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ABSTRACT 

 

Molecular recognition comprises the noncovalent interaction of two or more 

binding partners and is central to many biological processes and designed agents for 

therapeutic or environmental applications. In this doctoral study, computational tools were 

engineered to address challenging in molecular recognition that are otherwise difficult to 

solve using conventional methods. The different computational tools comprise MD 

simulations, energy calculations, and structural analysis coupled with programs that 

strategize their execution. The tools have been developed and used to 1) elucidate and 

differentiate the binding of structurally and physicochemically similar ligands to proteins, 

2) characterize modified RNA : protein interactions, 3) study and design affibody proteins 

with anti-amyloid properties, 4) examine the binding of toxic compounds onto 

montmorillonite clays, and 5) elucidate short-peptide self- and co-assembly. These 

computational tools can be considered as “in silico experiments” to bridge gaps between 

experimental observations and theory. The application of these tools have suggested 

potential interactions leading to biological activity and predicted stronger signaling 

properties of one enantiomer over the other, revealed the broader recognition of RNA 

binding proteins for modified RNAs, elucidated the binding and specificity of affibody 

proteins for amyloidogenic proteins, predicted toxic compound adsorption free energies 

for clays, and examined the pathways of designed peptide self- and co-assembly, which 

led to the discovery of novel peptide cancer drug nanocarriers with advantageous 

properties for bioimaging and drug delivery. 
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NOMENCLATURE 

 

α-syn α-Synuclein 
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CM-carnitine L-carnitine-amended Ca2+ montmorillonite 

CM-choline Choline-amended Ca2+ montmorillonite 

COUP-TF1/2 Chicken ovalbumin upstream promotor-transcription factor ½ 

cyclo-HH cyclo-dihistidine 

cyro-EM Cryo-electron microscopy 

DBP Dibutyl phthalate 

DBPs DNA-binding proteins 

DEHP di-2-ethylhexyl phthalate 
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DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

EMSA Electrophoretic mobility shift assay 

FRET Förster resonance energy transfer 

FF Diphenylalanine 

Fmoc-F Fluorenylmethyloxycaronbyl-phenylalanine 

Fmoc-FF Fluorenylmethyloxycaronbyl-diphenylalanine 

GenX Hexafluoropropylene oxide 

IAPP Islet amyloid polypeptide 

KH K homology 

MD Molecular dynamics 

MM–GBSA molecular mechanics – Generalized Born surface area 

MM–PBSA molecular mechanics – Poisson Boltzmann surface area 

MST Microscale thermophoresis 

NGS Next-generation sequencing 

NMR Nuclear magnetic resonance 

NOVA1 Neuro-oncological ventral antigen 

PD Parkinson’s disease 

PDB Protein Data Bank 

PNPase Polynucleotide phosphorylase 

PFAS Per- and polyfluoralkyl substances 

PFBS Perfluorobutane sulfonic acid 
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PFOA perfluorooctanoate 

PFOS perfluorooctanesulfonate 

QM Quantum mechanics 

RBDs RNA binding domains 

RBPs RNA-binding proteins 

REMD Replica-exchange molecular dynamics 

RMSD Root mean square deviation 

RMSF Root mean square fluctuation 

RNA Ribonucleic acid 

SASA Solvent accessible surface area 

SM Na+ montmorillonite 

SPR Surface plasmon resonance 

STORM Stochastic optical reconstruction microscopy 

T2D Type 2 diabetes 

TDP-43 Transactive response DNA-binding protein 43 

UV Ultraviolet 
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YTHDF1 YTH N6-methyladenosine RNA binding protein 1 
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CHAPTER I  

INTRODUCTION  

 

Molecular recognition refers to the noncovalent interaction of two or more 

molecular binding partners.1 Such binding partners include, among others, different 

proteins, proteins and nucleic acids, proteins and small-molecules, different small-

molecules, as well as inorganic/organic surfaces and small-molecules. Molecular 

recognition is central to many biological processes.2-18 A subset of these abundant 

processes include: The intricate coordination of RNAs and RNA-binding proteins (RBPs) 

involved in RNA-metabolism, translation, and gene regulation at both the transcriptional 

and post-transcriptional levels;2-8 Small-molecule ligands binding to proteins to act as 

coenzymes or substrates in many basic enzymatic reactions as well as extra- and intra-

cellular signals to help construct regulation networks;9-16 Proteins self-assembling into 

crystals, gels, filaments, among other varieties of aggregates to form structures including 

virus capsids17 and amyloid fibrils.18 Additionally, molecular recognition is a key 

component of several agents or materials for therapeutic19-22 or environmental23-25  

applications. 

The use of computers to study and predict the properties and structures involved 

in molecular recognition has become increasingly significant in the past decades.26-28 The 

advent and continual improvement of high-performance computing has enabled in silico 

experimentation bridging gaps between observations from laboratory experiments and 

theory. Several computational methods have been developed to study, understand, and 
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enhance molecular recognition systems.26, 27, 29-32 One such computational tool, molecular 

dynamics (MD) simulations, has been widely used as a “computational microscope”33 to 

understand the structural properties, dynamic evolution, and the function of molecular 

recognition systems.28, 33, 34 Importantly, numerous studies35-43 have demonstrated that MD 

simulations can complement and resolve ambiguity in experimental data by extending 

static structural data into time-evolved snapshots of atomic-coordinates or “movies” of 

how molecules behave over time (reviewed in refs. 28, 33, 34). Furthermore, insights gained 

from MD simulations have also provided impetus for experimental studies (reviewed in 

ref. 34). 

Analysis of MD simulation results is important to understand the properties of the 

simulated systems.34 One simulation could track the positions and velocities for several 

hundreds of thousands of atoms over millions of time steps. Thus, parsing through these 

data to focus on the most relevant and biologically important aspects of simulation data 

can be formidable task, and in many cases, the most informative quantitative data are 

difficult to specify in advance. Identifying the maximally informative data in simulations 

often requires a methodical balance between visual analysis and quantitative analysis. 

However, once the maximally informative simulation data-based metrics are identified, 

simulations-based methods can provide substantially more accurate energetic and 

structural estimates that other computational approaches.38, 44, 45 Free energy perturbation 

and other “alchemical” energy calculation methods in which a ligand or residue is 

gradually “transformed” into another through a series of simulations generally offer the 

most accurate estimates of binding free energies.34, 46 These methods are computationally 
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expensive yet sufficiently reliable.47, 48 The molecular mechanics – generalized Born 

surface area (MM–GBSA)49 and molecular mechanics – Poisson Boltzmann surface area 

(MM–PBSA)49 methods, which use continuum solvent models rather than an explicit 

representation of the solvent, offer substantially less computationally intensive, albeit less 

accurate, binding free energy estimates.50 These energy calculation methods can be 

combined with structural analysis to describe the simulation systems including key 

interactions acting as switches promoting signaling, energetic favorability of pathways 

leading to protein aggregation or folding, and ligands recognized by a protein receptor. 

The overarching theme of this doctoral study is the development of different 

computational tools that can serve as bridges to solve challenging problems that are 

otherwise difficult to solve using existing experimental or computational approaches 

alone. The individual areas of the doctoral study are organized into five main chapters:  

1. Chapter 2 is dedicated to the investigation of how structurally and 

physicochemically similar small-molecule ligands bind to proteins. Determining 

and differentiating the structure of structurally and physicochemically similar 

small-molecule ligands bound within a protein structure is challenging 

experimentally,51, 52 and conventional docking methods cannot perform successful 

prediction for similar ligands.53 To understand how subtle structural and 

physicochemical differences in ligands can lead to differences in their functional 

properties upon binding to a protein receptor, a docking-refinement tool that can 

delineate the binding of similar ligands was developed.54-59  
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2. Chapter 3 is dedicated to the investigation of which modified RNAs bind to 

proteins how they are recognized. Over 150 chemically modified RNAs have been 

identified,60 yet their effect on the function of RNA : protein complexes has been 

largely unexplored61 due to major challenges in mapping the epitranscriptome.62-

64 To uncover the repertoire of modified RNAs that can be recognized by a target 

protein, a suite of programs that screen and detect modified RNAs prone to interact 

favorably with a target protein were developed.65-67  

3. Chapter 4 is dedicated to the study and design of affibody proteins, termed β-

wrapins, binding to amyloidogenic proteins. Few, subtle changes at the sequence 

level of β-wrapins greatly change their affinity to amyloidogenic proteins involved 

in Alzheimer’s disease, Parkinson’s disease, and type 2 diabetes.68-73 Previous 

attempts to enhance β-wrapins’ single-targeted and multi-targeted binding to 

amyloidogenic proteins have greatly relied on phage display library experiments 

and researcher intuition.68-73 To study and design β-wrapin variants for enhanced 

single-targeted and multi-targeted binding to amyloidogenic proteins, MD 

simulations and free energy calculations were used to uncover the binding and 

specificity of β-wrapins,74, 75 and an optimization-based protein design program 

accounting for both single-targeted and multi-targeted binding was developed. 

Rationally designed β-wrapins with N-termini modified with non-canonical amino 

acids were also designed to mimic the mechanism of action of curcumin binding 

to Aβ fibrils and inhibiting amyloid elongation.  
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4. Chapter 5 is dedicated to the investigation of compound adsorption to surfaces. 

Montmorillonite clays are a promising adsorbent for several, diverse toxic 

compounds to mitigate their toxicity.24, 25 To determine the binding mechanisms 

of compounds to clay surfaces, the generation of MD simulation input files and 

parameters was automated to systematically examine the binding properties of 

compounds to adsorbent surfaces.76-78 To screen compounds for which 

montmorillonite clays can be effective adsorbents, a combination of minimalistic 

simulations, simple interaction energy calculations, and a minimalistic model was 

developed to predict the adsorption free energies of diverse compounds for 

montmorillonite clay.79  

5. Chapter 6 is dedicated to the investigation of short peptide self- and co-assembly. 

The initial stages of peptide self-assembly is difficult to probe experimentally due 

to the complex nature of self-assembly and limitations due to sensitivity and time 

resolution.80 To examine the initial stages of short peptide self- and co-assembly 

and the effect of different solvents, ions, or modifications to the peptides, a suite 

of structural and energetic analysis programs tracking and characterizing the 

formation of clusters within MD simulations was developed.81-84 

The term molecular recognition is used in this doctoral study to refer to the 

interactions between the different molecular bodies of each individual chapter. Molecular 

recognition processes are involved in the binding and signaling of small-molecule ligands 

in complex with proteins85-87 (Chapter 2), the preferential binding of RNAs in complex 

with proteins88-92 (Chapter 3), the sequestration of proteins by affibody proteins68-70, 72, 73, 
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93-95 (Chapter 4), the tight binding of specific types of toxic compounds onto clay 

surfaces96-100 (Chapter 5), and the gradual formation of interactions leading to the 

organization and stabilization of self- and co-assembled short-peptides, molecules, and/or 

ions into specific geometries and nanostructures101-106 (Chapter 6). The common basis and 

governing principle associated with providing insights into and solving these problems 

comprise the use of MD simulations and energy calculations coupled with FORTRAN 

programs that strategize the execution of MD simulations and energy calculations as well 

as perform the structural and energetic analysis of the systems under investigation, in 

tandem with existing programs and tools in the literature. 
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CHAPTER II  

SMALL-MOLECULE LIGANDS BINDING TO PROTEINS 

 

Docking-Refinement of Small-Molecule Ligand : Protein Complexes 

Introduction 

Delineating the structures of small-molecule ligand : protein complexes is a key 

problem due to its importance in the molecular understanding of biological phenomena 

and provide insights enabling drug discovery and design.107 The development of 

experimental techniques including high-throughput protein purification, crystallography, 

and nuclear magnetic resonance (NMR) spectroscopy contributed valuable insights into 

the structures of a vast number of small-molecule ligand : protein complexes. Despite 

advances in experimental structure determination techniques, the process is often time 

consuming and expensive with relatively large quantities and high concentrations of the 

molecules required.108 Additionally, experimentally determining and differentiating the 

structure of structurally and physicochemically small-molecules bound within a protein 

structure can be challenging.51, 52 A higher thermal motion or conformational disorder of 

the small-molecules in comparison with the surrounding protein can lead to less well-

defined electron density.51 Further, standard crystallographic assessment tools face 

challenges in determining the protonation state, tautomeric state, stereochemistry, 

orientation, and/or conformation of the small-molecule as multiple or all the different 

states of the small-molecule may fit within the electron density.109 
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Molecular docking is a widely used computational approach capable of both 

identifying probable conformations of a ligand binding to a target protein and estimating 

the strength of interaction between a ligand and a target protein.110-114 Computational 

molecular docking has been implemented in several studies to predict how small-

molecules induce/prevent signaling upon binding to a target protein110, 113, 115, 116 and in 

structure-based drug discovery.117-119 Computational docking approaches rely on the 

combination of a search algorithm to generate possible binding conformations and a 

scoring function to evaluate the generated conformations.56 Advances in computational 

power has allowed the evolution of docking algorithms to include a wide array of search 

algorithms and scoring functions.117 Despite the successes of current docking methods in 

providing fundamental knowledge110, 113, 115, 116 as well as discovering novel drugs,117-119 a 

comprehensive study based on an extensive dataset of 2002 protein : ligand complexes 

extracted from the PDBbind database (version 2014)120 showed that, while the correct 

ligand binding poses could be generated in most cases by the evaluated docking programs, 

the ranks of binding affinities for the entire dataset could not be well predicted by most 

docking programs.57 Additionally, the evaluation of the docking programs showed that 

each individual docking program had different scoring powers for different protein 

families, and therefore the use of different docking programs for different protein families 

was suggested.57 
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Figure II-1. Overview of methods used for molecular docking. 
 

The procedure for computational molecular docking may be categorized into two 

principal stages: (1) identification of potential ligand-binding pockets of the receptor, and 

(2) identification of the most energetically favorable binding conformation in the 

identified binding pockets54 (Figure II-1). Experimental information that can reveal a 

ligand binding site of a target protein, such as site-directed mutagenesis studies, can be 

used to circumvent the first stage of molecular docking. In such a case, the search space 

can be confined to a ligand binding site of a target protein, and a docking program can be 

introduced to determine the orientation and position of a ligand within the receptor’s 

binding pocket. The reduction of search spaces based on information regarding the binding 

site location can be advantageous in increasing the docking efficiency.57   

Improvements in computational power and more efficient docking practices (e.g. 

searching a specific binding site rather than the entire receptor) has allowed docking 

methods to graduate from the “lock-and-key” assumption, treating both the ligand and 

receptor can as rigid bodies,58 to the “induced-fit” theory suggesting that the ligand and 

receptor should be treated as flexible during docking.59,60 Docking algorithms that allow 

for flexibility in the ligand and/or receptor not only predict the binding mode of a ligand 
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with higher accuracy than rigid docking algorithms, but also the binding affinity of a 

ligand relative to other compounds.61 

Docking refinement approaches combine the benefits of rigid and flexible docking 

by first docking the ligand to the receptor in a high-throughput fashion and later refining 

the identified binding modes through molecular dynamics or local resampling strategies 

to provide more accurate relative binding affinity estimations and binding mode 

predictions.119, 121-126 Docking refinement has proven to be an effective approach.119, 121-126 

In such methods, MD simualtions can be used used to refine the docked structure,119, 122-

124 and local resampling strategies can be used to maintain the same positioning and 

orientation of the small-molecule while resampling portions of the docked molecule 

and/or protein side chains.125-127 

In this chapter, the methodology and applications of an in-house docking-

refinement protocol developed as part of this doctoral study is described. In contrast to 

other docking-refinement approaches in which high-throughput docking programs are 

used to determine the general orientation and position of the small-molecule,119, 121-126 MD 

simulations are used to explore different binding modes of a ligand within an 

unconstrained binding pocket, providing significantly greater flexibility to the complex 

structure in the exploration of binding modes. The docking-refinement protocol consists 

of a multifaceted pipeline, using docking simulations and short MD simulations to identify 

the most favorable conformations for further analysis. The combined use of several 

computational strategies was inspired by previous studies combining protein-protein 

docking, MD simulations, and free energy calculations to investigate the molecular 
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recognition of chemokine receptors by chemokines or protein fragments of HIV-1,128-130 

as well as C5aR by PMX53.131 The use of such a docking-refinement protocol is 

particularly important in the systems of this doctoral study in which small-molecule 

ligands with subtle structural and physicochemical differences induce different signaling 

properties.  
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Methodology of the Docking-Refinement Protocol 

The docking-refinement protocol can be outlined as follows: (1) the ligand is 

initially positioned in the target receptor’s binding pocket based on available experimental 

data; (2) multiple short MD docking simulations of the ligand within the binding pocket 

are performed, in which the ligand is constrained in the pocket by harmonic or quartic 

spherical potentials and is forced to rotate and sample different binding modes in the 

binding pocket with binding pocket residues unconstrained; (3) the sampled binding 

modes generated by the short docking simulations are assessed through interaction-energy 

calculations to select the most probable binding modes; (4) the selected most probable 

binding modes are investigated through explicit-solvent MD simulations and physical-

chemistry-based free energy calculations to identify the most favorable binding mode of 

the small-molecule ligand : protein receptor complex (Figure II-2). In this section, the 

stages of the docking-refinement protocol are described. The protocol is also detailed in 

ref. 54. 

 

Stage 1: Initial Positioning of the Ligand in the Target Protein’s Binding Pocket  

The protocol uses a preliminarily docked structure of the ligand within the known 

binding site of the target protein as an initial structure for subsequent docking simulations, 

described in the following section (Stage 2). The ligand under investigation is 

preliminarily docked into its known or suspected binding site based on experimental data. 

For example, if a bound structure of the receptor is available, and if the ligand under 

investigation is known to bind to or interact with residues of the same binding pocket, then  
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Figure II-2. Workflow for the docking refinement protocol. This figure is adapted from 
ref. 55*. 

 
 
 
the initial placement of the ligand under investigation can be guided by the location of the 

resolved ligand in complex with the receptor as in refs. 54, 55, 132. Otherwise, if a bound 

structure is unavailable, then high throughput docking programs with the search space 

 

* Reprinted with permission from “Molecular Mechanism for Attractant Signaling to DHMA by E. coli 
Tsr” by Asuka A. Orr, Jingyun Yang, Nitesh Sule, Ravi Chawla, Kenneth G. Hull, Mingzhao Zhu, Daniel 
Romo, Pushkar P. Lele, Arul Jayaraman, Michael D. Manson, and Phanourios Tamamis, 2020. 
Biophysical Journal, 118 (2), 492-504, Copyright 2020 by Elsevier. 
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optimally guided by experimental data and mutagenesis studies determining receptor 

residues involved in ligand binding can be used as in refs. 56-59. Although the initial 

placement is not explicitly considered in the analysis and does not directly contribute to 

the conformations generated in the later steps, the initial placement is important as it 

determines the initial position of the center of mass of the ligand, and in this way, it 

influences the generated binding poses. 

 

Stage 2: Short Docking Simulations Nearly Exhaustively Searches Binding Modes 

After the small-molecule ligand under investigation has been initially placed 

within the binding site of the protein receptor, short docking simulations are introduced to 

search possible binding modes nearly exhaustively. In the docking simulations, 20 

independent runs are performed in which 200 steps of 2 ps MD simulations are conducted. 

For each of the 200 steps, the ligand is rotated about a randomly generated axis followed 

by a 2 ps MD simulation and energetic minimization (Figure II-2, cyan block); the final 

conformation after the short simulation and energetic minimization is saved for 

subsequent evaluation. Thus, for each docking simulation consisting of 20 independent 

runs, 4000 binding modes of the ligand under investigation in complex with the protein 

receptor are saved.  

Separate sets docking simulations, or docking systems are introduced to explore 

the possible binding modes of the ligand (Figure II-2, orange blocks within blue block). 

The docking systems are distinct from each other based on how the ligand is constrained 

in the binding site. A subset of docking systems constrains the ligand through harmonic 
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spherical potentials (Figure II-1A), while the remaining docking systems constrain the 

ligand though quartic spherical potentials (Figure II-1B). The quartic spherical potential 

introduces an energetic well away from the center of the spherical potential; this 

encourages the ligand to explore binding modes from its initial positioning and reduce the 

bias of the initial placement (Figure II-1B). Additionally, for each docking system, an roffset 

is defined such that the energy potential is zero if the difference between the initial and 

new (after the rotation around a random axis) center of mass of the ligand is less than roffset 

(Figure II-2, orange blocks within blue block). Within the short docking simulations, both 

the side chain and backbone atoms of binding site receptor residues, which are defined as 

residues with Cα atoms within a user specified distance cutoff of the initially placed ligand 

(Figure II-2, yellow block), are unconstrained and flexible. The absence of constraints on 

the binding site residues aims to facilitate the ability of the residues to adapt to the different 

binding modes of the ligand generated through random rotations. Additionally, the 

Generalized Born with a Simple Switching (GBSW) implicit solvent model133 is used in 

the docking simulations to further facilitate the docking procedure; the absence of 

explicitly modeled solvent molecules increase the flexibility of the binding site and 

decrease the computational resources needed for the simulations to complete.  
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Figure II-3. Schematics of (A) the harmonic spherical potential and (B) the quartic 
spherical potential. 
 
 
 
Stage 3: Initial Screening of Binding Modes through Interaction Energy 

For each docking system, the interaction energy of the 4000 generated binding 

poses of the small-molecule ligand in complex with the protein receptor, generated in 

Stage 2, is calculated (Figure II-2, green block). The three binding modes with the lowest 

interaction energies (corresponding to the sum of van der Waals and electrostatic 

interaction energies between the ligand and the protein) per system are saved for 

subsequent evaluation in Stage 4. This step acts as a quick initial screening in which the 

binding poses with the lowest interaction energies are selected for further investigation.  

 

Stage 4: Refinement and Final Evaluation of Selected Binding Modes 

All-atom explicit solvent MD simulations are performed using the binding modes 

selected in Stage 3 as starting conformations (Figure II-2, red block). In this stage, multi-

ns simulations are introduced to refine the ligand : protein conformations, improve 

intermolecular interactions, and ultimately to assess the most energetically favorable 

binding mode. Upon completion of the multi-ns simulations, the energetic favorability of 
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the binding modes is assessed using MM–GBSA49 association free energy calculations. 

The combined use of MD simulations with physics-based calculation of free energy have 

proved beneficial for detecting the lowest binding free energy mode of several ligand 

(protein, peptide, or small-molecule) : protein complexes. Thus, the binding modes are 

compared based on their average MM–GBSA49 association free energies, averaged over 

the number of simulation snapshots. Under the governing principle that the most 

energetically favorable binding mode is the naturally occurring binding conformation, the 

simulation trajectory encompassing the most energetically favorable binding mode is 

selected. A highly detailed trajectory analysis of the selected lowest average MM–GBSA49 

association free energy simulation(s) can be performed to provide valuable insights into 

ligand : protein complex as described in the following section. 
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Applications of the Docking-Refinement Protocol 

The docking-refinement protocol has been used in several studies to detect the 

most energetically favorable binding modes of small-molecule ligands binding to a diverse 

set of protein receptors. The protocol has been used to suggest key interactions for 

compounds binding to the human or mouse AhR,56-58 compounds binding to human 

COUP-TF1 and COUP-TF2,59 as well as compounds binding to Escherichia coli (E. coli) 

Tsr.54, 55 Experiments for these studies were performed by members of Drs. Safe’s, 

Jayaraman’s, Lele’s, and Manson’s labs at Texas A&M University, College Station. 

Contributors to these studies are listed in the authors lists of refs. 54-59. Additional details 

of these study are provided in refs. 54-59.  

 

Aryl Hydrocarbon Receptor Interactions with Agonists and Antagonists 

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that 

has been shown to regulate the immune response and is a key component in protecting the 

gut against inflammation and cancer (reviewed in ref. 68). In collaboration with Dr. Safe’s 

lab, the binding of microbial metabolites56 as well as flavonoids and isoflavones57, 58 to 

AhR was investigated using the docking refinement protocol. Figure II-4 shows the key 

interactions of TCDD and 1,4-DHNA binding to mouse AhR. Similarities and differences 

in the strength of interaction of agonist versus antagonist ligands to AhR residues were 

used to suggest interactions that may act as switches inducing agonist activity. These 

studies suggested that polar interactions with Ser336/330 (residue numbers correspond to 

human AhR/mouse AhR numbering) and Gln383/377 as well as hydrophobic interactions 
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with at least a portion of residues Ile325/319, Cys333/327, Met348/342, Phe351/345 could 

be important for an agonist ligand’s functional properties.56-58 It is worth noting that 

studies of other diverse ligands within the AhR binding domain also suggested the specific 

combinations of residues could play a critical role in the ligands’ binding and 

functionality.134-139 

 
 
 

 

Figure II-4. Molecular graphics images of (A) TCDD and (B) 1,4-DHNA in complex 
with mouse AhR. This figure is adapted from ref. 56*. 

 
 
 

 

 

 

 

 

* Reprinted with permission from “Editor’s Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid 
and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure–Activity 
Relationships and Receptor Modeling” by Yating Cheng, Un-Ho Jin, Laurie A Davidson, Robert S Chapkin, 
Arul Jayaraman, Phanourios Tamamis, Asuka Orr, Clint Allred, Michael S Denison, Anatoly Soshilov, 
Evelyn Weaver, Stephen Safe, 2016. Toxicological Science, 155 (2), 458-473, Copyright 2016 by Oxford 
University Press. 
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Chicken Ovalbumin Upstream Promoter-Transcription Factor I Activation by 

Ligand Binding  

Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are 

orphan members of nuclear receptor superfamily that activate or repress gene transcription 

by directly binding DNA sequence.69 COUP-TF1 and COUP-TF2 proteins are 95% 

homologous and evolutionarily conserved in the DNA binding domain, mainly differing 

at the N-terminus (reviewed in ref. 69). In collaboration with Dr. Safe’s lab, modeling 

studies were performed using the docking refinement protocol to elucidate the interactions 

of DIM-C-Pyr4 and 1,1-CH3-DIM-Pyr4 within the ligand binding domain of COUP-

TF1/2.59 Despite their similar chemical structures, the modeling studies suggested that the 

ligands adopt different binding modes in complex with COUP-TF1/2 due to the fact that 

the methyl groups of 1,1-CH3-DIM-Pyr4 impede its ability to form hydrogen bonds with 

the backbone carboxyl group of V384/377, which occurs between DIM-C-Pyr4 and 

COUP-TF1/2. Instead, in 1,1-CH3-DIM-Pyr4, the methyl groups are attracted to COUP-

TF1/2 residue motif 219/212–227/220. Due to the somewhat different binding modes of 

the two compounds, only 1,1-CH3-DIM-Pyr4 (inactive in transactivation) interacted 

strongly with COUP-TF1/2 residues I219/212, C220/213, A223/216, L227/220, 

F295/288, S383/376, S381/374, S382/375, F383, and V394/387 (Figure II-5B); while only 

DIM-C-Pyr4 interacted strongly with COUP-TF1/2 residues S257/250, V261/254, 

F302/295, V380/373, V384/377, I385/378, and F389/382 (Figure II-5A). These 

differences could influence their different activities as activators of COUP-TF1.59  
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Figure II-5. Molecular graphics images of (A) DIM-C-Pyr4 and (B) 1,1-CH3-DIM-Pyr4 
in complex with COUPTF2. This figure is adapted from ref. 59*. 
 
 
 
Mechanism of DHMA-Induced Attractant Signaling by E. coli Tsr 

The attractant chemotaxis response of Escherichia coli (E. coli) to norepinephrine 

involves the conversion of norepinephrine into 3,4-dihydroxymandelic acid (DHMA) and 

the interaction of DHMA to the E. coli Tsr chemoreceptor.70 Initial studies used a racemic 

mixture of the (R) and (S) enantiomers, leaving open the question of which chiral form is 

active. To investigate the binding properties of (R)-DHMA and (S)-DHMA to E. coli Tsr, 

the docking-refinement protocol in combination with multiple multi-ns MD simulation, 

free energy calculations, and structural analysis were used.54, 55  

The docking refinement protocol suggested that (R)- and (S)-DHMA bound to Tsr 

with slightly different orientations within the serine-binding site.54, 55 Additional 

simulations and energetic/structural analysis of the docked structures predicted that (R)-

DHMA should promote a stronger attractant response than (S)-DHMA due to a 

 

* Reprinted with permission from “Activation of COUP-TFI by a Novel Diindolylmethane Derivative” by 
Kyungsil Yoon, Chien-Cheng Chen, Asuka A. Orr, Patricia N. Barreto, Phanourios Tamamis, and Stephen 
Safe, 2019. Cells, 8 (3), 220, Copyright 2019 by MDPI. 
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consistently greater-magnitude piston-like pushdown of the Tsr α-helix 4 toward the 

membrane upon binding of (R)-DHMA than upon binding of (S)-DHMA (Figure II-6).55 

Tsr α-helix 4 is directly contiguous with the transmembrane helix, which connects the 

periplasmic Tsr domain to the cytoplasmic HAMP domain,140, 141 and X-ray studies noted 

that a conformational change in this α-helix is induced by the binding of L-serine,142 a 

known Tsr chemoattractant.143 Additionally, the chemotaxis signaling of Tar by aspartate 

was suggested to be induced by similar piston-like motions.115  

 
 
 

 

Figure II-6. Molecular graphics image of the principal motions of E. coli Tsr in complex 
with (A) (R)-DHMA and (B) (S)-DHMA. The motion between the relaxed (red) and 
pushed-down (gold) states of α-helix 4 is represented by the cyan tube representation. This 
figure is adapted from ref. 55*. 

 

* Reprinted with permission from “Molecular Mechanism for Attractant Signaling to DHMA by E. coli 
Tsr” by Asuka A. Orr, Jingyun Yang, Nitesh Sule, Ravi Chawla, Kenneth G. Hull, Mingzhao Zhu, Daniel 
Romo, Pushkar P. Lele, Arul Jayaraman, Michael D. Manson, and Phanourios Tamamis, 2020. 
Biophysical Journal, 118 (2), 492-504, Copyright 2020 by Elsevier. 
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Dynamic cross correlation calculations showed that the conformational change in 

α-helix 4 was correlated with motions within the binding pocket (Figure II-7), suggesting 

that differences within the binding pocket induced the allosteric differences between the 

(R)- and (S)-DHMA bound Tsr.55 Further investigation showed that the interaction of 

DHMA with Tsr residue Thr156, which had been shown by genetic studies to be critical 

for the attractant response to L-serine and DHMA70 (Figure II-6A), was the primary cause 

for the piston-like motions.55 These findings provided impetus to experimentally separate 

the two chiral species and test their chemoattractant strengths. Both tethered cell and 

motility migration coefficient assays performed by experimental collaborators validated 

the computational prediction that (R)-DHMA is a stronger attractant than (S)-DHMA.55 

This study demonstrated that the docking-refinement protocol and simulation studies 

combined with experiments can be used to investigate situations in which subtle 

differences between ligands may lead to diverse chemotactic responses.55  
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Figure II-7. Dynamic cross correlation maps for E. coli Tsr binding to (A) (R)-DHMA and 
(B) (S)-DHMA using Cα atom coordinates. The color range to the right of each map 
indicates the degree of correlation (or anticorrelation), with blue indicating fully correlated 
motions and red indicating fully anticorrelated motions. The orange, cyan, pink, and green 
blocks highlight residue motifs belonging to α-helix 1, α-helix 2, α-helix 3, and α-helix 4 
of Tsr, respectively. The region encapsulated by green dotted lines denotes the key 
difference in correlated motions between Tsr bound to (R)-DHMA versus (S)-DHMA. 
This figure is adapted from ref. 55*. 
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Concluding Remarks on Docking-Refinement  

In this chapter, an in-house docking-refinement protocol was developed and 

applied to elucidate the binding of small-molecule ligands with subtle structural and 

physicochemical differences to various protein receptors.54-59 Docking MD simulations 

are used to explore different binding modes of a ligand within an unconstrained binding 

pocket, providing significantly greater flexibility to the complex structure in the 

exploration of binding modes. During the docking simulations, the independent use of 

harmonic and spherical potentials constraining the ligands within the protein’s binding 

pocket enables the exploration of binding modes both away from (quartic) and in 

proximity to (harmonic) their initial position. Additionally, the use of both short MD 

simulations in the docking simulations and the explicit-solvent MD simulations introduce 

flexibility to the protein and allow for the refinement of the initial structures of the 

candidate binding modes before selecting the most energetically favorable ones for further 

investigation.54-59 The docking-refinement protocol has enabled the study and 

differentiation of physicochemically and structurally similar ligands binding to several 

proteins.54-59 The ability to differentiate the binding of ligands with different functional 

properties has allowed for the delineation of potential key interactions for the ligand’s 

functional properties and provide a deeper molecular understanding of the protein’s 

functional mechanisms.54-59 
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CHAPTER III  

RNAS BINDING TO PROTEINS 

 

Characterization of Modified RNA Acid : Protein Interactions 

Introduction 

Nucleic acids participate in nearly every cellular process and serve vital functional 

roles in the regulation of gene expression.3, 4, 144, 145 Many of these vital functions rely on 

the intricate coordination of RNAs with RNA-binding proteins (RBPs).2-6, 8, 146 Due to the 

significance of RNA : protein interactions, 2-6, 8, 146 several experimental methods have 

been developed to study RNA–protein interactions including electrophoretic mobility shift 

assay (EMSA),147 florescent anisotropy/polarization,148 Förster resonance energy transfer 

(FRET),149 surface plasmon resonance (SPR),150 microscale thermophoresis (MST),151, 152 

and stochastic optical reconstruction microscopy (STORM).153 These powerful methods 

have allowed experimentalists to assess the specificity and affinity of RNA : protein 

interactions, but such methods are limited to the study of single or few molecular 

interactions at a time.6 Later, more recent developments have also given rise to large-scale 

quantitative methods based on next-generation sequencing (NGS)154, 155 and mass 

spectrometry,156 contributing to the genome-wide identification of RBPs, RNA targets, 

and cofactors.4  

A more comprehensive understanding of the fundamental mechanisms of nucleic 

acid-protein interactions can be gained through the determination of the three dimensional 

(3D) atomic structures of RNA : protein complexes.157 Recent advances in X-ray 
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crystallography, solution nuclear magnetic resonance (NMR), and cryo-electron 

microscopy (cryo-EM) techniques have enabled the determination of 3763 3D RNA : 

protein structures deposited in the Protein Data Bank (PDB)158 (as of 5/20/2021); yet, 

despite the power of such methods, determining complex structures present challenges in 

specific cases due to difficulties in crystalizing the structures, regions of disordered 

electron density, poor crystallization efficacy, modeling constraints, or disordered solvent 

molecules within the structure.159 Thus, computational structure prediction methods have 

been developed to significantly facilitate our knowledge of biomolecular interactions. 

During the last decades, the understanding of RNA : protein interactions has been enriched 

by the use of computational methods to predict RNA binding sites using homolog 

structures or template-based methods,160-164 by docking RNAs to proteins,165-169 and by 

simulating RNA : protein interactions.39, 43, 66, 170-176 To this end, all-atom molecular 

mechanics topologies and parameters compatible with existing force fields describing 

nucleic acids have been developed,42, 177-179 providing the means for researchers to 

investigate interactions between nucleic acids and proteins at an atomistic level.39, 43, 66, 

170-176 Apart from studying and predicting the conformation of RNA structures180-183 and 

RNA : protein complexes,39, 43, 66, 170-176 computational tools have also been useful in 

predicting potential protein binders184-186 and in designing proteins to bind specific 

RNAs.176, 187-189 

A particular subject of interest is the study of modified RNAs and their interactions 

to proteins. The presence of chemical modifications to canonical RNAs can influence the 

functions of RNA : protein interactions.190 Over 150 highly diverse modified RNAs have 
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been identified60 with possible functional roles in cellular metabolism.190 Despite the fact 

that technological advances investigating RNA : protein interactions have recently ignited 

interest in the field of modified RNAs, little is known on how modified RNAs affect the 

versatility of RNA function in varying environmental conditions191 and on their effect on 

the function of RNA : protein complexes.61 Even with the advances in sequencing 

technologies and experimental methods investigating RNAs binding to proteins, several 

major challenges still exist for mapping the epitranscriptome (reviewed in refs. 62-64). Most 

of the recently developed methods to detect and profile modified RNAs are low-

throughput, based on the coupling of next-generation sequencing (NGS) technologies62, 64 

to biochemical RNA immunoprecipitation approaches or to chemical conversion reactions 

of specific modifications and result in ribonucleoside misincorporation patterns due to 

reverse transcriptase arrest; in these cases the value of any RNA immunoprecipitation data 

crucially depends on the quality of the antibody and sequencing accuracy.62 However, the 

major challenge of NGS-based methodologies is that they are “blind” to the coexistence 

of several neighboring modifications (identical or different) on the same RNA molecule.62 

They also lack the resolution to detect the stoichiometry of modified RNAs.62 In addition, 

the reliability of the large amount of data produced by NGS cannot be verified 

independently or easily by alternative methods.62 

To understand the repertoire of the chemical modifications that a protein 

potentially recognizes, an independent screening experiment for each experimentally 

confirmed RNA chemical modification, resulting in ∼150 screening experiments that 

would be required, involving the chemical synthesis of the modified RNAs and a 
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considerable number of biochemical binding assays. It should be noted that, even 

commercially, many of these chemical modifications may be difficult to synthesize or may 

not yet have procedures developed for their formation. For this reason, interdisciplinary 

approaches combining experimental and computational approaches, which can provide a 

less costly means to screen modifications prior to experimentation, constitute a promising 

avenue for structure-based research, design, and prediction of interactions between 

chemically modified RNAs with proteins. While the importance of chemical modification 

to molecular recognition has been captured by the number of computational approaches 

that exist for the study and design of protein-protein interactions with unnatural/post-

transcriptionally modified amino acids (e.g. refs.178, 192), prior to these doctoral studies, to 

our knowledge, there were no reported computational structure-based protocols for the 

study of chemically modified RNA : protein interactions with a wide spectrum of possible 

modified RNAs. 

Until recently, the only available molecular mechanics parameters to study such 

interactions comprised of the 107 modified ribonucleotides available through AMBER-

compatible force field parameters.178 These parametrization efforts focused on the atomic 

partial charges, and relied on analogy with similar functional groups in the AMBER force 

field for all other parameters.178 Recently, MacKerell’s and Nilsson’s group have 

determined molecular mechanics force field parameters compatible with the CHARMM36 

all-atom additive force field for 112 modified ribonucleotides using the CHARMM force 

field parametrization protocol;177 their approach emphasizes fine-tuning of partial atomic 

charges and torsion angle parameters. This approach uses extensive quantum mechanics 
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calculations and molecular dynamics (MD) simulations of ribonucleotides in aqueous 

solutions for refinement against experimental data.177 Also, the capabilities of the 

CHARMM General Force Field (CGenFF),193-196 a program that performs atom typing 

and assignment of parameters and charges by analogy in a fully automated fashion, for the 

parametrization of modified RNAs that were not addressed in ref. 177 were enhanced; this 

allows for a more accurate parametrization of additional modified RNAs.177 In this 

chapter, the latest advancements in modified RNA parametrization prompted the 

development a CHARMM197-based protocol to screen and investigate modified RNAs in 

complex with protein receptors. In this chapter, the methodology and applications of a 

computational protocol for the characterization of modified RNAs that can be recognized 

by a target protein, developed as part of this doctoral study is described. This protocol is 

a step toward filling the need for methods studying modified RNAs in the context of their 

interactions with proteins. 
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Methodology of the Protocol for the Characterization of Modified RNA : Protein 

Interactions 

The protocol for the characterization of modified RNA : protein interactions can 

be outlined as follows:  (1) a set of force field parameters for modified RNAs and a starting 

structure of an RNA : protein complex of interest are obtained for use as inputs to the 

protocol; (2) the modified RNAs under investigation are categorized into trees according 

to their structural and physicochemical properties to facilitate the screening, decision-

making tool (3) a decision-making tool, comprising short simulations and interaction 

energy calculations, performs a fast and efficient search in a high-throughput fashion, 

through a list of different types of modified RNAs categorized into trees, and selects a 

subset of modified RNAs prone to interact with the target protein; (4) Selected 

modifications are further investigated using triplicate all-atom MD simulations and later 

evaluated and rated using association free energy calculations to produce a set of 

modifications expected to favor the interaction between an RNA strand and a given 

protein. The simulations also produce an ensemble of 3D structures of the modifications 

in complex with the protein of interest. These 3D structures can be analyzed to delineate 

the biophysical determinants of the interactions between selected modified RNAs and the 

target protein. The workflow of the protocol is shown in Figure III-1. In this section, the 

stages of the protocol for the characterization of modified RNA : protein interactions are 

described. A detailed description of the protocol and its use in a case study investigating 

the interactions of E. coli Polynucleotide Phosphorylase (PNPase) with a subset of 

modified RNAs is available in ref. 65. 
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Figure III-1. Workflow for the protocol for the characterization of modified RNA 
: protein interactions. This figure is adapted from ref. 65*. 

 

 

* Reprinted with permission from “A High-Throughput and Rapid Computational Method for Screening of 
RNA Post-Transcriptional Modifications that can be Recognized by Target Proteins” by Asuka A. Orr, 
Juan C. Gonzalez-Rivera, Mark Wilson, P. Reena Bhikha, Daiqi Wang, Lydia M. Contreras, and 
Phanourios Tamamis, 2018. Methods, 143, 34-47, Copyright 2018 by Elsevier. 



 

33 

 

Stage 1: Selection of Force-Field Parameters and Initial RNA : Protein Complex 

Structure 

The central aspect of the protocol for the characterization of modified RNA : 

protein interactions is the use of MD simulations and energy calculations to identify 

modified RNAs that interact favorably with a target protein. An initial structure of the 

target protein in complex with an RNA strand and a molecular mechanics force field are 

necessary to describe the energetics underlying interactions of proteins and cognate 

modified RNA. 

Several force fields are available for simulating proteins and nucleic acids, 

including CHARMM42, 177, 198 and AMBER.179, 199, 200 In the studies described in the next 

section, Application of the Protocol for the Characterization of Modified RNA : Protein 

Interactions, the CHARMM36 all-atom force field42, 177, 198 is used to represent protein 

residues and nucleic acids. The recent parametrization of 112 naturally occurring modified 

RNAs177 compatible with the CHARMM36 all-atom additive force field42, 198 enabled the 

development and implementation of the protocol for the characterization of modified RNA 

: protein interactions. Further, with the release of the CHARMM parameters for modified 

RNAs,177 the capabilities of CGenFF193-196 to parametrize modified RNAs were 

improved.177 Thus, additional modified RNAs that were not included in the 

parametrization of 112 modified RNAs177 can be adequately parametrized using CGenFF 

with low penalties.193-196 As part of this doctoral study, 13 additional modified RNAs were 

parametrized through CGenFF,193-196 resulting in a total of 125 modified RNAs that can 

be interrogated for their interactions to target proteins. In the first version of the protocol 
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for the characterization of modified RNA : protein interactions, a subset of 46 modified 

RNAs were interrogated for their interaction with a target protein (E. coli PNPase);65 in 

the second version of the protocol for the characterization of modified RNA : protein 

interactions, all 125 modified RNAs were interrogated for their interaction with target 

proteins (E. coli PNPase, human YTHDF1, human NOVA1, human TDP-43; currently 

under review).67 

The initial structure of the target protein in complex with an RNA strand is used 

as a starting template to model the target protein interacting with modified RNAs. The 

initial structure can be (1) obtained from the PDB,158 (2) built through homology 

modeling, or (3) built through first-principles or ab initio structure prediction techniques. 

The PDB158 contains experimentally resolved protein structures, including RNA : protein 

complex structures. The public availability of these experimentally resolved structures can 

greatly facilitate computational studies; if the structure of an RNA : protein complex of 

interest has been resolved and deposited on the PDB,158 the structure can be used as the 

initial structure.  If the RNA : protein complex of interest is unavailable, but a homologous 

structure has been resolved, homology modeled can be an attractive method to build the 

complex of interest. Mutations can be introduced to the homologous complex to model 

the complex of interest using programs such as SCWRL4201 with additional refinement 

through constrained minimizations and MD simulations.202-204 If the RNA : protein 

complex of interest is not available and there is also no homologous complex structure 

available, then a combination of structure prediction and docking tools may be used to 

model the initial structure. The initial independent structures of a protein or RNA can be 
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obtained from existing experimentally resolved structures or can be modeled using a 

variety of structure prediction servers.205-209 RNA docking programs can also subsequently 

be used to predict energetically favorable binding conformations of an RNA in complex 

with the target protein.167, 168 

 

Stage 2: Categorization of Modified RNAs into Trees 

The modified RNAs under investigation are categorized into “trees” according to 

their structural and physicochemical properties to facilitate the fast and efficient screening, 

decision-making tool (Stage 3). The modified RNAs are divided into four separate trees 

corresponding to one of the four canonical nucleotides (adenine, guanine, uracil, cytosine). 

Each tree starts from a seed comprising a canonical nucleotide and branches off into 

distinct modified RNAs (Figure III-2). The modified RNAs are categorized based on their 

structural and physicochemical properties such that modified RNAs within a branch all 

share similar properties. Modified RNAs stemming from a parent nucleotide corresponds 

to the parent nucleotide with the addition of simple chemical groups (Figure III-2). Thus, 

modified RNAs at the top of the trees are of higher complexity than the modified RNAs 

at the bottom of the trees (Figure III-2). The fast and efficient screening tool (Stage 3) will 

rapidly evaluate the modified RNAs energetic favorability for binding to a target protein 

based on the organization of the trees as described in the following section. The trees of 

modified RNAs used in the first version of the protocol for the characterization of 

modified RNA : protein interactions contained a subset of 46 modified RNAs and are 

presented in ref. 65. The trees of modified RNAs used in the second version of the protocol 
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for the characterization of modified RNA : protein interactions contained all 125 modified 

RNAs67 and are presented here in Figure III-2. 

 
 
 

 

Figure III-2. Organization of modified RNAs into trees stemming from uracil (U), 
cytosine (C), adenosine (A), and guanosine (G). 
 
 
 
Stage 3: Fast and Efficient Screening of Modified RNAs 

The fast and efficient screening tool evaluates the modified RNAs in a high-

throughput fashion to select a subset of modified RNA prone to interact with the target 

protein. The screening tool investigates the modified RNAs in accordance with their 

organization of the trees (Stage 2) using short MD simulations and energy calculations. 

For the purpose of the fast and efficient screening tool, the RNA : protein complex is 

truncated to reduce the computational resources required for the subsequent energy 
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minimizations and MD simulations. Light harmonic constraints are appropriately 

introduced to the truncated ends of the complex to preserve the shape and structure of the 

protein during the short MD simulations. Additionally, the GBMVII210 implicit solvent 

model is used to quickly sample the nucleotides. Multi-ns MD simulations are later used 

with the entire, untruncated version of the RNA : protein complex as a final assessment 

(Stage 4) of the effect of the modified RNAs selected by the screening tool described in 

this section. 

Following the organization of the trees, the fast and efficient screening tool first 

investigates the interactions of the canonical nucleotides through independent MD 

simulations and energy calculations. Each canonical nucleotide is introduced to a user 

defined RNA position under modification. Upon their introduction, short energy 

minimizations are performed to allow the four independent systems to adjust to the 

introduced canonical nucleotides. Subsequently, short MD simulations of 5 ns are 

performed for each of the four independent systems. Upon completion of the short MD 

simulations for the canonical nucleotides, the average interaction energy (the sum of 

electrostatic and van der Waals interaction energies) between the entire RNA strand and 

the truncated protein as well as the total energy of the RNA monomer strand is calculated 

for the last 1 ns of the short 5 ns MD simulations. These values are stored for subsequent 

comparisons to evaluate the favorability of the modified RNAs within the trees. 

After the investigation of the canonical nucleotides corresponding to the seeds of 

each tree, the screening tool investigates modified RNAs. Starting from the first level of 

each tree, modified RNAs are independently introduced to the user defined RNA position 
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under modification. Upon their introduction, short energy minimizations followed by a 

short 2 ns MD simulations are performed. Subsequently, the average interaction energy 

between the entire RNA strand and the truncated protein as well as the total energy of the 

RNA monomer strand are calculated for the last 1 ns of the short MD simulation. The 

average interaction energy and total energy values are used to determine if the modified 

RNA is prone to interact favorably with the target protein. For the modified RNA to be 

considered prone to interact favorably with the target protein, the average interaction 

energy of the RNA strand with the modified RNA should be more favorable than the RNA 

strand containing the parent nucleotide and the total energy of the RNA monomer 

containing the modification must be approximately equal to or less than that of the native 

RNA. If these energetic criteria are met, then the modified RNA is selected and stored for 

further investigation. However, if the modified RNA does not meet these criteria, then the 

modified RNA is considered unfavorable and is screened out from further investigation 

along with the following levels of modified RNAs stemming from the unfavorable 

modified RNA. The fast and efficient screening tool continues to evaluate modified RNAs 

by levels of the trees until either the trees are fully investigated or all the remaining 

modified RNAs have been screened out or discarded. 

The fast and efficient screening tool operates under the governing principle that 

further additions of simple chemical groups to a modified RNA with energetically 

unfavorable interactions are not expected to lead to any significant improvement in 

interactions. Thus, if a modified RNA is found to be unfavorable, then the modified RNAs 

in the branches stemming from the specific modified RNA are also discarded. The 
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governing principle was validated by investigating all modified RNAs in the fast and 

efficient screening tool in ref. 65. 

 

Stage 4: Refinement and Final Evaluation of Selected Modified RNAs in Complex 

with the Target Protein 

The selected modified RNAs from the fast and efficient screening tool (Stage 3) 

are further investigated using triplicate all-atom MD simulations and evaluated using 

association free energy calculations to produce a set of modified RNAs expected to favor 

the interaction between an RNA strand and a target protein. The selected modified RNAs 

are investigated using replicate, multi-ns, explicit solvent MD simulations to produce 

refined structures of the modified RNAs in complex with the target protein and to evaluate 

their energetic favorability. In this stage, the entire, untruncated structure of the RNA : 

protein complex is used as a starting template, and the selected modified RNAs are 

independently introduced at the user defined RNA positions. Triplicate simulation runs 

with different initial velocities are performed for reproducibility purposes.  

Upon completion of the multi-ns simulations, the energetic favorability of the 

modified RNAs in complex with the target protein are assessed using MM–GBSA49 

association free energy calculations. The simulation snapshots serve as a statistical pool 

of conformations for the association free energy calculations as well as further energetic 

and structural analysis. Modified RNAs in complex with the target protein that acquire the 

most favorable association free energies that are more favorable than that of all canonical 
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nucleotides are considered to interact favorably with the target protein. These modified 

RNAs are considered as possible modifications that are recognized by the target protein.  
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Application of the Protocol for the Characterization of Modified RNA : Protein 

Interactions 

The protocol for the characterization of modified RNA : protein interactions was 

developed for modified RNAs and successfully applied to several systems. The first 

version of the protocol (involving a subset of 46 modified RNAs) was used to study 

modified RNAs’ interactions with E. coli PNPase.65 The second version of the protocol 

(involving 125 modified RNAs) was used to study modified RNAs’ interactions with 

human YTHDF1, human NOVA1, and human TDP-43.67 Additionally, an analogous 

strategy to the protocol for the characterization of modified RNA : protein interactions 

was used to computationally design E. coli PNPase mutants with enhanced affinity to a 

single modified RNAs (8-oxoguanosine).66 All experiments were performed by members 

of Dr. Contreras’ lab at the University of Texas, Austin, TX. Contributors to studies 

associated with this section are listed in the authors lists of refs. 65, 66. Additional details of 

these study are provided in ref. 65, 66. 

 

Uncovering the Repertoire of Modified RNAs Recognized by E. coli PNPase 

The protocol for the characterization of modified RNA : protein interactions was 

first applied to investigate modified RNAs binding to E. coli PNPase.65 PNPase forms a 

homo-trimer complex that mainly functions as an exoribonuclease by dismantling RNA 

from the 3′ end to the 5′ end.211, 212 While PNPase is not an essential protein in E. coli, it 

has been linked to a wide variety of cellular processes. For instance, PNPase has been 

implicated in the degradation of small RNAs, as well as damaged RNA in response to 
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oxidative stress by interacting directly with the RNA oxidative lesion 8-oxoguanosine (8-

oxoG).213, 214 Driven by PNPase’s key role in RNA degradation,215 in the first version of 

the protocol, a subset of all known modified RNAs, 46 modified RNAs out of 

approximately 150, were investigated to discern which modified RNAs are predicted to 

bind to E. coli PNPase.65 The available X-ray structures of E. coli PNPase in complex with 

RNA fragments216 and Caulobacter crescentus (C. crescentus) PNPase in complex with a 

9-nucleotide RNA strand217 were used in combination with the available CHARMM36-

compatible all-atom additive force field parameters for 112 modified RNAs,177 and the 

available CGenFF193-196 parametrization for additional modified RNAs greatly facilitated 

this work.  

In this application of the first version of the protocol for the characterization of 

modified RNA : protein interactions, the protocol for the characterization of modified 

RNA : protein interactions screened out ∼89% of the total 46 possible number of modified 

RNAs to identify 5 modified RNAs with the most favorable interactions to E. coli 

PNPase.65 Furthermore, the correlation between computationally derived MM–GBSA49 

free association energies and experimental EMSAs derived Kd values show reasonably 

high correlation (Figure III-3).65 Thus, this test case showed that, using the protocol, (1) 

computational resources can be saved by only investigating, though all-atom MD 

simulations, RNA : protein complexes containing modified RNAs selected by the 

screening tool, and (2) experimental resources can also be reserved for only RNA strands 

containing the modified RNAs predicted to have the most favorable interactions to a 

protein.  
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Figure III-3. Average MM–GBSA association free energies (kcal·mol-1) with 
respect to experimentally derived dissociation constants (nM) of RNA strands containing 
select modified RNAs. The average and standard deviation MM–GBSA association free 
energy values for each modified RNA were calculated using the average association free 
energies calculated from the three independent simulation runs of each complex. This 
figure is adapted from ref. 65*.  

 
 
 

Computational Evolution of PNPase Towards Enhanced Oxidized-RNA Binding 

The protocol for the characterization of modified RNA : protein interactions was 

used as a basis to investigate an “inverse” problem of which amino acids enhance binding 

to a modified RNA of interest. Specifically, the analogous strategy was implemented to 

design PNPase mutants with enhanced affinity for oxidative RNAs (8-oxoG).66 In this 

study, a library of possible amino acid mutations to E. coli PNPase was determined using 

a bioinformatics analysis, combinations of mutations were initially screened using short 

MD simulations in implicit solvent and interaction energy calculations of a truncated 

PNPase : RNA strand complex, and selected combinations of mutations were examined 

 

* Reprinted with permission from “A High-Throughput and Rapid Computational Method for Screening of 
RNA Post-Transcriptional Modifications that can be Recognized by Target Proteins” by Asuka A. Orr, 
Juan C. Gonzalez-Rivera, Mark Wilson, P. Reena Bhikha, Daiqi Wang, Lydia M. Contreras, and 
Phanourios Tamamis, 2018. Methods, 143, 34-47, Copyright 2018 by Elsevier. 
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in detail using all-atom multi-ns MD simulations and association free energy calculations 

of the full complex system.66  

The interactions of E. coli PNPase with 8-oxoG and G were first examined in 

atomic detail to provide insights into the mechanism of 8-oxoG discrimination. In this 

study, the PNPase subunits were hypothesized to cooperate to form a binding site using 

the dynamic SFF groove within the central channel of the PNPase homotrimer. Thus, this 

site was evolved using a novel approach combining biophysical constraints and a multi-

stage computational screening strategy analogous to the protocol for the characterization 

of modified RNA : protein interactions to select the most promising mutants for enhanced 

8-oxoG binding. In the multi-stage computational screening, PNPase mutants from a 

library of mutations, derived from bioinformatics analysis of the 782 PNPase sequences 

in the UNIPROT database,218 analogous to ref. 219, were initially screened through short 

implicit solvent MD simulations and subsequently assessed using multi-nanosecond MD 

simulations and free energy calculations.  

EMSAs performed by experimental collaborators showed that evolving just the 

SFF groove resulted in a fold increase in 8-oxoG affinity between 1.2 and 1.5 and/or 

selectivity between 1.5 and 1.9.66 As a result of the computational analysis of the PNPase 

mutants, a few key observations were made: (1) mutations involving S76N and/or Y77F 

substitutions provide higher 8-oxoG affinity in the NYM, NYT and NFH mutants, 

attributed to new hydrogen bond interactions with 8-oxoG, (2) a unique trend seen in the 

GFT mutant is that the F78T substitution directly contacts the 8-oxoG modification, which 

can be linked to the increased 8-oxoG selectivity in this mutant, and (3), for the SYH 
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mutant, a balance between diminished 8-oxoG affinity at position P8 and increased 8-

oxoG affinity at position P9 was observed.66 These interactions are shown in Figure III-4. 

In addition to the improvement in 8-oxoG binding, complementation of K12 Δpnp with 

plasmids expressing mutant PNPases caused increased cell tolerance to H2O2.66 This 

observation provides a clear link between molecular discrimination of RNA oxidation and 

cell survival. Moreover, this study provides a framework for the manipulation of modified 

RNA protein readers,66 which has potential application in synthetic biology and 

epitranscriptomics. 
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Figure III-4. Molecular interactions of 8-oxoG with the mutant PNPases: NYM (panel A 
for position P8 and panel B for position P9); NYT (panel C for position P8 and panel D 
for position P9); NFH (panel E for position P8 and panel F for position P9); GFT (panel 
G for position P8 and panel H for position P9) and SYH (panel I for position P8 and panel 
J for position P9). This figure is adapted from ref. 66*.  

 

* Reprinted with permission from “Computational Evolution of an RNA-Binding Protein Towards Enhanced 
Oxidized-RNA Binding” by Juan C. Gonzalez-Rivera, Asuka A. Orr, Sean M. Engels, Joseph M. 
Jakubowski, Mark W. Sherman, Katherine N. O'Connor, Tomas Matteson, Brendan C. Woodcock, Lydia 
M. Contreras, and Phanourios Tamamis, 2020. Computational and Structural Biotechnology Journal, 18, 
137-152, Copyright 2020 by Elsevier. 
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Uncovering a Broader Recognition of Modified RNAs Among Protein Readers  

 The protocol was expanded in its second version to include over 100 modified 

RNAs (125 modified RNAs) and applied for the first time in the literature to study 

modified RNA : protein interactions by four RNA binding proteins: E. coli PNPase, YTH 

N6-methyladenosine RNA binding protein 1 (YTHDF1), neuro-oncological ventral 

antigen 1 (NOVA1) and transactive response DNA-binding protein 43 (TDP-43).67 These 

proteins were selected given that they each contain one of the three most representative 

currently known RNA binding domains (RBDs) in protein readers – the YT521-B 

homology (YTH) domain, the K homology (KH) domain, and the RNA recognition motif 

(RRM) domain. The 3D structure of E. coli PNPase in complex with an RNA strand was 

modeled in previous studies of this doctoral study,65, 66  and the 3D structures of the 

remaining proteins in complex with RNAs have been experimentally resolved.220-222 

Moreover, all these domains are functionally characterized and/or implicated on human 

disorders.223-231  

In this study, the hypothesis that protein readers exhibit an extensive (but 

previously undocumented) degree of promiscuity for recognition of modified RNAs was 

investigated. The protocol for the characterization of modified RNA : protein interactions 

demonstrates that, amongst the four biologically relevant proteins used as samples in this 

study, there is a broader range of modified RNAs recognized than initially anticipated.67 

Importantly, based on the protocol and experimental validation, some of the proteins were 

discovered to have a higher affinity for newly identified modified RNAs than to those 

modifications previously recognized and studied.67 Specifically, E. coli PNPase was 
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computationally predicted and experimentally validated to recognize 1-methylguanosine 

(m1G) and 8-oxoG;67 YTHDF1 was computationally predicted and experimentally 

validated to recognize 3-methyluridine (m3U) and 6-methyladenosine (m6A);67 NOVA1 

was computationally predicted and experimentally validated to recognize 1-

methylguanosine (m1G) and 8-oxoG;67 TDP-43 was computationally predicted and 

experimentally validated to recognize 1-methyladenosine (m1A) and 6-methyladenosine 

(m6A).67 Overall, this study provides evidence of the possible broader binding promiscuity 

among protein readers of modified RNAs and provides insights into the molecular basis 

of their recognition. This study is currently under review.67 
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Concluding Remarks for the Protocol for the Characterization of Modified RNA : 

Protein Interactions 

Chemical modifications to RNAs can impact the functions of RNA : protein 

interactions.190 Uncovering which modified RNAs are recognized by proteins and how 

their binding affects the functions of RNA : protein interactions using conventional 

methods face challenges.62-64 These challenges in uncovering which modified RNAs could 

be recognized by a target protein and the functional roles of these modified RNAs are 

compounded when considering that there are over 150 modified RNAs known to date.60 

In this chapter, a protocol for the characterization of modified RNA : protein 

interactions was developed to uncover the repertoire of modified RNAs recognized by a 

target protein. The programs used in the protocol for the characterization of modified RNA 

: protein interactions has been successfully used to study an array of different RNA 

binding proteins. The programs have been expanded from the first version of the protocol65 

to include additional modified RNAs in the second version of the protocol,67 thus 125 

modified RNAs are accounted for in the current version. The application of the protocol 

for the characterization of modified RNA : protein interactions has uncovered the 

repertoire of modified RNAs recognized by protein readers and highlights the broader 

discrimination of these proteins than previously known.65, 67 Additionally, an “inverse” 

problem of which amino acids enhance binding to a modified RNA of interest can also be 

approached using the strategies used in the protocol for the characterization of modified 

RNA : protein interactions.66   
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CHAPTER IV  

INHIBITION OF AMYLOID SELF-ASSEMBLY 

 

Study and Design of β-wrapin (Affibody Proteins) Binding and Specificity to 

Amyloidogenic Proteins 

Introduction 

Several age-related diseases are characterized by the accumulation of proteins into 

amyloid fibrils. Senile plaques formed by amyloid-β peptide (Aβ) and neurofibrillary 

tangles formed by tau are pathological features of Alzheimer’s disease (AD);232, 233 Lewy 

bodies and Lewy neurites formed predominantly by α-synuclein (α-syn) are pathological 

features of Parkinson’s disease (PD) and the related illness, dementia with Lewy 

bodies;234-238 Pancreatic islet amyloid formed by islet amyloid polypeptide (IAPP or 

amylin) are pathological features of type 2 diabetes (T2D).239 The amyloid states formed 

by amyloidogenic proteins share similar self-assembly and structural cross β-spine 

properties, containing β-strands that are oriented perpendicular to the fibril axis.240-249 

Successful strategies to prevent protein aggregation and amyloid formation have been 

reported, which among others, include (i) inhibition of aggregation by sequestering 

individual amyloidogenic protein monomers, (ii) inhibition of aggregation through small 

molecules, and (iii) inhibition of amyloid growth through peptide-based inhibitors 

(reviewed in ref. 250). 

Inhibition of aggregation by sequestration is achieved through strong binding to 

aggregation-prone regions of amyloidogenic monomers by binding proteins, thereby 



 

51 

 

prohibiting self-assembly.250 The sequestration of monomeric Aβ was achieved through 

an ZAβ3, an engineered Aβ-binding affibody protein homodimer with a disulfide bridge 

between the Cys28 residues of the two monomer subunits,71, 72 hereinafter referred to as 

subunit 1 and subunit 2. ZAβ3 stabilizes a β-hairpin conformation of Aβ, which interacts 

with two β-strands formed by the affibody subunits to make a four-stranded intermolecular 

β-sheet72 (Figure IV-1A). Thereby ZAβ3 prohibits the initial aggregation of Aβ monomers 

into toxic forms.95 As tau, α-syn, and IAPP also contain motifs with high β-sheet 

propensities, β-wrapins (β-wrap proteins), derived from phage display libraries based on 

the ZAβ3 scaffold, were also discovered with the ability to recognize and stabilize β-

hairpin conformations of motifs with high β-sheet propensity within the amyloidogenic 

proteins.68-70 The introduction of between one and seven amino acid exchanges in ZAβ3 

resulted in β-wrapins AS10, AS69, HI18, and TP4 which have different affinities for Aβ, 

α-syn, IAPP, and tau68-73 (Figure IV-1B). According to experiments, AS10 binds to Aβ, 

α-syn, and IAPP with sub micromolar affinity,73 AS69 binds significantly stronger to α-

syn than to Aβ,70 HI18 binds IAPP with nanomolar affinity,69 TP4 binds significantly 

stronger to tau than to Aβ,68 and ZAβ3 binds significantly stronger to Aβ than to α-syn or 

tau68, 70, 72 (Figure IV-1B). 
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Figure IV-1. Overview of β-wrapin structure, sequence, and affinity to Aβ, α-syn, IAPP, 
and tau. (A) The structure of ZAβ3 binding to Aβ. (B) Sequences of β-wrapin variants in 
comparison to ZAβ3 and their affinities to Aβ, α-syn, IAPP, and tau as reported in refs. 
68-73.  
 
 
 

The development of β-wrapins with different affinities and specificities for Aβ, 

tau, α-syn, and IAPP could allow the discovery of multi-targeted binding agents that can 

serve in therapeutic applications for AD, PD, and T2D. Such agents can be of vital 

importance considering the increasing evidence for possible links between these proteins. 

For example in amyloid diseases, a significant portion of AD cases exhibit a third 

prevalent neuropathology, in addition to Aβ senile plaques and tau neurofibrillary tangles, 

associated with the aggregation of α-syn into Lewy bodies, which is traditionally 

associated with PD.251, 252 Notably, patients with the Lewy body variant of AD exhibit an 

aggressive disease course with more pronounced cognitive dysfunction than patients with 

pure AD (reviewed in ref. 251). Epidemiological studies also show an increased risk of AD 

in patients with T2D.253-263 Plaques comprised of Aβ and IAPP co-aggregates were found 

in brain dissections from subjects diagnosed with both AD and T2D, and IAPP deposits 

were also found in subjects diagnosed with AD without clinically apparent T2D.264 T2D 

is also associated with a significantly increased risk for developing PD.265-268 Furthermore, 

clinical studies described that PD symptoms were notably worse after the onset of T2D 
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(reviewed in ref. 268). Additionally, Aβ, tau, α-syn, and IAPP have been suggested to 

promote the formation and/or aggregation of each other.269-273  

Single-targeted and multi-targeted β-wrapins with enhanced affinity for Aβ, α-syn, 

IAPP, and tau could serve as promising agents for AD, PD, and T2D. Experimental 

methods rely on the use of phage-display libraries to discover novel β-wrapins with 

mutable β-wrapin positions selected based on intuition and insights from NMR studies. 

Despite the fact that phage-display methods are significantly more expensive compared to 

computational design methods, they have been successfully implemented to derive a β-

wrapin variant (ZSYM73) with pico-molar affinity to Aβ.21 However, two challenging 

aspects of β-wrapin design are difficult to resolve through existing tools alone and still 

remain challenging: (1) the identification of β-wrapin residue positions that, upon 

mutation, are most likely to result in higher-affinity and (2) the identification of mutations 

to these β-wrapin residue positions that can be introduced to design β-wrapin variants with 

enhanced single-targeted or multi-targeted affinity toward amyloidogenic proteins.  

In this chapter, the methodologies developed to study and design β-wrapins 

binding to amyloidogenic proteins as part of this doctoral study and their applications is 

described.  The methodology to design β-wrapins with enhanced affinity to Aβ, tau, α-

syn, and IAPP or combinations of the monomers involves an iterative, systems-like 

approach involving the study of β-wrapins binding to amyloidogenic proteins with known, 

experimentally derived affinities through a combinations of MD simulations and free 

energy calculations, an optimization-based protein design model that performs an initial 

screening, MD simulations of the designed β-wrapins passing the initial screening, and 
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free energy calculations evaluating the designed β-wrapins. Additionally, the rational 

design of β-wrapins with aromatic canonical and non-canonical amino acid N-termini 

modifications mimicking the mechanism of action of a particular compound binding to 

amyloid fibrils and inhibiting amyloid elongation is also explored using MD simulation, 

structural analysis, and free energy calculations in this chapter. The rational design of 

modified β-wrapin N-termini was performed with the aim to amplify β-wrapins’ amyloid 

inhibitory properties and overcome difficulties in designing β-wrapins with significantly 

enhanced multi-targeted properties. 
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Methodology for the Study and Design of β-wrapins Binding to Amyloidogenic Proteins 

To design β-wrapins with enhanced single-targeted affinity to Aβ, tau, α-syn, and 

IAPP or multi-targeted affinity to combinations of the amyloidogenic protein monomers, 

an iterative, systems-like approach was used following three steps (Figure IV-2): (1) 

understand the binding and specificity of β-wrapins for amyloidogenic proteins, (2) screen 

designed β-wrapin sequences using an in-house developed optimization-based design 

model, and (3) evaluate the top-ranked designed β-wrapin sequences using all-atom MD 

simulations and free energy calculations.  

To understand the binding and specificity of β-wrapins for amyloidogenic proteins, 

molecular dynamics (MD) simulations and free energy calculations were performed to 

investigate β-wrapins in complex with Aβ, α-syn, IAPP, and tau. For this stage, the NMR 

structures of β-wrapins ZAβ3, AS69, and HI18 in complex with Aβ,71 α-syn,70 and IAPP69 

respectively, provided the grounds to computationally investigate a series of β-wrapins in 

complex with amyloidogenic monomers. The investigated β-wrapins initially comprised 

of previously published β-wrapins whose affinities to Aβ, α-syn, IAPP, and/or tau have 

been experimentally evaluated in previous studies.68-73  

Biophysical insights gained from these studies were passed to the screening, 

optimization-based design model as biophysical constraints in the form of β-wrapin 

residue positions amenable for modification. To initial screen designed sequences of β-

wrapins for enhanced single-targeted affinity to Aβ, tau, α-syn, and IAPP or multi-targeted 

combinations of the amyloidogenic protein monomers, a FORTRAN design program was 

developed. The design program introduces mutations to a dynamic structural template 
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from MD simulations and evaluates their energetic favorability in a coarse-grained 

fashion, treating each residue as a single bead, allowing for a rapid initial screening of 

potential designed β-wrapin variants.  

To evaluate the top-ranked designed sequences of β-wrapin variants produced 

from the optimization-based model, the designed β-wrapins are modeled and evaluated 

through MD simulations, free energy calculations, and structural analysis. Designed β-

wrapin variants with association free energies less than the most effective existing β-

wrapins and meeting criteria for residue pair-wise interactions and structural stability in 

the unbound state (data gathered from the studies investigating the binding and specificity 

of existing β-wrapins, described in the following paragraphs) can be considered promising 

designs. Data from MD simulations and free energy calculations for all the evaluated 

designs were additionally passed back to the first stage investigating the binding and 

specificity of β-wrapins to determine any new “rules” (e.g. residue positions that should 

not be mutated as mutations can result in structural instability) to be applied to the 

screening of designed β-wrapin sequences in the optimization-based design model.  
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Figure IV-2. Workflow for the β-wrapin design strategy. (1) The binding and specificity 
of experimentally tested β-wrapins are understood using MD simulations, association free 
energy calculations, and residue-pairwise interaction free energy calculations. (2) 
Designed β-wrapin sequences are initially screened using an optimization-based design 
model, which produced a rank-ordered list of designs. (3) The top-ranked designed β-
wrapin sequences are modeled and evaluated using MD simulations, association free 
energy calculations, residue-pairwise interaction free energy calculations, and RMSF 
calculations of the β-wrapin’s unbound state. 

 
 
 

Stage 1: Understanding the Binding and Specificity of β-wrapins for Amyloidogenic 

Proteins 

To design β-wrapins with enhanced binding to amyloidogenic proteins, the binding 

and specificity of existing β-wrapins must be examined and understood. To understand 

the binding and specificity of existing β-wrapins, MD simulations and free energy 

calculations are used. In this stage, the NMR structures of the ZAβ3 : Aβ,71 AS69 : α-
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syn,70 and HI18 : IAPP69 complex structures provide initial structural templates to model 

different β-wrapin variants in complex with different amyloidogenic proteins. The 

mutated side chains across different β-wrapins are introduced through SCWRL4.0,201 and 

the Cys28-Cys28 disulfide bridge between the two subunits of each β-wrapin was 

maintained using a disulfide patch from the CHARMM36 topology file.198 Additionally, 

truncated N- and C-termini of the modeled β-wrapins were acetylated and amidated to 

alleviate any artifacts from artificially placing positively or negatively charged groups at 

the backbone termini of the truncated complexes. 

The modeled β-wrapins in complex with the amyloidogenic protein monomer of 

interest were subsequently investigated through MD simulations. Prior to the execution of 

the MD simulations, each complex was solvated in a cubic explicit-water box with a 

potassium chloride concentration set to 0.15 M. Additional potassium or chloride ions 

were introduced to neutralize the charge of the simulation system. The ions were 

introduced to the simulation through Monte Carlo simulations.274, 275 The simulation 

systems were subsequently energetically minimized through steepest descent 

minimization and Adopted Basis Newton–Raphson minimization.  

The simulation systems were equilibrated in three steps, analogously to ref. 276. In 

the first equilibration step, each complex was simulated for 1.0 ns with 1.0 kcal·mol-1·Å-

2 harmonic constraints on backbone atoms and 0.1 kcal·mol-1·Å-2 harmonic constraints on 

side chain atoms. In the second equilibration step, all constraints were released, and the 

systems were simulated for 10 ns to allow the modeled and mutated residues of the β-

wrapins to adopt improved conformations and interactions. Finally, an additional six 
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equilibration runs were performed, according to which the refined-equilibrated structure 

of the second step was extracted and subjected to an additional short simulation with light 

constraints to allow the simulated systems to further equilibrate. In this step, the velocities 

were reinitialized to produce six independent runs for each complex.  

Finally, all constraints were released, and the simulation systems entered the final 

production runs in which each simulation system was simulated for 24 ns with frames 

extracted every 20 ps. Six independent runs for each β-wrapin : amyloidogenic protein 

complex system were performed to check the reproducibility of results. All simulations 

were performed using the Leap-Frog Verlet algorithm with the pressure set to 1.0 atm and 

the temperature held at 300 K using the Hoover thermostat. Fast table lookup routines for 

nonbonded interactions277 were applied, and the SHAKE algorithm was implemented to 

constrain the bond lengths to hydrogen atoms.278, 279 Periodic boundary conditions were 

applied in each simulation, and all MD simulations were performed using CHARMM36 

topology and parameters.198 The simulations were performed using CHARMM.197 Upon 

the completion of the MD simulation runs, water molecules and ions were stripped from 

the trajectories, and the sextuplicate 24 ns simulation snapshots were analyzed as follows. 

The binding of the β-wrapin variants to the amyloidogenic protein monomers were 

then evaluated through free energy calculations. To uncover the energetic driving forces 

leading to high affinity and no/minimal affinity of β-wrapins for amyloidogenic protein 

monomers, MM–GBSA49 association free energy calculations were performed. To 

uncover the key interactions leading to enhanced or diminished affinity of β-wrapins for 
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amyloidogenic protein monomers residue pairwise interaction free energies were 

performed, analogously to refs. 202, 276, 280.  

 

Stage 2: Optimization-Based Design of Promising β-wrapin Variants 

Based on the biophysical insights gained from the previous stage, a protein-protein 

design program was devised, inspired by Protein WISDOM,219 to computationally identify 

the set of optimum set of positions and mutations which will increase the binding affinity 

of the designed β-wrapin to a target amyloidogenic protein without interfering the 

designed β-wrapin’s conformation ((2) of Figure IV-2). The program uses biophysical 

insights from MD simulations ((1) of Figure IV-2) in the form of residue pairwise 

interaction free energy values as input to determine residue positions amenable for 

mutation and exhaustively screens a library of possible mutations per mutable residue 

position ((2) of Figure IV-2). Additionally, structures snapshots extracted from MD 

simulations were used as structural templates on which mutations were introduced. Upon 

completion of the screening stage, combinations of mutations were rank ordered by their 

interaction energy from most favorable to least favorable. The optimization-based 

problem is presented in Equation IV-1 and is solved through exhaustive enumeration in 

FORTRAN. 
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Equation 

IV-2 

 

In Equation IV-1 and Equation IV-2, p is the total number of amyloidogenic proteins under 

investigation, and U is the an index running through each of the amyloidogenic proteins 

under investigation. f is the total number of flexible structural templates under 

consideration in the design (10; extracted from MD simulations performed in the previous 

stage74, 75), and s is an index running through each flexible structural template. n is the 

total number of residues in the targeted amyloidogenic protein, and b is the total number 

of residues per β-wrapin subunit. i is a residue position in the β-wrapin modified. ji is one 

of a set of possible residues, mi, for position i. k is one of the residue position interacting 

with the residue of position i, with k ≠ i. lk = one of 20 possible residues, mk, for position 
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k. Eik
jilk represents the interaction energy between residue ji at position i and residue lk at 

position k, and the values were extracted from the SIPPER force field234. In line with the 

coarse-grained representation of residues in the SIPPER force field234, wik
jilk(s) is binary 

variable equal to 1 if the geometric centers of residue l of position k is within 6.0 Å of 

residue j of position i and 0 otherwise at the specific snapshot s. yi
ji and yk

lk were binary 

variables equal to 1 if positions i,k were occupied by residues ji,lk and 0 otherwise. aik
jilk is 

a binary variable equal to 0.5 if n < i ≤ n+b and n < k ≤  n+b or if n+b < i ≤ n+2b and n+b 

< k ≤ n+2b and equal to 1 otherwise; in this way, intramolecular interactions within a 

subunit are balanced with the rest of the interactions and are not counted twice; notably 

intramolecular interactions are explicitly considered in the design. $φ1,φ2,…,φv% is the set 

of residue positions amenable for modification in the β-wrapin such that φ1<φ2<…<φv. 

SASAi
ji(s) is the estimated solvent accessible surface area (SASA) of the introduced 

amino acid ji at position i and is estimated as the theoretical SASA of the original residue 

– the SASA of the original residue in the scaffold at frame s). γ is an empirical surface 

tension coefficient (0.001 kcal·mol-1·Å-2). The constraints ji+b = ji∀(n<i≤n+b) and ji-b =

ji∀(n+b<i≤n+2b) guarantee that the two β-wrapin subunits will be identical upon 

mutation. The aforementioned constraint is optional and may not be applied. 

lk=ji∀k∈$φ1,φ2,…,φv% is a constraint to ensure that the residue at position k must be the 

same as the residue at position i for k belonging to the set of amenable positions, and 

lk>i∀k∈$φ1,φ2,…,φv% is a constraint to ensure unique pair-wise interactions. The 
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computational design algorithm reads the coordinates of the amyloidogenic proteins first, 

followed by the coordinates of the two β-wrapin subunits (hence the summation of i begins 

at n+1). 

Upon solution of the design model using exhaustive enumeration in FORTRAN, 

the generated β-wrapin variant sequences were ranked by interaction energy from lowest 

(most favorable) to highest (least favorable). The top-ranked designed β-wrapin variant 

sequences were subsequently selected to be evaluated based on their energetic favorability 

in binding a target amyloidogenic protein or set of amyloidogenic proteins, the presence 

of enhanced or diminished interactions, and structural stability in their unbound state ((3) 

of Figure IV-2). 

 

Stage 3: Evaluation of Top Ranked β-wrapin Variants 

To evaluate their energetic favorability, the designed β-wrapin variants were 

modeled and simulated in triplicate, explicit solvent MD simulations, and using snapshots 

from the MD simulations, association free energy calculations were performed to evaluate 

the designed β-wrapin variants’ energetic favorability. For the designed β-wrapin variants 

with predicted enhanced affinity (based on association free energy calculations), three 

additional replicate MD simulations were performed for reproducibility for a total of six 

replicate MD simulations per promising design. To identify enhanced interactions leading 

to enhanced predicted affinity and ensure no interaction-based switches leading to 

diminished affinity were present,74, 75 interaction free energy calculations were performed. 

Additionally, to account for the entropic component of the β-wrapins’ affinity to the target 
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amyloidogenic protein, an additional criterion was introduced based on MD simulations 

of the unbound state of the designed β-wrapins investigating their stability in comparison 

to existing β-wrapins. To evaluate the β-wrapin’s stability, MD simulations of the 

unbound β-wrapins in explicit water and root mean square fluctuation (RMSF) 

calculations on the resulting MD simulation snapshots were used. The RMSF of the Cα 

atoms for residues 21 through 56 were calculated. The Cα atoms for residues 12 through 

20 were excluded in these calculations as this region is disordered in the unbound state of 

the β- wrapins. Higher fluctuations in the designed β-wrapins compared to existing β-

wrapins, resulting in higher average RMSF values, were hypothesized to correlate with 

more disorder or higher entropy in the unbound state of the designed β-wrapins compared 

to existing β-wrapins. The average RMSF was found to be correlated with the entropy for 

experimentally tested β-wrapins (according to experiments performed by Dr. Hoyer’s lab). 

Thus, the average RMSF was used as a metric to evaluate the designed β-wrapin variants’ 

entropic favorability. 
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Applications for the Study and Design of β-wrapins Binding to Amyloidogenic Proteins 

The methodology to study and design β-wrapins has been applied to study how β-

wrapin variants bind to amyloidogenic proteins Aβ, α-syn, and IAPP74, 75 as well as their 

binding to variants of tau. All experiments in this section were performed by members of 

Dr. Hoyer’s lab at Heinrich-Heine-University, Düsseldorf, Germany. Contributors to these 

works are listed in the authors lists of refs. 74, 75 and will be listed as authors in additional 

papers to be submitted. Additional details of these studies are provided in refs. 74, 75. 

 

Study of β-wrapin variants binding Aβ, α-syn, and IAPP 

To understand ((1) of Figure IV-2) the binding properties of β-wrapin variants in 

complex with Aβ, α-syn, and IAPP were investigated through a combination of 

computational and experimental methods.74, 75 The β-wrapin variants binding to Aβ, α-

syn, and IAPP were investigated as they have a range of affinities for all three 

amyloidogenic proteins, ranging from micro-molar affinities to undetectable binding, and 

NMR structures have been resolved depicting β-wrapin binding to the three 

amyloidogenic proteins; structures of any β-wrapin in complex with tau have not been 

reported.  

According to MD simulations and free energy calculations, β-wrapin complexes 

acquiring significantly favorable polar association free energies in conjunction with fairly 

favorable nonpolar association free energies are indicative of a highly active β-wrapin.74, 

75 Additionally, Aβ 18VFFAED23 and α-syn 38LYVGSK43 are key residue domains 

determining a β-wrapin’s binding specificity, whereas IAPP is a more promiscuous β- 
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wrapin target, presumably due to the lower number of charged residues in its β-hairpin 

motif compared to Αβ and α-syn.74, 75 Due to the lower selectivity of IAPP compared to 

Aβ and α-syn in binding to β-wrapins, ΖΑβ3 and AS69, which were engineered to bind to 

Αβ and α-syn, respectively, were computationally predicted and experimentally verified 

to have similar affinities to IAPP as AS10.74 Finally, according to the analysis, common 

non-polar and polar interactions between β-wrapin residues and corresponding 

amyloidogenic protein (Αβ, α-syn, and IAPP) residues, based on structural alignment, 

contribute to AS10’s ability to bind all three amyloidogenic proteins with micro-molar 

affinity (Figure IV-3).74, 75 These studies suggested that the design of high-affinity single-

targeted or multi- targeted β-wrapin variants could be achieved through (1) optimization 

of specific interactions with corresponding target residues in the complex core that forms 

upon coupled folding-binding, (2) exploiting the dynamic interactions with peripheral 

segments of the amyloidogenic proteins that remain structurally flexible in the bound 

state.74, 75  
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Figure IV-3. Molecular graphics images of the common hydrophobic interactions of AS10 
in complex with (A) IAPP, (B) Aβ, and (C) α-syn. AS10 subunits 1 and 2 are shown in 
red and orange tube representation, respectively, and IAPP is shown in blue tube 
representation. The specified hydrophobic and aromatic interactions contribute 
significantly to the ability of AS10 to sequester all three of the amyloidogenic proteins. 
This figure is adapted from ref.  74*. 
 
 
 
Molecular modeling of the TP4 : tau complex  

To understand ((1) of Figure IV-2) the binding properties of β-wrapin variants in 

complex with tau and tau variants were also computationally investigated. Due to the 

absence of any experimentally resolved structure of a β-wrapin : tau complex, the binding 

of TP4 in complex with tau was computationally modeled. NMR spectroscopy of TP4 in 

complex with tau identified two alternative tau binding sites comprising tau domains 267-

317 and 297-358.68 Using the NMR structure of ZAβ3 in complex with Aβ72 as a template, 

a combination of homology modeling and simulation techniques, including 

MODELLER,206 constrained REMD simulations, and extensive MD based refinement 

 

* Reprinted with permission from “Elucidating the multi-targeted anti-amyloid activity and enhanced islet 
amyloid polypeptide binding of β-wrapins” by Asuka A. Orr, Hamed Shaykhalishahi, Ewa A. Mirecka, 
Sai Vamshi R. Jonnalagadda, Wolfgang Hoyer, and Phanourios Tamamis, 2018. Computers & Chemical 
Engineering, 116, 322-332, Copyright 2018 by Elsevier. 
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were used to model missing residues of tau loop regions and generate model structures of 

TP4 in complex with the two binding sites of tau, independently (Figure IV-4B). 

Following the modeling of TP4 in complex with the two binding sites of tau, the 

accuracy of the initial structure was evaluated through MD simulations and free energy 

calculations of TP4 in complex with tau variants with experimentally determined affinities 

for TP4.68 According to sextuplicate MD simulations and association free energy 

calculations, as described in Methodology for the Study and Design of β-wrapins to 

Amyloidogenic Proteins and performed in previous studies,74, 75 high agreement between 

the computationally derived association free energies and previously derived 

experimentally derived Kd values68 was achieved for both binding sites of tau (Figure 

IV-4A). This supported the accuracy of the modeled TP4 : tau complex structures. 

Additionally, the computationally derived association free energies indicated that TP4 

binding to tau binding site 1 (residue domain 267-317) was more energetically favorable 

than tau binding at site 2 (residue domain 297-358). Thus, dual-Aβ/tau β-wrapin design 

studies described in the following passages focused on Aβ and tau binding side 1. 
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Figure IV-4. Computational modeling of TP4 in complex with tau. (A) High correlation 
between the computationally predicted association free energies calculated using the MM-
GBSA approximation and previously derived experimentally measured affinities68 of the 
TP4 binding to tau binding site 1 and 2. (B) TP4 : tau (binding sites 1 and 2) in comparison 
with ΖAβ3 : Aβ complex structure. 
 
 
 
Design of single-targeted β-wrapin variants binding IAPP with enhanced affinities 

The design program was applied in several rounds to screen and generate β-wrapin 

variants with enhanced affinity to IAPP ((2) of Figure IV-2). In the design program, HI18 

was used as a basis as it has the highest affinity to IAPP of all the existing studied β-wrapin 

variants69 (Figure IV-1). MD simulations combined with association free energy 

calculations and residue-pairwise interaction free energy calculations were used to 

evaluate the affinity or enthalpic favorability of the designed β-wrapin variants passing 

the initial screening by the design program ((3) of Figure IV-2). MD simulations combined 

with RMSF calculations were used to evaluate the stability or entropic favorability of the 

designed β-wrapin variants ((3) of Figure IV-2). 

Based on the design program, MD simulations and free energy calculations of the 

top-ranked designed β-wrapins in complex with IAPP, and MD simulations and RMSF 
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calculations of the unbound designed β-wrapins, two promising, asymmetrically designed 

β-wrapins, named HI18-R5-3 and HI18-R5-6 (Table IV-1), were predicted to have 

enhanced affinity to IAPP compared to HI18. Both designed β-wrapins originated from 

the asymmetric design round in which HI18 subunit 1 residue positions I16, P20, I34, S41, 

and A42 as well as subunit 2 residue positions G11, A12, S39, and S41 were selected as 

positions amenable for mutation. The particular residue positions were selected aiming to 

target charged or polar residues of IAPP, according to the biophysical insights derived in 

ref. 74. The targeting of charged or polar residues of IAPP aimed to significantly improve 

polar association free energies as previous studies on β-wrapin : amyloidogenic protein 

complexes, described in the previous sections, suggest that a low polar association free 

energy in addition to a fairly low non-polar association free energy is characteristic of β-

wrapins with high affinity.74, 75   

 
 
 

Table IV-1. Summary of the most promising designed β-wrapin variants for IAPP. ΔΔG 
values are calculated as the association free energy of the designed β-wrapin variant minus 
the association free energy of HI18. All statistics are averaged over six individual 
simulation runs. 

β-wrapin 
Variant 

Subunit 1 Mutations to 
HI18 

Subunit 2 Mutations to 
HI18 

ΔΔG  
(kcal·mol-1) 

RMSF 
(Å) 

HI18 (wild type)      0.0 ± 5.2 2.6 ± 0.1 
HI18-R5-3 P20A, I34V, S41N, L45V A12Q, S39K, A42D -19.3 ± 2.2 1.8 ± 0.1 
HI18-R5-6 I34W, S41N, L45V S11Q, A12Q, S39K, A42D -15.4 ± 3.2 2.2 ± 0.1 
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The mutations (introduced to the sequence of HI18), energetic favorability (based 

on ΔΔG compared to HI18), and stability (based on average RMSF) of the two designed 

β-wrapins are summarized in Table IV-1. In the following text, the predicted improved 

interactions of HI18-R5-3 and HI18-R5-6 compared to HI18, based on interaction free 

energy calculations and visual inspection of the six replicate simulation trajectories, are 

described. 

Improved interactions of HI18-R5-3: The predicted enhanced affinity of designed 

β-wrapin, HI18-R5-3, to IAPP compared to HI18 can be attributed to mutations both 

directly and indirectly allowing or enhancing hydrogen bonds to IAPP within the 

simulations. In subunit 1 (Table IV-1, second column), the P20A and S41N mutations 

directly enhance hydrogen bonds to IAPP, and the I34V and L45V mutations indirectly 

enhance hydrogen bonds to IAPP by decreasing congestion within the complex structure 

(Figure IV-5). Specifically, the P20A allows for the formation of a hydrogen bond to N14 

of IAPP (Figure IV-5). This interaction also greatly enhances the β-sheet interaction 

between L19 of subunit 1 and F15 of IAPP (Figure IV-5). Additionally, the S41N mutation 

enhances the hydrogen bond to N21 of IAPP (Figure IV-5). Both the I34V and L45V 

mutations decrease congestion to enhance the hydrogen bond between β-wrapin position 

41 and N21 of IAPP (Figure IV-5).  

In subunit 2, (Table IV-1, third column), the A12Q and A42D mutations directly 

allow for hydrogen bonds or salt-bridges to IAPP (Figure IV-5), and the S39K mutations 

indirectly enhances HI18-R5-3’s affinity to IAPP by stabilizing the unbound state of the 

designed β-wrapin. The A12Q mutation allows for the formation of a hydrogen bond to 
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T30 of IAPP (Figure IV-5). This interaction also enhances the nonpolar interaction 

between the N-terminus of subunit 2 and the C-terminus of IAPP (Figure IV-5). 

Additionally, the A42D mutation allows for the formation of a salt-bridge with K1 of 

IAPP. The S39K mutation supports the A42D mutation and stabilizes the isolated 

designed β-wrapin by forming a salt-bridge with A42D (not shown); this is crucial as 

previous, preliminary studies indicated that a lone A42D mutation would destabilize the 

unbound β-wrapin. The presence of the S39K mutation in conjunction with the A42D 

mutation proved beneficial in the simulations as the average RMSF of the isolated HI18-

R5-3 is not elevated compared to the isolated HI18 (Table IV-1, fifth column). 

 
 
 

 

Figure IV-5. Molecular graphics image showing the improved interactions of HI18-R5-3 
in complex with IAPP. IAPP is shown in blue tube representation, subunit 1 of HI18-R5-
3 is shown in red tube representation, and subunit 2 of HI18-R5-3 is shown in orange tube 
representation. Blue labels indicate residues of IAPP. Red and orange labels indicate 
residues of subunits 1 and 2 of HI18-R5-3, respectively. 
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Improved interactions of HI18-R5-6: The predicted enhanced affinity of designed 

β-wrapin, HI18-R5-6, to IAPP compared to HI18 can also be attributed to mutations both 

directly and indirectly allowing or enhancing hydrogen bonds as well as improving 

nonpolar interactions to IAPP within the simulations. In subunit 1 (Table IV-1, second 

column), the I34W and S41N mutations directly enhance hydrogen bonds to IAPP, and 

the L45V mutation indirectly enhances hydrogen bonds to IAPP by decreasing congestion 

within the complex structure (Figure IV-6). Specifically, the I34W allows for the 

formation of a hydrogen bond to N14 of IAPP and enhances nonpolar interactions to V17, 

N21, and F23 of IAPP (Figure IV-6). Additionally, the S41N mutation enhances the 

hydrogen bond to N21 of IAPP (Figure IV-6). The L45V mutation supports the I34W 

mutation by decreasing the congestion that may otherwise be present due to the 

introduction of the I34W mutation; thereby the L45V mutation indirectly enhances the 

hydrogen bond between the I34W mutation and N21 of IAPP (Figure IV-6). 

In subunit 2, (Table IV-1, third column), the S11Q and A42D mutations directly 

allow for hydrogen bonds or salt-bridges to IAPP, the A12Q mutation enhances nonpolar 

interactions to IAPP, and the S39K mutations indirectly enhances HI18-R5-3’s affinity to 

IAPP by stabilizing the unbound state of the designed β-wrapin (Figure IV-6). The S11Q 

mutation enhances the hydrogen bond and nonpolar interaction to T30 of IAPP (Figure 

IV-6). This interaction, in addition to the A12Q mutation, also enhances the nonpolar 

interaction between the N-terminus of subunit 2 and the C-terminus of IAPP (Figure IV-6). 

Additionally, the A42D mutation allows for the formation of a salt-bridge with K1 of IAPP 

(Figure IV-6). The S39K mutation supports the A42D mutation and stabilizes the isolated 
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designed β-wrapin by forming a salt-bridge with A42D (not shown); this is crucial as 

previous, preliminary studies indicated that a lone A42D mutation would destabilize the 

unbound β-wrapin. The presence of the S39K mutation in conjunction with the A42D 

mutation proved beneficial in the simulations as the average RMSF of the isolated HI18-

R5-3 is not elevated compared to the isolated HI18 (Table IV-1, fifth column). 

 
 
 

 

Figure IV-6. Molecular graphics image showing the improved interactions of HI18-R5-6 
in complex with IAPP. IAPP is shown in blue tube representation, subunit 1 of HI18-R5-
6 is shown in red tube representation, and subunit 2 of HI18-R5-6 is shown in orange tube 
representation. Blue labels indicate residues of IAPP. Red and orange labels indicate 
residues of subunits 1 and 2 of HI18-R5-6, respectively. 
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Design of multi-targeted β-wrapin variants binding Aβ, α-syn, and IAPP with 

enhanced affinities  

The design program was applied in several rounds to design β-wrapin variants with 

multi-targeted, enhanced affinity to Aβ, α-syn, and IAPP ((2) of Figure IV-2). AS10 was 

used as a basis as it has the highest affinity to all three amyloidogenic proteins 

simultaneously73 (Figure IV-1). MD simulations combined with association free energy 

calculations and residue-pairwise interaction free energy calculations were used to 

evaluate the affinity or enthalpic favorability of the designed β-wrapin variants passing 

the initial screening by the design program ((3) of Figure IV-2). MD simulations combined 

with RMSF calculations were used to evaluate the stability or entropic favorability of the 

designed β-wrapin variants ((3) of Figure IV-2). 

Based on the design program, MD simulations and free energy calculations of the 

top-ranked designed β-wrapins in complex with the three amyloidogenic proteins 

independently, and MD simulations and RMSF calculations of the unbound designed β-

wrapins, two promising designed β-wrapins, named AS10-4 and AS10-2 (Table IV-2), 

were predicted to have enhanced multi-targeted affinity to Aβ, α-syn, and IAPP compared 

to AS10. Both designed β-wrapins originated from the asymmetric design round in which 

AS10 subunit 1 residue positions A12, G13, I16, and L45 as well as subunit 2 residue 

positions I16 and P20 were selected as positions amenable for mutation. The particular 

residue positions were selected aiming to target corresponding polar residues of Aβ, α-

syn, and IAPP,74, 75 according to the biophysical insights derived in ref. 74, 75. The targeting 

of corresponding polar residues of Aβ, α-syn, and IAPP74, 75 aimed to significantly 
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improve polar association free energies as previous studies on β-wrapin : amyloidogenic 

protein complexes, described in the previous sections, suggest that a low polar association 

free energy in addition to a fairly low non-polar association free energy is characteristic 

of β-wrapins with high affinity.74, 75   

The mutations (introduced to the sequence of AS10), energetic favorability (based 

on ΔΔG compared to AS10), and stability (based on average RMSF) of the two designed 

β-wrapins are summarized in Table IV-2. In the following text, the predicted improved 

interactions of AS10-4 and AS10-2 compared to AS10, based on interaction free energy 

calculations and visual inspection of the six replicate simulation trajectories, are described. 

 
 
 

Table IV-2. Summary of the most promising designed β-wrapin variants for multi-targeted 
Aβ, α-syn, and IAPP binding. ΔΔG values are calculated as the association free energy of 
the designed β-wrapin variant minus the association free energy of AS10 in complex with 
the same amyloidogenic protein (Aβ, α-syn, or IAPP). All statistics are averaged over six 
individual simulation runs.  

β-wrapin 
Variant 

Subunit 1  
Mutations  
to AS10 

Subunit 2  
Mutations  
to AS10 

ΔΔG Aβ 
(kcal·mol-1) 

ΔΔG α-syn 
(kcal·mol-1) 

ΔΔG IAPP 
(kcal·mol-1) 

RMSF 
(Å) 

AS10  
(wild type) 

  0.0 ± 4.2 0.0 ± 2.9 0.0 ± 5.0 2.8 ± 0.1 

AS10-2 G13Q, G14H, 
L45N 

 -5.4 ± 5.0 -4.33 ± 5.0 -9.1 ± 5.0 2.7 ± 0.6 

AS10-4 G13R, G14H, 
I16T, L45T 

I16N, P20N -15.3 ± 5.0 -8.8 ± 5.0 -17.7 ± 5.0 2.1 ± 0.2 
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Improved interactions of AS10-4: The predicted enhanced multi-targeted affinity 

of designed β-wrapin, AS10-4, to Aβ, α-syn, and IAPP compared to AS10 can be 

attributed to mutations directly allowing or enhancing hydrogen bonds or salt-bridges to 

Aβ, α-syn, and/or IAPP within the simulations (Figure IV-7). In subunit 1 (Table IV-2, 

second column), the G14H mutation allows for hydrogen bonds to corresponding polar 

residues of all three amyloidogenic proteins, the G13R and I16T mutations allow for 

hydrogen bonds to corresponding polar residues of Aβ and α-syn, and the L45T mutation 

allows for hydrogen bonds to corresponding polar residues of α-syn and IAPP (Figure 

IV-7). Specifically, the G14H mutation allows for hydrogen bonds to Aβ D23, α-syn S42, 

and IAPP H18 (Figure IV-7). The G13R mutation allows for the formation of salt-bridges 

to Aβ D23 and α-syn E46 (Figure IV-7). The I16T mutation allows for the formation of 

hydrogen bonds to Aβ E22 and α-syn S42 (Figure IV-7). Additionally, the L45T mutation 

allows for the formation of hydrogen bonds to α-syn Y39 and IAPP N21 (Figure IV-7). 

In subunit 2, (Table IV-2, third column), the I16N and P20N mutations directly 

allow for the formation of hydrogen bonds or enhance polar interactions to Aβ, α-syn, 

and/or IAPP within the simulations (Figure IV-7). The I16N mutation allows for the 

formation of a hydrogen bond to only Aβ M35 (Figure IV-7). The I16N mutation also 

indirectly enhances the binding of AS10-4 synergistically with the I16T mutation of 

subunit 1 by forming intramolecular hydrogen bonds with each other (Figure IV-7). 

Finally, the P20N mutation allows for the formation of hydrogen bonds with the backbone 

atoms of Aβ I31 as well as with a-syn H50 and IAPP N22 (Figure IV-7).  
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Figure IV-7. Molecular graphics image showing the improved interactions of AS10-4 in 
complex with Aβ, α-syn, and IAPP. Aβ, α-syn, and IAPP are shown in blue tube 
representation, subunit 1 of AS10-4 is shown in orange tube representation, and subunit 2 
of AS10-4 is shown in red tube representation. Blue labels indicate residues of Aβ, α-syn, 
or IAPP. Orange and red labels indicate residues of subunits 1 and 2 of AS10-4, 
respectively. 
 
 
 

Improved interactions of AS10-2: The predicted enhanced multi-targeted affinity 

of designed β-wrapin, AS10-2, to Aβ, α-syn, and IAPP compared to AS10 can be 

attributed to mutations directly allowing or enhancing hydrogen bonds to Aβ, α-syn, 

and/or IAPP within the simulations (Figure IV-8). In AS10-2, mutations were only 

introduced to subunit 1 of the β-wrapin (Table IV-2, second column). The L45N mutation 

allows for hydrogen bonds to corresponding polar residues of all three amyloidogenic 

proteins, the I14H mutation allows for hydrogen bonds to corresponding polar residues of 

Aβ and IAPP, and the G13H mutation allows for a hydrogen bond to a polar residue of α-

syn (Figure IV-8). Specifically, the L45N mutation allows for hydrogen bonds to Aβ D23, 

α-syn K43, and IAPP S19 (Figure IV-8). The G14H mutation allows for the formation of 
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salt-bridges to Aβ E22 and IAPP H18 (Figure IV-8). Additionally, the G13Q mutation 

allows for the formation of a hydrogen bond to α-syn K45 (Figure IV-8). 

 
 
 

 

Figure IV-8. Molecular graphics image showing the improved interactions of AS10-2 in 
complex with Aβ, α-syn, and IAPP. Aβ, α-syn, and IAPP are shown in blue tube 
representation, subunit 1 of AS10-2 is shown in orange tube representation, and subunit 2 
of AS10-2 is shown in red tube representation. Blue labels indicate residues of Aβ, α-syn, 
or IAPP. Orange labels indicate residues of subunit 1 of AS10-2. 
 
 
 
 

 

 

 

 

 

 



 

80 

 

Design of multi-targeted β-wrapin variants binding Aβ and tau with enhanced 

affinities 

The design program was additionally applied to screen and generate dual-Aβ/tau 

binding β-wrapin variants ((2) of Figure IV-2). As ZAβ3 has no experimentally detectable 

binding to tau and TP4 has no experimentally detectable binding to Aβ,68 an attempt to 

design β-wrapins which have at least minimal dual-Aβ/tau binding was attempted. Such a 

β-wrapin with some detectable binding to both amyloidogenic proteins could potentially 

serve as a steppingstone for the future design of dual-Aβ/tau binding β-wrapin-based 

therapeutics.  

Taking a conservative approach, the design program was asymmetrically applied 

to introduce mutations to 16 β-wrapin residue positions (8 per β-wrapin subunit), which 

constituted the only differences between ZAβ3 and TP4 (ZAβ3 à TP4: I16M, V17A, 

Y18S, L19G, F30L, I31V, L45M, and N52S). The 16 residue positions were allowed to 

switch between ZAβ3 and TP4 residues ((2) of Figure IV-2). MD simulations combined 

with association free energy calculations and residue-pairwise interaction free energy 

calculations were used to evaluate the affinity or enthalpic favorability of the designed β-

wrapin variants passing the initial screening by the design program ((3) of Figure IV-2). 

MD simulations combined with RMSF calculations were used to evaluate the stability or 

entropic favorability of the designed β-wrapin variants ((3) of Figure IV-2).  

Based on the design program, MD simulations and free energy calculations of the 

top-ranked designed β-wrapins in complex with the two amyloidogenic proteins 

independently, and MD simulations and RMSF calculations of the unbound designed β-
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wrapins, two promising designed β-wrapins, DES16 and DES20 (Table IV-3) were 

predicted to have detectable and multi-targeted affinity to Aβ and tau. The mutations (to 

the sequence of ZAβ3), energetic favorability (ΔΔG compared to ZAβ3 : Aβ and TP4 : 

tau), and stability (average RMSF) of the designed β-wrapins are summarized in Table 

IV-3.  

 
 
 

Table IV-3. Summary of the most promising designs β-wrapin variants for multi-targeted 
Aβ and tau binding. ΔΔG values are calculated as the association free energy of the design 
minus the association free energy of ZAβ3 in complex with Aβ or TP4 in complex with 
tau. All statistics are averaged over six individual simulation runs. 

β-wrapin 
Variant 

Subunit 1  
Mutations  
to AS10 

Subunit 2  
Mutations  
to AS10 

ΔΔG  
Aβ : ZAβ3 
(kcal·mol-1) 

ΔΔG  
tau : TP4 
(kcal·mol-1) 

RMSF 
(Å) 

ZAβ3  
(wild type) 

  -0.0 ± 3.6 18.1 ± 1.6 2.5 ± 0.1 

TP4  
(wild type) 

  7.4 ± 3.8 0.0 ± 1.8 2.3 ± 0.1 

DES16 F30L, I31V, N52S L19G, F30L, L45M -4.9 ± 3.3 -3.9 ± 1.6 2.4 ± 0.2 
DES20 F30L, I31V F30L, L45M 1.7 ± 2.0 -5.7 ± 6.0 2.3 ± 0.4 
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Rational Design of β-wrapins Incorporating Non-canonical Amino Acids for 

Bifunctional Fibril Deformation and Monomer Sequestration Properties 

In the design of β-wrapins described in the previous sections, the computational 

design was focused on introducing mutations to the core of the β-wrapins, which sequester 

amyloidogenic protein monomers and induce a β-hairpin fold. In addition to the 

computational design of β-wrapin variants with enhanced multi-targeted binding to Aβ, 

tau, α-syn, and/or IAPP, an alternative direction for inhibiting the aggregation of 

amyloidogenic proteins was explored. In this alternative direction, the flexible, currently 

“non-functional” N-terminus of β-wrapins was hypothesized to be modifiable for 

amplified anti-amyloid properties. Specifically, aromatic canonical and non-canonical 

amino acids were considered possible “decorations” that could be incorporated into the N-

termini to mimic compounds with anti-amyloid properties. The rational design of N-

termini was focused on a polyphenolic compound, curcumin, which has been suggested 

to have protective properties against AD,281-283 PD,284-286 and T2D.287-289 Curcumin has 

been shown to modulate the aggregation of Aβ,283, 290 tau,291, 292 α-syn,286, 293 and IAPP.294, 

295 Furthermore, curcumin has also been shown to reduce amyloid in vivo283 and 

disintegrate preformed tau filaments in vitro.292 Due to its properties,281-292, 294, 295 

curcumin appears to be a promising steppingstone for the design of novel agents targeting 

AD, PD, and T2D. Thus, a β-wrapin with the ability to mimic curcumin’s amyloid 

inhibition mechanisms was designed and hypothesized to have amplified anti-amyloid 

properties, comprising the anti-amyloid properties of both the β-wrapin core and 

curcumin. 
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In Dr. Tamamis’ lab, curcumin, and a set of curcumin derivatives were 

investigated in complex with a hexamer peptide Aβ fibril model through nearly exhaustive 

docking, followed by multi-ns MD simulations and structural and energetic analysis to 

provide insights into their Aβ fibril binding and Aβ aggregation inhibitory properties.296 

In a portion of the simulations, the compounds partly dissociated the outermost peptide of 

the Aβ1–42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20 

through specific interactions leading to partial dissociation.296 These simulations 

suggested potential inhibition mechanisms of Αβ1-42 aggregation by the compounds: the 

partially dissociated 16KLVFF20 domain of outermost peptide could either remain 

unstructured or wrap around to form intramolecular interactions with the same peptide’s 

29GAIIG33 domain;296 the compounds could additionally act as a patch against the external 

edge of the second outermost peptide’s 16KLVFF20 domain.296 Thereby, individually or 

concurrently, these could prohibit fibril elongation.296  

Inspired and guided by Dr. Tamamis’ lab’s studies on curcumin,296 an endeavor to 

amplify the anti-amyloid properties of β-wrapins was undertaken based on the hypothesis 

that the N-termini of β-wrapins, which do not have a particular role in binding according 

to NMR studies,69-71 could be modified by introducing aromatic canonical and non-

canonical amino acids that structurally and physicochemically mimic the chemical groups 

of curcumin. Such modifications could confer the ability of curcumin to dissociate 

external peptides of Aβ fibrils296 to the designed β-wrapins and potentially protect the β-

wrapins from protein degradation. Thus, such modifications to the β-wrapins’ N-termini 
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were hypothesized to constitute an alternative means to improve their binding and 

inhibitory properties. 

Molecular docking of the N-terminus of β-wrapin AS10 to a modeled Aβ hexamer 

fibril using ZDOCK297 showed that the first five residues could fit and bind to the same 

region that curcumin binds according to simulations296 and experiments298 (Figure IV-9). 

Specifically, AS10 residues 1 and 5 were located in similar positions as the functional 

“dissociator” and “anchor” groups, respectively, of curcumin as defined in previous 

studies296 (Figure IV-9). Aiming to rationally design the β-wrapin AS10 N-termini to 

mimic curcumin, combinations of aromatic canonical and non-canonical amino acids were 

introduced to AS10 residues 1 and 5. Upon introduction of aromatic canonical and non-

canonical amino acids, resulting in 26 investigated AS10 N-termini (25 rationally 

designed, modified N-termini and the unmodified AS10 N-terminus), the rationally design 

N-termini were subsequently investigated in complex with the Aβ hexamer fibril using 

100 ns MD simulations and structural analysis. Among the AS10 N-termini investigated 

in complex with the Aβ hexamer fibril, triplicate 100 ns MD simulations of two modified 

N-termini, FDNK-(MOT5)-NKEMA and FDNK-(NAO2)-NKEMA, showed that the two 

N-termini could mimic the Aβ fibril elongation inhibition mechanism of curcumin by 

partly dissociating the outermost Aβ peptide of the fibril (Figure IV-10). 

For both modified N-termini, the combination of a mutating the first residue 

position to Phe and the fifth position to particular aromatic non-canonical amino acids 

enhance specific interaction leading to the partial dissocation of the Aβ fibril. The 

canonical Val1Phe mutation enhanced nonpolar interactions to outermost Aβ peptide 
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Val12 and Leu17 as well as π–π interactions with outermost Aβ peptide His14 and Phe19 

compared to the unmodified AS10 N-terminus; this is analogous to the interactions of 

cucumin’s “dissociator” group with the outermost Aβ peptide that result in partial 

dissociation of the bound Aβ fibril, which is suggested to inhibit amyloid elongation.296 

Additionally, for both modified N-termini, the non-canonical mutation of Phe5 to either 

MOT5 or NAO2 enhanced their nonpolar interactions to interior Aβ peptides Ile32, Gly33, 

and Leu34 and allowed for the formation of hydrogen bonds with the backbone atoms of 

interior Aβ peptides Gly33 or Leu34; this is analogous to the interactions of cucumin’s 

“anchor” group with the Aβ peptides in the interior of the fibril that result in partial 

dissociation of the bound Aβ fibril, which is also suggested to inhibit amyloid 

elongation.296 Additionally, association free energy calculations suggested that the partial 

dissociation of the outermost peptide of the Aβ fibril by the two modified AS10 N-termini 

could be an outcome of either high affinity interactions or a cause leading to high affinity 

interactions between the N-termini and the Aβ fibril, which could partly serve as a 

compensation for the energy loss between the outermost peptide and the rest of the fibril 

due to partial dissociation, in line with ref. 296. Importantly, even in the context of the full 

β-wrapin, both modified N-termini partially dissociate the outermost peptide of the Aβ 

fibril without inhibiting the ability of the β-wrapin’s core to sequester the amyloidogenic 

protein monomer. 
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Figure IV-9. Molecular graphics images of (A) unmodified AS10 N-terminus and (B) 
curcumin in complex with the Aβ fibril. The structure of (B) curcumin in complex with 
the Aβ fibril corresponds to a docked structure that induced the partial dissociation of the 
outermost peptide of the Aβ fibril derived from ref. 296. The red shaded circle indicates the 
overlap of AS10 residue 5 with the “anchor” group of curcumin, and the blue shaded circle 
indicates the overlap of AS10 residue 1 with the “dissociator” group of curcumin. 

 

 

 

Figure IV-10. Molecular graphics images of a (A,D) curcumin in complex with the Aβ 
fibril, (B,E) modified N-terminus, FDNK-(MOT5)-NKEMA, binding to the Aβ fibril, and 
(C,F) modified N-terminus, FDNK-(NAO2)-NKEMA, binding to the Aβ fibril (A,B,C) 
prior to the initiation of partial dissociation of the Aβ fibril and (D,E,F) at 100 ns. The 
structures of curcumin in complex with the Aβ fibril are derived from ref. 296.   
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Concluding Remarks for the Study and Design of β-wrapins Binding to Amyloidogenic 

Proteins 

The self-assembly of amyloidogenic proteins Aβ, tau, α-syn, and IAPP into fibrils 

is associated with amyloid diseases AD, PD, and T2D.232-239 β-wrapins bind to and 

sequester monomers of amyloidogenic proteins, thereby inhibiting their aggregation. 21, 68-

73 Existing β-wrapins have traditionally been engineered with single-targeted, micro-

molar affinities to the amyloidogenic protein monomers through phage-display libraries, 

with mutable β-wrapin positions selected based on intuition and insights from NMR 

studies.21, 68-73 From phage-display libraries aiming to discover β-wrapins for α-syn, AS10 

was discovered to have multi-targeted Aβ, α-syn, and IAPP micro-molar affinity.73 

Despite the successes of experimental methods in discovering β-wrapins,21, 68-73 the design 

of high affinity β-wrapins with dual- Aβ/tau and triple- Aβ/α-syn/ IAPP binding properties 

remains challenging. 

In this chapter, MD simulations, free energy calculations, and structural analysis 

have been carefully tuned for the study of β-wrapins in complex with amyloidogenic 

proteins. The studies described in this section show that these methods can be applied 

across different amyloidogenic proteins to model their interactions with β-wrapins.74, 75 

From these MD simulation studies,74, 75 specific interactions and energetic driving forces 

leading to β-wrapin single- and multi-targeted binding properties were uncovered. 

Additionally, the novel protein design model developed for this chapter have produced 

promising β-wrapin designs that according to MD simulations and free energy calculations 

have predicted enhanced affinity for their respective amyloidogenic protein(s); 
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nevertheless, experiments are needed to validate the computational predictions. Finally, 

the promising results of the modification of β-wrapin N-termini with aromatic canonical 

and non-canonical amino acids inspired by curcumin’s binding and inhibitory function to 

Aβ could provide impetus for future studies of modified N-termini in complex with 

additional amyloid fibrils.  
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CHAPTER V  

LIGANDS BINDING TO CLAYS 

 

Simulation Studies of Toxic Compounds Binding to Montmorillonite Clays 

Introduction 

Since ancient times, peoples of several cultures have identified and used clays as 

medicine for a variety of ailments including infection, digestive disease, and poisoning.299-

301 In modern times, clays find use in medicine and have proved their usefulness in the 

treatment of skin conditions,302-308 bacterial infections,309-312 digestive disease,309, 311, 313 

and poisoning314 among others. The physical properties of clay minerals that make them 

medicinal materials (large surface area, chemical and mechanical stability, high adsorptive 

properties, high cation exchange capacity, etc.315, 316) also make then a natural scavenger 

of pollutants and, thereby, strong candidates as adsorbent materials for the removal of 

various toxic chemicals.24, 25 On this front, montmorillonite clays have been reported to 

tightly bind various toxic chemicals within their interlayers, including heavy metals,317, 318 

pesticides,77, 319-321 and mycotoxins.322-324 Furthermore, a series of intervention studies 

showed that montmorillonite clay is safe for short-term human325-327 and animal328-331 

consumption. Due to its ability to bind toxic chemicals, montmorillonite clays are 

promising candidates to serve as adsorbents to mitigate exposure to toxic chemicals in the 

wake of environmental emergencies, during which the risk of toxic chemical exposure cab 

be amplified for first responders and afflicted people or animals.24, 25 
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Experimental methods have provided valuable insights into the structure of 

montmorillonite clays and their interactions with chemicals. X-ray diffraction reveal the 

d-spacing of montmorillonite clay layers and give insights into the clay layers in aqueous 

solutions;332 Infrared spectroscopy monitor conformational changes of surfactants 

intercalated into montmorillonite interlayers;333 Differential thermal analysis give 

thermodynamic insights into the dehydration, dihydroxylation, amorphization, and 

rehydration of montmorillonite;334 Thermogravimetric analysis of montmorillonite 

composites can be used to evaluate its thermal stability and the adsorption of water;335, 336 

Electron microscopy provide images of montmorillonite clay, providing further insights 

into the layer thickness, lattice structure, degree of crystallinity, and turbostratic disorder 

of montmorillonite clay.337, 338 Several experimental methods also exist to evaluate the 

ability of montmorillonite clays to adsorb chemicals. Isothermal adsorption studies of 

montmorillonite in chemical gradient solutions estimate the maximum capacity and 

thermodynamic properties of binding of the clay for a given chemical.339 The level of 

accuracy obtained from adsorption processes is greatly dependent on the successful 

modelling and interpretation of adsorption isotherms.340 Generally, Langmuir and 

Freundlich are the most examined models in fitting the experimental adsorption data, and 

the adsorption kinetics is predominantly based on the pseudo-second-order model.341 The 

detoxification efficacy of clay-based adsorbents and their ability to protect living 

organisms from chemical exposures have also been investigated through in vivo studies.318, 

322, 324, 328-330, 342  
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Computational methods have also been valuable tools to model the interaction 

between clays and compounds. Computationally, an atomistic-level examination of the 

dynamics and the delineation of molecular mechanisms of compound adsorption onto 

clays is possible. Quantum mechanics (QM) simulations explicitly include electron 

interactions and are able to model reaction mechanisms between clay and organic 

compounds, brine, and water.343-346 Using QM methods, the extent of interaction between 

compounds and clay surfaces, potential reactivity of a system, as well as energetic 

favorability of potential reaction mechanisms can be evaluated and compared across like 

systems.343-346 Additionally, structures resulting from QM simulations show how 

compounds may orient themselves with respect to clay surfaces upon adsorption.344-346 

Despite the highly detailed insights that can be gained from QM methods, the complexity 

of composition and structure of most clays and the sheer number of potential interactions 

between clays and compounds make QM methods less attractive due to their restricted 

time- and length-scales.347  

Atomistic MD dramatically increase both time- and length-scales that can be 

simulated compared to QM by treating atoms as spheres intramolecularly bonded to one 

another via a set of springs. Because of this, classical MD methods is an attractive and 

popular approach to model clay systems.37, 346-353 MD simulations are able to sample and 

probe the adsorption of compounds onto different regions of clays (e.g., interlayer basal 

surfaces or edge surfaces) to provide fundamental, atomistic insights into clay : compound 

interactions. Structures of compounds bound to clay surfaces derived from MD 

simulations and comparisons to experimental data have provided valuable insights into 
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the interactions and orientation of the compounds with the clay.346, 347, 349, 350, 353 Structural 

and energetic data extracted from MD simulations have also been used to predict 

adsorption free energies of compounds for clays, with the methods used to predict 

adsorption free energies tailored to single types of compounds and clays.37, 348, 351, 352 The 

methods used in these studies vary widely;37, 346-353 The duration of MD simulations used 

range from very short (50 ps to 20 ns)346, 348-352 to long (100 ns or longer),37, 347, 353 with a 

compound’s ability to bind to edge surfaces of the clay either considered - allowing 

compounds to enter and escape clay interlayers,37, 348, 351 or not considered - disallowing 

compounds from leaving the clay interlayers.346, 348, 350 Overall, previous MD simulation37, 

346-353 and experimental319-324 studies have demonstrated that many toxic compounds can 

bind tightly to clays.  

In this chapter, the systematic generation of MD simulation files for simulating 

and investigating the binding of compounds onto montmorillonite clays is described. The 

systematic generation of simulation systems contributed to the comparison of diverse 

compounds’ propensity to bind to clay,76-78 and ultimately enabled the development of a 

minimalistic model that can predict the adsorption free energy of diverse toxic compounds 

for CM.79 Upon completion of the simulations, the simulation snapshots can be further 

examined through structural and energetic analysis to gain insights into the molecular 

mechanisms of specific compounds binding to unamended (parent) and nutrient-amended 

montmorillonite clays. The results of these studies had reasonably high agreement with 

experiments.76-79 Comparisons between the binding propensities of different toxic 

compounds to the clay surfaces were used to delineate toxic compounds that can be 
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effectively adsorbed onto the clay from those that cannot.76-78 Additionally, key modes of 

binding were also identified for the investigated compounds binding to the clay.76-79 

Finally, a minimalistic model was developed to use data extracted from MD simulations 

as input to output predicted adsorption free energies for toxic compounds to unamended 

clay.79  
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Methodology for Simulating and Investigating the Binding of Compounds onto 

Montmorillonite Clays 

To simulate and investigate the mechanisms of toxic compounds binding onto 

montmorillonite clays, MD simulations followed by structural and energetic analysis are 

performed. Within the simulations, clays are simulated in the presence of toxic compounds 

to sample their interaction. Structural and energetic analysis subsequently use the 

simulation snapshots as input to examine the snapshots in which the toxic compound is 

interacting with the clay. This chapter focuses on the simulation of montmorillonite clays 

in the presence of toxic compounds, as well as nutrients considered as amending 

molecules; specifically, the simulation setup was standardized to allow the comparison of 

diverse compounds binding to montmorillonite clays. The programs producing 

standardized simulation files can accommodate different montmorillonite clays (Ca2+ 

montmorillonite, Na2+ montmorillonite) at different pH conditions (acidic pH 2 and 

neutral pH 7), different amending molecules on the clay surfaces (L-carnitine, choline, 

among others), different solvents (water, methanol, acetonitrile, mixtures, among others), 

different toxic compounds of interest, different counterions within the system, and 

different sizes of the simulation system (one-layer of clay or two-layers of clay). Figure 

V-1 shows the options that can be selected for the standardized MD simulations (boxed in 

red) and the simulation file outputs (boxed in blue). Based on a user defined adsorbent, 

amending molecule, solvent, counter ion, compound of interest, and simulation system 

size, the simulation files are automatically generated (Figure V-1). The generalizability 

and automatic generation of input files is a key step to standardize the simulations and 
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provide the ability to simulate and adsorbent : toxic compound/amending molecule system 

under varying conditions. Based on user selections (adsorbent, amending molecule, 

solvent, counter ion, compound of interest, and simulation system size) simulation files 

are generated, and appropriate structures and force field topology and parameters are 

extracted from a repository to build the simulation system (Figure V-1). The automated 

generation of simulation input files is inspired by and based on CHARMM-GUI.274 All 

generated simulation files are formatted for use with CHARMM.197 After the execution of 

the simulation files, the coordinate of the equilibrated adsorbent : compound system and 

the trajectory of the compounds binding to the adsorbent are produced for subsequent 

analysis. The molecular modeling and MD simulations are described in detail in refs. 76-

79. 
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Figure V-1. Schematic view of automated simulation setup for simulating the binding of 
toxic compounds onto montmorillonite clays. 
 
 
 

Stage 1: Selection of Simulation Size and Adsorbent 

The simulation input files require an initial structure of the adsorbent, with 

appropriate amending molecules, in the presence of the compound of interest in addition 

to appropriate molecular mechanics force field topologies and parameters. A repository 

provides initial coordinates as well as topologies and parameters for parent, or unamended, 

adsorbents and amended adsorbents. From this repository, a user can additionally select a 

two-layered clay (comprising two parallel slabs of clay layers within the simulation 

system)76, 78 or a one-layered clay (comprising just one slab of clay layer within the 

simulation system).79 Currently, the available adsorbents in the repository for two-layer 
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simulation systems are Na+ montmorillonite (SM), Ca2+ montmorillonite (CM), L-

carnitine-amended CM (CM-carnitine), choline-amended CM (CM-choline), SM with 

neutral edges (pH 3 and below), CM with neutral edges (pH 3 and below), and CM-

carnitine with neutral edges and protonated carnitine molecules (pH 3 and below). For 

one-layer simulation systems, SM, CM, SM with neutral edges (pH 3 and below), and CM 

with neutral edges (pH 3 and below) are currently available in the repository (Figure V-1, 

boxed in green). 

The structures of the parent montmorillonite clays were built using atomic 

coordinates from the INTERFACE model database,354 and the topology and parameters 

for the clays were extracted from the INTERFACE force field.354, 355 The INTERFACE 

force field can operate as an extension of several commonly used harmonic force fields, 

including CHARMM,197 thus enabling simulations of toxin binding on 

organic/biomolecular and inorganic interfaces,356-361 including montmorillonite.76-79, 355 

For the two-layer simulation system, the structures of the parent montmorillonite clays 

correspond to two independent clay layers with a d001 spacing of 21 Å.324, 362 For the one-

layer simulation system, the structures of the parent montmorillonite clays correspond to 

one layer. In both the two- and one-layered simulation systems, periodic boundary 

conditions within the MD simulations replicate the d001 spacing of 21 Å324, 362 such that 

both simulation systems represent infinite layers of clay.76-79 

The structures of the amended montmorillonite clays correspond to MD 

equilibrated structures of the two-layer parent montmorillonite clay in the presence of 

copies of the amending molecule. Currently, CM-carnitine at pH 7, CM-choline at pH 7, 
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and CM-carnitine at pH 2 are readily available in the repository (Figure V-1, boxed in 

green). If the structure of the desired amended clay is not readily available in the 

repository, simulation files are generated to produce the model in line with the methods 

used to generate the models of CM-carnitine and CM-choline (Figure V-1, boxed in cyan). 

The methodology to introduce amending molecules to the parent clay to model the 

amended aims to simulate experimental conditions; experimentally, the L-carnitine and 

choline amended clays were formed by mixing the parent clay with the amending 

molecule (L-carnitine or choline) in solution and subsequently centrifuging and washing 

the resulting amended clay with distilled water.76, 78 Thus, the amended montmorillonite 

clay models are modeled by first simulating the parent clay in the presence of copies of 

the amending molecule for a short 10 ns equilibration, representing the initial mixing of 

the parent clay with amending molecules in experiments, and then extracting the final 10 

ns simulation snapshot coordinates of the clay and the individual amending molecules 

bound to the clay.76, 78 The simulation setup for the equilibration runs of the parent clay 

and new amending molecules is the same as the setup for investigating parent clays in the 

presence of a compound of interest (described below), with the exception that the 

production run is only 10 ns in duration. Finally, the 10 ns structure is saved as the initial 

structure of the amended clays, aiming to represent the washed amended clay in 

experiments. This equilibrated amended clay is subsequently stored in the repository for 

future use. For the amended clays currently available in the repository, CM-carnitine (at 

pH2 and pH 7) and CM-choline (at pH 7), the topology and parameters for L-carnitine and 
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choline were generated using CGenFF193-196 and molecular structures extracted from the 

ZINC database.363 

 

Stage 2: Solvating the Simulation System and Introducing Compounds of Interest 

 The selected adsorbent is subsequently solvated in a solvent box with the 

compound of interest distributed throughout the solvent box in random configurations and 

orientations. Unless explicitly specified by the user,77 the dimensions of the solvent box 

are defined such that, with the periodic boundary conditions applied in the MD 

simulations, the modeled adsorbent would have infinite layers with an d001 spacing of 21 

Å between each adsorbent layer.76, 78, 79 For the two-layer simulation system, this 

corresponds to a solvent box size of 90 × 90 × 54 Å3.76, 78 For the one-layer simulation 

system, this corresponds to a solvent box size of 90 × 90 × 21 Å3.79 The solvent box is 

built by replicating pre-equilibrated solvent cubes, from the repository, until the full 

solvent box is constructed. The user may select a readily available solvent from the 

repository or build a custom pure or binary solvent. Currently, the repository contains pre-

equilibrated solvent cubes for water (extracted from CHARMM-GUI274), acetonitrile, 

methanol, and solvent mixtures (50:50 acetonitrile:water, 60:40 acetonitrile:water, 65:35 

acetonitrile:water, 70:30 acetonitrile:water, 90:10 acetonitrile:water, and 90:10 

methanol:water). The topologies and parameters for all solvents currently available in the 

repository correspond to the topology and parameters in the CHARMM36 force field42, 198 

(Figure V-1, boxed in green). In the case that the user selects a custom solvent, and the 

pre-equilibrated cubes of the solvent under investigation is not readily available in the 



 

100 

 

repository, simulation files to build the pre-equilibrated solvent cubes can be generated 

(Figure V-1, boxed in cyan). For pure solvents, the user provides the molecular structure, 

density, and molecular weight of the solvent under investigation as well as its topology 

and parameters. Using this information, solvent molecules are placed in a 20x20x20 Å3 

cube. The number of solvent molecules placed within the cube is determined based on the 

solvent’s density and the solvent molecule’s molecular weight. Short 5 ns MD simulations 

are subsequently performed to pre-equilibrate the solvent cube. The final 5 ns simulation 

snapshot is subsequently saved and put in the solvent repository. For solvent mixtures, 

pre-equilibrated solvent cubes of the pure components of the mixture are first generated 

as previously described. Then, according to the composition of the solvent mixture, a pure 

portion of one component of the solvent mixture is combined with other pure portion of 

the solvent mixture. For example, in the case of the 90:10 by volume acetonitrile:water 

solvent mixture, pure acetonitrile and pure water solvent cubes were first produced. Using 

the pre-equilibrated pure acetonitrile and pure water solvent cubes, 10% of the water 

molecules by volume within the water cube were combined with the 90% of the pure 

acetonitrile solvent cube. Subsequently, short 5 ns MD simulations are performed to pre-

equilibrate the solvent mixture cube. 

 For the compound of interest, the user provides an initial molecular structure of 

the compound as well as the compound’s topology and parameters. The initial molecular 

structure as well as topology and parameters are used to generate random configurations 

of the compound of interest. Care should be taken to provide the correct protonation state 

of the compound’s initial molecular structure for the environment of the simulation 
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system. It is worth noting that the pH value at the surfaces of clay minerals can be 2 to 4 

units below the pH value of the solution.364, 365 Within the simulations, the pH of the 

system under investigation is accounted for by simulating the clays and toxic 

compounds/amending molecules with the corresponding protonation states according to 

the pKas of their protonation sites. For example, in the study of CM and CM-carnitine in 

the presence of PFOA at pH 2, the model of CM used corresponded to CM with neutral 

edges, the model of carnitine used corresponded to carnitine with its carboxyl group 

protonated, and the model of PFOA corresponded to its carboxyl group both protonated 

and unprotonated (in separate simulation systems).78 In this study, the use of both the 

protonated and unprotonated forms of PFOAs were used a wide range of pKa values have 

been reported for PFOA (ranging from -0.5 to 3.8).78, 366-368  

The random configurations of the compound of interest are generated from short 

1 ns simulations of a single molecule at infinite dilution using the GBSW implicit solvent 

model.133 For the two-layer simulation system, 16 molecules of the compound of interest 

are introduced to the simulation system by default.76, 78 For the one-layer simulation 

system, 3 copies of the compound of interest are introduced to the simulation system by 

default.79 The number copies of the compound introduced can be increased or decreased 

depending on the desired simulated density.77 It is worth noting that while the simulation 

files generated are specific for the study of only one type of toxic compound/amending 

molecule, the simulation files generated can be used as a basis to investigate mixtures of 

compounds. For example, in a system containing 8 copies of hypothetical compound 1 

and 8 copies of hypothetical compound 2, the simulation setup can be independently 
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performed for both hypothetical compounds and the coordinates of alternating odd 

hypothetical compound 1 copies can be saved (for example, copies 1, 3, 5, 7, 9, 11, 13, 

and 15) and alternating even hypothetical compound 2 copies can be saved (for example, 

copies 2, 4, 6, 8, 10, 12, 14, and 16). In this way both hypothetical compounds would be 

evenly dispersed around the adsorbent under investigation. 

Counterions may be added to the solvated system to neutralize the overall charge 

of the system. The numbers of ions are automatically determined by the total charge of the 

system. The initial configuration of added ions is determined through short Monte Carlo 

(MC) simulations (2000 steps).274 Topologies and parameters for several ions are available 

in the CHARMM36 force field.42, 198 

 

Stage 3: MD Simulations of the Binding of Compounds onto Adsorbents 

Prior to the production stage of the MD simulation, the simulation system is 

initially energetically minimized through 500 steps of steepest gradient descent 

minimization, 500 steps of Newton-Rapson minimization, and 500 steps of steepest 

descent minimization followed by a constrained 1 ns MD simulation equilibration stage. 

During the energy minimizations and 1 ns equilibration stage, the adsorbent layer(s), 

amending molecules (if present), and compounds of interest are constrained with a 1.0 

kcal·mol-1·Å−2 harmonic constraint on all heavy atoms. Following energy minimization 

and equilibration, the simulation system enters the production stage with all constrains on 

the system are released except, for the montmorillonite clay adsorbents, light 0.1 

kcal·mol−1·Å−2 harmonic constraint on aluminum atoms of the clay layers. The duration 
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of the production stage can be lengthened or shortened as desired.76-79 For example, in 

studies involving two-layer montmorillonite clay systems in the presence of compounds 

involved in the production of plastics, bisphenols and phthalates,76 the production stage 

duration was 100 ns; in the study involving two-layer montmorillonite clay systems in the 

presence of herbicides, glyphosate and paraquat,77 as well as PFAs,78 the production stage 

duration was 50 ns; in the study involving a one-layer montmorillonite clay system in the 

presence of diverse toxic compound in different solvents,79 the production stage duration 

was 30 ns. In the simulations, the temperature and pressure are set to 300 K and 1 atm, 

respectively, hydrogen bond lengths are constrained using the SHAKE algorithm,278, 279 

and periodic boundary conditions are applied. MD simulation snapshots are extracted in 

20 ps intervals for subsequent analysis (Figure V-1, boxed in yellow). 

Simulation snapshots have been used as input to structural analysis and energy 

calculation programs. In the structural analysis programs developed by members of Dr. 

Tamamis’ lab,76-78 simulation snapshots in which the toxic compound is bound to the clay 

(based on distance cutoffs between atoms of the compound and the clay or amending 

molecule) are collected. Based on the number of instances the toxic compound is bound 

to the clay (either through direct interaction with the clay, indirect interaction with the clay 

through interactions with amending molecules, or simultaneous interactions directly with 

the clay and with amending molecules) within the simulations, binding propensities of the 

toxic compound are calculated. Based on which groups of atoms of the toxic compound 

are most frequently bound to the clay and/or amending molecule in these instances, the 

key binding modes of the compound are detected. 



 

104 

 

In the energy calculation programs, simulation snapshots of the toxic compound 

binding to the clay are used as input for interaction energy calculations. Such energy 

calculations can provide insights into the driving forces leading to the toxic compounds 

binding. In the energy calculations, the electrostatic and van der Waals interaction energy 

of the toxic compounds binding to the clay are calculated. In the cases in which the toxic 

compound is directly bound to the clay surface (without interacting with any amending 

molecule in the case of amended clays), the interaction energy of the toxic compound to 

the clay is calculated.76, 79 In the cases in which the toxic compound is either indirectly 

bound to the clay through interactions with amending molecules, or simultaneously bound 

to both the clay and amending molecules, then the interaction energies are calculated 

between the bound toxic compound and the amended clay, where only the amending 

molecule involved in the binding of the toxic compound is included as part of the amended 

clay.76 All energy calculations are performed in CHARMM197 using infinite cutoffs.76, 79 

As is, it is important to note that the interaction energy values show the strength of 

interaction between the toxic compound and the clay and do not represent the absolute 

adsorption free energy of the toxic compounds for the clay. To predict the adsorption free 

energies of diverse toxic compounds binding to clays, these interaction energy values were 

used as input to a minimalistic model (described in the following section).79 
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Applications of Simulating and Investigating the Binding of Compounds onto 

Montmorillonite Clays 

The methodology for simulating and investigating the binding of compounds onto 

montmorillonite clays has been used in several studies investigating the mechanisms of 

diverse toxic compounds binding to montmorillonite clays. The standardization of the 

simulations has allowed qualitative comparison across structurally and physicochemically 

distinct compounds as well as across different clay formulations (SM, CM, CM-carnitine, 

CM-choline).76-78  Further the standardization of the simulations and energy calculations 

have also allowed for the development of a minimalistic model that predicts the adsorption 

free energy of individual compounds for CM.79 Experiments for these studies were 

performed by members of Dr. Phillips’ lab at Texas A&M University, College Station. 

Contributors to these studies are listed in the authors lists of refs. 76-79. Additional details 

of these studies are provided in refs. 76-79. 

 

Interactions of Na+ Montmorillonite with Herbicides, Glyphosate and Paraquat 

Glyphosate and paraquat are two of the most widely used herbicides.369, 370 Due to 

their common usage, they are ubiquitous contaminants in the environment that can affect 

human health.371-385 During events of extreme weather such as hurricanes or floods, soils 

contaminated with glyphosate or paraquat can be mobilized and redistributed to areas of 

high human and animal contact.386 In this study, the binding mechanisms of glyphosate 

and paraquat to SM at acidic (pH 2) and neutral (pH 7) pH conditions were 

computationally investigated through MD simulations and structural analysis.77  
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According to MD simulations and experiments, both glyphosate and paraquat can 

be tightly bound by SM.77 In the simulations, glyphosate was primarily bound to SM 

through its positive amide group at pH 2 and 7 (51% and 74% of all binding instances, 

respectively, Figure V-2A,B).77 Due to protonation at pH 2, glyphosate was also bound to 

SM through hydrogen bond interactions between its phosphate group and the oxygens of 

the clay siloxane surface (43% of all binding instances, Figure V-2B).77 Paraquat was 

primarily bound to SM with both bipyridinium rings being approximately parallel to the 

surface at both pH 2 and pH 7 (90% and 93% of all binding instances, respectively, Figure 

V-2C,D).77 These results are consistent with previous experimental studies showing that 

glyphosate and paraquat bind strongly with soils containing clays.387-389 Paraquat was also 

observed to bind to the clay with longer residence times per binding event compared to 

glyphosate suggesting that paraquat has a higher probability to retain a bound 

conformation compared to glyphosate at pH 2 and 7.77 The computationally calculated 

average residence time per binding event of glyphosate bound to clay at pH 2 and pH 7 

were 0.59 ± 1.2 ns and 0.10 ± 0.09 ns, respectively.77 The computationally calculated 

average residence time per binding event of paraquat bound to clay at pH 2 and pH 7 were 

2.84 ± 6.33 ns and 4.06 ± 7.45 ns, respectively.77 These results are in line with 

experimental hydra assays suggesting that the bioavailability of paraquat is lower than that 

of glyphosate when in the presence of montmorillonite clay.77 
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Figure V-2. Molecular graphics images from representative MD simulation snapshots of 
(A,B) glyphosate and (C,D) paraquat binding to SM at (A,C) pH 2 and (B,D) pH 7. The 
most prominent binding conformations of (A,B) glyphosate or (C,D) paraquat and their 
corresponding propensities are encircled in green dotted lines adjacent to the image of the 
simulation system and green doubled lines within the image of the simulation system. (A) 
The second most prominent binding conformation of glyphosate at pH 2 is encircled in 
orange dotted lines adjacent to the image of the simulation system and orange doubled 
lines within the image of the simulation system. This figure is an adaptation from ref. 77*. 
 

 

 

 

 

* Reprinted with permission from “Montmorillonites Can Tightly Bind Glyphosate and Paraquat Reducing 
Toxin Exposures and Toxicity” by Meichen Wang, Asuka A. Orr, Shujun He, Chimeddulam Dalaijamts, 
Weishueh A. Chiu, Phanourios Tamamis, and Timothy D. Phillips, 2019. ACS Omega, 4 (18), 17702-17713, 
Copyright 2019 by American Chemical Society. https://pubs.acs.org/doi/10.1021/acsomega.9b02051. 
Further permissions related to the material excerpted should be directed to the ACS 
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Interactions of Bisphenols and Phthalates with Parent and Carnitine-Amended 

Ca2+ Montmorillonite Clays 

Bisphenols, bisphenol A (BPA) and bisphenol S (BPS), as well as phthalates, 

dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), are commonly used in the 

production of plastics.390-394 BPA and BPS have been suggested to be xenoestrogens, 

exhibiting estrogen-mimicking, hormone-like properties, and have been linked to 

endocrine disorders.394-401 DBP and DEHP have also been suggested to be endocrine-

disruptive chemicals based on both animal402-405 and human406-409 studies. Due to the 

pervasive use of plastics in modern technologies ranging from food storage to 

medicine,392, 410 the exposure of vulnerable populations to potentially harmful chemicals 

that can be leached from plastics, such as bisphenols and phthalates, is a concern.393, 394, 

396, 406  In this study the binding mechanisms of bisphenols and phthalates to both parent 

(unamended) CM and CM-carnitine in acetonitrile was investigated.76 

According to MD simulations and binding propensity calculations, the parent CM 

was predicted to be capable of binding BPA and BPS  but not effective in binding DBP or 

DEHP.76 Additionally, while the addition of carnitine amendments to CM, resulting in 

CM-carnitine, improved the binding of the clay to BPA and BPS compared to the parent 

CM, it did not improve the binding of the clay to DBP or DEHP.76  Interaction energy 

calculations indicated the strength of interaction of BPA and BPS to the clay and suggested 

that electrostatic interactions were the key driving force leading to their binding to the 

clay.76 In line with these computational results, experiments comparing the binding of CM 

to BPA and DBP confirmed that the clay was capable of binding BPA, but not DBP.76 
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Additionally, experiments examining the effect of carnitine-amendments to the clay 

showed that CM-carnitine had improved binding to BPA but had a negligible effect for 

the binding to DBP.76  

 

Interactions of Perfluoroalkoxy Alkanes with Parent and Carnitine-Amended Ca2+ 

Montmorillonite Clays in Acidic Conditions 

Per- and polyfluoralkyl substances (PFAS) are man-made compounds with 

widespread use in common consumer and industrial products. While there is limited 

research on the potential health effects of the bioaccumulation of certain PFAS,411 current 

evidence suggests it may cause serious health conditions.412-414 Among PFAS, PFOA 

(perfluorooctanoate) and PFOS (perfluorooctanesulfonate) have been widely found in 

sediment, sludge, municipal wastewater, coastal water, and even tap water.411 To decrease 

the use of the highly persistent and cumulative PFOA and PFOS, short-chain PFAS 

congeners, including GenX (hexafluoropropylene oxide) and PFBS (perfluorobutane 

sulfonic acid) were introduced as alternatives. However, the hydrophobic chain and 

hydrophilic functional groups allow PFAS residues to be easily transported in an aquatic 

environment and adsorbed onto the surfaces of environmental solid matrices.415 In this 

study, the binding mechanisms of PFOS, PFOA, PFBS, and GenX to both CM and CM-

carnitine in water at pH 2 (simulating stomach conditions) was investigated through MD 

simulations, structural analysis.78  

According to both MD simulations and experiments, CM and CM-carnitine were 

more effective at binding PFOA and PFOS than PFBS and GenX. The higher propensity 
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of PFOA and PFOS binding to both CM and CM-carnitine than PFBS and GenX was 

suggested to be due to the longer fluorinated carbon chains of PFOA and PFOS. Both 

PFOA and PFOS predominantly bound to CM through their hydrophobic tails (Figure 

V-3A,B). Additionally, in the simulations of CM-carnitine, both PFOA and PFOS 

predominantly formed hydrogen bonds between their carboxyl group and the carboxyl or 

hydroxyl group of a bound carnitine with a portion of their fluorinated carbon chains 

frequently bound directly to the clay surface simultaneously (Figure V-3C,D).  

 
 
 

 

Figure V-3. Molecular graphics of the simulation snapshots containing representative and 
prominent binding modes for (A) PFOA and (B) PFOS binding to CM, and (C) PFOA and 
(D) PFOS binding to CM-carnitine. Zoomed in images of the prominent binding modes 
are encircled by dotted lines and reoriented to facilitate the comparison of different 
binding modes. This figure is adapted from ref. 78*. 

 

* Reprinted with permission from “Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by 
edible, nutrient-amended montmorillonite clays” by Meichen Wang, Asuka A. Orr, Joseph M. Jakubowski, 
Kelsea E. Bird, Colleen M. Casey, Sara E. Hearon, Phanourios Tamamis, and Timothy D. Phillips, 2021. 
Water Research, 188, 116534, Copyright 2020 by Elsevier. 
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Combining Experimental Isotherms, Minimalistic Simulations, and a Model to 

Understand and Predict Chemical Adsorption onto Montmorillonite Clays 

The studies of the previous sections provided insight into the molecular 

mechanisms of specific pesticides, bisphenols, and PFAS binding to parent and nutrient-

amended clays with reasonably high qualitative correlations between computations and 

experiments.76-78 However, a computationally low-cost, efficient, and accurate method for 

predicting a compound’s absolute free energy of adsorption for the clay and screening 

which toxic compounds could be mitigated by the clay remained lacking. Additionally, 

while previously developed data-driven tools aiming to predict adsorption activity of 

broad-acing materials via regression and dimensionality reduction techniques Qmax and 

logP values from experiments were able to determine what experimental conditions could 

maximize adsorption activity,416 black box methods alone were unable to predict 

adsorption free energy of compounds to adsorbents due to a limited pool of data.416 

In collaboration with Dr. Phillips’ and Dr. Pistikopoulos’ labs, a diverse set of 

toxic compounds was investigated using minimalistic (one-layered CM) simulations and 

the hypothesis that their interaction energies with CM, derived from the simulations, as 

well as intrinsic properties of the compounds and solvents can be used as inputs to a 

minimalistic model to predict adsorption free energies in agreement with experiments was 

examined.79 Simulations of CM in the presence of 35 different toxic compound – solvent 

systems, for which experimental adsorption free energy values were determined were 

performed. Of the 35 different toxic compound – solvent systems, experimentally derived 

adsorption free energies of 24 toxic compound – solvent systems for CM were reported in 
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previous studies by Dr. Phillip’s lab,76, 77, 319, 320, 323, 324, 417, 418 and experimentally derived 

adsorption free energies of 11 toxic compound – solvent systems for CM were determined 

as part of this section by Dr. Phillip’s lab.79 The investigated compounds represent several 

classes of compounds including bisphenols (BPA, BPS, and BPF), industry solvents 

(benzene, toluene and phenol), polycyclic aromatic hydrocarbons (naphthalene, 

benz[e]acephenanthrylene, benzo[a]pyrene, and pyrene), polychlorinated biphenyls 

(PCB77, PCB126, PCB153, PCB154, PCB155, and PCB157), herbicides (linuron, 

trifluralin, 2,4-dichlorophenoxyacetic acid, glyphosate, aminomethylphosphonic acid, 

2,4,6-trichlorophenol, and paraquat), pesticides (lindane, dieldrin, clofenotane, diazinon, 

chlorpyrifos, and aldicarb), and mycotoxins (vomitoxin, fumonisin-B1, aflatoxin-B1, and 

zearalenone).79  

Overall the simulations were considered minimalistic due to the relatively small 

size of the simulated system (one-layered CM), the small number of copies of individual 

toxic compounds (3 copies), and relatively short simulation duration (30 ns) used.79 

Computational efficiency was considered an important factor in this study, as an efficient 

strategy could enable such approaches to be applied in the future to computationally study, 

screen, and predict adsorption free energies of multiple individual types of toxic 

compounds (see minimalistic model below). Upon completion of the minimalistic 

simulations of CM in the presence of the toxic compounds, the average interaction energy 

of the toxic compounds, decomposed into van der Waals and electrostatic contributions, 

were calculated and stored for subsequent use as inputs, in addition to the intrinsic 
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properties of the compound (charge) and solvent (dielectric constant)  to the minimalistic 

model described in the following passage.79   

A minimalistic model that can predict adsorption free energies of toxic compounds 

for CM was developed from several attempts at building a model. The presented 

minimalistic model is, to our knowledge, the simplest and most accurate model based on 

the studied set of toxic compounds, based on additional attempts that were performed. In 

the minimalistic model, the predicted affinity (ΔGPred) of the compound for CM is 

estimated from MD-averaged van der Waals (EVdW) interaction energies and the MD-

averaged electrostatic (EElec) interaction energies, the net charge (C) of the compound, and 

the corresponding dielectric constant (ε) of the solvent.79 The interaction energy describes 

the strength of interaction between two molecules (in vacuum) and does not account for 

polar interaction solvation energy. Thus, it was considered beneficial to divide the 

electrostatic interaction energy component by the dielectric constant to normalize the term 

across the different solvents. The division of the electrostatic interaction energy term by 

the product of the dielectric constant and the net charge also normalized the strength of 

electrostatic interaction energy for positively charged compounds of different net charge 

(ranging from 0-2). For the cases in which the net charge of the compound was 0, a “+1” 

term was also included to avoid division by 0. The model is shown below in Equation 

V-1:79 
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ΔGPred=α)EVdW*+β+
EElec

(ε)(C+1), 
Equation 

V-1 

In Equation V-1, α and β are tunable parameters. It is worth noting that the model 

can be considered minimalistic given its simplicity, particularly the fact that only two 

tunable parameters in combination with four terms (EVdW, Eelec, ε, C) are used to capture 

all needed information; both tunable parameters are unitless as each energy term have 

units of energy (kcal·mol−1). Other models formulated and tested lacking either the ε, C, 

or the combination of the two terms performed worse than the presented model in terms 

of both the R2 and Root Mean Square Error (RMSE) of the predicted adsorption free 

energies to the experimental adsorption free energies. Comparison of the predicted and 

experimentally derived affinities of the toxic compounds to the clay showed that the model 

provided adequately accurate predicted affinities (Figure V-4). The values of α = 1.01 and 

β = 0.48 used to calculate the predicted affinities correspond to the average of their values 

that minimize the model’s sum of squared error in each of the 10,000 bootstrap runs.79 
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Figure V-4. Correlation of the experimentally observed adsorption free energies (x-axis) 
and the computationally predicted adsorption free energies (y-axis) of compounds binding 
to CM (α = 1.01 and β = 0.48).  
 
 
 

Additionally, using the minimalistic simulations in conjunction with in-house 

structural analysis programs,78 mechanistic insights into the binding of toxic compounds 

onto CM were derived.79 According to the simulations, the toxic compounds investigated 

in this study that bind tightly to CM have one or more of the following characteristics: (1) 

they contain positively charged groups, (2) they contain a phosphine oxide group, (3) they 

are halide-rich, (4) they contain hydrogen bond donors/acceptors, and (5) they are large 

and rigid.79 Notably, these underlying characteristics associated with CM binding were 

observed regardless of the use of different solvents in the experiments and in the 

corresponding simulations.79 Examples of compounds encompassing these characteristics 

are shown in Figure V-5.  

For the positively charged toxic compounds investigated in this study, based on 

interaction energy calculations, the positively charged toxic compounds predominantly 
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bind through electrostatic interactions with the negatively charged interlayer basal 

surfaces of CM.79 These strong electrostatic interactions were additionally compounded 

by strong van der Waals interactions due to the proximity of the toxic compounds to the 

clay surface.79  

For toxic compounds containing a phosphine oxide group in this study, both 

electrostatic and van der Waals interactions contribute to their binding to CM, and all the 

studied phosphine oxide containing compounds bound to CM through their phosphine 

oxide groups in their predominant binding modes.79 This may be due to the fact that 

phosphorus in phosphine oxide groups is partially positively charged,195, 419 enhancing the 

attraction of the compounds to the negatively charged interlayer basal surfaces of CM.420  

For halocarbon toxic compounds that are halogen-rich, van der Waals interactions 

predominantly contribute to the binding of halocarbon compounds to CM.79 Halocarbon 

toxic compounds with halogen atoms arranged such that multiple halogen atoms can 

interact with CM simultaneously and maximize molecular contact between the toxic 

compound and the CM surface generally acquired the highest affinities.79 

For toxic compounds containing hydrogen bond donor/acceptor groups in this 

study, both electrostatic and van der Waals interactions contributed to the binding of the 

toxic compounds to CM. The presence of a hydrogen bond donor allowed these toxic 

compounds to form hydrogen bonds with the oxygens of the CM interlayer basal surfaces 

as well as to CM edge surfaces. Additionally, the presence of hydrogen bond donors and 

acceptors allowed for the formation of solvent-mediated interactions between the 
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compounds and CM. The presence of hydrogen bond acceptors also allowed toxic 

compounds to form favorable interactions with Ca2+ exchange cations of CM.  

Lastly, for large and rigid toxic compounds in this study, van der Waals 

interactions predominantly contributed to the binding of these inert toxic compounds. 

These toxic compounds primarily bound to the clay such that their rings are approximately 

perpendicular to the clay interlayer surface. In their primary mode of binding, the large 

and rigid toxic compounds appear to be sterically hindered from escaping the interlayer 

despite their inert chemical properties. For example, benzo[a]pyrene, with a maximum 

distance across its aromatic rings of approximately 11 Å, occupies nearly the entire 

interlayer space, which is 15 Å within the simulation due to the periodic boundaries used 

(Figure V-5, encircled in black). Contrarily, benzene’s smaller size appears to allow it to 

freely flow between clay layers and escape the interlayer. 

Overall, the toxic compounds in this study that were chemically inert and relatively 

small, such as benzene and toluene, did not bind strongly, or minimally bind to CM. 

Additionally, rigid, but not large, toxic compounds that were sterically hindered from 

lying coplanar with the interlayer surfaces also minimally bind to CM, such as PCB154. 

The steric hinderance prevented the formation of dry interfaces between the binding 

compound and the interlayer surface of CM.  
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Figure V-5. Molecular graphics image of chemicals encompassing characteristics linked 
to CM binding.  

 
 
 
Given computational resources for relatively short, minimalistic MD simulations 

and simple energy calculations, the use of systematically executed MD simulations of the 

one-layer system combined with simple energy calculations and the minimalistic model 

can save both experimental and computational effort and cost to estimate a compound’s 

affinity for an adsorbent material. Thus, the minimalistic simulations and model can 

potentially be used to scan hundreds of toxic compounds for their potential to be strongly 

bound by CM. Notably, the model does not discriminate between toxic and non-toxic 

compounds; it can determine the binding properties of a compound for CM regardless of 

its toxicity. Thus, the model could also potentially be used to examine the possibility of 

other, benign, compounds to be used as amending molecules to produce molecule-

amended CM (such as CM-carnitine or CM-choline) with higher affinity for toxic 

compounds.  
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Concluding Remarks for Simulating and Analyzing the Binding of Compounds onto 

Montmorillonite Clays 

Montmorillonite clays have been used as therapeutic agents since ancient times.299-

301 Today, they are becoming increasingly attractive candidates for the mitigation of toxic 

chemicals.314, 319, 341, 418 Experimental and computational methods have been used to gain 

valuable insights into the adsorption of compounds onto montmorillonite clays. 

Experimental adsorption isotherms have provided insights into adsorption pathways and 

estimates of the thermodynamic properties of various compounds adsorbing onto clay 

surfaces.76-79, 320, 323, 324, 417, 421 MD simulations have allowed the dynamic study of 

chemical compounds binding onto inorganic surfaces, including clays, in atomistic detail 

and gave insights into the driving forces of adsorption.37, 77-79, 347, 348, 351, 352, 422-424 In this 

chapter, the developed clay models and simulation setup have been successfully used in 

several studies in conjunction with structural and energetic analysis.76-79 The focus of this 

chapter was on the simulation setup, which has been generalized such that programs take 

the selection of adsorbent material, amending compounds (or lack thereof), solvent, toxic 

compound under investigation, and system size as user input to generate the appropriate 

simulation files. The systematic generation of simulation systems has allowed the 

comparison of diverse compounds’ propensity to bind to clay76-78 and ultimately allowed 

for the development of a minimalistic model that can predict the adsorption free energy of 

diverse toxic compounds for CM.79 
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CHAPTER VI  

PEPTIDE-BASED SELF- AND CO-ASSEMBLY  

 

Elucidating the Pathways of Peptide Self- and Co-Assembly 

Introduction 

Self- and co-assembly is a process in which individual molecular building blocks 

spontaneously aggregate form ordered supramolecular structures under mild conditions.425 

In this chapter, self-assembly refers to identical copies of molecular building blocks form 

supramolecular structures composed purely of the identical building blocks; in co-

assembly copies of two or more distinct building blocks form supramolecular structures 

composed of a mixture of the different building blocks. These ordered structures are 

generally assembled through noncovalent interactions,426, 427 and although individual 

noncovalent interactions are very weak, the combination of several noncovalent 

interactions together can generate very stable and well-organized structures.426 Self-

assembling proteins and peptides are increasingly gaining interest for engineering 

functional biomaterials.428 Their properties can be easily tuned through changes at the 

sequence level,22, 23, 429-435 and they can be produced in large quantities through chemical 

synthesis or recombinant technologies.436  

Naturally occurring β-sheet forming motifs can be extracted from amyloidogenic 

proteins or fibrous proteins to yield shorter, self-assembling peptides. For example, short 

fragments such as KLVFFAE437 extracted from Aβ (commonly associated with AD) as 

well as NFGAIL438 extracted from IAPP (commonly associated with T2D) form ordered, 
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β-sheet structures. Furthermore, the β-sheet structures formed by these short fragments 

also possess similar ultrastructural, molecular conformational and cytotoxic properties to 

the β-sheet structures formed by the full-length, corresponding polypeptides.437, 438 Short 

peptides, with sequences extracted from amyloidogenic proteins or fibrous proteins, have 

been “decorated” with chemically or biologically active groups or motifs to yield 

functional self-assembled biomaterials. Examples include the A208 peptide containing the 

IKVAV motif extracted from mouse laminin α1 chain conjugated with RGD tripeptide to 

promote cell-adhesion on amyloid gel scaffolds,439 peptides containing the GAITIG motif 

extracted from adenovirus fiber shaft or GAIIG motif extracted from Aβ with terminal 

residues mutated to functionalize them for ion/compound binding22, 23, 430, 440, 441 and cell 

penetration,431-433 and peptides containing the VQIVYK motif extracted from tau with 

mutations introduced for carbon capture.442, 443  

Interestingly, motifs such as KLVFFAE, NFGAIL, IKVAV, GAITIG, GAIIG, and 

VQIVYK that confer self-assembly properties contain a high occurrence of aromatic or 

hydrophobic residues. Because of this, it was hypothesized that hydrophobic interactions, 

especially interactions between aromatic moieties, may play a central role in amyloid β-

sheet formation.444 While aromaticity is not an essential factor in amyloid self-assembly, 

for which β-sheet formation is essential, it appeared to accelerate the process for particular 

peptides.445 The acceleration of self-assembly was suggested to be due to aromatic side 

chains having constrained conformations compared to other residues, thereby providing 

order and directionality as well as minimizing the energy of the amyloid structure.444  
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In addition to aromaticity, hydrophobicity, and polar/electrostatic interactions, 

ionic interactions can also drive peptide self-assembly. To maximize the formation of as 

many ionic electrostatic interactions between self-assembled peptides as possible, 

synthetic ionic-complementary peptides have been rationally designed. Inspired by the Z-

DNA binding protein, the first ionic-complementary self-assembling peptide, EAK16 

(NH3+-AEAEAKAKAEAEAKAK-CO2-), was designed446 with applications in 3D cell 

culture, tissue engineering, regenerative medicine, and sensory devices.425, 447, 448 Due to 

the combination of ionic and hydrogen bond interactions inside the β-sheet structures 

formed by ionic-complementary peptides, these self-assembled structures are stable under 

a wide range of temperatures, pH values, and in the presence of denaturing chemicals.425 

Additionally, due to the non-specific nature of hydrophobic interactions, these self-

assembled structures may diffuse to minimize equilibrium energy.449, 450 Among these 

peptides, the RADA16-I peptide was shown to promote cell growth and tissue 

regenerations and has been commercialized as PuraMatrix.449, 451 

As interest in self-assembly systems has increased, so has the quest for the 

identification of the minimal essential properties needed for self-assembly that could be 

used for technological applications that rely on mimicking natural self-assembly 

processes.445 Very short self-assembling peptides and their mimetics are of special interest 

as they are easily scalable and can lead to insights into the mechanisms of self-assembly 

in larger molecules.452 Following a minimalistic approach to discover the shortest peptide 

capable of self-assembly, the diphenylalanine (FF) motif, extracted from Aβ, was reported 

to self-assemble into stiff nanotubes with numerous applications.453-456 Due to its chemical 
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simplicity and versatility, FF became a paradigm of study for peptide self-assembly and 

for designing FF analogs. Materials made from FF with targeted mutations or chemical 

modifications can be easily fabricated and self-assemble into diverse nanostructures with 

applications as hydrogels457-460 and biosensors.461 Combining one such FF analog, 

fluorenylmethyloxycaronbyl-diphenylalanine (Fmoc-FF) with other materials either as 

hybrid hydrogels or through co-assembly resulted in hydrogels with improved properties 

and functionality.434, 435, 462, 463 The self- and co-assembly of another FF analog, 

fluorenylmethyloxycaronbyl-phenylalanine (Fmoc-F) and the functionality of the 

resulting material can easily be enhanced though incorporating chemical or biological 

“decorations”, such as including halogens on the benzyl side chain.464-468  

Interestingly, FF was also observed to self-assemble when deposited on a surface 

by physical vapor deposition, forming arrays of linearly aligned nanotubes called 

nanoforests.453 Tuning the deposition time allowed for controllable fabrication of FF 

nanoforests of a desired thickness, which could be used to produce interfaces with high 

surface area due to decoration with dense and homogeneous layers of FF nanotubes.453 It 

was later suggested that the nanoforests were not entirely composed of FF nanotubes, 

rather 80-90% of the cylindrical assemblies appeared to be nanorods composed of a 

modified FF peptide.469 These modified FF peptides were found to be cyclo-FF peptides 

(cyclic dipeptide with two phenylalanine side-chains), formed by the dehydration of the 

linear lyophilized FF peptides during the vapor deposition process.469 The nanorods 

formed by cyclo-FF are solid, lacking hydrophilic channels, and are extremely 

hydrophobic.469 In line with these results, it was later found that the presence of water 
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vapor during the deposition process increases the fraction of FF nanotubes to cyclo-FF 

nanorods in the nanoforest.470 

Further investigation of self-assembled cyclo-FF structures showed that they 

possess photoluminescent properties with potential optical applications including light 

emitting diodes and optical biomarkers.471, 472 Previous studies have suggested that 

aromatic residues impart near-ultraviolet (UV) photoluminescence to proteins473-475 and 

that cyclo-dipeptides with backbones of 2,5-diketopiperazine configurations, derived from 

dehydration condensation of linear dipeptides,476, 477 self-assemble into photoluminescent 

nanostructures different from their linear counterparts.478, 479 Additionally, cyclic peptides 

can be advantageous over linear peptides owing to their conformational stability and 

decreased conformational entropy in the unfolded state.480, 481 Thus, a series of aromatic 

cyclo-dipeptide self-assembles were investigated to evaluate their photoluminescent 

properties and potential as bio-inspired light-emitting diodes and for in vivo bio-

imaging.81, 82, 482  

To enhance the photoluminescence properties of the self-assembled cyclo-

dipeptide nanostructures, different peptide sequences, solutions, and ions inclusion were 

examined. Interestingly, a green fluorescent protein mutant (BFPms1) coordinates with 

Zn2+ via through histidine, resulting in increased fluorescence intensity upon Zn2+ 

binding.483 According to solid-state NMR spectroscopy and theoretical DFT calculations, 

histidine coordination with Zn2+ is minimal in acidic conditions and its favorability 

increases as pH levels increase to pH 7.5.484 Further increasing the pH was suggested to 

eventually fully deprotonate histidine leading to the formation of a macromolecule 
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composed of different imidazole rings linked to each other by Zn2+.484 Inspired by these 

observations, the self-assembly of cyclo-dihistidine (cyclo-HH) in the presence of Zn2+ 

was investigated. The resulting cyclo-HH : Zn2+ assemblies achieved high quantum yields 

for green fluorescence, exemplifying the potential of such structures to serve as 

bioinspired, supramolecular alternatives for eco-friendly optoelectronics and 

bioimaging.81, 82 The enhanced fluorescence of cyclo-HH : Zn2+ gives promise to cyclo-

HH as a potential platform for further therapeutic or diagnostic applications. Furthermore, 

later studies showed that cyclo-HH-ZnI2 nanowires have hydrolytic activity, with its 

activity retained after five cycles, making it more robust and durable than other 

biomolecular artificial hydrolase complexes.83 

In this chapter, the methodology and applications of MD simulations and a suite 

of programs performing structural analysis and “thought” free energy calculations 

developed as part of this doctoral study are described. Fundamental insights into the initial 

moments of short peptide self- and co-assembly into ordered structures was investigated 

through the MD simulations combined with the analysis programs. The computational 

protocol based on MD simulations, structural and energetic analysis for the investigation 

of the early stages of self- and co-assembly can be considered as generalizable, and thus, 

may be applied to the investigation of other self- or co-assembly systems involving other 

molecular building blocks (peptides, molecules, and/or ions) beyond those described in 

the applications section. 
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Methodology for Elucidating the Pathways of Short Peptide Self- and Co-Assembly 

The methodology for elucidating the pathways of short peptide self- and co-

assembly can be outlined as the following stages: (1) all-atom MD simulations are 

performed to sample the initial stages of peptide self- or co-assembly; (2) clusters are 

detected based on geometric criteria and ordered or amorphous structures are identified 

within the MD simulations; (3) structural analysis is performed on the detected clusters to 

determine their composition and geometric properties; (4) energetic analysis is performed 

on the detected clusters to compare the thermodynamic favorability of different 

constructed pathways of self- or co-assembly. The workflow of the presented 

methodology is presented in Figure VI-1. In this section, the methodology for elucidating 

the pathways of short peptide self-and co-assembly is described. A detailed description of 

the methodology is available in refs. 81-84. 

 
 
 

 

Figure VI-1. Schematic of the overall computational methodology to elucidate the 
pathways of short peptide self- and co-assembly. 
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Stage 1: MD simulations of short peptide self-/co-assembly  

 The self- or co-assembly of short peptides is initially investigated using MD 

simulations (Figure VI-1, red box). The resulting MD simulation snapshots will 

subsequently be used as input for structural analysis and energy calculations in the later 

stages.  The initial structures for the MD simulations are built by placing copies of the 

short peptide under investigation and any co-assembling molecule or ion, if present in the 

self-assembly system of interest, inside a grid. The conformations and orientation of each 

copy of the short peptide and co-assembling molecule within the grid are random and 

generated from short 1 ns simulations of a single molecule at infinite dilution using the 

GBSW implicit solvent model.133 In the grid, the short peptides and molecules or ions 

under investigation are placed such that they are equally spaced such that the initial 

distance between each neighboring peptide, molecule, and/or ion is within the cutoff of 

non-bonded interactions. The initial distance is set aiming to facilitate the formation of an 

initial aggregate such that each peptide, molecule, and/or ion can initially “interact” with 

a neighboring each peptide, molecule, and/or ion within the simulations. The number of 

copies of peptides, molecules, and/or ions within the simulation system should be 

sufficiently large to enhance statistical analysis of the interactions formed within the 

simulations.81-84  

 The initial configuration of the grid of peptides, molecules, and/or ions under 

investigation are subsequently solvated in solvent boxes. The composition of the solvent 

boxes is selected to be in line with experimental conditions. For example, in line with 

experimental conditions, methanol was used for ref. 81, isopropanol was used for ref. 82, 83, 
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and water was used for ref. 84. The size of the solvent box may be constructed such that 

the concentration of the peptides, molecules, and/or ions is higher than used within 

experiments to facilitate the interaction of the peptides, molecules, and/or ions as well as 

to enhance the sampling and formation of clusters within the simulations.485 In refs. 81-84, 

the size of the solvent boxes were built to increase the simulated concentration, compared 

to experiments, of the self- and co-assembling peptides, molecules, and/or ions to facilitate 

self- and co-assembly. 

 The solvated simulation systems are simulated with multi-ns MD simulations. 

Prior to the execution of the production simulation runs, the simulation systems are first 

subjected to constrained energetic minimizations and short equilibration. The energy 

minimization and short equilibration aims to allow the solvent molecules to relax around 

the assembling peptides, molecules, and/or ions. Subsequently, all constraints imposed on 

the simulation systems are released for the production simulation run. During the 

production run, simulation snapshots are saved throughout the duration of the simulations 

for subsequent structural and energetic analysis. The duration of the MD simulations may 

be tailored to the system under investigation.81-84 

 

Stage 2: Detection of Clusters Based on Geometric Criteria  

 Within the MD simulations the investigated molecular building blocks (peptides, 

molecules, and/or ions) may self- or co-assemble into clusters. These clusters can be 

structurally characterized by post-processing the simulation trajectories though in-house 

structural analysis programs developed as part of this doctoral study. Two structural 
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analysis programs are used to detect clusters of molecular building blocks, the first 

(structural analysis program 1) identifies bonded pairs of molecular building blocks, and 

the second (structural analysis program 2) identifies clusters of molecular building blocks 

based on the identified bonded pairs.  

Structural analysis program 1 detects interacting or bonded pairs of molecular 

building blocks (peptides, molecules, and/or ions) within each simulation snapshot based 

on atom-to-atom distances. If the distance between two atoms belonging to different 

individual molecular building blocks is less than a user defined distance cutoff, then the 

two atoms are considered to be bonded. If a pair of atoms are considered bonded, then the 

program compares the interacting atoms to a list of interaction type definitions, and 

information on how the atoms are bonded is recorded. After structural analysis program 1 

is executed, a list of bonded pairs of molecular building blocks (pairs of peptides, 

molecules, and/or ions), the simulation snapshot in which they are interacting, and the type 

of interaction through which the two molecular building blocks are bonded is produced. 

 Subsequently, structural analysis program 2 reads the data in the list of bonded 

pairs of molecular building blocks (peptide, molecule, or ion) to group the molecular 

building blocks into clusters such that a number of s molecular building blocks are defined 

to form a cluster when each molecular building block is bonded to at least one other 

molecular building block in the cluster. The clustering process operates in two steps: In 

the first step, temporary clusters of increasing size are detected, and in the second step, a 

final list of clusters is output with redundancies or the presence of smaller clusters within 

larger clusters are removed.  
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For the first step, clusters of increasing size are identified with individual 

molecular building blocks added one at a time for each simulation snapshot. For each 

snapshot, temporary clusters of two molecular building blocks are compared to a list of 

bonded pairs of molecular building blocks. If any one of the molecular building blocks in 

the list of bonded pairs is present in the temporary cluster of two, then the molecular 

building block is added to the cluster and the cluster size is expanded to a temporary cluster 

of three. Next, the temporary clusters of three molecular building blocks are compared to 

the same list of bonded pairs of molecular building blocks. If any one of the molecular 

building blocks in the list of bonded pairs is present in the temporary cluster of three, then 

the molecular building block is added to the cluster and the cluster size is expanded to a 

temporary cluster of four. This process is repeated until no larger clusters are detected. In 

this step, temporary clusters of smaller sizes can also be detected within larger clusters. 

For example, if a given molecular building block belongs to a cluster of size 5, then the 

molecular building block will also be present in smaller temporary clusters of sizes 4, 3, 

and 2. These redundancies will be removed in the next step. 

In the second step, the presence of smaller clusters within larger clusters are 

removed. For example, if a given molecular building block is present in a cluster of size 

5, then it is no longer present in a cluster of size 4, 3, or 2, and the smaller temporary 

clusters are removed. In this way, redundant smaller clusters within larger clusters are 

removed and an individual molecular building block cannot belong to two separate 

clusters at once. After structural analysis program 2 is executed, a list of clusters, the size 

of each cluster, the residue identification number (unique to each individual molecular 
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building block) of the molecular building blocks comprising each cluster, and the 

simulation snapshot in which the cluster is detected is produced. The clusters of molecular 

building blocks detected by the in-house structural analysis programs are extracted from 

the simulation trajectories and further analyzed in the following stages. 

 

Stage 3: Structural Analysis of the Detected Clusters to Determine Composition and 

Geometric Properties 

 The geometric properties of the detected clusters extracted from Stage 2 can 

subsequently be analyzed. Time-evolution structural analysis can be performed to track 

the formation of clusters within the MD simulations. Additionally, the geometric 

properties of the formed clusters analyzed in Stage 3 include compactness, and, for co-

assembly simulation systems, the cluster composition and the location of peptides, 

molecules, or ions within the clusters. In the following analysis, the detected clusters in 

the simulations are isolated from the simulation systems prior to the structural analysis. 

 Time evolution structural analysis tracking geometric properties with respect to 

simulation time can provide insights into the process by which the molecular building 

blocks within the detected clusters self- or co-assemble. The time evolution structural 

analysis program uses the list of bonded pairs of molecular building blocks and their 

interaction types generated from the structural analysis program 1 of Stage 2, to produce 

the total number of instances for each interaction type detected within user-defined 

discrete time blocks of the simulation. This data is then plotted with respect to simulation 

time to observe the order by which the interactions are formed. For co-assembly systems, 
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the time evolution structural analysis program additionally uses the list of clusters 

generated from structural analysis program 2 to determine the composition of the clusters 

(percent of each type of molecular building block within the cluster) formed within the 

simulations. Thus, for each snapshot, the time evolution structural analysis program 

outputs the average percent composition of each type of molecular building block within 

clusters that are composed of molecular building blocks that eventually form larger 

clusters (the cluster size(s) qualifying as large is defined by the user). For example, in refs. 

81-83, specific interactions between cyclo-HH in different environments were tracked to 

uncover the order in which interactions were formed between the pairs of cyclo-HH to 

ultimately form ordered elementary structures of β-bridge bonded cyclo-HH pairs. In ref. 

82, the time evolution composition of clusters composed of individual peptides, molecules, 

and ions that eventually form large clusters (at least 10 cyclo-HH or epirubicin) was 

tracked to uncover the process by which the individual peptides, molecules, and ions co-

assemble. 

The radius of gyration of each detected cluster can provide a metric of the 

compactness of the clusters. Additionally, the radius of gyration of specific peptides, 

molecules, or ions within the detected clusters can provide insights into their compactness 

within the clusters. The radius of gyration structural analysis program reads the list of 

clusters produced by structural analysis program 2 of Stage 2. For each detected cluster, 

the radius of gyration structural analysis program uses Wordom486, 487 to calculate the 

radius of gyration of the collection of molecular building blocks that make up the cluster. 

From the radius of gyration structural analysis program, a list of the average radius of 
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gyration for each cluster size is produced. When comparing the radius of gyration of 

clusters formed across different simulation systems, as in ref. 84, or the radius of gyration 

of specific type of molecular building blocks across different simulation systems, as in ref. 

82, it is important to ensure a “fair” comparison. For example, in ref. 84, in the calculations 

comparing the compactness of peptides in clusters formed by Fmoc-3,5F-Phe peptides 

versus Fmoc-3,4F-Phe peptides, the comparison was only performed between clusters 

containing the same number of peptides. In ref. 82,  in the calculations comparing the 

compactness of Zn2+ ions in clusters across different simulation systems, the comparison 

was performed between clusters containing the same number of cyclo-HH and the number 

of Zn2+ ions within each cluster of the same size were similar across the two systems. In 

general, larger relative radius of gyration values indicate lower compactness, or lower 

packing density of the peptides, molecules, or ions in the clusters, while lower relative 

radius of gyration values indicates higher compactness, or higher density of peptides, 

molecules, or ions in the clusters.488  

For co-assembled clusters containing different types of molecular building blocks 

the radius of gyration can also indicate the location of the specific types of molecular 

building blocks in a cluster with respect to other types of molecular building blocks of the 

same cluster. The radius of gyration of one type of molecular building block within a 

cluster can be compared to the radius of gyration of another within the same cluster to 

indicated if one type of molecular building block is encapsulated by the other. In the case 

of co-assembly, the radius of gyration structural analysis program reads the list of clusters 

produced by structural analysis program 2 of Stage 2. For each detected cluster and each 



 

134 

 

type of molecular building block of interest, the radius of gyration structural analysis 

program uses Wordom to calculate the radius of gyration for molecular building blocks 

specified by the program.486, 487 For example, if two molecular building blocks are of 

interest, then the radius of gyration for each molecular building block per cluster is 

calculated for the portion of the cluster comprising only one type of molecular building 

block, with all other molecular building blocks omitted, as well as the remaining type of 

molecular building blocks that make up the cluster, with the former type of molecular 

building blocks omitted. From the radius of gyration structural analysis program, a list of 

the average radius of gyration for each molecular building block of interest per cluster size 

is produced.  In this case, a “fair” comparison is also important when comparing the radius 

of gyration of specific peptides, molecules, or ions within different clusters of the same 

simulation system. As in ref. 82, isolating the analysis to clusters of a given percent 

composition of each type of peptide, molecule, or ion and calculating the difference in 

radius of gyration between the entities of interest per cluster (rather than comparing the 

average radius of gyration for each type of peptide, molecule, or ion across all clusters) 

can enable a “fair comparison”. For example, in ref. 82, the calculations were performed 

for clusters containing at least 10 cyclo-HH or epirubicin, with a composition ranging 

from 30% cyclo-HH and 70% epirubicin to 70% cyclo-HH and 30% epirubicin. This 

percent composition criterion was introduced to ensure that each cluster had a sufficient 

number of cyclo-HH and epirubicin. 82  

The percent solvent exposure of a molecular building block within a cluster can 

provide insights into the geometric properties of the cluster and the location of each 
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molecular building block within the cluster. The percent solvent exposure of a molecular 

building block can be measured by the solvent accessible surface area (SASA) of the 

molecular building block divided by the total molecular surface area (TSA) of the same 

molecular building block. The larger the percent solvent exposure of a molecular building 

block, the more exposed it is to the solvent and the more likely it is to be at the surface of 

the cluster; the smaller the percent solvent exposure of a molecular building block, the 

more “buried” it is and the more likely it is to be encapsulated in the interior of the cluster. 

The solvent exposure structural analysis program reads the list of clusters produced by 

structural analysis program 2 of Stage 2. For each detected cluster, the SASA and TSA of 

each molecular building block comprising the cluster is calculated using Wordom486, 487 

and the percent solvent exposure of each molecular building block is calculated. From the 

solvent exposure structural analysis program, the average percent solvent exposure of each 

type molecular building block is printed. The use of percent solvent exposure calculations 

in characterizing the geometric properties of cyclo-HH co-assembled with epirubicin, 

NO3-, and Zn2+ is described in ref. 82. 

 

Stage 4: Energetic Analysis of the Detected Clusters to Compare Thermodynamic 

Favorability of Different Self-Assembly Pathways 

 The detected clusters extracted from Stage 2 can also subsequently be analyzed 

through association free energy calculations. Association free energy calculations can 

provide valuable insights into the mechanism and driving forces leading to the co-

assembly and stabilization of clusters formed by the molecular building blocks under 
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investigation. The energy calculations can also serve to complement the structural analysis 

and be a measure to ensure that the conclusions from both structural and energetic analyses 

correlate and are consistent. In the energy calculations, the detected clusters in the 

simulations are isolated from the simulation systems and undergo a series of “thought” 

energy calculations. In the series of “thought” energy calculations, the MM–GBSA49 

approximation is used to provide a relatively fast and effective means to evaluate the 

association free energy of the clusters, and the isolated cluster is subjected to different 

conditions to examine different potential pathways of co-assembly. 

In the in-house energy calculation program developed as part of this doctoral 

study, the program isolates each cluster detected by structural analysis program 2 of Stage 

2 and executes a CHARMM197 script for each “thought” energy calculation, extracts 

energetic data from the CHARMM197 output, and calculates the association free energies 

normalized by the size of the cluster. Thus, from the energy calculation program, the 

average energy per cluster size for each “thought” energy calculation, which corresponds 

to a constructed thermodynamic self-assembly pathway, is produced. The thermodynamic 

pathway with the lowest average free energy is considered the most energetically 

favorable self-assembly pathway. Possible “thought” energy calculations that may be 

performed are detailed in refs. 81, 82. Insights gained from the different energy calculations 

can lead to the formulation of additional “thought” energy calculations exploring 

intermediate states that lead to the final formation of the cluster as in ref. 82. In the 

following, example “thought” energy calculations and what they represent are presented: 
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1. To represent the free energy for isolated individual molecular building blocks, 

which are part of a given cluster, to spontaneously self-assemble into the cluster, 

the MM–GBSA association free energy is calculated through Equation VI-1.  

ΔG(s)=Ecluster--Ei

s

i=1

 
Equation VI-1 

The energy of the cluster, Ecluster, includes the intra- and intermolecular energies of 

the constituent molecular building blocks, with all other molecular building blocks 

deleted. The energies of the isolated, individual molecular building blocks of the 

cluster, Ei, is calculated by assuming that each molecular building blocks, i, has 

the same conformation as it does within the cluster, but isolated and fully immersed 

in solution, with all other molecular building blocks within the cluster deleted. 

 

2. To represent the free energy for isolated individual molecular building blocks, 

which are part of a cluster, to aggregate onto a preformed portion of the same final 

cluster, the MM-GBSA association free energy is calculated through Equation 

VI-2.  

ΔG(s)=Ecluster-Epreformed--Ei

s

i=1

 
Equation VI-2 

The energy of the cluster, Ecluster, includes the intra- and intermolecular energies of 

the constituent molecular building blocks, with all other molecular building blocks 

deleted. The energy of the cluster, Epreformed, includes the intra- and intermolecular 

energies of the molecular building blocks constituting the preformed portion of the 
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cluster, with all other molecular building blocks deleted. The energies of the 

isolated, individual molecular building blocks of the cluster, Ei, are calculated by 

assuming that each molecular building blocks, i, has the same conformation as it 

does within the cluster, but isolated and fully immersed in solution, with all other 

molecular building blocks within the cluster deleted. 

 

3. To represent the free energy for two preformed portions of the cluster to aggregate 

with each other, the MM-GBSA association free energy is calculated through 

Equation VI-3.  

ΔG(s)=Ecluster-Epreformed 1-Epreformed 2 Equation VI-3 

The energy of the cluster, Ecluster, includes the intra- and intermolecular energies of 

the constituent molecular building blocks, with all other molecular building blocks 

deleted. The energy of the cluster, Epreformed 1, includes the intra- and intermolecular 

energies of the molecular building blocks constituting the first preformed portion 

of the cluster, with all other molecular building blocks deleted. The energy of the 

cluster, Epreformed 2, includes the intra- and intermolecular energies of the molecular 

building blocks constituting the second preformed portion of the cluster, with all 

other molecular building blocks deleted. 

 In the example energy calculations, the cluster, preformed portions of the cluster, 

and individual molecular building blocks of the cluster are all assumed to be fully 

immersed in pure solvent through the deletion of molecular building blocks not involved 

in the energy calculation. Additional energy calculations can also be performed with the 
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energy calculation program to examine hypothetical (i.e., thought) pathways in which the 

interior of the cluster, exterior of the cluster, and/or individual molecular building blocks 

of the cluster are in a peptide-like environment (given that the clusters are formed with 

peptides). In such thought calculations, the nonpolar component of the association free 

energies is calculated as described in Equation VI-1, Equation VI-2, and Equation VI-3. 

The polar component of the association free energies, however, are calculated by 

preserving the charge of the molecular building blocks involved in the energy calculation 

and setting the charge of all molecular building blocks within the cluster to zero. For 

example, to examine the contribution of molecular building blocks co-assembling in a 

peptide-like environment, the association free energy would be calculated through 

Equation VI-2, except the polar component of Ei for a given molecular building block 

would be calculated by setting the charge of all other molecular building blocks within the 

cluster to zero.81, 82 In this way, the calculation represents the energy in a peptide-like 

dielectric environment, rather than a pure solvent dielectric environment.81, 82 

 Within these calculations, the GBSW implicit solvent model133 is used to account 

for the solvent. In the implicit solvent model, the dielectric constant can be tuned in 

accordance with the solvent used in the simulations and experiments.81, 82 Additionally, as 

the inclusion of non-polar solvation in these calculation is important and may cause 

inaccuracies in the calculated energies if not accounted for carefully, the nonpolar 

solvation effects may be omitted by the user81, 82 if comprehensive studies of the 

appropriate surface tension coefficient for the solvent under investigation have not been 

performed with the particular implicit solvent in conjunction with the GB model used (e.g., 
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GBSW133). Nevertheless, supporting calculations may be performed using the default 

surface tension coefficient value determined for water corresponding to the GBSW 

implicit solvent model,133 0.03 kcal·mol-1, to ensure the overall trends remain the same. 
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Applications of Elucidating the Pathways of Peptide Self- and Co-Assembly  

The methodology to elucidate the pathways of peptide self-assembly presented in 

the previous section has been used in several studies investigating the self- and co-

assembly of cyclo-HH in different environments.81-83 The methodology was also used to 

investigate the self-assembly of Fmoc-F derivatives.84 All experiments for the studies 

investigating cyclo-HH self-assembly were all performed by members of Dr. Gazit’s lab 

at Tel Aviv University, Tel Aviv, Israel and collaborators of Dr. Gazit’s lab. Experiments 

for the investigation of Fmoc-F derivative self-assembly were all performed by members 

of Dr. Adler-Abramovich’s lab at Tel Aviv University, Tel Aviv, Israel. Contributors to 

these works are listed in the authors list of refs. 81-84. Additional details of these study are 

provided in refs. 81-84. 

 

Elucidating Cyclo-HH Self- and Co-Assembly: Minimalistic Bio-assemblies with 

Enhanced Fluorescence, Drug Encapsulation, and Catalytic Properties 

Bioinspired assembling materials have demonstrated promising potential to serve 

as the foundation for next-generation photoelectronics.489-492 Inspired by the molecular 

structure of a green fluorescent protein mutant, BFPms1,483 the effect of the inclusion of 

different ions was explored to manipulate the assembly of cyclo-HH into a peptide 

material with the high-fluorescence efficiency in collaboration with Dr. Gazit’s lab. To 

study the effect of ions (no ions, ZnCl2, ZnI2, Zn(NO3)2) on the self-assembly of cyclo-

HH, MD simulations and free energy calculations in conjunction with structural analysis 

programs were performed.81-83 
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According to MD simulations investigating the initial nucleation stage of cyclo-

HH self-assembly in the presence of Zn2+ and Cl-, pairs of cyclo-HH tended to form anti-

parallel β-bridge conformations (Figure VI-2A).81 In contrast, in the absence of Zn2+, pairs 

of cyclo-HH tended to form parallel β-bridge conformations (Figure VI-2B).81 Additional 

MD simulations and analysis also showed that the self-assembly of cyclo-HH in the 

presence of Zn2+ and I-, instead of Cl-, also resulted in pairs of cyclo-HH predominantly 

forming anti-parallel β-bridge conformations.83 These findings are consistent with X-ray 

crystallography structures (Figure VI-2A,B) and suggested that Zn2+ affects the 

association of cyclo-HH and the antiparallel β-bridge conformation was stabilized by Zn2+ 

through “locking” of the pair of cyclo-HH.81, 83 These β-bridge dimeric conformations are 

the basic units and act as the fundamental building blocks to self-assemble into larger 

structures, thus implying the structural basis underlying the photoactive properties.81, 83 

According to time-evolution structural analysis and hypothetical or “thought” free energy 

calculations exploring different self-assembly pathways, the doping of cyclo-HH by Zn2+ 

is initially driven by individual cyclo-HH attracting and pulling of the metal ions from the 

solvent into the peptide environment, rather than by direct interaction in the solvent, thus 

forming an “environment-switching” doping mechanism (Figure VI-2C).81, 83  
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Figure VI-2. Overview of the formation of clusters by cyclo-HH in the absence and 
presence of Zn2+. (A) Comparison of most prominent elementary structure of cyclo-HH in 
the absence of Zn2+ observed in simulations with experimental crystallography. (B) 
Comparison of most prominent elementary structure of cyclo-HH in the presence of Zn2+ 
observed in simulations with experimental crystallography. (C) Schematic of the proposed 
“environment switching” mechanism for cyclo-HH : Zn2+ assembly formation.   

 
 
 
According to MD simulations investigating the initial nucleation stage of cyclo-

HH self-assembly in the presence of Zn(NO3)2 compared to ZnCl2 in isopropanol, Zn2+ 

ions were more densely packed and concentrated in the clusters formed in the presence of 

NO3- for containing the same number of cyclo-HH.82 Combined experimental and 

computational analysis suggested that cyclo-HH : Zn2+ is encapsulated into cyclo-HH : 

NO3- assemblies and that immobilization of the peptide oligomers by a high-stiffness 

scaffold would limit energy dissipation during thermal relaxation pathways for better 

quantum yield and fluorescence intensity.82  

Motivated by the enhanced optical properties of the cyclo-HH : Zn(NO3)2, the 

capability of the material to serve as an emissive nanocarriers for cancer drug delivery was 
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investigated. MD simulations of cyclo-HH in the presence of Zn(NO3)2 and Epirubicin, a 

cancer drug, showed that Epirubicin and Zn2+ ions were primarily located in the interior 

nucleus whereas cyclo-HH and NO3– were primarily at the exterior surface, thereby 

depicting the “self-encapsulation” properties of the system (Figure VI-3B,D). According 

to structural and energetic analysis, the cyclo-HH : Zn(NO3)2 : Epirubicin clusters were 

formed with the Zn2+ ions and Epirubicin molecules first aggregating to form the inner 

nucleus of the clusters followed by the assembly of individual pieces of cyclo-HH and 

NO3- exteriorly wrapping around the preformed interior (Figure VI-3B,C). Further 

energetic analysis suggested that Zn2+ ions and initially formed Epirubicin clusters are in 

a peptide-like environment prior to the outer cyclo-HH and NO3- wrapping around 

the epirubicin cluster (Figure VI-3A). Experiments confirmed that the “self-

encapsulation” properties of cyclo-HH:Zn(NO3)2 can be used to enhance the delivery of 

Epirubicin to HeLa cells and can be used as an advanced nanocarrier with integrated in 

situ monitoring.82 
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Figure VI-3. Overview of the formation of clusters by cyclo-HH in the presence of 
Zn(NO3)2 and Epirubicin. (A) Schematic of potential pathways for the “self-
encapsulation” of Epirubicin by cyclo-HH: Zn(NO3)2. The free energy to associate the 
interior cluster (Epirubicin and Zn2+) from the individual entities is unfavorable (indicated 
by the red ‘X’). However, the free energy to associate the interior cluster (Epirubicin and 
Zn2+) is favorable if the Zn2+ ions and Epirubicin are in a peptide-like environment prior 
to association (indicated by the green check mark). (B) Epirubicin encased by cyclo-
HH:Zn(NO3)2 observed in MD simulations. (C) The time evolution percent composition 
was calculated for clusters composed of the entities (cyclo-HH, Zn2+, NO3- or Epirubicin) 
that eventually form clusters containing at least 10 molecules with a composition ranging 
from 53% cyclo-HH and 83% Epirubicin to 47% cyclo-HH and 17% Epirubicin. (D) 
Percent population of cyclo-HH, Epirubicin, Zn2+ and NO3- within the interior and exterior 
of the clusters containing at least 10 molecules with a composition ranging from 53% 
cyclo-HH and 83% Epirubicin to 47% cyclo-HH and 17% Epirubicin. This figure is an 
adaptation from ref. 82. 
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Differentiating the Self-Assembly of Fmoc-Phe Derivatives 

Fmoc-phenylalanine (Fmoc-Phe) based materials are also attractive due to the 

wide variety of unique properties that can be obtained through chemical “decorations”.464-

466, 493-496 In the present study the methodology used to elucidate the pathways of cyclo-

HH self-assembly in the previous section was used to investigate the self-assembly of two 

Fmoc-Phe derivatives, Fmoc-3,4-difluoro-phenylalanine (Fmoc-3,4F-Phe) and Fmoc-3,5-

difluoro-phenylalanine (Fmoc-3,5F-Phe), in collaboration with Dr. Adler-Abramovich’s 

lab.84 To study and compare the properties of Fmoc-3,4F-Phe and Fmoc-3,5F-Phe within 

their first moments of self-assembly, MD simulations and structural analysis for each 

Fmoc-Phe derivative were performed.84  

Within MD simulations, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe peptides both self-

assembled into aggregates significantly stabilized by π-π interactions between aromatic 

groups as well as F-F/F-Phe contacts and hydrogen bonds between terminal carboxyl 

groups or backbone amide and carbonyl groups of peptides. While both Fmoc-3,4F-Phe 

and Fmoc-3,5F-Phe were observed to form structures reminiscent of antiparallel β-sheet 

structures at a similar rate, Fmoc-3,4F-Phe more frequently formed structures reminiscent 

of parallel rather than antiparallel β-sheet structures (Figure VI-4A). Importantly, this 

ordered structure was reminiscent of the crystal structure of self-assembled Fmoc-3,4F-

Phe. Additionally, Fmoc-3,4F-Phe more frequently formed face to face π-π interactions 

between Fmoc-Phe and Phe-Phe groups (Figure VI-4A). These interactions could 

potentially enable the formation of the parallel β-sheet-like structures observed in the MD 

simulations and crystal structure (Figure VI-4A,B boxed in red dotted lines). Contrarily, 
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Fmoc-3,5F-Phe aggregates were more frequently stabilized by Fmoc-Fmoc π stacking 

interactions, contacts between F of the 3,5F-Phe group and Fmoc, in the absence of Fmoc-

Phe π stacking (Figure VI-4B boxed in red, black, and blue dotted lines respectively). In 

addition to the differences in the frequency of interactions formed within their aggregates, 

the calculated radius of gyration of the derivatives within the clusters formed by Fmoc-

3,5F-Phe was also consistently lower compared to those formed by Fmoc-3,4F-Phe across 

aggregates of different sizes (Figure VI-4C). Thus, for clusters containing the same 

number of peptides, clusters formed by Fmoc-3,5F-Phe were more densely packed, in line 

with experimental density measurements.84 This study is currently under review.84 
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Figure VI-4. Structural properties of the clusters formed by Fmoc-3,4F-Phe and Fmoc-
3,5F-Phe peptides within MD simulations. Representative aggregate of 10 (A) Fmoc-3,4F-
Phe and (B) Fmoc-3,5F-Phe peptides with key differences in interactions encircled in 
dotted lines and zoomed in. (C) Radius of gyration (Å) of peptides within the clusters 
observed in MD simulations of Fmoc-3,4F-Phe (blue) and Fmoc-3,5F-Phe (green) 
peptides.  
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Concluding Remarks for Elucidating the Pathways of Short Peptide Self- and Co-

Assembly 

Several minimalistic peptide self- and co-assembly have been precisely designed 

to encompass desired functionalities and properties (reviewed in ref. 497). The MD 

simulation setup as well as the structural analysis and free energy calculation programs 

that were developed for this chapter allow for the detailed computational investigation of 

the initial stages of short peptide self- and co-assembly. The simulations and analysis 

programs have been successfully used to study the initial stages of self- and co-assembly 

of cyclo-HH.81-83 The MD simulation setup has also been used for the study of other 

peptide-based self-assembly beyond cyclo-HH.84 The generalizability of the developed 

simulation setup, structural analysis programs, and energy calculation programs may be 

applied in the investigation of self- and co-assembly involving other short peptides. 
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CHAPTER VII  

SUMMARY 

 

Current and Future Perspectives 

The overarching theme of this doctoral study is the development of different 

computational tools that can serve as bridges to solve challenging problems that are 

otherwise difficult to solve using existing experimental or computational approaches. The 

computational tools developed in this doctoral study aided in the solution of challenging 

problems and have laid the foundation for future studies involving particular problems 

within the areas of 1) small-molecule ligands binding to proteins, 2) RNAs binding to 

proteins, 3) inhibition of amyloid self-assembly, 4) ligands binding to adsorbents, and 5) 

peptide-based self-assembly and co-assembly. In what follows, the current and future 

perspectives of each computational tool is described. 

 

Docking-Refinement Protocol for Small-Molecule Ligand : Protein Complexes 

The determination of the orientation and conformation of structurally and 

physicochemically similar small-molecule ligands in ligand : protein complexes 

experimentally can be highly challenging.51, 52 Additionally, conventional molecular 

docking methods face challenges in accounting for the conformational flexibility in the 

protein receptor498 as well as inaccuracies in the calculations of binding energies.53, 499 

This limits their ability to accurately predict and differentiate the binding of 

physicochemically similar small-molecule ligands.53  
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To overcome these challenges and understand how subtle structural and 

physicochemical differences in ligands can lead to functional differences upon binding to 

a protein receptor, a novel docking-refinement protocol was developed. It was applied 

delineate the binding of similar ligands. The docking-refinement protocol has been applied 

to elucidate the binding of small-molecule ligands binding to human and mouse AhR,56-58 

human COUP-TF1 and COUP-TF2,59 as well as E. coli Tsr.54, 55 The resulting binding 

modes, MD simulations, and free energy calculations have suggested key interactions for 

the ligands’ binding.54-59 Furthermore, comparisons between the key interactions of 

structurally and physicochemically similar ligands with different functional properties 

have also indicated potential interaction switches for their biological activity;54-59 the use 

of binding modes derived from the docking-refinement protocol combined with multi-ns 

MD simulations predicted the stronger chemoattractant strength of one enantiomer over 

another, with experiments validating the computational prediction.55 

The use of the docking-refinement protocol may not necessarily be limited to the 

comparison between similar ligands. For example, the docking-refinement protocol was 

applied to refine the binding mode of a virtually screened compound with demonstrated 

binding to complement C3c.500 Uncertainties in the binding mode of small-molecule 

ligands has major implications for drug discovery. Although specific drug functional 

groups may be identified, the precise binding mode of each functional group may be 

uncertain, impacting the subsequent pharmacophore models used to identify additional 

drug candidates.51 Nevertheless, for its application in drug discovery and virtual screening, 

the efficiency of the protocol must be improved without impairing its accuracy. 
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The investment in added computational cost to implement the docking-refinement 

protocol has proven useful in differentiating the binding modes of structurally and 

physicochemically similar ligands with different biological activities.54-59 Future 

improvements to the docking-refinement protocol by members of the Tamamis Lab 

include enhancing its efficiency without detriment to its accuracy, which is among the 

goals of the Tamamis Lab.  

 

Protocol for the Characterization of Modified RNA : Protein Interactions  

The coordination of RNAs with RNA binding proteins is crucial for many vital 

biological processes.2-6, 8, 146 The presence of chemical modifications to canonical RNAs 

can influence the functions of RNA : protein interactions.190 Limitations in current 

methods have limited progress in mapping the epitranscriptome.62-64 Thus, despite the fact 

that over 150 chemically modified RNAs have been identified,60 their effect on the 

function of RNA : protein complexes has been largely unexplored.61  

To overcome the lack of methods to uncover the repertoire of modified RNAs that 

can be recognized by a target protein, a protocol for the characterization of modified RNA 

: protein interactions was developed in which a suite of programs screen and detect 

modified RNAs prone to interact favorably with a target protein. The protocol for the 

characterization of modified RNA : protein interactions has been applied to map the 

modified RNAs recognized by RNA binding proteins E. coli PNPase,65, 67 human 

YTHDF1,67 human NOVA1,67 and human TDP-43.67 An analogous version of the 
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protocol has also been used in an “inverse” fashion to design PNPase mutants with 

enhanced affinity for an oxidized modified RNA (8-oxoG).66  

The protocol for the characterization of modified RNA : protein interactions has 

also been recently used as a steppingstone and basis for a preliminary protocol for the 

characterization of  modified DNA : protein interactions. As in the protocol developed for 

modified RNAs, the preliminary protocol for the characterization of modified DNA : 

protein interactions uses an initial structure of the DNA : protein complex structure and a 

library of DNA modifications under investigation to identify DNA modifications prone to 

interact favorably with the target protein. The library of modifications for the protocol for 

the characterization of modified DNA : protein interactions corresponds to all 42 

experimentally verified DNA modifications,501 are preliminarily organized into trees 

based on their structural and physicochemical properties, starting from the least complex 

chemical modifications at the base, and ending at the most complex modifications. Of the 

42 DNA modifications, 13 have been parametrized by MacKerell and Nilsson groups,177 

and 29 were parametrized through CGenFF.193-196 To account for base-pairings in the 

preliminary version of the protocol, the complementary base pair to the DNA position 

under modification is changed according to canonical, Watson–Crick  base pairings. The 

preliminary protocol for the characterization of modified DNA : protein interactions has 

not yet been applied or tested  to verify its operability. 

The protocol for the characterization of modified RNA : protein interactions 

continues to provide valuable insights into the recognition of modified RNAs by various 

protein readers in ongoing studies. Results derived from this protocol can provide insights 
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into the role of modifications in biological systems or identify modified RNAs that could 

be biomarkers for disease. Future improvements by members of the Tamamis lab may 

include generating robust parametrization for specific modified RNAs and DNAs through 

FFParam502 and reducing the possible occurrences of false positives within the protocol. 

 

Study and Design of β-wrapin Binding and Specificity to Amyloidogenic Proteins  

The formation of aggregates by amyloidogenic proteins are pathological features 

of AD, PD, and T2D.232-239 AD is marked by the presence of senile plaques formed by 

Aβ232 and neurofibrillary tangles formed by tau,233 PD is marked by the presence of Lewy 

bodies formed by α-syn,234-238 and T2D is marked by the presence of pancreatic islet 

amyloid formed by IAPP.239 In addition to the individual amyloidogenic proteins being 

implicated in AD, PD, and T2D, increasing evidence also suggest pathological cross talk 

between these proteins for the three age-related diseases.251-273 Thus, single-targeted and 

multi-targeted β-wrapins that sequester monomers of Aβ, α-syn, IAPP, and tau, thereby 

inhibiting their aggregation could serve as promising potential therapeutic agents for AD, 

PD, and T2D. Few, subtle changes at the sequence level of β-wrapins greatly change their 

affinity to the amyloidogenic, and previous attempts to enhance β-wrapins’ single-targeted 

and multi-targeted binding have relied on phage display library experiments and 

researcher intuition.  

To study and design β-wrapin variants for enhanced single-targeted and multi-

targeted binding to amyloidogenic proteins, MD simulations and free energy calculations 

were performed and combined with an in-house developed optimization-based protein 
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design program that accounts for both single-targeted and multi-targeted binding. Through 

MD simulations and free energy calculations, carefully tuned for the study of β-wrapins 

in complex with amyloidogenic proteins, the key commonalities leading to multi-targeted 

binding properties of specific β-wrapins, potential interaction-based switches diminishing 

β-wrapin affinity for specific amyloidogenic proteins, and key energetic driving 

determinants leading to β-wrapin binding and specificity were revealed.74, 75 From the 

optimization-based design program, combined with MD simulations, free energy 

calculations, and structural analysis, promising designed β-wrapin variants with enhanced 

predicted single-targeted affinity for IAPP, multi-targeted affinity for Aβ, α-syn, and 

IAPP, and multi-targeted affinity for Aβ and tau were identified. Additionally, rationally 

designed β-wrapins with N-termini modified with aromatic canonical and non-canonical 

amino acids that mimic the amyloid inhibition of action of curcumin for Aβ were predicted 

to encompass both amyloidogenic protein sequestration and amyloid fibril elongation 

inhibition properties, indicating the potential to amplify the anti-amyloid properties of the 

β-wrapins.  

The MD simulations and free energy calculations developed as part of this doctoral 

study74, 75 could be used to model β-wrapins in complex with novel proteins, with sequence 

similarity to the studied amyloidogenic proteins, in complex with β-wrapins, gain 

fundamental knowledge on the common underlying basis of amyloidogenic proteins 

leading to their ability to form β-hairpins and their affinity for β-wrapins, and gain insights 

into what interactions can be enhanced to potentially improve β-wrapins binding to 

amyloidogenic proteins.  
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Simulating and Analyzing the Binding of Compounds onto Montmorillonite Clays  

Montmorillonite clays are a promising adsorbent for several, diverse toxic 

compounds to mitigate their toxicity.24, 25 Thus, the development of standardized, 

systematic computational methods to simulate and investigate the mechanisms of diverse 

compounds binding to clay surfaces and predict their adsorption free energies is essential. 

Such methods could allow for the evaluation of montmorillonite clays to bind a compound 

of interest.  

To uncover the mechanisms of compounds binding to montmorillonite clays, a 

systematic computational method to simulate and uncover the mechanisms of diverse 

compounds binding to clay surfaces and predict their adsorption free energies was 

developed. The methodology for simulating and uncovering the adsorption of compounds 

onto montmorillonite clays has been used in several studies investigating the mechanisms 

of distinct toxic compounds binding to different formulations of montmorillonite clays.76-

78 The systematic generation of simulation files has allowed for the qualitative comparison 

of compounds’ propensity to bind to the clay and the strength of interaction between the 

bound compounds and the clay, which were used to delineate toxic compounds that can 

be effectively bound onto the clay from those that cannot.76-78 Key modes of binding were 

also identified for the investigated compounds binding to the clay.76-78 The standardization 

of MD simulations also allowed for the development of a minimalistic model that predicts 

the adsorption free energy of individual, diverse compounds for CM.79 

Future improvements to the methodology of investigating the binding of 

compounds onto montmorillonite clays by members of the Tamamis Lab may include 
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expanding its capabilities to study other compounds to clays as well as including 

additional adsorbent materials beyond clay. The development of adsorbent materials that 

are effective in sequestering additional compounds is imperative, especially considering 

that simultaneous subthreshold exposure to various chemicals may result in adverse health 

effects.503, 504 Ongoing studies performed in the Tamamis Lab will be used to improve the 

generalizability of the simulations and analysis programs.  The current simulation setup 

has been modified to allow the study of complex amendments, beyond small compound 

amendments such as carnitine and choline, to clays and how these complex amendments 

could enhance the clays’ efficacy as an adsorbent.  

 

Elucidating the Pathways of Short Peptide Self- and Co-Assembly  

Short self-assembling peptides are gaining increasing interest in materials research 

as they are easily synthesized or modified, have a wide chemical diversity, and are 

inherently biocompatible.22, 23, 429-435, 452 The initial stages of peptide self-assembly and co-

assembly is difficult to probe experimentally due to the complex nature of self-assembly 

and limitations due to sensitivity and time resolution.80 Difficulties in studying peptide 

self- and co-assembly has resulted in much of the progress in the design of self- and co-

assembly systems being accomplished through trial and error.80 Gaining information on 

the early stages of self-assembly can enable the design self-assembled materials with 

desired functional properties through computational studies.22, 23, 430-433, 485, 505 

To examine the initial stages of peptide self-assembly and the effect of different 

solvents, ions, or modifications to the peptides, a suite of structural and energetic analysis 
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programs tracking and characterizing the formation of clusters within MD simulations 

were developed. The MD simulations in conjunction with the suite of structural and 

energetic analysis programs have been successfully implemented in studying the self-

assembly of cyclo-HH in different self- and co-assembly environments81-83 as well as in 

comparing the self-assembly of different Fmoc-F derivatives.84 Due to the generalizability 

of the MD simulations, structural analysis programs, and energy calculation programs, the 

methods developed may be applied to elucidate the self- and co-assembly of other small 

molecules, including, but not limited to short peptides, peptide mimetics, nucleic acids, or 

compounds. 
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