.98 0.68 101140.89 525.65 0.72
12 129512.16 628.68 0.69 118604.22 561.88 0.67
13 129116.18 612.02 0.67 117183.81 583.69 0.68
14 107177.32 608.22 0.77 99875.00 564.70 0.77
15 97895.69 622.53 0.84 98247.88 569.28 0.78

[a] [b]

Figure 3.14: (a) Compression testing results of 15 coupons tested in the horizontal direction. (b)
Compression testing results of 15 coupons tested in the vertical direction.

3.3.3 Mechanical Properties

The fifteen horizontal and vertical specimens (with respect to the building direction) as de-

scribed in section 2.7 were tested to failure under compression at room temperature. The testing

results are listed in Table 3.2 and the strain-stress curves are plotted in Figure 3.14. There is minor

difference between these 15 coupons when testing in the same direction. The difference between

the testing results in the horizontal and vertical direction is oriented by microstructure and porosity.
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Table 3.3: Mechanical property values of NiNb5 block specimens via tensile testing.

Specimen # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) UTS (MPa) Elongation (%)
1 100 0.5 70 30 652.2±4.0 24.8±1.0
2 130 0.75 65 30 646.8±2.6 22.8±0.6
3 160 0.75 90 30 662.4±3.2 24.9±0.5
4 190 1.0 80 30 656.7±2.7 25.4±0.2
5 250 1.0 100 30 652.6±1.6 22.7±1.0

Tensile testing was performed at room temperature to characterize the fundamental mechanical

properties of the as-printed NiNb5 block specimens, such as ultimate tensile strength (UTS) and

tensile ductility [32]. Tensile testing was conducted with an MTS 810 servohydraulic test frame,

and an extensometer with ceramic extension rods in direct contact with the gauge section of the

specimens recording axial strain. Samples were loaded at a strain rate of 5× 10−4 (s−1) until frac-

ture. Three tensile samples were tested in each block and the average mechanical property values

are listed in Table 4.3. In addition to a higher average ultimate tensile strength (UTS) of 654 MPa

and a greater average tensile ductility of 24% elongation observed in the specimens than the LPBF

fabricated pure Ni [88]. The test results indicate low variability in these properties across different

block specimens. And similar ductility level to additively manufactured Inconel 718. Through

utilizing the printability framework, we got 20% larger strain than the results stated in literature.

Figure 3.15 shows the almost same strain-stress relationships recorded under deformation.

From these mechanical testing results, it is reasonable to conclude that by avoiding lack of

fusion, keyholing, and balling to achieve printing near full density, the changes in P, V, and h

are not influential in varying the mechanical properties of the as-printed NiNb5 parts. Through

employing the printability framework, NiNb5 parts with a high degree of quality and consistency

were successfully produced.

3.4 Application of the Printability Framework to Other Alloys

The proposed printability framework has been validated by two other alloys, one is an ultra-

high strength martensitic steel (AF9628), and the other one is Nickel Titanium (Ni50.8Ti49.2(at.%)).

In this section, I will talk about the porosity and mechanical properties of LPBF fabricated samples
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Figure 3.15: The strain-stress curves of tensile samples printed in the horizontal direction (with
respect to the building direction).

using the proposed printability framework.

3.4.1 Ultra-high Strength Martensitic Steel

Thirteen coupons were fabricated, including one coupon selected from the lack of fusion region

as shown in Figure 3.16. Table 3.4 lists the values of processing parameters and corresponding

densities measured. Coupons 1-3 with relatively lower density values had excessive spattering

during fabrication. Coupon 9 which selected from the lack of fusion region (expected to have a

low-density value) achieved 99.78% density. This coupon was printed using a rounded down hatch

spacing (to the nearest multiple of five) smaller than the computed maximum value. Four coupons

were selected (circled out in Figure 3.16 (b)) as an example to visually compare their different

porosity (density) levels from the optical micrographs of the coupon cross-sections.

For mechanical testing, four parameter combinations were selected from the density coupons

(coupon 5, 7, 11, and 13) to print block specimens (the same size as NiNb5) in the horizontal and

vertical orientations with respect to the building direction, as shown in Figure 3.17 (a). Then 2-3

tensile samples were cut from each block using wire EDM for tensile testing similar to NiNb5.

The average mechanical property values are listed in Table 3.5 and the stress-strain curves are

displayed in Figure 3.17 (b) and (c). It is interesting to observe that as-printed AF9628 specimens,
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Figure 3.16: (a) Thirteen as-printed AF9628 coupons, and (b) porosity (density) comparison of
coupon 13, 11, 5 and 3 from optical micrographs of the polished coupon cross-sections, corre-
sponding to the four circled locations in the processing space from top to bottom.

Table 3.4: The processing parameter combinations and density measurement results of AF9628
coupons.

Coupon # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) Density (%)
1 73 0.25 90 37 79.40
2 93 0.5 65 37 81.10
3 105 0.5 80 37 91.40
4 125 0.5 100 37 99.27
5 125 0.75 75 37 99.80
6 150 0.75 90 37 99.83
7 175 0.75 100 37 99.75
8 200 0.75 115 37 99.22
9 125 1.0 55 37 99.78

10 150 1.0 60 37 99.91
11 175 1.0 70 37 99.94
12 200 1.0 80 37 99.92
13 233 1.0 105 37 99.60
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Figure 3.17: The histograms and kernel density estimates of the posterior distributions for the
calibration parameters θ.

without any post-process heat treatment, exhibit UTS of up to 1.4 GPa and elongations to fracture

of up to 10.9%. UTS values for different specimens with the same build orientation exhibit small

degrees of variability across different processing parameter combinations. We also observe that of

all the specimens, specimen 3V showed the highest tensile ductility in the vertical direction (10.9%

elongation). Specimen 1H showed the highest tensile ductility in the horizontal direction (10.2%

elongation). These two parameter combinations have the highest density among the selected four

as referred to coupon 11 and 5 in Table 3.4 with a density of 99.94% and 99.8%, respectively.

Except for the difference in parameter combinations, different mechanical properties can also be

explained by the different microstructure of tensile samples that printed in the horizontal or vertical

direction.

3.4.2 Nickel Titanium Alloy

Eight processing parameter combinations were selected to fabricate density coupons and the

corresponding density results are summarized in Table 3.6. Five of the eight as-printed coupons
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Table 3.5: Mechanical property values of as-printed AF9628 specimens. H and V denote horizontal
and vertical build orientations.

Specimen # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) UTS (MPa) Elongation (%)
1H 125 0.75 75 37 1.40 ± 0.00 10.16 ± 1.04
1V 125 0.75 75 37 1.31 ± 0.02 8.95 ± 0.15
2H 175 0.75 100 37 1.41 ± 0.02 8.38 ± 0.88
2V 175 0.75 100 37 1.34 ± 0.00 7.40 ± 0.00
3H 175 1.0 70 37 1.43 ± 0.00 9.79 ± 0.14
3V 175 1.0 70 37 1.32 ± 0.01 10.89 ± 0.34
4H 233 1.0 105 37 1.42 ± 0.04 7.71 ± 0.32
4V 233 1.0 105 37 1.38 ± 0.03 9.51 ± 0.29

Table 3.6: The processing parameter combinations and density measurement results of NiTi
coupons.

Coupon # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) Density (%)
1 80 0.33 80 40 98.73
2 120 0.33 130 40 97.16
3 160 0.58 110 40 98.50
4 160 0.83 80 40 99.92
5 200 0.83 100 40 99.81
6 160 1.08 70 40 99.98
7 200 1.08 80 40 100.00
8 240 1.33 80 40 99.97

have density values larger than 99%. The as-printed eight coupons are displayed in Figure 3.18

(a). Four coupons were selected (circled out in Figure 3.18 (b)) as an example to visually compare

their different porosity (density) levels from the optical micrographs of the polished coupon cross-

sections.

Similar to NiNb5, four coupon parameter combinations with density greater than 99.9% were

selected to print 10 mm × 10 mm × 30 mm block specimens in the horizontal direction with respect

to the building direction as shown in Figure 3.19 (a). One tensile sample of each block with gauge

dimensions of 8 mm × 2 mm × 1 mm was tested at room temperature and the mechanical property

values are listed in Table 3.7. Stress-strain curves of the as-printed NiTi specimens are displayed in

Figure 3.19 (b). Reasonable mechanical properties were achieved by printing tensile blocks with

near full density parameters.

The framework has been validated by three alloys, parameter combinations that result in parts

with good density and mechanical properties are obtained. Two key benefits are: (1) the ability
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Figure 3.18: (a) Eight as-printed NiTi coupons, and (b) porosity (density) comparison of coupon
8, 3, 2 and 1 from optical micrographs of the polished coupon cross-sections, corresponding to the
four circled locations in the processing space from top to bottom.

[a] [b]

Figure 3.19: (a) Four as-printed NiTi tensile blocks in horizontal building orientation, and (b)
representative stress-strain curves of the as-printed NiTi specimens. Refer to Table 3.7 for the
corresponding parameter combinations.

Table 3.7: Mechanical property values of as-printed NiTi specimens via tensile testing.

Specimen # Laser Power (W) Scan Speed (m/s) Hatch Spacing (µm) Layer Thickness (µm) UTS (MPa) Elongation (%)
1 240 1.33 80 40 454 9.7
2 200 1.08 80 40 461 9.2
3 160 0.83 80 40 471 8.6
4 160 1.08 70 40 623 9.7
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to determine good printability regions in an accelerated fashion, eliminating the need for cost-

and time-intensive processing parameter sweeps, and (2) the accessibility of the framework to

practitioners since it does not rely on the use of proprietary codes for the thermal model utilized.
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4. ROBUST CALIBRATION OF MULTIVARIATE MODEL WITH MISSING DATA

4.1 Background

Microstructural or mechanical characterization is an essential procedure to quantify the qual-

ity of a fabricated part through experimental test. However, not all of the experimental results of

additively manufactured parts can be measured due to: (1) destructive testing process while col-

lecting data, (2) limited human effort, or (3) expensive measurement cost. While developing the

printability framework, we find that the measuring process of melt pool depth is expensive and de-

structive which causes difficulties in conducting the calibration work of E-T model. The problem

of statistical calibration with "unobservable" experimental results or missing data is proposed and

described in Figure 4.1. Where we have control inputs x, such as laser power and laser scan speed.

Calibration parameters θ, such as the unknown material properties. And the QoIs yE which is split

into ymis and yobs, such as the observed melt pool geometries.

In calibrating the analytical thermal model in the proposed framework, or in conducting un-

certainty quantification of computer model in ICME, experimental results are the ground truth

to tune the distribution of calibration parameters (the unknown parameters of model, for exam-

ple, the material properties of newly developed alloys). The literature on statistical calibration

Figure 4.1: Graph of the statistical calibration problem with "unobservable" experimental results
or missing data.

50



of a computer model is rich, many of them use the so-called two-stage framework developed by

Kennedy and O’Hagan (known as KOH framework) [51]. In the KOH framework, a surrogate

model of the computer model is generated in the first stage to effectively generate simulations.

Then a calibration model is formed to have the surrogate model predictions match experimental

results. Recently, Mahmoudi et al. explored Kennedy and O’Hagan’s framework to handle a com-

puter model with multiple outputs in AM via multivariate Gaussian processes. We will name this

method as MVCalib for short. In mathematical notation, the calibration model is denoted as the

following equation:

yE(x) = yS(x,θ) + δ(x) + ε(x) (4.1)

Where the q-dimensional QoIs yE of the real process observed at a finite set of control inputs x

is equal to the summation of the surrogate model simulation yS , a discrepancy function δ, and a

measurement error term ε, and the objective is to estimate the values of the calibration parame-

ters θ. With approximation, the calibration model resulting from Equation 4.1 is a multivariate

q-dimensional GP given by yE(·)|φ ∼ GPq(m
∗(·,θ), Ccal

sur(·, ·)Σ̂ + Ccal
δ (·, ·)Σδ + Ccal

ε (·, ·)Σε).

Where φ = θ, rδ,σδ,ψ is the set of calibration parameters and hyperparameters that will be esti-

mated. Next, the distribution is rearranged by stacking each vector yE(xEi ) to follow a multivariate
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normal distribution (MVN).

P (Y E|φ,XE,XS,Y S) ∼MVNn·q(m
∗,Σcal)

where

Y E = [Y E
1,1, ..., Y

E
1,q, ..., Y

E
n,1, ..., Y

E
n,q]

T ∈ Rn·q,1

Y S = [Y S
1,1, ..., Y

S
1,q, ..., Y

S
N,1, ..., Y

E
N,q]

T ∈ RN ·q,1

XE = [xE1 , ...,x
E
n ] ∈ Rn·p,1

XS = [(x,θ)1, ..., (x,θ)N ] ∈ RN,p+t

m∗ = [m∗(xE1 ,θ), ...,m∗(xEn ,θ)]T ∈ Rn·q,1

Σcal = Ccal
sur ⊗ Σ̂ +Ccal

δ ⊗Σδ +Ccal
ε ⊗Σε ∈ Rn·q,n·q

Ccal
sur = [c∗((xEi , θ), (x

E
i , θ))]i,j=1:n ∈ Rn,n

Ccal
δ = [cδ(x

E
i , x

E
j )]i,j=1:n ∈ Rn,n

Ccal
ε = [cε(x

E
i , x

E
j )]i,j=1:n = In,n ∈ Rn,n

(4.2)

The Kronecker matrix product (⊗) is employed to calculate cross-covariance matrix Σcal which

represents spatial dependence between inputs and outputs.
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Where,

m∗(xE1 ,θ) = B̂
T
h(x,θ) + (Y S −HB̂)TA−1t(x,θ)

c∗((x,θ)i, (x,θ)j) = c((x,θ)i, (x,θ)j)− tT (x,θ)iAt(x,θ)j

+[h(x,θ)i −HTA−1t(x,θ)i]
T

×(HTA−1H)−1

×[h(x,θ)i −HTA−1t(x,θ)i]

Σ̂ = (N −m)−1(Y S −HB̂)TA−1(Y S −HB̂)

cδ(xi,xj) = exp[−(xi − xj)TRδ(xi − xj)]

Σδ = diag(σδ)

cε(xi,xj) =


1 ifxi = xj

0 ifxi 6= xj

Σε = diag(ψ)
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With

HT = [h(x,θ)1, ..., h(x,θ)N ] ∈ Rm,N

A = [c(x,θ)i, ..., (x,θ)]i,j=1:N ∈ RN,N
+

tT (x,θ)i = [c((x,θ)i, (x,θ)1), ..., ((x,θ)i, ..., (x,θ)N)] ∈ RN

B̂ = (HTA−1H)−1HTA−1Y S

c((x,θ)i, (x,θ)j) = exp[−((x,θ)i, (x,θ)j)
TR((x,θ)i, (x,θ)j)]

R = diag(r)

r = [r1, ..., rp, rp+1, ..., rp+t] ∈ Rp+t
+

Rδ = diag(rδ)

rδ = [rδ1, ..., r
δ
p] ∈ Rp

+

σδ = [σ1, ..., σq] ∈ Rq
+

ψ = [ψ1, ..., ψq] ∈ Rq
+

Details of this method can be referred to Mahmoudi et al.’s paper [53]. The next step is to

estimate the posterior distributions for the calibration parameters θ and hyperparameters rδ,σδ,ψ

to match the values of experimental results.

Two different method are developed to handle the case of statistical calibration with "unob-

servable" experimental results or missing data. The first method is to predict the missing data by

a proposed hierarchical Gaussian process model (HGPM). Then the depth predictions are com-

bined with experimental results to conduct calibration by MVCalib method. The other method

is to directly estimate the calibration parameters and hyperparameters of statistical calibration

model in the MVCalib method by a calibrated Bayesian multiple imputation (CBMI) method.

So that the calibrated parameters can be used in the predictive distribution of model outputs
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P [Y P |XP ,XE,Y E,XS,Y S,φ] with the following parameters:

E[Y P |Y E] = E[Y P |XP ,XE,Y E,XS,Y S,φ]

= mpred + ΣPEΣcal
−1(Y E −m∗)

where

XP = [xP1 , ...,x
P
s ] ∈ Rs·p,1

mpred = [m∗(xP1 ,θ), ...,m∗(xPs ,θ)]T ∈ Rs·q,1

ΣPE = CPE
sur ⊗ Σ̂ +CPE

δ ⊗Σδ ∈ Rs·q,s·q

CPE
sur = [c∗(xPi ,x

E
i , θ

∗)] = [c∗(xPi ,θ), (xEi ,θ)]i=1:s,j=1:n ∈ Rs,n

CPE
δ = [cδ(x

P
i ,x

E
j )]i=1:s,j=1:n ∈ Rs,n

(4.3)

and
V ar[Y P |Y E] = V ar[Y P |XP ,XE,Y E,XS,Y S,φ]

= Σpred −ΣPEΣ−1cal(Σ
PE)T

where

Σpred = Cpred
sur ⊗ Σ̂ +Cpred

δ ⊗Σδ +Cpred
ε ⊗Σε ∈ Rs·q,s·q

Cpred
sur = [c∗((xPi ,θ), (xPi ,θ)]i,j=1s ∈ Rs,s

Cpred
δ = [cδ(x

P
i ,x

P
j )]i,j=1:s ∈ Rs,s

Cpred
ε = [cε(x

P
i ,x

P
j )]i,j=1:s = Is,s ∈ Rs,s

(4.4)

4.2 Experiments

The analytical thermal model Eagar-Tsai (E-T) is used for melt pool width (W) and depth (D)

simulations in the proposed printability framework. A representative output of the E-T melt pool

model that shows W and D is shown in Figure 4.2. As this model was originally developed for

laser welding process, it misses physics specific in LPBF processes such as keyholing formation.

Since there is no powder layer in welding process, we assume that laser directly melt the solid

metal alloy. Due to these facts, the simulations of E-T model is unable to mimic the real melt
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Figure 4.2: Left: A sample output of the E-T melt pool model showing the dimensions of a melt
pool, where x, y, and z mean the length, width and depth of the melt region. Right: The represen-
tative single track top view SEM image and cross-section view OM image.

pool formation process. To further improve the performance of E-T model, statistical calibration

is conducted to have the model predictions agree with experiments.

To calibrate the E-T model in the case of "unobservable" experimental data, we utilize melt

pool geometry measurements of LPBF fabricated 52 NiNb5 single tracks. Where we have both

controllable inputs (processing parameters) and calibration parameters (unknown material proper-

ties) as model inputs, and melt pool width and depth as model outputs. We assume that all the

52 NiNb5 melt pool width of the as-fabricated single tracks are measured, while only a few depth

data were measured (in reality, all depth are measured). The melt pool width and depth are from

the same melt pool geometry fabricated by the same manufacturing parameters. The melt pool is

generated by the same thermal process.

Gas atomized Nickel-Niobium (Ni-5wt.%Nb) powder was provided by Nanoval GmbH & Co.

KG and used to additively manufacture LPBF NiNb5. Single tracks were printed using a 3D

Systems ProX200 equipped with a fiber laser with a Gaussian profile λ = 1070 nm, and beam size

= 80 µm. Argon was used as inert protective atmosphere during fabrication. 52 tracks with 10mm

length and spaced 1mm apart were printed on a NiNb5 base plate with a layer thickness = 30µm.

Three melt pool width measurements were taken from the top of as-fabricated tracks by SEM.
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Three cross sections of the single tracks were wire cut using EDM, and these specimens were

polished down to 0.25 µm with water-based diamond suspension polishing solutions. Kalling’s

Solution No.2 was used to etch the NiNb5 single tracks to obtain optical micrographs. OM was

carried out using a Keyence VH-X digital microscope equipped with a VH-Z100 wide range zoom

lens. One depth measurement was taken using the VHX software from each cross section. The

width and depth values are averaged from these measurements.

4.3 Hierarchical Gaussian Process (HGP) method

The hierarchical Gaussian process (HGP) method is developed to predict "unobservable" melt

pool depth data. In the case of E-T model with two outputs, two levels of modeling structure is

developed. The first level is a Gaussian process regression model (GPRM) which is the predictive

model of melt pool width by inputs (laser power, scan speed, layer thickness, and laser beam size).

In the first level of model, we have no missing data. In the second level, a hierarchical Gaussian

process model (HGPM) is developed by leveraging the strong correlation of melt pool width and

depth. The second level model is built on the paired width and depth data. Different amount of

depth data is assumed "unobservable" which results in five different case studies.

4.3.1 Gaussian Process Regression Model (GPRM)

GPR algorithm, also known as Kriging, is a powerful non-parametric approach whose flexibil-

ity and performance can handle huge amount of data [89, 90, 91]. In GPR, our goal is to calculate

the covariance term given a training dataset O = (X,yW ) of n training samples, where xj are the

input variables and yWj is the corresponding continuous response variable. We model the response

variable yWj as a noise-version of the function value f(xj) [92].

yWi ∼ GP(f(xj), σ
2
1) (4.5)
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where the distribution of noise is Gaussian N(0, σ2
1) with zero mean and variance σ2

1 .

f = [f(x1), f(x2), ..., f(xn)]T (4.6)

f ∼ GP(µ1,K) (4.7)

f is modeled as a joint Gaussian distribution with mean µ1 and covariance K (which is a kernel

function over observations with hyperparameters). From the above definition, we can get the

joint probability of the response variables and latent function variable p(yW , f) = p(yW |f)p(f)

[93, 94]. The distribution of the latent function value f(x∗) given x∗ and training data O is also a

Gaussian distribution, with mean and covariance given by:

mean(f(x∗)|O) = kx∗X(σ2
1I +KXX)−1y

W (4.8)

Cov(f(x∗)|O) = kx∗x∗ − kx∗X(σ2
1I +KXX)−1kXx∗ (4.9)

where kx∗X = k(x∗,X) is a n-dimensional row vector of the covariance between x∗ and the n

training samples. KXX = k(X,X) denotes the kernel function of training samples which are

used to estimate the covariance function. Since yW∗ is the related output, its predictive distribution

is also Gaussian with mean mean(x∗) and covariance Cov(x∗) + σ2
1I .

Clearly, these recipes for prediction involve hyperparameters denoted as θ. In Bayesian ap-

proach, prior information about the unknown parameter θ is summarized in the form of a prior

density p(θ). Then the posterior density for θ given the training data is

p(θ|X,Y W ) ∼ p(θ)p(Y W |X, θ) (4.10)

where p(Y W |X, θ) is the density function of an n-dimensional multivariate normal distribution
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with zero mean and covariance matrix (σ2I+KXX). Since the form of the covariance function is

complicated in terms of θ, it is not feasible to carry out analytically inference based on the above

posterior distribution. The most common Markov Chain Monte Carlo (MCMC) algorithm, Gibbs

sampling, is used to estimate θ [95, 96].

4.3.2 Hierarchical Gaussian Process Model (HGPM)

Next, we generate a HGPM to Y W and Y D. Y D is a continuous longitudinal response variable

follows a Gaussian distribution in Equation 4.11.

yLi ∼ GP(g(yWi ), σ2
2) (4.11)

g = [g(yW1 ), g(yW2 ), ..., g(yWn )]T (4.12)

g ∼ GP(µ2,C) (4.13)

g(yWi ) follows a GP model with mean µ2 and covariance C. Therefore, the mean of posterior

distribution for yD givenQ = (X,yW ,yD) is

E(yD∗|Q) = cyW∗yW∗(σ2
2I + C)−1y

D (4.14)

where cyW∗yW∗ = Cov(x∗) + σ2
1I that is observed from GPRM. C = k(yW ,yW ) is the kernel

function of training inputs. These terms can also estimated by Gibbs sampling method. So far,

we have implemented the relationship or dependence between system inputs and width data into

the prediction of depth data. This hierarchical structure allows us to fully model the correlation of

system inputs and sensor data with no missing values [97].
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Figure 4.3: The splitting strategy of overall melt pool data for case 1.

4.3.3 Results and Discussion

4.3.3.1 Prediction Results

In case 1, we assume observed 26 melt pool depth data. These amount of data is split following

Figure 4.3 to train and test the HGP method, then to calibrate and validate the surrogate model

of E-T. The data used for Bayesian calibration is 80% of all the observed melt pool width data,

and the 80% of partially observed melt pool depth data combining the 80% of depth predictions

in model testing step. The 26 melt pool depth data are selected completely random. The cross

validation results are shown in Figure 4.4 [98], and the model performance is shown in Figure 4.5.

In addition, two different errors are computed, mean absolute error (MAE) is 6.3µm and mean

absolute percentage error (MAPE) is 12.52%.

With the same amount of 26 melt pool depth data selected, case 1.1 select these data with low

measurement variability to test which selection method is better: random selection or by the data

property. The model performance is shown in Figure 4.6. The mean absolute error (MAE) is

8.14µm and mean absolute percentage error (MAPE) is 12.89%. Other cases were also processed

by the HGP method with randomly selected depth data, the testing results of different cases are

summarized as below:

• Case 1: Melt pool depth training data size is 26, testing data size = 26, MAPE = 12.52%.

• Case 2: Melt pool depth training data size is 13, testing data size = 39, MAPE = 17.45%.

• Case 3: Melt pool depth training data size is 7, testing data size = 45, MAPE = 24.82%.
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[a] [b]

Figure 4.4: (a) Cross validation results of the Y W training dataset for 1st level HGPM. (b) Predic-
tion of the Y D testing dataset for the 2nd level HGPM.

Figure 4.5: The absolute percentage error for the case where the 26 melt pool depth data are
randomly selected.
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Figure 4.6: The absolute percentage error the case where the 26 depth data are in low measurement
variability

• Case 4: Melt pool depth training data size is 20, testing data size = 32, MAPE = 15.83%.

• Case 5: Melt pool depth training data size is 32, testing data size = 20, MAPE = 10.42%.

4.3.3.2 Calibration Results

Here, the predicted melt pool depths are combined with experimental observations to conduct

statistical calibration following the MVCalib method. The above five cases have different calibra-

tion and validation data size. For each case, MAPE of 52 depth predictions by the calibrated model

are 11.83%, 14.75%, 16.21%, 13.42%, 11.05%.

The comparison of the multivariate Bayesian calibration by full melt pool width observations,

26 melt pool depth observations and 26 depth predictions to (1) univariate Bayesian calibration

using only melt pool width observations; (2) multivariate Bayesian calibration by full melt pool

observations was conducted. The 3D heat maps of calibrated melt pool width and depth predictions

are shown below [99]. Figure 4.7 shows the prediction results of multivariate model calibration by

partial melt pool depth predictions. Figure 4.8 shows the prediction results of univariate model cal-

ibration. This univariate calibration was conducted separately for melt pool width and depth. The

width calibration is straight forward by following Kennedy and O’Hagan’s Bayesian calibration

framework [51]. The melt pool width prediction if derived from Wpred = ŷW + σW + εW . When

62



Figure 4.7: The prediction results of multivariate model calibration by partial melt pool depth
predictions for (a) melt pool width, MAPE = 7.98% (b) melt pool depth, MAPE = 11.83%. The
experimental observations are given by the dots in each map.

making depth predictions with the univariate calibrated model, we borrowed the model discrepancy

function and measurement error term from melt pool width, where we haveDpred = ŷD+σW +εW .

ŷD is the posterior mean estimates of melt pool depth from surrogate model. Figure 4.9 shows the

prediction results of multivariate model calibration by full melt pool observations.

By looking at the comparison results, the two-stage model calibration system proposed by us

provide promising calibration results. The MAPE of calibrated model prediction by our method is

11.83% which is a little bit larger than the general multivariate calibration MAPE 8.05%. While,

we saved about $2000 (cost for preparing the sample, machine, material, etc) and one week of

labor time for conducting the melt pool characterization [100, 101]. The earning from measuring

26 instead of 52 melt pool depth data is greatly huge than the sacrifice in calibration accuracy.

Besides, all the five cases processed by our two-stage model calibration system perform much

better than the univariate calibration on predicting melt pool depth.

4.4 Calibrated Bayesian Multiple Imputation (CBMI) Method

In the statistics world, Bayesian methodology models the data and prior distribution for un-

known parameters and base inferences for unknowns on posterior distributions. There is no pre-

scription for choosing the model and prior distribution. However, certain "reference" prior distri-
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Figure 4.8: The prediction results of univariate model calibration for (a) melt pool width, MAPE =
1.6% (b) melt pool depth, MAPE = 48.35%. The experimental observations are given by the dots
in each map.

Figure 4.9: The prediction results of multivariate model calibration by full melt pool observations
for (a) melt pool width, MAPE = 6.73%. (b) melt pool depth, MAPE = 8.05%. The experimental
observations are given by the dots in each map.
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butions for complete data problems can be expected to produce good frequency properties when

applied to missing data problems [102, 103]. Therefore, the proposed method aims to deal with

the missing data problems in the second stage of MVCalib method. Such that the assumptions of

model and prior distributions are referred by the calibration case with full data. Our target is to

estimate the calibration parameters and hyperparameters through the calibrated Bayesian multiple

imputation (CBMI) method for the MVN calibration model.

4.4.1 Expectation–maximization (EM) Algorithm

In missing data problems, letY n×q = [Y obs,Y mis] represents a data matrix with n rows (cases)

and q columns (output variables). AndM = (mi,j)n×q is the missing-data indicator matrix. mi,j =

0, if yi,j is observed; mi,j = 1, if yi,j is missing. A full parametric model factors the distribution

of (Y ,M) into distribution f(Y |φ) for Y indexed by unknown parameters φ, and a distribution

f(M |Y , ξ) forM given Y indexed by unknown parameter ξ. Likelihood methods can be directly

applied to missing data problems [104, 105]. Maximum likelihood (ML) method is a likelihood

method, with associated large sample standard errors based on the information; to add a prior

distribution and compute the posterior distribution of the parameters. However, ML algorithm for

complex problems is computationally expensive given limits of computation resources due to the

huge amount of iterative runs. Although progress was made for normal models. The development

of expectation–maximization (EM) algorithm enables dealing with several important multivariate

models, including the multivariate normal model with missing values [106, 107, 108, 109].

In the ML method, expectation–maximization (EM) algorithm establishes a connection be-

tween the complex observed data likelihood and the simpler complete data likelihood, thereby

facilitating this computational task. The main idea is to iterate between the draws of missing val-

ues and the draws of unknown parameters. The draws of missing values replace expected values of

functions of the missing values in Expectation-step (E-step); and the draws of unknown parameters

replace maximization over the parameters φ the Maximization-step (M-step). Here, the estimate

of Y mis is to find the best φ. Therefore, it is not the best Y mis estimation, but the best fitted value

for φ imputation.
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In our case, for φd,t, the initial calibration parameters θ are taking by the middle values of

suggested upper and lower boundaries of sampling to avoid bias. Other hyperparameters take 1

as initial values. Initial Y d,t
mis are taking the half of paired melt pool width values. By the initial

estimation (φd,t,Y d,t
mis), the E-step is to draw new values of the missing data from loglikelihood

distribution shown as the following;

Y d,t+1
mis ∼ P (Y mis|Y obs,φ

d,t) (4.15)

E-step is mainly to compute the expected complete-data loglikelihood with estimated Y mis in

iterations.

Q(φ|Y obs,φ
d,t) =

∫
logf(Y obs,Y mis;φ)f(Y mis|Y obs,φ = φt)dY mis (4.16)

The M-step determines φd,t+1 by maximizing this expected "complete-data" loglikelihood as the

following;

Q(φt+1|Y obs,φ
t) ≥ Q(φ|Y obs,φ

t) (4.17)

From this, we observe the best estimated φ in iteration t+1. It means that when t tends to infinity,

this sequence converges to a draw from joint posterior distribution of φ and Y mis.

φd,t+1 ∼ P (φ|Y obs,Y
d,t+1
mis ) (4.18)

The imputed Y mis aims to find the best fitted φ. Hence, its value is not accurate that can not

be used as the estimation of missing data. The Gibbs’ sampling method and other MCMC meth-

ods gains the computing power to simulate direct draws from a target distribution using iterative

algorithms.
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4.4.2 Bayesian Multiple Imputation (BMI)

Instead of filling in a single value for each missing value, a multiple imputation (MI) procedure

replaces each missing value with a set of plausible values that represent the uncertainty about the

right value to impute [110, 111, 112]. MI does not attempt to estimate each missing value through

simulated values but rather to represent a random sample of the missing values. This process

results in valid statistical inferences that properly reflect the uncertainty due to missing values; for

example, valid confidence intervals for parameters.

Because of multiple draws of Y d
mis to achieve the best imputation ofφ , when it converges after

large enough iterations, there will be more than one multiply-imputed data sets, D > 1. Because

of the multiple imputations, we will use combining rules for inferences that propagate imputation

uncertainty [113]. This idea is related to the posterior distribution of observed data.

Pfull(φ, ξ|Y obs,M ) ∝ π(φ, ξ)× L(φ, ξ|Y obs,M) (4.19)

L(φ, ξ|Y obs,M ) is the likelihood of the observed data, obtained by integrating out the missing

values of the complete-data likelihood:

f(Y obs,M |φ, ξ) =

∫
f(Y obs,Y mis|φ)f(M |Y obs,Y mis, ξ)dY mis

The above equations is the "complete-data" posterior distribution. That would have been obtained

if we had observed the missing data Ymis, namely,

P (φ, ξ|Y obs,Y mis) ∝ π(φ, ξ)× L(φ, ξ|Y obs,Y mis) (4.20)

Relate the above equation to a simpler posterior distribution φ ignores the missing data, and utilize
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the likelihood given the observed data Y obs:

Pign(φ|Y obs) ∝ π(φ)× L(φ|Y obs),

L(φ|Y obs) =

∫
f(Y obs,Y mis|φ)dYmis

(4.21)

By the standard probability theory, we get:

Pign(φ|Y obs) =

∫
P (φ|Y obs,Y mis)P (Y mis|Y obs)dY mis (4.22)

The above equation implies that the posterior distribution Pign(φ|Y obs) can be simulated by first

drawing the missing values Y d
mis, from the posterior distribution, P (Y mis,Y obs). The Y d

mis is im-

puted to complete the data set, and then drawingφ from its "completed-data" posterior distribution,

P (φ|Y obs,Y
d
mis). That is,

Pign(φ|Y obs) ≈
1

D

D∑
d=1

P (φ|Y obs,Y
(d)
mis) (4.23)

The above can be replaced when its mean and variance are adequate summaries of the posterior

distribution. By the equations:

E(φ|Y obs) = E[E(φ|Y obs,Y mis)|Y obs] (4.24)

and

V ar(φ|Y obs) = E[V ar(φ|Y obs,Y mis)|Y obs] + V ar[E(φ|Y obs,Y mis)|Y obs] (4.25)

Also, we can approximate the above equations by using draws of Y mis yields,

E(φ|Y obs) ≈ φ =
1

D

D∑
d=1

φ
(d)

(4.26)
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where φ
(d)

= E(φ|Y obs,Y
(d)
mis) is the posterior mean of φ from the dth completed data set, and

V ar(φ|Y obs) ≈ V + (1 +
1

D
)B (4.27)

where V = D−1
∑D

d=1 V ar(φ|Y obs,Y
(d)
mis) is the average of the complete-data posterior covari-

ance matrix of φ calculated for the dth data set (Y obs,Y
(d)
mis), B =

∑D
d=1(φ

(d) − φ)(φ
(d) −

φ)T/(D − 1) is a covariance matrix (called between-imputation covariance) to improve the ap-

proximation for smallD. (1+1/D)B in Equation 4.27 estimates the variance by single imputation

methods from imputation uncertainty.

4.4.3 Calibrated Bayesian Multiple Imputation (CBMI) method

After sketched the ME and BMI theory for the analysis of data with missing values that un-

derlies the method, I now describe the application for the MVN calibration model [114, 115]. In

our case, it is to estimate the unknown parameters in the calibration model of Equation 4.2 in the

MVCalib method. Y E is the melt pool geometry measurements, following a MVN distribution

[116]. So,

Y E
n×2 = [Y obs,Y mis] (4.28)

represents a two-output variable matrix with n rows. A full parametric model factors the distribu-

tion of (Y E
n×2,Mn×2) into distribution f(Y E|φ) for Y E indexed by unknown parameters φ.

Given the current draw φd,t = (µd,t,Σd,t) (d: draw from distribution, t: tth iterations) of the

parameters, missing values are drawn as

yd,t+1
mis,i ∼ P (ymis,i|yobs,i,φd,t)

φd,t+1 ∼ P (φ|yobs,i,y
d,t+1
mis,i )

i = 1, 2, ..., n

(4.29)

which is the multivariate normal distribution of the missing variables given the observed variables

in observation i, with parameters that are functions of φdt. New parameters φd,t+1 are drawn from
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the posterior distribution given the filled-in data, which is a standard Bayesian problem, namely,

Σd,t+1 ∼ P (Σ|P (yobs,y
d,t+1
mis ) (4.30)

(µd,t+1|Σd,t+1) ∼ P (µ|Σd,t+1, P (yobs,y
d,t+1
mis ) (4.31)

where the Equation 4.30 is a draw from an inverse Wishart distribution [117], and the Equation 4.31

is a draw from MVN distribution. Equations 4.29 to 4.31 are closely related to the EM algorithm

for ML estimation, except that they lead to draws from the posterior distribution. First, EM is

programmed in Python, and corrected by checking the increased likelihood with each iteration, and

then the EM algorithm is converted into the Gibbs sampling by replacing the conditional means

of the missing data in draws of Equation 4.29 by E-step, and the complete-data ML parameters in

draws of Equation 4.30 and Equation 4.31 by M-step.

When the posterior mean and variance are adequate summaries of the posterior distribution,

φd,t+1 can be replaced by (µd,t+1,Σd,t+1). Therefore, as the iteration goes to infinity, we will

have a stable estimation of (µd,t,Σd,t) → φd,t → yd,t+1
mis,i → φd,t+1. Then, the estimated φcal =

(θ∗, r∗δ , σ
∗
δ , ψ

∗) from CBMI will be applied to the predictive distribution model Equation 4.3.

4.4.4 Results and Discussion

For this case study, we apply the presented CBMI method to a real-world problem related to

the analytical melt pool model of LPBF processes, where only 26 of the melt pool depth data

is observed. Systematic calibration and uncertainty quantification of model parameters is a vital

task for robust predictions and usability of the models to guide the design and optimization [118].

The current case study demonstrates how our method is effective when one seeks to calibrate a

multivariate model that has unobservable experimental data.

We employed the CBMI method to estimate the calibration parameters (absorptivity, thermal

conductivity, and specific heat capacity) θ in the two-stage multivariate calibration method. The

calibration model Equation 4.2 follows a MVN distribution with calibration parameter θ and hyper-

parameters rδ, σδ, ψ. Instead of estimating the values of these parameters φcal through statistical

70



calibration, an imputation approach that can handle the case of missing data used to estimate their

value. The following prior distributions were used:

θi ∼ Uniform(αi, βi) (4.32)

rδi ∼ Log −Normal(α = 0, β = 1/4) (4.33)

σδi , ψi ∼ Inverse−Gamma(α = 2, β = 1) (4.34)

where (αi, βi) indicate the lower and upper bounds for the uniform distributions as recom-

mended by the domain expert. For the roughness parameters, rδi log-normal priors were used to

ensure positive. For the variance terms σδi and ψi, inverse gamma priors were selected because

they represent conjugate priors for the multivariate normal likelihood function in our model. Note

that the priors for the calibration parameters θ are all uniform and hence non-informative to avoid

any bias in estimation. Using Gibbs Sampling, the posterior distributions of calibration parame-

ters and hyperparameters φcal were generated after 25000 iterations with 25% burn-in period and

thinning every fifth sample. Figure 4.10 shows the histograms and kernel density estimates of the

truncated posterior distributions for the parameters φcal.

By the posterior estimates of the truncated distribution, we can compute the posterior mean

and variance estimates for φcal. The posterior mean is a sufficient estimation of the calibration

parameters as shown in Figure 4.11. Using the estimation of the calibration parameters, we can

predict the melt pool width and depth for the entire printability map. To compare the imputed

and calibrated parameter values, we conduct MVCalib method with the full 52 experimental data.

The value of calibration parameters by MVCalib are absorptivity = 0.51, thermal conductivity =

70.4 W/m*K, and specific heat capacity = 636.19 J/kg*K. In conclusion, the imputed values are in

small errors of the MVCalib method.

Next, 2-fold cross-validation (CV) is conducted to evaluate the accuracy of MVN distributed

calibration model with imputed parameter values. The CV results of the 26 observed melt pool

depth and paired width are shown in Figure 4.12. In the plots, the horizontal axes represent the
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Figure 4.10: The histograms and kernel density estimates of the truncated posterior distributions
for the calibration parameters and hyperparameters.
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[a] [b]

[c]

Figure 4.11: The histograms and kernel density estimates of the posterior distributions for the
calibration parameters θ.
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[a]

[b]

Figure 4.12: The cross-validation result of the calibration model for (a) melt pool width, and (b)
melt pool depth. In the plot, the horizontal and vertical axes represent the experimental observation
and predicted melt pool data separately. The size and color of the dots represent AE and APE of
each prediction.

experimental observation of melt pool geometry, while the vertical axes show the predicted outputs

using the calibration model. The size and color of the dots represent the absolute error (AE) and

absolute percentage error (APE) of each prediction. The red dash line represents the ideal case

with model predictions are in full agreement with experimental results. It can be seen that the

predictive performance of the surrogate models are satisfactory. Also, the MAPE of width and

depth are 9.77% and 7.34% which indicate satisfactory performance.

To test the predictive model, the assumed "unobserved" 26 melt pool depth and paired width

values are predicted. The test results are shown in Figure 4.13. The MAPE are also calculated
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[b]

Figure 4.13: The test results of the calibrated E-T model for (a) melt pool width, and (b) melt
pool depth. In the plot, the horizontal and vertical axes represent the experimental observation and
predicted melt pool data separately. The size and color of the dots represent AE and APE of each
prediction.

and displayed in Table 4.1 to compare with the benchmark MVCalib method by full 52 width and

depth observations. By then, we have validated that the CBMI method is an efficient and effective

in calibrating computer model with missing experimental observations. The predictive model

will then substitute the original E-T model for melt pool width and depth simulations, named as

calibrated E-T model. The heat maps represent the APE of the 52 experimental width and depth

observations by the calibrated E-T model are plotted in Figure 4.14.

In addition to the case of missing 26 depth data, another four cases under different assumptions

of "unobservable" melt pool depth measurements are also computed by the CBMI method. Case 1

75



Table 4.1: The comparison of CBMI and MVCalib method in the MAPE of testing results.

MAPE Melt Pool Width Melt Pool Depth
MVCalib Method 7.03% 9.28%

CBMI Method 7.71% 11.36%

[a]

[b]

Figure 4.14: The heat maps represent the APE of the 52 experimental observations by the calibrated
E-T model in (a) melt pool width, and (b) melt pool depth.
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represents the MVCalib method on full 52 width and depth experimental data. Case 2-6 represents

the CBMI method on full width and missing depth data.

• Case 1: The amount of observable melt pool width and depth data is 52 and 52.

• Case 2: The amount of observable melt pool width and depth data is 52 and 32.

• Case 3: The amount of observable melt pool width and depth data is 52 and 26.

• Case 4: The amount of observable melt pool width and depth data is 52 and 20.

• Case 5: The amount of observable melt pool width and depth data is 52 and 13.

• Case 6: The amount of observable melt pool dwidth and depth data is 52 and 7.

The MAPE of CV results and testing results are plotted in Figure 4.15 to compare how the amount

of missingness in depth influences the calibrated E-T model performance. Overall, the less the

missingness the better the calibration results. Because the more information is employed in the EM

algorithm for estimating the mean and variance of calibration parameters and hyperparameters, the

more accurate these parameters are imputed in Bayesian method.

The purpose of conducting statistical calibration is to make sure the melt pool model predic-

tions are in the agreement with experimental results to accelerate the study of printability. There-

fore, we plotted the finalized printability maps by (a) MVCalib method with full melt pool data, (b)

CBMI method with full width data and half depth data, and (c) CBMI method with full width data

and 1/4 depth data in Figure 4.16. As we see, Figure 4.16(a) has the most conservative sub-regions.

The two plots generated by the calibrated E-T model of CBMI method also reasonably present the

defects and good regions in the map.
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[a]

[b]

Figure 4.15: The comparison of 6 cases in the MAPE of (a) CV, and (b) testing results.

78



[a]

[b] [c]

Figure 4.16: The cosssmparison of calibrated printability maps by (a) MVCalib method with 52
full melt pool data, (b) CBMI method with 52 melt pool width data and 26 melt pool depth data,
and (c) CBMI method with 52 melt pool width data and 13 melt pool depth data.
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5. SUMMARY

5.1 Contributions of The Dissertation

In this chapter, I will summarize the contributions of each part of the dissertation.

5.1.1 Contributions of Process Optimization

In chapter 2, we investigated the effects of LPBF processing parameters on as-fabricated and

electropolished surface roughness of interior channels in NiTi. This work specifically character-

ized the overhanging surfaces of horizontal channels and the walls of vertical channels. In this

work, we find that the processing parameters with lower laser energy density would result in less

partial particle fusion and/or stalactite formation in as-fabricated interior channels; further, subse-

quent electropolishing would result in a higher reduction of surface roughness with the lower laser

energy density parameter sets. In practice, lower energy density parameter sets (that still provide

appropriate melting) can provide a more facile route to reduce channel surface roughness via a

post-fabrication electropolishing.

The contribution of this current work is two-fold. First, it represents the first systematic effort to

understand the relationships between these parameters and the surface roughness of as-fabricated

NiTi parts, with an application emphasis on interior channels. Second, it presents one of the

first effort on post-processing LPBF NiTi parts using electropolishing to improve surface quality

and further establishes a relationship between processing parameters and electropolished surface

roughness.

5.1.2 Contributions of Printability Framework

A unified framework was developed to enable printing defect-free parts for new AM materials

and alloys in chapter 3. The proposed framework integrates an analytical thermal model, experi-

mental characterization of single tracks, and UQ to determine windows of processing parameters

that correspond to different regimes (keyholing, lack of fusion, and balling). Parameter combina-

tions that result in parts with low porosity and low variability in mechanical properties can then
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be identified. The framework was experimentally validated using three material systems. Results

indicate that parts fabricated using the generated printability maps were nearly fully-dense and

exhibited good repeatability of mechanical properties.

The contribution of the proposed framework can be summarized as follows: first, through

effectively integrating physics-based modeling, experimental characterization, and UQ, we can

construct printability maps in a systematic and accelerated fashion. This is in contrast to previous

trial-and-error approaches or other systematic approaches that require large amounts of expensive

and time-consuming experiments or model runs. Second, for the modeling step we make use of

a well-established analytical model that is readily accessible to any user, eliminating the need for

proprietary computational codes for the thermal model utilized. Furthermore, this analytical model

is computationally tractable which enhances the accelerated aspect of the proposed framework. It

is important to point out that enabling the use of this simple analytical, and relatively low fidelity,

model is only made possible through an UQ step. In addition to constructing a printability map for

a given new material, the proposed framework guides the microstructural and mechanical charac-

terization of specimens that are printed according to that map. Porosity free parts are successfully

printed with great mechanical properties in low variability.

5.1.3 Contributions of Uncertainty Quantification

In chapter 4, we developed methodologies in solving a special case of multivariate calibration

problem in the absence of experimental data. For example, the analytical thermal model of melt

pool. The outputs of this model that were considered by our framework are melt pool width and

depth. However, the measurement of melt pool depth is time-consuming and costly. So that we

only characterize some of the sample cross-sections to measure melt pool depth. In statistics, this

is a missing value problem. In UQ, especially in the area of Bayesian multivariate calibration,

there is no previous art of solving this problem. At first, we developed the hierarchical Gaussian

process method to predict the missing data in our QoIs. This is a non-parametric approach with

a hierarchical covariance structure among model inputs, fully observed outputs, and partially ob-

served outputs. The correlation between outputs is the key fact enables more accurate prediction
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than other approaches. Then the predicted data is combined with experimental observations to

conduction model calibration as ground truth.

Another method which is different than making predictions, is to directly estimate the unknown

parameters (called as calibration parameters in UQ problem) by the Bayesian multiple imputation

methodology. In the multivariate Bayesian calibration framework, we took out the Bayesian cal-

ibration model which is the equation of surrogate model, model discrepancy, and error term that

will be calibrate by experimental data through tuning the value of calibration parameters. Then

the Bayesian multiple imputation methodology is applied to deal with missing data by expecta-

tion–maximization algorithm. Through creating a tie between the complicated partially-observed

data likelihood and the simpler complete-data likelihood, we could calculate the posterior mean

and variance of calibration parameters. In turn, the mean of these values are put back to a multi-

variate Gaussian process model to predict our QoIs given a new sets of inputs.

Both methods have been validated by a melt pool model in AM. The calibration results of

melt pool width and depth ware about 10% of MAPE, which is greatly improved comparing with

the MVCalib method using only the observed data. The Bayesian multiple imputation calibration

method performs even better than the hierarchical Gaussian process method by avoiding an extra

error term from the predictive model. Besides, we saved about $4000 (cost for preparing the

sample, machine, material, etc) and one week of labor time for conducting the "unobserved" melt

pool characterization.

5.2 Future Work

In the area of building AM specific standards and pathways, I have some future research di-

rections that originated from the NiTi optimization project. In addition to surface roughness, the

shape memory effect is mainly relevant to transformation temperatures between martensite and

austenite phase. However, the control of transformation temperatures is difficult mainly due to

evaporation of Ni and is thus strongly controlled by the processing parameters. A model that

simulates the relationship between transformation temperatures and processing parameters is ben-

eficial so that the temperatures are predictable and controllable. Due to its phase transformation
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properties, NiTi is difficult to print complex structures. Therefore, the accuracy and variability of

as-fabricated parts need to be compared and analysed. In-situ monitoring or optical profilometers

(e.g., KEYENCE VR5000) are capable to capture and analyse the difference of as-fabricated parts

and 3D models. On the other hand, such as electropolishing, AM requires issue guidelines for

consistent post-processing techniques in various materials and AM processes.

In the proposed printability framework, a track level analytical model is used to help accel-

erate the printing process. Furthermore, a layer level model is expected to simulate the effect of

hatch spacing parameter on thermal history. Such that heat conduction and heat accumulation can

be directly studied. Fabricating fully-dense parts is only an initial step towards further objectives

that necessitate future work. For example, an immediate next step involves correlating the process-

ing parameter combinations in the printability map with microstructural features (e.g., grain size or

segregation), evolution of secondary phases, and evaporative control of alloy composition. In addi-

tion, other defects like residual stress should be involved in the printability map to further improve

the quality of as-printed metal parts. Developing standards identifying the means to establish the

statically validated minimum mechanical properties for metals made using a given set of parame-

ters for a given design is another essential work in developing the qualification and certification of

AM.

Another area for future research is conducting statistical calibration for LPBF model when the

output has a specific condition. For example, one or more of the outputs are completely unobserv-

able (e.g. there is no experimental measurement of melt pool length). Or calibration of simulation

models with high-dimensional output. Another example can be models with binary or categorical

outputs, e.g. when a model predicts the types of defect for a set of processing parameters if it

would be porosity, balling, or residue stress.
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APPENDIX A

THE TWO-STAGE MULTIVARIATE CALIBRATION METHOD

The multivariate calibration method is based on the famous two-stage approach developed by

Conti O’Hagan [119]. First stage is to build a multivariate Gaussian process surrogate model to

output. Second stage is connecting the calibration parameters to the observations using the built

surrogate model while allowing for model discrepancy and measurement errors. The final goal is

to have the posterior distributions for the calibration parameters. Then the mean or mode of the

posterior distributions will be used as estimations of calibration parameters.

Table A.1: Notations from Conti and O’Hagan

x , Input vector p× 1

y , Simulation output q × 1

B , Matrix of regression coefficients m× q
B̂GLS , Generalized lease squares (GLS) estimator of B m× q

Σ , Covariance matrix q × q
Σ̂GLS , GLS estimator of the covariance matrix q × q

r , Vector of positive roughness parameters p× 1

m(·) , Mean function q × 1

c(·, ·) , Correlation function 1× 1

h(x) , Arbitrary vector of m regression functions m× 1

D , Output matrix n× q
R , Diagonal matrix of p positive roughness parameters p× p
H , Design matrix n×m
A , Correlation matrix n× n

A.1 Surrogate Model

This stage aims to find the multivariate Gaussian predictive distribution for the computer model

output f(·). There are two steps in building the emulator. First, roughness parameters ri need to

be found by generating the posterior distribution of r given the data, πR(r|D). That is explained
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in Section A.1.1. Then, they are used to generate samples from a matrix-variate T distribution to

numerically generate f(·).

A.1.0.1 Matrix-variate T distribution

Assume the simulation training set is S = {s1...sn}. We denote the output matrix D =

[fj(sr)] ∈ Rn,q. Conditional posterior distribution of f(·) given r is a q-variate T process [120].

This means the distribution of an arbitrary collection of vectors is matrix-variate T .

f(·)|r, D ∼MV T (m∗∗(·), c∗∗(·, ·)Σ̂GLS);n−m) (A.1)

Where:

m∗∗(x1) = B̂T
GLSh(x1) + (D −HB̂GLS)TA−1t(x1) (A.2)

c∗∗(x1,x2) = c(x1,x2)− tT (x1)A−1t(x2)+ (A.3)

[h(x1)−HTA−1t(x1)]T · (HTA−1H)−1 · [h(x2)−HTA−1t(x2)] (A.4)

Σ̂GLS = (n−m)−1(D −HB̂T
GLS)TA−1(D −HB̂T

GLS) (A.5)

where:

hT (x) = (1,xT ) (A.6)

HT = [h(s1), ...,h(sn)] ∈ Rm,n (A.7)

c(x1,x2) = exp
{
−(x1 − x2)

TR(x1 − x2)
}

(A.8)
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A = [c(sr, sl)] ∈ Rn,n (A.9)

B̂GLS = (HTA−1H)−1HTA−1D (A.10)

tT (·) = [c(·, s1), ..., c(·, sn)] ∈ Rn (A.11)

A.1.1 Monte Carlo-based marginalization

First, the priors for the smoothness parameters vector r are decided. One suggestion can be

normalized scale product of i.i.d. vague (albeit proper) Log-Logistic priors πR(r) =
∏p

i=1(1 +

r2i )
−1. Next, the posterior distribution of r would be:

πR(r|D) ∝ πR(r)|A|−q/2|HTA−1H|−q/2|DTGD|−(n−m)/2 (A.12)

where,

G = A−1 − A−1H(HTA−1H)−1HTA−1 (A.13)

At this point Conti and O’Hagan suggest taking a fully Bayesian approach by sampling from

Eq. A.12, for example by Metropolis-Hastings Markov Chain Monte Carlo (MCMC), in order to

average the conditional posterior Eq. A.1 with respect to r [121]. In practice, it is simpler and

adequate just to plug estimates of the ri’s into Eq. A.1. These estimates may be obtained by maxi-

mizing Eq. A.12 with respect to the ri’s, or by taking mean or median values from a MCMC run.

As with a single output, this is typically the most demanding part of building an emulator. Even

maximizing Eq. A.12 is not straightforward; there may be several local maxima or ridges, and

the computations can be numerically ill-conditioned. Then the surrogate model is validated using

cross-validation method.
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The following steps for decomposing the matrices are used in computing the posterior distri-

bution of r:

Q1 = chol(A)→ QT
1Q1 = A (A.14)

W1 = QT
1 \H = Q−T1 H (A.15)

→ Z1 = W T
1 W1 = HTQ−11 Q−T1 H = HT (QT

1Q1)
−1H = HTA−1H (A.16)

Similarly:

Q2 = chol(Z1)→ QT
2Q2 = Z1 (A.17)

Z2 = (A\H)T = (A−1H)T (A.18)

W2 = QT
2 \Z2 = Q−T2 Z2 (A.19)

→ Z3 = W T
2 W2 = ZT

2 Q
−1
2 Q−T2 Z2 = (A−1H)(QT

2Q2)
−1(A−1H)T (A.20)

= (A−1H)Z−11 (HTA−1) = (A−1H)(HTA−1H)−1(HTA−1) (A.21)

→ G = A−1 − Z3 (A.22)

Hence, the Cholesky decomposition and matrices Q1, Q2, W1, W2, Z1, Z2, Z3 are introduced

to compute G. Since Q1 and Q2 are triangular matrices,

|A| = (
∏
i

diagQ1,i)
2 (A.23)

|HTA−1H| = |Z2| = (
∏
i

diagQ2,i)
2 (A.24)

It is also necessary to compute the logarithm of the probability in Eq. A.12 than the actual
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value. It follows:

log πR(r|D) = log πR(r) + (−q/2) · 2
∑
i

log diagQ1,i+ (A.25)

(−q/2) · 2
∑
i

log diagQ2,i + (
m− n

2
) log |DTGD| (A.26)

A.2 Calibration

The probability model for calibration is provided below [122]:

yE(x) = yS(x,θ) + δ(x) + ε = f(x,θ) + δ(x) + ε (A.27)

Using the normal distribution approximation to get:

f(x,θ) ∼ GP(m∗∗(·), c∗∗(·, ·)Σ̂GLS). (A.28)

The values of m∗∗(·), c∗∗(·, ·), and Σ̂GLS were determined after the emulator was trained. As

in [122], the discrepancy function δ(x) is assumed:

δ(x) ∼ GP(0, cδ(·, ·)Σδ) (A.29)

where:

cδ(x1,x2) = exp
{
−(x1 − x2)

TRδ(x1 − x2)
}

(A.30)
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Rδ =


rδ1 · · · 0

... . . . ...

0 · · · rδκ

 (A.31)

Σδ =


σ11 · · · σ1q

... . . . ...

σq1 · · · σqq

 . (A.32)

For the roughness parameters for cδ(·, ·), the vector rδ = (rδ1 , · · · , rδκ) where κis the number of in-

put variables. The priors for rδκ are log-logistic. ψδ consists of diagonal elements and upper/lower

diagonal elements of Σδ, for which uses an inverse Wishart distribution. A simpler covariance

structure for the error term ε is:

ε ∼ GP(0,Σε) (A.33)

Σε =


ψ1 · · · 0

... . . . ...

0 · · · ψq

 . (A.34)

Similarly, the vector ψε = (ψ1, · · · , ψq) is defined. Inverse gamma priors are used for the

element of ψε. Eventually,

yE(x)|θ, rδ,ψδ,ψε ∼ GP(m∗∗(·), c∗∗(·, ·)Σ̂GLS + cδ(·, ·)Σδ + Σε), (A.35)

where θ is the vector of calibration parameters, rδ is the vector of roughness parameters for

covariance function cδ, andψδ andψε are the vectors of covariance parameters for the discrepancy

and error, respectively.
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Table A.2: Summary of the calibration parameters

XS , Input matrix of numerical observations n× p
D , Output matrix of numerical observations n× q
XE , Input matrix of physical observations N × κ
Y E , Output matrix of physical observations N × q
θ , Vector of calibration parameters (p− κ)× 1

rδ , Roughness parameters for the discrepancy function κ× 1

Σδ , Covariance matrix for the discrepancy function q × q
ψδ , Covariance parameters for the discrepancy function (q · q+1

2
)× 1

ψε , Covariance parameters for the error q × 1

A.2.1 Prediction

Kriging technique is used for final predictions after the parameters are calibrated. Consider

about predicting the output of S new inputs; henceXP is of size S × κ. For computing the output

Y P , the experimental values in addition to running the simulation with calibrated set of parameters

θ∗ are used.

E[Y P |Y E] = m∗∗(XP ) + ΣPE(ΣEE)−1(Y E −m∗∗(XE)), (A.36)

where:

ΣPE = CPE
em ⊗ Σ̂GLS +CPE

δ ⊗Σδ, (A.37)

CPE
em = [c∗∗(xPi ,x

E
j ;θ∗)] i=1...S

j=1...N
, (A.38)

CPE
δ = [c(xPi ,x

E
j )] i=1...S

j=1...N
, (A.39)

ΣEE = Cem ⊗ Σ̂GLS +Cδ ⊗Σδ + INN ⊗Σε. (A.40)

Note that ΣEE is the covariance matrix for yE(x)|Φ∗ as previously mentioned in Eq. ??. Refer

to Table A.3 for dimensionality check for matrices in Eq. A.36.
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Table A.3: Dimensionality check for Eq. A.36

E[Y P |Y E] Sq × 1
m∗∗(XP ) Sq × 1
ΣPE Sq ×Nq
ΣEE Nq ×Nq
Y E Nq × 1
m∗∗(XE) Nq × 1
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APPENDIX B

MARKOV CHAIN MONTE CARLO ALGORITHMS

Monte Carlo methods are a broad class of computational algorithms that rely on repeated ran-

dom sampling to provide approximate solutions to a variety of problems (physical or mathematical

with or without any probabilistic structure) fishman2013monte. Several different algorithms have

been developed to solve different problems, however in this dissertation we will only focus on

those that are needed for general numerical estimation and Bayesian statistical inference.

The Monte Carlo (MC) principle is one of the most popular methods to numerically approxi-

mate probability distributions as well as integrals. The idea is based on the random drawing of N

independent and identically distributed (i.i.d.) samples from a target distribution p (x) defined on a

q-dimensional space X ∈ Rq. The empirical distribution of
{
x(1), . . . ,x(N)

}
is known as a Monte

Carlo approximation to p (x), with

pMC (x) =
1

N

N∑
i=1

1{x=x(i)}
(
x(i)
)

(B.1)

where 1{x=x(i)}
(
x(i)
)

is the indicator function that equals to 1 if x = x(i) and 0 otherwise [123].

Additionally, MC can be used to approximate expectations (or integrals) with N i.i.d. random

samples, since the Law of Large Numbers describe that for (almost) any function g (x), we have

that

1

N

N∑
i=1

g
(
x(i)
) N→∞−→ E [g (x)]

N→∞−→
∫
X
g (x) p (x) dx

since E [g (x)] =
∫
X g (x) p (x) dx, with p (x) known or estimated from eq:MC-estimate-p(x)

[124].
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B.1 Gibbs Sampler

In this widely used algorithm, the objective is to approximate multivariate probability distri-

butions from which only the full conditional distributions for each element are known. In other

words, for a random vector x = {x1, . . . , xq}, the interest is to approximate its joint probability

distribution, p (x) = p (x1, . . . , xq), with only knowledge and ability to sample from full condi-

tional distributions of the form p (xk|x1, . . . , xk−1, xk+1, . . . , xq) ∀k ∈ {1, . . . , q} Hoff2009.

B.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is the most popular MCMC method. The objective of

this algorithm is to approximate a joint probability distribution p (x) = p (x1, . . . , xq) by indirect

random samples when direct sampling is not feasible (which is usually the case for Bayesian

posterior distributions). The main idea is to propose samples from a another distribution and then

accept or reject them one element at a time.

Consequently, a proposal distribution needs to be defined for every component of the random

vector x. These proposal distributions can be symmetric distributions, full conditional distribu-

tions, or something else entirely. The interested reader can refer to Hoff2009,andrieu2003introduction

for more detailed explanations about this algorithm and the requirements that proposal distributions

need to follow in order to ensure sequence with Markov Chain properties.

Here, the proposal distribution for the jth element of vector x and at the ith MH iteration is

denoted as Jj
(
xj

∣∣∣x(i)1 , . . . , x
(i)
j−1, x

(i−1)
j , x

(i−1)
j+1 , . . . , x

(i−1)
q

)
.
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