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ABSTRACT

In the era of big data and IoT, devices at the edges are becoming increasingly intelligent, and

processing the data closest to the sources is paramount. However, conventional machine learning

works with the centralized framework of collecting data from various edge sources and storing it on

the high-performance cloud to support computationally intensive iterative algorithms. As a result,

such a framework is infeasible for training on embedded edge devices with limited resources and

a tight power budget. This dissertation proposes to integrate ideas from fields of machine learning

and systems for designing efficient and scalable algorithms for distributed training of machine

learning models amenable for edge computing with limited hardware and computing resources.

The resulting decentralized machine learning framework aims to keep the data private, reduce

latency, save communication bandwidth, be energy-efficient, and handle streaming data.
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1. INTRODUCTION

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that gives the the “comput-

ers the ability to learn without being explicitly programmed” (Arthur Samuel, 1959). Infact, ML

is at the heart of AI. Nowadays, it is difficult to think of an application or an industry which has

not been touched by AI. “AI is the new electricity” (Andrew Ng, 2017) which has revolutionized

our modern lives and more and more companies and industries are adopting it in their applications.

Facebook is at the forefront of applying face recognition using DeepFace [7] to automatically tag

uploaded photos to 97.47% accuracy, which is almost equal to human eyes accuracy of 97.65%.

More recently, face recognition using ML has been adopted by major smart phone makers like Ap-

ple, OnePlus, Google, Samsung, etc as a key feature in identity verification services and software

applications. Other ML-based applications include machine translation by Google [8], speech

recognition in virtual assistants such as Google Assistant [9], Alexa by Amazon, Cortana by Mi-

crosoft, and Siri by Apple, and most recently a specific type of ML called Deep Learning (DL) is

being extensively used for autonomous driving car technology such as Tesla Autopilot, Waymo,

and Uber [10].

With the advent of big data, machine learning is being carried out in large-scale to extract useful

knowledge and identify important patterns from tones of data. A typical ML process involves two

main stages: Training and Inference as depicted in Figure 1.1. In the training stage, the data

is analyzed using iterative learning algorithms until a desired accuracy is achieved on the target

attribute. The output of this stage is a trained ML model that has learned to map the data attributes

to the target. In the inference stage, the trained model is deployed to predict the outcome on new

data samples for which the target is unavailable. In a typical ML-based application, training is a

one-time process with heavy computations generally done in High Performance Computing (HPC)

based cloud servers using large volumes of data while inference is used all the time in the edge

devices such as smart phones, laptops, etc on single data sample or small data sets using relatively

inexpensive computations.
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Figure 1.1: A typical large-scale machine learning process.

Mathematically, training a machine learning model is solving an ML optimization problem

where the objective is to minimize some loss function. Such optimization problem is solved

using a learning algorithm that is generally iterative and sequential. The solution of such opti-

mization problem is a set of values that represent the parameter of the ML model. Examples

of ML problems are Support Vector Machines (SVM), Kernel Ridge Regression (KRR), Deep

Neural Networks (DNN) that are typically solved using iterative learning algorithms such as Inte-

rior Point Methods (IPM), Sequential Minimal Optimization (SMO), Stochastic Gradient Descent

(SGD), etc. Due to the iterative and inherently sequential nature of learning algorithms running

on large-scale data sets, ML training is computationally more intensive and challenging than the

inference stage. To support such heavy computations and huge memory, ML training is conven-

tionally done on HPC cloud server comprising of network of multiple high power Central Process-

ing Units (CPUs), Graphic Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs)

or Application-Specific Integrated Circuits (ASICs). This leads to a centralized framework for

large-scale machine learning as illustrated in Figure 1.2
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(a) Data collection at the edge and transfer to
HPC cloud.

(b) Centralized ML training at HPC cloud.

(c) Deploying ML model for inference at the
edge.

Figure 1.2: A typical centralized machine learning framework.
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Centralized ML framework comprises of three steps

1. Data is collected at source edges and transferred to an HPC cloud server where it is collec-

tively stored.

2. ML training is performed in the cloud by running iterative learning algorithm on high-power

CPU, or GPU, or FPGA etc.

3. The trained ML model is deployed back at edge devices for inference.

HPC cloud server has massive storage and is financially expensive to build and maintain.

Hence, such cloud-based centralized framework can only be hosted by major technology com-

panies with access to huge data and big financial capital. Moreover, centralizing the data in cloud

puts the privacy of the user at huge risk while frequent data transfers from source to cloud over

large distances lead to high-network latency. With billions of connected smart devices at the edge

of Internet of Things (IoT) network with increasing computational capabilities, it has become

paramount to bring intelligence on edge by processing (or training) the data closest to the source

rather than on cloud.

1.1 Challenges

Here we discuss some popular training algorithms which are used to solve ML-based optimiza-

tion problems in general.

1.1.1 Interior Point Method

Interior Point Method (IPM) is used to minimize the dual form of objective function in a convex

quadratic programming problem. The most popular form of it is primal-dual IPM developed by

[11]. The basic idea of IPM is to incorporate Newton or Quasi-Newton methods with number

of iterations proportional to log(1
ε
), where, ε is desired accuracy. However, with increasing data

sizes n, IPM suffer from high memory requirementO(n2) and computational complexity ofO(n3)

per iteration which are prohibitive. Hence, it became imperative to parallelize IPM to solve such

optimization problems faster. [12] proposed Parallel Support Vector Machines (PSVM) which was

4



the first attempt to parallelize SVM problem in machine learning. At the core of PSVM is a parallel

implementation of IPM and Incomplete Cholesky Factorization (ICF). However, ICF is difficult

to parallelize and has a sequential component that enforces the limit to extent of parallelization as

sample size grows. The best reported computational complexity isO(n
2

p
) per iteration and memory

requirement of O(n
1.5

p
), where, p denotes number of parallel machines.

1.1.2 Sequential Minimal Optimization

This belongs to class of decomposition algorithms where the large QP problem is broken down

into series of small and manageable sub-problems that are solved sequentially until the solution

of overall problem is achieved. The most popular form is Osuna decomposition [13] which had

been used to solve SVM problems. Sequential Minimal Optimization (SMO) developed by [14] is

a special case of Osuna algorithm where the SVM problem is decomposed into smallest possible

sub-problems, of size two, which can be solved analytically without the need to construct any

matrix. SMO is now widely used in popular open-source packages LIBSVM [15] and SVM light

[16]. The computational complexity of SMO is between linear and quadratic in number of samples.

However, these do not fit to the distributed setting of IoT enabled devices. Attempt to parallelize

SMO via parallel gradient projection method was done by [17] which repeatedly cycles through

the data set, computing kernels on demand. However, the maximum workload was limited to few

thousand samples which fall drastically short to modern demands.

1.1.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative method for optimizing a differentiable ob-

jective function. It is popularly used for training deep neural networks where it is coupled with

forward evaluation of loss and backward propagation of error to fine tune the weight parameters of

the model. It is basically a stochastic approximation of gradient descent optimization when num-

ber of training samples become huge. Rather than computing the total loss associated with each

and every training sample that can be very slow for large sample size, SGD works with directly

updating the weight parameter with the loss associated with a randomly selected sample in every
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iteration. Minibatch SGD works by choosing a middle path between true gradient and approx-

imated gradient computer over one sample at a time, i.e, to compute gradient on mini-batch of

training samples.

1.1.4 Gaps

We observe following gaps in the current body of work which limit their applications for

achieving decentralized machine learning.

• Expensive communication and synchronization overhead.

• Memory requirement is quadratic with sample size.

• Computational cost per iteration is quadratic to cubic with sample size.

• Parallel techniques are limited to smaller workload and do not scale.

1.2 Motivation

The modern society is powered by billions of IoT devices which is bringing a revolution in

technological concepts such as smart homes, smart retail, smart energy, smart mobility etc. It is

projected that number of connected devices is going to scale to 29 billion by 2022 [Ericsson]. These

edge devices in IoT present new requirements to run AI applications that can not be met by conven-

tional centralized ML framework. Specifically, there is a need for distributed edge intelligence for

making real-time predictions with low-latency for mission critical applications. Moreover, there is

a vast pool of untapped private data stored in these devices that users are not comfortable in upload-

ing on the cloud. In fact, the available public data shared with big firms is just a tip of the iceberg

while there exists huge market potential in extracting knowledge from the data stored across bil-

lions of these devices 1. This has to be achieved by running learning algorithms on these connected

devices without moving the original data thereby ensuring privacy of the user. Unlike HPC-based

cloud server, these edge devices usually have relatively smaller compute capabilities with limited

storage. With billions of such connected devices, it is possible to leverage their idle processing

1https://decentralizedml.com/DML_whitepaper_31Dec_17.pdf
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Figure 1.3: Requirements for Distributed Edge Intelligence.

power with efficient use of network bandwidth to build a decentralized computing framework for

distributed machine learning and reduce the dependency on a centralized processor in cloud. To

support training computations on the resource-constrained edge devices and build greener AI so-

lutions, we need to design energy-efficient hardware accelerators to accelerate the computations

with focus on energy-efficiency. Finally, with data being continuously generated and collected

at edge devices, it is paramount to build robust training models that could be incrementally up-

dated on streaming data batches without storing the previously collected data between successive

streaming rounds. Such framework should incorporate fault-tolerance capabilities in the event any

edge device fails or straggles during training. We summarize the requirements for distributed edge

intelligence is Figure 1.3.

1.3 Dissertation Philosophy

Current trend in industry and academic research is to accelerate inference stage on edge devices

while the computationally expensive training is done in cloud utilizing high performance compute

capabilities of power hungry CPUs, and GPUs. In this dissertation, we integrate ideas from various

fields such as distributed networks, parallel algorithms, and computer hardware as illustrated in
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Figure 1.4: Research Focus for efficient and scalable machine learning for distributed edge intelli-
gence.

Figure 1.4 to design Efficient and Scalable Machine Learning for Distributed Edge Intelligence.

We propose to decentralize machine learning by bringing training on edge devices and un-

locking the potential of untapped private data, and to utilize idle processing power of edge devices

connected over a distributed network. Some plausible decentralized ML frameworks are illustrated

in Figures 1.5, 1.6 and 1.7. A decentralized ML framework should comprise following steps.

1. Data is collected and stored at the respective source edges.

2. ML training is performed in parallel across multiple edge devices (with a possibility of com-

munication via edge server or cloud).

3. The trained model is simultaneously deployed at edge devices for inference.

We design distributed training algorithms that are computationally fast, scalable, memory-

efficient, have low communication overhead, robust and handle streaming data. Moreover, such

algorithms will be well suited for running in parallel on a network of small low-powered devices
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Figure 1.5: Decentralized network where all edge devices are connected to each other.

with high energy-efficiency and prediction accuracy.

1.4 Contributions

The goal of this dissertation is to develop decentralized machine learning framework by ad-

dressing the gaps in current solvers listed in Section 1.1.4 while satisfying the requirements for

distributed edge intelligence listed in Figure 1.3. The key contributions are summarized as follows

1. We propose a relaxed synchronization training approach with an analytically derived opti-

mal synchronization time period to reduce communication frequency and idling in iterative

solver for parallel quadratic programming problems. We show analytically and experimen-

tally that lazy synchronization is numerically stable and converges to the same result as the

conventional tightly synchronized implementation. Furthermore, the convergence speed of

the proposed algorithm is faster with lazy synchronization. The proposed algorithm is imple-

mented in a 40-node distributed system in the Amazon Elastic Computing infrastructure. We

show a 160× speedup in solution time for a large-scale quadratic programming problem. We

empirically demonstrate that the relaxed synchronization technique reduces communication

overhead by 99.65% in comparison to the tightly synchronization implementation.

9



Figure 1.6: Decentralized network where all edge devices are connected to each other and an Edge
server.

Figure 1.7: A typical IoT based network where multiple edge servers may communicate via cloud
while major computations are handled by edge devices.

2. We advocate for distributed Householder sketches as fast and accurate machine learning to

parallelize summary generation across workers and apply it for training machine learning

model globally. We find it to be a simpler, memory-efficient, and faster alternative that
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always existed to the strong baselines. We also present a scalable algorithm based on House-

holder sketches to solve Least-Mean-Squares problem across multiple worker nodes under

a distributed setting. We perform thorough empirical analysis with large synthetic and real

datasets to evaluate the performance of Householder sketch and compare with the strong

baseline solver. Our results show Householder sketch speeds up existing LMS solvers in

the scikit-learn library up to 100x-400x. Also, it is 10x-100x faster than the above strong

baseline with similar numerical stability. Our results for distributed implementation show a

near-negligible communication overhead with linear scalability.

3. We leverage the distributed summary generation and relaxed synchronization to parallelize

convex machine learning optimization problem by building a memory-efficient distributed

machine learning framework using proposed iterative solvers such as parallel dual ascent

across multiple worker nodes. We present a novel QR decomposition framework (QRSVM)

to efficiently model and solve a large scale SVM problem by capitalizing on low-rank repre-

sentations of the full kernel matrix rather than solving the problem as a sequence of smaller

sub-problems. The low-rank structure of the kernel matrix is leveraged to transform the

dense matrix into one with a sparse and separable structure. The modified SVM problem

requires significantly lesser memory and computation. We also derive an optimal step size

for fast convergence of the dual ascent method for training the model.

4. We develop a communication-efficient implementation of the above machine learning frame-

work with negligible communication overhead to scale model training on large-scale datasets

and large workers. Experiments on benchmark data sets with up to five million samples

demonstrate negligible communication overhead and linear scalability. Execution times are

vast improvements over other widely used packages. Furthermore, the proposed algorithm

has linear time complexity with respect to the number of samples making it ideal for training

on decentralized environments such as smart embedded systems and edge-based IoT.

5. To enable energy-efficient machine learning for real-time applications on edge, we propose
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and build a first-of-its-kind multiple FPGA software/hardware accelerator system to train

distributed machine learning. Each FPGA unit has a pipelined model training IP logic core

operating at 125 MHz with a power dissipation of 39 Watts for accelerating its allocated

computations. We evaluate and compare the performance of the proposed system on five

real benchmarks. The proposed FPGA co-designed accelerator system is around 3x to 24x

faster than the embedded edge processor (ARM), and around 1.7x faster than the cloud pro-

cessor (Broadwell). For large datasets, the proposed system achieves 2x to 8x lower energy

consumption compared to the ARM processor, and 6.5x lower than Broadwell processor.

6. To handle streaming data batches at the edge, we build a series of rapid incremental solver

schemes for machine learning by integrating incremental learning on federated setups to

efficiently and accurately update the models while making it robust and fault-tolerant to

straggling workers or device failures.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the relaxed synchroniza-

tion technique for parallel QP problems by communicating less frequently. Chapter 3 describes

the construction of distributed Householder sketches as accurate summaries to efficiently train the

global machine learning model. Chapter 4 proposes memory-efficient distributed machine learning

framework with parallel dual ascent to reduce latency and effectively train model on multiple work-

ers. Chapter 5 illustrates the improved communication-efficient framework for scalable machine

learning. Chapter 6 presents an energy-efficient system of multiple FPGA accelerators for acceler-

ating distributed training on decentralized edge. Chapter 7 presents a rapid incremental solver for

federated machine learning to effectively handle streaming data and build robust models. Finally,

Chapter 8 concludes the dissertation and presents future research directions.
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2. RELAXED SYNCHRONIZATION FOR PARALLEL QUADRATIC PROGRAMMING 1

In this chapter, we present a novel numerical algorithm for efficiently solving large-scale

quadratic programming problems in massively parallel computing systems. The main challenge

in maximizing processor utilization is to reduce idling due to synchronization across processors.

Typically, synchronization is necessary after every iteration, which prevents many numerical algo-

rithms from scaling with number of processors. We relax this requirement by synchronizing at a

lower rate, which is referred to as lazy synchronization.

2.1 Introduction

Currently we are witnessing a rise in large-scale data analytics fueled by the availability of data

and advancement in computing systems. Large-scale optimization is the backbone of almost all

statistical and machine learning algorithms. These algorithms are routinely used to develop data-

driven solutions for various industrial sectors including financial, energy, aerospace, biomedical,

etc; targeting important problems related to resource allocation, operations research, system diag-

nostics and prognostics, advertising, and business intelligence. Near real-time solution of these

problems is becoming increasingly important for competitive advantage and is pushing implemen-

tation in large-scale distributed machines. In addition to fast solutions, the size of the data is

another factor for distributed implementations, as all the data cannot be processed in a monolithic

formulation. There is a large body of literature on decomposition methods and decentralized al-

gorithms in the optimization community, which naturally leads to parallel optimization algorithms

as a mechanism for solving large-scale problems. Recently, there is a renewed interest in proxi-

mal methods [18] in various forms such as alternating direction method of multipliers (ADMM),

Douglas-Rachford operator splitting, Spingarn’s method of partial inverses, Dykstra’s alternating

projections method, Bregman iterative algorithms for l1 problems in signal processing, and many

1This chapter is reprinted with permission from “A Relaxed Synchronization Approach for Solving Parallel
Quadratic Programming Problems with Guaranteed Convergence” by Kooktae Lee, Raktim Bhattacharya, Jyotikrishna
Dass, V. N. S. Prithvi Sakuru, and Rabi N. Mahapatra, 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Copyright ©2016 IEEE.
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more. These methods are simple but powerful and are well suited for distributed convex optimiza-

tion. They take the form of a decomposition-coordination procedure, in which solutions to small

local subproblems are coordinated to find a solution to a large global problem, and combine the

benefits of dual decomposition and augmented Lagrangian methods for constrained optimization

problems. The communication bandwidth is determined from the size of the local subproblems.

While the proximal methods admit robust decomposition and can be used to parallelize optimiza-

tion problems, they are based on synchronous model of computation, which will not be feasible

for future computing systems.

2.1.1 Motivation

It is clear that future computing systems are expected to be exascale with large number of

processors [19], providing a deep hierarchy of systems and resources, such as base multicore pro-

cessors composed into symmetric multiprocessors which may in turn be composed into distributed

heterogeneous systems [20, 21, 22]. Furthermore, such systems are likely to be heterogeneous

using both heavily multi-threaded CPUs as well as GPUs. Among the main obstacle to scale algo-

rithms to exascale levels, is the synchronization necessary in tightly coupled problems. Proximal

operator based parallelized optimization algorithms will require synchronization across the dis-

tributed nodes in a cluster framework, which will severely impede the computational performance.

The idling time when million cores need to be synchronized after each time step, to evaluate gra-

dients as well as adjust step sizes for numerical stability reasons, is a major obstacle in achieving

high processor utilization. This has resulted in new algorithms that adopt asynchronous model

communication where the computing nodes do not wait for updates from other nodes, and pro-

ceed with the latest information in the buffer. There are many flavors of asynchronous algorithms

reported in the literature [23, 24, 25, 26, 27, 28, 29, 30].

2.1.2 Contributions

Asynchrony is not the only way to relax the communication bottleneck across processing el-

ements. Instead of synchronizing between processing elements after every iteration (i.e. tightly
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synchronized), the communication bottleneck can be significantly avoided if synchronization is

done at a lower rate (i.e. lazily synchronized). In this chapter, we explore this approach for solving

distributed optimization problems, with focus on solving quadratic programming problems using

dual-ascent approach. Since the updates are synchronized, the proposed algorithm is determinis-

tic. The dual-ascent based algorithm admits a broadcast-gather architecture, where subproblems

are solved in multiple nodes/cores and their results are gathered in a master node that couples them

before the next update. The ADMM approach also has the same broadcast-gather architecture and

the framework presented here can be extended to develop lazily synchronized ADMM algorithms

as well.

Main contributions of this work are the following:

1. Analytical proofs for convergence and stability of the proposed lazily synchronized dual-

ascent (LSDA) algorithm are presented in discrete-time dynamical systems framework.

2. Analytical derivation of the optimal synchronization rate is performed for which the algo-

rithm converges to the optimal solution.

3. Experimental validation of theoretical results is conducted in a multi-node distributed frame-

work. In our case study, we observe that the LSDA algorithm is significantly faster with a

speedup of ≈ 160× in comparison with the tightly synchronized dual ascent (TSDA) al-

gorithm. For the problem considered here, the minimum number of update steps required

for guaranteed convergence of LSDA is 70× lower than of TSDA. Consequently, a 99.65%

reduction in communication delay was achieved that led to≈ 160× speedup in solution time.

2.2 Related Work

Here we present related works to mitigate the synchronization penalty. Early work on asyn-

chronous iterations was by Bertsekas and Tsitsiklis, who introduced a sufficient condition for the

convergence of general asynchronous fixed-point iterations (see Chapter 6.2 in [25]), which is

equivalent to a diagonal dominance condition. Nedic et.al. [26] studied distributed asynchronous

subgradient method for minimizing convex function that is separable. In this research, the authors
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proposed distributed computation to be carried out along subgradient iteration incrementally and

asynchronously. In [28], Wei and Ozdaglar developed asynchronous ADMM based algorithm for

a convex optimization problem that has separable objective function with linear constraints. The

proposed algorithm showed almost sure convergence to an optimal solution with the rate of con-

vergence O(1/k). Liu et.al. [29] investigated asynchronous parallel stochastic coordinate descent

algorithm to minimize constrained functions that can be expressed as summation of component-

wise functions. In [29], the proposed method attains a linear convergence rate for the functions

with strong convexity property. Recently Zhang et.al. [30] have presented asynchronous ADMM

algorithm for consensus optimization. In their work, convergence with asynchronous updates in

the mean value of the state variable. However, convergence in the mean can be achieved even in the

case when the variance of the variable diverges. Also, their algorithm relies on a minimum number

of updates from the distributed nodes. Asynchronous algorithms, while being resource optimal,

have poor predictablity and the results become stochastic. The algorithms in the literature do not

come with rigorous analysis for convergence rate and stability. Consequently, the theoretical re-

sults are hard to verify experimentally. In this chapter, we provide a new algorithm to overcome the

communication bottleneck via lazy synchronization across nodes. We provide theoretical analysis

for stability, convergence rate and optimal synchronization period. These theoretical results are

also experimentally validated in multi-node distributed system.

2.3 Problem Formulation

In this section, we introduce the preliminaries of quadratic programming problems and convex

optimization problems in general. We first define the notation. The set of real number, positive

integer, and the non-negative integer are denoted by the symbol R, N, and N0, respectively. The

superscript symbol T represents the transpose operator for both vectors and matrices. In addition,

the symbol ρ(·) denotes the spectral radius of the square matrix (i.e., the largest one among the

magnitude of eigenvalues for the given square matrix). Finally, for any real number a and any real

matrix A, the symbol |a| and |A| represent the absolute value of a and the matrix with absolute

value of all elements in A, respectively.
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The quadratic programming problem considered here is

min
x
f(x) subject to Ax = b, (2.1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and m,n ∈ N

f(x) :=
1

2
xTQx + cTx,

Q ∈ Rn×n is a symmetric, positive definite matrix, and c ∈ Rn.

The corresponding Lagrangian is defined as

L(x,y) := f(x) + yT (Ax− b),

where y ∈ Rm is the vector of dual variable or the Lagrange multiplier.

We assume that the cost function f(x) is separable, i.e.

f(x) :=
N∑
i=1

fi(xi), Ax :=
N∑
i=1

Aixi,

where scalar N > 0 denotes the total number of subproblems.

In the case that N number of distributed nodes exist, each subproblem can be solved in parallel

by each node. For the implementation of parallel computing, we consider the parallel dual-ascent

method that consists of iterating the updates

xk+1
i = arg min

xi

Li(xi,y
k) = −Q−1i (AT

i y
k + ci) (2.2)

i = 1, . . . , N,

yk+1 = yk + αk(Axk+1 − b), (2.3)

where scalar αk > 0 is the step size, the superscript k is the iteration counter, and xi are partitions
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of x. The constraint Ax = b can be partitioned with respect to xi, and the Lagrangian Li can be

appropriately defined. For simplicity, αk is considered to be constant, and thus does not change

over k.

A key observation here is that Equations (2.2) and (2.3) define a discrete-time dynamical system

in terms of x and y. Thus, convergence of the iteration can be treated as stability of the dynamical

system. This will be critical in analyzing the asynchronous version of the algorithm. The idea of

treating iterative numerical algorithms as discrete-time dynamical systems has been considered by

the first author in other applications [23] and others [31, 32].

In a distributed implementation, Equation (2.2) is parallelized over N nodes and the updated

xk+1
i values are broadcasted to a master node, which updates y using Equation (2.3). In a syn-

chronous implementation, the master node waits for the N nodes to complete their computations

and broadcast their results. This process occurs at every iteration, since y value is updated using

x, which requires synchronization. Thus, this synchronization latency may cause serious bottle-

neck in parallel computation. As N increases, the idle time can be as large as 50% of the total

computational time as reported in [33].

2.4 Lazily Synchronized Dual Ascent (LSDA) Algorithm

In this section, we present a novel lazy synchronization algorithm to address concerns of tight

synchronization and reduce idling time. Specifically, we propose lazily synchronized dual-ascent

(LSDA) algorithm with theoretical guarantees for stability and convergence to the optimal solution.

We also present a theorem to determine optimal synchronization period that guarantees the fastest

convergence of a given quadratic programming problem. Finally, we present the pseudocode to

implement LSDA and discuss its theoretical speedup with respect to tightly synchronized dual-

ascent (TSDA) algorithm.
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2.4.1 Theory

From Equations (2.2) and (2.3), the dynamics of dual variable vector y for the distributed QP

problems can be written as follows:

yk+1 = yk +
N∑
i=1

αi

(
Aix

k+1
i − b

N

)
. (2.4)

Instead of synchronizing the data for x at every iteration, which results in computational inef-

ficiency, we relax the synchronization penalty. In this case, the data for x is synchronized at a

certain scalar time period P that is greater than unit iteration step. The y-update is then described

as follows:

yk+1 = yk +
N∑
i=1

αi

(
Aix

tP+1
i − b

N

)
, (2.5)

tP ≤ k < (t+ 1)P,

where t ∈ N0.

Note that in above relaxed synchronization algorithm, xi values are fixed as constant during

the period tP ≤ k < (t + 1)P . While the time k belongs to the given period, y-update is carried

out internally without communication, by using lastly updated xi values, i.e., xtP+1
i . Once the time

k reaches the next period (t + 1)P , the communication occurs to broadcast each xi value to the

master node and thus y value is updated using newly broadcasted xi. In this way, y is updated

while communicating intermittently.

Substituting xtP+1
i in Equation (2.5) with xtP+1

i = −Q−1i (AT
i y

tP +ci) given in Equation (2.2),

it follows

yk+1 = yk +
N∑
i=1

αi

(
−AiQ

−1
i

(
Aiy

tP + ci
)
− b

N

)
, (2.6)

tP ≤ k < (t+ 1)P.
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At the end of the given period tP ≤ k < (t+ 1)P , i.e., k = (t+ 1)P − 1, y-update is derived

from Equation (2.6) by

y(t+1)P = ytP + P

N∑
i=1

αi

(
−AiQ

−1
i

(
Aiy

tP + ci
)
− b

N

)

= ytP − P
N∑
i=1

αi
(
AiQ

−1
i AT

i

)
ytP − P

N∑
i=1

αi

(
AiQ

−1
i ci +

b

N

)

=

(
I− P

N∑
i=1

αi
(
AiQ

−1
i AT

i

))
ytP − P

N∑
i=1

αi

(
AiQ

−1
i ci +

b

N

)
, (2.7)

where I stands for the identity matrix with a proper dimension. The above equation is valid due to

the linear property with respect to the variable y.

The stability of the QP problems with LSDA algorithm depends on the parameter P . As P

increases, the communication for synchronization happens less frequently. However, one may not

increase P as large as possible because the dual variable y may diverge. Thus, the condition in the

following lemma has to be satisfied for the numerical stability of LSDA algorithm.

Lemma 2.1. (Stability) The dual variable for LSDA algorithm is stable if and only if

ρ

(
I− P

N∑
i=1

αi
(
AiQ

−1
i AT

i

))
< 1. (2.8)

The above condition guarantees the stability of LSDA algorithm described by Equation (2.7),

since it is known that for the given discrete-time linear dynamics yk+1 = Ayk + b, where A is

a time-invariant matrix and b is a constant vector, y will not diverge to infinity as k → ∞ if and

only if ρ(A) < 1. Thus, Condition (2.8) ensures the stability of dual variable y in Equation (2.7).

Next, we prove that the solution of LSDA algorithm is convergent to that of TSDA algorithm

in the following proposition.

Proposition 2.1. (Convergence) Consider the QP problem that is separable. If the Condition (2.8)

holds, then the dual variables yLSDA for LSDA and yTSDA for TSDA converge to the same fixed-point

value y∗ := limk→∞ ykTSDA = limt→∞ ytPLSDA.
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Proof. We start from Equation (2.7), which corresponds to the dynamics of yLSDA. Particularly

when P = 1, Equation (2.7) can be also used to denote the dynamics of yTSDA. Then, it follows

y∗ = lim
t→∞

y(t+1)P

=

(
I− P

N∑
i=1

αi
(
AiQ

−1
i AT

i

))
y∗ − P

N∑
i=1

αi

(
AiQ

−1
i ci +

b

N

)
,

resulting in

P

(
N∑
i=1

αi
(
AiQ

−1
i AT

i

))
y∗ = −P

N∑
i=1

αi

(
AiQ

−1
i ci +

b

N

)
.

In above equation, P can be canceled out, since P ≥ 1 as the synchronization period. Thus, it

leads to

y∗ = −
(

N∑
i=1

αi
(
AiQ

−1
i AT

i

))−1 N∑
i=1

αi

(
AiQ

−1
i ci −

b

N

)
,

where
(∑N

i=1 αi
(
AiQ

−1
i AT

i

))
has to be non-singular.

Consequently, both yTSDA and yLSDA converge to y∗ regardless of P , if the given scheme is

stable, i.e., Condition (2.8) is satisfied.

Although the analytic solution for y∗ is given above, direct computation of the matrix(∑N
i=1 αi

(
AiQ

−1
i AT

i

))−1
may not be feasible, if the matrix

(∑N
i=1 αi

(
AiQ

−1
i AT

i

))
is ill-conditioned

or inverse operation is computationally expensive. Thus, we consider the cases in which y∗ has to

be calculated iteratively.

2.4.2 Optimal Synchronization Period

The remaining issue is to design an appropriate value of synchronization period P because the

convergence speed of LSDA algorithm strictly depends on P . Hence, we need to find the optimal

P , which will result in the fastest convergence of dual variable. To determine the optimal P ,

denoted by P ?, we develop the following main result.
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Theorem 2.1. (Optimality) For the given parallel QP problem with LSDA technique, the optimal

synchronization period P ? is obtained by

P ? = max arg min
P∈N

max{|1− λ(β)P |, |1− λ̄(β)P |} (2.9)

where β :=
∑N

i=1 αiAiQ
−1
i AT

i , λ(·) and λ̄(·) denote the smallest and the largest eigenvalues

of the square matrix, respectively.

Proof. The convergence speed of LSDA algorithm is solely determined by the spectral radius

ρ (I− βP ), where β is defined in Equation (2.9). As this spectral radius becomes smaller, yTSDA

converges to y∗ faster. Thus, we aim to find P ∗ that minimizes ρ (I− βP ).

By the definition of the spectral radius, we have

P ? = arg min
P∈N

ρ (I− βP ) = arg min
P∈N

max
v

∣∣∣∣vT (I− βP )v

||v||2
∣∣∣∣ = arg min

P∈N
max

v

∣∣∣∣1− vTβv

||v||2 P
∣∣∣∣ ,

where v is the eigenvector of the matrix (I− βP ).

From the given structure of β, it is known that β is symmetric, positive (semi)definite matrix.

Therefore, it satisfies

λ(β) ≤ vTβv

||v||2 ≤ λ̄(β).

Thus, the value
vTβv

||v||2 lies between λ(β) and λ̄(β), resulting in

P ? = arg min
P∈N

max{|1− λ(β)P |, |1− λ̄(β)P |}.

Finally, it is not guaranteed whether such P ? satisfying the above condition is unique. Hence,

we may have multiple P ? from the above equation. Among these values, the largest P ? will be

chosen as the optimal value owing to the fact that larger P ? implies less communication between

distributed nodes and master node. As a consequence, Equation (2.9) is obtained for the optimal
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Figure 2.1: An illustration of the spectral radius for LSDA algorithm along variation of P .
Reprinted with permission from [1].

synchronization period.

Conceptually, P ? is the solution to minimize the spectral radius for the fastest convergence of

y with less iterations. We illustrate this spectral radius along variation of P in Figure 2.1. As P

increases, the spectral radius will decrease. However, once it becomes P > P ?, the spectral radius

will increase, resulting in this value being greater than one, which is marginal stability bound.

Such P ? can be analytically calculated by Equation (2.9) without increasing P gradually, which is

computationally inefficient and expensive as well.

2.4.3 Implementation

Algorithm 2.1 presents an implementation of the proposed LSDA algorithm. The basic syn-

chronization step used in the implementation is Allreduce (Step 16). This reduction operation

uses the SUM operator to combine the sumLocal value (Steps 12-15) from each of the nodes to

compute the sumGlobal value. Allreduce is used as a blocking operation which when invoked in

any of the nodes, halts the further execution in that node until the ongoing sumLocal calculation

is finished for remaining nodes and the newly computed sumGlobal value is updated for all the

nodes. In the proposed LSDA algorithm, the synchronization (or communication across the nodes)

occurs once in every P iterations (Steps 11− 17) compared to once in each iteration for the TSDA

algorithm. In-between the synchronization time instants, the dual variable updates itself with a
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Algorithm 2.1 LSDA(Qi,Ai, ci, P
∗)

Data: For each node i, local matrix Qi, local constraint matrix Ai, local vector ci, optimal syn-
chronization period, P ∗

Result: A vector of dual variable, y ∈ Rm

1 P ← P ∗

2 b← b0

3 ynext ← y0

4 ε← ε0
5 α← α0

6 k ← 0
7 sumLocal← 0
8 sumGlobal← 0
9 do

10 ycurrent ← ynext
11 if iter%P == 0 then
12 for j ← 1 . . . (n/N) do
13 xj = −Q−1j

(
AT
j ycurrent + cj

)
14 sumLocal + = Ajxj
15 end
16 Allreduce(sumLocal, sumGlobal)

17 end
18 ynext ← ycurrent + α(sumGlobal− b)
19 error ← |ynext − ycurrent|
20 iter + +

21 while error > ε
22 return y

fixed error value of α(sumGlobal− b) (Step 18). This is due to sumGlobal value being held

as constant owing to absence of synchronization among the nodes during that interval. For these

iterations, the error value computed in Step 19 always satisfies the stopping threshold (ε) condition

in Step 21 and proceeds to the next iteration. Hence, the algorithm will only terminate at some

synchronization time instant k = tP , where t ∈ N0, when the inter-node communication results in

a newly calculated sumGlobal value, thereby causing the error value to fall below the stopping

threshold.

2.4.4 Theoretical Speedup

For the calculation of the speedup, we present the symbols with definition as follows:
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• k∗TSDA: the total number of iterations up to termination for TSDA algorithm

• k∗LSDA: the total number of iterations up to termination for LSDA algorithm

• tpTSDA: computation time per iteration for TSDA algorithm

• tpLSDA: computation time per iteration for LSDA algorithm

• tmTSDA: pure communication time per iteration for TSDA algorithm

• tmLSDA: pure communication time per iteration for LSDA algorithm

• TTSDA: total execution time for TSDA algorithm

• TLSDA: total execution time for LSDA algorithm

Then, the total execution time for each case is calculated by

TTSDA = k∗TSDA (tpTSDA + tmTSDA) ,

TLSDA = k∗LSDA

(
tpLSDA +

tmLSDA

P ?

)
.

where, tpLSDA comprises of time taken to compute Steps 12 − 15 (once in every P ? iterations) and

Steps 18− 20 (in every iteration), i.e.

tpLSDA =
t14-17

LSDA

P ?
+ t20-22

LSDA

The reason for dividing tmLSDA by P ? in TLSDA formulation above is that the communication in

LSDA occurs only
k∗LSDA

P ?
times during the entire convergence process, while the computation takes

place at every iteration step. Thus, the expected speedup is obtained by

SPEEDUP :=
TTSDA

TLSDA
=

k∗TSDA (tpTSDA + tmTSDA)

k∗LSDA

(
tpLSDA +

tmLSDA

P ?

) . (2.10)
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With the definition of symbols rk :=
k∗TSDA

k∗LSDA
, rp :=

tpTSDA

tpLSDA
, rTSDA :=

tmTSDA

tpTSDA
, and rLSDA :=

tmLSDA

tpLSDA
,

Equation (2.10) is written as

SPEEDUP = rkrp

 1 + rTSDA

1 +
rLSDA

P ?

 . (2.11)

Cluster size is defined as the number of computing nodes in a multi-node distributed framework

(cluster). As we increase the cluster size N for the given QP problem, the size of subproblem in

each distributed node becomes smaller, resulting in less computation time per iteration. However,

the communication overhead will increase in this case. Therefore, rTSDA and rLSDA will increase

with the increment of N . On the other hands, P ? remains constant irrespective of N , since the

matrix β in Equation (2.9), which is the sum of all subset, is invariant. Moreover, k∗TSDA and k∗LSDA

are only problem-dependent and hence, rk is independent of N . Finally, rp is expected to be same

regardless of N , owing to the fact that both tpTSDA and tpTSDA decrease with the same amount as N

increases. Based on above, we can infer the speedup with respect to the increase of N as follows.

When the computation is dominant (i.e., rTSDA and rLSDA are small), a large amount of speedup

is expected as N increases. This is because the term rLSDA
P ? is a small number compared to rTSDA, for

sufficiently large P ?. In contrast, if the communication is dominant (i.e., rTSDA and rLSDA are very

large), Equation (2.11) is approximated by SPEEDUP ≈ rkrpP
?
(
rTSDA
rLSDA

)
. In this case, both rTSDA

and rLSDA does not change significantly as N varies. Thus, the increase of the cluster size will not

benefit the speedup. Figure 2.2 depicts the speedup versus the cluster size. In the computation-

dominant area, one may expect more speedup as N increases, whereas speedup remains almost

constant in the communication-dominant region.

2.5 Experiment and Results

Here, we present experimental details and performance evaluation of the proposed LSDA tech-

nique. The experiments were performed on a single dataset with varying cluster sizes. We consid-

ered small cluster sizes here to validate the proposed theory in the previous section. The trend in
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Figure 2.2: Theoretical result of speedup for LSDA algorithm with respect to TSDA algorithm for
varying cluster size N . Reprinted with permission from [1].

the results is expected to follow even with large to very large sized clusters. All the experiments

converged to the same value as that of the TSDA algorithm with varying execution times. Irrespec-

tive of the cluster size, the LSDA algorithm consistently outperformed TSDA with the same level

of accuracy.

2.5.1 Hardware Description

We used a 40 node cluster of Amazon Web Services(AWS) Elastic Cloud Compute 2 (EC2)

instances. The EC2 instances originate in the same region US west (Oregon) and were spawned

using the very basic t2.micro configuration supported by Elastic Block Storage volume of 8 GB

size. Each of these instances, backed by Intel Xeon processors with clock speed up to 3.33 GHz,

have one processing unit and 1 GB memory.

2https://aws.amazon.com/documentation/ec2/
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2.5.2 Experimental Setup

The software implementation was done in C++11 supported by Armadillo(v5.400.2) [34] linear

algebra library integrated with LAPACK/BLAS. We have used Message Passing Interface frame-

work library(MPICH-v3.1.4) for the inter-node communication. The data was synthetically gener-

ated with random values uniformly distributed over [−1, 1]. The problem specifics are as follows:

1. Number of samples (instances) in synthetic dataset, n = 200, 000.

2. Number of constraints, m = 1

3. Step size, α = 0.27.

4. Optimal Synchronization Period, P ∗ = 70.

5. Stopping threshold, ε = 10−5.

6. Cluster Size, N = {10, 20, 32, 40}.

Cluster sizes are chosen such to distribute the samples, n = 200, 000, equally among all the

nodes. After distribution, the data set in each node has the following structure.

Qi ∈ R
n
N
× n

N ,Ai ∈ R1× n
N , ci ∈ R

n
N
×1,xi ∈ R

n
N
×1 ∀ i = 1, . . . , N

2.5.3 Results and Discussions

Here we present and discuss experimental results of the proposed LSDA algorithm under syn-

chronization period, its convergence, computation and communication time, and speedup.

2.5.3.1 Synchronization Period

In LSDA, the inter-node communication, which results in data synchronization, occurs at fixed

intervals of time defined by the synchronization period P .

Figure 2.3 shows the trend of number of iterations k, required for convergence with varying

synchronization period P . Experimentally, it has been observed that the number of iterations k
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required to converge to the optimal solution is constant for a particular synchronization period P ,

irrespective of the cluster size. That is, k is only dependent on P and independent of number of

nodesN in a cluster. For synchronization period P = 1, the LSDA behaves exactly same as TSDA

as expected. It is observed from Figure 2.3 that the minimum number of iterations needed for the

convergence of our proposed relaxed synchronous algorithm occurs for a synchronization period

P = 70. This synchronization period is the optimal value for which the fastest convergence of

the given parallel QP problem is observed. This affirms the validity of Theorem 1. For the given

data set, β in Equation (2.9), which is a scalar value in this example, is calculated as β = 0.0143.

By applying the result in Equation (2.9), we obtain P ? = 70, which exactly coincides with the

optimal value obtained from the experimental results as shown in Figure 2.3. For P > 70, k starts

increasing implying that the dual variable y is updated later than the desired time period and hence

the longer convergence time.

Figure 2.4 compares the computation time for LSDA algorithm with varying synchronization

period for different cluster sizes N = {10, 20, 32, 40}. Due to uncertainty in network delays,

communication time is not taken into consideration here. For each of the cluster size, it is observed

that the computation time also reaches a minima at the optimal synchronization period P ∗ = 70.

Figure 2.5 highlights this trend for a single cluster size N = 32. It is interesting to note that Figure

2.5 validates our theoretical claim in Figure 2.1 for P ∗ as the optimal synchronization period.
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Figure 2.3: LSDA algorithm: Number of iterations (k) vs Synchronization Period (P ). The number
of iterations required for the TSDA algorithm to converge is constant. Reprinted with permission
from [1].

Figure 2.4: LSDA algorithm: Computation Time vs Synchronization Period, cluster size N =
{10, 20, 32, 40}. Reprinted with permission from [1].
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Figure 2.5: LSDA: Computation Time vs Synchronization period, cluster size N = 32. Reprinted
with permission from [1].

2.5.3.2 Convergence

Figure 2.6 compares the convergence trend for LSDA algorithm with P ∗ = 70 with the TSDA

algorithm. As guaranteed theoretically, the LSDA algorithm consistently converges to the optimal

solution of the (scalar) dual variable y∗ = 188.569 in k = 211 iterations, synchronizing once

in every P ∗ = 70 iterations. The TSDA algorithm takes k = 868 iterations for convergence,

synchronizing every iteration. This behavior validates that the proposed algorithm is numerically

stable and accurate even with the lazy updates. Also, it is observed that the convergence trend for

the relaxed algorithm is piece-wise linear because the y-update in Equation (2.5) has a constant

increment between consecutive synchronizations. This linearity in convergence trend can be used

to analytically determine the value of dual variable y at the synchronization time instants using

point-slope form of equation of line. This will further reduce the calculation time by eliminating

the need for y-update during every internal iteration. However, this improvement in computation

time will not significantly improve the overall execution time as it constitutes just a small fraction
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Figure 2.6: Dual variable solution (y) vs Number of iterations (k). LSDA algorithm converges to
the optimal solution of the dual variable significantly faster than the TSDA algorithm. Reprinted
with permission from [1].

of the overall time as observed in Figure 2.7 for TSDA and Figure 2.8 for LSDA. In the proposed

LSDA algorithm, synchronization occurs roughly thrice (≈ 211/70) compared to 868 synchro-

nizations in TSDA algorithm. Consequently, by using the relaxed synchronization approach the

communication delay is reduced by 99.65%.

2.5.3.3 Computation Time

Computation time is defined as the time spent in various calculations in the cluster nodes during

the iterations in between the synchronization time instants. Keeping the data set fixed, increasing

the number of nodes in a cluster reduces the computation time as the work load per node decreases

with the increase in cluster size. This trend can be observed in Figure 2.7 for TSDA algorithm

and in Figure 2.8 for LSDA algorithm. On comparing the computation time of LSDA algorithm

in Figure 2.8 with that of the TSDA algorithm in Figure 2.7 for varying cluster size, a significant

improvement in the computation time is observed in LSDA algorithm. This significant boost in the

computation time is due to lesser number of local calculations in the cluster nodes which can be
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Figure 2.7: TSDA algorithm: Total execution time vs Cluster size. Across various cluster sizes, it is
observed that communication time is more dominating than the actual computation time. Reprinted
with permission from [1].

attributed to the reduced number of iterations k as observed in Figure 2.6.

2.5.3.4 Communication Time

Communication time is defined as the time spent for inter-node communication during a syn-

chronization step. Figure 2.8 shows the total of communication and computation time (processor

execution time) for LSDA algorithm. As discussed earlier, with increase in cluster size N , we

do observe decrease in computation time as work load per node reduces. Whereas, the inter-node

communication delay increases as the number of nodes in the cluster increases. In addition, it can

also be observed from Figure 2.8 that out of the total execution time only a small fraction is used

in computation whereas majority of it is spent on communicating the data across the nodes. These

observations put forward a motivation to design communication-efficient techniques from the soft-

ware perspective which we will present in Chapter 5. Also, it is worth investigating dedicated

hardware architecture for distributed data processing for applications in machine learning which

we discuss in Chapter 6.
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Figure 2.8: LSDA algorithm: Total execution time vs Cluster size. The total execution time taken
for LSDA is significantly less than for TSDA. Reprinted with permission from [1].

Figure 2.9: Speedup in overall execution time of LSDA algorithm with respect to TSDA algorithm
for varying cluster sizes. The variation in speedup is shown with the mean value as well as the
standard deviation for each cluster size. Reprinted with permission from [1].
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2.5.3.5 Speedup

Figure 2.9 shows the speedup in overall execution time achieved by the proposed LSDA algo-

rithm for different cluster sizes over the TSDA algorithm. For cluster size N = {10, 20, 32, 40},

an average speedup of around 160× (± 12.5) is achieved. It is worth noting that the speedup is

approximately constant and flattens out with increase in cluster size. This observation aligns with

our theoretical discussion in Section 2.4.4 and implies that the cluster size N = {10, 20, 32, 40}

lies in the communication-dominant region. Figures 2.7 and 2.8 support this trend, since even with

cluster size N = 10, the communication time dominates the total execution time. In fact, this leads

to a good motivation to determine the optimal cluster size that is problem specific and is expected

to fall in the region where the speedup begins to flatten out. In other words, optimal cluster size is

that value of N at which the communication time begins to dominate the computation time.

2.6 Summary

In this chapter, we proposed a relaxed synchronization approach to solve massively parallel

large-scale Quadratic Programming (QP) problems. We analytically prove that our algorithm is

numerically stable that converges to the same optimal solution as the synchronous implementa-

tion. As outlined in the chapter, communication between processing nodes is a critical bottleneck

in parallel computing. The proposed algorithm alleviates this bottleneck to a large extent by em-

ploying intermediate synchronizations between iterations, which results in significant speedup of

around 160× when compared to the tightly synchronized dual ascent algorithm. This intermediate

synchronizations decrease the inter-node communication overhead by 99.65% and hence a speedup

in solution time is observed. We also provide a theory to determine the optimal synchronization

period P ∗ that guarantees the fastest convergence of a given parallel QP problem. In addition we

prove, both analytically and experimentally, that for a given problem we can only attain a constant

speedup on continuously increasing the cluster size. In subsequent chapters, we will use LSDA

and optimal synchronization period to design efficient distributed training algorithms for solving

optimization problems in machine learning.
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3. HOUSEHOLDER SKETCH FOR MACHINE LEARNING 1

Least-Mean-Squares (LMS) solvers comprise a class of fundamental optimization problems in

machine learning such as linear regression, and regularized regressions such as Ridge, LASSO, and

Elastic-Net. Data summarization techniques for big data generate summaries called coresets and

sketches to speed up model learning under streaming and distributed settings. In this chapter, we

explore such data summarization technique based on QR decomposition and apply it to efficiently

solve large-scale distributed LMS problems across various worker nodes.

3.1 Introduction

Least-Mean-Squares (LMS) solve a fundamental slice of machine learning optimization and

statistics problems that comprise ordinary least squares linear regression [35], regularized models

such as ridge regression [36], LASSO [37], Elastic-net [38]. Such machine learning models are

statistically robust and easily interpretable. Hence, they find applications in cancer research [39],

genomics [40], cryptocurrency [41], and most recently in understanding factors of COVID-19 out-

break and its impact [42, 43, 44]. Data summarization techniques for big data generate summaries

called coresets and sketches to speed up model learning under streaming and distributed settings.

A coreset is a (weighted) subset of data points whereas a sketch is a linear mapping of few or all

data points in the original dataset which aim to preserve or approximate the covariance matrix.

Such data summaries are leveraged to speedup model learning by solving the machine learning

problem approximately. For example, authors in [45] design a fast and accurate coreset-sketch

fusion on input data to boost the performance of existing LMS solvers.

3.1.1 Motivation

Training machine learning models on big data requires resources with large memory, and high

computational power. However, in practical applications, data is naturally decentralized, which

1This chapter is reprinted with permission from “Householder Sketch for Accurate and Accelerated Least-Mean-
Squares Solvers” by Jyotikrishna Dass, and Rabi N. Mahapatra, 2021 Proceedings of the 38th International Conference
on Machine Learning (ICML), Copyright ©2021 Jyotikrishna Dass and Rabi Mahapatra.
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calls for collaboratively training global machine learning model across multiple sources with-

out sharing original data on a central server. A recent body of work aims to create such secure

multi-party computation framework for training distributed regression models [46, 47, 48, 49]. In

addition, efforts have to be made towards feasibility of real-time learning at these sources with rel-

atively smaller memory and computing capabilities. Such distributed learning framework will also

need to support streaming data batches to update the models. Addressing the above requirements

entails reformulating the fundamental machine learning problems and using smaller and efficient

representations of the original full data to accelerate the training time. Data summarization tech-

niques for big data in [50, 51, 52, 53, 54] generate such summaries called coresets and sketches to

solve the problems approximately.

More recently, an award-winning work [45] proposed a coreset and sketch fusion algorithm

LMS-BOOST which accurately solves and accelerates common LMS solvers for Linear, Ridge,

LASSO, Elastic-Net in scikit-learn library up to 100x. Specifically, they generate accurate coresets

from their proposed faster implementation of Caratheodory set inO(nd+d4logn) (refer Algorithm

1, Theorem 3.1 in [45]) which is based on Caratheodory’s Theorem [55] proposed in 1907. The

theorem states that every point contained in the convex hull of n datpoints in Rd can be repre-

sented as a convex combination of a subset of at most d + 1 points, which the authors in [45] call

the Caratheodory set. The fundamental idea in their novel fusion algorithm is to partition the n

data points each with feature dimension d into multiple clusters optimally, then compute sketch

for each cluster, followed by generating coreset for the union of sketches. Finally, they create a

union of clusters corresponding to selected sketches above and recursively run the original (slower)

Caratheodory algorithm [55] on this union to generate sufficiently small coreset. The authors in

[45] use this coreset to summarize the data into O(d2) × d memory and run LMS solvers with

the computational time complexity of O(nd2 + logn × d8) (refer Algorithms 3 − 4, Theorem 3.2

in [45]) while preserving the input covariance. In retrospect, we seek to explore classical House-

holder transformation [56] as a candidate for sketching while accurately solving LMS problems

and being more efficient than LMS-BOOST in [45].
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3.1.2 Contributions

Authors in [45] considered classical QR decomposition approach to be a stable alternative

for solving LMS problems, but they naively declared it to be relatively time consuming without

providing any theoretical or empirical comparisons (Claim 1). In addition, QR technique was

referred to be unsuitable for exact factorization for streaming data (Claim 2). In this chapter, we

set to rigorously test and check for validity of the above claims made against the classical QR

decomposition.

To address Claim 1, we pose the following question

“Whether a recursive and clustering-based algorithm LMS-BOOST is a better alternative than

classical QR as a pre-processing step to (theoretically) accurately solve and accelerate common

LMS solvers ?”

To our surprise, we found Claim 1 to be Not True. Hence, our first main contribution is to

provide a critical analysis based on thorough comparison of both the algorithms both theoretically

and via extensive empirical results which are missing in the literature.

To address Claim 2, we offer a decentralized QR setup for exactly factorizing the input data

partitioned across multiple worker nodes based on local QR factorization without sharing the orig-

inal data (privacy).

With above settings, we found Claim 2 to be also Not True. Hence, our second main contri-

bution is to justify the above decentralized QR setup as numerically stable and a suitable candidate

to generate distributed sketches via exact factorization on streaming data.

This chapter provides a strong case for classicalQR decomposition-based sketch by addressing

the above claims and by performing extensive empirical evaluations to demonstrate its performance

capabilities for solving common LMS problems. Eventually, we shed light on benefits of the

Householder representations in terms of its memory, computation time to accelerate LMS solvers,

its numerical stability, feasibility of being deployed on distributed network to handle large sample

size and feature dimensions, and scalability across multiple worker nodes.
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3.2 Related Work

The overdetermined LMS problems can be solved directly by computing the covariance ma-

trix and its inverse in the Normal Equations. Despite its ease of implementation, this method is

not recommended due to its numerical instability associated with squaring of condition number.

Moreover, computing and maintaining the inverse, if it exists, for every new incoming data leads

to the accumulation of numerical errors, especially with 32-bit floating-point calculations. Hence,

a more numerically stable approach is to factorize X using QR decomposition [57] into matrix Q

with orthonormal columns, and upper triangular matrix R, when n � d. QR decomposition can

handle a much wider range of matrix by avoiding the condition-number-squaring effect [57].

A standard method of obtaining a QR Factorization is via Gram-Schmidt Orthogonalization

[58] that is unstable compared to QR via Householder reflectors [57]. For applications with sparse

input matrices, Givens rotation [59] allows full exploitation of the underlying sparsity. However,

it is to be noted that Householder transformation uses fewer arithmetic operations compared to

Givens rotations [57]. Nevertheless, it is always possible to compute efficient sketch by switching

between Householder transformation and Given rotation implementation of QR decomposition

based on the sparsity of the input data without much change in the structure of the framework.

Various iterative methods have been proposed to solve least squares problems such as LSQR

[60], LSMR [61], Stochastic proximal accelerated gradient descent [62], and more recently ran-

domized methods with random mixing and random sampling such as LSRN [63] and Blendenpic

[64]. These results are approximate solutions. However, our focus is to use a theoretically accurate

sketch of the input data which could then be directly plugged into scikit-learn LMS solvers similar

to LMS-BOOST algorithm in [45] but with faster execution time.

3.3 Least Mean Squares - QR (LMS-QR)

We define the Least-Mean-Squares (LMS) optimization problem for a data set (X,y), X ∈

Rn×d, and y ∈ Rn, where, n � d, as minimizing the sum of squared loss between the observed

prediction xjw, and true response yi for any d- dimensional data sample xTj ∈ Rd (row of X),
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j = 1, . . . , n, and LMS model coefficient vector w ∈ Rd. The generic optimization problem for

LMS is defined as follows

min
w

f(‖Xw − y‖2) + g(w). (3.1)

The above formulation is modelled as a specific LMS problem based on choice of functions f(z)

and g(w). For example, in LINEAR REGRESSION, f(z) = z2, and g(w) = 0.

In RIDGE REGRESSION, f(z) = z2, and g(w) = λ‖w‖2, where, λ > 0, is ridge regularization

hyper-parameter. Such LMS solvers as those in scikit-learn library basically solve system of linear

equations, i.e. (XTX)w = XTy (LINEAR REGRESSION), or (XTX + λI)w = XTy (RIDGE

REGRESSION).

3.3.1 Theory

The LMS objective in Equation (3.1) with X = QR reformulates to

min
w

f(‖QRw − y‖2) + g(w). (3.2)

where, Q is an n× n orthogonal matrix and R is an n× d upper trapezoidal matrix when n > d.

We assume the data matrix X is full column rank. With Householder transformation, the benefit is

avoiding the explicit computation and storing of large Q which otherwise becomes prohibitive for

big data sets. Rather, one may simply represent Q as a set of d Householder matricesH = {H(j) :

j = 1, . . . , d} such that Q = H(1)×H(2) . . .×H(d). Each H(j) has the form H(j) = I− tau×

v(j)×v(j)′, where tau is a real scalar, and v(j) is a real vector called Householder reflector which

we store in the reflector set V = {v(j) : j = 1, . . . , d}. In essence, any operations involving Q

are now computed using the above memory-efficient reflector set. Theorem 3.1 formally presents

Householder-QR.

Theorem 3.1 (Householder-QR [57]). Let matrix X ∈ Rn×d with n > d. Householder QR decom-

position of X generates set of d Householder matrices H and an n × d upper trapezoidal matrix

R. The Householder matrices are stored as a set of d Householder reflectors V . Total memory

40



Algorithm 3.1 HOUSEHOLDER-SKETCH(X,y); see Theorem 3.2
Data: A matrix X ∈ Rn×d, a vector y ∈ Rn

Result: A matrix R ∈ Rd×d is upper triangular such that XTX = RTR, and a vector ȳ ∈ Rd is
top d elements of the reflected vector QTy

1 (V ,R) := HOUSEHOLDER-QR(X) // see Theorem 3.1
2 ȳ := MULTIPLY-QC(V ,y,‘T’) // implicit QTy, see [57]
3 R←− R[0 : d, :] // d× d triangular block
4 ȳ←− ȳ[0 : d] // top d elements
5 return (R, ȳ)

footprint of above factors is nd elements with time complexity of O(nd2) for n� d.

We now present Theorem 3.2 which uses the factors from Householder-QR to create House-

holder sketch as per Algorithm 3.1 for further applications in LMS problems.

Theorem 3.2 (Householder Sketch). Let X ∈ Rn×d be the original data matrix, y ∈ Rn be

the corresponding output label or response vector, and n � d. Let X = QR be Householder QR

decomposition. Then, (R,QTy) is a memory-efficient and theoretically accurate sketch of original

data (X,y) such that XTX = RTR, and has memory footprint of
(d(d+3)

2

)
elements, computed in

time O(nd2).

Proof. From Equations (3.1) and (3.2), and X = QR, where QQT = QTQ = I

‖Xw − y‖2 = ‖QRw − y‖2 = ‖QRw −QQTy‖2 = ‖Q‖2 ‖Rw −QTy‖2 = ‖Rw −QTy‖2

(Accurate sketch) So, it is possible to replace the original data (X,y) used in existing LMS

solvers with (R,QTy) which preserves the covariance XTX = RTQTQR = RTR and solves

the optimization problem accurately. For example, Ridge regression with ridge parameter λ solves

(XTX+ λI)w = XTy in primal form which can be reformulated to (RTR+ λI)w = RT (QTy).

(Memory savings) R is a d × d upper triangular matrix with
(d(d−1)

2

)
elements above the di-

agonal and d on the diagonal resulting in
(d(d+1)

2

)
elements compared to original data matrix X
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that has nd elements. QTy is a reflected response vector. It is to be noted that only top d rows of

QT will be sufficient to compute QTy since n � d. Hence, reflected response vector (QTy) is

of size d compared to the original LMS formulation with response vector y of size n. Hence, the

total memory footprint of (R,QTy) is O
(d(d+3)

2

)
elements which makes it memory-efficient than

the original (X,y) occupying n(d+ 1) space.

(Time complexity) The above sketch (R,QTy) is computed via Householder QR decompo-

sition (HOUSEHOLDER-QR in Step 1 of Algorithm 3.1) of X which generates upper triangular

matrix, R, and orthonormal matrix Q that is internally stored as Householder reflectors. The time

complexity of the above decomposition is O(nd2 − d3/3) [57]. Calculation of QTy is done im-

plicitly by applying Householder reflectors to the response vector y (MULTIPLY-QC in Step 2 of

Algorithm 3.1) in time O(nd) [57]. Hence, it can be seen that the total computation time for the

sketch (R,QTy) is O(nd2 + nd− d3/3) which results in O(nd2) for n� d.

3.3.2 Accelerating Least Mean Squares Solvers

Householder sketch (R,QTy) is precomputed and applied directly to existing LMS solvers

in scikit-learn library instead of original data (X,y). Reducing the memory cost from O(nd)

in (X,y) to O(d2) in Householder sketch (R,QTy) speeds up the LMS solver. Specifically,

with the Householder sketch, the time for constructing RTR and RT (QTy) are O(d3) and O(d2),

respectively which are significantly faster than the original time O(nd2) and O(nd) spent by the

solver on constructing XTX and XTy, respectively. Then, LMS solves a primal problem with

system of d equations and d unknowns (w, solver coefficients). We present LMS-QR formally

in Algorithm 3.2. It is to be noted that constructing HOUSEHOLDER-SKETCH takes O
(
nd2
)

for

n � d (see Theorem 3.2), and is more computationally dominant than running the LMS solver

such as LINREG, RIDGECV, LASSOCV, ELASTICCV in sckit-learn. The above trend is also

empirically validated in Figure 3.2 for RIDGE solver as proof of concept.

Theorem 3.3. Let X ∈ Rn×d, y ∈ Rn, (R,QTy) := HOUSEHOLDER-SKETCH(X,y) that ac-
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Algorithm 3.2 LMS-QR(X,y,params)

Data: A matrix X ∈ Rn×d, a vector y ∈ Rn, and a list of LMS parameters, params
Result: A vector of model coefficients, w ∈ Rd

1 (R, ȳ) := HOUSEHOLDER-SKETCH(X,y) // see Algorithm 3.1
2 w := LMS(R, ȳ, params) // LINREG, RIDGECV, LASSOCV, ELASTICCV in

sckit-learn
3 return w

celerates primal ridge solver via RIDGE-QR. Then, (R,QTy) is also the Householder sketch

for the corresponding Kernel Ridge Regression problem that accelerates the dual problem via

KERNELRIDGE-QR, and solves it with the same memory and time complexity, independent of

data size
(
n
)
, as that of primal RIDGE-QR.

Proof. Kernel Ridge Regression with original data (X,y) solves (K + λI)β = y, where, K ∈

Rn×n is the Kernel matrix, and β ∈ Rn is the vector of dual variables. For any pair of row vectors

in input data, xi,xj ∈ R1×d, each element of Kernel matrix K(i, j) = κ(xi,xj), where κ() is a

Reproducing Kernel Hilbert Space (RKHS) kernel function such that κ(xi,xj) = 〈φ(xi), φ(xj)〉

and φ() is transformation from input space to RKHS feature space [65].

For a linear kernel function, κ(xi,xj) = xix
T
j , K = XXT , and the objective is to solve

the equation (XXT + λI)β = y such that the model coefficient in input space, w = XTβ. By

applying X = QR via HOUSEHOLDER-QR(X), the above dual problem reformulates to

(XXT + λI)β = y

⇒ (QRRTQT + λI)β = y

⇒ (QRRTQT + λQQT )β = y

⇒ Q(RRTQT + λQT )β = y

⇒ (RRTQT + λQT )β = QTy

⇒ (RRT + λI)β̄ = ȳ
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where, ȳ = QTy and β̄ = QTβ. The model coefficients in the input space,

w = XTβ = RTQTβ = RT β̄

Hence, solving (XXT + λI)β = y, system of n equations in n unknowns in KERNELRIDGE

with original (X,y) is equivalent to solving a much smaller system of d equations in d unknowns

(n � d), accurately and faster, with (RRT + λI)β̄ = ȳ in KERNELRIDGE-QR with memory-

efficient (R,QTy) sketch. It is worth noting here that once (R,QTy) sketch is available, the

memory and time complexity for solving dual in KERNELRIDGE-QR is independent of data size

n, and is same to that of solving the same problem in primal form via RIDGE-QR. Figure 3.4(a)

demonstrates the the above similarity in solving RIDGE-QR, and KERNELRIDGE-QR (with linear

kernel) based on computation time. Moreover, KERNELRIDGE-QR calculates the model coef-

ficient w using a triangular matrix in w = RT β̄ in d2 flops compared to (2n − 1)d flops for

w = XTβ in the original KERNELRIDGE with (X,y).

For any non-linear kernel function such as Radial Basis Function, it is possible to represent

K ≈ AAT with some low-rank matrix, A ∈ Rn×k via any kernel approximation techniques [66,

5]. This can be followed by constructing memory-efficient (R,QTy) := HOUSEHOLDER-SKETCH

(A,y) from Algorithm 3.1. Now, solving the approximated dual problem formulation for non-

linear kernels via KERNELRIDGE-QR is equivalent in space and time complexity to solving the

approximated problem in primal form via RIDGE-QR on (R,QTy). Moreover, any of the above

RIDGE-QR or KERNELRIDGE-QR is faster than solving the primal form via RIDGE with (A,y).

Hence, we showed that (R,QTy) is also the Householder sketch for Kernel Ridge Regression

, where, R is defined based on linear or non-linear kernel, for accelerating the dual problem via

KERNELRIDGE-QR.

3.4 Distributed LMS-QR

In this section, we present a distributed version of LMS-QR that parallelizes the computa-

tions, and, scales Algorithm 3.2 across multiple workers (computing cores or users) to solve the
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global LMS problem. We recall that HOUSEHOLDER-SKETCH (see Algorithm 3.1) is the more

computational dominant step than the solver in LMS-QR (see Algorithm 3.2). HOUSEHOLDER-

SKETCH calls HOUSEHOLDER-QR to perform X = QR decomposition on the data matrix. Then,

MULTIPLY-QC is invoked to eventually compute ȳ = QTy ∈ Rd.

Now, we show the feasibility of exactly distributing LMS-QR algorithm across multiple worker

nodes without any approximations. To design a DISTRIBUTED LMS-QR in Algorithm 3.3, the

more computationally expensive HOUSEHOLDER-SKETCH algorithm is parallelized across mul-

tiple workers. This is achieved via DISTRIBUTED HOUSEHOLDER-QR (see Theorem 3.4, and

Steps 1-9 in Algorithm 3.3), and DISTRIBUTED MULTIPLY-QC (see Corollary 3.1, and Steps 10-

19 in Algorithm 3.3) which create local and master Householder sketches from the local data

(Xi,yi), i = 1, . . . , p, generated i.i.d. at each worker node. Finally, we run the LMS solver (Steps

20 - 24 in Algorithm 3.3) at the master with (R,QTy), and broadcast the global LMS model

coefficients w to all the workers.

Theorem 3.4 (Distributed Householder-QR [6]). Let X = (XT
1 | . . . |XT

p )T , where, Xi ∈ Rn̂×d be

local data matrix of parallel worker, i = 1, . . . , p, where n̂ � d, and, n = pn̂. Let, Xi = QiRi

be constructed via local HOUSEHOLDER-QR (see Algorithm 3.1) for each i = 1, . . . , p, in par-

allel. Then, X = QR for the complete data matrix can be constructed exactly, such that Q =

diag(Q1, . . . ,Qp)QM , and R = RM , where Rstack = QMRM via another HOUSEHOLDER-QR

on Rstack = (RT
1 | . . . |RT

p )T gathered from all workers. The above DISTRIBUTED HOUSEHOLDER-

QR has a computational time complexity ofO
(
n
p
d2
)
, with a communicated data volume of

(d(d+1)
2

)
elements by each worker.
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Proof.

X =



X1

X2

.

.

Xp


=



Q1R1

Q2R2

.

.

QpRp


= diag(Q1, . . . ,Qp)



R1

R2

.

.

Rp



Let us define, Rstack =



R1

R2

.

.

Rp


= QMRM ,

via HOUSEHOLDER-QR step in Algorithm 3.1 (or Theorem 3.1). Then,

X = diag(Q1, . . . ,Qp)Rstack = diag(Q1, . . . ,Qp)QMRM

Also, it is given that X = QR via HOUSEHOLDER-QR on complete matrix X. Hence, Q =

diag(Q1, . . . ,Qp)QM , is the orthogonal matrix, and, R = RM is the upper triangular matrix.

Time complexity and Communication volume. For a given local data Xi ∈ Rn̂×d, where,

n = n̂p, each Xi = QiRi at i−th parallel worker is computed via local HOUSEHOLDER-QR (as

per Algorithm 3.1, and Theorem 3.1). From Theorem 3.2, each local HOUSEHOLDER-QR takes

O(n̂d2 − d3/3), in parallel for all the workers. Subsequently, Rstack = QMRM is performed via

master HOUSEHOLDER-QR in time O(×pd × d2 − d3/3), where, Rstack ∈ Rpd×d is obtained

by gathering (communicating) local upper-triangular matrices Ri ∈ Rd×d, i.e.,
(d(d+1)

2

)
elements

from each parallel worker i = 1, . . . , p to the master (i = 1). Hence, total computation time for

DISTRIBUTED HOUSEHOLDER-QR is O(n̂d2 + pd3− 2d3/3) or O(n
p
d2) for n̂� d (i.e. n� pd).
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It is worth noticing that the above computational time is dominant by local HOUSEHOLDER-QR

as observed in Figure 3.2 (a).

Relation to TSQR [67]. The construction of DISTRIBUTED HOUSEHOLDER-QR is inspired

from the parallel Tall-Skinny QR (TSQR) algorithm [67]. Unlike the binary reduction tree in

TSQR, we use a simple two-level organisation where the first level involves local HOUSEHOLDER-

QR on each participating worker in parallel (Step 2 in Algorithm 3.3), followed by a second level

which computes HOUSEHOLDER-QR at the master (Step 7 in Algorithm 3.3). Since the com-

munication overhead is negligible as demonstrated in Figure 3.2, the choice of implementation of

the DISTRIBUTED HOUSEHOLDER-QR is justified. Moreover, designing such a framework sup-

ports decentralized machine learning applications with workers (users) on the edge of distributed

network. Here, every worker has same and direct access to the master compared to the neigh-

bors in TSQR’s binary reduction scheme. Finally, we would like to highlight that established

packages such as ScaLAPACK and Elemental [68] use different matrix blocking and collectives

for performing Householder QR on multiple worker nodes via All-reduction scheme. In contrast,

DISTRIBUTED HOUSEHOLDER-QR employs a reduction scheme similar to TSQR [67] where the

global R resides on only one node (master) rather than being shared across all the workers. Due to

relatively lower synchronisation cost, DISTRIBUTED HOUSEHOLDER-QR similar to TSQR [67]

obtains a performance benefit over ScaLAPACK [69].

Corollary 3.1 (Distributed Multiply-Qc). Let c = (cT1 | . . . |cTp )T ∈ Rn, where, ci ∈ Rn̂ be

some local vector at parallel worker with local data matrix Xi, i = 1, . . . , p, where n̂ � d,

and, n = pn̂. Let, orthogonal matrices QM , and Qi, i = 1, . . . , p be constructed via DIS-

TRIBUTED HOUSEHOLDER-QR as per Theorem 3.4 such that Q = diag(Q1, . . . ,Qp)QM .

Then, the reflected vector, QTc (or Qc) can be constructed exactly by making (p + 1) calls to

MULTIPLY-QC (see Step 2 in Algorithm 3.1) such that QTc = QT
M

(
(QT

1 c1)
T | . . . |(QT

p cp)
T
)T

or, Qc = diag(Q1, . . . ,Qp)QM(cT1 | . . . |cTp )T . The above DISTRIBUTED MULTIPLY-QC has a

computational time complexity ofO
(
n
p
d+pd2

)
, with a communicated data volume of

(
d
)

elements

by each worker.
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Proof. From Theorem 3.4, for X = (XT
1 | . . . |XT

p )T , its corresponding orthogonal matrix Q =

diag(Q1, . . . ,Qp)QM . Hence,

QT = QT
M diag(QT

1 , . . . ,Q
T
p )

For a given vector c ∈ Rn, QT c via MULTIPLY-QC (Step 2 in Algorithm 3.1) can be equivalently

computed from c = (cT1 | . . . |cTp )T comprising local vector ci ∈ Rn̂, where, i = 1, . . . , p, as follows

QTc = QT
M diag(QT

1 , . . . ,Q
T
p )c = QT

M



QT
1 c1

QT
2 c2

.

.

QT
p cp


In DISTRIBUTED MULTIPLY-QC algorithm, the above is implemented as follows. Each worker,

i = 1, . . . , p, computes its local reflected vectors QT
i ci ∈ Rd via MULTIPLY-QC (refer Step 2 in

Algorithm 3.1) in parallel with time O(2n̂d) as shown in Theorem 3.2. Once these local reflected

vectors, each of size d elements are gathered (communicated) from each worker to the master, a

stacked vector
(

(QT
1 c1)

T | . . . |(QT
p cp)

T
)T
∈ Rpd×d is constructed. Then, a master MULTIPLY-QC

is applied on this stacked vector using QT
M in time O(2 × pd × d), i.e., O(2pd2). Hence, total

computation time of DISTRIBUTED MULTIPLY-QC is O(2n̂d + 2pd2), i.e., O(n
p
d + pd2), since

n = n̂p.

Privacy. From Theorem 3.4, and Corollary 3.1, it can be observed that the DISTRIBUTED

LMS-QR in Algorithm 3.3 can locally compute (Ri,Q
T
i yi) for each worker without the need

to share its original data Xi to a centralized node or any of the neighbors. By maintaining Qi

privately, the algorithm avoids any other worker (or master) to reconstruct Xi accurately. It is to

be noted that in our experiments, master is designated via Message Passing Interface protocol.

48



Algorithm 3.3 DISTRIBUTED LMS-QR(p,X,y,params)

Data: A scalar p > 0 parallel workers (cores or users), a matrix X = (XT
1 | . . . |XT

p )T ,Xi ∈ R
n
p
×d

, a vector y = (yT1 | . . . |yTp )T , yi ∈ R
n
p , a list of LMS parameters, params

Result: A vector of model coefficients, w ∈ Rd

// (V ,R) := DISTRIBUTED HOUSEHOLDER-QR(X), see Theorem 3.4
1 for every worker i ∈ {1, 2, . . . , p} do
2 (Vi,Ri) := HOUSEHOLDER-QR(Xi) // see Theorem 3.1
3 Ri ←− Ri[0 : d, :] // d× d triangular block
4 Rstack := GATHER(Ri,root = 0) // Rstack = vstack(R1, . . . ,Rp) at Master
5 end
6 if i == 1 then // check for Master
7 (VM ,RM) := HOUSEHOLDER-QR(Rstack) // see Theorem 3.1
8 RM ←− RM [0 : d, :] // d× d triangular block
9 end
// V :=

[
V1, . . . ,Vp,VM

]
is never centralized or shared

// Q = diag(Q1, . . . ,Qp)QM ,and,R = RM, see Theorem 3.4
// ȳ := DISTRIBUTED MULTIPLY-QC(V,y,‘T’), see Corollary 3.1

10 for every worker i ∈ {1, 2, . . . , p} do
11 ȳi := MULTIPLY-QC(Vi,yi,‘T’) // implicit QT

i yi ,see Algorithm 3.1
12 ȳi ←− ȳi[0 : d] // select top d elements
13 ȳstack := GATHER(ȳi,root = 0) // ȳstack = vstack(ȳi, . . . , ȳp) at Master
14 if i == 1 then // check for Master
15 ȳM := MULTIPLY-QC(VM , ȳstack,‘T’) // implicit QT

M ȳstack
16 ȳM ←− ȳM [0 : d] // select top d elements
17 end
18 end
19 ȳ := ȳM // ȳ = QTy = QT

M

(
(QT

1 y1)
T | . . . |(QT

p yp)
T
)T

// Solving LMS
20 if i == 1 then // check for Master
21 w := LMS(R, ȳ, params) // run LMS solver at Master
22 BROADCAST(w,root = 0) // every worker receives the global model
23 end
24 return w

3.5 Experiment and Results

In this section we perform extensive empirical analysis for the LMS-QR (Algorithm 3.2).

Recall, HOUSEHOLDER-SKETCH (Algorithm 3.1) on the input data (X,y) generates memory-

efficient (R,QTy) to accurately solve, and accelerate common LMS solvers in scikit-learn library.
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We present detailed experimental setup, and extensive discussion of results below.

3.5.1 Hardware Description

We used Google Colab to run our experiments with the above LMS-QR algorithms via Python3

Google Compute Engine running on Intel Xeon CPU @ 2.20GHz and 25 GB RAM. For distributed

experiments, we used the Anaconda Python distribution and MPI for Python (mpi4py) package on

the Texas A&M University Ada computing cluster of Intel Xeon CPU @ 2.5GHz.

3.5.2 Experimental Setup

We evaluated the performance of LMS-QR algorithm on regression models such as Linear

Regression, Ridge, LASSO, and Elastic-Net in scikit-learn library [70]. To implement Algorithm

3.1, we use LAPACK.dgeqrf(), and LAPACK.dormqr() subroutines for HOUSEHOLDER-

QR, and MULTIPLY-QC, respectively.

We used following datasets for evaluation, and fair comparison of LMS-QR performance with

the default LMS solvers (with cross validation), and with Fast Caratheodory coreset based LMS-

BOOST [45]. (i) Synthetic data (X, y) comprising uniform random entries in [0, 100) for sequential

experiments. (ii) 3D Road network[71] dataset with n = 434, 874 data samples. We selected d = 2

feature attributes (longitude, latitude) as per [45] to predict height (in metres). (iii) Individual

household electric power consumption [72] dataset with n = 2, 075, 259 data samples. We selected

d = 8 attributes as per [45] to predict the house price.

We used synthetic dataset with uniform random entries in (−100, 100) with zero-centering

for evaluating the distributed performance of RIDGE-QR as our case study on a cluster of p =

{2, 4, 8, 16} workers (computing cores). However, it is to be noted that DISTRIBUTED LMS-QR

technique is easily applicable to other solvers. Linear algebra was handled by LAPACK/BLAS,

through the Intel Math Kernel Library. We ensure that each worker (core) was assigned from a

different node in the cluster to ensure distributed memory with MKL threads per core limited to 1.

Each test was performed 20 times, and the best result was chosen.
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3.5.3 Results and Discussions

Here, we discuss the performance of the Householder sketch with respect to training time for

both sequential and distributed implementations, scalability with increasing number of workers,

and numerical stability.

3.5.3.1 Sequential Training Time

LMS-QR works with memory-efficient (R,QTy) with just d rows in R compared to LMS

with n rows in X of the original data (X,y), and (d2 + 1) rows in the reduced matrix from the Fast

Caratheodory coresets in LMS-BOOST [45]. Construction of R via Householder transformation

in LMS-QR, and the reduced matrix via Fast Caratheodory set for LMS-BOOST take time that is

linear in n, and quadratic in d. Figure 3.1 (a)-(i) depicts the sequential training computation time on

synthetic dataset for the LMS-QR, and compares them with respective LMSCV [70], and LMS-

BOOST [45], where, LMS={RIDGE, LASSO, ELASTIC}. From Figure 3.1 (a)-(c), we observe that

for various feature dimensions d = {3, 5, 7} and data sizes n = {240K, . . . , 24M}, LMS-QR

accelerates the running time of default LMSCV by 100x for both LASSO, and ELASTIC, and by

400x for RIDGE. In comparison with LMS-BOOST, RIDGE-QR outperforms RIDGE-BOOST by

10x for d = 7 and various n in Figure 3.1(a). Moreover, LASSO/ELASTIC/LINREG-QR runs upto

100x faster when n < 2.4M and upto 10x faster when n > 2.4M than LASSO/ELASTIC/LINREG-

BOOST for d = 7 in Figure 3.1 (b)(c)(j). In Figure 3.1 (d)-(f), we demonstrate the running time

of LMS-QR for n = 24M and various d = {3, 5, 7, 10, 25, 50}. We observe that LMSCV, and

LMS-BOOST [45] with running time O(nd2 + logn × d8), run out of memory for d = {25, 50}

while LMS-QR could handle growing feature dimension as shown. Hence, we demonstrate that

LMS-QR can easily handle big datasets with increasing data size n and feature dimension d

while enjoying the fastest running times compared to LMSCV and LMS-BOOST. For various

size of hyper-parameter set for cross validation, |A| = {50, 100, 200, 300}, for cross validation,

Figure 3.1 (g)-(i) depict LMS-QR to be consistently faster than LMS-CV and LMS-BOOST. We

observe similar trend for the real datasets in Figure 3.1 (k)-(l).
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Figure 3.1: Sequential training time {RIDGE, LASSO, ELASTIC} (a)-(c): vs data size, n with
feature dimension, d = {3, 5, 7}, (d)-(f): vs d with n = 24M , (g)-(i): vs n with hyper-parameter
size |A|, (j): LINREG vs n, (k): vs |A| for 3D Road Network, (l): vs |A| for Household Power
Consumption. Cross validation folds, |m| = 3 for synthetic datasets (a)-(j) and |m| = 2 for real
datasets (k)-(l). Reprinted with permission from [4].

52



3.5.3.2 Distributed Training Time

We evaluate the performance of DISTRIBUTED RIDGE-QR as a case study to demonstrate

the effectiveness of the distributed implementation. From Algorithm 3.3, DISTRIBUTED RIDGE-

QR can be split into two main stages: (Stage 1) DISTRIBUTED HOUSEHOLDER-QR, and (Stage

2) DISTRIBUTED MULTIPLY-QC, followed by solving the Ridge regression. Figure 3.2 (a)-(b)

demonstrate the above two stages on a 10M × 10 synthetic dataset.

Stage 1 running time can be further broken into three main components: local HOUSEHOLDER-

QR time, master HOUSEHOLDER-QR time, and communication (gather) time as illustrated in

Figure 3.2 (a). Since each worker performs its local HOUSEHOLDER-QR on partitioned data of

size n
p
× d (Theorem 3.4), we observe it to be empirically more computationally dominant than

the master HOUSEHOLDER-QR that works on gathered matrices of size pd × d. We show that

on doubling the number of parallel workers, i.e. p = {2, 4, 8, 16} workers, the time to calculate

the local HOUSEHOLDER-QR is reduced by half, i.e. {1.1734, 0.5405, 0.2508, 0.1233} seconds

respectively demonstrating it is fully parallelized. In comparison, master HOUSEHOLDER-QR

computation time, and communication time to gather merely d(d + 1)/2 elements is nearly

negligible as depicted in Figure 3.2 (a).

Next, in Figure 3.2(b), we observe the timings for Stage 2 in DISTRIBUTED RIDGE-QR. The

running time of this stage can be split into following main components: DISTRIBUTED MULTIPLY-

QC time to compute QTy, and time to solve the ridge regression via popular RIDGE solver [70].

We observe in Figure 3.2(b) that DISTRIBUTED MULTIPLY-QC time is computationally dom-

inant as expected from Corollary 3.1, and can be fully parallelized with reported timings of

{0.2782, 0.1232, 0.06012, 0.0277} seconds on p = {2, 4, 8, 16} workers, respectively. Relatively,

we also observe that solving RIDGE regression with RRT ∈ Rd×d, is nearly negligible in computa-

tion time across various choices of p. Moreover, the communication required in this stage involves

a gather of QT
i yi ∈ Rd at the master, and broadcasting w to all workers, which is negligible.

Finally, in Figure 3.2 (c) we depict the percentage of total running time for DISTRIBUTED

RIDGE-QR that is spent on computation and communication components of Stage 1, and Stage 2
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Figure 3.2: Breakdown of DISTRIBUTED RIDGE-QR training time with zoomed insets depict-
ing communication time (a): Stage 1: DISTRIBUTED HOUSEHOLDER-QR, (b): Stage 2: DIS-
TRIBUTED MULTIPLY-QC and RIDGE, (c): Combined percentage. Reprinted with permission
from [4].

for various choices of p. We observe the communication overhead to be nearly negligible, and

local HOUSEHOLDER-QR to be the most computationally dominant component. The latter can

be parallelized significantly across multiple workers. We also observe that for any given dataset

size and choice of p, as long as the parallelizable components, namely, local HOUSEHOLDER-QR,

and DISTRIBUTED MULTIPLY-QC remain as the most computationally dominant components, the

algorithm will continue to scale as per Amdahl’s Law [73]. So for big datasets, we expect good

scalability on large number of p workers as discussed next.

3.5.3.3 Scalability

We discuss parallel speedup under strong scaling scenario wherein the overall problem size

stays fixed but the number of parallel workers p is doubled. Parallel speedup is defined as the ratio

of the running time for the sequential algorithm to that of the corresponding parallel algorithm

on p workers. When speedup of any parallel algorithm is p, it exhibits ideal speedup with linear

scalability. Figure 3.3 (a)-(c) demonstrates the parallel speedup of DISTRIBUTED RIDGE-QR,

and compares it with popular distributed technique ADMM [74], here, RIDGE-ADMM that uses

original data (X,y) on RIDGE [70], for w− update step. In Figure 3.3 (a)-(c), we observe that with

larger data sample sizes n = {500K, 1M, 2M}, DISTRIBUTED RIDGE-QR along with its dual

equivalent DISTRIBUTED KERNELRIDGE-QR (linear kernel) exhibit almost linear scalability

across p by approaching the ideal speedup. This is attributed to its negligible communication
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Figure 3.3: Comparing scalability of various algorithms to solve RIDGE problem on synthetic
datasets of size n × d (a)-(c): Various n = {500K, 1M, 2M}, d = 100, (d)-(f): DISTRIBUTED

RIDGE-QR with d = {5, 10, 25, 50, 100}. Reprinted with permission from [4].

overhead, and almost fully parallelizable computational components as discussed earlier. It is also

worth noticing from Figure 3.3 (d)-(f) that as the feature dimension increases from d = 5 to d = 10

in each plot, DISTRIBUTED RIDGE-QR speedup tends to be more linear for high p, thereby capable

of showing high scalability for datasets with large feature size on large number of parallel workers.

In Figure 3.4 (a) we observe that solving RIDGE regression problem with linear kernel in dual

form using KERNELRIDGE-QR has the same computation time as that of solving the primal form

using RIDGE-QR for various sequential and distributed settings, p = {1, 2, 4, 8, 16}. Moreover,

Householder-Sketch based sequential (p = 1) and distributed (p = {2, 4, 8, 16}) algorithms run

much faster than the corresponding implementation of iterative RIDGE-ADMM algorithms on the

original data.

3.5.3.4 Numerical Stability

Figure 3.4 (b) shows that DISTRIBUTED RIDGE-QR is numerically stable to rounding errors

with increasing number of workers p, while ADMM being an iterative learning algorithm is more
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Figure 3.4: (a)-(b): Comparing DISTRIBUTED RIDGE-QR / KERNELRIDGE-QR (linear kernel),
and RIDGE-ADMM for 10M × 10 synthetic data based on (a) Computation time (b) Accuracy,
w∗ is solution from scikit-learn RIDGE, (c) Accuracy of LINREG-QR and LINREG-BOOST on
Household Power Consumption dataset (∼ 2M × 8), w∗ is solution from scikit-learn LINEAR-
REGRESSION. Reprinted with permission from [4].

susceptible. For the sequential implementation on linear regression problem, [45] had demon-

strated much better numerical stability of LINREG-BOOST compared to (XTX)−1. Here, Figure

3.4 (c) presents the numerical stability of LINREG-QR with scaled factor of 10−11 to demonstrate

similar trend to that of LINREG-BOOST [45].

3.6 Summary

In this chapter, we demonstrate that Householder transformation generates a theoretically ac-

curate sketch that is relatively more memory-efficient and computationally faster than the LMS-

BOOST algorithm in [45] to accurately solve LMS problems. In principle, Householder sketch

accelerates common LMS solvers in scikit-learn library up to 100x-400x, and outperforms the

strong baseline LMS-BOOST by 10x-100x with similar numerical stability. The distributed im-

plementation achieves linear scalability with negligible communication overhead for large sample

size and dimension across multiple worker nodes. We believe that the above results are valuable

for the community to realize not to disregard classical techniques so quickly, rethink how some

comparisons are done, identify common misconceptions, and reassess what the most appropri-

ate algorithms for certain problems are. In subsequent chapters, we will incorporate Householder

sketch to construct memory-efficient and communication-efficient frameworks for scalable ma-

chine learning.
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4. MEMORY-EFFICIENT FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 1

In this chapter, we use our knowledge of relaxed synchronization and distributed Householder

sketches from previous chapters to perform memory-efficient modeling and training of a machine

learning problem such as Support Vector Machines (SVM) across multiple workers. We will show

how optimal synchronization period introduced in Chapter 2 is related to optimal step size or learn-

ing rate. The ideas presented in this chapter can be applied to any convex optimization problem or

other machine learning problems with iterative solvers such as dual ascent and gradient descent.

With the influx of huge amount of digital data from sensors, social media, mobile devices and

online transactions, it has become increasingly challenging to store, process and analyze data for

predictive analytics.

4.1 Introduction

Machine learning is at the core of solving real-world challenges in sectors like energy, trans-

portation, finance, business analytics, health-care and manufacturing. Support Vector Machine

(SVM) fall under the realm of supervised machine learning wherein a mathematical model is

trained on a prior dataset and associated class labels. SVMs are commonly used for classifica-

tion and regression analysis. In binary SVM classification, the goal is to optimally compute a

hyperplane that maximally separates the two classes. In regression, one attempts to find a function

that is an optimal fit to the data with minimum deviation in the function value. Real-world appli-

cations give rise to datasets that have a non-linear structure for which kernel SVMs are used. In

linear SVM problems, the training data is used in its original feature space, thereby, enabling the

adoption of coordinate gradient methods [75] to achieve the above described optimization goal. In

contrast, for non-linear SVM problems the data is transformed to a higher dimensional space which

1A part of this chapter is reprinted with permission from “Distributed QR Decomposition Framework for Training
Support Vector Machines” by Jyotikrishna Dass, V. N. S. Prithvi Sakuru, Vivek Sarin, and Rabi N. Mahapatra, 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Copyright ©2017 IEEE.
A part of this chapter is reprinted with permission from “Fast and Communication-Efficient Algorithm for Distributed
Support Vector Machine Training” by Jyotikrishna Dass, Vivek Sarin, and Rabi N. Mahapatra, 2019 IEEE Transactions
on Parallel and Distributed Systems (TPDS), Copyright © 2019, IEEE.
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represents the feature space. Subsequently the classifier can be learned by simply computing the

inner products between all pairs of datapoints in the feature space without explicitly calculating

their transformed coordinates. This is commonly referred to as the kernel trick [65]. Since the

higher dimensional coordinates of the datapoints are not explicitly computed, applying coordinate

gradient methods is infeasible for non-linear SVMs.

4.1.1 Motivation

Mathematically, SVM is a constrained convex optimization problem with a quadratic objective

function. The Hessian of the quadratic function is the kernel matrix which poses major compu-

tational and scalability issues. With the growing data sizes, solving large scale machine learning

problems using SVM is a tedious task both in terms of computational cost as well as memory re-

sources. Computation and storage of the kernel matrix grows as O(n2) for n datapoints, making it

impractical to compute the matrix for large sized problems.

4.1.2 Contributions

We propose a QR decomposition framework (QRSVM) to efficiently solve large-scale kernel

SVM problems with guaranteed stability of dual ascent method. We use state of the art kernel

approximation technique that is memory efficient unlike Singular Value Decomposition (SVD).

The low-rank approximation of the kernel matrix is represented in a separable form which makes it

fit to be used in the proposed QRSVM framework. Rather than proceeding with the approximated

kernel matrix directly, we further decompose it using QR factorization. This leads to memory-

efficient representation of the otherwise dense hessian matrix in SVM problem. The subsequent

representation is sparse that it can be block-partitioned for parallel SVM training. The proposed

QRSVM scales linearly with the data size which further motivates towards a distributed framework

that can work on data that has been partitioned across a cluster of computing nodes. Within this,

we first present a distributed QR decomposition technique and then parallelize the iterative update

steps of the dual ascent method to solve the parallel kernel SVM problem. We also propose an

optimal step size for fast convergence of the dual ascent method.
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4.2 Related Work

Various decomposition techniques like Vapnik’s chunking [76], Osuna’s decomposition [77]

and Platt’s SMO [14] have made respectable contribution to addressing these issues. To efficiently

solve large-scale classification problems, research community nowadays is more focused on mod-

eling it as a linear SVM problem which is a simplified optimization framework [78]. In the linear

SVM problems, the training data is used in its original feature space, thereby, enabling the adop-

tion of coordinate gradient methods to solve the optimization problem. In comparison, for the

non-linear SVM problems, the data is transformed to higher dimensional space by using kernel

trick. Since the higher dimensional coordinates are not explicitly computed, applying coordinate

gradient methods for non-linear kernel problems is infeasible. In coordinate gradient methods, a

single data point contributes to the gradient shift of the objective function iteratively and hence,

they have very low per-iteration computation cost. However, these methods have slow conver-

gence rate when compared to the orthodox gradient methods like dual ascent [79]. Zhang et al.

[80], Shalev-Shwartz et al. [81], Bottou [82] proposed variations of stochastic gradient descent on

the primal SVM form. Joachims [83] proposed the cutting plane method while Smola et al.[84]

used bundle methods on dual SVM. Hsieh et al. [75] proposed the dual coordinate descent (DCD)

method and showed that it outperformed other dual methods. LIBLINEAR [85] is a state of the

art library for solving linear SVM classification (SVC) problems. It is implemented using the

DCD method. However, this method was really slow and not completely stable for non-document

datasets especially with low dimensions [86].

For solving kernel SVM for non-linear decision boundaries, efficient sequential algorithms

have been proposed. The most popular of such algorithms is SMO [14] which now finds its imple-

mentation in widely used SVM solver tool LIBSVM [87]. Due to the sequential nature of SMO al-

gorithm, single machine kernel SVM solvers suffer from limited scalability, thereby making those

unfit for training big-scale datasets. With growing data sizes, it has become utmost necessary to

design parallel and distributed algorithms to train the kernel SVMs.

The state of the art parallel algorithms which have been proposed to solve kernel SVM prob-
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lems are PSVM [12] and P-pack SVM [88]. PSVM, in fact, has limited scalability due to its

quadratic dependence on the sample size. Moreover, PSVM works with kernel matrix approxima-

tion using Incomplete Cholesky Factorization (ICF) which lacks theoretical error bounds. Many

kernel approximation techniques like Nyström [89], LLSVM [90] and random Fourier features

[91] have also been explored to reduce the problem dimension. Such methods produce low-rank

approximations of the kernel matrix and have been used to reduce the kernel SVM problem into a

linear SVM problem. P-packSVM computes the primal form of SVM using a stochastic gradient

descent method wherein the gradient is approximated at a single sample [88]. Since the primal

SVM problem can be prohibitively large while its Wolfe dual problem is considerably smaller, the

convergence rate of the primal solver is slower than the dual solver [92].

4.3 Support Vector Machines

In this section, we introduce the SVM problem and its formulation for both linear and non-

linear classification. The goal of a typical Support Vector Machine for the binary classification

problem is to determine an optimal hyperplane that maximally separates the two classes. The

hyperplane rests on a set of support points that determine the shape of the classifier.

4.3.1 Formulation

For classifier training, one is given a training dataset S = {(xi, yi), ∀i = 1, . . . , n} with n

number of samples. Each input data point xi ∈ Rd (Rd is the d−dimensional input space) and

yi ∈ {−1, 1} is the corresponding data label (or class).

An `2-regularized primal version [65] of this problem is

min
w

1

2
||w||22 + C

n∑
i=1

ξi(w;xi; yi), (4.1)

where w ∈ Rd represents the normal to the hyperplane separating the data points and scalar C > 0

is the penalty parameter that determines the trade-off between margin maximization and training

error minimization. The term ξi(w;xi; yi) represents the squared hinge loss function associated

with the optimization problem. A scalar bias term, b ∈ R is typically associated with w represent-
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ing the separating hyperplane, wTx + b = 0.

The dual formulation of Equation (4.1) is:

min
α

1

2
αTZα + eTα, (4.2)

subject to L ≤ αi ≤ U,

where, Z = (G + D) ∈ Rn×n is a dense and positive definite, e = −1n, L is the scalar lower

bound of each lagrangian multiplier αi and U is its scalar upper bound. G = {yiyjκ(xi,xj)},

where, κ() represents the Mercer kernel function.

For SVM, G is derived from the kernel matrix, K = {κ(xi,xj),∀i, j = 1, . . . , n} which is a

positive semi-definite matrix. For linear-SVM, the kernel function κ(xi,xj) = xTi xj . The diagonal

matrix D, lower bound L and upper bound U are dependent on the type of loss function associated

with the SVM problem.

For L2-SVM with

`2-loss : ξi(w;xi; yi) = max(0, 1− yiwTxi)
2,

we have D = (2C)−1In , L = 0 and U =∞.

There are two major types of SVMs based on the nature of the decision boundary to be learnt

for any given dataset. Linear SVMs are used for finding the linearly separable hyperplane whereas

Kernel (or non-linear) SVMs are used to learn complex and non-linear decision boundaries be-

tween the two classes present in the dataset. For kernel (or non-linear) SVMs, it is advantageous to

solve the problem using its dual form to leverage the benefits of the kernel trick [93]. In addition,

by using the dual formulation, the loss function vanishes from the objective function making its

optimization simpler.

For a kernel (or non-linear) SVM problem, the kernel function κ(xi,xj) = 〈φ(xi), φ(xj)〉 is a

similarity measure between a pair of data points, xi and xj in the dataset which has a non-linear
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decision boundary. Here, φ() represents a mapping that transforms the original data point, xi from

input space to the Reproducing Kernel Hilbert Space (RKHS) where it can be linearly separable.

It should be noted that φ() need not be explicitly available as one has a representation of the above

defined kernel function κ(xi,xj). Some examples of non-linear kernel functions are polynomial

kernel, radial basis function, etc.

In contrast, the kernel matrix K for linear SVM is directly separable in terms of original data-

points, i.e., K = XXT , where X = {xi ∈ Rd, i = 1, . . . , n}. Our goal is to solve the non-linear

problems since most of the datasets that exist have non-linear decision boundaries inherently.

We focus on the radial basis function (RBF) as the non-linear kernel function, i.e.,

κ(xi,xj) = exp(−γ‖xi − xj‖2),

which transforms the data to infinite dimensional space. Unlike the linear SVM, the kernel matrix

K for non-linear problems is not trivially separable. Moreover, K is associated withO(n3) compu-

tation for factoring the matrix and O(n2) memory to store the factors, which makes it challenging

to scale to large n. A popular solution is to use a low-rank kernel approximation which speeds up

kernel-based solvers while consuming limited memory.

Kernel approximation techniques attempt to find the best rank−k approximation K ≈ AAT ,

with A ∈ Rn×k (k � n), which has the added benefit that the non-linear kernel matrix can now be

written in a separable form just like the linear one.

The L2-SVM formulation for kernel SVM in Equation (4.2) can be written as

min
α

1

2
αT
(
ÂÂ

T
)
α +

1

2
αT
( 1

2C
In

)
α + eTα, (4.3)

subject to − Inα ≤ 0n,

where, Â = diag(y) × A, and y = {yi ∈ {−1, 1}, i = 1, . . . , n}. L2-SVM provides a simpler

constraint formulation which specifies that each αi corresponding to xi must be non-negative. The
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data points corresponding to positive scalar αi’s are the support vectors on which the separating

hyperplane rests.

4.3.2 Challenges

The matrix Â ∈ Rn×k with k � n, has a tall and skinny structure. For SVM problems involv-

ing large n, ÂÂ
T

is a dense square matrix (Hessian component of the SVM objective function)

requiring O(n2) memory to store and O(n3) computation. Furthermore, this square matrix can not

be decomposed into independent and separable sub-matrices. Hence, it is difficult to parallelize

the training while using this matrix. In addition, ÂÂ
T

is a rank deficient matrix that can lead to

instability when minimizing the Lagrangian of the dual SVM problem in Equation (4.6).

4.4 Memory-Efficient Framework

In this section, we propose QRSVM which is based on incorporating Householder QR sketches

to SVM problem. QRSVM framework addresses the above challenges by employing the QR de-

composition technique to efficiently transform the dense coefficient (hessian) matrix into a sparse

and memory-efficient form followed by the dual ascent method to solve the resulting optimization

problem iteratively until convergence is achieved.

4.4.1 QRSVM

Here, we present a detailed formulation of the QRSVM framework and also discuss its benefits.

4.4.1.1 Formulation

The QRSVM formulation is based on the use of a rank-k approximation of the kernel matrix

K for which we use MEKA, a "Memory Efficient Kernel Approximation" technique [5]. MEKA

uses nearly same amount of storage as other approximation techniques like incomplete Cholesky

decomposition [94] , Greedy basis selection techniques [95] and Nyström [96] methods, while

achieving lower approximation error. As an example, on the covtype dataset with half a million

samples, MEKA takes around 70 seconds and uses less than 80 MB memory on a single machine

to achieve 10% relative approximation error, while standard Nyström approximation is about 6x
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slower and uses more than 400 MB memory to achieve similar approximation [5].

QR decomposition of the matrix Â yields Â = QR. Here, Q is an orthogonal matrix of size

n×n and R is an upper trapezoidal matrix of size n×k. The cost function of the non-linear SVM

problem in Equation (4.3) now becomes

1

2
αT
(
QRRTQT

)
α +

1

2
αT
( 1

2C
In

)
α + eTα .

Defining α̂ = QTα, ê = QTe and using QTQ = In, the L2-SVM quadratic programming

problem becomes

min
α̂

1

2
α̂T
(
RRT +

1

2C
In

)
α̂ + (ê)T α̂ (4.4)

subject to −Qα̂ ≤ 0n .

In Equation (4.4), RRT is a symmetric sparse matrix of size n where the non-zeros are re-

stricted to the first k × k submatrix. Thus, the Hessian of the cost function in Equation (4.4)

is a block diagonal matrix comprising of two diagonal blocks: An k × k symmetric and dense

submatrix, (RRT )k + (1/2C)Ik and a diagonal submatrix, (1/2C)In−k.

4.4.1.2 Benefits

The key benefits of the QRSVM formulation are as follows

1. Sparsity: It transforms the Hessian of the optimization problem from a dense n× n matrix(
ÂÂT + (1/2C)In

)
in Equation (4.3) to an overall sparse matrix which consists of a small

dense k × k block in Equation (4.4). Thus, it requires lesser storage of O(k2) compared to

earlier dense representation of O(n2). We illustrate the above sparsity benefit in Figure 4.1.

2. Separability: As observed in Figure 4.1, QRSVM also renders the aforementioned non-

separable Hessian matrix into a block separable form. Now, it is possible to further leverages
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Figure 4.1: QRSVM technique transforms a 6 × 6 dense and non-separable Hessian (coefficient)
matrix into a sparse block diagonal matrix, where, the first 2× 2 block is full rank and the second
4× 4 block is a diagonal submatrix. Dense regions are colored. The two blocks in the transformed
matrix on the Right are outlined in blue. Here, n = 6 and p = 2. Reprinted with permission from
[2].

this separability to independently solve the two sub-problems in parallel using the dual ascent

algorithm as shown in the next section.

3. Stability: Training an SVM requires solving the quadratic programming problem defined in

Equation (4.3) which is numerically stable [97]. QRSVM incorporates a stable MEKA [5]

technique as a pre-processing stage followed by Householder [98] method for QR decom-

position. On applying QR decomposition, the low-rank Hessian matrix, ÂÂT becomes

block-separable where the two sub-diagonal blocks are now invertible. The first block

(RRT )k + (1/2C)Ik is full-rank and the second block (1/2C)In−k is trivially invertible.

The invertibility of the Hessian ensures stable computation of the minimization step, Equa-

tion (4.6), in the dual ascent stage. Overall, the QRSVM formulation is numerically stable.

4.4.2 Optimization

Here, we list the update steps of the dual ascent algorithm to optimize (train) the QRSVM opti-

mization problem with guaranteed convergence. We also propose an optimal step size formulation

for faster convergence of the algorithm in fewer iterations. Finally, we analyze the time complexity

of our proposed QRSVM framework.
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4.4.2.1 Dual Ascent Algorithm

Dual ascent is a gradient method which involves iterating through the update steps until conver-

gence [79]. The Lagrangian L of the Quadratic Programming problem in Equation (4.4) is written

as follows

L(α̂,β) =
1

2
α̂T
(
RRT +

1

2C
In

)
α̂ + (ê)T α̂ + βT (−Qα̂), (4.5)

where, β ≥ 0n is the vector corresponding to Lagrangian dual variable.

Dual ascent update steps for QRSVM are as follows.

Step 1: Minimization of Lagrangian

α̂t+1 = arg min
α̂
L(α̂ ,βt)

= −
(
RRT +

1

2C
In

)−1
(−QTβt + ê) .

(4.6)

Step 2: Dual variable update

βt+1 = βt + η(−Qα̂t+1) . (4.7)

Here η > 0 is the scalar step size and the superscript t = 0, 1, 2... is the iteration counter. β0 is

initialized to 0n. To satisfy the non-negativity constraint on each scalar βi and ensure convergence

of dual ascent, it is replaced with max(0, βi) during every iteration.

4.4.2.2 Optimal Step Size

Here, we provide a formulation for computing the optimal step size, η∗ that will ensure the least

number of iterations for the dual update. For this, we extend Theorem 2.1 which states a result

for the optimal synchronization period in a given parallel Quadratic Programming (QP) problem

solved using the proposed lazy synchronous dual ascent (LSDA) technique in Chapter 2.

In the parallel QP problem, every worker node in a cluster of processors computes its local

minimization step, analogous to Equation (4.6) above. For the dual variable update step, these

local wi’s are aggregated by lazily synchronizing the cluster nodes, once in every optimal syn-
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chronization period, P ∗. We observe that the above technique can also be interpreted as tightly

synchronizing among the various nodes with an optimal step size, where, P ∗ can be considered as

the optimal scaling factor.

We provide the following lemma (extending Theorem 2.1 in Chapter 2) for the dual ascent

method to ensure a minimum number of iterations for the solution of QRSVM to converge.

Lemma 4.1. (Scaling factor for optimal step size) To ensure the minimum number of iterations

involving the dual variable update step, the scaling factor P ? for optimal step size is obtained by

P ? = max arg min
P∈N

max{|1− λmin(M)P |, |1− λmax(M)P |} (4.8)

where, M := η
(
RRT + 1

2C
In

)−1
, η > 0 is step size and λmin(·) and λmax(·) denote the

smallest and the largest eigenvalues of the square matrix M, respectively.

On solving equation (4.8), we get the following result.

Corollary 4.1. For any η > 0 , the optimal step size η? can be computed using

η? = P ?η, P ? ∈ N (4.9)

where,

P ? =


1 if 0 < λ̄−1 < 2⌊
λ̄−1
⌋

if λ̄−1 ≥ 2

, and λ̄ = (λmax(M) + λmin(M))/2

Proof. On plotting the functions f1(P ) = |1−λmin(M)P | and f2(P ) = |1−λmax(M)P |, we can

observe that the intersection of the above two functions occurs at point L(λ̄−1 , λmaxλ̄−1 − 1) as

illustrated in Figure 4.2.
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Figure 4.2: Optimal scaling factor, P ?. Reprinted with permission from [2].

max{f1(P ), f2(P )} =


1− λmin(M)P if 0 < P ≤ Lx

λmax(M)P − 1 if P > Lx

where, Lx = λ̄−1

Minimum value of max{f1(P ), f2(P )} occurs at point of intersection L. In other words,

arg min
P∈N

max{f1(P ), f2(P )} = Lx.

Since, P ? ∈ N as per Lemma 4.1, we must ensure that for 0 < Lx < 2, optimal scaling factor

P ? = 1. When Lx ≥ 2, P ? is assigned the highest integral value lesser than Lx, i.e., P ? =
⌊
λ̄−1
⌋
.

This value which is lesser than Lx ensures that the scaling factor is optimum, P ?, and will result in

optimal step size, η?, leading to stability and convergence of dual ascent method.

It is worth noting that given the special structure of M in our case comprising of the in-
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verse of a block separable sparse matrix (positive semi-definite), we get λmin(M) = 2ηC/(1 +

2Cλmax(RRT )) and λmax(M) = 2ηC. For practical values of C in the proposed formulation,

λmax(M) � λmin(M). Hence, λ̄−1 ≈ 1/(ηC) can be used as a good approximation for faster

convergence of the dual ascent method.

4.4.2.3 Complexity Analysis

In this subsection we present the computational complexity associated with the QRSVM frame-

work. The framework is illustrated in Figure 4.3 comprising of two major stages: QR decomposi-

tion and dual ascent.

For implementing the QR decomposition of Â, Householder transformation [98] is chosen

since it has better numerical stability than the Gram-Schmidt process [99] and requires fewer arith-

metic operations compared to Givens rotations. As discussed in [98], orthogonal matrix Q is never

explicitly computed. Rather, it is stored as a set of k- Householder reflectors. The computational

complexity for QR factorization is O(nk2).

In the dual ascent stage, the computational complexity of a single iteration of QRSVM is the

combined cost of the two update steps defined in Equations (4.6) and (4.7). Premultiplying Q (or

QT ) to any vector v by using Householder reflectors requires O(nk) operations, where n is the

size of vector v and k is the number of Householder reflectors [100]. Thus, the cost of computing

(−QTβt + ê) in Equation (4.6) and (−Qα̂t+1) in Equation (4.7) is O(nk). The multiplication of

the block diagonal structure of (RRT + 1
2C

In)−1 with the precomputed (−QTβt + ê) in Equation

(4.6) can be split into following two subproblems.

Subproblem 1: The first k components of α̂t+1 are computed by solving a system with the

k× k coefficient matrix (RRT
k + 1

2C
Ik). By computing and storing Cholesky factors of this matrix

before starting the iterations, the system can be solved in O(k2) operations. Cholesky factorization

of the coefficient matrix is a one time calculation that is carried out in the beginning of the dual

ascent algorithm at the cost of O(k3).

Subproblem 2: Calculation of the remaining (n−k) components of α̂t+1 requiresO(n−k) ≈

O(n) operations as it is reduced to scalar multiplication with 2C.

69



Figure 4.3: QRSVM framework comprises of two main stages, namely, (1) QR decomposition
of the approximated input matrix Â that yields Householder reflectors and a matrix R, and (2)
Dual ascent method to solve the QRSVM problem for obtaining w, which is the normal to the
hyperplane (for linear SVM), and identifying set of support vectors. Reprinted with permission
from [2].

Solving these subproblems in Equation (4.6) incurs O(k3 + k2 + n) cost. Since, the pre-

computation of (−QTβt + ê) mentioned earlier requires O(nk) cost, the overall computational

cost per iteration incurred in Equation (4.6) is O(nk+ k3 + k2 + n) ≈ O(nk), since k � n. Also,

the computational cost of Equation (4.7) is trivially O(nk) for a single iteration as mentioned

earlier. Combining the cost for Equations (4.6) and (4.7), the effective computational complexity

for dual ascent is O(nk) per iteration.

The overall QRSVM with both the stages requires O(nk2 + nktc) operations, where tc is

the number of iterations required for convergence of the dual ascent. The trend is empirically

illustrated in our experiments which depicts training time is linearly dependent on the number of

samples, n.

To identify support vectors for prediction, the values of α are recovered from α̂ by simply

pre-multiplying α̂ with Q via k−Householder reflectors in O(nk) operations. For kernel SVMs

where k−rank kernel approximation techniques such as the one in [101] are used, QRSVM finds

the prediction for a test sample in O(k2) cost using the simplification RT
k α̂k.
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4.4.3 Distributed QRSVM

With the increase in the quantity of data and challenges associated with it in terms of compu-

tation and storage, it has become evident to look for distributed algorithms that can solve parallel

SVM problems efficiently. In this section, we present the formulation of parallel non-linear SVMs

and a distributed version of our proposed QRSVM framework to solve the classification problems.

4.4.3.1 Distributed QR decomposition

We present a distributed version of the QRSVM framework.

In the QRSVM framework, Â is decomposed into factors Q and R. To deal with large data

sizes, one partitions the data matrix Â = [ÂT
1 , . . . , Â

T
p ]T across p computing cores such that each

core receives n
p

rows of Â (assume n is a multiple of p). The number of cores p should be less than

n
k

to ensure each block has more rows than columns. It is preferable to have p � n
k

to maintain

a tall and skinny structure on each core. We now discuss how Q and R can be generated from

the partitioned matrices Âi, i = 1, . . . , p and stored in a distributed manner similar to parallel

Tall-Skinny QR (TSQR) algorithm [67].

We now discuss how to distribute the decomposition of Â = QR across cluster of computing

cores such that the resulting matrices Q and R; representatives of the overall data, can be generated

from the partitioned matrices Âi.

Theorem 4.1. For QR decomposition of a matrix Â = QR, where Q is an orthogonal matrix

and R is an upper triangular matrix, we can generate Q and R from p horizontal partitions of

Â = {Âi}, i = 1 . . . p as follows

Q = diag(Q1,Q2, ..Qi..,Qp)×Qg

R = Rg

where, Âi = QiRi and vstack(R1, . . . ,Rp) = QgRg. Here, Qi and Qg are orthogonal matri-

ces and Ri and Rg are upper triangular matrices.
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Proof. For ∀i ∈ 1 . . . p computing cores, Âi = QiRi. We can write the overall Â as

Â =


Â1

...

Âp

 =


Q1

. . .

Qp



R1

...

Rp


Since each Qi is an orthogonal matrix, diag(Q1 . . .Qp) is an orthogonal matrix. Since each

Ri ∈ R
n
p
×k is an upper triangular matrix, Rgather =


R1

...

Rp

 is not an upper triangular matrix.

In the master core, we can further decompose

Rgather = QgRg

such that Qg ∈ Rn×n is an orthogonal matrix and Rg ∈ Rn×k is an upper triangular matrix.

Now,

Â = diag(Q1, . . . ,Qp)×QgRg

We know that Â ∈ Rn×k is k−rank. In other words, Â has linearly independent columns which

imply its QR decomposition is unique. Hence, R = Rg and Q = diag(Q1, . . . ,Qp)×Qg

The implementation of the distributed QR decomposition technique is further illustrated in

Figure 4.4.

Corollary 4.2. For any vector v ∈ Rn, v̂ = QTv; stored as partitions in the cluster cores and

orthogonal matrices Q and Qi, computing Qv̂ and QTv in the distributed QRSVM framework can

be formulated as

Qv̂ = diag(Q1, . . . ,Qp)× {Qgv̂}

and

QTv = Qg
T × {diag(Q1

T , . . . ,Qp
T )v}
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Figure 4.4: Distributed QR decomposition: The orthogonal matrices, Q, are stored as sets of their
Householder reflectors, denoted as {q}. Rather than sending the entire (n/p)× k sized matrix Ri,
we only communicate its informational content, denoted as (Ri)k×k i.e. the upper triangular k× k
block. Thereby, we reduce the size of the matrices being communicated across the distributed
network by avoiding redundant zero-blocks. At the master core, instead of creating the complete
matrix with redundant zero-blocks, we gather the (Ri)k×k from all the worker nodes to generate
a stacked-up representation called Rgather. On QR decomposition, it factorizes into {qf} and Rf .
We retrieve the original informational content in Rg as (Rf )k×k and on zero-padding the {qf}i
blocks, we generate the reflectors {qg} for Qg. Reprinted with permission from [2].

Each of the above computation inherently requires communication (gather and scatter) across the

distributed network.

For Qv̂ computation, we first gather all local v̂i from the worker cores and calculate {Qgv̂} at

the master core. Then, we scatter its partition {Qgv̂}i across all the computing cores in a cluster.

Each of which has its local Qi from QR decomposition of its partitioned data Âi. The scattered

{Qgv̂}i is then pre-multiplied with local Qi to compute vi.

For QTv computation, we first calculate local {Qi
Tvi} in each worker node i. Then, we gather

each of the local values at the master node and pre-multiply it with Qg
T to generate v̂. Finally,

we scatter it to all the cluster nodes as v̂i. Again, it is worth noting that these Qi’s and Qg are

never explicitly calculated, rather, stored as respective sets of k− Householder reflectors in the

73



computing nodes.

4.4.3.2 Parallel Dual Ascent

With the distributed QR decomposition technique, it is possible to update the dual ascent steps,

Equations (4.6) and (4.7), in parallel across the parallel cores (or workers or cluster nodes).

From Equation (4.6), let us define the invertible coefficient matrix (substituting, R = Rg)

F = −
(
RgRg

T +
1

2C
× In

)

which has a sparse and separable structure, well illustrated in Figure 4.1. As a result of its separa-

bility, we can block-partition F = F1 ⊕ F2 ⊕ . . .⊕ Fp such that each diagonal block Fi ∈ R
n
p
×n

p

is allocated to each computing core i. Here, ⊕ represents an operator that diagonally combines the

sub-blocks to generate the entire block-diagonal matrix.

Since Rg is stored at the master node and rank k � n
p

as to maintain the tall and skinny

structure of Âi, the dense and symmetric k × k block i.e.
(

(RgRg
T )k + (1/2C)Ik

)
in coefficient

matrix F becomes a part of the partition F1 at the master core. It is also worth appreciating that

with the distributed QRSVM formulation, there is no need to actually partition and store the other

diagonal blocks Fi in the worker cores i = 2, . . . , p, as these are simply constant diagonal matrices

(−0.5/C)In/p.

On parallelizing Step 1 of the dual ascent for iteration (t+ 1),

at compute core, i

α̂i
t+1 = F−1i (−β̂i

t
+ êi) (4.10)

where,

Fi
−1 =


F1
−1 if i = 1

diag(−2C) if i = 2, . . . , p

and, β̂
t

= QTβt
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Similarly, on parallelizing Step 2 of the dual ascent for iteration (t+ 1),

at compute node, i

β̂i
t+1

= β̂i
t
+ η?(−α̂i

t+1) (4.11)

Here, we are using the optimal step size η? defined in Equation (4.9). We also note that by changing

the dual variable from β to β̂ in the above update steps, we ensure that α̂i
t+1 and β̂i

t+1
calculation

during each iteration (t + 1) occurs locally without requiring any communication or synchroniza-

tion across the computing cluster cores. However, after every iteration, the original dual variable β

has to be checked for non-negativity as discussed earlier in Section 4.4.2.1. This requires commu-

nication (gather and scatter) across the computing cores as we transform from β̂ to β using Qβ̂

and then transform back to β̂ (to be used in Step 1 in the next iteration) using QTβ after checking

(and zeroing) the negative β values.

4.5 Experiment and Results

We evaluate the proposed sequential QRSVM framework in comparison to other state-of-the-

art sequential solver LIBLINEAR for HIGGS dataset for relative convergence. We also validate

the linear scalability of QRSVM with a number of training samples. For the distributed version

of the QRSVM framework, we train non-linear classifiers for benchmarks a9a and covtype and

report their computation and communication timings. Finally, we compare the proposed distributed

QRSVM with PSVM and P-packSVM.

4.5.1 Hardware Description

The experiments were performed in Ada super-computing cluster of Texas A&M HPRC with

InfiniBand interconnect. Each of the 792 general compute nodes in this super-computing cluster is

a 10-core Intel Xeon E5-2670 v2 (Ivy Bridge) processor with 64 GB memory. We use Message-

Passing Interface (MPI) [102] as inter-node communication platform.
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4.5.2 Experimental Setup

The distributed QRSVM framework is implemented in C/C++. The linear algebra computa-

tions in the framework were handled using Armadillo library [34] integrated with LAPACK/BLAS.

We use binary classification datasets freely available on LIBSVM datasets repository 2

• a9a: The machine learning task here is to predict whether income exceeds $50K/yr based on

census data. Data sparsity is 11.3%. ntrain = 32560 , d = 123

• covtype.binary: One needs to predict the forest cover type (class 2 vs other 5 classes) using

cartographic variables only. We use the [0,1] scaled version of the dataset having sparsity of

22%. ntrain = 464810 , d = 54

4.5.3 Results and Discussions

4.5.3.1 Convergence

We show the convergence of the basic QRSVM framework on single-machine and compare

it with state-of-the-art linear solver library, LIBLINEAR (dual coordinate descent). We choose

HIGGS2 dataset (n = 10.5M and d = 28) in linear SVM formulation here to simply demonstrate

the superior convergence of our approach compared to the linear SVM solver. As shown in Figure

4.5a, it was observed that for most of the problems, QRSVM reaches a reasonable value of the ob-

jective function within 20 iterations of dual ascent method. Figure 4.5b compares the convergence

rates of QRSVM with LIBLINEAR. It must be pointed out that the LIBLINEAR algorithm im-

plementation in [85] is set to terminate at a preset maximum iteration count (default 1000). In our

experimentation, we chose this preset value to 1500. The result at the end of this maximum itera-

tion was used to compare with QRSVM. QRSVM was able to converge to the optimal cost of the

objective function for HIGGS dataset within 80 iterations while LIBLINEAR couldn’t converge

even after 1500 iterations. For non-linear SVM, Figure 4.6 shows the convergence of distributed

QRSVM as function of training error (log) over number of iterations for datasets a9a and covtype.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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(a) QRSVM

(b) QRSVM vs LIBLINEAR (DCD)

Figure 4.5: Convergence of QRSVM for HIGGS dataset: (a) Using QRSVM we converge to a
reasonable value of the optimal cost within 20 iterations. (b) QRSVM converges relatively faster
compared to LIBLINEAR. Here, we illustrate for 250 iterations. LIBLINEAR was not able to
converge to the optimal cost value in 1500 iterations while QRSVM converged to the optimum in
80 iterations. Reprinted with permission from [2].

4.5.3.2 Kernel Approximation Quality

The kernel approximation results are shown in Figure 4.7. We randomly sampled 20, 000

rows of kernel matrix to evaluate the relative approximation error for covtype. We use relative

kernel approximation error to measure the quality [5]. Figure 4.7 shows the kernel approximation
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Figure 4.6: Training error trend during model learning phase for the datasets. a9a training takes
166 iterations to converge and covtype takes 512 iterations. Stopping error threshold: 10−3 and
p = 16. Reprinted with permission from [2].

performance of different methods by varying k [5]. The rank k varies from 100 to 600 for covtype.

Figure 4.7 shows that MEKA scheme always achieves lower error with less time and memory. This

is because MEKA aims to approximate the kernel matrix by a rank-ck approximation (where, c is

number of clusters) using similar amount of time and memory while all other methods are only

able to form a rank-k approximation.

4.5.3.3 Scalability

We discuss scalability with both sample size (number of instances) n and rank k.

Scalability with n: The effect on training time of QRSVM was analyzed by increasing number

of instances, n in a synthetic dataset. Its kernel approximation, k = 18 was kept fixed. It is

observed that QRSVM training time increases linearly with the number of data points as shown

in Figure 4.8a. As a result, our proposed framework is capable of handling growing data sizes

efficiently making it suitable for big data applications.

Scalability with rank k: With increasing the rank of the approximated kernel, the training time

of QRSVM is observed to grow quadratically as shown in Figure 4.8b. This trend validates our

discussion in Section 4.4.2.3. However, as we are addressing the low-rank approximation of the

input problem space through the proposed QRSVM framework, the benefits from the fast overall
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Figure 4.7: Low-rank Gaussian kernel approximation results using MEKA and other methods.
Reprinted with permission from [5].

convergence rate of the algorithm outweighs the quadratic cost.

4.5.3.4 Distributed Training Time

Computation time, T comp: The proposed distributed QRSVM framework for parallel SVM

training has the following major computational requirements: Low-rank representation of the ker-

nel matrix using MEKA [5] which has time complexity proportional to the memory for storing the

approximated kernel matrix. We denote this time as T compmeka . The distributed QR decomposition

stage shown in Figure 4.4, partitioned data Âi is locally decomposed into Qi and Ri. We denote

its worst case computation time as T complocalQR for any given cluster core. At the master core in the

above stage, the gathered data R̂gather is further QfRf decomposed whose computation time we

denote as T compmasterQR. Finally, in the parallel dual-ascent (pda) stage, we solve the update steps in

Equations (4.10) and (4.11) locally in the parallel cores. The computation time for the update steps

is denoted as, T comppda . All the above computation timings for the chosen benchmarks are listed in

Table 4.1.

Communication time, T comm: The distributed QRSVM framework solves the kernel SVM
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(a) Scales linearly with number of instances

(b) Scales quadratically with rank-k approximation.

Figure 4.8: Scalability of QRSVM (a) with sample size n: A synthetic dataset having a fixed
approximated kernel rank-k = 18 and increasing n was used to test scalability with number of
instances. (b) with rank k: A synthetic dataset with fixed number of instances, n = 100, 000 and
increasing rank was used to test scalability with rank-k (dimensionality). Reprinted with permis-
sion from [2].

problem in the process of which it needs to communicate data across the distributed network.

It has two necessary communication requirements. The first need for communication across the

distributed cluster occurs when local (Ri)k×k are gathered at the master node during the distributed

QR decomposition stage. This is also depicted in Figure 4.4. Let us denote this communication

time as T commgatherR. The second requirement to communicate happens in the parallel dual-ascent (pda)
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Time details a9a (in ms) covtype (in s)
T compmeka 460 2.1
T complocalQR 24 1.89
T compmasterQR 4 0.02
T commgatherR 0.5 0.04
T comppda 1628.1 120.18
T commpda 17.1 0.36
Ttrain 1674.2 122.50

Table 4.1: Distributed-QRSVM: Timing details. Reprinted with permission from [2].

Parameters a9a covtype
rank, k 40 64
C 2−1 2−1

γ 2−3 23

approx. Kerror 0.51 0.58
#cores, p 16 16
stopping threshold 10−3 10−3

optimal step size, η∗ 1.9 1.9
#iterations, t 166 512

Table 4.2: Distributed-QRSVM: Parameter values. Reprinted with permission from [2].

stage. As discussed in Section 4.4.3.2, bulk of the communication happens after every iteration in

the form of gather and scatter. This is necessary to ensure convergence of the algorithm. Let us

denote this communication time as T commpda . The overall SVM training time, Ttrain = T comp+T comm

for both the datasets is also shown in Table 4.1.

4.5.3.5 Optimal Step Size

For different values of C and step size η, we derive the optimal step size using Equation 4.9

for training the models for the benchmark datasets, a9a and covtype. Figure 4.9 plots the training

time for the various step sizes and we chose the η∗ = 1.9 as optimal that provides the fastest time.

Table 4.2 lists the above parameters, C and η∗.
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(a) a9a (b) covtype

Figure 4.9: Optimal step size: For both datasets, optimal step size is observed to be 1.9. Reprinted
with permission from [2].

4.5.3.6 Comparison

We compare the distributed-QRSVM framework with state of the art kernel SVM solver,

PSVM [12]. PSVM uses incomplete Cholesky decomposition to approximate the kernel matrix

whereas we use the memory-efficient MEKA [5]. Both PSVM and the proposed framework opti-

mize the dual objective/cost function making our comparison fair. As for PSVM parameters, we

used the default setting. The dual residual threshold for convergence was set to 0.001 which we

also keep as the stopping threshold for QRSVM. The upper limit of 10, 000 iterations was main-

tained for PSVM and the suggested m′ = m0.5 was used. As mentioned in [12], the value of m

approximation was chosen to ensure a balance between accuracy and efficiency. We observe that

the distributed version of the proposed QRSVM framework trains the SVM model for the cov-

type.binary dataset in around 2 minutes using p = 16 processors, whereas, PSVM under the same

setup converges in around 20 minutes. Another distributed kernel solver, P-packSVM [88] solves

the same dataset 1.24x faster (for P-pack, r = 100 model) than PSVM using 16 processors as

reported in Table II in [88]. Due to unavailability of open source code for P-packSVM, we were

unable to accurately report its training time for the above dataset on our experimental infrastruc-

ture. However, we can estimate that P-packSVM would have clocked around 16 minutes (1.24x
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better than PSVM) for 16 processors. In contrast, our framework converged in 2 minutes.

4.6 Summary

In this chapter, we proposed a QR decomposition framework for solving kernel support vec-

tor classification problems. The framework uses Householder sketch to convert a dense and low

rank matrix to a highly sparse and separable matrix, with invertible block-partitions. In addition,

we provide optimal step size for solving dual ascent method for faster convergence. We empiri-

cally demonstrate that the proposed QRSVM framework scales linearly with dataset size making

it suitable to handle large data problems. We further present a distributed QRSVM framework to

accelerate the training of kernel SVM model by parallelizing the dual-ascent algorithm. In next

chapter, we will seek to further optimize the parallel dual ascent stage involving model-update

iteration and communication to further accelerate the SVM training and to make it amenable for

scaling on large number of parallel workers.
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5. COMMUNICATION-EFFICIENT FRAMEWORK FOR SCALABLE MACHINE

LEARNING 1

To support distributed training on large number of parallel workers in a decentralized ma-

chine learning framework, it is paramount to design scalable algorithms which do not suffer from

large communication overheads during iterative model training. In this chapter, we present a

communication-efficient framework for scalable machine learning.

5.1 Introduction

5.1.1 Motivation

To exploit the potential of faster convergence of dual solvers we proposed a distributed QRSVM

framework in Chapter 4 that projects the problem onto a reduced subspace via QR factorization to

minimize computation and storage needs. At present, however, it has significant communication

overheads which limits its ability to achieve higher speedups in the training phase. In this chapter,

we propose a fast and communication-efficient algorithm for distributed QRSVM training that is

scalable to large data sets and number of parallel workers.

5.1.2 Contributions

We list the main contributions of this chapter as follows.

1. We leverage memory-efficient QRSVM framework introduced in Chapter 4 to design a

communication-efficient implementation to train kernel SVM faster. The improved design

significantly reduces the communication overhead by making it insignificant compared to

the computation time. As a result, the resulting framework is feasible for efficient paral-

lelism across multiple computing cores and trains SVM faster than the prior framework in

Chapter 4. For instance, with the proposed approach and a computed optimal step size of

1A part of this chapter is reprinted with permission from “Fast and Communication-Efficient Algorithm for Dis-
tributed Support Vector Machine Training” by Jyotikrishna Dass, Vivek Sarin, and Rabi N. Mahapatra, 2019 IEEE
Transactions on Parallel and Distributed Systems (TPDS), Copyright © 2019, IEEE.
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0.9, we are able to train the SVM for covtype dataset on 16 cores in 18 seconds compared to

261 seconds in a prior implementation, which represents an improvement of 14x.

2. We evaluate the performance of our algorithm on three real world benchmarks, covtype (ge-

ography), webspam (electronic) and SUSY (physics). The algorithm attains speed improve-

ment of 45x, 29x and 136x, respectively, on these benchmarks on a 64 core multiprocessor

with respect to sequential implementation.

3. We demonstrate through experiments that the proposed training algorithm outperforms state-

of-the-art algorithms such as PSVM and P-packSVM. For instance, the distributed QRSVM

algorithm was 71x faster than PSVM and 57x faster than P-packSVM on the covtype bench-

mark using 16 cores. In addition, our algorithm scales linearly with the sample size and

hence can handle extremely large datasets such as SUSY (5M samples) with ease.

5.2 Related Work

It has become necessary to design parallel and distributed algorithms to train kernel SVMs for

large-scale problems. A number of attempts have been made to parallelize kernel SVM training.

Cascade-SVM [103] is one of the earliest works that presents a parallel SVM training algorithm

in which the global SVM problem is divided into local sub-problems. The cascade framework is

designed in a hierarchical reduction-tree-like structure in which each layer uses independent SVM

solvers. The drawback of the framework is that for large datasets it either leads to more resource

requirements (SVM solvers) or longer training time. In addition, one has to always ensure that the

SVM solver at the last stage is capable of handling the output of the previous layers (called support

vectors) which have trickled down through the cascade. Communication Avoiding SVM (CA-

SVM) [104] is based on k-means clustering technique to partition datasets. The partitioned data

are stored locally on the cluster nodes and solved independently. Since it uses the local solution

from one of the nodes to predict a test sample, the methodology does not compute the global

SVM solution. PSVM [12] and P-packSVM [88] are among the most popular parallel algorithms

to solve global kernel SVM. PSVM exhibits limited scalability due to its quadratic dependence
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on the training sample size. Moreover, PSVM works with kernel matrix approximation using

Incomplete Cholesky Factorization (ICF), which is difficult to parallelize, making it unfit for large

datasets. In contrast, P-packSVM computes the primal form of SVM using a stochastic gradient

descent method wherein the gradient is approximated at a single sample [88]. Since the primal

SVM problem can be prohibitively large while its Wolfe dual problem is considerably smaller, the

convergence rate of the primal solver is slower than the dual solver [92]. Hence, it is important to

find alternative distributed approaches that are highly scalable and exhibit faster convergence for

the dual form of kernel SVMs.

5.3 Communication-Efficient Framework

The distributed implementation of QRSVM presented in Chapter 4 performs well for small

and medium-sized problems than the competing algorithms, but like others it is infeasible for large

datasets. The major limitations of prior framework affecting its scalability to large datasets and

parallel workers are as follows

• Large memory needed to construct and store global factors at the master core, namely,

Householder reflectors for Qg and the upper trapezoidal matrix Rg.

• Significant communication overhead incurred during Qβ̂ and QTβ operations in each itera-

tion of the parallel dual ascent.

In this section, we describe the efficient implementation for distributed QRSVM along with the

improvements done over the one in Chapter 4 to address the above limitations. These improve-

ments are significant in both memory savings and communication efficiency thereby ensuring

faster speedup and highly scalable framework for training SVM on large datasets.

5.3.1 Implementing Distributed QR Decomposition

We propose a novel implementation of the distributed QR decomposition technique (Stage 1)

wherein memory-efficient representations of the global factors at the master core are generated.

Figure 4.4 illustrates the above implementation and Algorithm 5.1 presents the pseudo-code.
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Firstly, local QR decompositions are done in parallel across all the cores (Step 4 in Algorithm

5.1) using Householder transformation to generate two local factors. The first local factor is an

orthogonal matrix Qi in each of the computing cores. It is stored as a set of k−Householder

reflectors [98], which we denote as {qi} of size (n/p) × k. Here, each column is a reflector in

the set. The second local factor of the decomposition is the upper trapezoidal matrix Ri of size

(n/p) × k. It comprises of k × k upper triangular block followed by zero-blocks. We denote the

upper triangular block as (Ri)k×k. Next, as per the formulation described in Section 4.4.3.1, the

local factor, Ri, from all the cores needs to be gathered at the master core. However, to ensure

communication-efficient implementation, each of the worker cores communicates only its local

upper triangular block (Ri)k×k to the master core (see Step 5 in Algorithm 5.1) rather than sending

the complete matrix Ri comprising of redundant zero-blocks. Through this strategy, we reduce the

communication volume across the distributed network from O(n
p
) to O(k) per core. Then, at the

master core, all these local upper triangular blocks (Ri)k×k which have been gathered from all the

computing cores p are stacked to generate Âg of size pk × k (see Step 7 in Algorithm 5.1). This

is significantly smaller memory footprint than storing the original Ag of size n × k which would

have required gathering the complete Ri with redundant zero-blocks. Finally in the master core,

QR decomposition of Âg using Householder transformation generates memory-efficient global

factors; a set of Householder reflectors {qf} and an upper trapezoidal matrix Rf , as illustrated in

Figure 4.4 and in Step 8 of Algorithm 5.1.

Memory improvement over Chapter 4: In the prior implementation of the distributed QRSVM

as described in Chapter 4, large memory was required to construct and store these global factors

(set of Householder reflectors and upper trapezoidal matrix) at the master core. Firstly, the set of

k−Householder reflectors for the orthogonal matrix Qg, denoted as {qg} of size n × k, was con-

structed by appending (n
p
− k) rows of zeros to each {qf}i block. In addition, the second global

factor, namely, the upper trapezoidal matrix, Rg, was generated by appending (n−k) rows of zeros

to (Rf )k×k. Figure 4.4 illustrates these constructions at the master core. For large sample size n,

the memory consumption for {qg} and Rg increases linearly with n, posing a serious challenge
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Figure 5.1: At master core: Memory improvement and representation of QR factors.

to its performance. Such large memory requirement at the master core limits the capabilities of

the framework in Chapter 4 to small and medium-sized datasets only. However, in the proposed

implementation we avoid constructing these global factors, {qg} and Rg. Rather, we retain their

memory-efficient representations, denoted as {qf} and (Rf )k×k, respectively. Figure 5.1 depicts

the construction of these memory-efficient representations at the master core while Algorithm 5.1

lists those as Steps 8-9. By retaining the global reflector set as {qf} of size pk×k rather than con-

structing {qg} of size n× k at the master core, we now achieve significant memory savings worth

( n
pk

) times compared to Chapter 4 framework, where, p� n
k

. Henceforth, the distributed QRSVM

framework is designed only using these memory-efficient representations, {qf} and (Rf )k×k. We

illustrate the improved QRSVM framework in Figure 5.2

5.3.2 Implementing Parallel Dual Ascent

As mentioned in Section 4.4.3.2, the update Equations (4.10) and (4.11) are trivially paral-

lelized across the cores (see Step 4 and Step 5 in pseudo-code in Algorithm 5.2). However, trans-

formations from β̂ to β and back needs to be done in every iteration to ensure the non-negativity
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Figure 5.2: A two-level implementation of distributed QR decomposition of Â. The orthogonal
matrices are stored as sets of their Householder reflectors, denoted as {q}. (Ri)k×k are gathered
from all the cores and Âg is assembled at the master core. Âg = {qf}Rf is computed which can
be converted to original global factors, {qg} and Rg by appending appropriate rows of zeros as
depicted in Chapter 4. However, the proposed implementation here uses memory-efficient repre-
sentations of the global factors for Âg, i.e., {qf} and (Rf )k×k. Reprinted with permission from
[6].

Algorithm 5.1 Distributed QR decomposition

Data: Matrix Â, number of parallel cores p
1 k ← rank
2 for each core i, . . . , p do
3 Âi ← local partitioned data

4 Parallel Compute {qi},Ri ← Âi

5 GATHER (Ri)k×k at Master core
6 end
7 Âg ← gathered or stacked (Ri)k×k
8 Compute {qf},Rf ← Âg at Master core
9 Use (Rf )k×k
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of β for guaranteed convergence of the algorithm. Such transformations require communication

across the computing cores. So, we focus on the calculation of the following two distributed

matrix-vector products that involve inter-core communication processes gather and scatter.

β = Qβ̂ = diag(Q1, . . . ,Qp)× (Qf β̂)

and

β̂ = QTβ = Qf
T × (diag(Q1

T , . . . ,Qp
T )β)

In each iteration of the Stage 2 (Steps 3-11 in Algorithm 5.2), these two multiplication modules are

invoked to transform β̂i to βi and vice-versa, respectively (see Step 6 and Step 8 in Algorithm 5.2).

This can lead to large communication overhead. Algorithms 5.3 and 5.4 describe how to transform

β̂ to β and β to β̂, respectively, in an efficient manner. It is worth restating that Qi’s and Qf are

never calculated explicitly, rather, are stored as sets of k−Householder reflectors; as {qi}’s in the

worker cores and as {qf} in the master core. The implicit matrix-vector multiplication involving

these reflectors is described in [100].

To compute β = Qβ̂ in Algorithm 5.3, we first gather local β̂i from the worker cores and

calculate (Qf β̂) vector at the master core. Next, the partitioned vector (Qf β̂)i is scattered to the

cores. Core i uses its local Qi in the form of reflector set {qi} that was pre-computed during the

QR decomposition of the partitioned data Q̂i to multiply Qi to (Qf β̂)i in order to obtain βi. These

multiplications with Qi proceed concurrently at each core.

To compute β̂ = QTβ in Algorithm 5.4, however, we first calculate local (Qi
Tβi) in each

core i. This computation can be trivially parallelized. Then, these local vectors are gathered at the

master core. The gathered vector (diag(Q1
T , . . . ,Qp

T )β) is multiplied with Qf
T to generate β̂ at

the master core. Finally, we scatter it to all the cores such that each core gets its β̂i.

Communication improvement over Chapter 4: In the prior implementation in Chapter 4,

significant communication overhead was incurred during Qβ̂ and QTβ operations in each itera-

tion of the parallel dual ascent. Specifically, it required communicating large volume of data of
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Algorithm 5.2 Parallel Dual Ascent

Data: Matrix Fi, vector êi, vector β̂i
0

= 0, number of parallel cores p
1 iteration t← 0
2 for each core i, . . . , p do
3 while error > threshold do
4 Parallel Compute Equation 4.10: α̂i

t+1 = F−1i (−β̂i
t
+ êi)

5 Parallel Compute Equation 4.11: β̂i
t+1

= β̂i
t
+ η?(−α̂i

t+1)

6 Compute βi ← Qβ̂ // Algorithm 5.3
7 Parallel Compute (element-wise): βi ← max{0, βi}
8 Compute β̂i ← QTβ // Algorithm 5.4
9 error ← |β̂i

t+1 − β̂i
t|

10 t← t+ 1

11 end
12 end

Algorithm 5.3 Compute βi ← Qβ̂, in each core i

Data: Matrices Qi, Qf , vector β̂i
1 GATHER β̂i at Master core

2 β̂ ← gathered β̂i
3 Compute (Qf β̂) at Master core

4 SCATTER (Qf β̂) to all cores

5 (Qf β̂)i ← scattered (Qf β̂)

6 Parallel Compute βi ← Qi × (Qf β̂)i

Algorithm 5.4 Compute β̂i ← QTβ, in each core i
Data: Matrices Qi, Qf , vector βi

1 Parallel Compute (Qi
Tβi)

2 GATHER (Qi
Tβi) at Master core

3 (diag(Q1
T , . . . ,Qp

T )β)← gathered (Qi
Tβi)

4 Compute β̂ ← Qf
T × (diag(Q1

T , . . . ,Qp
T )β) at Master

5 SCATTER β̂ to all cores

6 β̂i ← scattered β̂
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size (n
p
) per core via gather and scatter processes in the distributed network. Increasing the number

of cores resulted in more interactions across the network. As a result, the training time became

prohibitive for large datasets thereby limiting the benefits of the distributed QRSVM framework.

In the proposed implementation which is based on memory-efficient representation {qf}, it is suf-

ficient to communicate (via gather and scatter) only the first k−elements of the partitioned vector,

βi or β̂i in each of the above computation operations (Algorithms 5.3 and 5.4). This is a key step

to achieve near-negligible communication overhead. As a result, in each iteration of the parallel

dual ascent, the communication volume is reduced by a factor of ( n
pk

) per core compared to the one

in Chapter 4, without incurring any computation error. Moreover, the proposed implementation is

rendered computation-bound only which can be handled efficiently by employing more number of

parallel computing cores. Due to above communication improvements, we achieve large speedup

in the SVM training and can handle significantly larger workloads, thereby making the framework

scalable than the one in Chapter 4.

An alternative implementation for Qβ̂ and QTβ in the parallel dual ascent method (Stage 2)

can be used to avoid the frequent gathering and scattering of the k−sized vectors βi and β̂i from

each of the cores. One can scatter the reflector set {qf} ∈ Rpk×k present in the master core

across all the worker cores as {qf}i on completion of distributed QR decomposition (Stage 1).

Each core can now locally compute (Qfiβ̂i) and (Qfi
Tβi) via implicit multiplication described in

[100]. With distributed {qf}i in each core, it is possible to parallelize the implicit matrix-vector

(Qv) multiplication while simply using All_Reduce on the locally computed {qf}Ti βi (scalar)

values with SUM operation. In every iteration of the update steps, All_Reduce will be invoked

k−times within every core for computing (Qfiβ̂i) and (Qfi
Tβi). This alternative is expected to be

beneficial for sufficiently large k. We leave the experimental evaluation with this alternate design

for future analysis and beyond the scope of the current work.

5.4 Experiment and Results

Here we present experimental results to demonstrate the performance of the communication-

efficient QRSVM framework for scalable SVM training.
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Dataset #training samples (n) #features (d) k-rank approx.
covtype.binary 464,810 54 64
webspam(unigram) 350,000 254 128
SUSY 5,000,000 18 128

Table 5.1: Benchmark dataset description. Reprinted with permission from [6].

5.4.1 Hardware Description

We run our parallel implementation on the Ada supercomputing cluster at the Texas A&M

High Performance Research Computing2 facility. The cluster consists of 792 compute nodes each

equipped with two 10-core Intel Xeon E5-2670 v2 (Ivy Bridge) processors and 64 GB memory.

The interconnect used is Infiniband. We use Message-Passing Interface (MPI) [102] for inter-

process communication.

5.4.2 Experimental Setup

For our experiments, we use datasets which are available in LIBSVM datasets repository 3 for

binary classification. Specifically, we focus on large datasets with number of training samples in

hundreds of thousand and above to justify the need for a distributed and scalable SVM framework.

The RBF kernel function is used for SVM training to represent the Kernel matrix. The dataset

description is provided in Table 5.1. We also report the k-rank approximation selected for the kernel

matrix computed by MEKA. The distributed QRSVM framework has been implemented in C/C++

using the Armadillo library [34] integrated with LAPACK/BLAS for linear algebra calculations.

5.4.3 Results and Discussions

Here, we present our discussion on the various performance measures, namely, convergence,

scalability, training time (with computation and communication analysis), of the improved and

efficient implementation of the distributed QRSVM framework.

2http://hprc.tamu.edu/
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Parameters covtype webspam SUSY
C 1 1 1
γ 23 20 2−3

#cores, p 16 32 64
stopping threshold 10−3 10−3 10−3

optimal step size, η∗ 0.9 0.9 0.9
#iterations, tc 1075 569 2096

Table 5.2: Parameter details for various datasets. Reprinted with permission from [6].

5.4.3.1 Convergence

The convergence of the distributed QRSVM technique is guaranteed by the parallel dual ascent

method discussed in Section 4.4.3.2. In Chapter 4, we derived an optimal step size for faster con-

vergence, which has been adopted in our experiments here. Figure 5.3 illustrates the convergence

trend of the proposed algorithm for the three benchmarks. It exhibits a sharp decrease in the train-

ing error ‖β̂t+1 − β̂
t‖1 as the dual ascent algorithm converges to the optimal solution. A stopping

threshold of 10−3 has been used for convergence. Various parameters for the selected benchmarks

are shown in Table 5.2.

5.4.3.2 Scalability

Table 5.3 lists the training time and speedup achieved by distributed QRSVM on p cores, where,

p ∈ {2, 4, 8, 16, 32, 64}. Since a processing node on Ada consists of two 10-core processors, we

use one node for p ∈ {2, 4, 8, 16}, two nodes for p = 32, and four nodes for p = 64. When

using more than a single node, the number of cores used on each node was identical. The only

exception to this rule is the execution of SUSY, where the number of cores was restricted to 2 per

node in order to leverage caches effectively on each node for large dataset. It is found that SVM on

covtype, webspam and SUSY can be trained in as fast as 6 seconds , 9 seconds, and 210 seconds,

respectively, on 64 cores. This results in speedup of around 45x, 29x and 136x over sequential

QRSVM implementation on a single core. Speedup (Sp) is computed as the ratio of training time
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Figure 5.3: Convergence rate of distributed QRSVM algorithm: Training error on benchmark
datasets (covtype, webspam and SUSY) approaches the stopping threshold (10−3) in tc = 1075,
tc = 569, and tc = 2096 iterations, respectively, using the optimal step size η∗ = 0.9. Reprinted
with permission from [6].

(Ttrain) on p cores to that on a single core, i.e.,

Sp =
Ttrain|p
Ttrain|p=1

,

where, Ttrain|p is the QRSVM training time on p cores. Since Stage 1 (distributed QR decom-

position) and Stage 2 (parallel dual ascent) of the distributed technique have been parallelized

efficiently, we are able to achieve very high speedups with respect to the sequential execution. The

two smaller benchmarks show near-linear speedup on up to 16 cores. The speedup observed for

SUSY is highly dependent on cache utilization by the cores due to large problem size. SUSY

demonstrates near linear speedup for p = {16, 32, 64} when p = 8 is used as the base case since

the subproblem on each core fits within the local cache. However, when p < 8 cores are used, the

subproblem size on each core is too large to fit the local cache which results in relatively larger

training time. As a result, one observes super-linear speedup as we increase the number of cores

when p = 1 (sequential implementation) is used as the base case.
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Dataset sequential p=2 p=4 p=8
covtype 268 (1x) 132 (2x) 64 (4x) 33 (8x)
webspam 258 (1x) 120 (2x) 58 (4x) 32 (8x)
SUSY 28,614 (1x) 11,284 (2x) 4,405 (7x) 1,686 (17x)

Dataset sequential p=16 p=32 p=64
covtype 268 (1x) 18 (15x) 10 (27x) 6 (45x)
webspam 258 (1x) 19 (14x) 11 (23x) 9 (29x)
SUSY 28,614 (1x) 804 (36x) 380 (75x) 210 (136x)

Table 5.3: Scalability of distributed-QRSVM. Training time (in seconds) and Speedup, Sp wrt
sequential-QRSVM (Sp is shown in parenthesis). Reprinted with permission from [6].

5.4.3.3 Distributed Training Time

Here we demonstrate and discuss the results for various components of the distributed training

time with respect to computation and communication analysis.

Computation time, Tcomp : The distributed QRSVM framework for parallel training has three

major computational requirements:

1. Low-rank kernel approximation

2. Distributed QR decomposition (Stage 1)

3. Parallel Dual ascent (Stage 2)

For computing the low-rank kernel approximation we use MEKA [5] which is a sequential code.

The time to compute these approximations, denoted as TLRA, has values 2.1 seconds, 5.93 seconds

and 29.66 seconds for the benchmarks covtype, webspam and SUSY, respectively. Kernel approx-

imation is a one-time pre-processing step prior to the other two more computationally dominant

stages of the proposed framework. Therefore, we do not include TLRA in the overall training time,

and instead focus on the time spent on the other two stages. As a side note, it is also possible to use

alternative kernel approximation techniques like [94], [95], [96], etc., but we recommend MEKA

for its superior properties of memory-efficiency and low approximation error [5].
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In the distributed QR decomposition stage (Algorithm 5.1), partitioned data Âi is decomposed

locally in each core into Qi and Ri concurrently (Step 4 in Algorithm 5.1). We denote its worst-

case computation time as TlocalQR. Then, at the master core the gathered data Âg is further fac-

torized (see Step 8 in Algorithm 5.1), and its computation time is denoted as TmasterQR. Fig-

ure 5.4(a) depicts the timing distribution of the distributed QR decomposition, where TlocalQR =

{2.15, 2.82, 11.6} seconds and TmasterQR = {0.02, 0.24, 0.56} seconds for benchmarks covtype

(p = 16), webspam (p = 32) and SUSY (p = 64), respectively. It can be seen that most of the total

execution time for Stage 1 is spent on computing the local QR decomposition, TlocalQR.

Finally, for each iteration in the parallel dual ascent stage, we locally compute the update steps

given in Equation (4.10) and Equation (4.11) in parallel across the cores. They are denoted as

Step 4 and Step 5 of Algorithm 5.2, respectively. Later, we compute the transformation from

β̂ to β and back to β̂ in Step 6 and Step 8 of Algorithm 5.2 which are separately tagged as

Algorithm 5.3 and Algorithm 5.4, respectively. Note that, Step 3 and Step 6 in Algorithm 5.3 and

Step 1 and Step 4 in Algorithm 5.4 are the computation steps in the above transformations. We

combine the above mentioned computation times for all the iterations of the parallel dual ascent

until convergence and denote as Tupdate. Figure 5.4(b) presents the total execution time for the

Stage 2 which includes both the computation and the communication time. Here, the computation

time is Tupdate = {16.29, 7.49, 192.44} seconds for benchmarks covtype (p = 16), webspam

(p = 32) and SUSY (p = 64), respectively. It is observed that more than 99% of the execution

time of parallel dual ascent (Stage 2) is spent on computation. Hence, the proposed algorithm is

amenable for full parallelism by incorporating more cores.

Communication time, Tcomm : The distributed QRSVM framework has two necessary com-

munication requirements. The first communication occurs during Stage 1, i.e., distributed QR

decomposition, when local (Ri)k×k are gathered at the master core (Step 5 in Algorithm 5.1). This

is also depicted in Figure 4.4. Let us denote this communication time as TgatherR. As seen in Fig-

ure 5.4(a) the communication overhead, TgatherR = {0.01, 0.04} seconds hardly impacts the Stage

1 execution time for benchmarks covtype and webspam on p = 16 and p = 32 cores, respectively.
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(a) Stage 1: Distributed QR decomposition

(b) Stage 2: Parallel Dual ascent

Figure 5.4: Timing (in seconds) analysis for computation and communication in different stages of
distributed QRSVM. (a) Stage 1: TlocalQR and TmasterQR are the computation time, whereas Tgather
is the communication time. (b) Stage 2: Tupdate denotes the computation time for all iterations of
parallel dual ascent, while T2g+2s refers to the communication time spent in transformations β̂ to
β. Datasets: covtype (p = 16), webspam (p = 32), SUSY (p = 64). Reprinted with permission
from [6].

It is due to minimal inter-node communication where the number of Ada nodes required are 1 and

2, respectively based on our experimental setup. In the case of larger benchmark SUSY, the inter-

node communication is higher as 32 Ada nodes are used. Here, the communication requirement

in Stage 1 is TgatherR = 4.52 seconds on p = 64 cores, which is around 27% of the execution

time of Stage 1. However, for such large datasets requiring more number of nodes, the increase
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Figure 5.5: Overall training time, Ttrain analysis (in seconds) for benchmarks covtype (p = 16),
webspam (p = 32) and SUSY (p = 64). A majority of the training time is spent in iterative com-
putations in Stage 2 (parallel dual ascent), while communication overhead is negligible. Reprinted
with permission from [6].

in inter-node communication time for Stage 1 is largely compensated by the computation time for

Stage 2, as seen in Figure 5.5.

The second communication occurs during each iteration of the parallel dual ascent method

(Step 6 and Step 8 in Algorithm 5.2). There are two gather and two scatter processes in each

iteration as discussed in Section 5.3. These communication processes, gather and scatter, first occur

in Step 1 and Step 4 of Algorithm 5.3, respectively and again in Step 2 and Step 5 of Algorithm 5.4,

respectively. Let T2g+2s denote the time involved for gathering (g) and scattering (s) twice during

all the iterations of the parallel dual ascent until convergence. From Figure 5.4(b), we observe that

T2g+2s = {0.05, 0.03, 0.73} seconds for benchmarks covtype (p = 16), webspam (p = 32) and

SUSY (p = 64), respectively, has insignificant impact (< 1%) on execution time of Stage 2 in

comparison to its computation time, Tupdate.

Training time, Ttrain : The overall training time, denoted as Ttrain = Tcomp + Tcomm, for the

distributed QRSVM algorithm is observed to be Ttrain = {18.52, 10.62, 209.85} seconds on bench-

marks covtype (p = 16), webspam (p = 32) and SUSY (p = 64), respectively. In the proposed

framework, Ttrain comprises of computation time, i.e., Tcomp = TlocalQR + TmasterQR + Tupdate =

{18.46, 10.55, 204.60} seconds, and communication time, i.e., Tcomm = TgatherR + T2g+2s =
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{0.06, 0.07, 5.25} seconds. Figure 5.5 depicts the analysis of Ttrain where the time for communi-

cation is around 0.3%, 0.6% and 2.5% of the total training time for benchmarks covtype, webspam

and SUSY respectively. Moreover, in Figure 5.5, it is also observed that parallel dual ascent (Stage

2) in the QRSVM algorithm is more computationally dominant stage than the distributed QR de-

composition (Stage 1). On Ivybridge processor, parallel dual ascent achieves around 700 MFLOP

per second per core for the chosen benchmarks. These results validate our communication-efficient

implementation of distributed QRSVM where negligible amount of SVM training time is spent in

communicating data across the network. Hence, our framework is a step towards distributed train-

ing on the edge for applications in IoT without transferring the data to a central server for training.

In essence, our framework offers decentralization of SVM training with guaranteed convergence.

5.4.3.4 Comparison

In Table 5.4, we compare the training time of the proposed framework with state-of-the-art

parallel solvers, namely, PSVM [12] and P-packSVM [88] on covtype benchmark. Moreover, we

also evaluate the performance improvement over the prior implementation of distributed QRSVM

framework in Chapter 4. It is observed that for a given benchmark, the proposed implementation

of the distributed QRSVM trains much faster than PSVM ,P-packSVM and prior implementation

in Chapter 4. Both PSVM and the distributed QRSVM optimize the dual form of the SVM cost

function, making our comparison fair. We have used the default setting for PSVM parameters as

reported in [12]. In our experiments, the dual residual threshold for convergence was set to 10−3.

PSVM is the foremost parallel SVM solver available as open source. It employs parallel in-

complete cholesky factorization (PICF) to approximate n× n kernel matrix with a k− rank repre-

sentation. PSVM then performs parallel Interior-Point Method to solve the quadratic optimization

problem. As per [12], the computational complexity of PSVM is O(nk2/p). To ensure good accu-

racy, the authors in PSVM [12] recommend the rank of the ICF of kernel matrix as k =
√
n, where

n represents the number of training samples. As a result, the cost of executing PSVM becomes

quadratic in n which results in large training time and hinders its scalability to large datasets.

In contrast to PSVM, the proposed distributed QRSVM framework builds on the current state-
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Algorithm p=2 p=4 p=8 p=16 p=32 p=64
PSVM [12] 8,562 4,396 2,352 1,270 635 341
P-packSVM [88] - - 2,019 1,022 295 110
dis-QRSVM (Chapter 4) 390 309 271 261 256 454
dis-QRSVM (improved) 132 64 33 18 10 6

Table 5.4: Comparing dis-QRSVM with PSVM, P-packSVM and Chapter 4 framework on Ttrain
(in seconds) for covtype dataset. Here, - represents data is unavailable. Reprinted with permission
from [6].

of-the-art kernel approximation, MEKA [5], which is both memory-efficient and has the least

kernel approximation error amongst various approximation methods such as ICF. Since the accu-

racy of our framework is directly related to the quality of kernel approximation, we can safely

argue that accuracy of our MEKA-based distributed QRSVM will be at least at par or better than

the traditional ICF-based PSVM. In the light of above, the k-rank approximation of the kernel

matrix is chosen empirically through MEKA [5]. We ensure rank k � n as discussed in Sec-

tion 4.3. Since the dominant computations in both stages of the distributed QRSVM framework

can be fully parallelized, the time complexity of the proposed framework is O(nk2/p + nktc/p).

With the above choice of k � n, the computational cost for the distributed QRSVM is linear

in number of samples n unlike PSVM which shows quadratic behavior. Therefore, the pro-

posed framework converges faster and is more scalable than PSVM. For instance, it can be ob-

served from Table 5.4 that on p = {2, 4, 8, 16, 32, 64} cores for covtype benchmark, PSVM

takes Ttrain = {8562, 4396, 2352, 1270, 635, 341} seconds while the proposed distributed QRSVM

framework trains in Ttrain = {132, 64, 33, 18, 10, 6} seconds with performance improvement of

{65x, 69x, 71x, 71x, 63x, 57x}.

Due to lack of availability of P-packSVM code as open source, we estimate its results based on

its training time ratio with respect to PSVM obtained from [88]. We report the training performance

of P-packSVM on p = {8, 16, 32, 64} cores since the base number of cores used in [88] is 8. As

observed in Table 5.4, our implementation performs {61x, 57x, 30x, 18x} faster than P-packSVM

for training covtype on p = {8, 16, 32, 64} cores, respectively.
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Time p=2 p=4 p=8 p=16 p=32 p=64
Tupdate(Chapter 4) 379 304 269 259 252 448
Tupdate(improved) 122 59 30 16 8 5
T2g+2s(Chapter 4) 1.63 1.81 0.34 0.05 1.19 3.02
T2g+2s(improved) 0.02 0.02 0.14 0.05 0.03 0.11

Table 5.5: Comparing the improved dis-QRSVM with prior implementation in Chapter 4 on Stage
2 computation time, Tupdate and communication time, T2g+2s (in seconds) for covtype dataset.
Reprinted with permission from [6].

We also compare and evaluate the performance of the proposed implementation with our prior

framework in Chapter 4. Section 5.3 discusses the communication improvement over Chapter 4

framework during the parallel implementation of the dominant stage of iterative dual ascent (Stage

2). Hence, we compare Stage 2 computation time, Tupdate and communication time, T2g+2s of both

the implementations in Table 5.5. It can be empirically observed that the proposed implementation

significantly improves over Chapter 4 implementation in computation of Stage 2 with relatively

lower communication overhead, leading to faster overall training time. From Table 5.4, we achieve

performance improvement of {3x, 5x, 8x, 14x, 25x, 75x} in training time compared to Chapter 4

implementation on p = {2, 4, 8, 16, 32, 64} cores, respectively. While the prior framework in

Chapter 4 could train datasets just as large as covtype with n = 464, 810 samples, the proposed

implementation is demonstrated to work for same and even larger datasets such as SUSY with

n = 5M samples. Moreover, the results in Table 5.5 also validate that prior framework was unable

to scale on large number of cores while the proposed approach exhibits better parallel speedup,

owing to both memory and communication-efficient implementation.

5.5 Summary

In this chapter, we proposed a fast and efficient implementation to improve the distributed

QR decomposition framework in Chapter 4 for scaling the kernel SVM training. The framework

comprises of two stages: distributed QR decomposition and parallel dual ascent, to accelerate the

training. We efficiently implement these two stages of the framework to achieve significant mem-

ory and communication benefits over the prior framework. We empirically demonstrate that the

102



proposed distributed implementation of the improved framework achieves considerable speedup

over its sequential counterpart. In addition, it substantially reduces the communication overhead

to a negligible fraction of the total training time. These characteristics make the framework suit-

able to handle large data problems while being scalable across large number of computing cores,

unlike the one in Chapter 4. We also achieve performance benefit on training time compared to

state-of-the-art parallel SVM solvers. In the next chapter, we will design an efficient hardware

accelerator based on distributed QRSVM for applications in embedded edge computing.
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6. MULTIPLE FPGA-BASED SYSTEM FOR ENERGY-EFFICIENT TRAINING 1

Training machine learning models on a large number of data samples is challenging due to

the high computational cost and memory requirement. Hence, model training is supported on a

high-performance server which typically runs a sequential training algorithm on centralized data.

However, as we move towards massive workloads, it will be impossible to store all the data in a

centralized manner and expect such sequential training algorithms to scale on traditional proces-

sors. Moreover, with the growing demands of real-time machine learning for edge analytics, it

is imperative to devise an efficient training framework with relatively cheaper computations and

limited memory. In this chapter, we propose and implement a first-of-its-kind system of multiple

FPGAs to accelerate distributed QRSVM using FPGA as hardware accelerator with a focus on

energy efficiency.

6.1 Introduction

Support Vector Machine (SVM) is a supervised machine learning technique with strong geo-

metrical and statistical properties to solve classification and regression tasks. Kernel SVM clas-

sifier is used for non-linear classification by transforming the data from input space to high-

dimensional feature space such that the transformed data is separable by a hyperplane. As a ma-

chine learning model, SVM comprises two phases; a training phase to learn a classifier model

for a given input dataset, and an inference phase, which uses the trained model for classifying or

predicting an unseen test sample. For high-dimensional data that have an inherent well-defined

data pattern, although deep neural networks (DNNs) have become popular with large availability

of training data and powerful computing platforms, they are not the best solution in all domains

compared to SVM as discussed below. For example, a tuned SVM performs similar to convolu-

tional neural networks with significantly faster training while utilizing far fewer compute resources

1This chapter is reprinted with permission from “Distributed Training of Support Vector Machine on a Multiple-
FPGA System” by Jyotikrishna Dass, Yashwardhan Narawane, Rabi N. Mahapatra, and Vivek Sarin. 2020 IEEE
Transactions on Computers (TC), Copyright © 2020, IEEE.
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[105]. When classifying remote sensing images, it was shown that SVM can in fact perform better

than a deep learning counterpart [106]. Another major concern with DNNs is that they are widely

considered as black-box models suffering from the interpretability of their decisions. In contrast,

SVM has strong geometrical and statistical properties that allow the decisions of the SVM model

to be easily interpreted from well-determined decision boundaries [65]. Moreover, training DNN

requires a careful and time-consuming process of optimally engineering the meta-parameters such

as learning rate, momentum, weight-cost, number of hidden units, etc failing which the model

suffers from over-fitting and poor generalization. As a more efficient alternative, authors in [107]

proposed stacking multiple SVM (a single SVM can be modeled as a two-layer neural network) to

extract high-order discriminative features using support vectors thereby guaranteeing generaliza-

tion with far fewer user-determined parameters. Other studies have incorporated SVM as a clas-

sifier with features extracted from traditional DNN for performance gain [108, 109, 110]. In light

of the above popularity and benefits, we consider SVM as our machine learning model. Having

said so, the proposed techniques can be used for linear regression, linear SVM, any kernel-based

machine learning problems such as ridge regression, and extended to novel hybrid learning models

incorporating SVM.

6.1.1 Motivation

Training SVM for large datasets is challenging due to the high memory and computational

cost associated with storing and computing with the dense kernel matrix [65]. Moreover, most

modern SVM solvers are either inherently sequential [14] or are inefficiently parallel [12] which

limit their scalability and make them infeasible for supporting massive workloads in cloud server.

To design highly efficient cloud computing solutions for such massive workloads of future, it will

be necessary to decentralize the data across multiple hardware units and provide a highly scalable

training framework. In addition, with the explosion of powerful smart devices where each device

is collecting its own data, there is a growing demand for real-time machine learning to train and

update the model with low latency and data privacy at the edge. However, each edge device is

relatively limited in computing and memory resources to independently support the demands of
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SVM model training. Hence, to enable efficient and scalable model training for future workloads

on cloud server and for providing real-time analytics on edge, we envision a distributed computing

framework to fully parallelize and scale the model training on decentralized data. This will require

pooling the resources of multiple computing units in a distributed environment while minimizing

network communication overhead. Each computing unit in such distributed framework will com-

prise energy-efficient hardware design synthesized for accelerating its component of the overall

training task on its local data thereby ensuring data privacy. Hence, it is imperative to devise a

distributed training algorithm and to codesign a system of connected hardware accelerators such

as FPGAs for fast and memory-efficient training of machine learning models such as SVM that

can be used either in cloud servers or on connected edge devices.

6.1.2 Contributions

To satisfy the requirements for future cloud and edge-based services would require a distributed

model training with decentralized data. In addition, a huge gap exists in research to provide a scal-

able co-designed network of hardware solutions for accelerating the training of SVM under such

a distributed setting. In light of the above, we propose a first-of-its-kind distributed SVM training

framework comprising a multiple-FPGA system to accelerate computationally challenging training

phase on decentralized data. In this work, we use a cloud-based testbed as a proof-of-concept for

the proposed framework due to the easy availability of multiple FPGAs. However, we do ensure

effective software-hardware codesign architecture for cheap computations, less memory usage, and

near negligible communication overhead. This chapter makes the following contributions:

1. We present a novel multiple-FGPA system for accelerating distributed SVM training in Sec-

tion 6.3 with negligible communication overhead. In particular, we synthesize a pipelined

SVM training logic core in Section 6.4 to accelerate QR-decomposition and dual ascent

stages of the memory-efficient training algorithm on each FPGA. To the best of our knowl-

edge, this is the first-of-its-kind hardware implementation of any distributed SVM training

algorithm across multiple FPGAs.
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2. We perform an extensive performance evaluation based on training time, parallel speedup,

scalability, and energy efficiency of our proposed architecture in Section 6.5 for five real

SVM benchmarks and varying number of FPGA units. We observe near-linear scalability on

increasing number of FPGA units both in terms of training time and energy consumption.

3. We compare the training time and the energy consumption of the proposed FPGA solution in

Section 6.5.4.4 with a commercially available embedded CPU platform for edge and widely

available cloud processor. On SVM benchmark datasets, our hardware design in a multiple-

FPGA system trains SVM computationally faster and is more energy-efficient compared to

the corresponding cluster of these other platforms.

6.2 Related Work

Many FPGA-based architectures for SVM have been designed for accelerating the inference

phase that uses pre-trained classifier models [111, 112, 113, 114]. However, a little attempt has

been made in the literature on designing any hardware accelerator for the computationally chal-

lenging training phase [115, 116, 117, 118, 119]. Initial work [115] explored the nearest point

approach for SVM training using the Gilbert algorithm and only mapped the datapath to FPGA.

Moreover, no provision was made for datasets that do not fit the available block rams. Authors

in [116] improved upon the above work to handle large datasets by using batches of data samples

and applying the ensemble SVM training approach. However, [116] uses a single FPGA to train

independent SVM models on these batches sequentially, which are later aggregated. The authors in

[117] designed an FPGA-based co-processor for a popular SVM solver called Sequential Minimal

Optimization [14]. However, due to the sequential nature of SMO, their design is neither feasible

to leverage parallelism and achieve higher training speedups for large datasets nor it is amenable

for training with decentralized data. There has also been some work on devising new SVM training

algorithms solely for the purpose of designing dedicated FPGA implementations [118, 119]. How-

ever, these algorithms are limited to single FPGA implementation and are infeasible for distributed

SVM training on a system of multiple computing units.
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Figure 6.1: Illustration of a multiple-FPGA system with p = 4 compute units: Here, each unit
comprises an FPGA that has IP logic along with a host. Each FPGA has internal memory (BRAM)
and external DRAM (DDR) memory. The communication among compute units is either through a
bi-directional ring (FPGA Link) or via PCIe bus interconnection. Reprinted with permission from
[3].

6.3 System Overview

We envision a distributed network where each computing unit comprises an FPGA along with

a local host processor. The host handles the flow of control and communication with other com-

puting units in the network. Figure 6.1 illustrates a scenario with four such FPGA units. In the

multiple-FPGA system for distributed SVM training, each computing unit stores its private data Âi

in its external DRAM (DDR). Then, all these units collaborate with each other as per the QRSVM

algorithm [6] to train the complete SVM model. The algorithmic computations involved in train-

ing is implemented as a QRSVM IP logic core on an FPGA. This QRSVM IP enables the FPGA

unit to accelerate all the training computations locally. As depicted in Figure 6.1, each FPGA has

an interface (Shell) which enables communication with other FPGAs in the network, whenever
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required. Such communication among the compute units is either direct through a bi-directional

ring (FPGA link), or indirect through a host device connected over a PCIe bus. In indirect com-

munication via the host, it is to be noted that the host processor will not be participating in any

compute acceleration or storage of data. In fact, our goal is to build an architectural design fully

capable of handling all computations and memory requirements by itself. Since the communica-

tion overhead of the algorithm is less than 1% as shown later in Section 6.5, the host can be any

low-power commercial off the shelf embedded microprocessor in practice.

6.4 Accelerator Design

In this section, we describe the FPGA hardware design for computational kernels in the QRSVM

IP logic core. Subsequently, we discuss the interfacing of the IP with the host and the memory.

6.4.1 Microarchitecture

To design an efficient architecture, we aim to synthesize specific hardware kernels for com-

putations involved in the distributed QR decomposition and parallel dual ascent stages. As noted

before, our implementation assigns all the computation to the FPGA fabric. It is to be reiterated

that our focus is not on a heterogeneous computing solution where both the FPGA and the host

share the computation workload via load balancing techniques for peak performance. The optimal-

ity of such systems is highly subjective and dependent on the heterogeneity, resource availability,

and computing power of different types of hardware platforms (FPGA, CPU, GPU, etc), and how

well one can extract acceleration and efficiency via load balancing. Rather, our aim is to design

a homogeneous multiple FPGA framework by pitching FPGA as a complete hardware candidate

for training SVM model that is sufficient enough to handle computationally intensive tasks all

by itself, which typically is done on general-purpose CPUs. We will now describe the architec-

tural design for accelerating the different stages of the QRSVM algorithm, namely, distributed QR

decomposition and parallel dual ascent.
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Figure 6.2: Computational flow graph for Distributed QR Decomposition. Reprinted with permis-
sion from [3].

6.4.1.1 Architecture for Distributed QR Decomposition

Here we describe the architectural design for enabling distributed QR decomposition stage. It

is worth noting that the same architectural principles are easily extended to QR-based equivalent

machine learning problem formulations such as linear regression, linear SVM, ridge regression,

and other quadratic programming based numerical optimization problems. Figure 6.2 depicts the

computational flow graph associated with distributed QR decomposition for kernel SVM. Firstly,

local QR decomposition of Âi is carried out in parallel across all the p FPGA units. These FPGA

units are designated as workers for the purpose of algorithmic computation. Next, the locally

generated upper triangular matrices, Ri’s are gathered at one of the FPGA units designated as the

master to form Rgather. Finally, QR decomposition of Rgather is performed at the master FPGA.

It is to be noted that all these p FPGA units perform the same computation, i.e., QR decom-

position via Householder reflectors, as detailed in Algorithm 6.1. Hence, the hardware design

for this stage can be replicated at all FPGA units. From Algorithm 6.1, candidates for hardware

acceleration are:

• Computing ‖qij‖2: The `2 norm can be computed as ‖qij‖2 =
√
< qij,qij >.

• Updating Âi: This can be modeled as a vector-matrix product (qTijÂi), followed by a rank-1

update: Âi ← Âi − 2qij(q
T
ijÂi) detailed in Algorithm 6.2.
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Algorithm 6.1 {qi},Ri ← Âi, via Householder algorithm

Data: Matrix Âi

1 Qn̂×k, (Âi)n̂×k . n̂ : samples per compute unit
2 for j ← 1 to k do
3 qij ← Âi(j : n̂, j)
4 qij(1)← qij(1) + sign(qij(1))× ‖qij‖2 . scalar update
5 qij ← qij

‖qij‖2
. vector normalization

6 Âi(j : n̂, j : k)← Âi(j : n̂, j : k)− 2qij < qij, Âi(j : n̂, j : k) > . Algorithm 6.2
7 Ri = Âi(j : n̂, j : k)

8 end
9 {qi} ← [qi1,qi2, . . . ,qik] . set of k-reflectors

Computation of the `2-norm and rank-1 update involves two BLAS Level-1 functions: (a) Inner

Product sum =< ~x, ~y > and (b) Scaled vector addition (saxpy), ~x = ~x + α~y. The high degree

of data parallelism inherent to these operations is leveraged to develop vectorized hardware imple-

mentations. FPGAs are amenable to such Single Instruction Multiple Data (SIMD) implementa-

tions, given their reconfigurable nature and high internal memory bandwidths. As an illustration,

Figure 6.3 shows the architectures for computing inner product and saxpy. The proposed imple-

mentation is a pipelined design to increase throughput, where all arithmetic units at the same depth

of the binary reduction tree are in one pipeline stage. This allows a given stage to process the next

samples without waiting for the completion of all succeeding stages.

Pipelining: In the inner product kernel depicted in Figure 6.3, entries from ~x and ~y are mul-

tiplied at the leaf nodes of the binary reduction tree. The resulting products are pairwise summed

along the tree branches and finally added to the previously computed partial product (denoted here

by sum). For the inner product kernel, the number of pipeline stages can be determined as fol-

lows: Let us denote N as the data bus width and B as the bit width of a single element (32 bits for

single-precision floating-point, 64 bits for double precision). The maximum number of leaf nodes,

W = bN
B
c, and number of pipeline stages, D = log2W . For the saxpy operation, the pipeline

depth is D = 1 since it is an element-wise operation. Hence, we can deploy a maximum of W

adders and multipliers in parallel. Figure 6.3 shows the proposed designs for W = 4 elements in
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Figure 6.3: Hardware kernels for (a) inner product, < ~x, ~y > (b) saxpy, ~x = ~x + α~y. The
vectorized kernels process W = 4 elements in each pass. Reprinted with permission from [3].

each clock cycle (pass).

Data Layout: The BLAS operations in Algorithm 6.1 operate on columns of the partitioned

data Âi. Hence, we store the data elements in a column-major order which results in the contiguous

memory access pattern, thereby, reducing the memory access time. As seen in Figure 6.4, the

kernels in IP module access W column-elements of the data matrix from off-chip memory (DDR)

during each clock cycle (or batch). Consequently, while storing data on chip (BRAM), we ensure

that the column length is an integer multiple of W . This is to ensure that data elements from two

different columns do not end up getting processed in the same computation batch. Accordingly,

we pad columns with the requisite number of zeros wherever necessary.

Memory: The hardware IP interfaces with two types of memories: off-chip Random Access

Memory (DDR), and on-chip Block RAM (BRAM). BRAM offers faster access time than the

DDR. BRAM is generally a few Megabytes (MB) of configurable memory. Moreover, BRAM is

configured in full-duplex mode with concurrent reads and writes in the same clock cycle, thereby

avoiding pipeline stalls. In contrast, the memory interface of DDR with the IP is made half-duplex

as illustrated in Figure 6.4. Based on the specific kernel operations, we allocate the operands to the

appropriate memory type. For instance, in the inner product kernel illustrated in Figure 6.3(a), all
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Figure 6.4: Data layout in column-major order and memory interface for on-chip Block RAM
(Full-duplex) and off-chip DDR (Half-duplex) with the IP. Reprinted with permission from [3].

vector operations with ~x and ~y are read-only while the output variable sum is both read and write.

Hence, for an efficient inner product module design, the vectors can be stored in either BRAM or

DDR while the output is allocated to full-duplex BRAM. The saxpy kernel shown in Figure 6.3(b)

requires ~x to be both read and written simultaneously while ~y is read-only. Hence, ~x is stored

in full-duplex BRAM while ~y is allocated to half-duplex DDR in saxpy. In the context of the

rank-1 update of Âi which is a saxpy operation presented in Algorithm 6.2, we denote the vector’s

subscript to represent its allocated memory.

6.4.1.2 Architecture for Parallel Dual Ascent

Now, we discuss architecture design for accelerating the iterative computations in the parallel

dual ascent stage. Recall, each iteration of the parallel dual ascent stage comprises updating vari-

ables α̂ and β̂, transforming β̂ to β, ensuring non-negativity on β (ReLU function), converting β

back to β̂ and finally estimating the difference in consecutive dual updates to decide if to iterate.

Figure 6.5 illustrates the computational flow for this stage in detail.
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Algorithm 6.2 Computing Step 6 in Algorithm 6.1

Data: Matrix Âi

1 . Âi(j : n̂, j : k)← Âi(j : n̂, j : k)− 2qij < qij, Âi(j : n̂, j : k) >
2 for m← j to k do
3 aBRAM ← A(j : n̂,m) . Load into BRAM
4 Compute sum = < qij, aBRAM > . Inner Product
5 aBRAM ← aBRAM − 2× sum× qij . saxpy
6 A(j : n̂,m)← aBRAM . Write to DDR
7 end

Updating α̂ requires a vector subtraction, followed by pre-multiplication of F−1. The structure

of F−1 is given as the initial setup in Figure 6.5. At the master unit, F−11 a dense k × k block

followed by a diagonal sub-matrix block. On the worker units i = {2, . . . , p}, F−1i is a diagonal

matrix. Hence, at the master unit, the top k elements of α̂1 are obtained by solving

LLT × α̂1[1:k] = (ê1 − β̂1)[1:k]

where L is the Cholesky factor of F1. i.e., F1 = LLT [57]. In contrast, remaining elements of

α̂1 and α̂i , i > 1 can be computed by multiplying corresponding entries of (ê − β̂) with the

scalar (−2C). As illustrated in Figure 6.5, updating β̂ is a saxpy operation and it must be stored

in full-duplex BRAM.

By using Algorithms 5.3 and 5.4, β̂ is transformed to β by computing

β = Qβ̂ = diag(Q1,Q2, ..Qi..,Qp)×Qg × β̂

while

β̂ = QTβ = QT
g × diag(QT

1 ,Q
T
2 , ..Q

T
i ..,Q

T
p )× β

is used for re-transformation. On each FPGA unit i, the matrix Qi is stored as a set of Householder

reflectors, {qi} = [qi1, ..,qij, ..,qik], where, qij ∈ Rn̂×1 represents jth reflector in the set. Hence,

the most basic arithmetic operation in β = Qβ̂ is the product of a reflector set {qi} and a vector
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Figure 6.5: Computational flow graph for Parallel Dual Ascent. Reprinted with permission from
[3].

which involves the following iterations:

β̂i[j:n̂] ← β̂i[j:n̂] − 2qij < qij, β̂i[j:n̂] > j ← k to 1

By reversing j ← 1 to k and using β as the vector in the above iteration, one can similarly

compute β̂ = QTβ. It can be seen that each iteration of updating β̂ or β comprises an inner

product followed by a saxpy operation.

We observe that the computations in the dual ascent stage invoke the previously described

BLAS Level-1 hardware kernels, i.e., inner product and saxpy, which are reused with an appropri-

ate memory interface. This is achieved through column-major storage of α̂, β̂ and ê.

Imposing the non-negativity constraint on β, using a ReLU function, is an element-wise oper-
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Figure 6.6: FPGA block diagram and memory interface for a single compute unit in a multiple
FPGA based system. Reprinted with permission from [3].

ation. A hardware kernel for ReLU is synthesized by replacing the adder/multiplier pair in Figure

6.3(b) by a zero-comparator. Similarly, error per iteration,
∥∥∥(β̂

k+1 − β̂
k
)
∥∥∥
1

is computed through

a binary reduction tree similar to Figure 6.3(a), with the leaf nodes configured to compute the

difference of absolute values.

6.4.2 Interface Design

Upon synthesis, the hardware kernels are interfaced with the host, DDR and Block RAMs. The

Xilinx Vivado design suite supports the Advanced eXtensible Interface (AXI 2) protocol for Intel-

lectual Property (IP) cores. Figure 6.6 depicts the block-diagram representation of the synthesized

FPGA design for a single compute unit. In our framework, multiple such FPGA-based computing

units are connected via respective hosts via PCIe bus. The synthesized hardware kernels for com-

putation are packaged into a single IP logic core, denoted as QRSVM IP Module. The IP module

is interfaced with the host over an AXIlite interface. In this configuration, the host is master while

2https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_
guide/latest/ug1037-vivado-axi-reference-guide.pdf
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the IP runs in servant mode. Control and status information is monitored over this interface port.

Additionally, the port allows the host to read/write parameters to/from the IP (such as pointers to

input data, return values, etc.). The on-chip BRAMs are synthesized with a bram interface. The

maximum bus width supported by this interface is N = 1024 bits. Since we provide support for

double-precision floating point numbers without any loss of accuracy when compared to software

implementation, the maximum parallel compute units, W = bN
B
c = 16 (refer Section 6.4.1). The

IP connects to off-chip DDR over an AXI Master port. With this interface, the IP assumes the role

of the bus controller and can directly issue memory references without host mediation.

Throughput: The throughput of each hardware kernel is determined byN (data bus width) and

W = bN
B
c. For the saxpy kernel (Figure 6.3(b)), doublingN would doubleW,which in turn would

double the throughput, with data available at every clock cycle. The inner product kernel follows

the same trend. However, there are limitations to the maximum bus width for a given interface.

For example, the bram interface supports a maximum data bus width of 1024 bits, while the AXI

interface supports up to 2048 bits. Instead, we could create multiple independent interfaces to

increase memory bandwidth. In Figure 6.7, we illustrate the computation of the inner product of

vectors < ~x, ~y > of length 16. Rather than computing with the entire vector at once, ~x and ~y are

split equally, each of length 8 and stored as column-major order in the respective memory. This

allows parallel execution of the two sub-problems, < ~x1, ~y1 > and < ~x2, ~y2 > by employing two

copies of the inner product kernel, described in Figure 6.3(a). Here, each kernel copy operates on

its respective sub-problem and the outputs are summed to obtain the final solution. We ensure that

the read/write requests are satisfied simultaneously, i.e., no two memory references are directed to

the same interface to double the memory bandwidth or throughput. In our design, we achieve it by

creating two independent AXI Master and bram interfaces for accessing memory.

6.5 Experiment and Results

In this section, we first describe the hardware platform, and the various datasets used to conduct

our experiments. Then we evaluate and discuss the results.
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Figure 6.7: Increasing throughput of < ~x, ~y > by working with two copies of the inner product
kernel, in parallel. Reprinted with permission from [3].

6.5.1 Hardware Description

With the ease of availability and access to multiple FPGA units, we conduct experiments on the

AWS F1 platform 3 to create the proposed multiple-FPGA system for distributed SVM training.

However, it must be noted that this setup is for the sake of convenience, and implements a proof

of concept for the proposed design. An F1 instance f1.16xlarge features up to eight 16nm Xilinx

Virtex UltraScale+ VU9P FPGAs which we consider as compute units (p = 8) as described in

Section 6.3. These FPGA units communicate with each other via host processors configured over

PCIe interface. It is to be recalled that the host does not share any computational workload with

the corresponding FPGA. Moreover, the algorithm has communication overhead of less than 1%

as discussed later. Hence, any low-power embedded microprocessor can be used as the host.

3https://aws.amazon.com/ec2/instance-types/f1
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Benchmark Application #samples (n) #features (d) k-rank
MNIST Image 60,000 780 128

Skin Health 200,000 3 64
Webspam Email 350,000 254 128
Covtype Geography 464,810 54 64
SUSY Physics 2,000,000 18 128

Table 6.1: Benchmark dataset description. Reprinted with permission from [3].

6.5.2 Experimental Setup

To evaluate the performance of our FPGA design, we use various SVM benchmark datasets

from the LIBSVM binary classification repository 4. These are described in Table 6.1. In the ini-

tialization stage of the QRSVM algorithm, the data is preprocessed using Memory Efficient Kernel

Approximation (MEKA) [5] technique to obtain the k-rank approximation of the kernel matrix. It

is worth noting that the algorithmic contributions begin after the preprocessing stage. Hence, one

can choose to replace MEKA in the preprocessing stage (initialization) with any competing kernel

approximation technique performed on the host processor. Since the preprocessing stage using

MEKA takes a small fraction of overall training time across all the benchmarks used, we exclude

it from overall latency [6].

6.5.3 IP Synthesis

We synthesize the QRSVM IP as a single logic core on every FPGA unit in our system to

demonstrate its capability to completely handle all the computational operations in the training

by itself. Xilinx Vivado High-Level Synthesis 5 (HLS) tool is used for RTL synthesis. First, we

create an MPI-based C++ implementation of QRSVM algorithm using the Armadillo linear algebra

library [34] with LAPACK/BLAS integration. HLS enables such C++ and System C specifications

to be directly targeted into Xilinx FPGAs along with the directives for loop unrolling, pipelining

and creating wider memory interfaces for further optimization. The resulting FPGA image is

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
5https://www.xilinx.com/products/design-tools/vivado/integration/

esl-design.html
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Resource BRAM DSP FF LUT
Used 1405 1221 545248 449113

Available 2160 6840 2363536 1181768
Utilization 65% 18% 23% 38%

Table 6.2: Utilization for FPGA Xilinx Virtex xcvu9p-flgb2104-2-i. Reprinted with permission
from [3].

loaded onto all the FPGA units as the QRSVM IP. From our HLS synthesis, we estimate that

the QRSVM IP can operate up to clock speeds of ∼ 200 MHz. However, to ensure that the final

synthesized circuit is free from setup and hold time violations, we adopt a 125 MHz clock for

our proposed design. Moreover, we use AWS F1 Software Development Kit consisting of PCIe

library to build the runtime environment for the host program to utilize and communicate with

the FPGA. Table 6.2 lists the area utilization of FPGA post-synthesis. It can be observed that the

utilization percentage of BRAM is highest among FPGA resources since it is extensively used to

create full-duplex and high bandwidth memory. We use 4 MB of available BRAM to synthesize

two memory blocks with a capacity of 2 MB each. These blocks are designated as cache memory

for dual variables α̂ and β̂ on each FPGA unit. With this memory specification, the proposed

system processes a maximum of 256K samples on each FPGA unit.

6.5.4 Results and Discussions

Here, we discuss the performance of the proposed multiple-FPGA system for distributed train-

ing of SVM. Specifically, we measure and analyze the training time, parallel speedup, scalability,

and energy consumption of our system. Then, we provide a brief quantitative comparison in train-

ing time and energy consumption with a commercial embedded processor for edge and widely

available cloud-based processor.

6.5.4.1 Training Time

Table 6.3 shows the FPGA computation time involved during both the stages, denoted as TQR

in the distributed QR decomposition, and as TDA in the iterative parallel dual ascent. Here, we
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#units #samples MNIST (C = 1, γ = 2−6, η∗ = 0.9, τ = 181)
p n TQR(Tlocal + Tmaster) TDA T FPGAp comp comm
1 60K 3.42 (3.38 + 0.04) 7.49 10.92 99.9% 0.1%
2 60K 1.76 (1.72 + 0.04) 4.07 5.84 99.8% 0.2%
4 60K 0.93 (0.87 + 0.06) 2.51 3.58 96% 4%
8 60K 0.46 (0.40 + 0.06) 2.14 2.61 99.6% 0.4%

#units #samples Skin (C = 1, γ = 2−8, η∗ = 0.9, τ = 54, 441)
p n TQR(Tlocal + Tmaster) TDA T FPGAp comp comm
1 200K 2.80 (2.79 + 0.01) 4533 4536 99.9% 0.1%
2 200K 1.46 (1.45 + 0.01) 2226 2228 99.9% 0.1%
4 200K 0.74 (0.72 + 0.02)) 1107 1108 99.9% 0.1%
8 200K 0.38 (0.36 + 0.02) 625 626 99.9% 0.1%

#units #samples Webspam (C = 1, γ = 1, η∗ = 0.9, τ = 566)
p n TQR(Tlocal + Tmaster) TDA T FPGAp comp comm
2 350K 9.80 (9.74 + 0.06) 66.20 76.14 99.8% 0.2%
4 350K 4.88 (4.83 + 0.05) 34.40 39.36 99.8% 0.2%
8 350K 2.60 (2.38 + 0.06) 17.92 20.59 99.7% 0.3%

#units #samples Covtype (C = 1, γ = 23, η∗ = 0.9, τ = 1, 076)
p n TQR(Tlocal + Tmaster) TDA T FPGAp comp comm
2 464,810 3.35 (3.34 + 0.01) 88.02 91.45 99.9% 0.1%
4 464,810 1.70 (1.69 + 0.01) 43.58 45.36 99.8% 0.2%
8 464,810 0.80 (0.78 + 0.02) 23.80 24.75 99.4% 0.6%

#units #samples SUSY (C = 1, γ = 2−3, η∗ = 0.9)
p n TQR(Tlocal + Tmaster) TDA T FPGAp comp comm
1 250K 14.01 (13.97 + 0.04) 94.04 108.08 99.9% 0.1%
2 500K 14.04 (13.98 + 0.06) 116.8 131.02 99.8% 0.2%
4 1M 14.07 (13.98 + 0.09) 162.1 176.18 99.9% 0.1%
8 2M 14.14 (13.98 + 0.16) 285.47 299.63 99.9% 0.1%

Table 6.3: Training time, T FPGAp (in seconds) using p QRSVM IP cores or FPGA units. TQR, TDA:
Compute time for QR decomposition and Dual Ascent on FPGA. Percentage of TFPGA spent in
computation, comp and communication, comm. SUSY is used for Weak scaling analysis while rest
are used to demonstrate strong scaling analysis. Reprinted with permission from [3].

also provide the execution time of each compute step in Figure 6.2 of the non-iterative stage of

distributed QR decomposition, namely, Tlocal for local QR decomposition and Tmaster for master
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QR decomposition. The overall training time, T FPGAp , on the multiple-FPGA system with p =

{1, 2, 4, 8} FPGA units is also reported. Each FPGA unit has a single QRSVM IP logic core. In

addition, Table 6.3 reports the hyper parameters applied to train SVM models for different datasets,

stopping threshold, ε = 10−3, an optimal step size η∗ to ensure faster convergence [6], and total

number of iterations, t = τ . As discussed earlier, our proposed FPGA implementation allows

datasets with sample size n ≤ 256K to be stored on a single FPGA unit. Hence, for larger datasets

such as Webspam and Covtype exceeding the above capacity per unit, we omit the entry pertaining

to p = 1 from the table and report the training time on p = 2 FPGA units and above.

It can be observed in Table 6.3 that parallel dual ascent is the more dominant computation

stage than the distributed QR decomposition with TDA � TQR due to iterative steps involved in

the dual ascent. Moreover, it is also observed that for the QR process, Tlocal is more dominant

than the Tmaster due to relatively larger data matrices handled during the local stage. In addition,

it is to be noted that the percentage of time spent during communication, denoted as comm, across

the multiple FPGA units in the network is negligible, i.e., 0.1 % to 4 % compared to that of

computation, comp, across all the five benchmarks. Hence, we have designed the FPGA-based

framework to accelerate the compute operations in both the stages owing to which execution time

of the dual ascent stage is significantly lowered thereby reducing the overall SVM training time.

With negligible communication overhead, the proposed FPGA-based implementation can scale to

more number of FPGA units in a distributed network.

6.5.4.2 Scalability

Here, we discuss both the parallel speedup under strong scaling scenario and the weak scaling

efficiency for the proposed FPGA-based implementation of the QRSVM algorithm.

Strong Scaling: First, we compute the parallel speedup by doubling the number of FPGA units

(QRSVM IP cores) and comparing the training time to that of sequential implementation on a sin-

gle FPGA unit. Figure 6.8 illustrates the parallel speedup under a strong scaling scenario wherein

the overall problem size stays fixed but the number of FPGA units (or QRSVM IP cores) is dou-

bled. For small dataset such as MNIST, training the SVM model on p > 4 FPGA units is overkill
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Figure 6.8: Strong scaling analysis: FPGA implementation achieves near linear parallel speedup
for larger datasets such as Skin, Webspam and Covtype, as we double the #FPGA units (or QRSVM
IP cores). For small dataset MNIST, going beyond p = 4 seems to be overkill. Reprinted with
permission from [3].

as non-parallel tasks such as data loading and MEKA approximation time become relatively sig-

nificant in comparison to the parallel tasks. From Table 6.3, we wish to recall that the training time

for Webspam and Covtype benchmarks are computed with p = 2 FPGA units and above. Hence,

the parallel speedup plots for these datasets take the baseline as p = 2. It is observed from Figure

6.8 that for relatively larger datasets, namely, Skin, Webspam, and Covtype, the parallel speedup

for the proposed distributed FPGA-based design is nearly linear. In other words, training gets twice

faster as the number of FPGA units (or QRSVM IP cores) doubles. Such a trend is attributed to

the communication-efficient implementation of the algorithm on the FPGA.

Weak Scaling: Next, we conduct weak scaling analysis on memory-intensive benchmark such
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as SUSY wherein we fix the workload per FPGA unit. Since, each FPGA unit can handle a maxi-

mum workload of n̂ = 250K samples in its DDR memory, we randomly sample the original SUSY

dataset and choose 2 million samples. Figure 6.9(a) demonstrates the weak scaling efficiency of

the proposed FPGA framework as the number of FPGA units (QRSVM IP cores), p, are doubled.

Weak scaling efficiency is defined as T1
Tp

, where, T1 is training time on a single compute unit and

Tp is training time on p compute units. We observe that the efficiency decreases with increasing p.

This trend is expected and can be attributed to longer training time for SUSY as shown in Table 6.3,

specifically arising from increase in the number of iterations until convergence. This increase in

iteration count is a result of the continuous addition of a new batch of data samples to the existing

training set which requires re-training and adjustment of the SVM model. Hence, TDA increases

for the iterative parallel dual ascent stage resulting in an increase in overall T FPGAp as shown in

Table 6.3. Hence, we shift our focus to the per-iteration execution time for a deeper assessment

of the weak scaling efficiency of our FPGA-based design. Figure 6.9(b) illustrates that when the

SUSY sample size grows linearly and is supported with linear increase in number of FPGA units

in the multiple-FPGA system, per-iteration training time remains constant. Moreover, the con-

stant execution time of the non-iterative stage of QR decomposition, TQR observed for SUSY in

Table 6.3 also reinforces the desired weak scaling characteristics for fixed workload per FPGA

unit. Hence, the proposed design achieves linear scaling (per iteration) under weak scaling analy-

sis implying that it is scalable to handle growing datasets. This is attributed to the communication

volume which is relatively constant, O(k), regardless of the sample size (or the number of FPGA

units in the system).

6.5.4.3 Energy Efficiency

As mentioned earlier in the experimental setup, we have created our multiple-FPGA system on

the AWS F1 instance. Due to lack of physical access to these units, it is not possible to accurately

measure the dynamic power consumption. Hence, we define the maximum energy consumed for

the algorithm to be run on p FPGA units as EFPGA
p = P × T FPGAp × p. Here, P is defined as

the worst-case power consumption of a single FPGA rated at P = 39 Watts based on the post-
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Figure 6.9: Weak scaling analysis on SUSY: (a) Weak scaling efficiency decreases as TQR is con-
stant while the dominant TDA is expected to increase due to more #iterations associated with grow-
ing sample size (b) Training time per iteration is constant as desired. Reprinted with permission
from [3].

synthesis of QRSVM IP under the maximum workload. Since the communication time constitutes

less than 1% of the total training time as observed in Table 6.3, there is hardly any significant

energy dissipation by the host processor. Table 6.4 shows the energy consumption (in kiloJoules,

kJ) for the proposed FPGA-based implementation, EFPGA
p , for various datasets.

Figure 6.10 illustrates the energy consumption EFPGA
p trend under strong scaling scenario for

representative benchmarks Skin (for p ≥ 1) and Covtype (for p ≥ 2). For reference, the figure

also depicts the energy trend for both ideal and no scalability cases. The ideal scalability scenario

refers to the serial fraction of the application being zero, hence the energy is constant with respect

to the number of cores [120]. On the other hand, no scalability occurs when computation fraction

that can be parallelized is zero. This is depicted by a linear trend for energy across the number of

FPGA units (IP cores). It is observed that the proposed FPGA implementation consumes almost

constant energy, thereby showing almost ideal behavior with respect to the number of FPGA units

(IP cores). In other words, it demonstrates that the implementation is nearly fully parallel.

Figure 6.11(a) depicts the energy consumption, EFPGA
p , for SUSY benchmark under weak

scaling scenario. Here, the energy plots for ideal scalability and the no scalability are linear and

quadratic in the number of FPGA units (IP cores), respectively [120]. We observe that the energy
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Figure 6.10: Energy consumption in FPGA under strong scaling scenario along with theoretical
curves for ideal and no scalability cases. Benchmarks: Skin and Covtype. Reprinted with permis-
sion from [3].

requirement of the proposed implementation is efficient and within appreciable limits. Moreover,

Figure 6.11(b) shows that the energy consumption per FPGA unit,
(EFPGA

p

p

)
, is nearly constant

for the proposed implementation on SUSY benchmark, which is expected with each unit under

the uniform workload. However, p = 8 shows a slight aberration due to relatively longer training

time T FPGA8 = 299.63s and an increase in number of iterations associated with finer adjustment of

the SVM model, as explained earlier. From the above energy analysis, the proposed FPGA-based

implementation for QRSVM presents an energy-efficient platform for distributed training of SVM.

6.5.4.4 Comparison

We compare our FPGA-based hardware implementation to the C++ software implementation

of QRSVM algorithm on a commercially available embedded CPU platform for edge, and a data

center grade cloud processor. These two distinct hardware platforms have different architecture

(FPGA vs CPU), configuration, and memory bandwidth. Hence, a comparison of these plat-

forms is not absolute and is merely done to demonstrate the feasibility of our proposed software-

hardware codesigned approach to handle computationally challenging tasks such as training of

SVM. The embedded platform is an HPE ProLiant m800 cartridge 6 comprising of four TI Key-

6https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04500667
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Figure 6.11: (a) Energy consumption in FPGA under weak scaling scenario along with theoretical
curves for ideal and no scalability cases. (b) Energy consumption per FPGA unit while maintaining
equal workload on each FPGA unit. Benchmark: SUSY. Reprinted with permission from [3].

Stone II 66AK2H SoCs running at 1 GHz connected over PCIe2. Each SoC unit features a quad

ARM Cortex-A15 processors resulting in a total count of 16 processors in the cartridge. For the

cloud-based processor platform, we use the Intel Xeon E5-2686 v4 (Broadwell) high-performance

processors operating at 2.3 GHz available on Amazon F1 instance. For a comparative study, we

run the C++ software implementation of the QRSVM algorithm for all the five SVM datasets on

p = {1, 2, 4} ARM Cortex-A15 processors (edge platform) and Broadwell processors (cloud plat-

form) separately. In the proposed FPGA-based system, p, corresponds to the number of FPGA

units, where, each unit houses a single QRSVM IP logic synthesized at 125 MHz with a post-

synthesis power rating of P = 39W . The embedded CPU platform is low-power and measured

at 14 Watts for each processor p. The thermal design power of each Broadwell processor p is

rated at P = 145W . Table 6.4 reports the comparative training time and energy consumption

results. Across the various benchmarks and number of computing units, it can be observed that

in comparison to pure software implementation, the SVM training on proposed FPGA-algorithm

codesign implementation is around 3x to 24x faster than the embedded edge processor (ARM),

and around 1.7x faster than the cloud processor (Broadwell). For small sized datasets such as

MNIST and Skin, the energy consumption for both the FPGA and ARM are almost similar. This
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is because the benefit in training time from FPGA implementation gets balanced out with rela-

tively lower power consumption on the ARM platform (14 Watts) for smaller datasets compared

to FPGA (39W ). However, for large datasets such as Webspam, Covtype, and SUSY, the FPGA

implementation achieves 2x to 8x lower energy consumption compared to the ARM processor, and

around 6.5x lower than the Broadwell processor. This is due to relatively much longer training

time spent on ARM compared to the FPGA. Thus, it can be concluded that for growing data sizes,

the proposed FPGA-algorithm codesign is a suitable candidate for scalable hardware solution for

enabling distributed training of SVM in a multiple-FPGA system.

6.6 Summary

In this chapter, we propose a first-of-its-kind multiple-FPGA system in a distributed computing

framework with a hardware-software co-design approach to tackle the more challenging training

phase of machine learning models such as SVM. In particular, we synthesize algorithm IP core by

mapping hardware kernels on each FPGA to accelerate the expensive training computations. The

synthesized logic core operates at 125 MHz with a power rating of 39W . Here, each FPGA unit

also has a dedicated low-power host which communicates with other compute units but does not

share any computational workload with the FPGA. The proposed design is linearly scalable with

the number of FPGA units and can accommodate growing data sizes. For various benchmarks

used, it delivers faster training and is more energy-efficient than both the commercial embedded

CPU (ARM Cortex-A15 processor) platform for the edge and widely available cloud processor

(Broadwell) in datacenters. Thus, it can be concluded that the proposed FPGA-based design is

a worthy hardware platform for accelerating distributed training for other similar machine learn-

ing models with quadratic optimization formulation. The final chapter will explore incremental

learning under streaming data across distributed workers introducing fault tolerance capabilities.
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#units #samples MNIST
p n T FPGAp TARMp TBroadp EFPGA

p EARM
p EBroad

p

1 60K 10.92 31.06 18.78 0.43 0.44 2.72
2 60K 5.84 20.12 8.25 0.45 0.56 2.40
4 60K 3.58 12.9 4.35 0.56 0.72 2.52

#units #samples Skin
p n T FPGAp TARMp TBroadp EFPGA

p EARM
p EBroad

p

1 200K 4536 21773 7167 177 305 1039
2 200K 2228 6121 3093 174 172 897
4 200K 1108 3044 1607 173 170 932

#units #samples Webspam
p n T FPGAp TARMp TBroadp EFPGA

p EARM
p EBroad

p

1 350K - 895 236.54 - 12.5 34.30
2 350K 76.14 477 133.99 5.9 13.4 38.86
4 350K 39.36 254 65.92 6.1 14.2 38.23

#units #samples Covtype
p n T FPGAp TARMp TBroadp EFPGA

p EARM
p EBroad

p

1 464,810 - 1079 292.63 - 15 42.43
2 464,810 91.45 520 160.08 7.1 14.5 46.42
4 464,810 45.36 251 77.19 7 14 44.77

#units #samples SUSY
p n T FPGAp TARMp TBroadp EFPGA

p EARM
p EBroad

p

1 250K 108.08 2452 171.29 4.2 34.3 24.84
2 500K 131.02 3131 232.01 10.2 87.7 67.28
4 1M 176.18 4189 319.03 27.5 234 185

Table 6.4: Comparison with embedded edge processor (ARM Cortex A15) and cloud processor
(Broadwell) platforms. In a multiple compute system, #units, p, corresponds to #FPGA units
(QRSVM IP cores), #ARM processors, and #Broadwell processors. Training time (in s), T FPGAp ,
TARMp , and TBroadp . Energy consumption (in kJ), EFPGA

p , EARM
p , and EBroad

p . Reprinted with
permission from [3].
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7. RAPID INCREMENTAL SOLVER FOR FEDERATED LEARNING

Federated machine learning is an emerging field to train machine learning models across mul-

tiple workers while keeping data and compute local at the distributed edge. Empowering federated

learning on devices with low memory and limited compute capabilities requires efficient processing

of the streaming data while reducing communication overhead. To address the above challenges,

this final chapter proposes a Rapid Incremental solVER, called RIVER, and applies it to solve fed-

erated regression problems on three distinct streaming setups; data streaming at a single worker

(Stream), data streaming across a fixed number of workers (Tributary), and data streaming from

varying active workers set (Basin). The proposed modular design is designed for scalability across

batch size, feature dimension, and number of workers, negligible communication overhead, fault

tolerance, and robustness of the model. We perform extensive performance evaluations on simu-

lated federated setups under various workloads and workers to validate the above characteristics.

7.1 Introduction

The rise of modern edge devices, with their data acquisition and storage capabilities, has made

distributed computing more ubiquitous than ever before. Within the constraints of their limited

storage and processing capabilities, devices such as mobile phones, sensor systems in antennas,

autonomous cars, smart homes, and wearable technology can constantly collect data and perform

simple calculations. With the growing need for real-time analytics, it will be nearly impossible

for these smart devices to transmit all data collected to a centralized server for efficient processing

and training of centralized machine learning models due to data privacy concerns and limits on

network bandwidth. The performance of machine learning models is heavily dependent on lots

of data. Hence, the continuous collection of data streams at the decentralized sources must be

quickly incorporated to incrementally update the global model and improve the quality of future

predictions.
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7.1.1 Motivation

Federated learning is an emerging paradigm to collaboratively train a global machine learning

model across multiple devices (workers) without sharing the underlying data [121, 122, 123, 124,

125, 126, 127]. It seeks to address the above concerns on data privacy. These workers collect their

data samples independently and the number of samples is highly unbalanced. Each worker can

have constraints related to its processing and power capability. Since the workers are relatively

simple devices, they have access to a small number of data samples and are limited in their com-

putation abilities. During model training, many workers participate in multiple rounds of collected

data streams, but it is possible for some of these workers to lose connection to the network and

cease to operate or encounter device failure. Occasionally, some of the workers may straggle or

may have no new data stream to report. Under these uncertain dynamics, it becomes imperative to

design fault-tolerant and communication-efficient solvers to learn robust models.

7.1.2 Contributions

In light of the challenges of a typical federated learning setup (discussed in next section) and

to ensure continuous model adaptation based on a constantly arriving data stream, we study the

problem of federated regression on streaming data. We develop a fast and accurate solver that

incrementally updates the global model through one-shot communication between the workers

without storing the samples from previous streams. To the best of our knowledge, this is the first

work incorporating incremental model learning in a federated setup with continuous data streams.

We avoid expensive computations and frequent communication involved with local model learning

and parameter exchange in a typical federated setup for rapid federated incremental learning.

The streaming data becomes available gradually over time and only a limited amount can be

stored on the workers due to memory constraints. With the limited computing capabilities and

demands of streaming data, it is impractical to learn a personal model and later coordinate with

other workers on a communication budget to incrementally update the global model. Moreover,

sharing the collected data and centralizing it on a central server is not possible due to privacy
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concerns. We propose to summarize the streaming data collected and stored on each worker in

a federated setup. Once the summary is generated, the data can be discarded to collect the next

sequence of streaming samples. In the meantime, the local summary is sent to a master appointed

from the pool of participating workers where it is merged with summaries of other workers. Instead

of learning a local model at each worker, a merged summary from the master is in turn later used

to recursively update the global summary. Essentially, in every round, all participating workers

coordinate with one another to incrementally update the global summary, which captures all data

streams used in prior rounds and adapts it with the current data streams. Using the updated global

summary, a global model parameter is learnt at the master. Contrary to a typical federated setup

where each worker learns its local model and collaborates to form a global model at a central server,

the workers in the proposed scheme are only generating local summaries at low computation cost

while the global model is learnt on the master. Unlike typical federated setups, the master in

our case is chosen amongst the resource-constrained participating workers and compute accurate

model updates without the need to approximately solve the problem.

We list the main contributions of this work as follows.

• Design accurate data summaries which entails computing a local summary of the current

batch and updating the global summary of all previous batches, without having to continu-

ously store data in between model updates.

• Devise a rapid incremental solver, namely, RIVER for 3 distinct streaming setups using the

above summaries; RIVER-STREAM for a single worker, RIVER-TRIBUTARY for federated

setup with data streamed from fixed number of workers, and RIVER-BASIN for fault-tolerant

federated setup with varying number of workers joining/dropping-off the network.

• Apply RIVER directly on common regression solvers such as ridge regression in the popular

scikit-learn library to incrementally update the model for the above streaming setups.

• Provide performance evaluation of RIVER with data of varying batch size and feature di-

mensions on multiple workers in simulated federated setups.
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• Demonstrate the proposed incremental solver can yield accurate model parameters with a

constant execution time per round and thus can efficiently scale with larger data batches

compared to the baseline solvers.

The key characteristics of the proposed RIVER schemes are as follows.

C1. Computational cost for generating local summary is linear in the number of samples in the

current batch, whereas it is independent of batch size for updating the global summary.

C2. Memory required to store both the local and the global data summaries is independent of the

batch size.

C3. Communication overhead during coordination across multiple workers in our federated schemes,

RIVER-TRIBUTARY and RIVER-BASIN is independent of the batch size and thus is negligi-

ble with respect to computation time.

C4. Our federated schemes employ simple computations of data summaries in parallel at the

worker level while calculating the updated model at the master thereby enabling edge ana-

lytics on devices with low computational power.

C5. Our federated schemes encourage data privacy by not sharing data across the network and

requiring no storage of data once its summary is generated.

C6. RIVER-BASIN is a fault-tolerant scheme and is naturally robust to worker failure and strag-

gling workers.

C7. RIVER is modular in design where each scheme is built on top of the other, STREAM →

TRIBUTARY → BASIN.

C8. RIVER is universal and applicable to any quadratic programming problem where the objective

function involves a Gram matrix of the input data.
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7.2 Related Work

In a typical federated learning setup based on Stochastic Gradient Descent, a selected set of

workers download the initial global model from a central parameter server and retrain it locally

with their own data. Then, each worker sends its local model characteristics such as parameters,

gradients, etc. to the central server where the models are aggregated to form the global model

updates. Next, the model updates are sent back to the workers following which the next iteration

of federated learning begins. The process continues until the global model converges. However,

the major challenges with the above framework are as follows: (1) Each worker is solving a local

optimization problem by learning a local model which requires a large number of computations

and may not be suitable for workers with limited computing capabilities. (2) The global model

in the central server is usually large and needs to be compressed before being sent over a low

bandwidth communication network to memory-constrained workers [122, 126, 128, 129] during

each iteration. (3) It requires frequent communication between workers during training on a data

batch and is hence infeasible to support fast incremental learning on continuous data streams.

Incremental learning has been implemented for many traditional machine learning algorithms

such as SVM [130, 131], decision trees [132], artificial neural networks [133, 134], clustering

[135, 136], and dimensionality reduction [137, 138, 139]. To solve incremental dense least squares

problems, QR-decomposition has been used for multicore computing based on ScaLAPACK [140]

routines with different matrix blocking and collectives via all-reduce scheme. However, these

techniques suffer from relatively higher synchronization cost than TSQR [141]. Hence, we take

inspiration from TSQR to design incremental regression specific to federated requirements R1−

R8 in Section 7.3.2 with decentralized workers over a dynamic communication network. It is

to be noted that the over-determined LMS problems can be solved directly by solving its normal

equations. However, this approach is numerically unstable. Moreover, computing and maintaining

the inverse of input covariance matrix, if it exists, for streaming data leads to the accumulation of

numerical errors while solving the normal equations. Since QR decomposition can handle a much

wider range of matrix by avoiding the condition-number-squaring effect, it is a more numerically
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stable alternative [142].

For federated regression, authors in [143] seek to learn exact feature sparsity for sparse linear

regression whereas our focus is to use federated setup to incrementally and accurately update the

model parameters across regression problems. For linear classification and regression models, au-

thors in [144] proposed CoLa, a decentralized training algorithm based on communication-efficient

CoCoA [145] with guarantees for convergence rates. However, CoLa approximately solves a lo-

cal optimization problem on each worker while coordinating with its neighbors via averaging the

shared global estimates. In contrast, our federated regression problem setup in Section 7.3.1 is

based on learning an accurate global model parameter without requiring the workers to solve local

optimization in each round of streaming data. Moreover, our communication is based on sim-

ple gather of local summaries at the master whereas CoLa works with more expensive all-reduce

to compute locally averaged shared vector on all workers. There have also been recent studies

that have examined fault tolerance for machine learning applications in data center environments

[146, 147], and on remote devices [125].

In machine learning, data summarizing have been used in the form of coresets, and sketches

[148, 149, 150, 151]. While coresets are the set of data samples that are retained, sketches are

defined as linear maps of few or all points in the original dataset. Unlike the above summary de-

signs which solve the problem approximately compared to full data set, we use a simple technique

which preserves the input covariance, and accurately solves the equivalent problem presented in

Equation (7.2) for our federated setups as demonstrated in Figure 7.15-7.16.

7.3 Preliminaries

In this section, we first describe the notation. Then, we discuss the problem setup for incre-

mental regression. Finally, we list the federated requirements, and formally define the federated

regression problem to perform incremental updates using streaming data.

Let, w ∈ Rd be a d-dimensional parameter. Assume there are p workers, each with nik � d

independent samples being collected as a data stream over some observation window in every

round k. Here, i ∈ [p], and k ∈ [K], where, [p] and [k] are shorthand notations to denote the sets,
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{1, 2, . . . , p} and {1, 2, . . . , K}, respectively. For a never-ending stream, K → ∞. Each worker

i ∈ [p] has batch size of nik samples which are stored locally as (Xi,yi)k for round k ∈ [K]. Here,

data matrix Xik ∈ Rnik×d comprises rows of d-dimensional predictor variables, and yik ∈ Rnik

is the corresponding local response vector. At each round k ∈ [K], total number of data samples

participating to incrementally update the global model parameter is Nk =
∑p

i=1 nik.

7.3.1 Problem Setup

We assume that the data distribution across pworkers is identical as our goal is to incrementally

update the global model parameter w shared by all workers. For this study, we do not deal with

non independent and identically distributed (non-i.i.d.) data which is generally associated with

personalized models [152] and concept drift [153]. For load balancing across homogeneous work-

ers, we use equal batch size nik = n at every round k ∈ [K] for each worker i ∈ [p]. This implies

Nk =
∑p

i=1 ni = np. However, it is always possible to work with uneven batch size across the

workers. If n = 0 at any round, it can be assumed that worker i ∈ [p] is either offline or does not

have any new data available to participate in that round of incremental update. This understanding

will be later used in RIVER-BASIN scheme to model dynamic networks. For our problem setup,

at each round k ∈ [K], we assume the local data matrix Xik ∈ Rn×d at each worker i ∈ [p] is full

column-rank. The local data matrix with local response vector yik ∈ Rnk amount to global data

matrix Xk ∈ RNk×d and global response vector yk ∈ RNk .

We define the incremental regression problem as performing Least-Mean-Squares (LMS) opti-

mization in each round k ∈ [K]. Here, the objective is to minimize the sum of squared loss between

the observed predictions and the true response with the data samples collected from round k = 1

onwards, (X1:k ,y1:k). The output is a sequence of global model parameters w1 → w2 →, . . . ,→

wK computed in each round k ∈ [K].

wk = arg min
w∈Rd

f (‖X1:kw − y1:k‖2) + g(w), (7.1)

where, X1:k = vstack (X1, . . . ,Xk), and y1:k = vstack (y1, . . . ,yk) denote the vertical con-
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catenation of the data samples until round k ∈ [K]. Equation (7.1) represents a family of LMS

regression problems. For linear regression, f(z) = z2∑k
1 Nk

, and g(w) = 0 whereas for ridge

regression f(z) remains the same but g(w) = λ‖w‖22, where, λ > 0 is `2-regularization hy-

perparameter. On using g(w) = λ‖w‖1 above, we can then model Equation (7.1) as a LASSO

where `1-regularization induces sparsity for feature selection. Finally, by combining both `1- and

`2-regularizations, Equation (7.1) converts to elastic-net regression.

7.3.2 Problem Statement

Designing a federated regression solver to incrementally update the global model parameter

over successive rounds of data streams must meet the following requirements.

R1. Data collected at each worker is naturally decentralized, hence, it should never leave its

device of origin, i.e. never be saved on a centralized server nor shared among peers.

R2. Each worker has low memory, hence, data samples collected locally at each round can not be

stored between successive model updates.

R3. At any round, the model can not be retrained from scratch by re-using data samples from all

the previous rounds.

R4. Each worker has limited compute capabilities, hence, local calculations must be simple and

dependent on its current batch size only.

R5. Workers must coordinate to perform distributed computations and solve the global model

accurately in each round.

R6. Communication bandwidth may be limited, hence, the transmission volume per worker must

be small with one-shot communication with the master in each round.

R7. Solver should be robust and fault-tolerant to straggling and offline workers.

R8. Each worker must get access to the most recent global model parameter at end of each round.
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It is evident that any attempt to store (X1:k ,y1:k) for solving Equation (7.1) in any round k ∈ [K]

will directly violate the requirements R2−R3. Considering all the above federated requirements,

we are interested in answering the following question:

Problem Statement. Given each worker i ∈ [p] contains n � d data samples generated as

i.i.d. in each round k ∈ [K], is it possible to efficiently and accurately update the global model

parameter w ∈ Rd during each round via one-shot communication?

The efficiency of incremental model update means that the proposed solver should be fast and

scalable by demonstrating a constant execution time over successive rounds.

7.4 Rapid Incremental Solver

We design a rapid incremental solver, RIVER for three streaming setups satisfying all the above

listed federated requirements (R1−R8) as well as answer the problem introduced in Section 7.3.2

affirmatively. We now introduce the three streaming setups.

1. Stream. Here data is being generated (or collected from sensor) at each round on a single

worker and the objective is to incrementally update the model parameter across the data

streams. Figure 7.1(a) illustrates a typical Stream setup with p = 1 worker and K = 3

rounds. We name the solver for this setup as RIVER-STREAM.

2. Tributary. This is a federated setup with same set of workers participating in every round

and each of them is generating (or collecting) its data stream. The objective is to incre-

mentally update the global model as the data is fed from these tributaries (workers). Figure

7.1(b) illustrates a typical Tributary setup with p = 2 workers and K = 3 rounds. We name

the solver for this setup as RIVER-TRIBUTARY.

3. Basin. This is a federated setup with different set of workers participating in any round with

their own data batch. Basin models situations in which a worker(s) may be inactive because

of being offline/faulty or may be straggling, or simply not collecting new data. Also, it

encompasses situations where new worker(s) join the network. Hence, the objective is to

incrementally update the global model based on data being drained into a basin formed by
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Figure 7.1: Various streaming setups, round k ∈ [3] (a) Stream: only one worker, where data
is generated in every round (b) Tributary: fixed number of workers, where data is generated by
each worker in every round (c) Basin: dynamic number of workers, where in each round different
groups of workers participate in the network with their data

only active set of workers for that round. Figure 7.1(c) illustrates a typical Basin setup with

p = {2, 2, 3} active workers over K = 3 rounds. Here, we can observe that new workers

i = {3, 4} participate in round k = 2 whereas original workers i = {1, 2} drop from the

network. In round k = 3, we have worker i = 1 rejoin, while worker i = 3 drops and a new

worker i = 5 joins the network. Basin can be trivially extended to model situations where

for any given round, the active workers behave as tributaries by generating multiple rounds

of data streams. We name the solver for this setup as RIVER-BASIN.

The main idea behind the proposed RIVER schemes is to accurately summarize the local data

generated (or collected) in the current round for all workers in parallel and use these local sum-
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maries to incrementally update the global summary of earlier data streams. Finally, we learn the

new model parameters by applying common LMS solvers from the popular scikit-learn library on

the updated global summary without explicitly retraining on all previous data samples. Next, we

provide details to implement the above ideas using which we design a workflow for each of the

three RIVER schemes.

7.4.1 RIVER-STREAM

Here, we lay the groundwork for implementing the above ideas around local and global sum-

mary for a single worker in a typical Stream setup. Then we will simply extend these techniques

for the federated setups, Tributary and Basin.

Definition 7.1 (Accurate Summary). Given a tall data matrix, A ∈ Rn×d where n � d, its

accurate summary is defined as a matrix S ∈ Rn′× d′ if its first dimension is relatively smaller,

i.e., n′ < n and if the covariance matrix is preserved, i.e., STS = ATA.

In light of the above, our first step is to accurately construct local summary for a tall full-

rank data matrix Xk ∈ Rn×d collected at round k ∈ [K] of our Stream setup. We recall that

any full-rank matrix Xk with n > d can be uniquely decomposed into an orthogonal matrix,

Q ∈ Rn×n and an upper trapezoidal matrix, R ∈ Rn×d via QR decomposition [142] such that

Xk = QR. Note that the bottom (n − d) rows of R are zero-rows. Hence, R can be efficiently

stored as R ← R[0 : d, :] comprising of top-d rows. Also note that the input covariance matrix

XT
kXk = (QR)TQR = RTQTQR = RTR is preserved since QTQ = I, where, I is the identity

matrix.

For the setup phase when round k = 1, the first model parameter w1 is computed by solving

Equation (7.1) equivalently as follows

w1 = arg min
w∈Rd

f (‖Q1R1w − y1‖2) + g(w), (7.2)
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where, X1 = Q1R1. Since Q1Q
T
1 = QT

1Q1 = I, we note that

‖X1w − y1‖2 = ‖Q1R1w − y1‖2 = ‖Q1R1w −Q1Q
T
1 y1‖2

= ‖Q1‖2 ‖R1w −QT
1 y1‖2 = ‖R1w −QT

1 y1‖2

Hence, solving Equation (7.1) with data (X1,y1) is equivalent to solving Equation (7.2) with(
R1,Q

T
1 y1

)
. Here, R1 ← R1[0 : d, :] ∈ Rd×d. Since only the top d-rows of R1 are stored,

we also drop the bottom (n − d) elements of the transformed response vector and simply store

QT
1 y1 ← (QT

1 y1)[0 : d] ∈ Rd. Moreover, performing QR-decomposition via Householder trans-

formation [142] avoids the explicit computation and storing of n × n matrix Q1 which becomes

prohibitive for large sample size n in our setup. The above modifications help with memory and

computational efficiency of the RIVER without sacrificing the model correctness in Equation (7.2).

Hence,
(
R1,Q

T
1 y1

)
is the local summary of (X1,y1). We now define the local summary of the

data (Xk,yk) at round k ∈ [K].

Definition 7.2 (Local Summary). Given a tall data matrix, Xk ∈ Rn×d where n � d and Xk =

QkRk via Householder transformation [142]. Then, the upper triangular matrix Rk ← Rk[0 :

d, :] ∈ Rd× d is its accurate summary since its first dimension, d � n, and the covariance matrix

is preserved, i.e., RTR = XT
kXk (as per DEFINITION 1). With top-d elements of QT

k yk ←

(QT
k yk)[0 : d] ∈ Rd,

(
Rk,Q

T
k yk
)

is the local summary of (Xk,yk).

For the streaming phase when round k > 1, we aim to compute the sequence of global model

parameters→ w2 →, . . . ,→ wK by solving Equation (7.1). Hence, we hope to find a global sum-

mary to capture the information from the previous data samples. We now define global summary.

Definition 7.3 (Global Summary). Assume a collection of data streams over round k ∈ [K] stored

as a single concatenated set (X1:k ,y1:k) ∈
(
R

∑k
1 Nk× d ,R

∑k
1 Nk

)
. Let, X1:k = QR via House-

holder transformation [142]. For round r = 1, the local summary
(
R1 ,Q

T
1 y1

)
of single data

batch (X1,y1) is also the global summary. Then, the local summary
(
R ,QTy1:k

)
of the single

concatenated set (X1:k ,y1:k) as per DEFINITION 2 is also the global summary.
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However, the requirements R2−R3 do not permit storing the entire history of data samples

(X1:k ,y1:k) as a single concatenated set and retraining the model from scratch. To address these

issues, we use the inspiration from sequential TSQR algorithm which computes the QR decom-

position of a matrix stored in a 1-D block row layout [141] via reduction scheme. Based on the

above algorithm, local summary
(
Rk ,Q

T
k yk
)

at round k ∈ [K] can be leveraged to incrementally

update the global summary
(
R ,QTy1:k

)
.

Illustration. We will show to leverage the local summary computed in round k = 2 to update

the global summary of samples. Note that the global summary
(
R ,QTy1:k

)
←
(
R1,Q

T
1 y1

)
at

the completion of round k = 1. For the new data stream (X2 ,y2) collected in round k = 2, its

local summary is
(
R2 ,Q

T
2 y2

)
. We create

Rstack = vstack (R ,Rk) ∈ R2d×d

ystack = vstack
(
QTy1:k−1 ,Q

T
k yk
)
∈ R2d

by vertically concatenating the corresponding local summary from current round k = 2 with

the global summary from previous round (k − 1). Then, we compute the local summary of

(Rstack,ystack) which now is the updated global summary
(
R ,QTy1:k

)
. In Figure 7.2, we il-

lustrate a generic workflow of RIVER-STREAM with a single worker and depict the recursion of

global summary with the latest local summary to solve for the next model parameter. Here, it

is to be noted that the data samples, the corresponding QR-decomposition factors, and the local

summary are never stored across successive rounds. Moreover, the model is never retrained from

scratch using the concatenated set of all previous data samples. Rather, the scheme simply runs the

LMS solver on the incrementally updated global summary to solve for the most recent model pa-

rameter, thereby satisfying the requirements R2−R3, and R8. All the summary calculations in

Figure 7.2 are based on DEFINITION 2. We will provide the time and memory analysis in Section

7.5 and check if requirement R4 is also satisfied.

142



Calculate 
Summary

vs
ta

ck

LMS 
Solver

Calculate 
Summary

M
U

X

(Xk,yk)

k=1

k>1
(Rstack,ystack)

(R,QTy1:k)

Delay

(Rk,Qk
Tyk)

global summarylocal summary

wk

Figure 7.2: Workflow for RIVER-Stream on a single worker

7.4.2 RIVER-TRIBUTARY

Recall in our first federated setup, Tributary, the same set of workers (p is fixed) participate

in each round of model update. Here, each worker i ∈ [p] is collecting its own data (Xik ,yik) in

every round k ∈ [K] under naturally decentralized setup as discussed in Section 7.3.1. To ensure

that the data is not centralized or shared with peer workers, we build upon the RIVER-STREAM

scheme where for round k, we first calculate the local summaries
(
Rik ,Q

T
ikyik

)
on all the workers

i ∈ [p] in parallel. As discussed earlier, there is no further need for any worker i to store the

data (Xik ,yik) or their Householder QR-decomposition factors, QikRik once the local summaries

have been computed for the current round k. This satisfies our federated requirement R1. Moving

on, the workers coordinate with each other in each round k ∈ [K] over a communication network

to calculate (and update) the global summary on a master (chosen among the p workers via MPI

process) following which the global model parameter is learnt. Here, the coordination is via one-

shot communication of the local summaries
(
Rik ,Q

T
ikyik

)
to the master via a gather routine. This

results in a vertical concatenation of the local summaries, (Rk,stack ,yk,stack) ∈
(
Rpd×d ,Rpd

)
in

round k following which the master runs the RIVER-STREAM for updating the global summary

and accurately solving for the next global model parameter wk ∈ Rd. We illustrate the above

described workflow of RIVER-TRIBUTARY in Figure 7.3 with p = 2 workers. We can observe that

the local summaries can be discarded to save memory once these have been gathered at the master.

Finally, to ensure that each worker receives the latest model parameter, the master broadcasts wk
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at end of each round k ∈ [K]. Based on above discussion, the proposed RIVER-TRIBUTARY

also meets the other federated requirements R5 −R6, and R8. Since RIVER-TRIBUTARY runs

RIVER-STREAM at the master, the requirements R2−R3 are implicitly met. We will provide the

one-shot communication cost incurred during the gather process in Section 7.5 and confirm that it

also satisfies the requirement R6.
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7.4.3 RIVER-BASIN

We present our second federated scheme RIVER-BASIN to solve incremental regression in

the Basin setup. Recall that the unique characteristic of this setup is to model situations where

a worker(s) may become inactive/unresponsive (offline/faulty) or may be straggling or may not

have new incoming data. It also encompasses situations when a new worker(s) may join the active

worker list in any round which is analogous to setting up a new device(s) in the network. The

previous two schemes, RIVER-STREAM and RIVER-TRIBUTARY together satisfy the requirements

R1 − R6, and R8. RIVER-BASIN aims to fulfill the requirement R7 and demonstrate C6

characteristic by ensuring robustness and fault tolerance in the above dynamic network situations.

We base its implementation on the RIVER-TRIBUTARY such that it meets all the requirements of

the latter. The main idea behind RIVER-BASIN scheme is to probe and create a set of workers that

are active (or online) and available in a round k ∈ [K] with their data to update the model. These

various sets of active workers across multiple rounds drain the Basin resulting in an updated global

model parameter wk. Once the active set of workers is identified, the usual RIVER-TRIBUTARY

scheme follows. In other words, each round k ∈ [K] of RIVER-BASIN is basically running RIVER-

TRIBUTARY on a dedicated set of active workers for that round k. This insight is best captured in

the RIVER-BASIN workflow illustrated in Figure 7.4 where a new active worker set is formed in

each round k ∈ [3] based on Basin setup in Figure 7.1(c). Here, for round k = 1, the active set

comprises p = 2 workers, namely, i = {1, 2}. For round k = 2, another active set is created of

same size p = 2 but with entirely new workers, i = {3, 4}. Finally, in round k = 3, the active

set comprises p = 3 workers, i = {1, 4, 5} where worker i = 1 rejoins, worker i = 3 becomes

offline and a new worker i = 5 joins the network. It can be seen that RIVER-BASIN is naturally

robust to worker failure and averse to straggling workers as they may join a new active set in

any future round to contribute towards global model update. Since a new master is potentially

assigned among the current active set, the updated model parameter and the same fixed-size global

summary are broadcasted to “all" the workers on completion of each round to adapt to dynamic

network. If a new or previously offline worker joins an active set, it could simply request for the
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most recent model parameter and global summary from any of its recently active neighbor, in case

it is assigned the next master. Hence, RIVER-BASIN built using RIVER-TRIBUTARY satisfies all

the requirements R1−R8 listed in Section 7.3.2.

7.5 Complexity Analysis

In this section we analyse the asymptotic complexity associated with the computation, mem-

ory requirement and communication overhead for the proposed RIVER schemes. From Figures

7.2 - 7.4, we observe the modularity in design and workflow (characteristic C7) where RIVER-

TRIBUTARY with p = 1 worker is basically RIVER-STREAM while RIVER-BASIN with same set

of active workers in each round is RIVER-TRIBUTARY. As discussed earlier, the underlying prin-

ciple in all three schemes is to first accurately compute the local summary of the data in each round

k ∈ [K] followed by recursively updating the global summary. Finally, run an LMS solver from

popular scikit-learn library on the global summary to compute the next model parameter.

7.5.1 Computation Time

Here, we discuss the time spent per round in computing the local summary (T cp
local), updating the

global summary (T cp
global), and running the LMS solver (T cp

LMS) to obtain the next model parameter.

(Local summary) As per DEFINITION 2, calculating local summary involves factorizing the

data matrix Xk ∈ Rn×d in (Xk ,yk) via Householder QR-decomposition [142], i.e., Xk = QkRk.

The cost of this computation is O(nd2 − d3/3). The next step is to apply Householder-reflectors

representing Qk and implicitly calculate QT
k yk in O(nd) [142]. Hence, the asymptotic cost to com-

pute local summary for each worker during each round is, T cp
local = O(nd2−d3/3+nd) = O(nd2)

for n � d as per our problem setup. For sparse input data, Given’s rotation-based QR decom-

position [142] can be used to generate data summaries in the proposed RIVER schemes. Given’s

has lower operation count than Householder since non-zeros can be successively annihilated. For

rank-deficient systems r < d, Rank-Revealing QR [154] can be used with an extra cost of O(d2r)

which is negligible since r < d � n in our streaming setup with continuous collection of data

samples (n) while feature dimension, d is typically fixed for the problem.
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(Global summary) As discussed in Section 7.4.1, we leverage local summary to recursively

update the global summary for round k > 1, k ∈ [K]. Here, we perform a vertical concatenation

of p local summaries with the previous global summary to effectively form Rstack ∈ R(p+1)d×d and

ystack ∈ R(p+1)d at the master. Recall in RIVER-STREAM, we have a single worker, p = 1 acting

as the master in each round. In our federated schemes, p > 1 remains fixed with same worker set in

each round of RIVER-TRIBUTARY, and p = {pk ≥ 1} with varying active worker set across mul-

tiple rounds in RIVER-BASIN. To update the global summary, we simply calculate local summary

of (Rstack ,ystack) at the master with T cp
global = O ((p+ 1)d · d2 − d3/3 + (p+ 1)d · d) = O(pd3).

(LMS solver) This is the last stage in the RIVER computational workflow which is dependent

on the federated optimization problem. Once the global summary of the data is updated for the

current round, Least-Mean-Squares solver is applied to global summary matrix of size d × d for

solving federated regression. From scikit-learn library, LMS={LinearRegression, Ridge, Lasso,

ElasticNet} 1 based on the optimization problem. The computation cost for running the scikit-

learn’s Ridge solver on the above global summary matrix is T cp
LMS = O(d ·d2) = O(d3). Similarly,

it is possible to directly apply solvers for other LMS problems mentioned above or any quadratic

programming problems such as SVM classification [155]. For example, the dual objective function

for SVM is similar to Equation (7.1) comprising a Gram matrix of the input data as follows.

wdual = arg min
w∈Rn

1

2
wT
(
XXT + ρI

)
w + g(w),

which on reformulation via X = QR and ŵ = QTw results in following equation similar to

Equation (7.2)

ŵdual = arg min
ŵ∈Rn

1

2
ŵT
(
RRT + ρI

)
ŵ + g(ŵ),

where, ρ > 0 is a penalty constant that determines trade-off between SVM margin maximiza-

tion and training error minimization.

1https://scikit-learn.org/stable/modules/linear_model.html
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Since the model learning is performed only using the global summary at the master, RIVER can

also be applied to run any SVM solver or any gradient descent-based solvers for any reformulated

quadratic optimization problem under federated and incremental learning settings. Hence, RIVER

could be universally applicable (characteristic C8) to problems beyond regression.

(Total) The overall computation cost for RIVER per round for each worker is O(nd2), i.e. linear

in batch size (n) to generate local summary. For the assigned master, the cost is an additional

O(pd3 + d3) = O(pd3), i.e., independent of batch size to recursively update global summary

and incrementally learn the next model parameter. This validates C1 and C4 characteristics while

satisfying R4 requirement.

7.5.2 Memory Consumption

Recall, the above RIVER schemes only need to store and update the global summary of dimen-

sions (d × d, d × 1) and the model parameter of size d which persist between successive rounds.

That means, at the completion of each round all workers discard their data and response pair of

size O(nd + n) = O(nd), the corresponding Householder vectors of size O(nd) [142], and the

local summary pair of size O(d2 + d) = O(d2) to conserve memory and to avoid risk of data

privacy over a period of time. In light of above, each worker will require O(d2 + d+ d) = O(d2),

i.e., independent of batch size to persistently store the global summary and the model parame-

ter across successive streaming rounds. This validates C2 and C5 characteristics. However, it

is to be noted that the current design for RIVER does not yet guarantee privacy to safeguard the

computations against malicious or corrupt adversary workers and is left for our future work in

privacy-preserving computations to generate data summaries.

7.5.3 Communication Overhead

The federated schemes, RIVER-TRIBUTARY and RIVER-BASIN involve one-shot communi-

cation of local summary between the worker and the coordinating master via gather process per

round as discussed earlier. Hence the communication volume per worker per round is d(d−1)
2

ele-

ments, i.e., O(d2) which is independent of the number of samples in the current batch of streaming
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data. Also, the network topology could be flexible and chosen as a binary-reduction tree topology

than all-to-one star topology. For our problem setup, d � n which makes the communication

overhead negligible compared to the computation time of O(nd2 + pd3) thereby validating C3

characteristic and satisfying requirement R6.

7.6 Experiment and Results

Here, we present experimental details and performance evaluation of the proposed federated

schemes, RIVER-TRIBUTARY and RIVER-BASIN. Without loss of generality, we use ridge regres-

sion (RIDGECV) with cross-validation (= 3) as our LMS choice from popular scikit-learn library.

However, RIVER is also applicable to other LMS regression problems discussed in Section 7.3.1.

7.6.1 Hardware Description

We conduct our experiments on Ada2, a supercomputer hosted at the Texas A&M High Per-

formance Research Computing. Ada is an Intel x86-64 Linux cluster with 856 compute nodes

(17, 436 total cores) most of which are IBM NeXtScale nx360 M4 dual socket servers based on the

Intel Xeon 2.5GHz E5-2670 v2 10-core processor, commonly known as the Ivy Bridge.

7.6.2 Experimental Setup

We use the Ada cluster to simulate the federated setups Tributary and Basin with p = 16

workers 3. To ensure that the simulated workers do not benefit from the shared memory and fast

intra-node interconnection network, each worker was simulated on a single core from different

nodes running a single MPI process. For Basin, each core had a 50% chance to be active for a

certain round to simulate a varying active worker set. We used the Anaconda Python distribution

and mpi4py Python package for MPI-based communication across the cores. For each experiment,

the incremental learning was reported across 20 rounds of generated data streams. Linear algebra

was handled by LAPACK/BLAS, through the Intel Math Kernel Library.

To experiment with multiple data sets with various batch sizes (n) and feature dimensions (d),

2https://hprc.tamu.edu/wiki/Ada:Intro
3based on the number of nodes assigned to an Ada user in a single session
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we create n×d synthetic data per worker in each of the 20 rounds of incremental learning. The en-

tries in the data were uniformly randomly generated in [−100, 100) with zero-centering. For scal-

ing studies on batch size, we created data batches of n×100 sizes, where n ∈ {500, 1000, 2500, 5000,

10000, 50000} for Tributary, and of n×10 sizes , where n ∈ {500, 1000, 2500} for Basin. For scal-

ing across feature size, we created data batches of sizes 2500×d, where d ∈ {5, 10, 50, 100, 500, 1000}

for Tributary, and of sizes 500× d, where d ∈ {5, 10, 50, 100} for Basin.

We compared the RIVER schemes of federated solvers against three solvers: XY-CUMULATIVE

which is our standard baseline where data is communicated to a single worker and the ridge regres-

sion model is solved on the concatenated dataset, QR-CUMULATIVE which is our proof-of-concept

based on creating a single summary via Householder-QR [142] on the concatenated data, and run-

ning the regression solver on the summary, and finally the classical recursive least square method,

RECURSIVE-LS [156, 157] for incremental learning. RECURSIVE-LS is an online algorithm for

computing the best model estimate from all the measurements it has seen up to the current time.

It comprises of computationally cheaper initialization step for first batch and computationally ex-

pensive update steps which are constant for successive streaming data rounds 4.

7.6.3 Results and Discussions

Here we present and discuss performance of the proposed solver in terms of scalability, model

accuracy, and analyze timing breakdown.

7.6.3.1 Scalability

We perform scaling studies across batch size n, across feature dimension d, and across number

of workers p in Figure 7.5-7.8, Figure 7.9-7.12 and Figure 7.13-7.14, respectively to demonstrate

the effectiveness of creating the local summaries and the global summary in our proposed federated

RIVER schemes.
4https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/2/436/files/2017/07/

22-notes-6250-f16.pdf
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Figure 7.5: Tributary: scaling across batch size, n (a) RIVER (b) Xy-Cumulative (c) QR-
Cumulative (d) Recursive-LS
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Figure 7.6: Basin: scaling across batch size, n (a) RIVER (b) Xy-Cumulative (c) QR-Cumulative
(d) Recursive-LS
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Figure 7.7: Tributary time, various n (a) 500× 100 (b) 1000× 100 (c) 2500× 100 (d) 5000× 100
(e) 10K × 100 (f) 50K × 100

0 
(8

)
1 

(1
1)

2 
(1

0)
3 

(8
)

4 
(6

)
5 

(5
)

6 
(8

)
7 

(9
)

8 
(5

)
9 

(1
0)

10
 (

8)
11

 (
10

)
12

 (
8)

13
 (

10
)

14
 (

7)
15

 (
10

)
16

 (
7)

17
 (

7)
18

 (
8)

19
 (

8)

Rounds (#active workers, each with 500x10 data)

0.001

0.01

0.1

1

10
50

Ex
ec

ut
io

n 
tim

e/
ro

un
d 

(s
ec

on
ds

)

(a)

Xy Cumulative
QR Cumulative

Recursive
RIVER-BASIN

0 
(8

)
1 

(7
)

2 
(9

)
3 

(1
2)

4 
(5

)
5 

(5
)

6 
(8

)
7 

(9
)

8 
(1

2)
9 

(1
0)

10
 (

8)
11

 (
4)

12
 (

6)
13

 (
9)

14
 (

8)
15

 (
7)

16
 (

8)
17

 (
9)

18
 (

6)
19

 (
5)

Rounds (#active workers, each with 1000x10 data)

0.001

0.01

0.1

1

10
50

Ex
ec

ut
io

n 
tim

e/
ro

un
d 

(s
ec

on
ds

)

(b)

Xy Cumulative
QR Cumulative

RIVER-BASIN

0 
(8

)
1 

(9
)

2 
(8

)
3 

(8
)

4 
(5

)
5 

(5
)

6 
(1

0)
7 

(7
)

8 
(1

0)
9 

(8
)

10
 (

7)
11

 (
9)

12
 (

8)
13

 (
8)

14
 (

6)
15

 (
7)

16
 (

5)
17

 (
7)

18
 (

8)
19

 (
6)

Rounds (#active workers, each with 2500x10 data)

0.001

0.01

0.1

1

10
50

Ex
ec

ut
io

n 
tim

e/
ro

un
d 

(s
ec

on
ds

)

(c)

Xy Cumulative
QR Cumulative

RIVER-BASIN

Figure 7.8: Basin time (a) 500× 10 (b) 1000× 10 (c) 2500× 10

Scalability across Batch Size. In Figure 7.5 and 7.6, we present the scaling performance of

the proposed federated solvers, RIVER-TRIBUTARY and RIVER-BASIN across various batch sizes

n and compare with the baselines. In Figure 7.5(a) and 7.6(a), we observe the execution time

of the proposed RIVER schemes is constant over the 20 streaming rounds for any batch size n.

This justifies that the computation time per round is linearly dependent on a given batch size as

discussed in Section 7.5.1. While the Tributary results were reported on p = 2 workers, the above

observation for the RIVER-BASIN in Figure 7.6(a) becomes even more significant in the context of
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varying size of the active worker set in each round. This could also be easily explained by parallel

computation of local summaries on the workers, and the same fixed size of global summary to

incrementally learn the next model parameter, independent of batch size as per Section 7.5.1.

Such constant trend is also observed in RECURSIVE-LS solver in Figure 7.5(d) and 7.6(d) but is

much slower compared to our proposed solvers. Figure 7.5(b)(c) and 7.6(b)(c) demonstrate poor

scaling of XY-CUMULATIVE and QR-CUMULATIVE solvers across batch size on Tributary and

Basin setups. Here, with each concatenated data batch over successive rounds, the execution time

grows linearly with streaming rounds and number of workers. Hence, it is impossible to support

continuous data streams indefinitely and infeasible for federated setups. From Figure 7.7-7.8, we

observe that the proposed RIVER schemes consistently outperform the other solvers for various

batch sizes. The separation in execution time becomes more pronounced up to 200x (in Tributary,

Figure 7.7(e)) and 50x (in Basin, Figure 7.8(c)) across streaming rounds for large batch sizes.

This demonstrates the efficiency of RIVER schemes in handling large amounts of data streams

compared to the other solvers. For instance, RECURSIVE-LS runs out of memory when n ≥ 5K

in Tributary setup shown in Figure 7.7(d)-(f), and when n ≥ 1000 in Basin setup as in Figure

7.8(b)(c). Note, none of the other solvers could compete with RIVER-TRIBUTARY on n = 50K

samples as depicted in Figure 7.7(f).

Scalability across Feature Dimension. In Figure 7.9-7.10, we present the scaling performance

of RIVER-TRIBUTARY and RIVER-BASIN across various feature dimension d, and compare with

the baselines. In Figure 7.9(a) and 7.10(a), we observe the execution time of the proposed RIVER

schemes is constant over the 20 streaming rounds for any feature dimension d, similar to our

analysis across batch size earlier. In contrast, the baseline solvers scale poorly across feature

dimension with increasing execution time per round. From Figure 7.11 and 7.12, we observe

that the proposed RIVER schemes consistently outperform the baseline solvers for various feature

dimension as well. For smaller feature dimension, d� n, RIVER is faster by 400x as demonstrated

in Figure 7.11(a)-(d), and Figure 7.12(a)-(c). For relatively larger feature dimension, it is faster by

around 70x on Tributary (Figure 7.11(e)(f)), and by 200x on Basin setup (Figure 7.12(d)).
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Figure 7.9: Tributary: scaling across feature, d (a) RIVER (b) Xy-Cumulative (c) QR-Cumulative
(d) Recursive-LS
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Figure 7.10: Basin: scaling across feature, d (a) RIVER (b) Xy-Cumulative (c) QR-Cumulative
(d) Recursive-LS
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Figure 7.11: Tributary time, various d (a) 2500× 5 (b) 2500× 10 (c) 2500× 50 (d) 2500× 100 (e)
2500× 500 (f) 2500× 1000
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Figure 7.12: Basin time, 500× d (a) 5 (b) 10 (c) 50 (d) 100
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Figure 7.13: Tributary: scaling across workers p (a) RIVER, large n, 50K × 100 (b) RIVER, large
d, 2500× 1000
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Figure 7.14: Tributary: scaling across workers p (a) Xy-Cumulative (b) QR-Cumulative (c)
Recursive-LS

Scalability across Workers. We demonstrate the scaling performance for RIVER-TRIBUTARY

and other baseline solvers across various number of workers (tributaries) p in Figure 7.13 and Fig-

ure 7.14 respectively. For any given solver, the workload per worker chosen is the maximum data

set size amongst the various datasets discussed in Section 7.6.2 that could be supported by the

solver for various p. For our problem setup with n� d, we observe linear scaling for the proposed

RIVER-TRIBUTARY scheme in Figure 7.13(a) as the execution time stays constant while the work-

load is increased in direct proportion to the number of workers. When d is of the same order as n,

we observe the scaling to be not perfectly linear with p in Figure 7.13(b) as expected with compu-

tational complexity of O(nd2 + pd3). For competing baseline solvers, namely, XY-CUMULATIVE,
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QR-CUMULATIVE, and RECURSIVE-LS in Figure 7.14(a)-(c) we observe very poor scaling with

increasing p and also observe relatively smaller dataset (workload) support compared to the pro-

posed scheme. Finally, note that for Basin setups, we do not explicitly perform scaling analysis

with p as each streaming round of Basin, k ∈ [20] is a Tributary with various sets of active workers.

7.6.3.2 Accuracy

In Figure 7.15-7.16, we report the relative accuracy of the federated RIVER schemes by mea-

suring the mean-squared-error between the updated model parameter and that from the baseline

XY-CUMULATIVE during each round of streaming data across. We observe that the proposed

RIVER schemes learn the model accurately in each round thereby validating accurate construc-

tions of local and global summaries as discussed in Section 7.4.1. Our above results on Basin in

Figure 7.16 also demonstrate the robustness of our proposed fault-tolerant scheme with varying

active worker set. We mapped the relative accuracy of QR-CUMULATIVE on the right Y-axis to

demonstrate that the proposed federated schemes follow the exact trend. In contrast, RECURSIVE-

LS model asymptotically converges to our incrementally learnt model with increasing rounds of

data streams.

(a) (b)

(c) (d)

Figure 7.15: Tributary: model error relative to Xy-Cumulative (a) 500 × 100 (b) 2500 × 10 (c)
2500× 100 (d) 2500× 1000. QR-Cumulative results are mapped to right Y-axis.
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(a) (b)

(c) (d)

Figure 7.16: Basin: model error relative to Xy-Cumulative (a) 500×10 (b) 500×100 (c) 1000×50
(d) 2500× 10. QR-Cumulative results are mapped to right Y-axis.

7.6.3.3 Timing Breakdown Analysis

We profile the execution time of the proposed federated schemes and the other baseline solvers

in Figure 7.17-7.18, and measure the time spent in each stage across 20 rounds of incremental

learning. The execution time of the above solvers can be broadly separated into computation time

and communication time. For our proposed schemes, from Section 7.5 recall the computation time

comprises time spent calculating local summary (T cp
local), global summary (T cp

global), and running the

LMS solver (T cp
LMS). The communication time in the RIVER schemes includes the time spent in

gathering the local summaries from all workers and the broadcast of the updated model param-

eter at end of each round. Figures 7.17(a) and 7.18(a) demonstrate the time spent by master in

the proposed schemes. Firstly, we observe that the execution time per round is fairly constant in

each round of data stream compared to other solvers as discussed in our scaling studies earlier.

Next, we demonstrate that the communication time is negligible in our proposed schemes. Also,

we notice that the T cp
local is constant in each round as expected and is relatively more dominant that
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(a) (b) (c)

Figure 7.17: Tributary: Timing breakdown analysis (a) RIVER (b) QR-Cumulative (c) Xy-
Cumulative

(a) (b) (c)

Figure 7.18: Basin: Timing breakdown analysis (a) RIVER (b) QR-Cumulative (c) Xy-Cumulative

the T cp
global as per our complexity analysis in Section 7.5. Finally, we observe T cp

LMS to be the most

dominant time slice where a model is learnt using the updated global summary. Putting the above

time slices in perspective of other baseline solvers, we can understand the need and efficiency of

first summarizing the data locally, rather than sending the complete data over the network to a

central server. Figures 7.17(b) and 7.18(b) for QR-CUMULATIVE solvers show summarizing the

concatenated data on the central server is a more time-consuming process than running the LMS

solver. Therefore, it is best performed locally on each worker, and to not overburden the compu-

tations at the master. Figures 7.17(c) and 7.18(c) for XY-CUMULATIVE solvers demonstrate the

computationally expensive training on the concatenated data and need the need to generate data

summary before the training. In Figure 7.18(b)(c), we notice that the broadcast time in baseline

solvers becomes increasingly significant to take into account fault-tolerant by introducing redun-

dancy of also sharing the original data across the network. In contrast, RIVER-BASIN in Figure
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7.18(a) demonstrates negligible broadcast time since its design is inherently fault-tolerant, and only

requires the global summary to incrementally update the next round’s summary and model update.

7.7 Summary

Federated learning enables distributed computing among multiple workers to incrementally

update the model on streaming data to alleviate the issues with data sharing. To satisfy the federated

requirements R1 −R8, in this chapter we design a rapid incremental solver called RIVER. We

apply RIVER to solve federated regression on three streaming setups, namely, Stream, Tributary,

and Basin. RIVER schemes for the above setups have been designed in a modular workflow. The

design is based on the idea of summarizing the local data of each worker and then pooling them

together to attain a recursive snapshot of all the changes made to global model. Through analytical

and empirical studies, we show that RIVER exhibits all the characteristics C1 − C8 expected in

a federated solver such as ideal scalability across batch size, feature dimension , and number of

workers, low memory usage, negligible communication overhead, fault tolerance, and robustness

of the global model. By using RIVER on various dataset sizes, we are able incrementally update the

global model 50x to 400x faster than other baselines without any degradation in accuracy thereby

demonstrating the need for efficient data summaries in federated setups. RIVER’s universal design

can be applied to work on high-performance computing clusters as well as with other quadratic

programming problems with similar formulation. A number of interesting future areas may be to

apply RIVER in multi-party communication that incorporates different cryptography techniques,

explore RIVER in context of non-i.i.d data and heterogeneous systems as workers, and design

efficient accelerators for real-time edge analytics based on streaming RIVER workflows.
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8. CONCLUSIONS

We conclude by summarizing the dissertation and discussing future research directions.

8.1 Conclusions

This dissertation proposes to integrate ideas from fields of machine learning, distributed com-

puting, and hardware design for designing efficient and scalable framework for enabling distributed

edge intelligence via decentralized machine learning. Conventional machine learning works on a

centralized approach of collecting large amounts of data from the edge and running computation-

ally intensive training algorithms on High Performance Computing cloud server. Once the model

is trained, it is deployed on edge for inference and prediction. With proliferation of smart IoT

devices and intelligence moving to the resource-constrained edge, it is paramount to design AI

training solutions with requirements of distributed edge intelligence such as data privacy, real-

time machine learning with low latency, less communication overhead and reduce communication

frequency, scalability, energy efficiency, model robustness and adaptability to streaming data. In

light of the above Edge AI requirements and challenges with conventional centralized frameworks,

we systematically develop a decentralized machine learning framework to train AI models across

multiple workers.

First, we propose a relaxed synchronization approach called LSDA for solving generic paral-

lel quadratic programming problems with guaranteed convergence and without loss of accuracy

to the original solution obtained with fully synchronization approach. Here, we also proposed

an analytical solution an optimal synchronization period for workers to combine their local up-

dates and communicate periodically. We show a 160x speedup in solution time for a large-scale

quadratic programming problem. We empirically demonstrate that the relaxed synchronization

technique reduces communication overhead by 99.65% in comparison to the tightly synchroniza-

tion implementation. Next, we revisited the classical Householder-based QR decomposition to

design and advocate for Householder sketches as effective means to directly summarize the data
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at the edge to further train and accelerate least-mean-squares model globally on one of the work-

ers. Our results with the proposed LMS-QR solver show Householder sketch speeds up existing

LMS solvers in the scikit-learn library up to 100x-400x. Also, it is 10x-100x faster than the above

strong baseline with similar numerical stability. Our results for distributed implementation show

a near-negligible communication overhead with linear scalability. The summarization techniques

developed here is applicable to similar convex machine learning problems. Then, we combine

the above proposed relaxed synchronization and Householder sketch techniques to parallelize con-

vex machine learning optimization problem. Specifically, we worked with kernel Support Vector

Machines to devise a memory-efficient training algorithm called QRSVM which was trained on

Householder sketches using parallel dual ascent and optimal step size. We analytically derived a

relationship between optimal synchronization period and optimal step size (or learning rate) for

iterative solvers. The experiments demonstrate that the proposed QRSVM algorithm trains kernel

SVM 8x to 10x faster than competing parallel solvers on 16 workers. We found that Householder-

sketch renders the original dense convex machine learning problem into sparse formulation which

is completely separable for parallel training in a distributed framework. This motivated us to

present a communication-efficient implementation of distributed-QRSVM with negligible commu-

nication overhead to scale model training on large-scale datasets and large number of workers.

Experiments on benchmark data sets with up to five million samples demonstrate negligible com-

munication overhead and linear scalability. Execution times are vast improvements over other

widely used packages. Furthermore, the proposed algorithm has linear time complexity with re-

spect to the number of samples making it ideal for training on decentralized environments such as

smart embedded systems and edge-based IoT. Next, we built a first-of-its-kind multiple FPGA ac-

celerator system codesigned for energy-efficient training of machine learning such as SVM. Each

FPGA is synthesized to operate at 125 MHz with a power dissipation of 39 Watts. The proposed

FPGA co-designed accelerator system is around 3x to 24x faster than the embedded edge processor

(ARM) system, and around 1.7x faster than the cloud processor (Broadwell). For large datasets,

the proposed system achieves 2x to 8x lower energy consumption compared to the ARM proces-
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sor, and 6.5x lower than the Broadwell processor. Finally, we integrated federated learning with

incremental learning using distributed Householder sketches to develop RIVER schemes for rapid

and incremental training of machine learning model on both single and federated setups, namely,

RIVER-STREAM, RIVER-TRIBUTARY, and RIVER-BASIN. The proposed schemes demonstrate

ideal scalability across batch size, feature dimension, and number of workers, low memory usage,

negligible communication overhead, fault tolerance, and robustness of the global model. On var-

ious dataset sizes, RIVER incrementally updates the global model 50x to 400x faster than other

baselines without any degradation in accuracy thereby demonstrating the effectiveness of accurate

and efficient data summaries in incremental federated machine learning setups.

8.2 Future Directions

While addressing current gaps in our understanding of the world by creating new knowledge,

we believe that a dissertation should also open up new research questions and opportunities for the

community to pursue. This section discusses some exciting future directions under the realm of

distributed edge intelligence and computer systems.

8.2.1 Secure Multi-Party Decentralized Machine Learning

A computer’s processing power offers the potential for all kinds of valuable insights to be de-

rived from data, so valuable that some have become convinced that data is the new oil. But, in the

same way, data cannot produce value unless it is flowing. Many firms do not share data because

they are highly reluctant to deal with personal and confidential information. The downside of this

is that parties who have mutually mistrusting attitudes are denied the insight they could have gained

from jointly analyzing their data. Secure multi-party computation (MPC) was introduced for per-

forming calculations on behalf of multiple mutually distrusting parties where each participating

party provide their input, but they do not see the inputs of other parties. In theory, this can lead to

a way to deriving value from data without revealing it. In light of the above, the research question

that arises is How to enable parties to perform secure machine learning over their decentralized

data without violating privacy?
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The MPC protocol guarantees that neither party can see any information about the other party’s

data. Cryptographic methods, on the other hand, can be computationally expensive for the com-

panies holding the data because of the repeated encryption and decryption process. Differential

privacy based distributed machine learning poses another option for acquiring a model from multi-

ple data sources in a private manner. Several techniques, such as the aggregation of local classifiers

and the exchange of gradient information, are employed to minimize empirical risk. A recent body

of work aims to create such secure multi-party computation framework for training distributed

regression models [46, 47, 48, 49]. However these algorithms focus on linear learning models

only and leave nonlinear learning models unexplored. It is typically assumed that a trusted central

server facilitates and manages distributed machine learning algorithms, while studying the privacy

and security issues associated with nonlinear learning models is largely unexplored. Moreover, a

semi-honest master or malicious workers can act as adversary to disrupt the learning process. The

above gaps and challenges motivate us to design secure computing frameworks for multi-party de-

centralized training of machine learning and deep learning models. For example, authors in [158]

used Blockchain [159]-based decentralized learning system to protect the system from potential

Byzantine attacks. We may seek to extend our Householder-sketch work to answer Is it possible to

design privacy-preserving sketch and coresets to protect the data summary computations against

malicious parties during decentralized training?

8.2.2 Codesigned AutoML Systems for Distributed Edge Intelligence

Breakthroughs in deep learning have been achieved with the availability of big data, rise in

computational power, advances in hardware acceleration, and the recent algorithmic advancements

[160]. However, designing accurate artificial neural networks manually is challenging due to va-

riety of data types, learning tasks, hyperparameter optimizations and various options of hardware

platforms such as GPUs, FPGAs, ASICs, microcontrollers, etc which makes it difficult to design

one globally efficient architecture. As a result, the recent research direction is to automate the the

design of deep neural networks through automated machine learning (AutoML) and more specif-

ically neural architecture search (NAS) [161]. NAS utilizes reinforcement learning [162], evolu-
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tionary algorithms [163], or other approaches to automatically discover the best model, rather than

manually designing one for a given learning task. However, applying NAS to real-world problems

for deployment in resource-limited platforms, such as IoT, mobile, and embedded systems still

poses significant challenges and is not widely practical. Some recent work has now focused on

using multi-objective optimization algorithms in the NAS search strategy by taking into account

hardware constraints such as execution latency, energy consumption, memory footprint, etc. This

kind of NAS, called hardware-aware NAS (HW-NAS), has been growing in popularity to automat-

ically design both the DNN model and its hardware accelerator by allowing the bottom-up design

of the two parts taking into account accuracy and efficiency of the overall design [164, 165, 166].

While the hardware accelerator design space is fixed in above work, the authors in [167, 168, 169]

focus on algorithm/accelerator codesign by co-searching the both design spaces simultaneously to

generate FPGA-based solutions. One could also look further into silicon photonics based acceler-

ators for deep learning [170]. It will be interesting to introduce design parameters with respect to

distributed machine learning such as communication bandwidth, number of parallel workers, local

and global energy consumption, synchronization period etc in the joint search space to codesign

autoML systems for distributed edge intelligence. This might help find more improved design

architectures than to the ones proposed in [3, 171] for multi-accelerator systems. For example,

designing temperature-aware optimizer for federated machine learning to collaboratively train a

DNN model across system of multiple generated accelerators. If we have a global constraint on

system latency (or performance/thermal budget), how to efficiently optimize training a DNN and

communicating its parameters/gradients across multiple connected devices without violating lo-

cal design constraints? What does the tradeoff between performance and energy (or area) look

like for codesigned autoML systems? How to generate autoML architecture/accelerator satisfying

thermal/energy constraints by synchronizing less frequently or communicating efficiently?

8.2.3 Systems for Lifelong Multi-Agent Learning

Learning through continuous machine learning or Lifelong Learning [172] is an advanced

paradigm based on hallmarks of human intelligence in which knowledge gained from previous
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tasks is used to support learning in the future. The learner acquires more knowledge and becomes

more proficient in learning. However, conventional machine learning is still performed in isolation,

only suitable for well-defined and narrow tasks, where it learns a model given a standard training

dataset with a large number of training examples. There is no attempt to retain the acquired knowl-

edge and apply it to future learning. In contrast, humans can learn with little data or effort. We

make an attempt in this direction by designing RIVER in Chapter 7 for incremental federated

learning. We envision a future where physical robots would interact with humans and systems in

real-life environments, autonomous vehicles would coordinate with each other to derive insights

from each other’s experience for understanding and navigating challenging surrounding environ-

ment, swarm of drones would be deployed in mission critical scenarios and disaster relief where

latency is paramount consideration, future planetary missions with energy-efficient autonomous

rovers would rely on solar energy and battery backup for intelligent multi-agent coordination and

gathering new insights about our universe to help better understand its origin and possibility of life

on other planets. Different smart/IoT devices might have different local constraints with respect

to hardware resources and computing capabilities. Working together as a connected smart home

system, for instance, the energy budget of the home might be fixed within which the smart de-

vices need to work. Some questions one could seek to address may be: How frequently the model

on these connected device needs to be retrained on its continuously connected data? or How

much amount of communication/synchronization is required as a trade-off for accuracy to satisfy

the global energy budget? or How to design a customized (adaptive) optimizer depending on the

customer-chosen energy budget/plan for the month? These applications call for lifelong multi-

agent learning capabilities to be incorporated in future systems. We believe without a method of

accumulating and incrementally building on the knowledge learned, a system will probably never

achieve true intelligence.

166



REFERENCES

[1] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A relaxed

synchronization approach for solving parallel quadratic programming problems with guar-

anteed convergence,” in 2016 IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS), pp. 182–191, May 2016.

[2] J. Dass, V. P. Sakuru, V. Sarin, and R. N. Mahapatra, “Distributed qr decomposition frame-

work for training support vector machines,” in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), pp. 753–763, IEEE, 2017.

[3] J. Dass, Y. Narawane, R. N. Mahapatra, and V. Sarin, “Distributed training of support vec-

tor machine on a multiple-fpga system,” IEEE Transactions on Computers, vol. 69, no. 7,

pp. 1015–1026, 2020.

[4] J. Dass and R. Mahapatra, “Householder sketch for accurate and accelerated least-mean-

squares solvers,” in Proceedings of the 38th International Conference on Machine Learning,

vol. 139, pp. 2467–2477, PMLR, 2021.

[5] S. Si, C.-J. Hsieh, and I. S. Dhillon, “Memory efficient kernel approximation,” The Journal

of Machine Learning Research, vol. 18, no. 1, pp. 682–713, 2017.

[6] J. Dass, V. Sarin, and R. N. Mahapatra, “Fast and communication-efficient algorithm for

distributed support vector machine training,” IEEE Transactions on Parallel and Distributed

Systems, vol. 30, no. 5, pp. 1065–1076, 2018.

[7] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-level

performance in face verification,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1701–1708, 2014.

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws,

167



Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,

J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural

machine translation system: Bridging the gap between human and machine translation,”

CoRR, vol. abs/1609.08144, 2016.

[9] B. Shillingford, Y. Assael, M. W. Hoffman, T. Paine, C. Hughes, U. Prabhu, H. Liao,

H. Sak, K. Rao, L. Bennett, et al., “Large-scale visual speech recognition,” arXiv preprint

arXiv:1807.05162, 2018.

[10] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving cars,” arXiv

preprint arXiv:1604.07316, 2016.

[11] S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM Journal

on Optimization, vol. 2, no. 4, pp. 575–601, 1992.

[12] K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, H. Cui, and E. Y. Chang, “Parallelizing support

vector machines on distributed computers,” in Advances in Neural Information Processing

Systems 20, pp. 257–264, 2008.

[13] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm for support vector

machines,” in Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE

Signal Processing Society Workshop, pp. 276–285, Sep. 1997.

[14] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector

machines,” 1998.

[15] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM transac-

tions on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[16] T. Joachims, “Making large-scale svm learning practical,” tech. rep., Technical report, 1998.

[17] G. Zanghirati and L. Zanni, “A parallel solver for large quadratic programs in training sup-

port vector machines,” Parallel computing, vol. 29, no. 4, pp. 535–551, 2003.

168



[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations and

Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[19] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Denneau, P. Fran-

zon, W. Harrod, K. Hill, et al., “Exascale computing study: Technology challenges in

achieving exascale systems,” 2008.

[20] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high performance

computing,” in Proceedings of the 2004 ACM/IEEE conference on Supercomputing, p. 47,

IEEE Computer Society, 2004.

[21] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “Gpu com-

puting,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[22] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with

cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[23] K. Lee, R. Bhattacharya, and V. Gupta, “A switched dynamical system framework for anal-

ysis of massively parallel asynchronous numerical algorithms,” in American Control Con-

ference (ACC), 2015. Proceedings of the 2015, pp. 1095–1100, IEEE, 2015.

[24] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and

stochastic gradient optimization algorithms,” IEEE transactions on automatic control,

vol. 31, no. 9, pp. 803–812, 1986.

[25] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical meth-

ods. Prentice-Hall, Inc., 1989.
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J. Konečnỳ, S. Mazzocchi, H. B. McMahan, et al., “Towards federated learning at scale:

System design,” arXiv preprint arXiv:1902.01046, 2019.

[126] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods,

and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[127] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier,

B. A. Landman, K. Maier-Hein, et al., “The future of digital health with federated learning,”

NPJ digital medicine, vol. 3, no. 1, pp. 1–7, 2020.

[128] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding,” International Conference

on Learning Representations (ICLR), 2016.

[129] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Federated learning with

compression: Unified analysis and sharp guarantees,” in International Conference on Arti-

ficial Intelligence and Statistics, pp. 2350–2358, PMLR, 2021.

180



[130] C. P. Diehl and G. Cauwenberghs, “Svm incremental learning, adaptation and optimization,”

in Proceedings of the International Joint Conference on Neural Networks, 2003., vol. 4,

pp. 2685–2690, IEEE, 2003.

[131] S. Ruping, “Incremental learning with support vector machines,” in Proceedings 2001 IEEE

International Conference on Data Mining, pp. 641–642, IEEE, 2001.

[132] P. E. Utgoff, “Incremental induction of decision trees,” Machine learning, vol. 4, no. 2,

pp. 161–186, 1989.

[133] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental learning algo-

rithm for supervised neural networks,” IEEE transactions on systems, man, and cybernetics,

part C (applications and reviews), vol. 31, no. 4, pp. 497–508, 2001.

[134] L. Bruzzone and D. F. Prieto, “An incremental-learning neural network for the classification

of remote-sensing images,” Pattern Recognition Letters, vol. 20, no. 11-13, pp. 1241–1248,

1999.

[135] R. Langone, O. M. Agudelo, B. De Moor, and J. A. Suykens, “Incremental kernel spectral

clustering for online learning of non-stationary data,” Neurocomputing, vol. 139, pp. 246–

260, 2014.

[136] S. Mehrkanoon, O. M. Agudelo, and J. A. Suykens, “Incremental multi-class semi-

supervised clustering regularized by kalman filtering,” Neural Networks, vol. 71, pp. 88–

104, 2015.

[137] T.-J. Chin and D. Suter, “Incremental kernel principal component analysis,” IEEE transac-

tions on image processing, vol. 16, no. 6, pp. 1662–1674, 2007.

[138] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar, “Idr/qr: An incremental di-

mension reduction algorithm via qr decomposition,” IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 9, pp. 1208–1222, 2005.

181



[139] X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng, and R. C. Tan, “Incremental regularized

least squares for dimensionality reduction of large-scale data,” SIAM Journal on Scientific

Computing, vol. 38, no. 3, pp. B414–B439, 2016.

[140] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, et al., ScaLAPACK users’ guide. SIAM, 1997.

[141] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal parallel and

sequential qr and lu factorizations,” SIAM Journal on Scientific Computing, vol. 34, no. 1,

pp. A206–A239, 2012.

[142] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU press, 2012.

[143] A. Barik and J. Honorio, “Exact support recovery in federated regression with one-shot

communication,” arXiv preprint arXiv:2006.12583, 2020.

[144] L. He, A. Bian, and M. Jaggi, “Cola: Decentralized linear learning,” in Advances in Neural

Information Processing Systems, vol. 31, 2018.

[145] V. Smith, S. Forte, M. Chenxin, M. Takáč, M. I. Jordan, and M. Jaggi, “Cocoa: A gen-
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